Home
last modified time | relevance | path

Searched hist:"637 b0aa139565cb82a7b9269e62214f87082635c" (Results 1 – 4 of 4) sorted by relevance

/qemu/include/hw/pci/
H A Dpci_device.h637b0aa139565cb82a7b9269e62214f87082635c Mon Aug 19 13:54:54 UTC 2024 Mattias Nissler <mnissler@rivosinc.com> softmmu: Support concurrent bounce buffers

When DMA memory can't be directly accessed, as is the case when
running the device model in a separate process without shareable DMA
file descriptors, bounce buffering is used.

It is not uncommon for device models to request mapping of several DMA
regions at the same time. Examples include:
* net devices, e.g. when transmitting a packet that is split across
several TX descriptors (observed with igb)
* USB host controllers, when handling a packet with multiple data TRBs
(observed with xhci)

Previously, qemu only provided a single bounce buffer per AddressSpace
and would fail DMA map requests while the buffer was already in use. In
turn, this would cause DMA failures that ultimately manifest as hardware
errors from the guest perspective.

This change allocates DMA bounce buffers dynamically instead of
supporting only a single buffer. Thus, multiple DMA mappings work
correctly also when RAM can't be mmap()-ed.

The total bounce buffer allocation size is limited individually for each
AddressSpace. The default limit is 4096 bytes, matching the previous
maximum buffer size. A new x-max-bounce-buffer-size parameter is
provided to configure the limit for PCI devices.

Signed-off-by: Mattias Nissler <mnissler@rivosinc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20240819135455.2957406-1-mnissler@rivosinc.com
Signed-off-by: Peter Xu <peterx@redhat.com>
/qemu/system/
H A Dphysmem.c637b0aa139565cb82a7b9269e62214f87082635c Mon Aug 19 13:54:54 UTC 2024 Mattias Nissler <mnissler@rivosinc.com> softmmu: Support concurrent bounce buffers

When DMA memory can't be directly accessed, as is the case when
running the device model in a separate process without shareable DMA
file descriptors, bounce buffering is used.

It is not uncommon for device models to request mapping of several DMA
regions at the same time. Examples include:
* net devices, e.g. when transmitting a packet that is split across
several TX descriptors (observed with igb)
* USB host controllers, when handling a packet with multiple data TRBs
(observed with xhci)

Previously, qemu only provided a single bounce buffer per AddressSpace
and would fail DMA map requests while the buffer was already in use. In
turn, this would cause DMA failures that ultimately manifest as hardware
errors from the guest perspective.

This change allocates DMA bounce buffers dynamically instead of
supporting only a single buffer. Thus, multiple DMA mappings work
correctly also when RAM can't be mmap()-ed.

The total bounce buffer allocation size is limited individually for each
AddressSpace. The default limit is 4096 bytes, matching the previous
maximum buffer size. A new x-max-bounce-buffer-size parameter is
provided to configure the limit for PCI devices.

Signed-off-by: Mattias Nissler <mnissler@rivosinc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20240819135455.2957406-1-mnissler@rivosinc.com
Signed-off-by: Peter Xu <peterx@redhat.com>
H A Dmemory.c637b0aa139565cb82a7b9269e62214f87082635c Mon Aug 19 13:54:54 UTC 2024 Mattias Nissler <mnissler@rivosinc.com> softmmu: Support concurrent bounce buffers

When DMA memory can't be directly accessed, as is the case when
running the device model in a separate process without shareable DMA
file descriptors, bounce buffering is used.

It is not uncommon for device models to request mapping of several DMA
regions at the same time. Examples include:
* net devices, e.g. when transmitting a packet that is split across
several TX descriptors (observed with igb)
* USB host controllers, when handling a packet with multiple data TRBs
(observed with xhci)

Previously, qemu only provided a single bounce buffer per AddressSpace
and would fail DMA map requests while the buffer was already in use. In
turn, this would cause DMA failures that ultimately manifest as hardware
errors from the guest perspective.

This change allocates DMA bounce buffers dynamically instead of
supporting only a single buffer. Thus, multiple DMA mappings work
correctly also when RAM can't be mmap()-ed.

The total bounce buffer allocation size is limited individually for each
AddressSpace. The default limit is 4096 bytes, matching the previous
maximum buffer size. A new x-max-bounce-buffer-size parameter is
provided to configure the limit for PCI devices.

Signed-off-by: Mattias Nissler <mnissler@rivosinc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20240819135455.2957406-1-mnissler@rivosinc.com
Signed-off-by: Peter Xu <peterx@redhat.com>
/qemu/hw/pci/
H A Dpci.c637b0aa139565cb82a7b9269e62214f87082635c Mon Aug 19 13:54:54 UTC 2024 Mattias Nissler <mnissler@rivosinc.com> softmmu: Support concurrent bounce buffers

When DMA memory can't be directly accessed, as is the case when
running the device model in a separate process without shareable DMA
file descriptors, bounce buffering is used.

It is not uncommon for device models to request mapping of several DMA
regions at the same time. Examples include:
* net devices, e.g. when transmitting a packet that is split across
several TX descriptors (observed with igb)
* USB host controllers, when handling a packet with multiple data TRBs
(observed with xhci)

Previously, qemu only provided a single bounce buffer per AddressSpace
and would fail DMA map requests while the buffer was already in use. In
turn, this would cause DMA failures that ultimately manifest as hardware
errors from the guest perspective.

This change allocates DMA bounce buffers dynamically instead of
supporting only a single buffer. Thus, multiple DMA mappings work
correctly also when RAM can't be mmap()-ed.

The total bounce buffer allocation size is limited individually for each
AddressSpace. The default limit is 4096 bytes, matching the previous
maximum buffer size. A new x-max-bounce-buffer-size parameter is
provided to configure the limit for PCI devices.

Signed-off-by: Mattias Nissler <mnissler@rivosinc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Acked-by: Peter Xu <peterx@redhat.com>
Link: https://lore.kernel.org/r/20240819135455.2957406-1-mnissler@rivosinc.com
Signed-off-by: Peter Xu <peterx@redhat.com>