xref: /linux/Documentation/firmware-guide/acpi/apei/einj.rst (revision 9bbf8e17d8521211c5c5516ed5ec78d7581aacff)
1.. SPDX-License-Identifier: GPL-2.0
2
3====================
4APEI Error INJection
5====================
6
7EINJ provides a hardware error injection mechanism. It is very useful
8for debugging and testing APEI and RAS features in general.
9
10You need to check whether your BIOS supports EINJ first. For that, look
11for early boot messages similar to this one::
12
13  ACPI: EINJ 0x000000007370A000 000150 (v01 INTEL           00000001 INTL 00000001)
14
15which shows that the BIOS is exposing an EINJ table - it is the
16mechanism through which the injection is done.
17
18Alternatively, look in /sys/firmware/acpi/tables for an "EINJ" file,
19which is a different representation of the same thing.
20
21It doesn't necessarily mean that EINJ is not supported if those above
22don't exist: before you give up, go into BIOS setup to see if the BIOS
23has an option to enable error injection. Look for something called WHEA
24or similar. Often, you need to enable an ACPI5 support option prior, in
25order to see the APEI,EINJ,... functionality supported and exposed by
26the BIOS menu.
27
28To use EINJ, make sure the following are options enabled in your kernel
29configuration::
30
31  CONFIG_DEBUG_FS
32  CONFIG_ACPI_APEI
33  CONFIG_ACPI_APEI_EINJ
34
35...and to (optionally) enable CXL protocol error injection set::
36
37  CONFIG_ACPI_APEI_EINJ_CXL
38
39The EINJ user interface is in <debugfs mount point>/apei/einj.
40
41The following files belong to it:
42
43- available_error_type
44
45  This file shows which error types are supported:
46
47  ================  ===================================
48  Error Type Value	Error Description
49  ================  ===================================
50  0x00000001        Processor Correctable
51  0x00000002        Processor Uncorrectable non-fatal
52  0x00000004        Processor Uncorrectable fatal
53  0x00000008        Memory Correctable
54  0x00000010        Memory Uncorrectable non-fatal
55  0x00000020        Memory Uncorrectable fatal
56  0x00000040        PCI Express Correctable
57  0x00000080        PCI Express Uncorrectable non-fatal
58  0x00000100        PCI Express Uncorrectable fatal
59  0x00000200        Platform Correctable
60  0x00000400        Platform Uncorrectable non-fatal
61  0x00000800        Platform Uncorrectable fatal
62  V2_0x00000001     EINJV2 Processor Error
63  V2_0x00000002     EINJV2 Memory Error
64  V2_0x00000004     EINJV2 PCI Express Error
65  ================  ===================================
66
67  The format of the file contents are as above, except present are only
68  the available error types.
69
70- error_type
71
72  Set the value of the error type being injected. Possible error types
73  are defined in the file available_error_type above.
74
75- error_inject
76
77  Write any integer to this file to trigger the error injection. Make
78  sure you have specified all necessary error parameters, i.e. this
79  write should be the last step when injecting errors.
80
81- flags
82
83  Present for kernel versions 3.13 and above. Used to specify which
84  of param{1..4} are valid and should be used by the firmware during
85  injection. Value is a bitmask as specified in ACPI5.0 spec for the
86  SET_ERROR_TYPE_WITH_ADDRESS data structure:
87
88    Bit 0
89      Processor APIC field valid (see param3 below).
90    Bit 1
91      Memory address and mask valid (param1 and param2).
92    Bit 2
93      PCIe (seg,bus,dev,fn) valid (see param4 below).
94    Bit 3
95      EINJv2 extension structure is valid
96
97  If set to zero, legacy behavior is mimicked where the type of
98  injection specifies just one bit set, and param1 is multiplexed.
99
100- param1
101
102  This file is used to set the first error parameter value. Its effect
103  depends on the error type specified in error_type. For example, if
104  error type is memory related type, the param1 should be a valid
105  physical memory address. [Unless "flag" is set - see above]
106
107- param2
108
109  Same use as param1 above. For example, if error type is of memory
110  related type, then param2 should be a physical memory address mask.
111  Linux requires page or narrower granularity, say, 0xfffffffffffff000.
112
113- param3
114
115  Used when the 0x1 bit is set in "flags" to specify the APIC id
116
117- param4
118  Used when the 0x4 bit is set in "flags" to specify target PCIe device
119
120- notrigger
121
122  The error injection mechanism is a two-step process. First inject the
123  error, then perform some actions to trigger it. Setting "notrigger"
124  to 1 skips the trigger phase, which *may* allow the user to cause the
125  error in some other context by a simple access to the CPU, memory
126  location, or device that is the target of the error injection. Whether
127  this actually works depends on what operations the BIOS actually
128  includes in the trigger phase.
129
130- component_id0 .. component_idN, component_syndrome0 .. component_syndromeN
131
132  These files are used to set the "Component Array" field
133  of the EINJv2 Extension Structure. Each holds a 128-bit
134  hex value. Writing just a newline to any of these files
135  sets an invalid (all-ones) value.
136
137CXL error types are supported from ACPI 6.5 onwards (given a CXL port
138is present). The EINJ user interface for CXL error types is at
139<debugfs mount point>/cxl. The following files belong to it:
140
141- einj_types:
142
143  Provides the same functionality as available_error_types above, but
144  for CXL error types
145
146- $dport_dev/einj_inject:
147
148  Injects a CXL error type into the CXL port represented by $dport_dev,
149  where $dport_dev is the name of the CXL port (usually a PCIe device name).
150  Error injections targeting a CXL 2.0+ port can use the legacy interface
151  under <debugfs mount point>/apei/einj, while CXL 1.1/1.0 port injections
152  must use this file.
153
154
155BIOS versions based on the ACPI 4.0 specification have limited options
156in controlling where the errors are injected. Your BIOS may support an
157extension (enabled with the param_extension=1 module parameter, or boot
158command line einj.param_extension=1). This allows the address and mask
159for memory injections to be specified by the param1 and param2 files in
160apei/einj.
161
162BIOS versions based on the ACPI 5.0 specification have more control over
163the target of the injection. For processor-related errors (type 0x1, 0x2
164and 0x4), you can set flags to 0x3 (param3 for bit 0, and param1 and
165param2 for bit 1) so that you have more information added to the error
166signature being injected. The actual data passed is this::
167
168	memory_address = param1;
169	memory_address_range = param2;
170	apicid = param3;
171	pcie_sbdf = param4;
172
173For memory errors (type 0x8, 0x10 and 0x20) the address is set using
174param1 with a mask in param2 (0x0 is equivalent to all ones). For PCI
175express errors (type 0x40, 0x80 and 0x100) the segment, bus, device and
176function are specified using param1::
177
178         31     24 23    16 15    11 10      8  7        0
179	+-------------------------------------------------+
180	| segment |   bus  | device | function | reserved |
181	+-------------------------------------------------+
182
183Anyway, you get the idea, if there's doubt just take a look at the code
184in drivers/acpi/apei/einj.c.
185
186An ACPI 5.0 BIOS may also allow vendor-specific errors to be injected.
187In this case a file named vendor will contain identifying information
188from the BIOS that hopefully will allow an application wishing to use
189the vendor-specific extension to tell that they are running on a BIOS
190that supports it. All vendor extensions have the 0x80000000 bit set in
191error_type. A file vendor_flags controls the interpretation of param1
192and param2 (1 = PROCESSOR, 2 = MEMORY, 4 = PCI). See your BIOS vendor
193documentation for details (and expect changes to this API if vendors
194creativity in using this feature expands beyond our expectations).
195
196
197An error injection example::
198
199  # cd /sys/kernel/debug/apei/einj
200  # cat available_error_type		# See which errors can be injected
201  0x00000002	Processor Uncorrectable non-fatal
202  0x00000008	Memory Correctable
203  0x00000010	Memory Uncorrectable non-fatal
204  # echo 0x12345000 > param1		# Set memory address for injection
205  # echo 0xfffffffffffff000 > param2		# Mask - anywhere in this page
206  # echo 0x8 > error_type			# Choose correctable memory error
207  # echo 1 > error_inject			# Inject now
208
209An EINJv2 error injection example::
210
211  # cd /sys/kernel/debug/apei/einj
212  # cat available_error_type			# See which errors can be injected
213  0x00000002	Processor Uncorrectable non-fatal
214  0x00000008	Memory Correctable
215  0x00000010	Memory Uncorrectable non-fatal
216  V2_0x00000001	EINJV2 Processor Error
217  V2_0x00000002	EINJV2 Memory Error
218
219  # echo 0x12345000 > param1			# Set memory address for injection
220  # echo 0xfffffffffffff000 > param2		# Range - anywhere in this page
221  # echo 0x1 > component_id0			# First device ID
222  # echo 0x4 > component_syndrome0		# First error syndrome
223  # echo 0x2 > component_id1			# Second device ID
224  # echo 0x4 > component_syndrome1		# Second error syndrome
225  # echo '' > component_id2			# Mark id2 invalid to terminate list
226  # echo V2_0x2 > error_type			# Choose EINJv2 memory error
227  # echo 0xa > flags				# set flags to indicate EINJv2
228  # echo 1 > error_inject			# Inject now
229
230You should see something like this in dmesg::
231
232  [22715.830801] EDAC sbridge MC3: HANDLING MCE MEMORY ERROR
233  [22715.834759] EDAC sbridge MC3: CPU 0: Machine Check Event: 0 Bank 7: 8c00004000010090
234  [22715.834759] EDAC sbridge MC3: TSC 0
235  [22715.834759] EDAC sbridge MC3: ADDR 12345000 EDAC sbridge MC3: MISC 144780c86
236  [22715.834759] EDAC sbridge MC3: PROCESSOR 0:306e7 TIME 1422553404 SOCKET 0 APIC 0
237  [22716.616173] EDAC MC3: 1 CE memory read error on CPU_SrcID#0_Channel#0_DIMM#0 (channel:0 slot:0 page:0x12345 offset:0x0 grain:32 syndrome:0x0 -  area:DRAM err_code:0001:0090 socket:0 channel_mask:1 rank:0)
238
239A CXL error injection example with $dport_dev=0000:e0:01.1::
240
241    # cd /sys/kernel/debug/cxl/
242    # ls
243    0000:e0:01.1 0000:0c:00.0
244    # cat einj_types                # See which errors can be injected
245	0x00008000  CXL.mem Protocol Correctable
246	0x00010000  CXL.mem Protocol Uncorrectable non-fatal
247	0x00020000  CXL.mem Protocol Uncorrectable fatal
248    # cd 0000:e0:01.1               # Navigate to dport to inject into
249    # echo 0x8000 > einj_inject     # Inject error
250
251Special notes for injection into SGX enclaves:
252
253There may be a separate BIOS setup option to enable SGX injection.
254
255The injection process consists of setting some special memory controller
256trigger that will inject the error on the next write to the target
257address. But the h/w prevents any software outside of an SGX enclave
258from accessing enclave pages (even BIOS SMM mode).
259
260The following sequence can be used:
261  1) Determine physical address of enclave page
262  2) Use "notrigger=1" mode to inject (this will setup
263     the injection address, but will not actually inject)
264  3) Enter the enclave
265  4) Store data to the virtual address matching physical address from step 1
266  5) Execute CLFLUSH for that virtual address
267  6) Spin delay for 250ms
268  7) Read from the virtual address. This will trigger the error
269
270For more information about EINJ, please refer to ACPI specification
271version 4.0, section 17.5 and ACPI 5.0, section 18.6.
272