1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/cpu.h"
25 #include "accel/tcg/cpu-ops.h"
26 #include "accel/tcg/helper-retaddr.h"
27 #include "trace.h"
28 #include "disas/disas.h"
29 #include "exec/cpu-common.h"
30 #include "exec/cpu-interrupt.h"
31 #include "exec/page-protection.h"
32 #include "exec/mmap-lock.h"
33 #include "exec/translation-block.h"
34 #include "tcg/tcg.h"
35 #include "qemu/atomic.h"
36 #include "qemu/rcu.h"
37 #include "exec/log.h"
38 #include "qemu/main-loop.h"
39 #include "exec/icount.h"
40 #include "exec/replay-core.h"
41 #include "system/tcg.h"
42 #include "exec/helper-proto-common.h"
43 #include "tb-jmp-cache.h"
44 #include "tb-hash.h"
45 #include "tb-context.h"
46 #include "tb-internal.h"
47 #include "internal-common.h"
48
49 /* -icount align implementation. */
50
51 typedef struct SyncClocks {
52 int64_t diff_clk;
53 int64_t last_cpu_icount;
54 int64_t realtime_clock;
55 } SyncClocks;
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* Allow the guest to have a max 3ms advance.
59 * The difference between the 2 clocks could therefore
60 * oscillate around 0.
61 */
62 #define VM_CLOCK_ADVANCE 3000000
63 #define THRESHOLD_REDUCE 1.5
64 #define MAX_DELAY_PRINT_RATE 2000000000LL
65 #define MAX_NB_PRINTS 100
66
67 int64_t max_delay;
68 int64_t max_advance;
69
align_clocks(SyncClocks * sc,CPUState * cpu)70 static void align_clocks(SyncClocks *sc, CPUState *cpu)
71 {
72 int64_t cpu_icount;
73
74 if (!icount_align_option) {
75 return;
76 }
77
78 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
80 sc->last_cpu_icount = cpu_icount;
81
82 if (sc->diff_clk > VM_CLOCK_ADVANCE) {
83 #ifndef _WIN32
84 struct timespec sleep_delay, rem_delay;
85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
87 if (nanosleep(&sleep_delay, &rem_delay) < 0) {
88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
89 } else {
90 sc->diff_clk = 0;
91 }
92 #else
93 Sleep(sc->diff_clk / SCALE_MS);
94 sc->diff_clk = 0;
95 #endif
96 }
97 }
98
print_delay(const SyncClocks * sc)99 static void print_delay(const SyncClocks *sc)
100 {
101 static float threshold_delay;
102 static int64_t last_realtime_clock;
103 static int nb_prints;
104
105 if (icount_align_option &&
106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
107 nb_prints < MAX_NB_PRINTS) {
108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
109 (-sc->diff_clk / (float)1000000000LL <
110 (threshold_delay - THRESHOLD_REDUCE))) {
111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
113 threshold_delay - 1,
114 threshold_delay);
115 nb_prints++;
116 last_realtime_clock = sc->realtime_clock;
117 }
118 }
119 }
120
init_delay_params(SyncClocks * sc,CPUState * cpu)121 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
122 {
123 if (!icount_align_option) {
124 return;
125 }
126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
128 sc->last_cpu_icount
129 = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
130 if (sc->diff_clk < max_delay) {
131 max_delay = sc->diff_clk;
132 }
133 if (sc->diff_clk > max_advance) {
134 max_advance = sc->diff_clk;
135 }
136
137 /* Print every 2s max if the guest is late. We limit the number
138 of printed messages to NB_PRINT_MAX(currently 100) */
139 print_delay(sc);
140 }
141 #else
align_clocks(SyncClocks * sc,const CPUState * cpu)142 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
143 {
144 }
145
init_delay_params(SyncClocks * sc,const CPUState * cpu)146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
147 {
148 }
149 #endif /* CONFIG USER ONLY */
150
151 struct tb_desc {
152 TCGTBCPUState s;
153 CPUArchState *env;
154 tb_page_addr_t page_addr0;
155 };
156
tb_lookup_cmp(const void * p,const void * d)157 static bool tb_lookup_cmp(const void *p, const void *d)
158 {
159 const TranslationBlock *tb = p;
160 const struct tb_desc *desc = d;
161
162 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->s.pc) &&
163 tb_page_addr0(tb) == desc->page_addr0 &&
164 tb->cs_base == desc->s.cs_base &&
165 tb->flags == desc->s.flags &&
166 tb_cflags(tb) == desc->s.cflags) {
167 /* check next page if needed */
168 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
169 if (tb_phys_page1 == -1) {
170 return true;
171 } else {
172 tb_page_addr_t phys_page1;
173 vaddr virt_page1;
174
175 /*
176 * We know that the first page matched, and an otherwise valid TB
177 * encountered an incomplete instruction at the end of that page,
178 * therefore we know that generating a new TB from the current PC
179 * must also require reading from the next page -- even if the
180 * second pages do not match, and therefore the resulting insn
181 * is different for the new TB. Therefore any exception raised
182 * here by the faulting lookup is not premature.
183 */
184 virt_page1 = TARGET_PAGE_ALIGN(desc->s.pc);
185 phys_page1 = get_page_addr_code(desc->env, virt_page1);
186 if (tb_phys_page1 == phys_page1) {
187 return true;
188 }
189 }
190 }
191 return false;
192 }
193
tb_htable_lookup(CPUState * cpu,TCGTBCPUState s)194 static TranslationBlock *tb_htable_lookup(CPUState *cpu, TCGTBCPUState s)
195 {
196 tb_page_addr_t phys_pc;
197 struct tb_desc desc;
198 uint32_t h;
199
200 desc.s = s;
201 desc.env = cpu_env(cpu);
202 phys_pc = get_page_addr_code(desc.env, s.pc);
203 if (phys_pc == -1) {
204 return NULL;
205 }
206 desc.page_addr0 = phys_pc;
207 h = tb_hash_func(phys_pc, (s.cflags & CF_PCREL ? 0 : s.pc),
208 s.flags, s.cs_base, s.cflags);
209 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
210 }
211
212 /**
213 * tb_lookup:
214 * @cpu: CPU that will execute the returned translation block
215 * @pc: guest PC
216 * @cs_base: arch-specific value associated with translation block
217 * @flags: arch-specific translation block flags
218 * @cflags: CF_* flags
219 *
220 * Look up a translation block inside the QHT using @pc, @cs_base, @flags and
221 * @cflags. Uses @cpu's tb_jmp_cache. Might cause an exception, so have a
222 * longjmp destination ready.
223 *
224 * Returns: an existing translation block or NULL.
225 */
tb_lookup(CPUState * cpu,TCGTBCPUState s)226 static inline TranslationBlock *tb_lookup(CPUState *cpu, TCGTBCPUState s)
227 {
228 TranslationBlock *tb;
229 CPUJumpCache *jc;
230 uint32_t hash;
231
232 /* we should never be trying to look up an INVALID tb */
233 tcg_debug_assert(!(s.cflags & CF_INVALID));
234
235 hash = tb_jmp_cache_hash_func(s.pc);
236 jc = cpu->tb_jmp_cache;
237
238 tb = qatomic_read(&jc->array[hash].tb);
239 if (likely(tb &&
240 jc->array[hash].pc == s.pc &&
241 tb->cs_base == s.cs_base &&
242 tb->flags == s.flags &&
243 tb_cflags(tb) == s.cflags)) {
244 goto hit;
245 }
246
247 tb = tb_htable_lookup(cpu, s);
248 if (tb == NULL) {
249 return NULL;
250 }
251
252 jc->array[hash].pc = s.pc;
253 qatomic_set(&jc->array[hash].tb, tb);
254
255 hit:
256 /*
257 * As long as tb is not NULL, the contents are consistent. Therefore,
258 * the virtual PC has to match for non-CF_PCREL translations.
259 */
260 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == s.pc);
261 return tb;
262 }
263
log_cpu_exec(vaddr pc,CPUState * cpu,const TranslationBlock * tb)264 static void log_cpu_exec(vaddr pc, CPUState *cpu,
265 const TranslationBlock *tb)
266 {
267 if (qemu_log_in_addr_range(pc)) {
268 qemu_log_mask(CPU_LOG_EXEC,
269 "Trace %d: %p [%08" PRIx64
270 "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
271 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
272 tb->flags, tb->cflags, lookup_symbol(pc));
273
274 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
275 FILE *logfile = qemu_log_trylock();
276 if (logfile) {
277 int flags = CPU_DUMP_CCOP;
278
279 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
280 flags |= CPU_DUMP_FPU;
281 }
282 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
283 flags |= CPU_DUMP_VPU;
284 }
285 cpu_dump_state(cpu, logfile, flags);
286 qemu_log_unlock(logfile);
287 }
288 }
289 }
290 }
291
check_for_breakpoints_slow(CPUState * cpu,vaddr pc,uint32_t * cflags)292 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
293 uint32_t *cflags)
294 {
295 CPUBreakpoint *bp;
296 bool match_page = false;
297
298 /*
299 * Singlestep overrides breakpoints.
300 * This requirement is visible in the record-replay tests, where
301 * we would fail to make forward progress in reverse-continue.
302 *
303 * TODO: gdb singlestep should only override gdb breakpoints,
304 * so that one could (gdb) singlestep into the guest kernel's
305 * architectural breakpoint handler.
306 */
307 if (cpu->singlestep_enabled) {
308 return false;
309 }
310
311 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
312 /*
313 * If we have an exact pc match, trigger the breakpoint.
314 * Otherwise, note matches within the page.
315 */
316 if (pc == bp->pc) {
317 bool match_bp = false;
318
319 if (bp->flags & BP_GDB) {
320 match_bp = true;
321 } else if (bp->flags & BP_CPU) {
322 #ifdef CONFIG_USER_ONLY
323 g_assert_not_reached();
324 #else
325 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
326 assert(tcg_ops->debug_check_breakpoint);
327 match_bp = tcg_ops->debug_check_breakpoint(cpu);
328 #endif
329 }
330
331 if (match_bp) {
332 cpu->exception_index = EXCP_DEBUG;
333 return true;
334 }
335 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
336 match_page = true;
337 }
338 }
339
340 /*
341 * Within the same page as a breakpoint, single-step,
342 * returning to helper_lookup_tb_ptr after each insn looking
343 * for the actual breakpoint.
344 *
345 * TODO: Perhaps better to record all of the TBs associated
346 * with a given virtual page that contains a breakpoint, and
347 * then invalidate them when a new overlapping breakpoint is
348 * set on the page. Non-overlapping TBs would not be
349 * invalidated, nor would any TB need to be invalidated as
350 * breakpoints are removed.
351 */
352 if (match_page) {
353 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1;
354 }
355 return false;
356 }
357
check_for_breakpoints(CPUState * cpu,vaddr pc,uint32_t * cflags)358 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
359 uint32_t *cflags)
360 {
361 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
362 check_for_breakpoints_slow(cpu, pc, cflags);
363 }
364
365 /**
366 * helper_lookup_tb_ptr: quick check for next tb
367 * @env: current cpu state
368 *
369 * Look for an existing TB matching the current cpu state.
370 * If found, return the code pointer. If not found, return
371 * the tcg epilogue so that we return into cpu_tb_exec.
372 */
HELPER(lookup_tb_ptr)373 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
374 {
375 CPUState *cpu = env_cpu(env);
376 TranslationBlock *tb;
377
378 /*
379 * By definition we've just finished a TB, so I/O is OK.
380 * Avoid the possibility of calling cpu_io_recompile() if
381 * a page table walk triggered by tb_lookup() calling
382 * probe_access_internal() happens to touch an MMIO device.
383 * The next TB, if we chain to it, will clear the flag again.
384 */
385 cpu->neg.can_do_io = true;
386
387 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu);
388 s.cflags = curr_cflags(cpu);
389
390 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) {
391 cpu_loop_exit(cpu);
392 }
393
394 tb = tb_lookup(cpu, s);
395 if (tb == NULL) {
396 return tcg_code_gen_epilogue;
397 }
398
399 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
400 log_cpu_exec(s.pc, cpu, tb);
401 }
402
403 return tb->tc.ptr;
404 }
405
406 /* Return the current PC from CPU, which may be cached in TB. */
log_pc(CPUState * cpu,const TranslationBlock * tb)407 static vaddr log_pc(CPUState *cpu, const TranslationBlock *tb)
408 {
409 if (tb_cflags(tb) & CF_PCREL) {
410 return cpu->cc->get_pc(cpu);
411 } else {
412 return tb->pc;
413 }
414 }
415
416 /* Execute a TB, and fix up the CPU state afterwards if necessary */
417 /*
418 * Disable CFI checks.
419 * TCG creates binary blobs at runtime, with the transformed code.
420 * A TB is a blob of binary code, created at runtime and called with an
421 * indirect function call. Since such function did not exist at compile time,
422 * the CFI runtime has no way to verify its signature and would fail.
423 * TCG is not considered a security-sensitive part of QEMU so this does not
424 * affect the impact of CFI in environment with high security requirements
425 */
426 static inline TranslationBlock * QEMU_DISABLE_CFI
cpu_tb_exec(CPUState * cpu,TranslationBlock * itb,int * tb_exit)427 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
428 {
429 uintptr_t ret;
430 TranslationBlock *last_tb;
431 const void *tb_ptr = itb->tc.ptr;
432
433 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
434 log_cpu_exec(log_pc(cpu, itb), cpu, itb);
435 }
436
437 qemu_thread_jit_execute();
438 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
439 cpu->neg.can_do_io = true;
440 qemu_plugin_disable_mem_helpers(cpu);
441 /*
442 * TODO: Delay swapping back to the read-write region of the TB
443 * until we actually need to modify the TB. The read-only copy,
444 * coming from the rx region, shares the same host TLB entry as
445 * the code that executed the exit_tb opcode that arrived here.
446 * If we insist on touching both the RX and the RW pages, we
447 * double the host TLB pressure.
448 */
449 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
450 *tb_exit = ret & TB_EXIT_MASK;
451
452 trace_exec_tb_exit(last_tb, *tb_exit);
453
454 if (*tb_exit > TB_EXIT_IDX1) {
455 /* We didn't start executing this TB (eg because the instruction
456 * counter hit zero); we must restore the guest PC to the address
457 * of the start of the TB.
458 */
459 CPUClass *cc = cpu->cc;
460 const TCGCPUOps *tcg_ops = cc->tcg_ops;
461
462 if (tcg_ops->synchronize_from_tb) {
463 tcg_ops->synchronize_from_tb(cpu, last_tb);
464 } else {
465 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
466 assert(cc->set_pc);
467 cc->set_pc(cpu, last_tb->pc);
468 }
469 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
470 vaddr pc = log_pc(cpu, last_tb);
471 if (qemu_log_in_addr_range(pc)) {
472 qemu_log("Stopped execution of TB chain before %p [%016"
473 VADDR_PRIx "] %s\n",
474 last_tb->tc.ptr, pc, lookup_symbol(pc));
475 }
476 }
477 }
478
479 /*
480 * If gdb single-step, and we haven't raised another exception,
481 * raise a debug exception. Single-step with another exception
482 * is handled in cpu_handle_exception.
483 */
484 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
485 cpu->exception_index = EXCP_DEBUG;
486 cpu_loop_exit(cpu);
487 }
488
489 return last_tb;
490 }
491
492
cpu_exec_enter(CPUState * cpu)493 static void cpu_exec_enter(CPUState *cpu)
494 {
495 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
496
497 if (tcg_ops->cpu_exec_enter) {
498 tcg_ops->cpu_exec_enter(cpu);
499 }
500 }
501
cpu_exec_exit(CPUState * cpu)502 static void cpu_exec_exit(CPUState *cpu)
503 {
504 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
505
506 if (tcg_ops->cpu_exec_exit) {
507 tcg_ops->cpu_exec_exit(cpu);
508 }
509 }
510
cpu_exec_longjmp_cleanup(CPUState * cpu)511 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
512 {
513 /* Non-buggy compilers preserve this; assert the correct value. */
514 g_assert(cpu == current_cpu);
515
516 #ifdef CONFIG_USER_ONLY
517 clear_helper_retaddr();
518 if (have_mmap_lock()) {
519 mmap_unlock();
520 }
521 #else
522 /*
523 * For softmmu, a tlb_fill fault during translation will land here,
524 * and we need to release any page locks held. In system mode we
525 * have one tcg_ctx per thread, so we know it was this cpu doing
526 * the translation.
527 *
528 * Alternative 1: Install a cleanup to be called via an exception
529 * handling safe longjmp. It seems plausible that all our hosts
530 * support such a thing. We'd have to properly register unwind info
531 * for the JIT for EH, rather that just for GDB.
532 *
533 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
534 * capture the cpu_loop_exit longjmp, perform the cleanup, and
535 * jump again to arrive here.
536 */
537 if (tcg_ctx->gen_tb) {
538 tb_unlock_pages(tcg_ctx->gen_tb);
539 tcg_ctx->gen_tb = NULL;
540 }
541 #endif
542 if (bql_locked()) {
543 bql_unlock();
544 }
545 assert_no_pages_locked();
546 }
547
cpu_exec_step_atomic(CPUState * cpu)548 void cpu_exec_step_atomic(CPUState *cpu)
549 {
550 TranslationBlock *tb;
551 int tb_exit;
552
553 if (sigsetjmp(cpu->jmp_env, 0) == 0) {
554 start_exclusive();
555 g_assert(cpu == current_cpu);
556 g_assert(!cpu->running);
557 cpu->running = true;
558
559 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu);
560 s.cflags = curr_cflags(cpu);
561
562 /* Execute in a serial context. */
563 s.cflags &= ~CF_PARALLEL;
564 /* After 1 insn, return and release the exclusive lock. */
565 s.cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
566 /*
567 * No need to check_for_breakpoints here.
568 * We only arrive in cpu_exec_step_atomic after beginning execution
569 * of an insn that includes an atomic operation we can't handle.
570 * Any breakpoint for this insn will have been recognized earlier.
571 */
572
573 tb = tb_lookup(cpu, s);
574 if (tb == NULL) {
575 mmap_lock();
576 tb = tb_gen_code(cpu, s);
577 mmap_unlock();
578 }
579
580 cpu_exec_enter(cpu);
581 /* execute the generated code */
582 trace_exec_tb(tb, s.pc);
583 cpu_tb_exec(cpu, tb, &tb_exit);
584 cpu_exec_exit(cpu);
585 } else {
586 cpu_exec_longjmp_cleanup(cpu);
587 }
588
589 /*
590 * As we start the exclusive region before codegen we must still
591 * be in the region if we longjump out of either the codegen or
592 * the execution.
593 */
594 g_assert(cpu_in_exclusive_context(cpu));
595 cpu->running = false;
596 end_exclusive();
597 }
598
tb_set_jmp_target(TranslationBlock * tb,int n,uintptr_t addr)599 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
600 {
601 /*
602 * Get the rx view of the structure, from which we find the
603 * executable code address, and tb_target_set_jmp_target can
604 * produce a pc-relative displacement to jmp_target_addr[n].
605 */
606 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
607 uintptr_t offset = tb->jmp_insn_offset[n];
608 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
609 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
610
611 tb->jmp_target_addr[n] = addr;
612 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
613 }
614
tb_add_jump(TranslationBlock * tb,int n,TranslationBlock * tb_next)615 static inline void tb_add_jump(TranslationBlock *tb, int n,
616 TranslationBlock *tb_next)
617 {
618 uintptr_t old;
619
620 qemu_thread_jit_write();
621 assert(n < ARRAY_SIZE(tb->jmp_list_next));
622 qemu_spin_lock(&tb_next->jmp_lock);
623
624 /* make sure the destination TB is valid */
625 if (tb_next->cflags & CF_INVALID) {
626 goto out_unlock_next;
627 }
628 /* Atomically claim the jump destination slot only if it was NULL */
629 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
630 (uintptr_t)tb_next);
631 if (old) {
632 goto out_unlock_next;
633 }
634
635 /* patch the native jump address */
636 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
637
638 /* add in TB jmp list */
639 tb->jmp_list_next[n] = tb_next->jmp_list_head;
640 tb_next->jmp_list_head = (uintptr_t)tb | n;
641
642 qemu_spin_unlock(&tb_next->jmp_lock);
643
644 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
645 tb->tc.ptr, n, tb_next->tc.ptr);
646 return;
647
648 out_unlock_next:
649 qemu_spin_unlock(&tb_next->jmp_lock);
650 }
651
cpu_handle_halt(CPUState * cpu)652 static inline bool cpu_handle_halt(CPUState *cpu)
653 {
654 #ifndef CONFIG_USER_ONLY
655 if (cpu->halted) {
656 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
657 bool leave_halt = tcg_ops->cpu_exec_halt(cpu);
658
659 if (!leave_halt) {
660 return true;
661 }
662
663 cpu->halted = 0;
664 }
665 #endif /* !CONFIG_USER_ONLY */
666
667 return false;
668 }
669
cpu_handle_debug_exception(CPUState * cpu)670 static inline void cpu_handle_debug_exception(CPUState *cpu)
671 {
672 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
673 CPUWatchpoint *wp;
674
675 if (!cpu->watchpoint_hit) {
676 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
677 wp->flags &= ~BP_WATCHPOINT_HIT;
678 }
679 }
680
681 if (tcg_ops->debug_excp_handler) {
682 tcg_ops->debug_excp_handler(cpu);
683 }
684 }
685
cpu_handle_exception(CPUState * cpu,int * ret)686 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
687 {
688 if (cpu->exception_index < 0) {
689 #ifndef CONFIG_USER_ONLY
690 if (replay_has_exception()
691 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
692 /* Execute just one insn to trigger exception pending in the log */
693 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
694 | CF_NOIRQ | 1;
695 }
696 #endif
697 return false;
698 }
699
700 if (cpu->exception_index >= EXCP_INTERRUPT) {
701 /* exit request from the cpu execution loop */
702 *ret = cpu->exception_index;
703 if (*ret == EXCP_DEBUG) {
704 cpu_handle_debug_exception(cpu);
705 }
706 cpu->exception_index = -1;
707 return true;
708 }
709
710 #if defined(CONFIG_USER_ONLY)
711 /*
712 * If user mode only, we simulate a fake exception which will be
713 * handled outside the cpu execution loop.
714 */
715 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
716 if (tcg_ops->fake_user_interrupt) {
717 tcg_ops->fake_user_interrupt(cpu);
718 }
719 *ret = cpu->exception_index;
720 cpu->exception_index = -1;
721 return true;
722 #else
723 if (replay_exception()) {
724 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
725
726 bql_lock();
727 tcg_ops->do_interrupt(cpu);
728 bql_unlock();
729 cpu->exception_index = -1;
730
731 if (unlikely(cpu->singlestep_enabled)) {
732 /*
733 * After processing the exception, ensure an EXCP_DEBUG is
734 * raised when single-stepping so that GDB doesn't miss the
735 * next instruction.
736 */
737 *ret = EXCP_DEBUG;
738 cpu_handle_debug_exception(cpu);
739 return true;
740 }
741 } else if (!replay_has_interrupt()) {
742 /* give a chance to iothread in replay mode */
743 *ret = EXCP_INTERRUPT;
744 return true;
745 }
746 #endif
747
748 return false;
749 }
750
icount_exit_request(CPUState * cpu)751 static inline bool icount_exit_request(CPUState *cpu)
752 {
753 if (!icount_enabled()) {
754 return false;
755 }
756 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
757 return false;
758 }
759 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
760 }
761
cpu_handle_interrupt(CPUState * cpu,TranslationBlock ** last_tb)762 static inline bool cpu_handle_interrupt(CPUState *cpu,
763 TranslationBlock **last_tb)
764 {
765 /*
766 * If we have requested custom cflags with CF_NOIRQ we should
767 * skip checking here. Any pending interrupts will get picked up
768 * by the next TB we execute under normal cflags.
769 */
770 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
771 return false;
772 }
773
774 /* Clear the interrupt flag now since we're processing
775 * cpu->interrupt_request and cpu->exit_request.
776 * Ensure zeroing happens before reading cpu->exit_request or
777 * cpu->interrupt_request (see also smp_wmb in cpu_exit())
778 */
779 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
780
781 if (unlikely(qatomic_read(&cpu->interrupt_request))) {
782 int interrupt_request;
783 bql_lock();
784 interrupt_request = cpu->interrupt_request;
785 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
786 /* Mask out external interrupts for this step. */
787 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
788 }
789 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
790 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
791 cpu->exception_index = EXCP_DEBUG;
792 bql_unlock();
793 return true;
794 }
795 #if !defined(CONFIG_USER_ONLY)
796 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
797 /* Do nothing */
798 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
799 replay_interrupt();
800 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
801 cpu->halted = 1;
802 cpu->exception_index = EXCP_HLT;
803 bql_unlock();
804 return true;
805 } else {
806 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
807
808 if (interrupt_request & CPU_INTERRUPT_RESET) {
809 replay_interrupt();
810 tcg_ops->cpu_exec_reset(cpu);
811 bql_unlock();
812 return true;
813 }
814
815 /*
816 * The target hook has 3 exit conditions:
817 * False when the interrupt isn't processed,
818 * True when it is, and we should restart on a new TB,
819 * and via longjmp via cpu_loop_exit.
820 */
821 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
822 if (!tcg_ops->need_replay_interrupt ||
823 tcg_ops->need_replay_interrupt(interrupt_request)) {
824 replay_interrupt();
825 }
826 /*
827 * After processing the interrupt, ensure an EXCP_DEBUG is
828 * raised when single-stepping so that GDB doesn't miss the
829 * next instruction.
830 */
831 if (unlikely(cpu->singlestep_enabled)) {
832 cpu->exception_index = EXCP_DEBUG;
833 bql_unlock();
834 return true;
835 }
836 cpu->exception_index = -1;
837 *last_tb = NULL;
838 }
839 /* The target hook may have updated the 'cpu->interrupt_request';
840 * reload the 'interrupt_request' value */
841 interrupt_request = cpu->interrupt_request;
842 }
843 #endif /* !CONFIG_USER_ONLY */
844 if (interrupt_request & CPU_INTERRUPT_EXITTB) {
845 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
846 /* ensure that no TB jump will be modified as
847 the program flow was changed */
848 *last_tb = NULL;
849 }
850
851 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
852 bql_unlock();
853 }
854
855 /* Finally, check if we need to exit to the main loop. */
856 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
857 qatomic_set(&cpu->exit_request, 0);
858 if (cpu->exception_index == -1) {
859 cpu->exception_index = EXCP_INTERRUPT;
860 }
861 return true;
862 }
863
864 return false;
865 }
866
cpu_loop_exec_tb(CPUState * cpu,TranslationBlock * tb,vaddr pc,TranslationBlock ** last_tb,int * tb_exit)867 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
868 vaddr pc, TranslationBlock **last_tb,
869 int *tb_exit)
870 {
871 trace_exec_tb(tb, pc);
872 tb = cpu_tb_exec(cpu, tb, tb_exit);
873 if (*tb_exit != TB_EXIT_REQUESTED) {
874 *last_tb = tb;
875 return;
876 }
877
878 *last_tb = NULL;
879 if (cpu_loop_exit_requested(cpu)) {
880 /* Something asked us to stop executing chained TBs; just
881 * continue round the main loop. Whatever requested the exit
882 * will also have set something else (eg exit_request or
883 * interrupt_request) which will be handled by
884 * cpu_handle_interrupt. cpu_handle_interrupt will also
885 * clear cpu->icount_decr.u16.high.
886 */
887 return;
888 }
889
890 /* Instruction counter expired. */
891 assert(icount_enabled());
892 #ifndef CONFIG_USER_ONLY
893 /* Ensure global icount has gone forward */
894 icount_update(cpu);
895 /* Refill decrementer and continue execution. */
896 int32_t insns_left = MIN(0xffff, cpu->icount_budget);
897 cpu->neg.icount_decr.u16.low = insns_left;
898 cpu->icount_extra = cpu->icount_budget - insns_left;
899
900 /*
901 * If the next tb has more instructions than we have left to
902 * execute we need to ensure we find/generate a TB with exactly
903 * insns_left instructions in it.
904 */
905 if (insns_left > 0 && insns_left < tb->icount) {
906 assert(insns_left <= CF_COUNT_MASK);
907 assert(cpu->icount_extra == 0);
908 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
909 }
910 #endif
911 }
912
913 /* main execution loop */
914
915 static int __attribute__((noinline))
cpu_exec_loop(CPUState * cpu,SyncClocks * sc)916 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
917 {
918 int ret;
919
920 /* if an exception is pending, we execute it here */
921 while (!cpu_handle_exception(cpu, &ret)) {
922 TranslationBlock *last_tb = NULL;
923 int tb_exit = 0;
924
925 while (!cpu_handle_interrupt(cpu, &last_tb)) {
926 TranslationBlock *tb;
927 TCGTBCPUState s = cpu->cc->tcg_ops->get_tb_cpu_state(cpu);
928 s.cflags = cpu->cflags_next_tb;
929
930 /*
931 * When requested, use an exact setting for cflags for the next
932 * execution. This is used for icount, precise smc, and stop-
933 * after-access watchpoints. Since this request should never
934 * have CF_INVALID set, -1 is a convenient invalid value that
935 * does not require tcg headers for cpu_common_reset.
936 */
937 if (s.cflags == -1) {
938 s.cflags = curr_cflags(cpu);
939 } else {
940 cpu->cflags_next_tb = -1;
941 }
942
943 if (check_for_breakpoints(cpu, s.pc, &s.cflags)) {
944 break;
945 }
946
947 tb = tb_lookup(cpu, s);
948 if (tb == NULL) {
949 CPUJumpCache *jc;
950 uint32_t h;
951
952 mmap_lock();
953 tb = tb_gen_code(cpu, s);
954 mmap_unlock();
955
956 /*
957 * We add the TB in the virtual pc hash table
958 * for the fast lookup
959 */
960 h = tb_jmp_cache_hash_func(s.pc);
961 jc = cpu->tb_jmp_cache;
962 jc->array[h].pc = s.pc;
963 qatomic_set(&jc->array[h].tb, tb);
964 }
965
966 #ifndef CONFIG_USER_ONLY
967 /*
968 * We don't take care of direct jumps when address mapping
969 * changes in system emulation. So it's not safe to make a
970 * direct jump to a TB spanning two pages because the mapping
971 * for the second page can change.
972 */
973 if (tb_page_addr1(tb) != -1) {
974 last_tb = NULL;
975 }
976 #endif
977 /* See if we can patch the calling TB. */
978 if (last_tb) {
979 tb_add_jump(last_tb, tb_exit, tb);
980 }
981
982 cpu_loop_exec_tb(cpu, tb, s.pc, &last_tb, &tb_exit);
983
984 /* Try to align the host and virtual clocks
985 if the guest is in advance */
986 align_clocks(sc, cpu);
987 }
988 }
989 return ret;
990 }
991
cpu_exec_setjmp(CPUState * cpu,SyncClocks * sc)992 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
993 {
994 /* Prepare setjmp context for exception handling. */
995 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
996 cpu_exec_longjmp_cleanup(cpu);
997 }
998
999 return cpu_exec_loop(cpu, sc);
1000 }
1001
cpu_exec(CPUState * cpu)1002 int cpu_exec(CPUState *cpu)
1003 {
1004 int ret;
1005 SyncClocks sc = { 0 };
1006
1007 /* replay_interrupt may need current_cpu */
1008 current_cpu = cpu;
1009
1010 if (cpu_handle_halt(cpu)) {
1011 return EXCP_HALTED;
1012 }
1013
1014 RCU_READ_LOCK_GUARD();
1015 cpu_exec_enter(cpu);
1016
1017 /*
1018 * Calculate difference between guest clock and host clock.
1019 * This delay includes the delay of the last cycle, so
1020 * what we have to do is sleep until it is 0. As for the
1021 * advance/delay we gain here, we try to fix it next time.
1022 */
1023 init_delay_params(&sc, cpu);
1024
1025 ret = cpu_exec_setjmp(cpu, &sc);
1026
1027 cpu_exec_exit(cpu);
1028 return ret;
1029 }
1030
tcg_exec_realizefn(CPUState * cpu,Error ** errp)1031 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1032 {
1033 static bool tcg_target_initialized;
1034
1035 if (!tcg_target_initialized) {
1036 /* Check mandatory TCGCPUOps handlers */
1037 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
1038 #ifndef CONFIG_USER_ONLY
1039 assert(tcg_ops->cpu_exec_halt);
1040 assert(tcg_ops->cpu_exec_interrupt);
1041 assert(tcg_ops->cpu_exec_reset);
1042 assert(tcg_ops->pointer_wrap);
1043 #endif /* !CONFIG_USER_ONLY */
1044 assert(tcg_ops->translate_code);
1045 assert(tcg_ops->get_tb_cpu_state);
1046 assert(tcg_ops->mmu_index);
1047 tcg_ops->initialize();
1048 tcg_target_initialized = true;
1049 }
1050
1051 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1052 tlb_init(cpu);
1053 #ifndef CONFIG_USER_ONLY
1054 tcg_iommu_init_notifier_list(cpu);
1055 #endif /* !CONFIG_USER_ONLY */
1056 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1057
1058 return true;
1059 }
1060
1061 /* undo the initializations in reverse order */
tcg_exec_unrealizefn(CPUState * cpu)1062 void tcg_exec_unrealizefn(CPUState *cpu)
1063 {
1064 #ifndef CONFIG_USER_ONLY
1065 tcg_iommu_free_notifier_list(cpu);
1066 #endif /* !CONFIG_USER_ONLY */
1067
1068 tlb_destroy(cpu);
1069 g_free_rcu(cpu->tb_jmp_cache, rcu);
1070 }
1071