1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * TC358767/TC358867/TC9595 DSI/DPI-to-DPI/(e)DP bridge driver
4 *
5 * The TC358767/TC358867/TC9595 can operate in multiple modes.
6 * All modes are supported -- DPI->(e)DP / DSI->DPI / DSI->(e)DP .
7 *
8 * Copyright (C) 2016 CogentEmbedded Inc
9 * Author: Andrey Gusakov <andrey.gusakov@cogentembedded.com>
10 *
11 * Copyright (C) 2016 Pengutronix, Philipp Zabel <p.zabel@pengutronix.de>
12 *
13 * Copyright (C) 2016 Zodiac Inflight Innovations
14 *
15 * Initially based on: drivers/gpu/drm/i2c/tda998x_drv.c
16 *
17 * Copyright (C) 2012 Texas Instruments
18 * Author: Rob Clark <robdclark@gmail.com>
19 */
20
21 #include <linux/bitfield.h>
22 #include <linux/clk.h>
23 #include <linux/device.h>
24 #include <linux/gpio/consumer.h>
25 #include <linux/i2c.h>
26 #include <linux/kernel.h>
27 #include <linux/media-bus-format.h>
28 #include <linux/module.h>
29 #include <linux/regmap.h>
30 #include <linux/slab.h>
31
32 #include <drm/display/drm_dp_helper.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_print.h>
40 #include <drm/drm_probe_helper.h>
41
42 /* Registers */
43
44 /* DSI D-PHY Layer registers */
45 #define D0W_DPHYCONTTX 0x0004
46 #define CLW_DPHYCONTTX 0x0020
47 #define D0W_DPHYCONTRX 0x0024
48 #define D1W_DPHYCONTRX 0x0028
49 #define D2W_DPHYCONTRX 0x002c
50 #define D3W_DPHYCONTRX 0x0030
51 #define COM_DPHYCONTRX 0x0038
52 #define CLW_CNTRL 0x0040
53 #define D0W_CNTRL 0x0044
54 #define D1W_CNTRL 0x0048
55 #define D2W_CNTRL 0x004c
56 #define D3W_CNTRL 0x0050
57 #define TESTMODE_CNTRL 0x0054
58
59 /* PPI layer registers */
60 #define PPI_STARTPPI 0x0104 /* START control bit */
61 #define PPI_BUSYPPI 0x0108 /* PPI busy status */
62 #define PPI_LPTXTIMECNT 0x0114 /* LPTX timing signal */
63 #define LPX_PERIOD 3
64 #define PPI_LANEENABLE 0x0134
65 #define PPI_TX_RX_TA 0x013c
66 #define TTA_GET 0x40000
67 #define TTA_SURE 6
68 #define PPI_D0S_ATMR 0x0144
69 #define PPI_D1S_ATMR 0x0148
70 #define PPI_D0S_CLRSIPOCOUNT 0x0164 /* Assertion timer for Lane 0 */
71 #define PPI_D1S_CLRSIPOCOUNT 0x0168 /* Assertion timer for Lane 1 */
72 #define PPI_D2S_CLRSIPOCOUNT 0x016c /* Assertion timer for Lane 2 */
73 #define PPI_D3S_CLRSIPOCOUNT 0x0170 /* Assertion timer for Lane 3 */
74 #define PPI_START_FUNCTION BIT(0)
75
76 /* DSI layer registers */
77 #define DSI_STARTDSI 0x0204 /* START control bit of DSI-TX */
78 #define DSI_BUSYDSI 0x0208 /* DSI busy status */
79 #define DSI_LANEENABLE 0x0210 /* Enables each lane */
80 #define DSI_RX_START BIT(0)
81
82 /* Lane enable PPI and DSI register bits */
83 #define LANEENABLE_CLEN BIT(0)
84 #define LANEENABLE_L0EN BIT(1)
85 #define LANEENABLE_L1EN BIT(2)
86 #define LANEENABLE_L2EN BIT(1)
87 #define LANEENABLE_L3EN BIT(2)
88
89 #define DSI_LANESTATUS0 0x0214 /* DSI lane status 0 */
90 #define DSI_LANESTATUS1 0x0218 /* DSI lane status 1 */
91 #define DSI_INTSTATUS 0x0220 /* Interrupt Status */
92 #define DSI_INTMASK 0x0224 /* Interrupt Mask */
93 #define DSI_INTCLR 0x0228 /* Interrupt Clear */
94 #define DSI_LPTXTO 0x0230 /* LPTX Time Out Counter */
95
96 /* DSI General Registers */
97 #define DSIERRCNT 0x0300 /* DSI Error Count Register */
98
99 /* DSI Application Layer Registers */
100 #define APLCTRL 0x0400 /* Application layer Control Register */
101 #define RDPKTLN 0x0404 /* DSI Read packet Length Register */
102
103 /* Display Parallel Input Interface */
104 #define DPIPXLFMT 0x0440
105 #define VS_POL_ACTIVE_LOW (1 << 10)
106 #define HS_POL_ACTIVE_LOW (1 << 9)
107 #define DE_POL_ACTIVE_HIGH (0 << 8)
108 #define SUB_CFG_TYPE_CONFIG1 (0 << 2) /* LSB aligned */
109 #define SUB_CFG_TYPE_CONFIG2 (1 << 2) /* Loosely Packed */
110 #define SUB_CFG_TYPE_CONFIG3 (2 << 2) /* LSB aligned 8-bit */
111 #define DPI_BPP_RGB888 (0 << 0)
112 #define DPI_BPP_RGB666 (1 << 0)
113 #define DPI_BPP_RGB565 (2 << 0)
114
115 /* Display Parallel Output Interface */
116 #define POCTRL 0x0448
117 #define POCTRL_S2P BIT(7)
118 #define POCTRL_PCLK_POL BIT(3)
119 #define POCTRL_VS_POL BIT(2)
120 #define POCTRL_HS_POL BIT(1)
121 #define POCTRL_DE_POL BIT(0)
122
123 /* Video Path */
124 #define VPCTRL0 0x0450
125 #define VSDELAY GENMASK(31, 20)
126 #define OPXLFMT_RGB666 (0 << 8)
127 #define OPXLFMT_RGB888 (1 << 8)
128 #define FRMSYNC_DISABLED (0 << 4) /* Video Timing Gen Disabled */
129 #define FRMSYNC_ENABLED (1 << 4) /* Video Timing Gen Enabled */
130 #define MSF_DISABLED (0 << 0) /* Magic Square FRC disabled */
131 #define MSF_ENABLED (1 << 0) /* Magic Square FRC enabled */
132 #define HTIM01 0x0454
133 #define HPW GENMASK(8, 0)
134 #define HBPR GENMASK(24, 16)
135 #define HTIM02 0x0458
136 #define HDISPR GENMASK(10, 0)
137 #define HFPR GENMASK(24, 16)
138 #define VTIM01 0x045c
139 #define VSPR GENMASK(7, 0)
140 #define VBPR GENMASK(23, 16)
141 #define VTIM02 0x0460
142 #define VFPR GENMASK(23, 16)
143 #define VDISPR GENMASK(10, 0)
144 #define VFUEN0 0x0464
145 #define VFUEN BIT(0) /* Video Frame Timing Upload */
146
147 /* System */
148 #define TC_IDREG 0x0500 /* Chip ID and Revision ID */
149 #define SYSBOOT 0x0504 /* System BootStrap Status Register */
150 #define SYSSTAT 0x0508 /* System Status Register */
151 #define SYSRSTENB 0x050c /* System Reset/Enable Register */
152 #define ENBI2C (1 << 0)
153 #define ENBLCD0 (1 << 2)
154 #define ENBBM (1 << 3)
155 #define ENBDSIRX (1 << 4)
156 #define ENBREG (1 << 5)
157 #define ENBHDCP (1 << 8)
158 #define SYSCTRL 0x0510 /* System Control Register */
159 #define DP0_AUDSRC_NO_INPUT (0 << 3)
160 #define DP0_AUDSRC_I2S_RX (1 << 3)
161 #define DP0_VIDSRC_NO_INPUT (0 << 0)
162 #define DP0_VIDSRC_DSI_RX (1 << 0)
163 #define DP0_VIDSRC_DPI_RX (2 << 0)
164 #define DP0_VIDSRC_COLOR_BAR (3 << 0)
165 #define GPIOM 0x0540 /* GPIO Mode Control Register */
166 #define GPIOC 0x0544 /* GPIO Direction Control Register */
167 #define GPIOO 0x0548 /* GPIO Output Register */
168 #define GPIOI 0x054c /* GPIO Input Register */
169 #define INTCTL_G 0x0560 /* General Interrupts Control Register */
170 #define INTSTS_G 0x0564 /* General Interrupts Status Register */
171
172 #define INT_SYSERR BIT(16)
173 #define INT_GPIO_H(x) (1 << (x == 0 ? 2 : 10))
174 #define INT_GPIO_LC(x) (1 << (x == 0 ? 3 : 11))
175
176 #define TEST_INT_C 0x0570 /* Test Interrupts Control Register */
177 #define TEST_INT_S 0x0574 /* Test Interrupts Status Register */
178
179 #define INT_GP0_LCNT 0x0584 /* Interrupt GPIO0 Low Count Value Register */
180 #define INT_GP1_LCNT 0x0588 /* Interrupt GPIO1 Low Count Value Register */
181
182 /* Control */
183 #define DP0CTL 0x0600
184 #define VID_MN_GEN BIT(6) /* Auto-generate M/N values */
185 #define EF_EN BIT(5) /* Enable Enhanced Framing */
186 #define VID_EN BIT(1) /* Video transmission enable */
187 #define DP_EN BIT(0) /* Enable DPTX function */
188
189 /* Clocks */
190 #define DP0_VIDMNGEN0 0x0610 /* DP0 Video Force M Value Register */
191 #define DP0_VIDMNGEN1 0x0614 /* DP0 Video Force N Value Register */
192 #define DP0_VMNGENSTATUS 0x0618 /* DP0 Video Current M Value Register */
193 #define DP0_AUDMNGEN0 0x0628 /* DP0 Audio Force M Value Register */
194 #define DP0_AUDMNGEN1 0x062c /* DP0 Audio Force N Value Register */
195 #define DP0_AMNGENSTATUS 0x0630 /* DP0 Audio Current M Value Register */
196
197 /* Main Channel */
198 #define DP0_SECSAMPLE 0x0640
199 #define DP0_VIDSYNCDELAY 0x0644
200 #define VID_SYNC_DLY GENMASK(15, 0)
201 #define THRESH_DLY GENMASK(31, 16)
202
203 #define DP0_TOTALVAL 0x0648
204 #define H_TOTAL GENMASK(15, 0)
205 #define V_TOTAL GENMASK(31, 16)
206 #define DP0_STARTVAL 0x064c
207 #define H_START GENMASK(15, 0)
208 #define V_START GENMASK(31, 16)
209 #define DP0_ACTIVEVAL 0x0650
210 #define H_ACT GENMASK(15, 0)
211 #define V_ACT GENMASK(31, 16)
212
213 #define DP0_SYNCVAL 0x0654
214 #define VS_WIDTH GENMASK(30, 16)
215 #define HS_WIDTH GENMASK(14, 0)
216 #define SYNCVAL_HS_POL_ACTIVE_LOW (1 << 15)
217 #define SYNCVAL_VS_POL_ACTIVE_LOW (1 << 31)
218 #define DP0_MISC 0x0658
219 #define TU_SIZE_RECOMMENDED (63) /* LSCLK cycles per TU */
220 #define MAX_TU_SYMBOL GENMASK(28, 23)
221 #define TU_SIZE GENMASK(21, 16)
222 #define BPC_6 (0 << 5)
223 #define BPC_8 (1 << 5)
224
225 /* AUX channel */
226 #define DP0_AUXCFG0 0x0660
227 #define DP0_AUXCFG0_BSIZE GENMASK(11, 8)
228 #define DP0_AUXCFG0_ADDR_ONLY BIT(4)
229 #define DP0_AUXCFG1 0x0664
230 #define AUX_RX_FILTER_EN BIT(16)
231
232 #define DP0_AUXADDR 0x0668
233 #define DP0_AUXWDATA(i) (0x066c + (i) * 4)
234 #define DP0_AUXRDATA(i) (0x067c + (i) * 4)
235 #define DP0_AUXSTATUS 0x068c
236 #define AUX_BYTES GENMASK(15, 8)
237 #define AUX_STATUS GENMASK(7, 4)
238 #define AUX_TIMEOUT BIT(1)
239 #define AUX_BUSY BIT(0)
240 #define DP0_AUXI2CADR 0x0698
241
242 /* Link Training */
243 #define DP0_SRCCTRL 0x06a0
244 #define DP0_SRCCTRL_PRE1 GENMASK(29, 28)
245 #define DP0_SRCCTRL_SWG1 GENMASK(25, 24)
246 #define DP0_SRCCTRL_PRE0 GENMASK(21, 20)
247 #define DP0_SRCCTRL_SWG0 GENMASK(17, 16)
248 #define DP0_SRCCTRL_SCRMBLDIS BIT(13)
249 #define DP0_SRCCTRL_EN810B BIT(12)
250 #define DP0_SRCCTRL_NOTP (0 << 8)
251 #define DP0_SRCCTRL_TP1 (1 << 8)
252 #define DP0_SRCCTRL_TP2 (2 << 8)
253 #define DP0_SRCCTRL_LANESKEW BIT(7)
254 #define DP0_SRCCTRL_SSCG BIT(3)
255 #define DP0_SRCCTRL_LANES_1 (0 << 2)
256 #define DP0_SRCCTRL_LANES_2 (1 << 2)
257 #define DP0_SRCCTRL_BW27 (1 << 1)
258 #define DP0_SRCCTRL_BW162 (0 << 1)
259 #define DP0_SRCCTRL_AUTOCORRECT BIT(0)
260 #define DP0_LTSTAT 0x06d0
261 #define LT_LOOPDONE BIT(13)
262 #define LT_STATUS_MASK (0x1f << 8)
263 #define LT_CHANNEL1_EQ_BITS (DP_CHANNEL_EQ_BITS << 4)
264 #define LT_INTERLANE_ALIGN_DONE BIT(3)
265 #define LT_CHANNEL0_EQ_BITS (DP_CHANNEL_EQ_BITS)
266 #define DP0_SNKLTCHGREQ 0x06d4
267 #define DP0_LTLOOPCTRL 0x06d8
268 #define DP0_SNKLTCTRL 0x06e4
269 #define DP0_TPATDAT0 0x06e8 /* DP0 Test Pattern bits 29 to 0 */
270 #define DP0_TPATDAT1 0x06ec /* DP0 Test Pattern bits 59 to 30 */
271 #define DP0_TPATDAT2 0x06f0 /* DP0 Test Pattern bits 89 to 60 */
272 #define DP0_TPATDAT3 0x06f4 /* DP0 Test Pattern bits 119 to 90 */
273
274 #define AUDCFG0 0x0700 /* DP0 Audio Config0 Register */
275 #define AUDCFG1 0x0704 /* DP0 Audio Config1 Register */
276 #define AUDIFDATA0 0x0708 /* DP0 Audio Info Frame Bytes 3 to 0 */
277 #define AUDIFDATA1 0x070c /* DP0 Audio Info Frame Bytes 7 to 4 */
278 #define AUDIFDATA2 0x0710 /* DP0 Audio Info Frame Bytes 11 to 8 */
279 #define AUDIFDATA3 0x0714 /* DP0 Audio Info Frame Bytes 15 to 12 */
280 #define AUDIFDATA4 0x0718 /* DP0 Audio Info Frame Bytes 19 to 16 */
281 #define AUDIFDATA5 0x071c /* DP0 Audio Info Frame Bytes 23 to 20 */
282 #define AUDIFDATA6 0x0720 /* DP0 Audio Info Frame Bytes 27 to 24 */
283
284 #define DP1_SRCCTRL 0x07a0 /* DP1 Control Register */
285 #define DP1_SRCCTRL_PRE GENMASK(21, 20)
286 #define DP1_SRCCTRL_SWG GENMASK(17, 16)
287
288 /* PHY */
289 #define DP_PHY_CTRL 0x0800
290 #define DP_PHY_RST BIT(28) /* DP PHY Global Soft Reset */
291 #define BGREN BIT(25) /* AUX PHY BGR Enable */
292 #define PWR_SW_EN BIT(24) /* PHY Power Switch Enable */
293 #define PHY_M1_RST BIT(12) /* Reset PHY1 Main Channel */
294 #define PHY_RDY BIT(16) /* PHY Main Channels Ready */
295 #define PHY_M0_RST BIT(8) /* Reset PHY0 Main Channel */
296 #define PHY_2LANE BIT(2) /* PHY Enable 2 lanes */
297 #define PHY_A0_EN BIT(1) /* PHY Aux Channel0 Enable */
298 #define PHY_M0_EN BIT(0) /* PHY Main Channel0 Enable */
299 #define DP_PHY_CFG_WR 0x0810 /* DP PHY Configuration Test Write Register */
300 #define DP_PHY_CFG_RD 0x0814 /* DP PHY Configuration Test Read Register */
301 #define DP0_AUX_PHY_CTRL 0x0820 /* DP0 AUX PHY Control Register */
302 #define DP0_MAIN_PHY_DBG 0x0840 /* DP0 Main PHY Test Debug Register */
303
304 /* I2S */
305 #define I2SCFG 0x0880 /* I2S Audio Config 0 Register */
306 #define I2SCH0STAT0 0x0888 /* I2S Audio Channel 0 Status Bytes 3 to 0 */
307 #define I2SCH0STAT1 0x088c /* I2S Audio Channel 0 Status Bytes 7 to 4 */
308 #define I2SCH0STAT2 0x0890 /* I2S Audio Channel 0 Status Bytes 11 to 8 */
309 #define I2SCH0STAT3 0x0894 /* I2S Audio Channel 0 Status Bytes 15 to 12 */
310 #define I2SCH0STAT4 0x0898 /* I2S Audio Channel 0 Status Bytes 19 to 16 */
311 #define I2SCH0STAT5 0x089c /* I2S Audio Channel 0 Status Bytes 23 to 20 */
312 #define I2SCH1STAT0 0x08a0 /* I2S Audio Channel 1 Status Bytes 3 to 0 */
313 #define I2SCH1STAT1 0x08a4 /* I2S Audio Channel 1 Status Bytes 7 to 4 */
314 #define I2SCH1STAT2 0x08a8 /* I2S Audio Channel 1 Status Bytes 11 to 8 */
315 #define I2SCH1STAT3 0x08ac /* I2S Audio Channel 1 Status Bytes 15 to 12 */
316 #define I2SCH1STAT4 0x08b0 /* I2S Audio Channel 1 Status Bytes 19 to 16 */
317 #define I2SCH1STAT5 0x08b4 /* I2S Audio Channel 1 Status Bytes 23 to 20 */
318
319 /* PLL */
320 #define DP0_PLLCTRL 0x0900
321 #define DP1_PLLCTRL 0x0904 /* not defined in DS */
322 #define PXL_PLLCTRL 0x0908
323 #define PLLUPDATE BIT(2)
324 #define PLLBYP BIT(1)
325 #define PLLEN BIT(0)
326 #define PXL_PLLPARAM 0x0914
327 #define IN_SEL_REFCLK (0 << 14)
328 #define SYS_PLLPARAM 0x0918
329 #define REF_FREQ_38M4 (0 << 8) /* 38.4 MHz */
330 #define REF_FREQ_19M2 (1 << 8) /* 19.2 MHz */
331 #define REF_FREQ_26M (2 << 8) /* 26 MHz */
332 #define REF_FREQ_13M (3 << 8) /* 13 MHz */
333 #define SYSCLK_SEL_LSCLK (0 << 4)
334 #define LSCLK_DIV_1 (0 << 0)
335 #define LSCLK_DIV_2 (1 << 0)
336
337 /* Test & Debug */
338 #define TSTCTL 0x0a00
339 #define COLOR_R GENMASK(31, 24)
340 #define COLOR_G GENMASK(23, 16)
341 #define COLOR_B GENMASK(15, 8)
342 #define ENI2CFILTER BIT(4)
343 #define COLOR_BAR_MODE GENMASK(1, 0)
344 #define COLOR_BAR_MODE_BARS 2
345 #define PLL_DBG 0x0a04
346
347 enum tc_mode {
348 mode_dpi_to_edp = BIT(1) | BIT(2),
349 mode_dpi_to_dp = BIT(1),
350 mode_dsi_to_edp = BIT(0) | BIT(2),
351 mode_dsi_to_dp = BIT(0),
352 mode_dsi_to_dpi = BIT(0) | BIT(1),
353 };
354
355 static bool tc_test_pattern;
356 module_param_named(test, tc_test_pattern, bool, 0644);
357
358 struct tc_edp_link {
359 u8 dpcd[DP_RECEIVER_CAP_SIZE];
360 unsigned int rate;
361 u8 num_lanes;
362 u8 assr;
363 bool scrambler_dis;
364 bool spread;
365 };
366
367 struct tc_data {
368 struct device *dev;
369 struct regmap *regmap;
370 struct drm_dp_aux aux;
371
372 struct drm_bridge bridge;
373 struct drm_bridge *panel_bridge;
374 struct drm_connector connector;
375
376 struct mipi_dsi_device *dsi;
377
378 /* link settings */
379 struct tc_edp_link link;
380
381 /* current mode */
382 struct drm_display_mode mode;
383
384 u32 rev;
385 u8 assr;
386 u8 pre_emphasis[2];
387
388 struct gpio_desc *sd_gpio;
389 struct gpio_desc *reset_gpio;
390 struct clk *refclk;
391
392 /* do we have IRQ */
393 bool have_irq;
394
395 /* Input connector type, DSI and not DPI. */
396 bool input_connector_dsi;
397
398 /* HPD pin number (0 or 1) or -ENODEV */
399 int hpd_pin;
400 };
401
aux_to_tc(struct drm_dp_aux * a)402 static inline struct tc_data *aux_to_tc(struct drm_dp_aux *a)
403 {
404 return container_of(a, struct tc_data, aux);
405 }
406
bridge_to_tc(struct drm_bridge * b)407 static inline struct tc_data *bridge_to_tc(struct drm_bridge *b)
408 {
409 return container_of(b, struct tc_data, bridge);
410 }
411
connector_to_tc(struct drm_connector * c)412 static inline struct tc_data *connector_to_tc(struct drm_connector *c)
413 {
414 return container_of(c, struct tc_data, connector);
415 }
416
tc_poll_timeout(struct tc_data * tc,unsigned int addr,unsigned int cond_mask,unsigned int cond_value,unsigned long sleep_us,u64 timeout_us)417 static inline int tc_poll_timeout(struct tc_data *tc, unsigned int addr,
418 unsigned int cond_mask,
419 unsigned int cond_value,
420 unsigned long sleep_us, u64 timeout_us)
421 {
422 unsigned int val;
423
424 return regmap_read_poll_timeout(tc->regmap, addr, val,
425 (val & cond_mask) == cond_value,
426 sleep_us, timeout_us);
427 }
428
tc_aux_wait_busy(struct tc_data * tc)429 static int tc_aux_wait_busy(struct tc_data *tc)
430 {
431 return tc_poll_timeout(tc, DP0_AUXSTATUS, AUX_BUSY, 0, 100, 100000);
432 }
433
tc_aux_write_data(struct tc_data * tc,const void * data,size_t size)434 static int tc_aux_write_data(struct tc_data *tc, const void *data,
435 size_t size)
436 {
437 u32 auxwdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)] = { 0 };
438 int ret, count = ALIGN(size, sizeof(u32));
439
440 memcpy(auxwdata, data, size);
441
442 ret = regmap_raw_write(tc->regmap, DP0_AUXWDATA(0), auxwdata, count);
443 if (ret)
444 return ret;
445
446 return size;
447 }
448
tc_aux_read_data(struct tc_data * tc,void * data,size_t size)449 static int tc_aux_read_data(struct tc_data *tc, void *data, size_t size)
450 {
451 u32 auxrdata[DP_AUX_MAX_PAYLOAD_BYTES / sizeof(u32)];
452 int ret, count = ALIGN(size, sizeof(u32));
453
454 ret = regmap_raw_read(tc->regmap, DP0_AUXRDATA(0), auxrdata, count);
455 if (ret)
456 return ret;
457
458 memcpy(data, auxrdata, size);
459
460 return size;
461 }
462
tc_auxcfg0(struct drm_dp_aux_msg * msg,size_t size)463 static u32 tc_auxcfg0(struct drm_dp_aux_msg *msg, size_t size)
464 {
465 u32 auxcfg0 = msg->request;
466
467 if (size)
468 auxcfg0 |= FIELD_PREP(DP0_AUXCFG0_BSIZE, size - 1);
469 else
470 auxcfg0 |= DP0_AUXCFG0_ADDR_ONLY;
471
472 return auxcfg0;
473 }
474
tc_aux_transfer(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)475 static ssize_t tc_aux_transfer(struct drm_dp_aux *aux,
476 struct drm_dp_aux_msg *msg)
477 {
478 struct tc_data *tc = aux_to_tc(aux);
479 size_t size = min_t(size_t, DP_AUX_MAX_PAYLOAD_BYTES - 1, msg->size);
480 u8 request = msg->request & ~DP_AUX_I2C_MOT;
481 u32 auxstatus;
482 int ret;
483
484 ret = tc_aux_wait_busy(tc);
485 if (ret)
486 return ret;
487
488 switch (request) {
489 case DP_AUX_NATIVE_READ:
490 case DP_AUX_I2C_READ:
491 break;
492 case DP_AUX_NATIVE_WRITE:
493 case DP_AUX_I2C_WRITE:
494 if (size) {
495 ret = tc_aux_write_data(tc, msg->buffer, size);
496 if (ret < 0)
497 return ret;
498 }
499 break;
500 default:
501 return -EINVAL;
502 }
503
504 /* Store address */
505 ret = regmap_write(tc->regmap, DP0_AUXADDR, msg->address);
506 if (ret)
507 return ret;
508 /* Start transfer */
509 ret = regmap_write(tc->regmap, DP0_AUXCFG0, tc_auxcfg0(msg, size));
510 if (ret)
511 return ret;
512
513 ret = tc_aux_wait_busy(tc);
514 if (ret)
515 return ret;
516
517 ret = regmap_read(tc->regmap, DP0_AUXSTATUS, &auxstatus);
518 if (ret)
519 return ret;
520
521 if (auxstatus & AUX_TIMEOUT)
522 return -ETIMEDOUT;
523 /*
524 * For some reason address-only DP_AUX_I2C_WRITE (MOT), still
525 * reports 1 byte transferred in its status. To deal we that
526 * we ignore aux_bytes field if we know that this was an
527 * address-only transfer
528 */
529 if (size)
530 size = FIELD_GET(AUX_BYTES, auxstatus);
531 msg->reply = FIELD_GET(AUX_STATUS, auxstatus);
532
533 switch (request) {
534 case DP_AUX_NATIVE_READ:
535 case DP_AUX_I2C_READ:
536 if (size)
537 return tc_aux_read_data(tc, msg->buffer, size);
538 break;
539 }
540
541 return size;
542 }
543
544 static const char * const training_pattern1_errors[] = {
545 "No errors",
546 "Aux write error",
547 "Aux read error",
548 "Max voltage reached error",
549 "Loop counter expired error",
550 "res", "res", "res"
551 };
552
553 static const char * const training_pattern2_errors[] = {
554 "No errors",
555 "Aux write error",
556 "Aux read error",
557 "Clock recovery failed error",
558 "Loop counter expired error",
559 "res", "res", "res"
560 };
561
tc_srcctrl(struct tc_data * tc)562 static u32 tc_srcctrl(struct tc_data *tc)
563 {
564 /*
565 * No training pattern, skew lane 1 data by two LSCLK cycles with
566 * respect to lane 0 data, AutoCorrect Mode = 0
567 */
568 u32 reg = DP0_SRCCTRL_NOTP | DP0_SRCCTRL_LANESKEW | DP0_SRCCTRL_EN810B;
569
570 if (tc->link.scrambler_dis)
571 reg |= DP0_SRCCTRL_SCRMBLDIS; /* Scrambler Disabled */
572 if (tc->link.spread)
573 reg |= DP0_SRCCTRL_SSCG; /* Spread Spectrum Enable */
574 if (tc->link.num_lanes == 2)
575 reg |= DP0_SRCCTRL_LANES_2; /* Two Main Channel Lanes */
576 if (tc->link.rate != 162000)
577 reg |= DP0_SRCCTRL_BW27; /* 2.7 Gbps link */
578 return reg;
579 }
580
tc_pllupdate(struct tc_data * tc,unsigned int pllctrl)581 static int tc_pllupdate(struct tc_data *tc, unsigned int pllctrl)
582 {
583 int ret;
584
585 ret = regmap_write(tc->regmap, pllctrl, PLLUPDATE | PLLEN);
586 if (ret)
587 return ret;
588
589 /* Wait for PLL to lock: up to 7.5 ms, depending on refclk */
590 usleep_range(15000, 20000);
591
592 return 0;
593 }
594
tc_pxl_pll_calc(struct tc_data * tc,u32 refclk,u32 pixelclock,int * out_best_pixelclock,u32 * out_pxl_pllparam)595 static int tc_pxl_pll_calc(struct tc_data *tc, u32 refclk, u32 pixelclock,
596 int *out_best_pixelclock, u32 *out_pxl_pllparam)
597 {
598 int i_pre, best_pre = 1;
599 int i_post, best_post = 1;
600 int div, best_div = 1;
601 int mul, best_mul = 1;
602 int delta, best_delta;
603 int ext_div[] = {1, 2, 3, 5, 7};
604 int clk_min, clk_max;
605 int best_pixelclock = 0;
606 int vco_hi = 0;
607 u32 pxl_pllparam;
608
609 /*
610 * refclk * mul / (ext_pre_div * pre_div) should be in range:
611 * - DPI ..... 0 to 100 MHz
612 * - (e)DP ... 150 to 650 MHz
613 */
614 if (tc->bridge.type == DRM_MODE_CONNECTOR_DPI) {
615 clk_min = 0;
616 clk_max = 100000000;
617 } else {
618 clk_min = 150000000;
619 clk_max = 650000000;
620 }
621
622 dev_dbg(tc->dev, "PLL: requested %d pixelclock, ref %d\n", pixelclock,
623 refclk);
624 best_delta = pixelclock;
625 /* Loop over all possible ext_divs, skipping invalid configurations */
626 for (i_pre = 0; i_pre < ARRAY_SIZE(ext_div); i_pre++) {
627 /*
628 * refclk / ext_pre_div should be in the 1 to 200 MHz range.
629 * We don't allow any refclk > 200 MHz, only check lower bounds.
630 */
631 if (refclk / ext_div[i_pre] < 1000000)
632 continue;
633 for (i_post = 0; i_post < ARRAY_SIZE(ext_div); i_post++) {
634 for (div = 1; div <= 16; div++) {
635 u32 clk, iclk;
636 u64 tmp;
637
638 /* PCLK PLL input unit clock ... 6..40 MHz */
639 iclk = refclk / (div * ext_div[i_pre]);
640 if (iclk < 6000000 || iclk > 40000000)
641 continue;
642
643 tmp = pixelclock * ext_div[i_pre] *
644 ext_div[i_post] * div;
645 do_div(tmp, refclk);
646 mul = tmp;
647
648 /* Check limits */
649 if ((mul < 1) || (mul > 128))
650 continue;
651
652 clk = (refclk / ext_div[i_pre] / div) * mul;
653 if ((clk > clk_max) || (clk < clk_min))
654 continue;
655
656 clk = clk / ext_div[i_post];
657 delta = clk - pixelclock;
658
659 if (abs(delta) < abs(best_delta)) {
660 best_pre = i_pre;
661 best_post = i_post;
662 best_div = div;
663 best_mul = mul;
664 best_delta = delta;
665 best_pixelclock = clk;
666 }
667 }
668 }
669 }
670 if (best_pixelclock == 0) {
671 dev_err(tc->dev, "Failed to calc clock for %d pixelclock\n",
672 pixelclock);
673 return -EINVAL;
674 }
675
676 dev_dbg(tc->dev, "PLL: got %d, delta %d\n", best_pixelclock, best_delta);
677 dev_dbg(tc->dev, "PLL: %d / %d / %d * %d / %d\n", refclk,
678 ext_div[best_pre], best_div, best_mul, ext_div[best_post]);
679
680 /* if VCO >= 300 MHz */
681 if (refclk / ext_div[best_pre] / best_div * best_mul >= 300000000)
682 vco_hi = 1;
683 /* see DS */
684 if (best_div == 16)
685 best_div = 0;
686 if (best_mul == 128)
687 best_mul = 0;
688
689 pxl_pllparam = vco_hi << 24; /* For PLL VCO >= 300 MHz = 1 */
690 pxl_pllparam |= ext_div[best_pre] << 20; /* External Pre-divider */
691 pxl_pllparam |= ext_div[best_post] << 16; /* External Post-divider */
692 pxl_pllparam |= IN_SEL_REFCLK; /* Use RefClk as PLL input */
693 pxl_pllparam |= best_div << 8; /* Divider for PLL RefClk */
694 pxl_pllparam |= best_mul; /* Multiplier for PLL */
695
696 if (out_best_pixelclock)
697 *out_best_pixelclock = best_pixelclock;
698
699 if (out_pxl_pllparam)
700 *out_pxl_pllparam = pxl_pllparam;
701
702 return 0;
703 }
704
tc_pxl_pll_en(struct tc_data * tc,u32 refclk,u32 pixelclock)705 static int tc_pxl_pll_en(struct tc_data *tc, u32 refclk, u32 pixelclock)
706 {
707 u32 pxl_pllparam = 0;
708 int ret;
709
710 ret = tc_pxl_pll_calc(tc, refclk, pixelclock, NULL, &pxl_pllparam);
711 if (ret)
712 return ret;
713
714 /* Power up PLL and switch to bypass */
715 ret = regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP | PLLEN);
716 if (ret)
717 return ret;
718
719 ret = regmap_write(tc->regmap, PXL_PLLPARAM, pxl_pllparam);
720 if (ret)
721 return ret;
722
723 /* Force PLL parameter update and disable bypass */
724 return tc_pllupdate(tc, PXL_PLLCTRL);
725 }
726
tc_pxl_pll_dis(struct tc_data * tc)727 static int tc_pxl_pll_dis(struct tc_data *tc)
728 {
729 /* Enable PLL bypass, power down PLL */
730 return regmap_write(tc->regmap, PXL_PLLCTRL, PLLBYP);
731 }
732
tc_stream_clock_calc(struct tc_data * tc)733 static int tc_stream_clock_calc(struct tc_data *tc)
734 {
735 /*
736 * If the Stream clock and Link Symbol clock are
737 * asynchronous with each other, the value of M changes over
738 * time. This way of generating link clock and stream
739 * clock is called Asynchronous Clock mode. The value M
740 * must change while the value N stays constant. The
741 * value of N in this Asynchronous Clock mode must be set
742 * to 2^15 or 32,768.
743 *
744 * LSCLK = 1/10 of high speed link clock
745 *
746 * f_STRMCLK = M/N * f_LSCLK
747 * M/N = f_STRMCLK / f_LSCLK
748 *
749 */
750 return regmap_write(tc->regmap, DP0_VIDMNGEN1, 32768);
751 }
752
tc_set_syspllparam(struct tc_data * tc)753 static int tc_set_syspllparam(struct tc_data *tc)
754 {
755 unsigned long rate;
756 u32 pllparam = SYSCLK_SEL_LSCLK | LSCLK_DIV_1;
757
758 rate = clk_get_rate(tc->refclk);
759 switch (rate) {
760 case 38400000:
761 pllparam |= REF_FREQ_38M4;
762 break;
763 case 26000000:
764 pllparam |= REF_FREQ_26M;
765 break;
766 case 19200000:
767 pllparam |= REF_FREQ_19M2;
768 break;
769 case 13000000:
770 pllparam |= REF_FREQ_13M;
771 break;
772 default:
773 dev_err(tc->dev, "Invalid refclk rate: %lu Hz\n", rate);
774 return -EINVAL;
775 }
776
777 return regmap_write(tc->regmap, SYS_PLLPARAM, pllparam);
778 }
779
tc_aux_link_setup(struct tc_data * tc)780 static int tc_aux_link_setup(struct tc_data *tc)
781 {
782 int ret;
783 u32 dp0_auxcfg1;
784
785 /* Setup DP-PHY / PLL */
786 ret = tc_set_syspllparam(tc);
787 if (ret)
788 goto err;
789
790 ret = regmap_write(tc->regmap, DP_PHY_CTRL,
791 BGREN | PWR_SW_EN | PHY_A0_EN);
792 if (ret)
793 goto err;
794 /*
795 * Initially PLLs are in bypass. Force PLL parameter update,
796 * disable PLL bypass, enable PLL
797 */
798 ret = tc_pllupdate(tc, DP0_PLLCTRL);
799 if (ret)
800 goto err;
801
802 ret = tc_pllupdate(tc, DP1_PLLCTRL);
803 if (ret)
804 goto err;
805
806 ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 100, 100000);
807 if (ret == -ETIMEDOUT) {
808 dev_err(tc->dev, "Timeout waiting for PHY to become ready");
809 return ret;
810 } else if (ret) {
811 goto err;
812 }
813
814 /* Setup AUX link */
815 dp0_auxcfg1 = AUX_RX_FILTER_EN;
816 dp0_auxcfg1 |= 0x06 << 8; /* Aux Bit Period Calculator Threshold */
817 dp0_auxcfg1 |= 0x3f << 0; /* Aux Response Timeout Timer */
818
819 ret = regmap_write(tc->regmap, DP0_AUXCFG1, dp0_auxcfg1);
820 if (ret)
821 goto err;
822
823 /* Register DP AUX channel */
824 tc->aux.name = "TC358767 AUX i2c adapter";
825 tc->aux.dev = tc->dev;
826 tc->aux.transfer = tc_aux_transfer;
827 drm_dp_aux_init(&tc->aux);
828
829 return 0;
830 err:
831 dev_err(tc->dev, "tc_aux_link_setup failed: %d\n", ret);
832 return ret;
833 }
834
tc_get_display_props(struct tc_data * tc)835 static int tc_get_display_props(struct tc_data *tc)
836 {
837 u8 revision, num_lanes;
838 unsigned int rate;
839 int ret;
840 u8 reg;
841
842 /* Read DP Rx Link Capability */
843 ret = drm_dp_dpcd_read(&tc->aux, DP_DPCD_REV, tc->link.dpcd,
844 DP_RECEIVER_CAP_SIZE);
845 if (ret < 0)
846 goto err_dpcd_read;
847
848 revision = tc->link.dpcd[DP_DPCD_REV];
849 rate = drm_dp_max_link_rate(tc->link.dpcd);
850 num_lanes = drm_dp_max_lane_count(tc->link.dpcd);
851
852 if (rate != 162000 && rate != 270000) {
853 dev_dbg(tc->dev, "Falling to 2.7 Gbps rate\n");
854 rate = 270000;
855 }
856
857 tc->link.rate = rate;
858
859 if (num_lanes > 2) {
860 dev_dbg(tc->dev, "Falling to 2 lanes\n");
861 num_lanes = 2;
862 }
863
864 tc->link.num_lanes = num_lanes;
865
866 ret = drm_dp_dpcd_readb(&tc->aux, DP_MAX_DOWNSPREAD, ®);
867 if (ret < 0)
868 goto err_dpcd_read;
869 tc->link.spread = reg & DP_MAX_DOWNSPREAD_0_5;
870
871 ret = drm_dp_dpcd_readb(&tc->aux, DP_MAIN_LINK_CHANNEL_CODING, ®);
872 if (ret < 0)
873 goto err_dpcd_read;
874
875 tc->link.scrambler_dis = false;
876 /* read assr */
877 ret = drm_dp_dpcd_readb(&tc->aux, DP_EDP_CONFIGURATION_SET, ®);
878 if (ret < 0)
879 goto err_dpcd_read;
880 tc->link.assr = reg & DP_ALTERNATE_SCRAMBLER_RESET_ENABLE;
881
882 dev_dbg(tc->dev, "DPCD rev: %d.%d, rate: %s, lanes: %d, framing: %s\n",
883 revision >> 4, revision & 0x0f,
884 (tc->link.rate == 162000) ? "1.62Gbps" : "2.7Gbps",
885 tc->link.num_lanes,
886 drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
887 "enhanced" : "default");
888 dev_dbg(tc->dev, "Downspread: %s, scrambler: %s\n",
889 tc->link.spread ? "0.5%" : "0.0%",
890 tc->link.scrambler_dis ? "disabled" : "enabled");
891 dev_dbg(tc->dev, "Display ASSR: %d, TC358767 ASSR: %d\n",
892 tc->link.assr, tc->assr);
893
894 return 0;
895
896 err_dpcd_read:
897 dev_err(tc->dev, "failed to read DPCD: %d\n", ret);
898 return ret;
899 }
900
tc_set_common_video_mode(struct tc_data * tc,const struct drm_display_mode * mode)901 static int tc_set_common_video_mode(struct tc_data *tc,
902 const struct drm_display_mode *mode)
903 {
904 int left_margin = mode->htotal - mode->hsync_end;
905 int right_margin = mode->hsync_start - mode->hdisplay;
906 int hsync_len = mode->hsync_end - mode->hsync_start;
907 int upper_margin = mode->vtotal - mode->vsync_end;
908 int lower_margin = mode->vsync_start - mode->vdisplay;
909 int vsync_len = mode->vsync_end - mode->vsync_start;
910 int ret;
911
912 dev_dbg(tc->dev, "set mode %dx%d\n",
913 mode->hdisplay, mode->vdisplay);
914 dev_dbg(tc->dev, "H margin %d,%d sync %d\n",
915 left_margin, right_margin, hsync_len);
916 dev_dbg(tc->dev, "V margin %d,%d sync %d\n",
917 upper_margin, lower_margin, vsync_len);
918 dev_dbg(tc->dev, "total: %dx%d\n", mode->htotal, mode->vtotal);
919
920 /*
921 * LCD Ctl Frame Size
922 * datasheet is not clear of vsdelay in case of DPI
923 * assume we do not need any delay when DPI is a source of
924 * sync signals
925 */
926 ret = regmap_write(tc->regmap, VPCTRL0,
927 FIELD_PREP(VSDELAY, right_margin + 10) |
928 OPXLFMT_RGB888 | FRMSYNC_ENABLED | MSF_DISABLED);
929 if (ret)
930 return ret;
931
932 ret = regmap_write(tc->regmap, HTIM01,
933 FIELD_PREP(HBPR, ALIGN(left_margin, 2)) |
934 FIELD_PREP(HPW, ALIGN(hsync_len, 2)));
935 if (ret)
936 return ret;
937
938 ret = regmap_write(tc->regmap, HTIM02,
939 FIELD_PREP(HDISPR, ALIGN(mode->hdisplay, 2)) |
940 FIELD_PREP(HFPR, ALIGN(right_margin, 2)));
941 if (ret)
942 return ret;
943
944 ret = regmap_write(tc->regmap, VTIM01,
945 FIELD_PREP(VBPR, upper_margin) |
946 FIELD_PREP(VSPR, vsync_len));
947 if (ret)
948 return ret;
949
950 ret = regmap_write(tc->regmap, VTIM02,
951 FIELD_PREP(VFPR, lower_margin) |
952 FIELD_PREP(VDISPR, mode->vdisplay));
953 if (ret)
954 return ret;
955
956 ret = regmap_write(tc->regmap, VFUEN0, VFUEN); /* update settings */
957 if (ret)
958 return ret;
959
960 /* Test pattern settings */
961 ret = regmap_write(tc->regmap, TSTCTL,
962 FIELD_PREP(COLOR_R, 120) |
963 FIELD_PREP(COLOR_G, 20) |
964 FIELD_PREP(COLOR_B, 99) |
965 ENI2CFILTER |
966 FIELD_PREP(COLOR_BAR_MODE, COLOR_BAR_MODE_BARS));
967
968 return ret;
969 }
970
tc_set_dpi_video_mode(struct tc_data * tc,const struct drm_display_mode * mode)971 static int tc_set_dpi_video_mode(struct tc_data *tc,
972 const struct drm_display_mode *mode)
973 {
974 u32 value = POCTRL_S2P;
975
976 if (tc->mode.flags & DRM_MODE_FLAG_NHSYNC)
977 value |= POCTRL_HS_POL;
978
979 if (tc->mode.flags & DRM_MODE_FLAG_NVSYNC)
980 value |= POCTRL_VS_POL;
981
982 return regmap_write(tc->regmap, POCTRL, value);
983 }
984
tc_set_edp_video_mode(struct tc_data * tc,const struct drm_display_mode * mode)985 static int tc_set_edp_video_mode(struct tc_data *tc,
986 const struct drm_display_mode *mode)
987 {
988 int ret;
989 int vid_sync_dly;
990 int max_tu_symbol;
991
992 int left_margin = mode->htotal - mode->hsync_end;
993 int hsync_len = mode->hsync_end - mode->hsync_start;
994 int upper_margin = mode->vtotal - mode->vsync_end;
995 int vsync_len = mode->vsync_end - mode->vsync_start;
996 u32 dp0_syncval;
997 u32 bits_per_pixel = 24;
998 u32 in_bw, out_bw;
999 u32 dpipxlfmt;
1000
1001 /*
1002 * Recommended maximum number of symbols transferred in a transfer unit:
1003 * DIV_ROUND_UP((input active video bandwidth in bytes) * tu_size,
1004 * (output active video bandwidth in bytes))
1005 * Must be less than tu_size.
1006 */
1007
1008 in_bw = mode->clock * bits_per_pixel / 8;
1009 out_bw = tc->link.num_lanes * tc->link.rate;
1010 max_tu_symbol = DIV_ROUND_UP(in_bw * TU_SIZE_RECOMMENDED, out_bw);
1011
1012 /* DP Main Stream Attributes */
1013 vid_sync_dly = hsync_len + left_margin + mode->hdisplay;
1014 ret = regmap_write(tc->regmap, DP0_VIDSYNCDELAY,
1015 FIELD_PREP(THRESH_DLY, max_tu_symbol) |
1016 FIELD_PREP(VID_SYNC_DLY, vid_sync_dly));
1017
1018 ret = regmap_write(tc->regmap, DP0_TOTALVAL,
1019 FIELD_PREP(H_TOTAL, mode->htotal) |
1020 FIELD_PREP(V_TOTAL, mode->vtotal));
1021 if (ret)
1022 return ret;
1023
1024 ret = regmap_write(tc->regmap, DP0_STARTVAL,
1025 FIELD_PREP(H_START, left_margin + hsync_len) |
1026 FIELD_PREP(V_START, upper_margin + vsync_len));
1027 if (ret)
1028 return ret;
1029
1030 ret = regmap_write(tc->regmap, DP0_ACTIVEVAL,
1031 FIELD_PREP(V_ACT, mode->vdisplay) |
1032 FIELD_PREP(H_ACT, mode->hdisplay));
1033 if (ret)
1034 return ret;
1035
1036 dp0_syncval = FIELD_PREP(VS_WIDTH, vsync_len) |
1037 FIELD_PREP(HS_WIDTH, hsync_len);
1038
1039 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1040 dp0_syncval |= SYNCVAL_VS_POL_ACTIVE_LOW;
1041
1042 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1043 dp0_syncval |= SYNCVAL_HS_POL_ACTIVE_LOW;
1044
1045 ret = regmap_write(tc->regmap, DP0_SYNCVAL, dp0_syncval);
1046 if (ret)
1047 return ret;
1048
1049 dpipxlfmt = DE_POL_ACTIVE_HIGH | SUB_CFG_TYPE_CONFIG1 | DPI_BPP_RGB888;
1050
1051 if (mode->flags & DRM_MODE_FLAG_NVSYNC)
1052 dpipxlfmt |= VS_POL_ACTIVE_LOW;
1053
1054 if (mode->flags & DRM_MODE_FLAG_NHSYNC)
1055 dpipxlfmt |= HS_POL_ACTIVE_LOW;
1056
1057 ret = regmap_write(tc->regmap, DPIPXLFMT, dpipxlfmt);
1058 if (ret)
1059 return ret;
1060
1061 ret = regmap_write(tc->regmap, DP0_MISC,
1062 FIELD_PREP(MAX_TU_SYMBOL, max_tu_symbol) |
1063 FIELD_PREP(TU_SIZE, TU_SIZE_RECOMMENDED) |
1064 BPC_8);
1065 return ret;
1066 }
1067
tc_wait_link_training(struct tc_data * tc)1068 static int tc_wait_link_training(struct tc_data *tc)
1069 {
1070 u32 value;
1071 int ret;
1072
1073 ret = tc_poll_timeout(tc, DP0_LTSTAT, LT_LOOPDONE,
1074 LT_LOOPDONE, 500, 100000);
1075 if (ret) {
1076 dev_err(tc->dev, "Link training timeout waiting for LT_LOOPDONE!\n");
1077 return ret;
1078 }
1079
1080 ret = regmap_read(tc->regmap, DP0_LTSTAT, &value);
1081 if (ret)
1082 return ret;
1083
1084 return (value >> 8) & 0x7;
1085 }
1086
tc_main_link_enable(struct tc_data * tc)1087 static int tc_main_link_enable(struct tc_data *tc)
1088 {
1089 struct drm_dp_aux *aux = &tc->aux;
1090 struct device *dev = tc->dev;
1091 u32 dp_phy_ctrl;
1092 u32 value;
1093 int ret;
1094 u8 tmp[DP_LINK_STATUS_SIZE];
1095
1096 dev_dbg(tc->dev, "link enable\n");
1097
1098 ret = regmap_read(tc->regmap, DP0CTL, &value);
1099 if (ret)
1100 return ret;
1101
1102 if (WARN_ON(value & DP_EN)) {
1103 ret = regmap_write(tc->regmap, DP0CTL, 0);
1104 if (ret)
1105 return ret;
1106 }
1107
1108 ret = regmap_write(tc->regmap, DP0_SRCCTRL,
1109 tc_srcctrl(tc) |
1110 FIELD_PREP(DP0_SRCCTRL_PRE0, tc->pre_emphasis[0]) |
1111 FIELD_PREP(DP0_SRCCTRL_PRE1, tc->pre_emphasis[1]));
1112 if (ret)
1113 return ret;
1114 /* SSCG and BW27 on DP1 must be set to the same as on DP0 */
1115 ret = regmap_write(tc->regmap, DP1_SRCCTRL,
1116 (tc->link.spread ? DP0_SRCCTRL_SSCG : 0) |
1117 ((tc->link.rate != 162000) ? DP0_SRCCTRL_BW27 : 0) |
1118 FIELD_PREP(DP1_SRCCTRL_PRE, tc->pre_emphasis[1]));
1119 if (ret)
1120 return ret;
1121
1122 ret = tc_set_syspllparam(tc);
1123 if (ret)
1124 return ret;
1125
1126 /* Setup Main Link */
1127 dp_phy_ctrl = BGREN | PWR_SW_EN | PHY_A0_EN | PHY_M0_EN;
1128 if (tc->link.num_lanes == 2)
1129 dp_phy_ctrl |= PHY_2LANE;
1130
1131 ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
1132 if (ret)
1133 return ret;
1134
1135 /* PLL setup */
1136 ret = tc_pllupdate(tc, DP0_PLLCTRL);
1137 if (ret)
1138 return ret;
1139
1140 ret = tc_pllupdate(tc, DP1_PLLCTRL);
1141 if (ret)
1142 return ret;
1143
1144 /* Reset/Enable Main Links */
1145 dp_phy_ctrl |= DP_PHY_RST | PHY_M1_RST | PHY_M0_RST;
1146 ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
1147 usleep_range(100, 200);
1148 dp_phy_ctrl &= ~(DP_PHY_RST | PHY_M1_RST | PHY_M0_RST);
1149 ret = regmap_write(tc->regmap, DP_PHY_CTRL, dp_phy_ctrl);
1150
1151 ret = tc_poll_timeout(tc, DP_PHY_CTRL, PHY_RDY, PHY_RDY, 500, 100000);
1152 if (ret) {
1153 dev_err(dev, "timeout waiting for phy become ready");
1154 return ret;
1155 }
1156
1157 /* Set misc: 8 bits per color */
1158 ret = regmap_update_bits(tc->regmap, DP0_MISC, BPC_8, BPC_8);
1159 if (ret)
1160 return ret;
1161
1162 /*
1163 * ASSR mode
1164 * on TC358767 side ASSR configured through strap pin
1165 * seems there is no way to change this setting from SW
1166 *
1167 * check is tc configured for same mode
1168 */
1169 if (tc->assr != tc->link.assr) {
1170 dev_dbg(dev, "Trying to set display to ASSR: %d\n",
1171 tc->assr);
1172 /* try to set ASSR on display side */
1173 tmp[0] = tc->assr;
1174 ret = drm_dp_dpcd_writeb(aux, DP_EDP_CONFIGURATION_SET, tmp[0]);
1175 if (ret < 0)
1176 goto err_dpcd_read;
1177 /* read back */
1178 ret = drm_dp_dpcd_readb(aux, DP_EDP_CONFIGURATION_SET, tmp);
1179 if (ret < 0)
1180 goto err_dpcd_read;
1181
1182 if (tmp[0] != tc->assr) {
1183 dev_dbg(dev, "Failed to switch display ASSR to %d, falling back to unscrambled mode\n",
1184 tc->assr);
1185 /* trying with disabled scrambler */
1186 tc->link.scrambler_dis = true;
1187 }
1188 }
1189
1190 /* Setup Link & DPRx Config for Training */
1191 tmp[0] = drm_dp_link_rate_to_bw_code(tc->link.rate);
1192 tmp[1] = tc->link.num_lanes;
1193
1194 if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
1195 tmp[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1196
1197 ret = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, tmp, 2);
1198 if (ret < 0)
1199 goto err_dpcd_write;
1200
1201 /* DOWNSPREAD_CTRL */
1202 tmp[0] = tc->link.spread ? DP_SPREAD_AMP_0_5 : 0x00;
1203 /* MAIN_LINK_CHANNEL_CODING_SET */
1204 tmp[1] = DP_SET_ANSI_8B10B;
1205 ret = drm_dp_dpcd_write(aux, DP_DOWNSPREAD_CTRL, tmp, 2);
1206 if (ret < 0)
1207 goto err_dpcd_write;
1208
1209 /* Reset voltage-swing & pre-emphasis */
1210 tmp[0] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 |
1211 FIELD_PREP(DP_TRAIN_PRE_EMPHASIS_MASK, tc->pre_emphasis[0]);
1212 tmp[1] = DP_TRAIN_VOLTAGE_SWING_LEVEL_0 |
1213 FIELD_PREP(DP_TRAIN_PRE_EMPHASIS_MASK, tc->pre_emphasis[1]);
1214 ret = drm_dp_dpcd_write(aux, DP_TRAINING_LANE0_SET, tmp, 2);
1215 if (ret < 0)
1216 goto err_dpcd_write;
1217
1218 /* Clock-Recovery */
1219
1220 /* Set DPCD 0x102 for Training Pattern 1 */
1221 ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
1222 DP_LINK_SCRAMBLING_DISABLE |
1223 DP_TRAINING_PATTERN_1);
1224 if (ret)
1225 return ret;
1226
1227 ret = regmap_write(tc->regmap, DP0_LTLOOPCTRL,
1228 (15 << 28) | /* Defer Iteration Count */
1229 (15 << 24) | /* Loop Iteration Count */
1230 (0xd << 0)); /* Loop Timer Delay */
1231 if (ret)
1232 return ret;
1233
1234 ret = regmap_write(tc->regmap, DP0_SRCCTRL,
1235 tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
1236 DP0_SRCCTRL_AUTOCORRECT |
1237 DP0_SRCCTRL_TP1 |
1238 FIELD_PREP(DP0_SRCCTRL_PRE0, tc->pre_emphasis[0]) |
1239 FIELD_PREP(DP0_SRCCTRL_PRE1, tc->pre_emphasis[1]));
1240 if (ret)
1241 return ret;
1242
1243 /* Enable DP0 to start Link Training */
1244 ret = regmap_write(tc->regmap, DP0CTL,
1245 (drm_dp_enhanced_frame_cap(tc->link.dpcd) ?
1246 EF_EN : 0) | DP_EN);
1247 if (ret)
1248 return ret;
1249
1250 /* wait */
1251
1252 ret = tc_wait_link_training(tc);
1253 if (ret < 0)
1254 return ret;
1255
1256 if (ret) {
1257 dev_err(tc->dev, "Link training phase 1 failed: %s\n",
1258 training_pattern1_errors[ret]);
1259 return -ENODEV;
1260 }
1261
1262 /* Channel Equalization */
1263
1264 /* Set DPCD 0x102 for Training Pattern 2 */
1265 ret = regmap_write(tc->regmap, DP0_SNKLTCTRL,
1266 DP_LINK_SCRAMBLING_DISABLE |
1267 DP_TRAINING_PATTERN_2);
1268 if (ret)
1269 return ret;
1270
1271 ret = regmap_write(tc->regmap, DP0_SRCCTRL,
1272 tc_srcctrl(tc) | DP0_SRCCTRL_SCRMBLDIS |
1273 DP0_SRCCTRL_AUTOCORRECT |
1274 DP0_SRCCTRL_TP2 |
1275 FIELD_PREP(DP0_SRCCTRL_PRE0, tc->pre_emphasis[0]) |
1276 FIELD_PREP(DP0_SRCCTRL_PRE1, tc->pre_emphasis[1]));
1277 if (ret)
1278 return ret;
1279
1280 /* wait */
1281 ret = tc_wait_link_training(tc);
1282 if (ret < 0)
1283 return ret;
1284
1285 if (ret) {
1286 dev_err(tc->dev, "Link training phase 2 failed: %s\n",
1287 training_pattern2_errors[ret]);
1288 return -ENODEV;
1289 }
1290
1291 /*
1292 * Toshiba's documentation suggests to first clear DPCD 0x102, then
1293 * clear the training pattern bit in DP0_SRCCTRL. Testing shows
1294 * that the link sometimes drops if those steps are done in that order,
1295 * but if the steps are done in reverse order, the link stays up.
1296 *
1297 * So we do the steps differently than documented here.
1298 */
1299
1300 /* Clear Training Pattern, set AutoCorrect Mode = 1 */
1301 ret = regmap_write(tc->regmap, DP0_SRCCTRL, tc_srcctrl(tc) |
1302 DP0_SRCCTRL_AUTOCORRECT |
1303 FIELD_PREP(DP0_SRCCTRL_PRE0, tc->pre_emphasis[0]) |
1304 FIELD_PREP(DP0_SRCCTRL_PRE1, tc->pre_emphasis[1]));
1305 if (ret)
1306 return ret;
1307
1308 /* Clear DPCD 0x102 */
1309 /* Note: Can Not use DP0_SNKLTCTRL (0x06E4) short cut */
1310 tmp[0] = tc->link.scrambler_dis ? DP_LINK_SCRAMBLING_DISABLE : 0x00;
1311 ret = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET, tmp[0]);
1312 if (ret < 0)
1313 goto err_dpcd_write;
1314
1315 /* Check link status */
1316 ret = drm_dp_dpcd_read_link_status(aux, tmp);
1317 if (ret < 0)
1318 goto err_dpcd_read;
1319
1320 ret = 0;
1321
1322 value = tmp[0] & DP_CHANNEL_EQ_BITS;
1323
1324 if (value != DP_CHANNEL_EQ_BITS) {
1325 dev_err(tc->dev, "Lane 0 failed: %x\n", value);
1326 ret = -ENODEV;
1327 }
1328
1329 if (tc->link.num_lanes == 2) {
1330 value = (tmp[0] >> 4) & DP_CHANNEL_EQ_BITS;
1331
1332 if (value != DP_CHANNEL_EQ_BITS) {
1333 dev_err(tc->dev, "Lane 1 failed: %x\n", value);
1334 ret = -ENODEV;
1335 }
1336
1337 if (!(tmp[2] & DP_INTERLANE_ALIGN_DONE)) {
1338 dev_err(tc->dev, "Interlane align failed\n");
1339 ret = -ENODEV;
1340 }
1341 }
1342
1343 if (ret) {
1344 dev_err(dev, "0x0202 LANE0_1_STATUS: 0x%02x\n", tmp[0]);
1345 dev_err(dev, "0x0203 LANE2_3_STATUS 0x%02x\n", tmp[1]);
1346 dev_err(dev, "0x0204 LANE_ALIGN_STATUS_UPDATED: 0x%02x\n", tmp[2]);
1347 dev_err(dev, "0x0205 SINK_STATUS: 0x%02x\n", tmp[3]);
1348 dev_err(dev, "0x0206 ADJUST_REQUEST_LANE0_1: 0x%02x\n", tmp[4]);
1349 dev_err(dev, "0x0207 ADJUST_REQUEST_LANE2_3: 0x%02x\n", tmp[5]);
1350 return ret;
1351 }
1352
1353 return 0;
1354 err_dpcd_read:
1355 dev_err(tc->dev, "Failed to read DPCD: %d\n", ret);
1356 return ret;
1357 err_dpcd_write:
1358 dev_err(tc->dev, "Failed to write DPCD: %d\n", ret);
1359 return ret;
1360 }
1361
tc_main_link_disable(struct tc_data * tc)1362 static int tc_main_link_disable(struct tc_data *tc)
1363 {
1364 int ret;
1365
1366 dev_dbg(tc->dev, "link disable\n");
1367
1368 ret = regmap_write(tc->regmap, DP0_SRCCTRL, 0);
1369 if (ret)
1370 return ret;
1371
1372 ret = regmap_write(tc->regmap, DP0CTL, 0);
1373 if (ret)
1374 return ret;
1375
1376 return regmap_update_bits(tc->regmap, DP_PHY_CTRL,
1377 PHY_M0_RST | PHY_M1_RST | PHY_M0_EN,
1378 PHY_M0_RST | PHY_M1_RST);
1379 }
1380
tc_dsi_rx_enable(struct tc_data * tc)1381 static int tc_dsi_rx_enable(struct tc_data *tc)
1382 {
1383 u32 value;
1384 int ret;
1385
1386 regmap_write(tc->regmap, PPI_D0S_CLRSIPOCOUNT, 5);
1387 regmap_write(tc->regmap, PPI_D1S_CLRSIPOCOUNT, 5);
1388 regmap_write(tc->regmap, PPI_D2S_CLRSIPOCOUNT, 5);
1389 regmap_write(tc->regmap, PPI_D3S_CLRSIPOCOUNT, 5);
1390 regmap_write(tc->regmap, PPI_D0S_ATMR, 0);
1391 regmap_write(tc->regmap, PPI_D1S_ATMR, 0);
1392 regmap_write(tc->regmap, PPI_TX_RX_TA, TTA_GET | TTA_SURE);
1393 regmap_write(tc->regmap, PPI_LPTXTIMECNT, LPX_PERIOD);
1394
1395 value = ((LANEENABLE_L0EN << tc->dsi->lanes) - LANEENABLE_L0EN) |
1396 LANEENABLE_CLEN;
1397 regmap_write(tc->regmap, PPI_LANEENABLE, value);
1398 regmap_write(tc->regmap, DSI_LANEENABLE, value);
1399
1400 /* Set input interface */
1401 value = DP0_AUDSRC_NO_INPUT;
1402 if (tc_test_pattern)
1403 value |= DP0_VIDSRC_COLOR_BAR;
1404 else
1405 value |= DP0_VIDSRC_DSI_RX;
1406 ret = regmap_write(tc->regmap, SYSCTRL, value);
1407 if (ret)
1408 return ret;
1409
1410 usleep_range(120, 150);
1411
1412 regmap_write(tc->regmap, PPI_STARTPPI, PPI_START_FUNCTION);
1413 regmap_write(tc->regmap, DSI_STARTDSI, DSI_RX_START);
1414
1415 return 0;
1416 }
1417
tc_dpi_rx_enable(struct tc_data * tc)1418 static int tc_dpi_rx_enable(struct tc_data *tc)
1419 {
1420 u32 value;
1421
1422 /* Set input interface */
1423 value = DP0_AUDSRC_NO_INPUT;
1424 if (tc_test_pattern)
1425 value |= DP0_VIDSRC_COLOR_BAR;
1426 else
1427 value |= DP0_VIDSRC_DPI_RX;
1428 return regmap_write(tc->regmap, SYSCTRL, value);
1429 }
1430
tc_dpi_stream_enable(struct tc_data * tc)1431 static int tc_dpi_stream_enable(struct tc_data *tc)
1432 {
1433 int ret;
1434
1435 dev_dbg(tc->dev, "enable video stream\n");
1436
1437 /* Setup PLL */
1438 ret = tc_set_syspllparam(tc);
1439 if (ret)
1440 return ret;
1441
1442 /*
1443 * Initially PLLs are in bypass. Force PLL parameter update,
1444 * disable PLL bypass, enable PLL
1445 */
1446 ret = tc_pllupdate(tc, DP0_PLLCTRL);
1447 if (ret)
1448 return ret;
1449
1450 ret = tc_pllupdate(tc, DP1_PLLCTRL);
1451 if (ret)
1452 return ret;
1453
1454 /* Pixel PLL must always be enabled for DPI mode */
1455 ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1456 1000 * tc->mode.clock);
1457 if (ret)
1458 return ret;
1459
1460 ret = tc_set_common_video_mode(tc, &tc->mode);
1461 if (ret)
1462 return ret;
1463
1464 ret = tc_set_dpi_video_mode(tc, &tc->mode);
1465 if (ret)
1466 return ret;
1467
1468 return tc_dsi_rx_enable(tc);
1469 }
1470
tc_dpi_stream_disable(struct tc_data * tc)1471 static int tc_dpi_stream_disable(struct tc_data *tc)
1472 {
1473 dev_dbg(tc->dev, "disable video stream\n");
1474
1475 tc_pxl_pll_dis(tc);
1476
1477 return 0;
1478 }
1479
tc_edp_stream_enable(struct tc_data * tc)1480 static int tc_edp_stream_enable(struct tc_data *tc)
1481 {
1482 int ret;
1483 u32 value;
1484
1485 dev_dbg(tc->dev, "enable video stream\n");
1486
1487 /*
1488 * Pixel PLL must be enabled for DSI input mode and test pattern.
1489 *
1490 * Per TC9595XBG datasheet Revision 0.1 2018-12-27 Figure 4.18
1491 * "Clock Mode Selection and Clock Sources", either Pixel PLL
1492 * or DPI_PCLK supplies StrmClk. DPI_PCLK is only available in
1493 * case valid Pixel Clock are supplied to the chip DPI input.
1494 * In case built-in test pattern is desired OR DSI input mode
1495 * is used, DPI_PCLK is not available and thus Pixel PLL must
1496 * be used instead.
1497 */
1498 if (tc->input_connector_dsi || tc_test_pattern) {
1499 ret = tc_pxl_pll_en(tc, clk_get_rate(tc->refclk),
1500 1000 * tc->mode.clock);
1501 if (ret)
1502 return ret;
1503 }
1504
1505 ret = tc_set_common_video_mode(tc, &tc->mode);
1506 if (ret)
1507 return ret;
1508
1509 ret = tc_set_edp_video_mode(tc, &tc->mode);
1510 if (ret)
1511 return ret;
1512
1513 /* Set M/N */
1514 ret = tc_stream_clock_calc(tc);
1515 if (ret)
1516 return ret;
1517
1518 value = VID_MN_GEN | DP_EN;
1519 if (drm_dp_enhanced_frame_cap(tc->link.dpcd))
1520 value |= EF_EN;
1521 ret = regmap_write(tc->regmap, DP0CTL, value);
1522 if (ret)
1523 return ret;
1524 /*
1525 * VID_EN assertion should be delayed by at least N * LSCLK
1526 * cycles from the time VID_MN_GEN is enabled in order to
1527 * generate stable values for VID_M. LSCLK is 270 MHz or
1528 * 162 MHz, VID_N is set to 32768 in tc_stream_clock_calc(),
1529 * so a delay of at least 203 us should suffice.
1530 */
1531 usleep_range(500, 1000);
1532 value |= VID_EN;
1533 ret = regmap_write(tc->regmap, DP0CTL, value);
1534 if (ret)
1535 return ret;
1536
1537 /* Set input interface */
1538 if (tc->input_connector_dsi)
1539 return tc_dsi_rx_enable(tc);
1540 else
1541 return tc_dpi_rx_enable(tc);
1542 }
1543
tc_edp_stream_disable(struct tc_data * tc)1544 static int tc_edp_stream_disable(struct tc_data *tc)
1545 {
1546 int ret;
1547
1548 dev_dbg(tc->dev, "disable video stream\n");
1549
1550 ret = regmap_update_bits(tc->regmap, DP0CTL, VID_EN, 0);
1551 if (ret)
1552 return ret;
1553
1554 tc_pxl_pll_dis(tc);
1555
1556 return 0;
1557 }
1558
tc_dpi_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1559 static void tc_dpi_bridge_atomic_enable(struct drm_bridge *bridge,
1560 struct drm_atomic_state *state)
1561
1562 {
1563 struct tc_data *tc = bridge_to_tc(bridge);
1564 int ret;
1565
1566 ret = tc_dpi_stream_enable(tc);
1567 if (ret < 0) {
1568 dev_err(tc->dev, "main link stream start error: %d\n", ret);
1569 tc_main_link_disable(tc);
1570 return;
1571 }
1572 }
1573
tc_dpi_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)1574 static void tc_dpi_bridge_atomic_disable(struct drm_bridge *bridge,
1575 struct drm_atomic_state *state)
1576 {
1577 struct tc_data *tc = bridge_to_tc(bridge);
1578 int ret;
1579
1580 ret = tc_dpi_stream_disable(tc);
1581 if (ret < 0)
1582 dev_err(tc->dev, "main link stream stop error: %d\n", ret);
1583 }
1584
tc_edp_bridge_atomic_enable(struct drm_bridge * bridge,struct drm_atomic_state * state)1585 static void tc_edp_bridge_atomic_enable(struct drm_bridge *bridge,
1586 struct drm_atomic_state *state)
1587 {
1588 struct tc_data *tc = bridge_to_tc(bridge);
1589 int ret;
1590
1591 ret = tc_get_display_props(tc);
1592 if (ret < 0) {
1593 dev_err(tc->dev, "failed to read display props: %d\n", ret);
1594 return;
1595 }
1596
1597 ret = tc_main_link_enable(tc);
1598 if (ret < 0) {
1599 dev_err(tc->dev, "main link enable error: %d\n", ret);
1600 return;
1601 }
1602
1603 ret = tc_edp_stream_enable(tc);
1604 if (ret < 0) {
1605 dev_err(tc->dev, "main link stream start error: %d\n", ret);
1606 tc_main_link_disable(tc);
1607 return;
1608 }
1609 }
1610
tc_edp_bridge_atomic_disable(struct drm_bridge * bridge,struct drm_atomic_state * state)1611 static void tc_edp_bridge_atomic_disable(struct drm_bridge *bridge,
1612 struct drm_atomic_state *state)
1613 {
1614 struct tc_data *tc = bridge_to_tc(bridge);
1615 int ret;
1616
1617 ret = tc_edp_stream_disable(tc);
1618 if (ret < 0)
1619 dev_err(tc->dev, "main link stream stop error: %d\n", ret);
1620
1621 ret = tc_main_link_disable(tc);
1622 if (ret < 0)
1623 dev_err(tc->dev, "main link disable error: %d\n", ret);
1624 }
1625
tc_dpi_atomic_check(struct drm_bridge * bridge,struct drm_bridge_state * bridge_state,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1626 static int tc_dpi_atomic_check(struct drm_bridge *bridge,
1627 struct drm_bridge_state *bridge_state,
1628 struct drm_crtc_state *crtc_state,
1629 struct drm_connector_state *conn_state)
1630 {
1631 struct tc_data *tc = bridge_to_tc(bridge);
1632 int adjusted_clock = 0;
1633 int ret;
1634
1635 ret = tc_pxl_pll_calc(tc, clk_get_rate(tc->refclk),
1636 crtc_state->mode.clock * 1000,
1637 &adjusted_clock, NULL);
1638 if (ret)
1639 return ret;
1640
1641 crtc_state->adjusted_mode.clock = adjusted_clock / 1000;
1642
1643 /* DSI->DPI interface clock limitation: upto 100 MHz */
1644 if (crtc_state->adjusted_mode.clock > 100000)
1645 return -EINVAL;
1646
1647 return 0;
1648 }
1649
tc_edp_atomic_check(struct drm_bridge * bridge,struct drm_bridge_state * bridge_state,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1650 static int tc_edp_atomic_check(struct drm_bridge *bridge,
1651 struct drm_bridge_state *bridge_state,
1652 struct drm_crtc_state *crtc_state,
1653 struct drm_connector_state *conn_state)
1654 {
1655 struct tc_data *tc = bridge_to_tc(bridge);
1656 int adjusted_clock = 0;
1657 int ret;
1658
1659 ret = tc_pxl_pll_calc(tc, clk_get_rate(tc->refclk),
1660 crtc_state->mode.clock * 1000,
1661 &adjusted_clock, NULL);
1662 if (ret)
1663 return ret;
1664
1665 crtc_state->adjusted_mode.clock = adjusted_clock / 1000;
1666
1667 /* DPI->(e)DP interface clock limitation: upto 154 MHz */
1668 if (crtc_state->adjusted_mode.clock > 154000)
1669 return -EINVAL;
1670
1671 return 0;
1672 }
1673
1674 static enum drm_mode_status
tc_dpi_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1675 tc_dpi_mode_valid(struct drm_bridge *bridge,
1676 const struct drm_display_info *info,
1677 const struct drm_display_mode *mode)
1678 {
1679 /* DPI interface clock limitation: upto 100 MHz */
1680 if (mode->clock > 100000)
1681 return MODE_CLOCK_HIGH;
1682
1683 return MODE_OK;
1684 }
1685
1686 static enum drm_mode_status
tc_edp_mode_valid(struct drm_bridge * bridge,const struct drm_display_info * info,const struct drm_display_mode * mode)1687 tc_edp_mode_valid(struct drm_bridge *bridge,
1688 const struct drm_display_info *info,
1689 const struct drm_display_mode *mode)
1690 {
1691 struct tc_data *tc = bridge_to_tc(bridge);
1692 u32 req, avail;
1693 u32 bits_per_pixel = 24;
1694
1695 /* DPI->(e)DP interface clock limitation: up to 154 MHz */
1696 if (mode->clock > 154000)
1697 return MODE_CLOCK_HIGH;
1698
1699 req = mode->clock * bits_per_pixel / 8;
1700 avail = tc->link.num_lanes * tc->link.rate;
1701
1702 if (req > avail)
1703 return MODE_BAD;
1704
1705 return MODE_OK;
1706 }
1707
tc_bridge_mode_set(struct drm_bridge * bridge,const struct drm_display_mode * mode,const struct drm_display_mode * adj)1708 static void tc_bridge_mode_set(struct drm_bridge *bridge,
1709 const struct drm_display_mode *mode,
1710 const struct drm_display_mode *adj)
1711 {
1712 struct tc_data *tc = bridge_to_tc(bridge);
1713
1714 drm_mode_copy(&tc->mode, adj);
1715 }
1716
tc_edid_read(struct drm_bridge * bridge,struct drm_connector * connector)1717 static const struct drm_edid *tc_edid_read(struct drm_bridge *bridge,
1718 struct drm_connector *connector)
1719 {
1720 struct tc_data *tc = bridge_to_tc(bridge);
1721 int ret;
1722
1723 ret = tc_get_display_props(tc);
1724 if (ret < 0) {
1725 dev_err(tc->dev, "failed to read display props: %d\n", ret);
1726 return 0;
1727 }
1728
1729 return drm_edid_read_ddc(connector, &tc->aux.ddc);
1730 }
1731
tc_connector_get_modes(struct drm_connector * connector)1732 static int tc_connector_get_modes(struct drm_connector *connector)
1733 {
1734 struct tc_data *tc = connector_to_tc(connector);
1735 int num_modes;
1736 const struct drm_edid *drm_edid;
1737 int ret;
1738
1739 ret = tc_get_display_props(tc);
1740 if (ret < 0) {
1741 dev_err(tc->dev, "failed to read display props: %d\n", ret);
1742 return 0;
1743 }
1744
1745 if (tc->panel_bridge) {
1746 num_modes = drm_bridge_get_modes(tc->panel_bridge, connector);
1747 if (num_modes > 0)
1748 return num_modes;
1749 }
1750
1751 drm_edid = tc_edid_read(&tc->bridge, connector);
1752 drm_edid_connector_update(connector, drm_edid);
1753 num_modes = drm_edid_connector_add_modes(connector);
1754 drm_edid_free(drm_edid);
1755
1756 return num_modes;
1757 }
1758
1759 static const struct drm_connector_helper_funcs tc_connector_helper_funcs = {
1760 .get_modes = tc_connector_get_modes,
1761 };
1762
1763 static enum drm_connector_status
tc_bridge_detect(struct drm_bridge * bridge,struct drm_connector * connector)1764 tc_bridge_detect(struct drm_bridge *bridge, struct drm_connector *connector)
1765 {
1766 struct tc_data *tc = bridge_to_tc(bridge);
1767 bool conn;
1768 u32 val;
1769 int ret;
1770
1771 ret = regmap_read(tc->regmap, GPIOI, &val);
1772 if (ret)
1773 return connector_status_unknown;
1774
1775 conn = val & BIT(tc->hpd_pin);
1776
1777 if (conn)
1778 return connector_status_connected;
1779 else
1780 return connector_status_disconnected;
1781 }
1782
1783 static enum drm_connector_status
tc_connector_detect(struct drm_connector * connector,bool force)1784 tc_connector_detect(struct drm_connector *connector, bool force)
1785 {
1786 struct tc_data *tc = connector_to_tc(connector);
1787
1788 if (tc->hpd_pin >= 0)
1789 return tc_bridge_detect(&tc->bridge, connector);
1790
1791 if (tc->panel_bridge)
1792 return connector_status_connected;
1793 else
1794 return connector_status_unknown;
1795 }
1796
1797 static const struct drm_connector_funcs tc_connector_funcs = {
1798 .detect = tc_connector_detect,
1799 .fill_modes = drm_helper_probe_single_connector_modes,
1800 .destroy = drm_connector_cleanup,
1801 .reset = drm_atomic_helper_connector_reset,
1802 .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
1803 .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
1804 };
1805
tc_dpi_bridge_attach(struct drm_bridge * bridge,struct drm_encoder * encoder,enum drm_bridge_attach_flags flags)1806 static int tc_dpi_bridge_attach(struct drm_bridge *bridge,
1807 struct drm_encoder *encoder,
1808 enum drm_bridge_attach_flags flags)
1809 {
1810 struct tc_data *tc = bridge_to_tc(bridge);
1811
1812 if (!tc->panel_bridge)
1813 return 0;
1814
1815 return drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge,
1816 &tc->bridge, flags);
1817 }
1818
tc_edp_bridge_attach(struct drm_bridge * bridge,struct drm_encoder * encoder,enum drm_bridge_attach_flags flags)1819 static int tc_edp_bridge_attach(struct drm_bridge *bridge,
1820 struct drm_encoder *encoder,
1821 enum drm_bridge_attach_flags flags)
1822 {
1823 u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24;
1824 struct tc_data *tc = bridge_to_tc(bridge);
1825 struct drm_device *drm = bridge->dev;
1826 int ret;
1827
1828 if (tc->panel_bridge) {
1829 /* If a connector is required then this driver shall create it */
1830 ret = drm_bridge_attach(tc->bridge.encoder, tc->panel_bridge,
1831 &tc->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
1832 if (ret)
1833 return ret;
1834 }
1835
1836 if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
1837 return 0;
1838
1839 tc->aux.drm_dev = drm;
1840 ret = drm_dp_aux_register(&tc->aux);
1841 if (ret < 0)
1842 return ret;
1843
1844 /* Create DP/eDP connector */
1845 drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs);
1846 ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs, tc->bridge.type);
1847 if (ret)
1848 goto aux_unregister;
1849
1850 /* Don't poll if don't have HPD connected */
1851 if (tc->hpd_pin >= 0) {
1852 if (tc->have_irq)
1853 tc->connector.polled = DRM_CONNECTOR_POLL_HPD;
1854 else
1855 tc->connector.polled = DRM_CONNECTOR_POLL_CONNECT |
1856 DRM_CONNECTOR_POLL_DISCONNECT;
1857 }
1858
1859 drm_display_info_set_bus_formats(&tc->connector.display_info,
1860 &bus_format, 1);
1861 tc->connector.display_info.bus_flags =
1862 DRM_BUS_FLAG_DE_HIGH |
1863 DRM_BUS_FLAG_PIXDATA_DRIVE_NEGEDGE |
1864 DRM_BUS_FLAG_SYNC_DRIVE_NEGEDGE;
1865 drm_connector_attach_encoder(&tc->connector, tc->bridge.encoder);
1866
1867 return 0;
1868 aux_unregister:
1869 drm_dp_aux_unregister(&tc->aux);
1870 return ret;
1871 }
1872
tc_edp_bridge_detach(struct drm_bridge * bridge)1873 static void tc_edp_bridge_detach(struct drm_bridge *bridge)
1874 {
1875 drm_dp_aux_unregister(&bridge_to_tc(bridge)->aux);
1876 }
1877
1878 #define MAX_INPUT_SEL_FORMATS 1
1879 #define MAX_OUTPUT_SEL_FORMATS 1
1880
1881 static u32 *
tc_dpi_atomic_get_input_bus_fmts(struct drm_bridge * bridge,struct drm_bridge_state * bridge_state,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,u32 output_fmt,unsigned int * num_input_fmts)1882 tc_dpi_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
1883 struct drm_bridge_state *bridge_state,
1884 struct drm_crtc_state *crtc_state,
1885 struct drm_connector_state *conn_state,
1886 u32 output_fmt,
1887 unsigned int *num_input_fmts)
1888 {
1889 u32 *input_fmts;
1890
1891 *num_input_fmts = 0;
1892
1893 input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
1894 GFP_KERNEL);
1895 if (!input_fmts)
1896 return NULL;
1897
1898 /* This is the DSI-end bus format */
1899 input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
1900 *num_input_fmts = 1;
1901
1902 return input_fmts;
1903 }
1904
1905 static u32 *
tc_edp_atomic_get_output_bus_fmts(struct drm_bridge * bridge,struct drm_bridge_state * bridge_state,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,unsigned int * num_output_fmts)1906 tc_edp_atomic_get_output_bus_fmts(struct drm_bridge *bridge,
1907 struct drm_bridge_state *bridge_state,
1908 struct drm_crtc_state *crtc_state,
1909 struct drm_connector_state *conn_state,
1910 unsigned int *num_output_fmts)
1911 {
1912 u32 *output_fmts;
1913
1914 *num_output_fmts = 0;
1915
1916 output_fmts = kcalloc(MAX_OUTPUT_SEL_FORMATS, sizeof(*output_fmts),
1917 GFP_KERNEL);
1918 if (!output_fmts)
1919 return NULL;
1920
1921 output_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
1922 *num_output_fmts = 1;
1923
1924 return output_fmts;
1925 }
1926
1927 static const struct drm_bridge_funcs tc_dpi_bridge_funcs = {
1928 .attach = tc_dpi_bridge_attach,
1929 .mode_valid = tc_dpi_mode_valid,
1930 .mode_set = tc_bridge_mode_set,
1931 .atomic_check = tc_dpi_atomic_check,
1932 .atomic_enable = tc_dpi_bridge_atomic_enable,
1933 .atomic_disable = tc_dpi_bridge_atomic_disable,
1934 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1935 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1936 .atomic_reset = drm_atomic_helper_bridge_reset,
1937 .atomic_get_input_bus_fmts = tc_dpi_atomic_get_input_bus_fmts,
1938 };
1939
1940 static const struct drm_bridge_funcs tc_edp_bridge_funcs = {
1941 .attach = tc_edp_bridge_attach,
1942 .detach = tc_edp_bridge_detach,
1943 .mode_valid = tc_edp_mode_valid,
1944 .mode_set = tc_bridge_mode_set,
1945 .atomic_check = tc_edp_atomic_check,
1946 .atomic_enable = tc_edp_bridge_atomic_enable,
1947 .atomic_disable = tc_edp_bridge_atomic_disable,
1948 .detect = tc_bridge_detect,
1949 .edid_read = tc_edid_read,
1950 .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1951 .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1952 .atomic_reset = drm_atomic_helper_bridge_reset,
1953 .atomic_get_input_bus_fmts = drm_atomic_helper_bridge_propagate_bus_fmt,
1954 .atomic_get_output_bus_fmts = tc_edp_atomic_get_output_bus_fmts,
1955 };
1956
tc_readable_reg(struct device * dev,unsigned int reg)1957 static bool tc_readable_reg(struct device *dev, unsigned int reg)
1958 {
1959 switch (reg) {
1960 /* DSI D-PHY Layer */
1961 case 0x004:
1962 case 0x020:
1963 case 0x024:
1964 case 0x028:
1965 case 0x02c:
1966 case 0x030:
1967 case 0x038:
1968 case 0x040:
1969 case 0x044:
1970 case 0x048:
1971 case 0x04c:
1972 case 0x050:
1973 case 0x054:
1974 /* DSI PPI Layer */
1975 case PPI_STARTPPI:
1976 case 0x108:
1977 case 0x110:
1978 case PPI_LPTXTIMECNT:
1979 case PPI_LANEENABLE:
1980 case PPI_TX_RX_TA:
1981 case 0x140:
1982 case PPI_D0S_ATMR:
1983 case PPI_D1S_ATMR:
1984 case 0x14c:
1985 case 0x150:
1986 case PPI_D0S_CLRSIPOCOUNT:
1987 case PPI_D1S_CLRSIPOCOUNT:
1988 case PPI_D2S_CLRSIPOCOUNT:
1989 case PPI_D3S_CLRSIPOCOUNT:
1990 case 0x180:
1991 case 0x184:
1992 case 0x188:
1993 case 0x18c:
1994 case 0x190:
1995 case 0x1a0:
1996 case 0x1a4:
1997 case 0x1a8:
1998 case 0x1ac:
1999 case 0x1b0:
2000 case 0x1c0:
2001 case 0x1c4:
2002 case 0x1c8:
2003 case 0x1cc:
2004 case 0x1d0:
2005 case 0x1e0:
2006 case 0x1e4:
2007 case 0x1f0:
2008 case 0x1f4:
2009 /* DSI Protocol Layer */
2010 case DSI_STARTDSI:
2011 case DSI_BUSYDSI:
2012 case DSI_LANEENABLE:
2013 case DSI_LANESTATUS0:
2014 case DSI_LANESTATUS1:
2015 case DSI_INTSTATUS:
2016 case 0x224:
2017 case 0x228:
2018 case 0x230:
2019 /* DSI General */
2020 case DSIERRCNT:
2021 /* DSI Application Layer */
2022 case 0x400:
2023 case 0x404:
2024 /* DPI */
2025 case DPIPXLFMT:
2026 /* Parallel Output */
2027 case POCTRL:
2028 /* Video Path0 Configuration */
2029 case VPCTRL0:
2030 case HTIM01:
2031 case HTIM02:
2032 case VTIM01:
2033 case VTIM02:
2034 case VFUEN0:
2035 /* System */
2036 case TC_IDREG:
2037 case 0x504:
2038 case SYSSTAT:
2039 case SYSRSTENB:
2040 case SYSCTRL:
2041 /* I2C */
2042 case 0x520:
2043 /* GPIO */
2044 case GPIOM:
2045 case GPIOC:
2046 case GPIOO:
2047 case GPIOI:
2048 /* Interrupt */
2049 case INTCTL_G:
2050 case INTSTS_G:
2051 case 0x570:
2052 case 0x574:
2053 case INT_GP0_LCNT:
2054 case INT_GP1_LCNT:
2055 /* DisplayPort Control */
2056 case DP0CTL:
2057 /* DisplayPort Clock */
2058 case DP0_VIDMNGEN0:
2059 case DP0_VIDMNGEN1:
2060 case DP0_VMNGENSTATUS:
2061 case 0x628:
2062 case 0x62c:
2063 case 0x630:
2064 /* DisplayPort Main Channel */
2065 case DP0_SECSAMPLE:
2066 case DP0_VIDSYNCDELAY:
2067 case DP0_TOTALVAL:
2068 case DP0_STARTVAL:
2069 case DP0_ACTIVEVAL:
2070 case DP0_SYNCVAL:
2071 case DP0_MISC:
2072 /* DisplayPort Aux Channel */
2073 case DP0_AUXCFG0:
2074 case DP0_AUXCFG1:
2075 case DP0_AUXADDR:
2076 case 0x66c:
2077 case 0x670:
2078 case 0x674:
2079 case 0x678:
2080 case 0x67c:
2081 case 0x680:
2082 case 0x684:
2083 case 0x688:
2084 case DP0_AUXSTATUS:
2085 case DP0_AUXI2CADR:
2086 /* DisplayPort Link Training */
2087 case DP0_SRCCTRL:
2088 case DP0_LTSTAT:
2089 case DP0_SNKLTCHGREQ:
2090 case DP0_LTLOOPCTRL:
2091 case DP0_SNKLTCTRL:
2092 case 0x6e8:
2093 case 0x6ec:
2094 case 0x6f0:
2095 case 0x6f4:
2096 /* DisplayPort Audio */
2097 case 0x700:
2098 case 0x704:
2099 case 0x708:
2100 case 0x70c:
2101 case 0x710:
2102 case 0x714:
2103 case 0x718:
2104 case 0x71c:
2105 case 0x720:
2106 /* DisplayPort Source Control */
2107 case DP1_SRCCTRL:
2108 /* DisplayPort PHY */
2109 case DP_PHY_CTRL:
2110 case 0x810:
2111 case 0x814:
2112 case 0x820:
2113 case 0x840:
2114 /* I2S */
2115 case 0x880:
2116 case 0x888:
2117 case 0x88c:
2118 case 0x890:
2119 case 0x894:
2120 case 0x898:
2121 case 0x89c:
2122 case 0x8a0:
2123 case 0x8a4:
2124 case 0x8a8:
2125 case 0x8ac:
2126 case 0x8b0:
2127 case 0x8b4:
2128 /* PLL */
2129 case DP0_PLLCTRL:
2130 case DP1_PLLCTRL:
2131 case PXL_PLLCTRL:
2132 case PXL_PLLPARAM:
2133 case SYS_PLLPARAM:
2134 /* HDCP */
2135 case 0x980:
2136 case 0x984:
2137 case 0x988:
2138 case 0x98c:
2139 case 0x990:
2140 case 0x994:
2141 case 0x998:
2142 case 0x99c:
2143 case 0x9a0:
2144 case 0x9a4:
2145 case 0x9a8:
2146 case 0x9ac:
2147 /* Debug */
2148 case TSTCTL:
2149 case PLL_DBG:
2150 return true;
2151 }
2152 return false;
2153 }
2154
2155 static const struct regmap_range tc_volatile_ranges[] = {
2156 regmap_reg_range(PPI_BUSYPPI, PPI_BUSYPPI),
2157 regmap_reg_range(DSI_BUSYDSI, DSI_BUSYDSI),
2158 regmap_reg_range(DSI_LANESTATUS0, DSI_INTSTATUS),
2159 regmap_reg_range(DSIERRCNT, DSIERRCNT),
2160 regmap_reg_range(VFUEN0, VFUEN0),
2161 regmap_reg_range(SYSSTAT, SYSSTAT),
2162 regmap_reg_range(GPIOI, GPIOI),
2163 regmap_reg_range(INTSTS_G, INTSTS_G),
2164 regmap_reg_range(DP0_VMNGENSTATUS, DP0_VMNGENSTATUS),
2165 regmap_reg_range(DP0_AMNGENSTATUS, DP0_AMNGENSTATUS),
2166 regmap_reg_range(DP0_AUXWDATA(0), DP0_AUXSTATUS),
2167 regmap_reg_range(DP0_LTSTAT, DP0_SNKLTCHGREQ),
2168 regmap_reg_range(DP_PHY_CTRL, DP_PHY_CTRL),
2169 regmap_reg_range(DP0_PLLCTRL, PXL_PLLCTRL),
2170 };
2171
2172 static const struct regmap_access_table tc_volatile_table = {
2173 .yes_ranges = tc_volatile_ranges,
2174 .n_yes_ranges = ARRAY_SIZE(tc_volatile_ranges),
2175 };
2176
2177 static const struct regmap_range tc_precious_ranges[] = {
2178 regmap_reg_range(SYSSTAT, SYSSTAT),
2179 };
2180
2181 static const struct regmap_access_table tc_precious_table = {
2182 .yes_ranges = tc_precious_ranges,
2183 .n_yes_ranges = ARRAY_SIZE(tc_precious_ranges),
2184 };
2185
tc_writeable_reg(struct device * dev,unsigned int reg)2186 static bool tc_writeable_reg(struct device *dev, unsigned int reg)
2187 {
2188 /* RO reg */
2189 switch (reg) {
2190 case PPI_BUSYPPI:
2191 case DSI_BUSYDSI:
2192 case DSI_LANESTATUS0:
2193 case DSI_LANESTATUS1:
2194 case DSI_INTSTATUS:
2195 case TC_IDREG:
2196 case SYSBOOT:
2197 case SYSSTAT:
2198 case GPIOI:
2199 case DP0_LTSTAT:
2200 case DP0_SNKLTCHGREQ:
2201 return false;
2202 }
2203 /* WO reg */
2204 switch (reg) {
2205 case DSI_STARTDSI:
2206 case DSI_INTCLR:
2207 return true;
2208 }
2209 return tc_readable_reg(dev, reg);
2210 }
2211
2212 static const struct regmap_config tc_regmap_config = {
2213 .name = "tc358767",
2214 .reg_bits = 16,
2215 .val_bits = 32,
2216 .reg_stride = 4,
2217 .max_register = PLL_DBG,
2218 .cache_type = REGCACHE_MAPLE,
2219 .readable_reg = tc_readable_reg,
2220 .writeable_reg = tc_writeable_reg,
2221 .volatile_table = &tc_volatile_table,
2222 .precious_table = &tc_precious_table,
2223 .reg_format_endian = REGMAP_ENDIAN_BIG,
2224 .val_format_endian = REGMAP_ENDIAN_LITTLE,
2225 };
2226
tc_irq_handler(int irq,void * arg)2227 static irqreturn_t tc_irq_handler(int irq, void *arg)
2228 {
2229 struct tc_data *tc = arg;
2230 u32 val;
2231 int r;
2232
2233 r = regmap_read(tc->regmap, INTSTS_G, &val);
2234 if (r)
2235 return IRQ_NONE;
2236
2237 if (!val)
2238 return IRQ_NONE;
2239
2240 if (val & INT_SYSERR) {
2241 u32 stat = 0;
2242
2243 regmap_read(tc->regmap, SYSSTAT, &stat);
2244
2245 dev_err(tc->dev, "syserr %x\n", stat);
2246 }
2247
2248 if (tc->hpd_pin >= 0 && tc->bridge.dev && tc->aux.drm_dev) {
2249 /*
2250 * H is triggered when the GPIO goes high.
2251 *
2252 * LC is triggered when the GPIO goes low and stays low for
2253 * the duration of LCNT
2254 */
2255 bool h = val & INT_GPIO_H(tc->hpd_pin);
2256 bool lc = val & INT_GPIO_LC(tc->hpd_pin);
2257
2258 if (h || lc) {
2259 dev_dbg(tc->dev, "GPIO%d: %s %s\n", tc->hpd_pin,
2260 h ? "H" : "", lc ? "LC" : "");
2261 drm_kms_helper_hotplug_event(tc->bridge.dev);
2262 }
2263 }
2264
2265 regmap_write(tc->regmap, INTSTS_G, val);
2266
2267 return IRQ_HANDLED;
2268 }
2269
tc_mipi_dsi_host_attach(struct tc_data * tc)2270 static int tc_mipi_dsi_host_attach(struct tc_data *tc)
2271 {
2272 struct device *dev = tc->dev;
2273 struct device_node *host_node;
2274 struct device_node *endpoint;
2275 struct mipi_dsi_device *dsi;
2276 struct mipi_dsi_host *host;
2277 const struct mipi_dsi_device_info info = {
2278 .type = "tc358767",
2279 .channel = 0,
2280 .node = NULL,
2281 };
2282 int dsi_lanes, ret;
2283
2284 endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
2285 dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
2286 host_node = of_graph_get_remote_port_parent(endpoint);
2287 host = of_find_mipi_dsi_host_by_node(host_node);
2288 of_node_put(host_node);
2289 of_node_put(endpoint);
2290
2291 if (!host)
2292 return -EPROBE_DEFER;
2293
2294 if (dsi_lanes < 0)
2295 return dsi_lanes;
2296
2297 dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
2298 if (IS_ERR(dsi))
2299 return dev_err_probe(dev, PTR_ERR(dsi),
2300 "failed to create dsi device\n");
2301
2302 tc->dsi = dsi;
2303 dsi->lanes = dsi_lanes;
2304 dsi->format = MIPI_DSI_FMT_RGB888;
2305 dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
2306 MIPI_DSI_MODE_LPM | MIPI_DSI_CLOCK_NON_CONTINUOUS;
2307
2308 ret = devm_mipi_dsi_attach(dev, dsi);
2309 if (ret < 0) {
2310 dev_err(dev, "failed to attach dsi to host: %d\n", ret);
2311 return ret;
2312 }
2313
2314 return 0;
2315 }
2316
tc_probe_dpi_bridge_endpoint(struct tc_data * tc)2317 static int tc_probe_dpi_bridge_endpoint(struct tc_data *tc)
2318 {
2319 struct device *dev = tc->dev;
2320 struct drm_bridge *bridge;
2321 struct drm_panel *panel;
2322 int ret;
2323
2324 /* port@1 is the DPI input/output port */
2325 ret = drm_of_find_panel_or_bridge(dev->of_node, 1, 0, &panel, &bridge);
2326 if (ret && ret != -ENODEV)
2327 return dev_err_probe(dev, ret,
2328 "Could not find DPI panel or bridge\n");
2329
2330 if (panel) {
2331 bridge = devm_drm_panel_bridge_add(dev, panel);
2332 if (IS_ERR(bridge))
2333 return PTR_ERR(bridge);
2334 }
2335
2336 if (bridge) {
2337 tc->panel_bridge = bridge;
2338 tc->bridge.type = DRM_MODE_CONNECTOR_DPI;
2339
2340 return 0;
2341 }
2342
2343 return ret;
2344 }
2345
tc_probe_edp_bridge_endpoint(struct tc_data * tc)2346 static int tc_probe_edp_bridge_endpoint(struct tc_data *tc)
2347 {
2348 struct device *dev = tc->dev;
2349 struct drm_panel *panel;
2350 int ret;
2351
2352 /* port@2 is the output port */
2353 ret = drm_of_find_panel_or_bridge(dev->of_node, 2, 0, &panel, NULL);
2354 if (ret && ret != -ENODEV)
2355 return dev_err_probe(dev, ret,
2356 "Could not find DSI panel or bridge\n");
2357
2358 if (panel) {
2359 struct drm_bridge *panel_bridge;
2360
2361 panel_bridge = devm_drm_panel_bridge_add(dev, panel);
2362 if (IS_ERR(panel_bridge))
2363 return PTR_ERR(panel_bridge);
2364
2365 tc->panel_bridge = panel_bridge;
2366 tc->bridge.type = DRM_MODE_CONNECTOR_eDP;
2367 } else {
2368 tc->bridge.type = DRM_MODE_CONNECTOR_DisplayPort;
2369 }
2370
2371 if (tc->hpd_pin >= 0)
2372 tc->bridge.ops |= DRM_BRIDGE_OP_DETECT;
2373 tc->bridge.ops |= DRM_BRIDGE_OP_EDID;
2374
2375 return 0;
2376 }
2377
tc_probe_get_mode(struct device * dev)2378 static enum tc_mode tc_probe_get_mode(struct device *dev)
2379 {
2380 struct of_endpoint endpoint;
2381 struct device_node *node = NULL;
2382 enum tc_mode mode = 0;
2383
2384 /*
2385 * Determine bridge configuration.
2386 *
2387 * Port allocation:
2388 * port@0 - DSI input
2389 * port@1 - DPI input/output
2390 * port@2 - eDP output
2391 *
2392 * Possible connections:
2393 * DPI -> port@1 -> port@2 -> eDP :: [port@0 is not connected]
2394 * DSI -> port@0 -> port@2 -> eDP :: [port@1 is not connected]
2395 * DSI -> port@0 -> port@1 -> DPI :: [port@2 is not connected]
2396 */
2397
2398 for_each_endpoint_of_node(dev->of_node, node) {
2399 of_graph_parse_endpoint(node, &endpoint);
2400 if (endpoint.port > 2) {
2401 of_node_put(node);
2402 return -EINVAL;
2403 }
2404 mode |= BIT(endpoint.port);
2405 }
2406
2407 if (mode != mode_dpi_to_edp &&
2408 mode != mode_dpi_to_dp &&
2409 mode != mode_dsi_to_dpi &&
2410 mode != mode_dsi_to_edp &&
2411 mode != mode_dsi_to_dp) {
2412 dev_warn(dev, "Invalid mode (0x%x) is not supported!\n", mode);
2413 return -EINVAL;
2414 }
2415
2416 return mode;
2417 }
2418
tc_probe_bridge_endpoint(struct tc_data * tc,enum tc_mode mode)2419 static int tc_probe_bridge_endpoint(struct tc_data *tc, enum tc_mode mode)
2420 {
2421 struct device *dev = tc->dev;
2422 struct of_endpoint endpoint;
2423 struct device_node *node = NULL;
2424
2425 for_each_endpoint_of_node(dev->of_node, node) {
2426 of_graph_parse_endpoint(node, &endpoint);
2427 if (endpoint.port == 2) {
2428 of_property_read_u8_array(node, "toshiba,pre-emphasis",
2429 tc->pre_emphasis,
2430 ARRAY_SIZE(tc->pre_emphasis));
2431
2432 if (tc->pre_emphasis[0] < 0 || tc->pre_emphasis[0] > 2 ||
2433 tc->pre_emphasis[1] < 0 || tc->pre_emphasis[1] > 2) {
2434 dev_err(dev, "Incorrect Pre-Emphasis setting, use either 0=0dB 1=3.5dB 2=6dB\n");
2435 of_node_put(node);
2436 return -EINVAL;
2437 }
2438 }
2439 }
2440
2441 if (mode == mode_dpi_to_edp || mode == mode_dpi_to_dp) {
2442 tc->input_connector_dsi = false;
2443 return tc_probe_edp_bridge_endpoint(tc);
2444 } else if (mode == mode_dsi_to_dpi) {
2445 tc->input_connector_dsi = true;
2446 return tc_probe_dpi_bridge_endpoint(tc);
2447 } else if (mode == mode_dsi_to_edp || mode == mode_dsi_to_dp) {
2448 tc->input_connector_dsi = true;
2449 return tc_probe_edp_bridge_endpoint(tc);
2450 }
2451
2452 /* Should never happen, mode was validated by tc_probe_get_mode() */
2453 return -EINVAL;
2454 }
2455
tc_probe(struct i2c_client * client)2456 static int tc_probe(struct i2c_client *client)
2457 {
2458 struct device *dev = &client->dev;
2459 const struct drm_bridge_funcs *funcs;
2460 struct tc_data *tc;
2461 int mode;
2462 int ret;
2463
2464 mode = tc_probe_get_mode(dev);
2465 funcs = (mode == mode_dsi_to_dpi) ? &tc_dpi_bridge_funcs : &tc_edp_bridge_funcs;
2466
2467 tc = devm_drm_bridge_alloc(dev, struct tc_data, bridge, funcs);
2468 if (IS_ERR(tc))
2469 return PTR_ERR(tc);
2470
2471 tc->dev = dev;
2472
2473 ret = tc_probe_bridge_endpoint(tc, mode);
2474 if (ret)
2475 return ret;
2476
2477 tc->refclk = devm_clk_get_enabled(dev, "ref");
2478 if (IS_ERR(tc->refclk))
2479 return dev_err_probe(dev, PTR_ERR(tc->refclk),
2480 "Failed to get and enable the ref clk\n");
2481
2482 /* tRSTW = 100 cycles , at 13 MHz that is ~7.69 us */
2483 usleep_range(10, 15);
2484
2485 /* Shut down GPIO is optional */
2486 tc->sd_gpio = devm_gpiod_get_optional(dev, "shutdown", GPIOD_OUT_HIGH);
2487 if (IS_ERR(tc->sd_gpio))
2488 return PTR_ERR(tc->sd_gpio);
2489
2490 if (tc->sd_gpio) {
2491 gpiod_set_value_cansleep(tc->sd_gpio, 0);
2492 usleep_range(5000, 10000);
2493 }
2494
2495 /* Reset GPIO is optional */
2496 tc->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
2497 if (IS_ERR(tc->reset_gpio))
2498 return PTR_ERR(tc->reset_gpio);
2499
2500 if (tc->reset_gpio) {
2501 gpiod_set_value_cansleep(tc->reset_gpio, 1);
2502 usleep_range(5000, 10000);
2503 }
2504
2505 tc->regmap = devm_regmap_init_i2c(client, &tc_regmap_config);
2506 if (IS_ERR(tc->regmap)) {
2507 ret = PTR_ERR(tc->regmap);
2508 dev_err(dev, "Failed to initialize regmap: %d\n", ret);
2509 return ret;
2510 }
2511
2512 ret = of_property_read_u32(dev->of_node, "toshiba,hpd-pin",
2513 &tc->hpd_pin);
2514 if (ret) {
2515 tc->hpd_pin = -ENODEV;
2516 } else {
2517 if (tc->hpd_pin < 0 || tc->hpd_pin > 1) {
2518 dev_err(dev, "failed to parse HPD number\n");
2519 return -EINVAL;
2520 }
2521 }
2522
2523 if (client->irq > 0) {
2524 /* enable SysErr */
2525 regmap_write(tc->regmap, INTCTL_G, INT_SYSERR);
2526
2527 ret = devm_request_threaded_irq(dev, client->irq,
2528 NULL, tc_irq_handler,
2529 IRQF_ONESHOT,
2530 "tc358767-irq", tc);
2531 if (ret) {
2532 dev_err(dev, "failed to register dp interrupt\n");
2533 return ret;
2534 }
2535
2536 tc->have_irq = true;
2537 }
2538
2539 ret = regmap_read(tc->regmap, TC_IDREG, &tc->rev);
2540 if (ret) {
2541 dev_err(tc->dev, "can not read device ID: %d\n", ret);
2542 return ret;
2543 }
2544
2545 if ((tc->rev != 0x6601) && (tc->rev != 0x6603)) {
2546 dev_err(tc->dev, "invalid device ID: 0x%08x\n", tc->rev);
2547 return -EINVAL;
2548 }
2549
2550 tc->assr = (tc->rev == 0x6601); /* Enable ASSR for eDP panels */
2551
2552 if (!tc->reset_gpio) {
2553 /*
2554 * If the reset pin isn't present, do a software reset. It isn't
2555 * as thorough as the hardware reset, as we can't reset the I2C
2556 * communication block for obvious reasons, but it's getting the
2557 * chip into a defined state.
2558 */
2559 regmap_update_bits(tc->regmap, SYSRSTENB,
2560 ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
2561 0);
2562 regmap_update_bits(tc->regmap, SYSRSTENB,
2563 ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP,
2564 ENBLCD0 | ENBBM | ENBDSIRX | ENBREG | ENBHDCP);
2565 usleep_range(5000, 10000);
2566 }
2567
2568 if (tc->hpd_pin >= 0) {
2569 u32 lcnt_reg = tc->hpd_pin == 0 ? INT_GP0_LCNT : INT_GP1_LCNT;
2570 u32 h_lc = INT_GPIO_H(tc->hpd_pin) | INT_GPIO_LC(tc->hpd_pin);
2571
2572 /* Set LCNT to 2ms */
2573 regmap_write(tc->regmap, lcnt_reg,
2574 clk_get_rate(tc->refclk) * 2 / 1000);
2575 /* We need the "alternate" mode for HPD */
2576 regmap_write(tc->regmap, GPIOM, BIT(tc->hpd_pin));
2577
2578 if (tc->have_irq) {
2579 /* enable H & LC */
2580 regmap_update_bits(tc->regmap, INTCTL_G, h_lc, h_lc);
2581 }
2582 }
2583
2584 if (tc->bridge.type != DRM_MODE_CONNECTOR_DPI) { /* (e)DP output */
2585 ret = tc_aux_link_setup(tc);
2586 if (ret)
2587 return ret;
2588 }
2589
2590 tc->bridge.of_node = dev->of_node;
2591 drm_bridge_add(&tc->bridge);
2592
2593 i2c_set_clientdata(client, tc);
2594
2595 if (tc->input_connector_dsi) { /* DSI input */
2596 ret = tc_mipi_dsi_host_attach(tc);
2597 if (ret) {
2598 drm_bridge_remove(&tc->bridge);
2599 return dev_err_probe(dev, ret, "Failed to attach DSI host\n");
2600 }
2601 }
2602
2603 return 0;
2604 }
2605
tc_remove(struct i2c_client * client)2606 static void tc_remove(struct i2c_client *client)
2607 {
2608 struct tc_data *tc = i2c_get_clientdata(client);
2609
2610 drm_bridge_remove(&tc->bridge);
2611 }
2612
2613 static const struct i2c_device_id tc358767_i2c_ids[] = {
2614 { "tc358767" },
2615 { }
2616 };
2617 MODULE_DEVICE_TABLE(i2c, tc358767_i2c_ids);
2618
2619 static const struct of_device_id tc358767_of_ids[] = {
2620 { .compatible = "toshiba,tc358767", },
2621 { }
2622 };
2623 MODULE_DEVICE_TABLE(of, tc358767_of_ids);
2624
2625 static struct i2c_driver tc358767_driver = {
2626 .driver = {
2627 .name = "tc358767",
2628 .of_match_table = tc358767_of_ids,
2629 },
2630 .id_table = tc358767_i2c_ids,
2631 .probe = tc_probe,
2632 .remove = tc_remove,
2633 };
2634 module_i2c_driver(tc358767_driver);
2635
2636 MODULE_AUTHOR("Andrey Gusakov <andrey.gusakov@cogentembedded.com>");
2637 MODULE_DESCRIPTION("tc358767 eDP encoder driver");
2638 MODULE_LICENSE("GPL");
2639