1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support for AES-NI and VAES instructions.  This file contains glue code.
4  * The real AES implementations are in aesni-intel_asm.S and other .S files.
5  *
6  * Copyright (C) 2008, Intel Corp.
7  *    Author: Huang Ying <ying.huang@intel.com>
8  *
9  * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
10  * interface for 64-bit kernels.
11  *    Authors: Adrian Hoban <adrian.hoban@intel.com>
12  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
13  *             Tadeusz Struk (tadeusz.struk@intel.com)
14  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
15  *    Copyright (c) 2010, Intel Corporation.
16  *
17  * Copyright 2024 Google LLC
18  */
19 
20 #include <linux/hardirq.h>
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <linux/err.h>
24 #include <crypto/algapi.h>
25 #include <crypto/aes.h>
26 #include <crypto/b128ops.h>
27 #include <crypto/gcm.h>
28 #include <crypto/xts.h>
29 #include <asm/cpu_device_id.h>
30 #include <asm/simd.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/internal/aead.h>
33 #include <crypto/internal/simd.h>
34 #include <crypto/internal/skcipher.h>
35 #include <linux/jump_label.h>
36 #include <linux/workqueue.h>
37 #include <linux/spinlock.h>
38 #include <linux/static_call.h>
39 
40 
41 #define AESNI_ALIGN	16
42 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN)))
43 #define AES_BLOCK_MASK	(~(AES_BLOCK_SIZE - 1))
44 #define AESNI_ALIGN_EXTRA ((AESNI_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1))
45 #define CRYPTO_AES_CTX_SIZE (sizeof(struct crypto_aes_ctx) + AESNI_ALIGN_EXTRA)
46 #define XTS_AES_CTX_SIZE (sizeof(struct aesni_xts_ctx) + AESNI_ALIGN_EXTRA)
47 
48 struct aesni_xts_ctx {
49 	struct crypto_aes_ctx tweak_ctx AESNI_ALIGN_ATTR;
50 	struct crypto_aes_ctx crypt_ctx AESNI_ALIGN_ATTR;
51 };
52 
aes_align_addr(void * addr)53 static inline void *aes_align_addr(void *addr)
54 {
55 	if (crypto_tfm_ctx_alignment() >= AESNI_ALIGN)
56 		return addr;
57 	return PTR_ALIGN(addr, AESNI_ALIGN);
58 }
59 
60 asmlinkage void aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
61 			      unsigned int key_len);
62 asmlinkage void aesni_enc(const void *ctx, u8 *out, const u8 *in);
63 asmlinkage void aesni_dec(const void *ctx, u8 *out, const u8 *in);
64 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
65 			      const u8 *in, unsigned int len);
66 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
67 			      const u8 *in, unsigned int len);
68 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
69 			      const u8 *in, unsigned int len, u8 *iv);
70 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
71 			      const u8 *in, unsigned int len, u8 *iv);
72 asmlinkage void aesni_cts_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
73 				  const u8 *in, unsigned int len, u8 *iv);
74 asmlinkage void aesni_cts_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
75 				  const u8 *in, unsigned int len, u8 *iv);
76 
77 asmlinkage void aesni_xts_enc(const struct crypto_aes_ctx *ctx, u8 *out,
78 			      const u8 *in, unsigned int len, u8 *iv);
79 
80 asmlinkage void aesni_xts_dec(const struct crypto_aes_ctx *ctx, u8 *out,
81 			      const u8 *in, unsigned int len, u8 *iv);
82 
83 #ifdef CONFIG_X86_64
84 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
85 			      const u8 *in, unsigned int len, u8 *iv);
86 #endif
87 
aes_ctx(void * raw_ctx)88 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
89 {
90 	return aes_align_addr(raw_ctx);
91 }
92 
aes_xts_ctx(struct crypto_skcipher * tfm)93 static inline struct aesni_xts_ctx *aes_xts_ctx(struct crypto_skcipher *tfm)
94 {
95 	return aes_align_addr(crypto_skcipher_ctx(tfm));
96 }
97 
aes_set_key_common(struct crypto_aes_ctx * ctx,const u8 * in_key,unsigned int key_len)98 static int aes_set_key_common(struct crypto_aes_ctx *ctx,
99 			      const u8 *in_key, unsigned int key_len)
100 {
101 	int err;
102 
103 	if (!crypto_simd_usable())
104 		return aes_expandkey(ctx, in_key, key_len);
105 
106 	err = aes_check_keylen(key_len);
107 	if (err)
108 		return err;
109 
110 	kernel_fpu_begin();
111 	aesni_set_key(ctx, in_key, key_len);
112 	kernel_fpu_end();
113 	return 0;
114 }
115 
aes_set_key(struct crypto_tfm * tfm,const u8 * in_key,unsigned int key_len)116 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
117 		       unsigned int key_len)
118 {
119 	return aes_set_key_common(aes_ctx(crypto_tfm_ctx(tfm)), in_key,
120 				  key_len);
121 }
122 
aesni_encrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)123 static void aesni_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
124 {
125 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
126 
127 	if (!crypto_simd_usable()) {
128 		aes_encrypt(ctx, dst, src);
129 	} else {
130 		kernel_fpu_begin();
131 		aesni_enc(ctx, dst, src);
132 		kernel_fpu_end();
133 	}
134 }
135 
aesni_decrypt(struct crypto_tfm * tfm,u8 * dst,const u8 * src)136 static void aesni_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
137 {
138 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
139 
140 	if (!crypto_simd_usable()) {
141 		aes_decrypt(ctx, dst, src);
142 	} else {
143 		kernel_fpu_begin();
144 		aesni_dec(ctx, dst, src);
145 		kernel_fpu_end();
146 	}
147 }
148 
aesni_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)149 static int aesni_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
150 			         unsigned int len)
151 {
152 	return aes_set_key_common(aes_ctx(crypto_skcipher_ctx(tfm)), key, len);
153 }
154 
ecb_encrypt(struct skcipher_request * req)155 static int ecb_encrypt(struct skcipher_request *req)
156 {
157 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
158 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
159 	struct skcipher_walk walk;
160 	unsigned int nbytes;
161 	int err;
162 
163 	err = skcipher_walk_virt(&walk, req, false);
164 
165 	while ((nbytes = walk.nbytes)) {
166 		kernel_fpu_begin();
167 		aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
168 			      nbytes & AES_BLOCK_MASK);
169 		kernel_fpu_end();
170 		nbytes &= AES_BLOCK_SIZE - 1;
171 		err = skcipher_walk_done(&walk, nbytes);
172 	}
173 
174 	return err;
175 }
176 
ecb_decrypt(struct skcipher_request * req)177 static int ecb_decrypt(struct skcipher_request *req)
178 {
179 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
180 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
181 	struct skcipher_walk walk;
182 	unsigned int nbytes;
183 	int err;
184 
185 	err = skcipher_walk_virt(&walk, req, false);
186 
187 	while ((nbytes = walk.nbytes)) {
188 		kernel_fpu_begin();
189 		aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
190 			      nbytes & AES_BLOCK_MASK);
191 		kernel_fpu_end();
192 		nbytes &= AES_BLOCK_SIZE - 1;
193 		err = skcipher_walk_done(&walk, nbytes);
194 	}
195 
196 	return err;
197 }
198 
cbc_encrypt(struct skcipher_request * req)199 static int cbc_encrypt(struct skcipher_request *req)
200 {
201 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
202 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
203 	struct skcipher_walk walk;
204 	unsigned int nbytes;
205 	int err;
206 
207 	err = skcipher_walk_virt(&walk, req, false);
208 
209 	while ((nbytes = walk.nbytes)) {
210 		kernel_fpu_begin();
211 		aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
212 			      nbytes & AES_BLOCK_MASK, walk.iv);
213 		kernel_fpu_end();
214 		nbytes &= AES_BLOCK_SIZE - 1;
215 		err = skcipher_walk_done(&walk, nbytes);
216 	}
217 
218 	return err;
219 }
220 
cbc_decrypt(struct skcipher_request * req)221 static int cbc_decrypt(struct skcipher_request *req)
222 {
223 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
224 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
225 	struct skcipher_walk walk;
226 	unsigned int nbytes;
227 	int err;
228 
229 	err = skcipher_walk_virt(&walk, req, false);
230 
231 	while ((nbytes = walk.nbytes)) {
232 		kernel_fpu_begin();
233 		aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
234 			      nbytes & AES_BLOCK_MASK, walk.iv);
235 		kernel_fpu_end();
236 		nbytes &= AES_BLOCK_SIZE - 1;
237 		err = skcipher_walk_done(&walk, nbytes);
238 	}
239 
240 	return err;
241 }
242 
cts_cbc_encrypt(struct skcipher_request * req)243 static int cts_cbc_encrypt(struct skcipher_request *req)
244 {
245 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
247 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
248 	struct scatterlist *src = req->src, *dst = req->dst;
249 	struct scatterlist sg_src[2], sg_dst[2];
250 	struct skcipher_request subreq;
251 	struct skcipher_walk walk;
252 	int err;
253 
254 	skcipher_request_set_tfm(&subreq, tfm);
255 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
256 				      NULL, NULL);
257 
258 	if (req->cryptlen <= AES_BLOCK_SIZE) {
259 		if (req->cryptlen < AES_BLOCK_SIZE)
260 			return -EINVAL;
261 		cbc_blocks = 1;
262 	}
263 
264 	if (cbc_blocks > 0) {
265 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
266 					   cbc_blocks * AES_BLOCK_SIZE,
267 					   req->iv);
268 
269 		err = cbc_encrypt(&subreq);
270 		if (err)
271 			return err;
272 
273 		if (req->cryptlen == AES_BLOCK_SIZE)
274 			return 0;
275 
276 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
277 		if (req->dst != req->src)
278 			dst = scatterwalk_ffwd(sg_dst, req->dst,
279 					       subreq.cryptlen);
280 	}
281 
282 	/* handle ciphertext stealing */
283 	skcipher_request_set_crypt(&subreq, src, dst,
284 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
285 				   req->iv);
286 
287 	err = skcipher_walk_virt(&walk, &subreq, false);
288 	if (err)
289 		return err;
290 
291 	kernel_fpu_begin();
292 	aesni_cts_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
293 			  walk.nbytes, walk.iv);
294 	kernel_fpu_end();
295 
296 	return skcipher_walk_done(&walk, 0);
297 }
298 
cts_cbc_decrypt(struct skcipher_request * req)299 static int cts_cbc_decrypt(struct skcipher_request *req)
300 {
301 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
302 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
303 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
304 	struct scatterlist *src = req->src, *dst = req->dst;
305 	struct scatterlist sg_src[2], sg_dst[2];
306 	struct skcipher_request subreq;
307 	struct skcipher_walk walk;
308 	int err;
309 
310 	skcipher_request_set_tfm(&subreq, tfm);
311 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
312 				      NULL, NULL);
313 
314 	if (req->cryptlen <= AES_BLOCK_SIZE) {
315 		if (req->cryptlen < AES_BLOCK_SIZE)
316 			return -EINVAL;
317 		cbc_blocks = 1;
318 	}
319 
320 	if (cbc_blocks > 0) {
321 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
322 					   cbc_blocks * AES_BLOCK_SIZE,
323 					   req->iv);
324 
325 		err = cbc_decrypt(&subreq);
326 		if (err)
327 			return err;
328 
329 		if (req->cryptlen == AES_BLOCK_SIZE)
330 			return 0;
331 
332 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
333 		if (req->dst != req->src)
334 			dst = scatterwalk_ffwd(sg_dst, req->dst,
335 					       subreq.cryptlen);
336 	}
337 
338 	/* handle ciphertext stealing */
339 	skcipher_request_set_crypt(&subreq, src, dst,
340 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
341 				   req->iv);
342 
343 	err = skcipher_walk_virt(&walk, &subreq, false);
344 	if (err)
345 		return err;
346 
347 	kernel_fpu_begin();
348 	aesni_cts_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
349 			  walk.nbytes, walk.iv);
350 	kernel_fpu_end();
351 
352 	return skcipher_walk_done(&walk, 0);
353 }
354 
355 #ifdef CONFIG_X86_64
356 /* This is the non-AVX version. */
ctr_crypt_aesni(struct skcipher_request * req)357 static int ctr_crypt_aesni(struct skcipher_request *req)
358 {
359 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
360 	struct crypto_aes_ctx *ctx = aes_ctx(crypto_skcipher_ctx(tfm));
361 	u8 keystream[AES_BLOCK_SIZE];
362 	struct skcipher_walk walk;
363 	unsigned int nbytes;
364 	int err;
365 
366 	err = skcipher_walk_virt(&walk, req, false);
367 
368 	while ((nbytes = walk.nbytes) > 0) {
369 		kernel_fpu_begin();
370 		if (nbytes & AES_BLOCK_MASK)
371 			aesni_ctr_enc(ctx, walk.dst.virt.addr,
372 				      walk.src.virt.addr,
373 				      nbytes & AES_BLOCK_MASK, walk.iv);
374 		nbytes &= ~AES_BLOCK_MASK;
375 
376 		if (walk.nbytes == walk.total && nbytes > 0) {
377 			aesni_enc(ctx, keystream, walk.iv);
378 			crypto_xor_cpy(walk.dst.virt.addr + walk.nbytes - nbytes,
379 				       walk.src.virt.addr + walk.nbytes - nbytes,
380 				       keystream, nbytes);
381 			crypto_inc(walk.iv, AES_BLOCK_SIZE);
382 			nbytes = 0;
383 		}
384 		kernel_fpu_end();
385 		err = skcipher_walk_done(&walk, nbytes);
386 	}
387 	return err;
388 }
389 #endif
390 
xts_setkey_aesni(struct crypto_skcipher * tfm,const u8 * key,unsigned int keylen)391 static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key,
392 			    unsigned int keylen)
393 {
394 	struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
395 	int err;
396 
397 	err = xts_verify_key(tfm, key, keylen);
398 	if (err)
399 		return err;
400 
401 	keylen /= 2;
402 
403 	/* first half of xts-key is for crypt */
404 	err = aes_set_key_common(&ctx->crypt_ctx, key, keylen);
405 	if (err)
406 		return err;
407 
408 	/* second half of xts-key is for tweak */
409 	return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen);
410 }
411 
412 typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key,
413 				    u8 iv[AES_BLOCK_SIZE]);
414 typedef void (*xts_crypt_func)(const struct crypto_aes_ctx *key,
415 			       const u8 *src, u8 *dst, int len,
416 			       u8 tweak[AES_BLOCK_SIZE]);
417 
418 /* This handles cases where the source and/or destination span pages. */
419 static noinline int
xts_crypt_slowpath(struct skcipher_request * req,xts_crypt_func crypt_func)420 xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func)
421 {
422 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
423 	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
424 	int tail = req->cryptlen % AES_BLOCK_SIZE;
425 	struct scatterlist sg_src[2], sg_dst[2];
426 	struct skcipher_request subreq;
427 	struct skcipher_walk walk;
428 	struct scatterlist *src, *dst;
429 	int err;
430 
431 	/*
432 	 * If the message length isn't divisible by the AES block size, then
433 	 * separate off the last full block and the partial block.  This ensures
434 	 * that they are processed in the same call to the assembly function,
435 	 * which is required for ciphertext stealing.
436 	 */
437 	if (tail) {
438 		skcipher_request_set_tfm(&subreq, tfm);
439 		skcipher_request_set_callback(&subreq,
440 					      skcipher_request_flags(req),
441 					      NULL, NULL);
442 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
443 					   req->cryptlen - tail - AES_BLOCK_SIZE,
444 					   req->iv);
445 		req = &subreq;
446 	}
447 
448 	err = skcipher_walk_virt(&walk, req, false);
449 
450 	while (walk.nbytes) {
451 		kernel_fpu_begin();
452 		(*crypt_func)(&ctx->crypt_ctx,
453 			      walk.src.virt.addr, walk.dst.virt.addr,
454 			      walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv);
455 		kernel_fpu_end();
456 		err = skcipher_walk_done(&walk,
457 					 walk.nbytes & (AES_BLOCK_SIZE - 1));
458 	}
459 
460 	if (err || !tail)
461 		return err;
462 
463 	/* Do ciphertext stealing with the last full block and partial block. */
464 
465 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
466 	if (req->dst != req->src)
467 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
468 
469 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
470 				   req->iv);
471 
472 	err = skcipher_walk_virt(&walk, req, false);
473 	if (err)
474 		return err;
475 
476 	kernel_fpu_begin();
477 	(*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr,
478 		      walk.nbytes, req->iv);
479 	kernel_fpu_end();
480 
481 	return skcipher_walk_done(&walk, 0);
482 }
483 
484 /* __always_inline to avoid indirect call in fastpath */
485 static __always_inline int
xts_crypt(struct skcipher_request * req,xts_encrypt_iv_func encrypt_iv,xts_crypt_func crypt_func)486 xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv,
487 	  xts_crypt_func crypt_func)
488 {
489 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
490 	const struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm);
491 
492 	if (unlikely(req->cryptlen < AES_BLOCK_SIZE))
493 		return -EINVAL;
494 
495 	kernel_fpu_begin();
496 	(*encrypt_iv)(&ctx->tweak_ctx, req->iv);
497 
498 	/*
499 	 * In practice, virtually all XTS plaintexts and ciphertexts are either
500 	 * 512 or 4096 bytes and do not use multiple scatterlist elements.  To
501 	 * optimize the performance of these cases, the below fast-path handles
502 	 * single-scatterlist-element messages as efficiently as possible.  The
503 	 * code is 64-bit specific, as it assumes no page mapping is needed.
504 	 */
505 	if (IS_ENABLED(CONFIG_X86_64) &&
506 	    likely(req->src->length >= req->cryptlen &&
507 		   req->dst->length >= req->cryptlen)) {
508 		(*crypt_func)(&ctx->crypt_ctx, sg_virt(req->src),
509 			      sg_virt(req->dst), req->cryptlen, req->iv);
510 		kernel_fpu_end();
511 		return 0;
512 	}
513 	kernel_fpu_end();
514 	return xts_crypt_slowpath(req, crypt_func);
515 }
516 
aesni_xts_encrypt_iv(const struct crypto_aes_ctx * tweak_key,u8 iv[AES_BLOCK_SIZE])517 static void aesni_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
518 				 u8 iv[AES_BLOCK_SIZE])
519 {
520 	aesni_enc(tweak_key, iv, iv);
521 }
522 
aesni_xts_encrypt(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,u8 tweak[AES_BLOCK_SIZE])523 static void aesni_xts_encrypt(const struct crypto_aes_ctx *key,
524 			      const u8 *src, u8 *dst, int len,
525 			      u8 tweak[AES_BLOCK_SIZE])
526 {
527 	aesni_xts_enc(key, dst, src, len, tweak);
528 }
529 
aesni_xts_decrypt(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,u8 tweak[AES_BLOCK_SIZE])530 static void aesni_xts_decrypt(const struct crypto_aes_ctx *key,
531 			      const u8 *src, u8 *dst, int len,
532 			      u8 tweak[AES_BLOCK_SIZE])
533 {
534 	aesni_xts_dec(key, dst, src, len, tweak);
535 }
536 
xts_encrypt_aesni(struct skcipher_request * req)537 static int xts_encrypt_aesni(struct skcipher_request *req)
538 {
539 	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt);
540 }
541 
xts_decrypt_aesni(struct skcipher_request * req)542 static int xts_decrypt_aesni(struct skcipher_request *req)
543 {
544 	return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt);
545 }
546 
547 static struct crypto_alg aesni_cipher_alg = {
548 	.cra_name		= "aes",
549 	.cra_driver_name	= "aes-aesni",
550 	.cra_priority		= 300,
551 	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
552 	.cra_blocksize		= AES_BLOCK_SIZE,
553 	.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
554 	.cra_module		= THIS_MODULE,
555 	.cra_u	= {
556 		.cipher	= {
557 			.cia_min_keysize	= AES_MIN_KEY_SIZE,
558 			.cia_max_keysize	= AES_MAX_KEY_SIZE,
559 			.cia_setkey		= aes_set_key,
560 			.cia_encrypt		= aesni_encrypt,
561 			.cia_decrypt		= aesni_decrypt
562 		}
563 	}
564 };
565 
566 static struct skcipher_alg aesni_skciphers[] = {
567 	{
568 		.base = {
569 			.cra_name		= "__ecb(aes)",
570 			.cra_driver_name	= "__ecb-aes-aesni",
571 			.cra_priority		= 400,
572 			.cra_flags		= CRYPTO_ALG_INTERNAL,
573 			.cra_blocksize		= AES_BLOCK_SIZE,
574 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
575 			.cra_module		= THIS_MODULE,
576 		},
577 		.min_keysize	= AES_MIN_KEY_SIZE,
578 		.max_keysize	= AES_MAX_KEY_SIZE,
579 		.setkey		= aesni_skcipher_setkey,
580 		.encrypt	= ecb_encrypt,
581 		.decrypt	= ecb_decrypt,
582 	}, {
583 		.base = {
584 			.cra_name		= "__cbc(aes)",
585 			.cra_driver_name	= "__cbc-aes-aesni",
586 			.cra_priority		= 400,
587 			.cra_flags		= CRYPTO_ALG_INTERNAL,
588 			.cra_blocksize		= AES_BLOCK_SIZE,
589 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
590 			.cra_module		= THIS_MODULE,
591 		},
592 		.min_keysize	= AES_MIN_KEY_SIZE,
593 		.max_keysize	= AES_MAX_KEY_SIZE,
594 		.ivsize		= AES_BLOCK_SIZE,
595 		.setkey		= aesni_skcipher_setkey,
596 		.encrypt	= cbc_encrypt,
597 		.decrypt	= cbc_decrypt,
598 	}, {
599 		.base = {
600 			.cra_name		= "__cts(cbc(aes))",
601 			.cra_driver_name	= "__cts-cbc-aes-aesni",
602 			.cra_priority		= 400,
603 			.cra_flags		= CRYPTO_ALG_INTERNAL,
604 			.cra_blocksize		= AES_BLOCK_SIZE,
605 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
606 			.cra_module		= THIS_MODULE,
607 		},
608 		.min_keysize	= AES_MIN_KEY_SIZE,
609 		.max_keysize	= AES_MAX_KEY_SIZE,
610 		.ivsize		= AES_BLOCK_SIZE,
611 		.walksize	= 2 * AES_BLOCK_SIZE,
612 		.setkey		= aesni_skcipher_setkey,
613 		.encrypt	= cts_cbc_encrypt,
614 		.decrypt	= cts_cbc_decrypt,
615 #ifdef CONFIG_X86_64
616 	}, {
617 		.base = {
618 			.cra_name		= "__ctr(aes)",
619 			.cra_driver_name	= "__ctr-aes-aesni",
620 			.cra_priority		= 400,
621 			.cra_flags		= CRYPTO_ALG_INTERNAL,
622 			.cra_blocksize		= 1,
623 			.cra_ctxsize		= CRYPTO_AES_CTX_SIZE,
624 			.cra_module		= THIS_MODULE,
625 		},
626 		.min_keysize	= AES_MIN_KEY_SIZE,
627 		.max_keysize	= AES_MAX_KEY_SIZE,
628 		.ivsize		= AES_BLOCK_SIZE,
629 		.chunksize	= AES_BLOCK_SIZE,
630 		.setkey		= aesni_skcipher_setkey,
631 		.encrypt	= ctr_crypt_aesni,
632 		.decrypt	= ctr_crypt_aesni,
633 #endif
634 	}, {
635 		.base = {
636 			.cra_name		= "__xts(aes)",
637 			.cra_driver_name	= "__xts-aes-aesni",
638 			.cra_priority		= 401,
639 			.cra_flags		= CRYPTO_ALG_INTERNAL,
640 			.cra_blocksize		= AES_BLOCK_SIZE,
641 			.cra_ctxsize		= XTS_AES_CTX_SIZE,
642 			.cra_module		= THIS_MODULE,
643 		},
644 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
645 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
646 		.ivsize		= AES_BLOCK_SIZE,
647 		.walksize	= 2 * AES_BLOCK_SIZE,
648 		.setkey		= xts_setkey_aesni,
649 		.encrypt	= xts_encrypt_aesni,
650 		.decrypt	= xts_decrypt_aesni,
651 	}
652 };
653 
654 static
655 struct simd_skcipher_alg *aesni_simd_skciphers[ARRAY_SIZE(aesni_skciphers)];
656 
657 #ifdef CONFIG_X86_64
658 asmlinkage void aes_xts_encrypt_iv(const struct crypto_aes_ctx *tweak_key,
659 				   u8 iv[AES_BLOCK_SIZE]);
660 
661 /* __always_inline to avoid indirect call */
662 static __always_inline int
ctr_crypt(struct skcipher_request * req,void (* ctr64_func)(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,const u64 le_ctr[2]))663 ctr_crypt(struct skcipher_request *req,
664 	  void (*ctr64_func)(const struct crypto_aes_ctx *key,
665 			     const u8 *src, u8 *dst, int len,
666 			     const u64 le_ctr[2]))
667 {
668 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
669 	const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
670 	unsigned int nbytes, p1_nbytes, nblocks;
671 	struct skcipher_walk walk;
672 	u64 le_ctr[2];
673 	u64 ctr64;
674 	int err;
675 
676 	ctr64 = le_ctr[0] = get_unaligned_be64(&req->iv[8]);
677 	le_ctr[1] = get_unaligned_be64(&req->iv[0]);
678 
679 	err = skcipher_walk_virt(&walk, req, false);
680 
681 	while ((nbytes = walk.nbytes) != 0) {
682 		if (nbytes < walk.total) {
683 			/* Not the end yet, so keep the length block-aligned. */
684 			nbytes = round_down(nbytes, AES_BLOCK_SIZE);
685 			nblocks = nbytes / AES_BLOCK_SIZE;
686 		} else {
687 			/* It's the end, so include any final partial block. */
688 			nblocks = DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
689 		}
690 		ctr64 += nblocks;
691 
692 		kernel_fpu_begin();
693 		if (likely(ctr64 >= nblocks)) {
694 			/* The low 64 bits of the counter won't overflow. */
695 			(*ctr64_func)(key, walk.src.virt.addr,
696 				      walk.dst.virt.addr, nbytes, le_ctr);
697 		} else {
698 			/*
699 			 * The low 64 bits of the counter will overflow.  The
700 			 * assembly doesn't handle this case, so split the
701 			 * operation into two at the point where the overflow
702 			 * will occur.  After the first part, add the carry bit.
703 			 */
704 			p1_nbytes = min_t(unsigned int, nbytes,
705 					  (nblocks - ctr64) * AES_BLOCK_SIZE);
706 			(*ctr64_func)(key, walk.src.virt.addr,
707 				      walk.dst.virt.addr, p1_nbytes, le_ctr);
708 			le_ctr[0] = 0;
709 			le_ctr[1]++;
710 			(*ctr64_func)(key, walk.src.virt.addr + p1_nbytes,
711 				      walk.dst.virt.addr + p1_nbytes,
712 				      nbytes - p1_nbytes, le_ctr);
713 		}
714 		kernel_fpu_end();
715 		le_ctr[0] = ctr64;
716 
717 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
718 	}
719 
720 	put_unaligned_be64(ctr64, &req->iv[8]);
721 	put_unaligned_be64(le_ctr[1], &req->iv[0]);
722 
723 	return err;
724 }
725 
726 /* __always_inline to avoid indirect call */
727 static __always_inline int
xctr_crypt(struct skcipher_request * req,void (* xctr_func)(const struct crypto_aes_ctx * key,const u8 * src,u8 * dst,int len,const u8 iv[AES_BLOCK_SIZE],u64 ctr))728 xctr_crypt(struct skcipher_request *req,
729 	   void (*xctr_func)(const struct crypto_aes_ctx *key,
730 			     const u8 *src, u8 *dst, int len,
731 			     const u8 iv[AES_BLOCK_SIZE], u64 ctr))
732 {
733 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
734 	const struct crypto_aes_ctx *key = aes_ctx(crypto_skcipher_ctx(tfm));
735 	struct skcipher_walk walk;
736 	unsigned int nbytes;
737 	u64 ctr = 1;
738 	int err;
739 
740 	err = skcipher_walk_virt(&walk, req, false);
741 	while ((nbytes = walk.nbytes) != 0) {
742 		if (nbytes < walk.total)
743 			nbytes = round_down(nbytes, AES_BLOCK_SIZE);
744 
745 		kernel_fpu_begin();
746 		(*xctr_func)(key, walk.src.virt.addr, walk.dst.virt.addr,
747 			     nbytes, req->iv, ctr);
748 		kernel_fpu_end();
749 
750 		ctr += DIV_ROUND_UP(nbytes, AES_BLOCK_SIZE);
751 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
752 	}
753 	return err;
754 }
755 
756 #define DEFINE_AVX_SKCIPHER_ALGS(suffix, driver_name_suffix, priority)	       \
757 									       \
758 asmlinkage void								       \
759 aes_xts_encrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
760 			 u8 *dst, int len, u8 tweak[AES_BLOCK_SIZE]);	       \
761 asmlinkage void								       \
762 aes_xts_decrypt_##suffix(const struct crypto_aes_ctx *key, const u8 *src,      \
763 			 u8 *dst, int len, u8 tweak[AES_BLOCK_SIZE]);	       \
764 									       \
765 static int xts_encrypt_##suffix(struct skcipher_request *req)		       \
766 {									       \
767 	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_encrypt_##suffix);   \
768 }									       \
769 									       \
770 static int xts_decrypt_##suffix(struct skcipher_request *req)		       \
771 {									       \
772 	return xts_crypt(req, aes_xts_encrypt_iv, aes_xts_decrypt_##suffix);   \
773 }									       \
774 									       \
775 asmlinkage void								       \
776 aes_ctr64_crypt_##suffix(const struct crypto_aes_ctx *key,		       \
777 			 const u8 *src, u8 *dst, int len, const u64 le_ctr[2]);\
778 									       \
779 static int ctr_crypt_##suffix(struct skcipher_request *req)		       \
780 {									       \
781 	return ctr_crypt(req, aes_ctr64_crypt_##suffix);		       \
782 }									       \
783 									       \
784 asmlinkage void								       \
785 aes_xctr_crypt_##suffix(const struct crypto_aes_ctx *key,		       \
786 			const u8 *src, u8 *dst, int len,		       \
787 			const u8 iv[AES_BLOCK_SIZE], u64 ctr);		       \
788 									       \
789 static int xctr_crypt_##suffix(struct skcipher_request *req)		       \
790 {									       \
791 	return xctr_crypt(req, aes_xctr_crypt_##suffix);		       \
792 }									       \
793 									       \
794 static struct skcipher_alg skcipher_algs_##suffix[] = {{		       \
795 	.base.cra_name		= "__xts(aes)",				       \
796 	.base.cra_driver_name	= "__xts-aes-" driver_name_suffix,	       \
797 	.base.cra_priority	= priority,				       \
798 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,			       \
799 	.base.cra_blocksize	= AES_BLOCK_SIZE,			       \
800 	.base.cra_ctxsize	= XTS_AES_CTX_SIZE,			       \
801 	.base.cra_module	= THIS_MODULE,				       \
802 	.min_keysize		= 2 * AES_MIN_KEY_SIZE,			       \
803 	.max_keysize		= 2 * AES_MAX_KEY_SIZE,			       \
804 	.ivsize			= AES_BLOCK_SIZE,			       \
805 	.walksize		= 2 * AES_BLOCK_SIZE,			       \
806 	.setkey			= xts_setkey_aesni,			       \
807 	.encrypt		= xts_encrypt_##suffix,			       \
808 	.decrypt		= xts_decrypt_##suffix,			       \
809 }, {									       \
810 	.base.cra_name		= "__ctr(aes)",				       \
811 	.base.cra_driver_name	= "__ctr-aes-" driver_name_suffix,	       \
812 	.base.cra_priority	= priority,				       \
813 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,			       \
814 	.base.cra_blocksize	= 1,					       \
815 	.base.cra_ctxsize	= CRYPTO_AES_CTX_SIZE,			       \
816 	.base.cra_module	= THIS_MODULE,				       \
817 	.min_keysize		= AES_MIN_KEY_SIZE,			       \
818 	.max_keysize		= AES_MAX_KEY_SIZE,			       \
819 	.ivsize			= AES_BLOCK_SIZE,			       \
820 	.chunksize		= AES_BLOCK_SIZE,			       \
821 	.setkey			= aesni_skcipher_setkey,		       \
822 	.encrypt		= ctr_crypt_##suffix,			       \
823 	.decrypt		= ctr_crypt_##suffix,			       \
824 }, {									       \
825 	.base.cra_name		= "__xctr(aes)",			       \
826 	.base.cra_driver_name	= "__xctr-aes-" driver_name_suffix,	       \
827 	.base.cra_priority	= priority,				       \
828 	.base.cra_flags		= CRYPTO_ALG_INTERNAL,			       \
829 	.base.cra_blocksize	= 1,					       \
830 	.base.cra_ctxsize	= CRYPTO_AES_CTX_SIZE,			       \
831 	.base.cra_module	= THIS_MODULE,				       \
832 	.min_keysize		= AES_MIN_KEY_SIZE,			       \
833 	.max_keysize		= AES_MAX_KEY_SIZE,			       \
834 	.ivsize			= AES_BLOCK_SIZE,			       \
835 	.chunksize		= AES_BLOCK_SIZE,			       \
836 	.setkey			= aesni_skcipher_setkey,		       \
837 	.encrypt		= xctr_crypt_##suffix,			       \
838 	.decrypt		= xctr_crypt_##suffix,			       \
839 }};									       \
840 									       \
841 static struct simd_skcipher_alg *					       \
842 simd_skcipher_algs_##suffix[ARRAY_SIZE(skcipher_algs_##suffix)]
843 
844 DEFINE_AVX_SKCIPHER_ALGS(aesni_avx, "aesni-avx", 500);
845 #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
846 DEFINE_AVX_SKCIPHER_ALGS(vaes_avx2, "vaes-avx2", 600);
847 DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_256, "vaes-avx10_256", 700);
848 DEFINE_AVX_SKCIPHER_ALGS(vaes_avx10_512, "vaes-avx10_512", 800);
849 #endif
850 
851 /* The common part of the x86_64 AES-GCM key struct */
852 struct aes_gcm_key {
853 	/* Expanded AES key and the AES key length in bytes */
854 	struct crypto_aes_ctx aes_key;
855 
856 	/* RFC4106 nonce (used only by the rfc4106 algorithms) */
857 	u32 rfc4106_nonce;
858 };
859 
860 /* Key struct used by the AES-NI implementations of AES-GCM */
861 struct aes_gcm_key_aesni {
862 	/*
863 	 * Common part of the key.  The assembly code requires 16-byte alignment
864 	 * for the round keys; we get this by them being located at the start of
865 	 * the struct and the whole struct being 16-byte aligned.
866 	 */
867 	struct aes_gcm_key base;
868 
869 	/*
870 	 * Powers of the hash key H^8 through H^1.  These are 128-bit values.
871 	 * They all have an extra factor of x^-1 and are byte-reversed.  16-byte
872 	 * alignment is required by the assembly code.
873 	 */
874 	u64 h_powers[8][2] __aligned(16);
875 
876 	/*
877 	 * h_powers_xored[i] contains the two 64-bit halves of h_powers[i] XOR'd
878 	 * together.  It's used for Karatsuba multiplication.  16-byte alignment
879 	 * is required by the assembly code.
880 	 */
881 	u64 h_powers_xored[8] __aligned(16);
882 
883 	/*
884 	 * H^1 times x^64 (and also the usual extra factor of x^-1).  16-byte
885 	 * alignment is required by the assembly code.
886 	 */
887 	u64 h_times_x64[2] __aligned(16);
888 };
889 #define AES_GCM_KEY_AESNI(key)	\
890 	container_of((key), struct aes_gcm_key_aesni, base)
891 #define AES_GCM_KEY_AESNI_SIZE	\
892 	(sizeof(struct aes_gcm_key_aesni) + (15 & ~(CRYPTO_MINALIGN - 1)))
893 
894 /* Key struct used by the VAES + AVX10 implementations of AES-GCM */
895 struct aes_gcm_key_avx10 {
896 	/*
897 	 * Common part of the key.  The assembly code prefers 16-byte alignment
898 	 * for the round keys; we get this by them being located at the start of
899 	 * the struct and the whole struct being 64-byte aligned.
900 	 */
901 	struct aes_gcm_key base;
902 
903 	/*
904 	 * Powers of the hash key H^16 through H^1.  These are 128-bit values.
905 	 * They all have an extra factor of x^-1 and are byte-reversed.  This
906 	 * array is aligned to a 64-byte boundary to make it naturally aligned
907 	 * for 512-bit loads, which can improve performance.  (The assembly code
908 	 * doesn't *need* the alignment; this is just an optimization.)
909 	 */
910 	u64 h_powers[16][2] __aligned(64);
911 
912 	/* Three padding blocks required by the assembly code */
913 	u64 padding[3][2];
914 };
915 #define AES_GCM_KEY_AVX10(key)	\
916 	container_of((key), struct aes_gcm_key_avx10, base)
917 #define AES_GCM_KEY_AVX10_SIZE	\
918 	(sizeof(struct aes_gcm_key_avx10) + (63 & ~(CRYPTO_MINALIGN - 1)))
919 
920 /*
921  * These flags are passed to the AES-GCM helper functions to specify the
922  * specific version of AES-GCM (RFC4106 or not), whether it's encryption or
923  * decryption, and which assembly functions should be called.  Assembly
924  * functions are selected using flags instead of function pointers to avoid
925  * indirect calls (which are very expensive on x86) regardless of inlining.
926  */
927 #define FLAG_RFC4106	BIT(0)
928 #define FLAG_ENC	BIT(1)
929 #define FLAG_AVX	BIT(2)
930 #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
931 #  define FLAG_AVX10_256	BIT(3)
932 #  define FLAG_AVX10_512	BIT(4)
933 #else
934    /*
935     * This should cause all calls to the AVX10 assembly functions to be
936     * optimized out, avoiding the need to ifdef each call individually.
937     */
938 #  define FLAG_AVX10_256	0
939 #  define FLAG_AVX10_512	0
940 #endif
941 
942 static inline struct aes_gcm_key *
aes_gcm_key_get(struct crypto_aead * tfm,int flags)943 aes_gcm_key_get(struct crypto_aead *tfm, int flags)
944 {
945 	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
946 		return PTR_ALIGN(crypto_aead_ctx(tfm), 64);
947 	else
948 		return PTR_ALIGN(crypto_aead_ctx(tfm), 16);
949 }
950 
951 asmlinkage void
952 aes_gcm_precompute_aesni(struct aes_gcm_key_aesni *key);
953 asmlinkage void
954 aes_gcm_precompute_aesni_avx(struct aes_gcm_key_aesni *key);
955 asmlinkage void
956 aes_gcm_precompute_vaes_avx10_256(struct aes_gcm_key_avx10 *key);
957 asmlinkage void
958 aes_gcm_precompute_vaes_avx10_512(struct aes_gcm_key_avx10 *key);
959 
aes_gcm_precompute(struct aes_gcm_key * key,int flags)960 static void aes_gcm_precompute(struct aes_gcm_key *key, int flags)
961 {
962 	/*
963 	 * To make things a bit easier on the assembly side, the AVX10
964 	 * implementations use the same key format.  Therefore, a single
965 	 * function using 256-bit vectors would suffice here.  However, it's
966 	 * straightforward to provide a 512-bit one because of how the assembly
967 	 * code is structured, and it works nicely because the total size of the
968 	 * key powers is a multiple of 512 bits.  So we take advantage of that.
969 	 *
970 	 * A similar situation applies to the AES-NI implementations.
971 	 */
972 	if (flags & FLAG_AVX10_512)
973 		aes_gcm_precompute_vaes_avx10_512(AES_GCM_KEY_AVX10(key));
974 	else if (flags & FLAG_AVX10_256)
975 		aes_gcm_precompute_vaes_avx10_256(AES_GCM_KEY_AVX10(key));
976 	else if (flags & FLAG_AVX)
977 		aes_gcm_precompute_aesni_avx(AES_GCM_KEY_AESNI(key));
978 	else
979 		aes_gcm_precompute_aesni(AES_GCM_KEY_AESNI(key));
980 }
981 
982 asmlinkage void
983 aes_gcm_aad_update_aesni(const struct aes_gcm_key_aesni *key,
984 			 u8 ghash_acc[16], const u8 *aad, int aadlen);
985 asmlinkage void
986 aes_gcm_aad_update_aesni_avx(const struct aes_gcm_key_aesni *key,
987 			     u8 ghash_acc[16], const u8 *aad, int aadlen);
988 asmlinkage void
989 aes_gcm_aad_update_vaes_avx10(const struct aes_gcm_key_avx10 *key,
990 			      u8 ghash_acc[16], const u8 *aad, int aadlen);
991 
aes_gcm_aad_update(const struct aes_gcm_key * key,u8 ghash_acc[16],const u8 * aad,int aadlen,int flags)992 static void aes_gcm_aad_update(const struct aes_gcm_key *key, u8 ghash_acc[16],
993 			       const u8 *aad, int aadlen, int flags)
994 {
995 	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
996 		aes_gcm_aad_update_vaes_avx10(AES_GCM_KEY_AVX10(key), ghash_acc,
997 					      aad, aadlen);
998 	else if (flags & FLAG_AVX)
999 		aes_gcm_aad_update_aesni_avx(AES_GCM_KEY_AESNI(key), ghash_acc,
1000 					     aad, aadlen);
1001 	else
1002 		aes_gcm_aad_update_aesni(AES_GCM_KEY_AESNI(key), ghash_acc,
1003 					 aad, aadlen);
1004 }
1005 
1006 asmlinkage void
1007 aes_gcm_enc_update_aesni(const struct aes_gcm_key_aesni *key,
1008 			 const u32 le_ctr[4], u8 ghash_acc[16],
1009 			 const u8 *src, u8 *dst, int datalen);
1010 asmlinkage void
1011 aes_gcm_enc_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1012 			     const u32 le_ctr[4], u8 ghash_acc[16],
1013 			     const u8 *src, u8 *dst, int datalen);
1014 asmlinkage void
1015 aes_gcm_enc_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1016 				  const u32 le_ctr[4], u8 ghash_acc[16],
1017 				  const u8 *src, u8 *dst, int datalen);
1018 asmlinkage void
1019 aes_gcm_enc_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1020 				  const u32 le_ctr[4], u8 ghash_acc[16],
1021 				  const u8 *src, u8 *dst, int datalen);
1022 
1023 asmlinkage void
1024 aes_gcm_dec_update_aesni(const struct aes_gcm_key_aesni *key,
1025 			 const u32 le_ctr[4], u8 ghash_acc[16],
1026 			 const u8 *src, u8 *dst, int datalen);
1027 asmlinkage void
1028 aes_gcm_dec_update_aesni_avx(const struct aes_gcm_key_aesni *key,
1029 			     const u32 le_ctr[4], u8 ghash_acc[16],
1030 			     const u8 *src, u8 *dst, int datalen);
1031 asmlinkage void
1032 aes_gcm_dec_update_vaes_avx10_256(const struct aes_gcm_key_avx10 *key,
1033 				  const u32 le_ctr[4], u8 ghash_acc[16],
1034 				  const u8 *src, u8 *dst, int datalen);
1035 asmlinkage void
1036 aes_gcm_dec_update_vaes_avx10_512(const struct aes_gcm_key_avx10 *key,
1037 				  const u32 le_ctr[4], u8 ghash_acc[16],
1038 				  const u8 *src, u8 *dst, int datalen);
1039 
1040 /* __always_inline to optimize out the branches based on @flags */
1041 static __always_inline void
aes_gcm_update(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],const u8 * src,u8 * dst,int datalen,int flags)1042 aes_gcm_update(const struct aes_gcm_key *key,
1043 	       const u32 le_ctr[4], u8 ghash_acc[16],
1044 	       const u8 *src, u8 *dst, int datalen, int flags)
1045 {
1046 	if (flags & FLAG_ENC) {
1047 		if (flags & FLAG_AVX10_512)
1048 			aes_gcm_enc_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1049 							  le_ctr, ghash_acc,
1050 							  src, dst, datalen);
1051 		else if (flags & FLAG_AVX10_256)
1052 			aes_gcm_enc_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1053 							  le_ctr, ghash_acc,
1054 							  src, dst, datalen);
1055 		else if (flags & FLAG_AVX)
1056 			aes_gcm_enc_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1057 						     le_ctr, ghash_acc,
1058 						     src, dst, datalen);
1059 		else
1060 			aes_gcm_enc_update_aesni(AES_GCM_KEY_AESNI(key), le_ctr,
1061 						 ghash_acc, src, dst, datalen);
1062 	} else {
1063 		if (flags & FLAG_AVX10_512)
1064 			aes_gcm_dec_update_vaes_avx10_512(AES_GCM_KEY_AVX10(key),
1065 							  le_ctr, ghash_acc,
1066 							  src, dst, datalen);
1067 		else if (flags & FLAG_AVX10_256)
1068 			aes_gcm_dec_update_vaes_avx10_256(AES_GCM_KEY_AVX10(key),
1069 							  le_ctr, ghash_acc,
1070 							  src, dst, datalen);
1071 		else if (flags & FLAG_AVX)
1072 			aes_gcm_dec_update_aesni_avx(AES_GCM_KEY_AESNI(key),
1073 						     le_ctr, ghash_acc,
1074 						     src, dst, datalen);
1075 		else
1076 			aes_gcm_dec_update_aesni(AES_GCM_KEY_AESNI(key),
1077 						 le_ctr, ghash_acc,
1078 						 src, dst, datalen);
1079 	}
1080 }
1081 
1082 asmlinkage void
1083 aes_gcm_enc_final_aesni(const struct aes_gcm_key_aesni *key,
1084 			const u32 le_ctr[4], u8 ghash_acc[16],
1085 			u64 total_aadlen, u64 total_datalen);
1086 asmlinkage void
1087 aes_gcm_enc_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1088 			    const u32 le_ctr[4], u8 ghash_acc[16],
1089 			    u64 total_aadlen, u64 total_datalen);
1090 asmlinkage void
1091 aes_gcm_enc_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1092 			     const u32 le_ctr[4], u8 ghash_acc[16],
1093 			     u64 total_aadlen, u64 total_datalen);
1094 
1095 /* __always_inline to optimize out the branches based on @flags */
1096 static __always_inline void
aes_gcm_enc_final(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],u64 total_aadlen,u64 total_datalen,int flags)1097 aes_gcm_enc_final(const struct aes_gcm_key *key,
1098 		  const u32 le_ctr[4], u8 ghash_acc[16],
1099 		  u64 total_aadlen, u64 total_datalen, int flags)
1100 {
1101 	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1102 		aes_gcm_enc_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1103 					     le_ctr, ghash_acc,
1104 					     total_aadlen, total_datalen);
1105 	else if (flags & FLAG_AVX)
1106 		aes_gcm_enc_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1107 					    le_ctr, ghash_acc,
1108 					    total_aadlen, total_datalen);
1109 	else
1110 		aes_gcm_enc_final_aesni(AES_GCM_KEY_AESNI(key),
1111 					le_ctr, ghash_acc,
1112 					total_aadlen, total_datalen);
1113 }
1114 
1115 asmlinkage bool __must_check
1116 aes_gcm_dec_final_aesni(const struct aes_gcm_key_aesni *key,
1117 			const u32 le_ctr[4], const u8 ghash_acc[16],
1118 			u64 total_aadlen, u64 total_datalen,
1119 			const u8 tag[16], int taglen);
1120 asmlinkage bool __must_check
1121 aes_gcm_dec_final_aesni_avx(const struct aes_gcm_key_aesni *key,
1122 			    const u32 le_ctr[4], const u8 ghash_acc[16],
1123 			    u64 total_aadlen, u64 total_datalen,
1124 			    const u8 tag[16], int taglen);
1125 asmlinkage bool __must_check
1126 aes_gcm_dec_final_vaes_avx10(const struct aes_gcm_key_avx10 *key,
1127 			     const u32 le_ctr[4], const u8 ghash_acc[16],
1128 			     u64 total_aadlen, u64 total_datalen,
1129 			     const u8 tag[16], int taglen);
1130 
1131 /* __always_inline to optimize out the branches based on @flags */
1132 static __always_inline bool __must_check
aes_gcm_dec_final(const struct aes_gcm_key * key,const u32 le_ctr[4],u8 ghash_acc[16],u64 total_aadlen,u64 total_datalen,u8 tag[16],int taglen,int flags)1133 aes_gcm_dec_final(const struct aes_gcm_key *key, const u32 le_ctr[4],
1134 		  u8 ghash_acc[16], u64 total_aadlen, u64 total_datalen,
1135 		  u8 tag[16], int taglen, int flags)
1136 {
1137 	if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512))
1138 		return aes_gcm_dec_final_vaes_avx10(AES_GCM_KEY_AVX10(key),
1139 						    le_ctr, ghash_acc,
1140 						    total_aadlen, total_datalen,
1141 						    tag, taglen);
1142 	else if (flags & FLAG_AVX)
1143 		return aes_gcm_dec_final_aesni_avx(AES_GCM_KEY_AESNI(key),
1144 						   le_ctr, ghash_acc,
1145 						   total_aadlen, total_datalen,
1146 						   tag, taglen);
1147 	else
1148 		return aes_gcm_dec_final_aesni(AES_GCM_KEY_AESNI(key),
1149 					       le_ctr, ghash_acc,
1150 					       total_aadlen, total_datalen,
1151 					       tag, taglen);
1152 }
1153 
1154 /*
1155  * This is the Integrity Check Value (aka the authentication tag) length and can
1156  * be 8, 12 or 16 bytes long.
1157  */
common_rfc4106_set_authsize(struct crypto_aead * aead,unsigned int authsize)1158 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
1159 				       unsigned int authsize)
1160 {
1161 	switch (authsize) {
1162 	case 8:
1163 	case 12:
1164 	case 16:
1165 		break;
1166 	default:
1167 		return -EINVAL;
1168 	}
1169 
1170 	return 0;
1171 }
1172 
generic_gcmaes_set_authsize(struct crypto_aead * tfm,unsigned int authsize)1173 static int generic_gcmaes_set_authsize(struct crypto_aead *tfm,
1174 				       unsigned int authsize)
1175 {
1176 	switch (authsize) {
1177 	case 4:
1178 	case 8:
1179 	case 12:
1180 	case 13:
1181 	case 14:
1182 	case 15:
1183 	case 16:
1184 		break;
1185 	default:
1186 		return -EINVAL;
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 /*
1193  * This is the setkey function for the x86_64 implementations of AES-GCM.  It
1194  * saves the RFC4106 nonce if applicable, expands the AES key, and precomputes
1195  * powers of the hash key.
1196  *
1197  * To comply with the crypto_aead API, this has to be usable in no-SIMD context.
1198  * For that reason, this function includes a portable C implementation of the
1199  * needed logic.  However, the portable C implementation is very slow, taking
1200  * about the same time as encrypting 37 KB of data.  To be ready for users that
1201  * may set a key even somewhat frequently, we therefore also include a SIMD
1202  * assembly implementation, expanding the AES key using AES-NI and precomputing
1203  * the hash key powers using PCLMULQDQ or VPCLMULQDQ.
1204  */
gcm_setkey(struct crypto_aead * tfm,const u8 * raw_key,unsigned int keylen,int flags)1205 static int gcm_setkey(struct crypto_aead *tfm, const u8 *raw_key,
1206 		      unsigned int keylen, int flags)
1207 {
1208 	struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1209 	int err;
1210 
1211 	if (flags & FLAG_RFC4106) {
1212 		if (keylen < 4)
1213 			return -EINVAL;
1214 		keylen -= 4;
1215 		key->rfc4106_nonce = get_unaligned_be32(raw_key + keylen);
1216 	}
1217 
1218 	/* The assembly code assumes the following offsets. */
1219 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_enc) != 0);
1220 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, base.aes_key.key_length) != 480);
1221 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers) != 496);
1222 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_powers_xored) != 624);
1223 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_aesni, h_times_x64) != 688);
1224 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_enc) != 0);
1225 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, base.aes_key.key_length) != 480);
1226 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, h_powers) != 512);
1227 	BUILD_BUG_ON(offsetof(struct aes_gcm_key_avx10, padding) != 768);
1228 
1229 	if (likely(crypto_simd_usable())) {
1230 		err = aes_check_keylen(keylen);
1231 		if (err)
1232 			return err;
1233 		kernel_fpu_begin();
1234 		aesni_set_key(&key->aes_key, raw_key, keylen);
1235 		aes_gcm_precompute(key, flags);
1236 		kernel_fpu_end();
1237 	} else {
1238 		static const u8 x_to_the_minus1[16] __aligned(__alignof__(be128)) = {
1239 			[0] = 0xc2, [15] = 1
1240 		};
1241 		static const u8 x_to_the_63[16] __aligned(__alignof__(be128)) = {
1242 			[7] = 1,
1243 		};
1244 		be128 h1 = {};
1245 		be128 h;
1246 		int i;
1247 
1248 		err = aes_expandkey(&key->aes_key, raw_key, keylen);
1249 		if (err)
1250 			return err;
1251 
1252 		/* Encrypt the all-zeroes block to get the hash key H^1 */
1253 		aes_encrypt(&key->aes_key, (u8 *)&h1, (u8 *)&h1);
1254 
1255 		/* Compute H^1 * x^-1 */
1256 		h = h1;
1257 		gf128mul_lle(&h, (const be128 *)x_to_the_minus1);
1258 
1259 		/* Compute the needed key powers */
1260 		if (flags & (FLAG_AVX10_256 | FLAG_AVX10_512)) {
1261 			struct aes_gcm_key_avx10 *k = AES_GCM_KEY_AVX10(key);
1262 
1263 			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1264 				k->h_powers[i][0] = be64_to_cpu(h.b);
1265 				k->h_powers[i][1] = be64_to_cpu(h.a);
1266 				gf128mul_lle(&h, &h1);
1267 			}
1268 			memset(k->padding, 0, sizeof(k->padding));
1269 		} else {
1270 			struct aes_gcm_key_aesni *k = AES_GCM_KEY_AESNI(key);
1271 
1272 			for (i = ARRAY_SIZE(k->h_powers) - 1; i >= 0; i--) {
1273 				k->h_powers[i][0] = be64_to_cpu(h.b);
1274 				k->h_powers[i][1] = be64_to_cpu(h.a);
1275 				k->h_powers_xored[i] = k->h_powers[i][0] ^
1276 						       k->h_powers[i][1];
1277 				gf128mul_lle(&h, &h1);
1278 			}
1279 			gf128mul_lle(&h1, (const be128 *)x_to_the_63);
1280 			k->h_times_x64[0] = be64_to_cpu(h1.b);
1281 			k->h_times_x64[1] = be64_to_cpu(h1.a);
1282 		}
1283 	}
1284 	return 0;
1285 }
1286 
1287 /*
1288  * Initialize @ghash_acc, then pass all @assoclen bytes of associated data
1289  * (a.k.a. additional authenticated data) from @sg_src through the GHASH update
1290  * assembly function.  kernel_fpu_begin() must have already been called.
1291  */
gcm_process_assoc(const struct aes_gcm_key * key,u8 ghash_acc[16],struct scatterlist * sg_src,unsigned int assoclen,int flags)1292 static void gcm_process_assoc(const struct aes_gcm_key *key, u8 ghash_acc[16],
1293 			      struct scatterlist *sg_src, unsigned int assoclen,
1294 			      int flags)
1295 {
1296 	struct scatter_walk walk;
1297 	/*
1298 	 * The assembly function requires that the length of any non-last
1299 	 * segment of associated data be a multiple of 16 bytes, so this
1300 	 * function does the buffering needed to achieve that.
1301 	 */
1302 	unsigned int pos = 0;
1303 	u8 buf[16];
1304 
1305 	memset(ghash_acc, 0, 16);
1306 	scatterwalk_start(&walk, sg_src);
1307 
1308 	while (assoclen) {
1309 		unsigned int orig_len_this_step = scatterwalk_next(
1310 			&walk, assoclen);
1311 		unsigned int len_this_step = orig_len_this_step;
1312 		unsigned int len;
1313 		const u8 *src = walk.addr;
1314 
1315 		if (unlikely(pos)) {
1316 			len = min(len_this_step, 16 - pos);
1317 			memcpy(&buf[pos], src, len);
1318 			pos += len;
1319 			src += len;
1320 			len_this_step -= len;
1321 			if (pos < 16)
1322 				goto next;
1323 			aes_gcm_aad_update(key, ghash_acc, buf, 16, flags);
1324 			pos = 0;
1325 		}
1326 		len = len_this_step;
1327 		if (unlikely(assoclen)) /* Not the last segment yet? */
1328 			len = round_down(len, 16);
1329 		aes_gcm_aad_update(key, ghash_acc, src, len, flags);
1330 		src += len;
1331 		len_this_step -= len;
1332 		if (unlikely(len_this_step)) {
1333 			memcpy(buf, src, len_this_step);
1334 			pos = len_this_step;
1335 		}
1336 next:
1337 		scatterwalk_done_src(&walk, orig_len_this_step);
1338 		if (need_resched()) {
1339 			kernel_fpu_end();
1340 			kernel_fpu_begin();
1341 		}
1342 		assoclen -= orig_len_this_step;
1343 	}
1344 	if (unlikely(pos))
1345 		aes_gcm_aad_update(key, ghash_acc, buf, pos, flags);
1346 }
1347 
1348 
1349 /* __always_inline to optimize out the branches based on @flags */
1350 static __always_inline int
gcm_crypt(struct aead_request * req,int flags)1351 gcm_crypt(struct aead_request *req, int flags)
1352 {
1353 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1354 	const struct aes_gcm_key *key = aes_gcm_key_get(tfm, flags);
1355 	unsigned int assoclen = req->assoclen;
1356 	struct skcipher_walk walk;
1357 	unsigned int nbytes;
1358 	u8 ghash_acc[16]; /* GHASH accumulator */
1359 	u32 le_ctr[4]; /* Counter in little-endian format */
1360 	int taglen;
1361 	int err;
1362 
1363 	/* Initialize the counter and determine the associated data length. */
1364 	le_ctr[0] = 2;
1365 	if (flags & FLAG_RFC4106) {
1366 		if (unlikely(assoclen != 16 && assoclen != 20))
1367 			return -EINVAL;
1368 		assoclen -= 8;
1369 		le_ctr[1] = get_unaligned_be32(req->iv + 4);
1370 		le_ctr[2] = get_unaligned_be32(req->iv + 0);
1371 		le_ctr[3] = key->rfc4106_nonce; /* already byte-swapped */
1372 	} else {
1373 		le_ctr[1] = get_unaligned_be32(req->iv + 8);
1374 		le_ctr[2] = get_unaligned_be32(req->iv + 4);
1375 		le_ctr[3] = get_unaligned_be32(req->iv + 0);
1376 	}
1377 
1378 	/* Begin walking through the plaintext or ciphertext. */
1379 	if (flags & FLAG_ENC)
1380 		err = skcipher_walk_aead_encrypt(&walk, req, false);
1381 	else
1382 		err = skcipher_walk_aead_decrypt(&walk, req, false);
1383 	if (err)
1384 		return err;
1385 
1386 	/*
1387 	 * Since the AES-GCM assembly code requires that at least three assembly
1388 	 * functions be called to process any message (this is needed to support
1389 	 * incremental updates cleanly), to reduce overhead we try to do all
1390 	 * three calls in the same kernel FPU section if possible.  We close the
1391 	 * section and start a new one if there are multiple data segments or if
1392 	 * rescheduling is needed while processing the associated data.
1393 	 */
1394 	kernel_fpu_begin();
1395 
1396 	/* Pass the associated data through GHASH. */
1397 	gcm_process_assoc(key, ghash_acc, req->src, assoclen, flags);
1398 
1399 	/* En/decrypt the data and pass the ciphertext through GHASH. */
1400 	while (unlikely((nbytes = walk.nbytes) < walk.total)) {
1401 		/*
1402 		 * Non-last segment.  In this case, the assembly function
1403 		 * requires that the length be a multiple of 16 (AES_BLOCK_SIZE)
1404 		 * bytes.  The needed buffering of up to 16 bytes is handled by
1405 		 * the skcipher_walk.  Here we just need to round down to a
1406 		 * multiple of 16.
1407 		 */
1408 		nbytes = round_down(nbytes, AES_BLOCK_SIZE);
1409 		aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1410 			       walk.dst.virt.addr, nbytes, flags);
1411 		le_ctr[0] += nbytes / AES_BLOCK_SIZE;
1412 		kernel_fpu_end();
1413 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
1414 		if (err)
1415 			return err;
1416 		kernel_fpu_begin();
1417 	}
1418 	/* Last segment: process all remaining data. */
1419 	aes_gcm_update(key, le_ctr, ghash_acc, walk.src.virt.addr,
1420 		       walk.dst.virt.addr, nbytes, flags);
1421 	/*
1422 	 * The low word of the counter isn't used by the finalize, so there's no
1423 	 * need to increment it here.
1424 	 */
1425 
1426 	/* Finalize */
1427 	taglen = crypto_aead_authsize(tfm);
1428 	if (flags & FLAG_ENC) {
1429 		/* Finish computing the auth tag. */
1430 		aes_gcm_enc_final(key, le_ctr, ghash_acc, assoclen,
1431 				  req->cryptlen, flags);
1432 
1433 		/* Store the computed auth tag in the dst scatterlist. */
1434 		scatterwalk_map_and_copy(ghash_acc, req->dst, req->assoclen +
1435 					 req->cryptlen, taglen, 1);
1436 	} else {
1437 		unsigned int datalen = req->cryptlen - taglen;
1438 		u8 tag[16];
1439 
1440 		/* Get the transmitted auth tag from the src scatterlist. */
1441 		scatterwalk_map_and_copy(tag, req->src, req->assoclen + datalen,
1442 					 taglen, 0);
1443 		/*
1444 		 * Finish computing the auth tag and compare it to the
1445 		 * transmitted one.  The assembly function does the actual tag
1446 		 * comparison.  Here, just check the boolean result.
1447 		 */
1448 		if (!aes_gcm_dec_final(key, le_ctr, ghash_acc, assoclen,
1449 				       datalen, tag, taglen, flags))
1450 			err = -EBADMSG;
1451 	}
1452 	kernel_fpu_end();
1453 	if (nbytes)
1454 		skcipher_walk_done(&walk, 0);
1455 	return err;
1456 }
1457 
1458 #define DEFINE_GCM_ALGS(suffix, flags, generic_driver_name, rfc_driver_name,   \
1459 			ctxsize, priority)				       \
1460 									       \
1461 static int gcm_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key,     \
1462 			       unsigned int keylen)			       \
1463 {									       \
1464 	return gcm_setkey(tfm, raw_key, keylen, (flags));		       \
1465 }									       \
1466 									       \
1467 static int gcm_encrypt_##suffix(struct aead_request *req)		       \
1468 {									       \
1469 	return gcm_crypt(req, (flags) | FLAG_ENC);			       \
1470 }									       \
1471 									       \
1472 static int gcm_decrypt_##suffix(struct aead_request *req)		       \
1473 {									       \
1474 	return gcm_crypt(req, (flags));					       \
1475 }									       \
1476 									       \
1477 static int rfc4106_setkey_##suffix(struct crypto_aead *tfm, const u8 *raw_key, \
1478 				   unsigned int keylen)			       \
1479 {									       \
1480 	return gcm_setkey(tfm, raw_key, keylen, (flags) | FLAG_RFC4106);       \
1481 }									       \
1482 									       \
1483 static int rfc4106_encrypt_##suffix(struct aead_request *req)		       \
1484 {									       \
1485 	return gcm_crypt(req, (flags) | FLAG_RFC4106 | FLAG_ENC);	       \
1486 }									       \
1487 									       \
1488 static int rfc4106_decrypt_##suffix(struct aead_request *req)		       \
1489 {									       \
1490 	return gcm_crypt(req, (flags) | FLAG_RFC4106);			       \
1491 }									       \
1492 									       \
1493 static struct aead_alg aes_gcm_algs_##suffix[] = { {			       \
1494 	.setkey			= gcm_setkey_##suffix,			       \
1495 	.setauthsize		= generic_gcmaes_set_authsize,		       \
1496 	.encrypt		= gcm_encrypt_##suffix,			       \
1497 	.decrypt		= gcm_decrypt_##suffix,			       \
1498 	.ivsize			= GCM_AES_IV_SIZE,			       \
1499 	.chunksize		= AES_BLOCK_SIZE,			       \
1500 	.maxauthsize		= 16,					       \
1501 	.base = {							       \
1502 		.cra_name		= "__gcm(aes)",			       \
1503 		.cra_driver_name	= "__" generic_driver_name,	       \
1504 		.cra_priority		= (priority),			       \
1505 		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
1506 		.cra_blocksize		= 1,				       \
1507 		.cra_ctxsize		= (ctxsize),			       \
1508 		.cra_module		= THIS_MODULE,			       \
1509 	},								       \
1510 }, {									       \
1511 	.setkey			= rfc4106_setkey_##suffix,		       \
1512 	.setauthsize		= common_rfc4106_set_authsize,		       \
1513 	.encrypt		= rfc4106_encrypt_##suffix,		       \
1514 	.decrypt		= rfc4106_decrypt_##suffix,		       \
1515 	.ivsize			= GCM_RFC4106_IV_SIZE,			       \
1516 	.chunksize		= AES_BLOCK_SIZE,			       \
1517 	.maxauthsize		= 16,					       \
1518 	.base = {							       \
1519 		.cra_name		= "__rfc4106(gcm(aes))",	       \
1520 		.cra_driver_name	= "__" rfc_driver_name,		       \
1521 		.cra_priority		= (priority),			       \
1522 		.cra_flags		= CRYPTO_ALG_INTERNAL,		       \
1523 		.cra_blocksize		= 1,				       \
1524 		.cra_ctxsize		= (ctxsize),			       \
1525 		.cra_module		= THIS_MODULE,			       \
1526 	},								       \
1527 } };									       \
1528 									       \
1529 static struct simd_aead_alg *aes_gcm_simdalgs_##suffix[2]		       \
1530 
1531 /* aes_gcm_algs_aesni */
1532 DEFINE_GCM_ALGS(aesni, /* no flags */ 0,
1533 		"generic-gcm-aesni", "rfc4106-gcm-aesni",
1534 		AES_GCM_KEY_AESNI_SIZE, 400);
1535 
1536 /* aes_gcm_algs_aesni_avx */
1537 DEFINE_GCM_ALGS(aesni_avx, FLAG_AVX,
1538 		"generic-gcm-aesni-avx", "rfc4106-gcm-aesni-avx",
1539 		AES_GCM_KEY_AESNI_SIZE, 500);
1540 
1541 #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1542 /* aes_gcm_algs_vaes_avx10_256 */
1543 DEFINE_GCM_ALGS(vaes_avx10_256, FLAG_AVX10_256,
1544 		"generic-gcm-vaes-avx10_256", "rfc4106-gcm-vaes-avx10_256",
1545 		AES_GCM_KEY_AVX10_SIZE, 700);
1546 
1547 /* aes_gcm_algs_vaes_avx10_512 */
1548 DEFINE_GCM_ALGS(vaes_avx10_512, FLAG_AVX10_512,
1549 		"generic-gcm-vaes-avx10_512", "rfc4106-gcm-vaes-avx10_512",
1550 		AES_GCM_KEY_AVX10_SIZE, 800);
1551 #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1552 
register_avx_algs(void)1553 static int __init register_avx_algs(void)
1554 {
1555 	int err;
1556 
1557 	if (!boot_cpu_has(X86_FEATURE_AVX))
1558 		return 0;
1559 	err = simd_register_skciphers_compat(skcipher_algs_aesni_avx,
1560 					     ARRAY_SIZE(skcipher_algs_aesni_avx),
1561 					     simd_skcipher_algs_aesni_avx);
1562 	if (err)
1563 		return err;
1564 	err = simd_register_aeads_compat(aes_gcm_algs_aesni_avx,
1565 					 ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1566 					 aes_gcm_simdalgs_aesni_avx);
1567 	if (err)
1568 		return err;
1569 	/*
1570 	 * Note: not all the algorithms registered below actually require
1571 	 * VPCLMULQDQ.  But in practice every CPU with VAES also has VPCLMULQDQ.
1572 	 * Similarly, the assembler support was added at about the same time.
1573 	 * For simplicity, just always check for VAES and VPCLMULQDQ together.
1574 	 */
1575 #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1576 	if (!boot_cpu_has(X86_FEATURE_AVX2) ||
1577 	    !boot_cpu_has(X86_FEATURE_VAES) ||
1578 	    !boot_cpu_has(X86_FEATURE_VPCLMULQDQ) ||
1579 	    !boot_cpu_has(X86_FEATURE_PCLMULQDQ) ||
1580 	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL))
1581 		return 0;
1582 	err = simd_register_skciphers_compat(skcipher_algs_vaes_avx2,
1583 					     ARRAY_SIZE(skcipher_algs_vaes_avx2),
1584 					     simd_skcipher_algs_vaes_avx2);
1585 	if (err)
1586 		return err;
1587 
1588 	if (!boot_cpu_has(X86_FEATURE_AVX512BW) ||
1589 	    !boot_cpu_has(X86_FEATURE_AVX512VL) ||
1590 	    !boot_cpu_has(X86_FEATURE_BMI2) ||
1591 	    !cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM |
1592 			       XFEATURE_MASK_AVX512, NULL))
1593 		return 0;
1594 
1595 	err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_256,
1596 					     ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
1597 					     simd_skcipher_algs_vaes_avx10_256);
1598 	if (err)
1599 		return err;
1600 	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_256,
1601 					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1602 					 aes_gcm_simdalgs_vaes_avx10_256);
1603 	if (err)
1604 		return err;
1605 
1606 	if (boot_cpu_has(X86_FEATURE_PREFER_YMM)) {
1607 		int i;
1608 
1609 		for (i = 0; i < ARRAY_SIZE(skcipher_algs_vaes_avx10_512); i++)
1610 			skcipher_algs_vaes_avx10_512[i].base.cra_priority = 1;
1611 		for (i = 0; i < ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512); i++)
1612 			aes_gcm_algs_vaes_avx10_512[i].base.cra_priority = 1;
1613 	}
1614 
1615 	err = simd_register_skciphers_compat(skcipher_algs_vaes_avx10_512,
1616 					     ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
1617 					     simd_skcipher_algs_vaes_avx10_512);
1618 	if (err)
1619 		return err;
1620 	err = simd_register_aeads_compat(aes_gcm_algs_vaes_avx10_512,
1621 					 ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1622 					 aes_gcm_simdalgs_vaes_avx10_512);
1623 	if (err)
1624 		return err;
1625 #endif /* CONFIG_AS_VAES && CONFIG_AS_VPCLMULQDQ */
1626 	return 0;
1627 }
1628 
unregister_avx_algs(void)1629 static void unregister_avx_algs(void)
1630 {
1631 	if (simd_skcipher_algs_aesni_avx[0])
1632 		simd_unregister_skciphers(skcipher_algs_aesni_avx,
1633 					  ARRAY_SIZE(skcipher_algs_aesni_avx),
1634 					  simd_skcipher_algs_aesni_avx);
1635 	if (aes_gcm_simdalgs_aesni_avx[0])
1636 		simd_unregister_aeads(aes_gcm_algs_aesni_avx,
1637 				      ARRAY_SIZE(aes_gcm_algs_aesni_avx),
1638 				      aes_gcm_simdalgs_aesni_avx);
1639 #if defined(CONFIG_AS_VAES) && defined(CONFIG_AS_VPCLMULQDQ)
1640 	if (simd_skcipher_algs_vaes_avx2[0])
1641 		simd_unregister_skciphers(skcipher_algs_vaes_avx2,
1642 					  ARRAY_SIZE(skcipher_algs_vaes_avx2),
1643 					  simd_skcipher_algs_vaes_avx2);
1644 	if (simd_skcipher_algs_vaes_avx10_256[0])
1645 		simd_unregister_skciphers(skcipher_algs_vaes_avx10_256,
1646 					  ARRAY_SIZE(skcipher_algs_vaes_avx10_256),
1647 					  simd_skcipher_algs_vaes_avx10_256);
1648 	if (aes_gcm_simdalgs_vaes_avx10_256[0])
1649 		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_256,
1650 				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_256),
1651 				      aes_gcm_simdalgs_vaes_avx10_256);
1652 	if (simd_skcipher_algs_vaes_avx10_512[0])
1653 		simd_unregister_skciphers(skcipher_algs_vaes_avx10_512,
1654 					  ARRAY_SIZE(skcipher_algs_vaes_avx10_512),
1655 					  simd_skcipher_algs_vaes_avx10_512);
1656 	if (aes_gcm_simdalgs_vaes_avx10_512[0])
1657 		simd_unregister_aeads(aes_gcm_algs_vaes_avx10_512,
1658 				      ARRAY_SIZE(aes_gcm_algs_vaes_avx10_512),
1659 				      aes_gcm_simdalgs_vaes_avx10_512);
1660 #endif
1661 }
1662 #else /* CONFIG_X86_64 */
1663 static struct aead_alg aes_gcm_algs_aesni[0];
1664 static struct simd_aead_alg *aes_gcm_simdalgs_aesni[0];
1665 
register_avx_algs(void)1666 static int __init register_avx_algs(void)
1667 {
1668 	return 0;
1669 }
1670 
unregister_avx_algs(void)1671 static void unregister_avx_algs(void)
1672 {
1673 }
1674 #endif /* !CONFIG_X86_64 */
1675 
1676 static const struct x86_cpu_id aesni_cpu_id[] = {
1677 	X86_MATCH_FEATURE(X86_FEATURE_AES, NULL),
1678 	{}
1679 };
1680 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1681 
aesni_init(void)1682 static int __init aesni_init(void)
1683 {
1684 	int err;
1685 
1686 	if (!x86_match_cpu(aesni_cpu_id))
1687 		return -ENODEV;
1688 
1689 	err = crypto_register_alg(&aesni_cipher_alg);
1690 	if (err)
1691 		return err;
1692 
1693 	err = simd_register_skciphers_compat(aesni_skciphers,
1694 					     ARRAY_SIZE(aesni_skciphers),
1695 					     aesni_simd_skciphers);
1696 	if (err)
1697 		goto unregister_cipher;
1698 
1699 	err = simd_register_aeads_compat(aes_gcm_algs_aesni,
1700 					 ARRAY_SIZE(aes_gcm_algs_aesni),
1701 					 aes_gcm_simdalgs_aesni);
1702 	if (err)
1703 		goto unregister_skciphers;
1704 
1705 	err = register_avx_algs();
1706 	if (err)
1707 		goto unregister_avx;
1708 
1709 	return 0;
1710 
1711 unregister_avx:
1712 	unregister_avx_algs();
1713 	simd_unregister_aeads(aes_gcm_algs_aesni,
1714 			      ARRAY_SIZE(aes_gcm_algs_aesni),
1715 			      aes_gcm_simdalgs_aesni);
1716 unregister_skciphers:
1717 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1718 				  aesni_simd_skciphers);
1719 unregister_cipher:
1720 	crypto_unregister_alg(&aesni_cipher_alg);
1721 	return err;
1722 }
1723 
aesni_exit(void)1724 static void __exit aesni_exit(void)
1725 {
1726 	simd_unregister_aeads(aes_gcm_algs_aesni,
1727 			      ARRAY_SIZE(aes_gcm_algs_aesni),
1728 			      aes_gcm_simdalgs_aesni);
1729 	simd_unregister_skciphers(aesni_skciphers, ARRAY_SIZE(aesni_skciphers),
1730 				  aesni_simd_skciphers);
1731 	crypto_unregister_alg(&aesni_cipher_alg);
1732 	unregister_avx_algs();
1733 }
1734 
1735 module_init(aesni_init);
1736 module_exit(aesni_exit);
1737 
1738 MODULE_DESCRIPTION("AES cipher and modes, optimized with AES-NI or VAES instructions");
1739 MODULE_LICENSE("GPL");
1740 MODULE_ALIAS_CRYPTO("aes");
1741