1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright IBM Corp. 2012
4 *
5 * Author(s):
6 * Jan Glauber <jang@linux.vnet.ibm.com>
7 *
8 * The System z PCI code is a rewrite from a prototype by
9 * the following people (Kudoz!):
10 * Alexander Schmidt
11 * Christoph Raisch
12 * Hannes Hering
13 * Hoang-Nam Nguyen
14 * Jan-Bernd Themann
15 * Stefan Roscher
16 * Thomas Klein
17 */
18
19 #define KMSG_COMPONENT "zpci"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/slab.h>
24 #include <linux/err.h>
25 #include <linux/export.h>
26 #include <linux/delay.h>
27 #include <linux/seq_file.h>
28 #include <linux/jump_label.h>
29 #include <linux/pci.h>
30 #include <linux/printk.h>
31 #include <linux/lockdep.h>
32 #include <linux/list_sort.h>
33
34 #include <asm/machine.h>
35 #include <asm/isc.h>
36 #include <asm/airq.h>
37 #include <asm/facility.h>
38 #include <asm/pci_insn.h>
39 #include <asm/pci_clp.h>
40 #include <asm/pci_dma.h>
41
42 #include "pci_bus.h"
43 #include "pci_iov.h"
44
45 /* list of all detected zpci devices */
46 static LIST_HEAD(zpci_list);
47 static DEFINE_SPINLOCK(zpci_list_lock);
48 static DEFINE_MUTEX(zpci_add_remove_lock);
49
50 static DECLARE_BITMAP(zpci_domain, ZPCI_DOMAIN_BITMAP_SIZE);
51 static DEFINE_SPINLOCK(zpci_domain_lock);
52
53 #define ZPCI_IOMAP_ENTRIES \
54 min(((unsigned long) ZPCI_NR_DEVICES * PCI_STD_NUM_BARS / 2), \
55 ZPCI_IOMAP_MAX_ENTRIES)
56
57 unsigned int s390_pci_no_rid;
58
59 static DEFINE_SPINLOCK(zpci_iomap_lock);
60 static unsigned long *zpci_iomap_bitmap;
61 struct zpci_iomap_entry *zpci_iomap_start;
62 EXPORT_SYMBOL_GPL(zpci_iomap_start);
63
64 DEFINE_STATIC_KEY_FALSE(have_mio);
65
66 static struct kmem_cache *zdev_fmb_cache;
67
68 /* AEN structures that must be preserved over KVM module re-insertion */
69 union zpci_sic_iib *zpci_aipb;
70 EXPORT_SYMBOL_GPL(zpci_aipb);
71 struct airq_iv *zpci_aif_sbv;
72 EXPORT_SYMBOL_GPL(zpci_aif_sbv);
73
zpci_zdev_put(struct zpci_dev * zdev)74 void zpci_zdev_put(struct zpci_dev *zdev)
75 {
76 if (!zdev)
77 return;
78 mutex_lock(&zpci_add_remove_lock);
79 kref_put_lock(&zdev->kref, zpci_release_device, &zpci_list_lock);
80 mutex_unlock(&zpci_add_remove_lock);
81 }
82
get_zdev_by_fid(u32 fid)83 struct zpci_dev *get_zdev_by_fid(u32 fid)
84 {
85 struct zpci_dev *tmp, *zdev = NULL;
86
87 spin_lock(&zpci_list_lock);
88 list_for_each_entry(tmp, &zpci_list, entry) {
89 if (tmp->fid == fid) {
90 zdev = tmp;
91 zpci_zdev_get(zdev);
92 break;
93 }
94 }
95 spin_unlock(&zpci_list_lock);
96 return zdev;
97 }
98
zpci_remove_reserved_devices(void)99 void zpci_remove_reserved_devices(void)
100 {
101 struct zpci_dev *tmp, *zdev;
102 enum zpci_state state;
103 LIST_HEAD(remove);
104
105 spin_lock(&zpci_list_lock);
106 list_for_each_entry_safe(zdev, tmp, &zpci_list, entry) {
107 if (zdev->state == ZPCI_FN_STATE_STANDBY &&
108 !clp_get_state(zdev->fid, &state) &&
109 state == ZPCI_FN_STATE_RESERVED)
110 list_move_tail(&zdev->entry, &remove);
111 }
112 spin_unlock(&zpci_list_lock);
113
114 list_for_each_entry_safe(zdev, tmp, &remove, entry)
115 zpci_device_reserved(zdev);
116 }
117
pci_domain_nr(struct pci_bus * bus)118 int pci_domain_nr(struct pci_bus *bus)
119 {
120 return ((struct zpci_bus *) bus->sysdata)->domain_nr;
121 }
122 EXPORT_SYMBOL_GPL(pci_domain_nr);
123
pci_proc_domain(struct pci_bus * bus)124 int pci_proc_domain(struct pci_bus *bus)
125 {
126 return pci_domain_nr(bus);
127 }
128 EXPORT_SYMBOL_GPL(pci_proc_domain);
129
130 /* Modify PCI: Register I/O address translation parameters */
zpci_register_ioat(struct zpci_dev * zdev,u8 dmaas,u64 base,u64 limit,u64 iota,u8 * status)131 int zpci_register_ioat(struct zpci_dev *zdev, u8 dmaas,
132 u64 base, u64 limit, u64 iota, u8 *status)
133 {
134 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_REG_IOAT);
135 struct zpci_fib fib = {0};
136 u8 cc;
137
138 fib.pba = base;
139 /* Work around off by one in ISM virt device */
140 if (zdev->pft == PCI_FUNC_TYPE_ISM && limit > base)
141 fib.pal = limit + (1 << 12);
142 else
143 fib.pal = limit;
144 fib.iota = iota;
145 fib.gd = zdev->gisa;
146 cc = zpci_mod_fc(req, &fib, status);
147 if (cc)
148 zpci_dbg(3, "reg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, *status);
149 return cc;
150 }
151 EXPORT_SYMBOL_GPL(zpci_register_ioat);
152
153 /* Modify PCI: Unregister I/O address translation parameters */
zpci_unregister_ioat(struct zpci_dev * zdev,u8 dmaas)154 int zpci_unregister_ioat(struct zpci_dev *zdev, u8 dmaas)
155 {
156 u64 req = ZPCI_CREATE_REQ(zdev->fh, dmaas, ZPCI_MOD_FC_DEREG_IOAT);
157 struct zpci_fib fib = {0};
158 u8 cc, status;
159
160 fib.gd = zdev->gisa;
161
162 cc = zpci_mod_fc(req, &fib, &status);
163 if (cc)
164 zpci_dbg(3, "unreg ioat fid:%x, cc:%d, status:%d\n", zdev->fid, cc, status);
165 return cc;
166 }
167
168 /* Modify PCI: Set PCI function measurement parameters */
zpci_fmb_enable_device(struct zpci_dev * zdev)169 int zpci_fmb_enable_device(struct zpci_dev *zdev)
170 {
171 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
172 struct zpci_iommu_ctrs *ctrs;
173 struct zpci_fib fib = {0};
174 unsigned long flags;
175 u8 cc, status;
176
177 if (zdev->fmb || sizeof(*zdev->fmb) < zdev->fmb_length)
178 return -EINVAL;
179
180 zdev->fmb = kmem_cache_zalloc(zdev_fmb_cache, GFP_KERNEL);
181 if (!zdev->fmb)
182 return -ENOMEM;
183 WARN_ON((u64) zdev->fmb & 0xf);
184
185 /* reset software counters */
186 spin_lock_irqsave(&zdev->dom_lock, flags);
187 ctrs = zpci_get_iommu_ctrs(zdev);
188 if (ctrs) {
189 atomic64_set(&ctrs->mapped_pages, 0);
190 atomic64_set(&ctrs->unmapped_pages, 0);
191 atomic64_set(&ctrs->global_rpcits, 0);
192 atomic64_set(&ctrs->sync_map_rpcits, 0);
193 atomic64_set(&ctrs->sync_rpcits, 0);
194 }
195 spin_unlock_irqrestore(&zdev->dom_lock, flags);
196
197
198 fib.fmb_addr = virt_to_phys(zdev->fmb);
199 fib.gd = zdev->gisa;
200 cc = zpci_mod_fc(req, &fib, &status);
201 if (cc) {
202 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
203 zdev->fmb = NULL;
204 }
205 return cc ? -EIO : 0;
206 }
207
208 /* Modify PCI: Disable PCI function measurement */
zpci_fmb_disable_device(struct zpci_dev * zdev)209 int zpci_fmb_disable_device(struct zpci_dev *zdev)
210 {
211 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_SET_MEASURE);
212 struct zpci_fib fib = {0};
213 u8 cc, status;
214
215 if (!zdev->fmb)
216 return -EINVAL;
217
218 fib.gd = zdev->gisa;
219
220 /* Function measurement is disabled if fmb address is zero */
221 cc = zpci_mod_fc(req, &fib, &status);
222 if (cc == 3) /* Function already gone. */
223 cc = 0;
224
225 if (!cc) {
226 kmem_cache_free(zdev_fmb_cache, zdev->fmb);
227 zdev->fmb = NULL;
228 }
229 return cc ? -EIO : 0;
230 }
231
zpci_cfg_load(struct zpci_dev * zdev,int offset,u32 * val,u8 len)232 static int zpci_cfg_load(struct zpci_dev *zdev, int offset, u32 *val, u8 len)
233 {
234 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
235 u64 data;
236 int rc;
237
238 rc = __zpci_load(&data, req, offset);
239 if (!rc) {
240 data = le64_to_cpu((__force __le64) data);
241 data >>= (8 - len) * 8;
242 *val = (u32) data;
243 } else
244 *val = 0xffffffff;
245 return rc;
246 }
247
zpci_cfg_store(struct zpci_dev * zdev,int offset,u32 val,u8 len)248 static int zpci_cfg_store(struct zpci_dev *zdev, int offset, u32 val, u8 len)
249 {
250 u64 req = ZPCI_CREATE_REQ(zdev->fh, ZPCI_PCIAS_CFGSPC, len);
251 u64 data = val;
252 int rc;
253
254 data <<= (8 - len) * 8;
255 data = (__force u64) cpu_to_le64(data);
256 rc = __zpci_store(data, req, offset);
257 return rc;
258 }
259
pcibios_align_resource(void * data,const struct resource * res,resource_size_t size,resource_size_t align)260 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
261 resource_size_t size,
262 resource_size_t align)
263 {
264 return 0;
265 }
266
ioremap_prot(phys_addr_t phys_addr,size_t size,pgprot_t prot)267 void __iomem *ioremap_prot(phys_addr_t phys_addr, size_t size,
268 pgprot_t prot)
269 {
270 /*
271 * When PCI MIO instructions are unavailable the "physical" address
272 * encodes a hint for accessing the PCI memory space it represents.
273 * Just pass it unchanged such that ioread/iowrite can decode it.
274 */
275 if (!static_branch_unlikely(&have_mio))
276 return (void __iomem *)phys_addr;
277
278 return generic_ioremap_prot(phys_addr, size, prot);
279 }
280 EXPORT_SYMBOL(ioremap_prot);
281
iounmap(volatile void __iomem * addr)282 void iounmap(volatile void __iomem *addr)
283 {
284 if (static_branch_likely(&have_mio))
285 generic_iounmap(addr);
286 }
287 EXPORT_SYMBOL(iounmap);
288
289 /* Create a virtual mapping cookie for a PCI BAR */
pci_iomap_range_fh(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)290 static void __iomem *pci_iomap_range_fh(struct pci_dev *pdev, int bar,
291 unsigned long offset, unsigned long max)
292 {
293 struct zpci_dev *zdev = to_zpci(pdev);
294 int idx;
295
296 idx = zdev->bars[bar].map_idx;
297 spin_lock(&zpci_iomap_lock);
298 /* Detect overrun */
299 WARN_ON(!++zpci_iomap_start[idx].count);
300 zpci_iomap_start[idx].fh = zdev->fh;
301 zpci_iomap_start[idx].bar = bar;
302 spin_unlock(&zpci_iomap_lock);
303
304 return (void __iomem *) ZPCI_ADDR(idx) + offset;
305 }
306
pci_iomap_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)307 static void __iomem *pci_iomap_range_mio(struct pci_dev *pdev, int bar,
308 unsigned long offset,
309 unsigned long max)
310 {
311 unsigned long barsize = pci_resource_len(pdev, bar);
312 struct zpci_dev *zdev = to_zpci(pdev);
313 void __iomem *iova;
314
315 iova = ioremap((unsigned long) zdev->bars[bar].mio_wt, barsize);
316 return iova ? iova + offset : iova;
317 }
318
pci_iomap_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)319 void __iomem *pci_iomap_range(struct pci_dev *pdev, int bar,
320 unsigned long offset, unsigned long max)
321 {
322 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
323 return NULL;
324
325 if (static_branch_likely(&have_mio))
326 return pci_iomap_range_mio(pdev, bar, offset, max);
327 else
328 return pci_iomap_range_fh(pdev, bar, offset, max);
329 }
330 EXPORT_SYMBOL(pci_iomap_range);
331
pci_iomap(struct pci_dev * dev,int bar,unsigned long maxlen)332 void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
333 {
334 return pci_iomap_range(dev, bar, 0, maxlen);
335 }
336 EXPORT_SYMBOL(pci_iomap);
337
pci_iomap_wc_range_mio(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)338 static void __iomem *pci_iomap_wc_range_mio(struct pci_dev *pdev, int bar,
339 unsigned long offset, unsigned long max)
340 {
341 unsigned long barsize = pci_resource_len(pdev, bar);
342 struct zpci_dev *zdev = to_zpci(pdev);
343 void __iomem *iova;
344
345 iova = ioremap((unsigned long) zdev->bars[bar].mio_wb, barsize);
346 return iova ? iova + offset : iova;
347 }
348
pci_iomap_wc_range(struct pci_dev * pdev,int bar,unsigned long offset,unsigned long max)349 void __iomem *pci_iomap_wc_range(struct pci_dev *pdev, int bar,
350 unsigned long offset, unsigned long max)
351 {
352 if (bar >= PCI_STD_NUM_BARS || !pci_resource_len(pdev, bar))
353 return NULL;
354
355 if (static_branch_likely(&have_mio))
356 return pci_iomap_wc_range_mio(pdev, bar, offset, max);
357 else
358 return pci_iomap_range_fh(pdev, bar, offset, max);
359 }
360 EXPORT_SYMBOL(pci_iomap_wc_range);
361
pci_iomap_wc(struct pci_dev * dev,int bar,unsigned long maxlen)362 void __iomem *pci_iomap_wc(struct pci_dev *dev, int bar, unsigned long maxlen)
363 {
364 return pci_iomap_wc_range(dev, bar, 0, maxlen);
365 }
366 EXPORT_SYMBOL(pci_iomap_wc);
367
pci_iounmap_fh(struct pci_dev * pdev,void __iomem * addr)368 static void pci_iounmap_fh(struct pci_dev *pdev, void __iomem *addr)
369 {
370 unsigned int idx = ZPCI_IDX(addr);
371
372 spin_lock(&zpci_iomap_lock);
373 /* Detect underrun */
374 WARN_ON(!zpci_iomap_start[idx].count);
375 if (!--zpci_iomap_start[idx].count) {
376 zpci_iomap_start[idx].fh = 0;
377 zpci_iomap_start[idx].bar = 0;
378 }
379 spin_unlock(&zpci_iomap_lock);
380 }
381
pci_iounmap_mio(struct pci_dev * pdev,void __iomem * addr)382 static void pci_iounmap_mio(struct pci_dev *pdev, void __iomem *addr)
383 {
384 iounmap(addr);
385 }
386
pci_iounmap(struct pci_dev * pdev,void __iomem * addr)387 void pci_iounmap(struct pci_dev *pdev, void __iomem *addr)
388 {
389 if (static_branch_likely(&have_mio))
390 pci_iounmap_mio(pdev, addr);
391 else
392 pci_iounmap_fh(pdev, addr);
393 }
394 EXPORT_SYMBOL(pci_iounmap);
395
pci_read(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 * val)396 static int pci_read(struct pci_bus *bus, unsigned int devfn, int where,
397 int size, u32 *val)
398 {
399 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
400
401 return (zdev) ? zpci_cfg_load(zdev, where, val, size) : -ENODEV;
402 }
403
pci_write(struct pci_bus * bus,unsigned int devfn,int where,int size,u32 val)404 static int pci_write(struct pci_bus *bus, unsigned int devfn, int where,
405 int size, u32 val)
406 {
407 struct zpci_dev *zdev = zdev_from_bus(bus, devfn);
408
409 return (zdev) ? zpci_cfg_store(zdev, where, val, size) : -ENODEV;
410 }
411
412 static struct pci_ops pci_root_ops = {
413 .read = pci_read,
414 .write = pci_write,
415 };
416
zpci_map_resources(struct pci_dev * pdev)417 static void zpci_map_resources(struct pci_dev *pdev)
418 {
419 struct zpci_dev *zdev = to_zpci(pdev);
420 resource_size_t len;
421 int i;
422
423 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
424 len = pci_resource_len(pdev, i);
425 if (!len)
426 continue;
427
428 if (zpci_use_mio(zdev))
429 pdev->resource[i].start =
430 (resource_size_t __force) zdev->bars[i].mio_wt;
431 else
432 pdev->resource[i].start = (resource_size_t __force)
433 pci_iomap_range_fh(pdev, i, 0, 0);
434 pdev->resource[i].end = pdev->resource[i].start + len - 1;
435 }
436
437 zpci_iov_map_resources(pdev);
438 }
439
zpci_unmap_resources(struct pci_dev * pdev)440 static void zpci_unmap_resources(struct pci_dev *pdev)
441 {
442 struct zpci_dev *zdev = to_zpci(pdev);
443 resource_size_t len;
444 int i;
445
446 if (zpci_use_mio(zdev))
447 return;
448
449 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
450 len = pci_resource_len(pdev, i);
451 if (!len)
452 continue;
453 pci_iounmap_fh(pdev, (void __iomem __force *)
454 pdev->resource[i].start);
455 }
456 }
457
zpci_alloc_iomap(struct zpci_dev * zdev)458 static int zpci_alloc_iomap(struct zpci_dev *zdev)
459 {
460 unsigned long entry;
461
462 spin_lock(&zpci_iomap_lock);
463 entry = find_first_zero_bit(zpci_iomap_bitmap, ZPCI_IOMAP_ENTRIES);
464 if (entry == ZPCI_IOMAP_ENTRIES) {
465 spin_unlock(&zpci_iomap_lock);
466 return -ENOSPC;
467 }
468 set_bit(entry, zpci_iomap_bitmap);
469 spin_unlock(&zpci_iomap_lock);
470 return entry;
471 }
472
zpci_free_iomap(struct zpci_dev * zdev,int entry)473 static void zpci_free_iomap(struct zpci_dev *zdev, int entry)
474 {
475 spin_lock(&zpci_iomap_lock);
476 memset(&zpci_iomap_start[entry], 0, sizeof(struct zpci_iomap_entry));
477 clear_bit(entry, zpci_iomap_bitmap);
478 spin_unlock(&zpci_iomap_lock);
479 }
480
zpci_do_update_iomap_fh(struct zpci_dev * zdev,u32 fh)481 static void zpci_do_update_iomap_fh(struct zpci_dev *zdev, u32 fh)
482 {
483 int bar, idx;
484
485 spin_lock(&zpci_iomap_lock);
486 for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
487 if (!zdev->bars[bar].size)
488 continue;
489 idx = zdev->bars[bar].map_idx;
490 if (!zpci_iomap_start[idx].count)
491 continue;
492 WRITE_ONCE(zpci_iomap_start[idx].fh, zdev->fh);
493 }
494 spin_unlock(&zpci_iomap_lock);
495 }
496
zpci_update_fh(struct zpci_dev * zdev,u32 fh)497 void zpci_update_fh(struct zpci_dev *zdev, u32 fh)
498 {
499 if (!fh || zdev->fh == fh)
500 return;
501
502 zdev->fh = fh;
503 if (zpci_use_mio(zdev))
504 return;
505 if (zdev->has_resources && zdev_enabled(zdev))
506 zpci_do_update_iomap_fh(zdev, fh);
507 }
508
__alloc_res(struct zpci_dev * zdev,unsigned long start,unsigned long size,unsigned long flags)509 static struct resource *__alloc_res(struct zpci_dev *zdev, unsigned long start,
510 unsigned long size, unsigned long flags)
511 {
512 struct resource *r;
513
514 r = kzalloc(sizeof(*r), GFP_KERNEL);
515 if (!r)
516 return NULL;
517
518 r->start = start;
519 r->end = r->start + size - 1;
520 r->flags = flags;
521 r->name = zdev->res_name;
522
523 if (request_resource(&iomem_resource, r)) {
524 kfree(r);
525 return NULL;
526 }
527 return r;
528 }
529
zpci_setup_bus_resources(struct zpci_dev * zdev)530 int zpci_setup_bus_resources(struct zpci_dev *zdev)
531 {
532 unsigned long addr, size, flags;
533 struct resource *res;
534 int i, entry;
535
536 snprintf(zdev->res_name, sizeof(zdev->res_name),
537 "PCI Bus %04x:%02x", zdev->uid, ZPCI_BUS_NR);
538
539 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
540 if (!zdev->bars[i].size)
541 continue;
542 entry = zpci_alloc_iomap(zdev);
543 if (entry < 0)
544 return entry;
545 zdev->bars[i].map_idx = entry;
546
547 /* only MMIO is supported */
548 flags = IORESOURCE_MEM;
549 if (zdev->bars[i].val & 8)
550 flags |= IORESOURCE_PREFETCH;
551 if (zdev->bars[i].val & 4)
552 flags |= IORESOURCE_MEM_64;
553
554 if (zpci_use_mio(zdev))
555 addr = (unsigned long) zdev->bars[i].mio_wt;
556 else
557 addr = ZPCI_ADDR(entry);
558 size = 1UL << zdev->bars[i].size;
559
560 res = __alloc_res(zdev, addr, size, flags);
561 if (!res) {
562 zpci_free_iomap(zdev, entry);
563 return -ENOMEM;
564 }
565 zdev->bars[i].res = res;
566 }
567 zdev->has_resources = 1;
568
569 return 0;
570 }
571
zpci_cleanup_bus_resources(struct zpci_dev * zdev)572 static void zpci_cleanup_bus_resources(struct zpci_dev *zdev)
573 {
574 struct resource *res;
575 int i;
576
577 pci_lock_rescan_remove();
578 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
579 res = zdev->bars[i].res;
580 if (!res)
581 continue;
582
583 release_resource(res);
584 pci_bus_remove_resource(zdev->zbus->bus, res);
585 zpci_free_iomap(zdev, zdev->bars[i].map_idx);
586 zdev->bars[i].res = NULL;
587 kfree(res);
588 }
589 zdev->has_resources = 0;
590 pci_unlock_rescan_remove();
591 }
592
pcibios_device_add(struct pci_dev * pdev)593 int pcibios_device_add(struct pci_dev *pdev)
594 {
595 struct zpci_dev *zdev = to_zpci(pdev);
596 struct resource *res;
597 int i;
598
599 /* The pdev has a reference to the zdev via its bus */
600 zpci_zdev_get(zdev);
601 if (pdev->is_physfn)
602 pdev->no_vf_scan = 1;
603
604 zpci_map_resources(pdev);
605
606 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
607 res = &pdev->resource[i];
608 if (res->parent || !res->flags)
609 continue;
610 pci_claim_resource(pdev, i);
611 }
612
613 return 0;
614 }
615
pcibios_release_device(struct pci_dev * pdev)616 void pcibios_release_device(struct pci_dev *pdev)
617 {
618 struct zpci_dev *zdev = to_zpci(pdev);
619
620 zpci_unmap_resources(pdev);
621 zpci_zdev_put(zdev);
622 }
623
pcibios_enable_device(struct pci_dev * pdev,int mask)624 int pcibios_enable_device(struct pci_dev *pdev, int mask)
625 {
626 struct zpci_dev *zdev = to_zpci(pdev);
627
628 zpci_debug_init_device(zdev, dev_name(&pdev->dev));
629 zpci_fmb_enable_device(zdev);
630
631 return pci_enable_resources(pdev, mask);
632 }
633
pcibios_disable_device(struct pci_dev * pdev)634 void pcibios_disable_device(struct pci_dev *pdev)
635 {
636 struct zpci_dev *zdev = to_zpci(pdev);
637
638 zpci_fmb_disable_device(zdev);
639 zpci_debug_exit_device(zdev);
640 }
641
__zpci_register_domain(int domain)642 static int __zpci_register_domain(int domain)
643 {
644 spin_lock(&zpci_domain_lock);
645 if (test_bit(domain, zpci_domain)) {
646 spin_unlock(&zpci_domain_lock);
647 pr_err("Domain %04x is already assigned\n", domain);
648 return -EEXIST;
649 }
650 set_bit(domain, zpci_domain);
651 spin_unlock(&zpci_domain_lock);
652 return domain;
653 }
654
__zpci_alloc_domain(void)655 static int __zpci_alloc_domain(void)
656 {
657 int domain;
658
659 spin_lock(&zpci_domain_lock);
660 /*
661 * We can always auto allocate domains below ZPCI_NR_DEVICES.
662 * There is either a free domain or we have reached the maximum in
663 * which case we would have bailed earlier.
664 */
665 domain = find_first_zero_bit(zpci_domain, ZPCI_NR_DEVICES);
666 set_bit(domain, zpci_domain);
667 spin_unlock(&zpci_domain_lock);
668 return domain;
669 }
670
zpci_alloc_domain(int domain)671 int zpci_alloc_domain(int domain)
672 {
673 if (zpci_unique_uid) {
674 if (domain)
675 return __zpci_register_domain(domain);
676 pr_warn("UID checking was active but no UID is provided: switching to automatic domain allocation\n");
677 update_uid_checking(false);
678 }
679 return __zpci_alloc_domain();
680 }
681
zpci_free_domain(int domain)682 void zpci_free_domain(int domain)
683 {
684 spin_lock(&zpci_domain_lock);
685 clear_bit(domain, zpci_domain);
686 spin_unlock(&zpci_domain_lock);
687 }
688
689
zpci_enable_device(struct zpci_dev * zdev)690 int zpci_enable_device(struct zpci_dev *zdev)
691 {
692 u32 fh = zdev->fh;
693 int rc = 0;
694
695 if (clp_enable_fh(zdev, &fh, ZPCI_NR_DMA_SPACES))
696 rc = -EIO;
697 else
698 zpci_update_fh(zdev, fh);
699 return rc;
700 }
701 EXPORT_SYMBOL_GPL(zpci_enable_device);
702
zpci_reenable_device(struct zpci_dev * zdev)703 int zpci_reenable_device(struct zpci_dev *zdev)
704 {
705 u8 status;
706 int rc;
707
708 rc = zpci_enable_device(zdev);
709 if (rc)
710 return rc;
711
712 rc = zpci_iommu_register_ioat(zdev, &status);
713 if (rc)
714 zpci_disable_device(zdev);
715
716 return rc;
717 }
718 EXPORT_SYMBOL_GPL(zpci_reenable_device);
719
zpci_disable_device(struct zpci_dev * zdev)720 int zpci_disable_device(struct zpci_dev *zdev)
721 {
722 u32 fh = zdev->fh;
723 int cc, rc = 0;
724
725 cc = clp_disable_fh(zdev, &fh);
726 if (!cc) {
727 zpci_update_fh(zdev, fh);
728 } else if (cc == CLP_RC_SETPCIFN_ALRDY) {
729 pr_info("Disabling PCI function %08x had no effect as it was already disabled\n",
730 zdev->fid);
731 /* Function is already disabled - update handle */
732 rc = clp_refresh_fh(zdev->fid, &fh);
733 if (!rc) {
734 zpci_update_fh(zdev, fh);
735 rc = -EINVAL;
736 }
737 } else {
738 rc = -EIO;
739 }
740 return rc;
741 }
742 EXPORT_SYMBOL_GPL(zpci_disable_device);
743
744 /**
745 * zpci_hot_reset_device - perform a reset of the given zPCI function
746 * @zdev: the slot which should be reset
747 *
748 * Performs a low level reset of the zPCI function. The reset is low level in
749 * the sense that the zPCI function can be reset without detaching it from the
750 * common PCI subsystem. The reset may be performed while under control of
751 * either DMA or IOMMU APIs in which case the existing DMA/IOMMU translation
752 * table is reinstated at the end of the reset.
753 *
754 * After the reset the functions internal state is reset to an initial state
755 * equivalent to its state during boot when first probing a driver.
756 * Consequently after reset the PCI function requires re-initialization via the
757 * common PCI code including re-enabling IRQs via pci_alloc_irq_vectors()
758 * and enabling the function via e.g. pci_enable_device_flags(). The caller
759 * must guard against concurrent reset attempts.
760 *
761 * In most cases this function should not be called directly but through
762 * pci_reset_function() or pci_reset_bus() which handle the save/restore and
763 * locking - asserted by lockdep.
764 *
765 * Return: 0 on success and an error value otherwise
766 */
zpci_hot_reset_device(struct zpci_dev * zdev)767 int zpci_hot_reset_device(struct zpci_dev *zdev)
768 {
769 int rc;
770
771 lockdep_assert_held(&zdev->state_lock);
772 zpci_dbg(3, "rst fid:%x, fh:%x\n", zdev->fid, zdev->fh);
773 if (zdev_enabled(zdev)) {
774 /* Disables device access, DMAs and IRQs (reset state) */
775 rc = zpci_disable_device(zdev);
776 /*
777 * Due to a z/VM vs LPAR inconsistency in the error state the
778 * FH may indicate an enabled device but disable says the
779 * device is already disabled don't treat it as an error here.
780 */
781 if (rc == -EINVAL)
782 rc = 0;
783 if (rc)
784 return rc;
785 }
786
787 rc = zpci_reenable_device(zdev);
788
789 return rc;
790 }
791
792 /**
793 * zpci_create_device() - Create a new zpci_dev and add it to the zbus
794 * @fid: Function ID of the device to be created
795 * @fh: Current Function Handle of the device to be created
796 * @state: Initial state after creation either Standby or Configured
797 *
798 * Allocates a new struct zpci_dev and queries the platform for its details.
799 * If successful the device can subsequently be added to the zPCI subsystem
800 * using zpci_add_device().
801 *
802 * Returns: the zdev on success or an error pointer otherwise
803 */
zpci_create_device(u32 fid,u32 fh,enum zpci_state state)804 struct zpci_dev *zpci_create_device(u32 fid, u32 fh, enum zpci_state state)
805 {
806 struct zpci_dev *zdev;
807 int rc;
808
809 zdev = kzalloc(sizeof(*zdev), GFP_KERNEL);
810 if (!zdev)
811 return ERR_PTR(-ENOMEM);
812
813 /* FID and Function Handle are the static/dynamic identifiers */
814 zdev->fid = fid;
815 zdev->fh = fh;
816
817 /* Query function properties and update zdev */
818 rc = clp_query_pci_fn(zdev);
819 if (rc)
820 goto error;
821 zdev->state = state;
822
823 mutex_init(&zdev->state_lock);
824 mutex_init(&zdev->fmb_lock);
825 mutex_init(&zdev->kzdev_lock);
826
827 return zdev;
828
829 error:
830 zpci_dbg(0, "crt fid:%x, rc:%d\n", fid, rc);
831 kfree(zdev);
832 return ERR_PTR(rc);
833 }
834
835 /**
836 * zpci_add_device() - Add a previously created zPCI device to the zPCI subsystem
837 * @zdev: The zPCI device to be added
838 *
839 * A struct zpci_dev is added to the zPCI subsystem and to a virtual PCI bus creating
840 * a new one as necessary. A hotplug slot is created and events start to be handled.
841 * If successful from this point on zpci_zdev_get() and zpci_zdev_put() must be used.
842 * If adding the struct zpci_dev fails the device was not added and should be freed.
843 *
844 * Return: 0 on success, or an error code otherwise
845 */
zpci_add_device(struct zpci_dev * zdev)846 int zpci_add_device(struct zpci_dev *zdev)
847 {
848 int rc;
849
850 mutex_lock(&zpci_add_remove_lock);
851 zpci_dbg(1, "add fid:%x, fh:%x, c:%d\n", zdev->fid, zdev->fh, zdev->state);
852 rc = zpci_init_iommu(zdev);
853 if (rc)
854 goto error;
855
856 rc = zpci_bus_device_register(zdev, &pci_root_ops);
857 if (rc)
858 goto error_destroy_iommu;
859
860 kref_init(&zdev->kref);
861 spin_lock(&zpci_list_lock);
862 list_add_tail(&zdev->entry, &zpci_list);
863 spin_unlock(&zpci_list_lock);
864 mutex_unlock(&zpci_add_remove_lock);
865 return 0;
866
867 error_destroy_iommu:
868 zpci_destroy_iommu(zdev);
869 error:
870 zpci_dbg(0, "add fid:%x, rc:%d\n", zdev->fid, rc);
871 mutex_unlock(&zpci_add_remove_lock);
872 return rc;
873 }
874
zpci_is_device_configured(struct zpci_dev * zdev)875 bool zpci_is_device_configured(struct zpci_dev *zdev)
876 {
877 enum zpci_state state = zdev->state;
878
879 return state != ZPCI_FN_STATE_RESERVED &&
880 state != ZPCI_FN_STATE_STANDBY;
881 }
882
883 /**
884 * zpci_scan_configured_device() - Scan a freshly configured zpci_dev
885 * @zdev: The zpci_dev to be configured
886 * @fh: The general function handle supplied by the platform
887 *
888 * Given a device in the configuration state Configured, enables, scans and
889 * adds it to the common code PCI subsystem if possible. If any failure occurs,
890 * the zpci_dev is left disabled.
891 *
892 * Return: 0 on success, or an error code otherwise
893 */
zpci_scan_configured_device(struct zpci_dev * zdev,u32 fh)894 int zpci_scan_configured_device(struct zpci_dev *zdev, u32 fh)
895 {
896 zpci_update_fh(zdev, fh);
897 return zpci_bus_scan_device(zdev);
898 }
899
900 /**
901 * zpci_deconfigure_device() - Deconfigure a zpci_dev
902 * @zdev: The zpci_dev to configure
903 *
904 * Deconfigure a zPCI function that is currently configured and possibly known
905 * to the common code PCI subsystem.
906 * If any failure occurs the device is left as is.
907 *
908 * Return: 0 on success, or an error code otherwise
909 */
zpci_deconfigure_device(struct zpci_dev * zdev)910 int zpci_deconfigure_device(struct zpci_dev *zdev)
911 {
912 int rc;
913
914 lockdep_assert_held(&zdev->state_lock);
915 if (zdev->state != ZPCI_FN_STATE_CONFIGURED)
916 return 0;
917
918 if (zdev->zbus->bus)
919 zpci_bus_remove_device(zdev, false);
920
921 if (zdev_enabled(zdev)) {
922 rc = zpci_disable_device(zdev);
923 if (rc)
924 return rc;
925 }
926
927 rc = sclp_pci_deconfigure(zdev->fid);
928 zpci_dbg(3, "deconf fid:%x, rc:%d\n", zdev->fid, rc);
929 if (rc)
930 return rc;
931 zdev->state = ZPCI_FN_STATE_STANDBY;
932
933 return 0;
934 }
935
936 /**
937 * zpci_device_reserved() - Mark device as reserved
938 * @zdev: the zpci_dev that was reserved
939 *
940 * Handle the case that a given zPCI function was reserved by another system.
941 */
zpci_device_reserved(struct zpci_dev * zdev)942 void zpci_device_reserved(struct zpci_dev *zdev)
943 {
944 lockdep_assert_held(&zdev->state_lock);
945 /* We may declare the device reserved multiple times */
946 if (zdev->state == ZPCI_FN_STATE_RESERVED)
947 return;
948 zdev->state = ZPCI_FN_STATE_RESERVED;
949 zpci_dbg(3, "rsv fid:%x\n", zdev->fid);
950 /*
951 * The underlying device is gone. Allow the zdev to be freed
952 * as soon as all other references are gone by accounting for
953 * the removal as a dropped reference.
954 */
955 zpci_zdev_put(zdev);
956 }
957
zpci_release_device(struct kref * kref)958 void zpci_release_device(struct kref *kref)
959 {
960 struct zpci_dev *zdev = container_of(kref, struct zpci_dev, kref);
961
962 lockdep_assert_held(&zpci_add_remove_lock);
963 WARN_ON(zdev->state != ZPCI_FN_STATE_RESERVED);
964 /*
965 * We already hold zpci_list_lock thanks to kref_put_lock().
966 * This makes sure no new reference can be taken from the list.
967 */
968 list_del(&zdev->entry);
969 spin_unlock(&zpci_list_lock);
970
971 if (zdev->has_hp_slot)
972 zpci_exit_slot(zdev);
973
974 if (zdev->has_resources)
975 zpci_cleanup_bus_resources(zdev);
976
977 zpci_bus_device_unregister(zdev);
978 zpci_destroy_iommu(zdev);
979 zpci_dbg(3, "rem fid:%x\n", zdev->fid);
980 kfree_rcu(zdev, rcu);
981 }
982
zpci_report_error(struct pci_dev * pdev,struct zpci_report_error_header * report)983 int zpci_report_error(struct pci_dev *pdev,
984 struct zpci_report_error_header *report)
985 {
986 struct zpci_dev *zdev = to_zpci(pdev);
987
988 return sclp_pci_report(report, zdev->fh, zdev->fid);
989 }
990 EXPORT_SYMBOL(zpci_report_error);
991
992 /**
993 * zpci_clear_error_state() - Clears the zPCI error state of the device
994 * @zdev: The zdev for which the zPCI error state should be reset
995 *
996 * Clear the zPCI error state of the device. If clearing the zPCI error state
997 * fails the device is left in the error state. In this case it may make sense
998 * to call zpci_io_perm_failure() on the associated pdev if it exists.
999 *
1000 * Returns: 0 on success, -EIO otherwise
1001 */
zpci_clear_error_state(struct zpci_dev * zdev)1002 int zpci_clear_error_state(struct zpci_dev *zdev)
1003 {
1004 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_ERROR);
1005 struct zpci_fib fib = {0};
1006 u8 status;
1007 int cc;
1008
1009 cc = zpci_mod_fc(req, &fib, &status);
1010 if (cc) {
1011 zpci_dbg(3, "ces fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1012 return -EIO;
1013 }
1014
1015 return 0;
1016 }
1017
1018 /**
1019 * zpci_reset_load_store_blocked() - Re-enables L/S from error state
1020 * @zdev: The zdev for which to unblock load/store access
1021 *
1022 * Re-enables load/store access for a PCI function in the error state while
1023 * keeping DMA blocked. In this state drivers can poke MMIO space to determine
1024 * if error recovery is possible while catching any rogue DMA access from the
1025 * device.
1026 *
1027 * Returns: 0 on success, -EIO otherwise
1028 */
zpci_reset_load_store_blocked(struct zpci_dev * zdev)1029 int zpci_reset_load_store_blocked(struct zpci_dev *zdev)
1030 {
1031 u64 req = ZPCI_CREATE_REQ(zdev->fh, 0, ZPCI_MOD_FC_RESET_BLOCK);
1032 struct zpci_fib fib = {0};
1033 u8 status;
1034 int cc;
1035
1036 cc = zpci_mod_fc(req, &fib, &status);
1037 if (cc) {
1038 zpci_dbg(3, "rls fid:%x, cc:%d, status:%x\n", zdev->fid, cc, status);
1039 return -EIO;
1040 }
1041
1042 return 0;
1043 }
1044
zpci_mem_init(void)1045 static int zpci_mem_init(void)
1046 {
1047 BUILD_BUG_ON(!is_power_of_2(__alignof__(struct zpci_fmb)) ||
1048 __alignof__(struct zpci_fmb) < sizeof(struct zpci_fmb));
1049
1050 zdev_fmb_cache = kmem_cache_create("PCI_FMB_cache", sizeof(struct zpci_fmb),
1051 __alignof__(struct zpci_fmb), 0, NULL);
1052 if (!zdev_fmb_cache)
1053 goto error_fmb;
1054
1055 zpci_iomap_start = kcalloc(ZPCI_IOMAP_ENTRIES,
1056 sizeof(*zpci_iomap_start), GFP_KERNEL);
1057 if (!zpci_iomap_start)
1058 goto error_iomap;
1059
1060 zpci_iomap_bitmap = kcalloc(BITS_TO_LONGS(ZPCI_IOMAP_ENTRIES),
1061 sizeof(*zpci_iomap_bitmap), GFP_KERNEL);
1062 if (!zpci_iomap_bitmap)
1063 goto error_iomap_bitmap;
1064
1065 if (static_branch_likely(&have_mio))
1066 clp_setup_writeback_mio();
1067
1068 return 0;
1069 error_iomap_bitmap:
1070 kfree(zpci_iomap_start);
1071 error_iomap:
1072 kmem_cache_destroy(zdev_fmb_cache);
1073 error_fmb:
1074 return -ENOMEM;
1075 }
1076
zpci_mem_exit(void)1077 static void zpci_mem_exit(void)
1078 {
1079 kfree(zpci_iomap_bitmap);
1080 kfree(zpci_iomap_start);
1081 kmem_cache_destroy(zdev_fmb_cache);
1082 }
1083
1084 static unsigned int s390_pci_probe __initdata = 1;
1085 unsigned int s390_pci_force_floating __initdata;
1086 static unsigned int s390_pci_initialized;
1087
pcibios_setup(char * str)1088 char * __init pcibios_setup(char *str)
1089 {
1090 if (!strcmp(str, "off")) {
1091 s390_pci_probe = 0;
1092 return NULL;
1093 }
1094 if (!strcmp(str, "nomio")) {
1095 clear_machine_feature(MFEATURE_PCI_MIO);
1096 return NULL;
1097 }
1098 if (!strcmp(str, "force_floating")) {
1099 s390_pci_force_floating = 1;
1100 return NULL;
1101 }
1102 if (!strcmp(str, "norid")) {
1103 s390_pci_no_rid = 1;
1104 return NULL;
1105 }
1106 return str;
1107 }
1108
zpci_is_enabled(void)1109 bool zpci_is_enabled(void)
1110 {
1111 return s390_pci_initialized;
1112 }
1113
zpci_cmp_rid(void * priv,const struct list_head * a,const struct list_head * b)1114 static int zpci_cmp_rid(void *priv, const struct list_head *a,
1115 const struct list_head *b)
1116 {
1117 struct zpci_dev *za = container_of(a, struct zpci_dev, entry);
1118 struct zpci_dev *zb = container_of(b, struct zpci_dev, entry);
1119
1120 /*
1121 * PCI functions without RID available maintain original order
1122 * between themselves but sort before those with RID.
1123 */
1124 if (za->rid == zb->rid)
1125 return za->rid_available > zb->rid_available;
1126 /*
1127 * PCI functions with RID sort by RID ascending.
1128 */
1129 return za->rid > zb->rid;
1130 }
1131
zpci_add_devices(struct list_head * scan_list)1132 static void zpci_add_devices(struct list_head *scan_list)
1133 {
1134 struct zpci_dev *zdev, *tmp;
1135
1136 list_sort(NULL, scan_list, &zpci_cmp_rid);
1137 list_for_each_entry_safe(zdev, tmp, scan_list, entry) {
1138 list_del_init(&zdev->entry);
1139 if (zpci_add_device(zdev))
1140 kfree(zdev);
1141 }
1142 }
1143
zpci_scan_devices(void)1144 int zpci_scan_devices(void)
1145 {
1146 LIST_HEAD(scan_list);
1147 int rc;
1148
1149 rc = clp_scan_pci_devices(&scan_list);
1150 if (rc)
1151 return rc;
1152
1153 zpci_add_devices(&scan_list);
1154 zpci_bus_scan_busses();
1155 return 0;
1156 }
1157
pci_base_init(void)1158 static int __init pci_base_init(void)
1159 {
1160 int rc;
1161
1162 if (!s390_pci_probe)
1163 return 0;
1164
1165 if (!test_facility(69) || !test_facility(71)) {
1166 pr_info("PCI is not supported because CPU facilities 69 or 71 are not available\n");
1167 return 0;
1168 }
1169
1170 if (test_machine_feature(MFEATURE_PCI_MIO)) {
1171 static_branch_enable(&have_mio);
1172 system_ctl_set_bit(2, CR2_MIO_ADDRESSING_BIT);
1173 }
1174
1175 rc = zpci_debug_init();
1176 if (rc)
1177 goto out;
1178
1179 rc = zpci_mem_init();
1180 if (rc)
1181 goto out_mem;
1182
1183 rc = zpci_irq_init();
1184 if (rc)
1185 goto out_irq;
1186
1187 rc = zpci_scan_devices();
1188 if (rc)
1189 goto out_find;
1190
1191 s390_pci_initialized = 1;
1192 return 0;
1193
1194 out_find:
1195 zpci_irq_exit();
1196 out_irq:
1197 zpci_mem_exit();
1198 out_mem:
1199 zpci_debug_exit();
1200 out:
1201 return rc;
1202 }
1203 subsys_initcall_sync(pci_base_init);
1204