1 /* ZD1211 USB-WLAN driver for Linux
2  *
3  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22 
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/usb.h>
27 #include <linux/jiffies.h>
28 #include <net/ieee80211_radiotap.h>
29 
30 #include "zd_def.h"
31 #include "zd_chip.h"
32 #include "zd_mac.h"
33 #include "zd_rf.h"
34 
35 struct zd_reg_alpha2_map {
36 	u32 reg;
37 	char alpha2[2];
38 };
39 
40 static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 	{ ZD_REGDOMAIN_FCC, "US" },
42 	{ ZD_REGDOMAIN_IC, "CA" },
43 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 	{ ZD_REGDOMAIN_JAPAN, "JP" },
45 	{ ZD_REGDOMAIN_JAPAN_2, "JP" },
46 	{ ZD_REGDOMAIN_JAPAN_3, "JP" },
47 	{ ZD_REGDOMAIN_SPAIN, "ES" },
48 	{ ZD_REGDOMAIN_FRANCE, "FR" },
49 };
50 
51 /* This table contains the hardware specific values for the modulation rates. */
52 static const struct ieee80211_rate zd_rates[] = {
53 	{ .bitrate = 10,
54 	  .hw_value = ZD_CCK_RATE_1M, },
55 	{ .bitrate = 20,
56 	  .hw_value = ZD_CCK_RATE_2M,
57 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
58 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
59 	{ .bitrate = 55,
60 	  .hw_value = ZD_CCK_RATE_5_5M,
61 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
62 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
63 	{ .bitrate = 110,
64 	  .hw_value = ZD_CCK_RATE_11M,
65 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
66 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
67 	{ .bitrate = 60,
68 	  .hw_value = ZD_OFDM_RATE_6M,
69 	  .flags = 0 },
70 	{ .bitrate = 90,
71 	  .hw_value = ZD_OFDM_RATE_9M,
72 	  .flags = 0 },
73 	{ .bitrate = 120,
74 	  .hw_value = ZD_OFDM_RATE_12M,
75 	  .flags = 0 },
76 	{ .bitrate = 180,
77 	  .hw_value = ZD_OFDM_RATE_18M,
78 	  .flags = 0 },
79 	{ .bitrate = 240,
80 	  .hw_value = ZD_OFDM_RATE_24M,
81 	  .flags = 0 },
82 	{ .bitrate = 360,
83 	  .hw_value = ZD_OFDM_RATE_36M,
84 	  .flags = 0 },
85 	{ .bitrate = 480,
86 	  .hw_value = ZD_OFDM_RATE_48M,
87 	  .flags = 0 },
88 	{ .bitrate = 540,
89 	  .hw_value = ZD_OFDM_RATE_54M,
90 	  .flags = 0 },
91 };
92 
93 /*
94  * Zydas retry rates table. Each line is listed in the same order as
95  * in zd_rates[] and contains all the rate used when a packet is sent
96  * starting with a given rates. Let's consider an example :
97  *
98  * "11 Mbits : 4, 3, 2, 1, 0" means :
99  * - packet is sent using 4 different rates
100  * - 1st rate is index 3 (ie 11 Mbits)
101  * - 2nd rate is index 2 (ie 5.5 Mbits)
102  * - 3rd rate is index 1 (ie 2 Mbits)
103  * - 4th rate is index 0 (ie 1 Mbits)
104  */
105 
106 static const struct tx_retry_rate zd_retry_rates[] = {
107 	{ /*  1 Mbits */	1, { 0 }},
108 	{ /*  2 Mbits */	2, { 1,  0 }},
109 	{ /*  5.5 Mbits */	3, { 2,  1, 0 }},
110 	{ /* 11 Mbits */	4, { 3,  2, 1, 0 }},
111 	{ /*  6 Mbits */	5, { 4,  3, 2, 1, 0 }},
112 	{ /*  9 Mbits */	6, { 5,  4, 3, 2, 1, 0}},
113 	{ /* 12 Mbits */	5, { 6,  3, 2, 1, 0 }},
114 	{ /* 18 Mbits */	6, { 7,  6, 3, 2, 1, 0 }},
115 	{ /* 24 Mbits */	6, { 8,  6, 3, 2, 1, 0 }},
116 	{ /* 36 Mbits */	7, { 9,  8, 6, 3, 2, 1, 0 }},
117 	{ /* 48 Mbits */	8, {10,  9, 8, 6, 3, 2, 1, 0 }},
118 	{ /* 54 Mbits */	9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
119 };
120 
121 static const struct ieee80211_channel zd_channels[] = {
122 	{ .center_freq = 2412, .hw_value = 1 },
123 	{ .center_freq = 2417, .hw_value = 2 },
124 	{ .center_freq = 2422, .hw_value = 3 },
125 	{ .center_freq = 2427, .hw_value = 4 },
126 	{ .center_freq = 2432, .hw_value = 5 },
127 	{ .center_freq = 2437, .hw_value = 6 },
128 	{ .center_freq = 2442, .hw_value = 7 },
129 	{ .center_freq = 2447, .hw_value = 8 },
130 	{ .center_freq = 2452, .hw_value = 9 },
131 	{ .center_freq = 2457, .hw_value = 10 },
132 	{ .center_freq = 2462, .hw_value = 11 },
133 	{ .center_freq = 2467, .hw_value = 12 },
134 	{ .center_freq = 2472, .hw_value = 13 },
135 	{ .center_freq = 2484, .hw_value = 14 },
136 };
137 
138 static void housekeeping_init(struct zd_mac *mac);
139 static void housekeeping_enable(struct zd_mac *mac);
140 static void housekeeping_disable(struct zd_mac *mac);
141 static void beacon_init(struct zd_mac *mac);
142 static void beacon_enable(struct zd_mac *mac);
143 static void beacon_disable(struct zd_mac *mac);
144 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble);
145 static int zd_mac_config_beacon(struct ieee80211_hw *hw,
146 				struct sk_buff *beacon, bool in_intr);
147 
zd_reg2alpha2(u8 regdomain,char * alpha2)148 static int zd_reg2alpha2(u8 regdomain, char *alpha2)
149 {
150 	unsigned int i;
151 	struct zd_reg_alpha2_map *reg_map;
152 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
153 		reg_map = &reg_alpha2_map[i];
154 		if (regdomain == reg_map->reg) {
155 			alpha2[0] = reg_map->alpha2[0];
156 			alpha2[1] = reg_map->alpha2[1];
157 			return 0;
158 		}
159 	}
160 	return 1;
161 }
162 
zd_check_signal(struct ieee80211_hw * hw,int signal)163 static int zd_check_signal(struct ieee80211_hw *hw, int signal)
164 {
165 	struct zd_mac *mac = zd_hw_mac(hw);
166 
167 	dev_dbg_f_cond(zd_mac_dev(mac), signal < 0 || signal > 100,
168 			"%s: signal value from device not in range 0..100, "
169 			"but %d.\n", __func__, signal);
170 
171 	if (signal < 0)
172 		signal = 0;
173 	else if (signal > 100)
174 		signal = 100;
175 
176 	return signal;
177 }
178 
zd_mac_preinit_hw(struct ieee80211_hw * hw)179 int zd_mac_preinit_hw(struct ieee80211_hw *hw)
180 {
181 	int r;
182 	u8 addr[ETH_ALEN];
183 	struct zd_mac *mac = zd_hw_mac(hw);
184 
185 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
186 	if (r)
187 		return r;
188 
189 	SET_IEEE80211_PERM_ADDR(hw, addr);
190 
191 	return 0;
192 }
193 
zd_mac_init_hw(struct ieee80211_hw * hw)194 int zd_mac_init_hw(struct ieee80211_hw *hw)
195 {
196 	int r;
197 	struct zd_mac *mac = zd_hw_mac(hw);
198 	struct zd_chip *chip = &mac->chip;
199 	char alpha2[2];
200 	u8 default_regdomain;
201 
202 	r = zd_chip_enable_int(chip);
203 	if (r)
204 		goto out;
205 	r = zd_chip_init_hw(chip);
206 	if (r)
207 		goto disable_int;
208 
209 	ZD_ASSERT(!irqs_disabled());
210 
211 	r = zd_read_regdomain(chip, &default_regdomain);
212 	if (r)
213 		goto disable_int;
214 	spin_lock_irq(&mac->lock);
215 	mac->regdomain = mac->default_regdomain = default_regdomain;
216 	spin_unlock_irq(&mac->lock);
217 
218 	/* We must inform the device that we are doing encryption/decryption in
219 	 * software at the moment. */
220 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
221 	if (r)
222 		goto disable_int;
223 
224 	r = zd_reg2alpha2(mac->regdomain, alpha2);
225 	if (r)
226 		goto disable_int;
227 
228 	r = regulatory_hint(hw->wiphy, alpha2);
229 disable_int:
230 	zd_chip_disable_int(chip);
231 out:
232 	return r;
233 }
234 
zd_mac_clear(struct zd_mac * mac)235 void zd_mac_clear(struct zd_mac *mac)
236 {
237 	flush_workqueue(zd_workqueue);
238 	zd_chip_clear(&mac->chip);
239 	ZD_ASSERT(!spin_is_locked(&mac->lock));
240 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
241 }
242 
set_rx_filter(struct zd_mac * mac)243 static int set_rx_filter(struct zd_mac *mac)
244 {
245 	unsigned long flags;
246 	u32 filter = STA_RX_FILTER;
247 
248 	spin_lock_irqsave(&mac->lock, flags);
249 	if (mac->pass_ctrl)
250 		filter |= RX_FILTER_CTRL;
251 	spin_unlock_irqrestore(&mac->lock, flags);
252 
253 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
254 }
255 
set_mac_and_bssid(struct zd_mac * mac)256 static int set_mac_and_bssid(struct zd_mac *mac)
257 {
258 	int r;
259 
260 	if (!mac->vif)
261 		return -1;
262 
263 	r = zd_write_mac_addr(&mac->chip, mac->vif->addr);
264 	if (r)
265 		return r;
266 
267 	/* Vendor driver after setting MAC either sets BSSID for AP or
268 	 * filter for other modes.
269 	 */
270 	if (mac->type != NL80211_IFTYPE_AP)
271 		return set_rx_filter(mac);
272 	else
273 		return zd_write_bssid(&mac->chip, mac->vif->addr);
274 }
275 
set_mc_hash(struct zd_mac * mac)276 static int set_mc_hash(struct zd_mac *mac)
277 {
278 	struct zd_mc_hash hash;
279 	zd_mc_clear(&hash);
280 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
281 }
282 
zd_op_start(struct ieee80211_hw * hw)283 int zd_op_start(struct ieee80211_hw *hw)
284 {
285 	struct zd_mac *mac = zd_hw_mac(hw);
286 	struct zd_chip *chip = &mac->chip;
287 	struct zd_usb *usb = &chip->usb;
288 	int r;
289 
290 	if (!usb->initialized) {
291 		r = zd_usb_init_hw(usb);
292 		if (r)
293 			goto out;
294 	}
295 
296 	r = zd_chip_enable_int(chip);
297 	if (r < 0)
298 		goto out;
299 
300 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
301 	if (r < 0)
302 		goto disable_int;
303 	r = set_rx_filter(mac);
304 	if (r)
305 		goto disable_int;
306 	r = set_mc_hash(mac);
307 	if (r)
308 		goto disable_int;
309 	r = zd_chip_switch_radio_on(chip);
310 	if (r < 0)
311 		goto disable_int;
312 	r = zd_chip_enable_rxtx(chip);
313 	if (r < 0)
314 		goto disable_radio;
315 	r = zd_chip_enable_hwint(chip);
316 	if (r < 0)
317 		goto disable_rxtx;
318 
319 	housekeeping_enable(mac);
320 	beacon_enable(mac);
321 	set_bit(ZD_DEVICE_RUNNING, &mac->flags);
322 	return 0;
323 disable_rxtx:
324 	zd_chip_disable_rxtx(chip);
325 disable_radio:
326 	zd_chip_switch_radio_off(chip);
327 disable_int:
328 	zd_chip_disable_int(chip);
329 out:
330 	return r;
331 }
332 
zd_op_stop(struct ieee80211_hw * hw)333 void zd_op_stop(struct ieee80211_hw *hw)
334 {
335 	struct zd_mac *mac = zd_hw_mac(hw);
336 	struct zd_chip *chip = &mac->chip;
337 	struct sk_buff *skb;
338 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
339 
340 	clear_bit(ZD_DEVICE_RUNNING, &mac->flags);
341 
342 	/* The order here deliberately is a little different from the open()
343 	 * method, since we need to make sure there is no opportunity for RX
344 	 * frames to be processed by mac80211 after we have stopped it.
345 	 */
346 
347 	zd_chip_disable_rxtx(chip);
348 	beacon_disable(mac);
349 	housekeeping_disable(mac);
350 	flush_workqueue(zd_workqueue);
351 
352 	zd_chip_disable_hwint(chip);
353 	zd_chip_switch_radio_off(chip);
354 	zd_chip_disable_int(chip);
355 
356 
357 	while ((skb = skb_dequeue(ack_wait_queue)))
358 		dev_kfree_skb_any(skb);
359 }
360 
zd_restore_settings(struct zd_mac * mac)361 int zd_restore_settings(struct zd_mac *mac)
362 {
363 	struct sk_buff *beacon;
364 	struct zd_mc_hash multicast_hash;
365 	unsigned int short_preamble;
366 	int r, beacon_interval, beacon_period;
367 	u8 channel;
368 
369 	dev_dbg_f(zd_mac_dev(mac), "\n");
370 
371 	spin_lock_irq(&mac->lock);
372 	multicast_hash = mac->multicast_hash;
373 	short_preamble = mac->short_preamble;
374 	beacon_interval = mac->beacon.interval;
375 	beacon_period = mac->beacon.period;
376 	channel = mac->channel;
377 	spin_unlock_irq(&mac->lock);
378 
379 	r = set_mac_and_bssid(mac);
380 	if (r < 0) {
381 		dev_dbg_f(zd_mac_dev(mac), "set_mac_and_bssid failed, %d\n", r);
382 		return r;
383 	}
384 
385 	r = zd_chip_set_channel(&mac->chip, channel);
386 	if (r < 0) {
387 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_set_channel failed, %d\n",
388 			  r);
389 		return r;
390 	}
391 
392 	set_rts_cts(mac, short_preamble);
393 
394 	r = zd_chip_set_multicast_hash(&mac->chip, &multicast_hash);
395 	if (r < 0) {
396 		dev_dbg_f(zd_mac_dev(mac),
397 			  "zd_chip_set_multicast_hash failed, %d\n", r);
398 		return r;
399 	}
400 
401 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
402 	    mac->type == NL80211_IFTYPE_ADHOC ||
403 	    mac->type == NL80211_IFTYPE_AP) {
404 		if (mac->vif != NULL) {
405 			beacon = ieee80211_beacon_get(mac->hw, mac->vif);
406 			if (beacon)
407 				zd_mac_config_beacon(mac->hw, beacon, false);
408 		}
409 
410 		zd_set_beacon_interval(&mac->chip, beacon_interval,
411 					beacon_period, mac->type);
412 
413 		spin_lock_irq(&mac->lock);
414 		mac->beacon.last_update = jiffies;
415 		spin_unlock_irq(&mac->lock);
416 	}
417 
418 	return 0;
419 }
420 
421 /**
422  * zd_mac_tx_status - reports tx status of a packet if required
423  * @hw - a &struct ieee80211_hw pointer
424  * @skb - a sk-buffer
425  * @flags: extra flags to set in the TX status info
426  * @ackssi: ACK signal strength
427  * @success - True for successful transmission of the frame
428  *
429  * This information calls ieee80211_tx_status_irqsafe() if required by the
430  * control information. It copies the control information into the status
431  * information.
432  *
433  * If no status information has been requested, the skb is freed.
434  */
zd_mac_tx_status(struct ieee80211_hw * hw,struct sk_buff * skb,int ackssi,struct tx_status * tx_status)435 static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
436 		      int ackssi, struct tx_status *tx_status)
437 {
438 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
439 	int i;
440 	int success = 1, retry = 1;
441 	int first_idx;
442 	const struct tx_retry_rate *retries;
443 
444 	ieee80211_tx_info_clear_status(info);
445 
446 	if (tx_status) {
447 		success = !tx_status->failure;
448 		retry = tx_status->retry + success;
449 	}
450 
451 	if (success) {
452 		/* success */
453 		info->flags |= IEEE80211_TX_STAT_ACK;
454 	} else {
455 		/* failure */
456 		info->flags &= ~IEEE80211_TX_STAT_ACK;
457 	}
458 
459 	first_idx = info->status.rates[0].idx;
460 	ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
461 	retries = &zd_retry_rates[first_idx];
462 	ZD_ASSERT(1 <= retry && retry <= retries->count);
463 
464 	info->status.rates[0].idx = retries->rate[0];
465 	info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
466 
467 	for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
468 		info->status.rates[i].idx = retries->rate[i];
469 		info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
470 	}
471 	for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
472 		info->status.rates[i].idx = retries->rate[retry - 1];
473 		info->status.rates[i].count = 1; // (success ? 1:2);
474 	}
475 	if (i<IEEE80211_TX_MAX_RATES)
476 		info->status.rates[i].idx = -1; /* terminate */
477 
478 	info->status.ack_signal = zd_check_signal(hw, ackssi);
479 	ieee80211_tx_status_irqsafe(hw, skb);
480 }
481 
482 /**
483  * zd_mac_tx_failed - callback for failed frames
484  * @dev: the mac80211 wireless device
485  *
486  * This function is called if a frame couldn't be successfully
487  * transferred. The first frame from the tx queue, will be selected and
488  * reported as error to the upper layers.
489  */
zd_mac_tx_failed(struct urb * urb)490 void zd_mac_tx_failed(struct urb *urb)
491 {
492 	struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
493 	struct zd_mac *mac = zd_hw_mac(hw);
494 	struct sk_buff_head *q = &mac->ack_wait_queue;
495 	struct sk_buff *skb;
496 	struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
497 	unsigned long flags;
498 	int success = !tx_status->failure;
499 	int retry = tx_status->retry + success;
500 	int found = 0;
501 	int i, position = 0;
502 
503 	q = &mac->ack_wait_queue;
504 	spin_lock_irqsave(&q->lock, flags);
505 
506 	skb_queue_walk(q, skb) {
507 		struct ieee80211_hdr *tx_hdr;
508 		struct ieee80211_tx_info *info;
509 		int first_idx, final_idx;
510 		const struct tx_retry_rate *retries;
511 		u8 final_rate;
512 
513 		position ++;
514 
515 		/* if the hardware reports a failure and we had a 802.11 ACK
516 		 * pending, then we skip the first skb when searching for a
517 		 * matching frame */
518 		if (tx_status->failure && mac->ack_pending &&
519 		    skb_queue_is_first(q, skb)) {
520 			continue;
521 		}
522 
523 		tx_hdr = (struct ieee80211_hdr *)skb->data;
524 
525 		/* we skip all frames not matching the reported destination */
526 		if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
527 			continue;
528 		}
529 
530 		/* we skip all frames not matching the reported final rate */
531 
532 		info = IEEE80211_SKB_CB(skb);
533 		first_idx = info->status.rates[0].idx;
534 		ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
535 		retries = &zd_retry_rates[first_idx];
536 		if (retry <= 0 || retry > retries->count)
537 			continue;
538 
539 		final_idx = retries->rate[retry - 1];
540 		final_rate = zd_rates[final_idx].hw_value;
541 
542 		if (final_rate != tx_status->rate) {
543 			continue;
544 		}
545 
546 		found = 1;
547 		break;
548 	}
549 
550 	if (found) {
551 		for (i=1; i<=position; i++) {
552 			skb = __skb_dequeue(q);
553 			zd_mac_tx_status(hw, skb,
554 					 mac->ack_pending ? mac->ack_signal : 0,
555 					 i == position ? tx_status : NULL);
556 			mac->ack_pending = 0;
557 		}
558 	}
559 
560 	spin_unlock_irqrestore(&q->lock, flags);
561 }
562 
563 /**
564  * zd_mac_tx_to_dev - callback for USB layer
565  * @skb: a &sk_buff pointer
566  * @error: error value, 0 if transmission successful
567  *
568  * Informs the MAC layer that the frame has successfully transferred to the
569  * device. If an ACK is required and the transfer to the device has been
570  * successful, the packets are put on the @ack_wait_queue with
571  * the control set removed.
572  */
zd_mac_tx_to_dev(struct sk_buff * skb,int error)573 void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
574 {
575 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
576 	struct ieee80211_hw *hw = info->rate_driver_data[0];
577 	struct zd_mac *mac = zd_hw_mac(hw);
578 
579 	ieee80211_tx_info_clear_status(info);
580 
581 	skb_pull(skb, sizeof(struct zd_ctrlset));
582 	if (unlikely(error ||
583 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
584 		/*
585 		 * FIXME : do we need to fill in anything ?
586 		 */
587 		ieee80211_tx_status_irqsafe(hw, skb);
588 	} else {
589 		struct sk_buff_head *q = &mac->ack_wait_queue;
590 
591 		skb_queue_tail(q, skb);
592 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
593 			zd_mac_tx_status(hw, skb_dequeue(q),
594 					 mac->ack_pending ? mac->ack_signal : 0,
595 					 NULL);
596 			mac->ack_pending = 0;
597 		}
598 	}
599 }
600 
zd_calc_tx_length_us(u8 * service,u8 zd_rate,u16 tx_length)601 static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
602 {
603 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
604 	 * the zd-rate values.
605 	 */
606 	static const u8 rate_divisor[] = {
607 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
608 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
609 		/* Bits must be doubled. */
610 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
611 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
612 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
613 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
614 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
615 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
616 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
617 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
618 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
619 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
620 	};
621 
622 	u32 bits = (u32)tx_length * 8;
623 	u32 divisor;
624 
625 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
626 	if (divisor == 0)
627 		return -EINVAL;
628 
629 	switch (zd_rate) {
630 	case ZD_CCK_RATE_5_5M:
631 		bits = (2*bits) + 10; /* round up to the next integer */
632 		break;
633 	case ZD_CCK_RATE_11M:
634 		if (service) {
635 			u32 t = bits % 11;
636 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
637 			if (0 < t && t <= 3) {
638 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
639 			}
640 		}
641 		bits += 10; /* round up to the next integer */
642 		break;
643 	}
644 
645 	return bits/divisor;
646 }
647 
cs_set_control(struct zd_mac * mac,struct zd_ctrlset * cs,struct ieee80211_hdr * header,struct ieee80211_tx_info * info)648 static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
649 	                   struct ieee80211_hdr *header,
650 	                   struct ieee80211_tx_info *info)
651 {
652 	/*
653 	 * CONTROL TODO:
654 	 * - if backoff needed, enable bit 0
655 	 * - if burst (backoff not needed) disable bit 0
656 	 */
657 
658 	cs->control = 0;
659 
660 	/* First fragment */
661 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
662 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
663 
664 	/* No ACK expected (multicast, etc.) */
665 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
666 		cs->control |= ZD_CS_NO_ACK;
667 
668 	/* PS-POLL */
669 	if (ieee80211_is_pspoll(header->frame_control))
670 		cs->control |= ZD_CS_PS_POLL_FRAME;
671 
672 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
673 		cs->control |= ZD_CS_RTS;
674 
675 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
676 		cs->control |= ZD_CS_SELF_CTS;
677 
678 	/* FIXME: Management frame? */
679 }
680 
zd_mac_match_cur_beacon(struct zd_mac * mac,struct sk_buff * beacon)681 static bool zd_mac_match_cur_beacon(struct zd_mac *mac, struct sk_buff *beacon)
682 {
683 	if (!mac->beacon.cur_beacon)
684 		return false;
685 
686 	if (mac->beacon.cur_beacon->len != beacon->len)
687 		return false;
688 
689 	return !memcmp(beacon->data, mac->beacon.cur_beacon->data, beacon->len);
690 }
691 
zd_mac_free_cur_beacon_locked(struct zd_mac * mac)692 static void zd_mac_free_cur_beacon_locked(struct zd_mac *mac)
693 {
694 	ZD_ASSERT(mutex_is_locked(&mac->chip.mutex));
695 
696 	kfree_skb(mac->beacon.cur_beacon);
697 	mac->beacon.cur_beacon = NULL;
698 }
699 
zd_mac_free_cur_beacon(struct zd_mac * mac)700 static void zd_mac_free_cur_beacon(struct zd_mac *mac)
701 {
702 	mutex_lock(&mac->chip.mutex);
703 	zd_mac_free_cur_beacon_locked(mac);
704 	mutex_unlock(&mac->chip.mutex);
705 }
706 
zd_mac_config_beacon(struct ieee80211_hw * hw,struct sk_buff * beacon,bool in_intr)707 static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon,
708 				bool in_intr)
709 {
710 	struct zd_mac *mac = zd_hw_mac(hw);
711 	int r, ret, num_cmds, req_pos = 0;
712 	u32 tmp, j = 0;
713 	/* 4 more bytes for tail CRC */
714 	u32 full_len = beacon->len + 4;
715 	unsigned long end_jiffies, message_jiffies;
716 	struct zd_ioreq32 *ioreqs;
717 
718 	mutex_lock(&mac->chip.mutex);
719 
720 	/* Check if hw already has this beacon. */
721 	if (zd_mac_match_cur_beacon(mac, beacon)) {
722 		r = 0;
723 		goto out_nofree;
724 	}
725 
726 	/* Alloc memory for full beacon write at once. */
727 	num_cmds = 1 + zd_chip_is_zd1211b(&mac->chip) + full_len;
728 	ioreqs = kmalloc(num_cmds * sizeof(struct zd_ioreq32), GFP_KERNEL);
729 	if (!ioreqs) {
730 		r = -ENOMEM;
731 		goto out_nofree;
732 	}
733 
734 	r = zd_iowrite32_locked(&mac->chip, 0, CR_BCN_FIFO_SEMAPHORE);
735 	if (r < 0)
736 		goto out;
737 	r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
738 	if (r < 0)
739 		goto release_sema;
740 	if (in_intr && tmp & 0x2) {
741 		r = -EBUSY;
742 		goto release_sema;
743 	}
744 
745 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
746 	message_jiffies = jiffies + HZ / 10; /*~100ms*/
747 	while (tmp & 0x2) {
748 		r = zd_ioread32_locked(&mac->chip, &tmp, CR_BCN_FIFO_SEMAPHORE);
749 		if (r < 0)
750 			goto release_sema;
751 		if (time_is_before_eq_jiffies(message_jiffies)) {
752 			message_jiffies = jiffies + HZ / 10;
753 			dev_err(zd_mac_dev(mac),
754 					"CR_BCN_FIFO_SEMAPHORE not ready\n");
755 			if (time_is_before_eq_jiffies(end_jiffies))  {
756 				dev_err(zd_mac_dev(mac),
757 						"Giving up beacon config.\n");
758 				r = -ETIMEDOUT;
759 				goto reset_device;
760 			}
761 		}
762 		msleep(20);
763 	}
764 
765 	ioreqs[req_pos].addr = CR_BCN_FIFO;
766 	ioreqs[req_pos].value = full_len - 1;
767 	req_pos++;
768 	if (zd_chip_is_zd1211b(&mac->chip)) {
769 		ioreqs[req_pos].addr = CR_BCN_LENGTH;
770 		ioreqs[req_pos].value = full_len - 1;
771 		req_pos++;
772 	}
773 
774 	for (j = 0 ; j < beacon->len; j++) {
775 		ioreqs[req_pos].addr = CR_BCN_FIFO;
776 		ioreqs[req_pos].value = *((u8 *)(beacon->data + j));
777 		req_pos++;
778 	}
779 
780 	for (j = 0; j < 4; j++) {
781 		ioreqs[req_pos].addr = CR_BCN_FIFO;
782 		ioreqs[req_pos].value = 0x0;
783 		req_pos++;
784 	}
785 
786 	BUG_ON(req_pos != num_cmds);
787 
788 	r = zd_iowrite32a_locked(&mac->chip, ioreqs, num_cmds);
789 
790 release_sema:
791 	/*
792 	 * Try very hard to release device beacon semaphore, as otherwise
793 	 * device/driver can be left in unusable state.
794 	 */
795 	end_jiffies = jiffies + HZ / 2; /*~500ms*/
796 	ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
797 	while (ret < 0) {
798 		if (in_intr || time_is_before_eq_jiffies(end_jiffies)) {
799 			ret = -ETIMEDOUT;
800 			break;
801 		}
802 
803 		msleep(20);
804 		ret = zd_iowrite32_locked(&mac->chip, 1, CR_BCN_FIFO_SEMAPHORE);
805 	}
806 
807 	if (ret < 0)
808 		dev_err(zd_mac_dev(mac), "Could not release "
809 					 "CR_BCN_FIFO_SEMAPHORE!\n");
810 	if (r < 0 || ret < 0) {
811 		if (r >= 0)
812 			r = ret;
813 
814 		/* We don't know if beacon was written successfully or not,
815 		 * so clear current. */
816 		zd_mac_free_cur_beacon_locked(mac);
817 
818 		goto out;
819 	}
820 
821 	/* Beacon has now been written successfully, update current. */
822 	zd_mac_free_cur_beacon_locked(mac);
823 	mac->beacon.cur_beacon = beacon;
824 	beacon = NULL;
825 
826 	/* 802.11b/g 2.4G CCK 1Mb
827 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
828 	 * driver)
829 	 */
830 	r = zd_iowrite32_locked(&mac->chip, 0x00000400 | (full_len << 19),
831 				CR_BCN_PLCP_CFG);
832 out:
833 	kfree(ioreqs);
834 out_nofree:
835 	kfree_skb(beacon);
836 	mutex_unlock(&mac->chip.mutex);
837 
838 	return r;
839 
840 reset_device:
841 	zd_mac_free_cur_beacon_locked(mac);
842 	kfree_skb(beacon);
843 
844 	mutex_unlock(&mac->chip.mutex);
845 	kfree(ioreqs);
846 
847 	/* semaphore stuck, reset device to avoid fw freeze later */
848 	dev_warn(zd_mac_dev(mac), "CR_BCN_FIFO_SEMAPHORE stuck, "
849 				  "reseting device...");
850 	usb_queue_reset_device(mac->chip.usb.intf);
851 
852 	return r;
853 }
854 
fill_ctrlset(struct zd_mac * mac,struct sk_buff * skb)855 static int fill_ctrlset(struct zd_mac *mac,
856 			struct sk_buff *skb)
857 {
858 	int r;
859 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
860 	unsigned int frag_len = skb->len + FCS_LEN;
861 	unsigned int packet_length;
862 	struct ieee80211_rate *txrate;
863 	struct zd_ctrlset *cs = (struct zd_ctrlset *)
864 		skb_push(skb, sizeof(struct zd_ctrlset));
865 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
866 
867 	ZD_ASSERT(frag_len <= 0xffff);
868 
869 	/*
870 	 * Firmware computes the duration itself (for all frames except PSPoll)
871 	 * and needs the field set to 0 at input, otherwise firmware messes up
872 	 * duration_id and sets bits 14 and 15 on.
873 	 */
874 	if (!ieee80211_is_pspoll(hdr->frame_control))
875 		hdr->duration_id = 0;
876 
877 	txrate = ieee80211_get_tx_rate(mac->hw, info);
878 
879 	cs->modulation = txrate->hw_value;
880 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
881 		cs->modulation = txrate->hw_value_short;
882 
883 	cs->tx_length = cpu_to_le16(frag_len);
884 
885 	cs_set_control(mac, cs, hdr, info);
886 
887 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
888 	ZD_ASSERT(packet_length <= 0xffff);
889 	/* ZD1211B: Computing the length difference this way, gives us
890 	 * flexibility to compute the packet length.
891 	 */
892 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
893 			packet_length - frag_len : packet_length);
894 
895 	/*
896 	 * CURRENT LENGTH:
897 	 * - transmit frame length in microseconds
898 	 * - seems to be derived from frame length
899 	 * - see Cal_Us_Service() in zdinlinef.h
900 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
901 	 *  - bTxBurstEnable is never set in the vendor driver
902 	 *
903 	 * SERVICE:
904 	 * - "for PLCP configuration"
905 	 * - always 0 except in some situations at 802.11b 11M
906 	 * - see line 53 of zdinlinef.h
907 	 */
908 	cs->service = 0;
909 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
910 		                 le16_to_cpu(cs->tx_length));
911 	if (r < 0)
912 		return r;
913 	cs->current_length = cpu_to_le16(r);
914 	cs->next_frame_length = 0;
915 
916 	return 0;
917 }
918 
919 /**
920  * zd_op_tx - transmits a network frame to the device
921  *
922  * @dev: mac80211 hardware device
923  * @skb: socket buffer
924  * @control: the control structure
925  *
926  * This function transmit an IEEE 802.11 network frame to the device. The
927  * control block of the skbuff will be initialized. If necessary the incoming
928  * mac80211 queues will be stopped.
929  */
zd_op_tx(struct ieee80211_hw * hw,struct sk_buff * skb)930 static void zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
931 {
932 	struct zd_mac *mac = zd_hw_mac(hw);
933 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
934 	int r;
935 
936 	r = fill_ctrlset(mac, skb);
937 	if (r)
938 		goto fail;
939 
940 	info->rate_driver_data[0] = hw;
941 
942 	r = zd_usb_tx(&mac->chip.usb, skb);
943 	if (r)
944 		goto fail;
945 	return;
946 
947 fail:
948 	dev_kfree_skb(skb);
949 }
950 
951 /**
952  * filter_ack - filters incoming packets for acknowledgements
953  * @dev: the mac80211 device
954  * @rx_hdr: received header
955  * @stats: the status for the received packet
956  *
957  * This functions looks for ACK packets and tries to match them with the
958  * frames in the tx queue. If a match is found the frame will be dequeued and
959  * the upper layers is informed about the successful transmission. If
960  * mac80211 queues have been stopped and the number of frames still to be
961  * transmitted is low the queues will be opened again.
962  *
963  * Returns 1 if the frame was an ACK, 0 if it was ignored.
964  */
filter_ack(struct ieee80211_hw * hw,struct ieee80211_hdr * rx_hdr,struct ieee80211_rx_status * stats)965 static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
966 		      struct ieee80211_rx_status *stats)
967 {
968 	struct zd_mac *mac = zd_hw_mac(hw);
969 	struct sk_buff *skb;
970 	struct sk_buff_head *q;
971 	unsigned long flags;
972 	int found = 0;
973 	int i, position = 0;
974 
975 	if (!ieee80211_is_ack(rx_hdr->frame_control))
976 		return 0;
977 
978 	q = &mac->ack_wait_queue;
979 	spin_lock_irqsave(&q->lock, flags);
980 	skb_queue_walk(q, skb) {
981 		struct ieee80211_hdr *tx_hdr;
982 
983 		position ++;
984 
985 		if (mac->ack_pending && skb_queue_is_first(q, skb))
986 		    continue;
987 
988 		tx_hdr = (struct ieee80211_hdr *)skb->data;
989 		if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
990 		{
991 			found = 1;
992 			break;
993 		}
994 	}
995 
996 	if (found) {
997 		for (i=1; i<position; i++) {
998 			skb = __skb_dequeue(q);
999 			zd_mac_tx_status(hw, skb,
1000 					 mac->ack_pending ? mac->ack_signal : 0,
1001 					 NULL);
1002 			mac->ack_pending = 0;
1003 		}
1004 
1005 		mac->ack_pending = 1;
1006 		mac->ack_signal = stats->signal;
1007 
1008 		/* Prevent pending tx-packet on AP-mode */
1009 		if (mac->type == NL80211_IFTYPE_AP) {
1010 			skb = __skb_dequeue(q);
1011 			zd_mac_tx_status(hw, skb, mac->ack_signal, NULL);
1012 			mac->ack_pending = 0;
1013 		}
1014 	}
1015 
1016 	spin_unlock_irqrestore(&q->lock, flags);
1017 	return 1;
1018 }
1019 
zd_mac_rx(struct ieee80211_hw * hw,const u8 * buffer,unsigned int length)1020 int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
1021 {
1022 	struct zd_mac *mac = zd_hw_mac(hw);
1023 	struct ieee80211_rx_status stats;
1024 	const struct rx_status *status;
1025 	struct sk_buff *skb;
1026 	int bad_frame = 0;
1027 	__le16 fc;
1028 	int need_padding;
1029 	int i;
1030 	u8 rate;
1031 
1032 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
1033 	             FCS_LEN + sizeof(struct rx_status))
1034 		return -EINVAL;
1035 
1036 	memset(&stats, 0, sizeof(stats));
1037 
1038 	/* Note about pass_failed_fcs and pass_ctrl access below:
1039 	 * mac locking intentionally omitted here, as this is the only unlocked
1040 	 * reader and the only writer is configure_filter. Plus, if there were
1041 	 * any races accessing these variables, it wouldn't really matter.
1042 	 * If mac80211 ever provides a way for us to access filter flags
1043 	 * from outside configure_filter, we could improve on this. Also, this
1044 	 * situation may change once we implement some kind of DMA-into-skb
1045 	 * RX path. */
1046 
1047 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
1048 	status = (struct rx_status *)
1049 		(buffer + (length - sizeof(struct rx_status)));
1050 	if (status->frame_status & ZD_RX_ERROR) {
1051 		if (mac->pass_failed_fcs &&
1052 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
1053 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
1054 			bad_frame = 1;
1055 		} else {
1056 			return -EINVAL;
1057 		}
1058 	}
1059 
1060 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
1061 	stats.band = IEEE80211_BAND_2GHZ;
1062 	stats.signal = zd_check_signal(hw, status->signal_strength);
1063 
1064 	rate = zd_rx_rate(buffer, status);
1065 
1066 	/* todo: return index in the big switches in zd_rx_rate instead */
1067 	for (i = 0; i < mac->band.n_bitrates; i++)
1068 		if (rate == mac->band.bitrates[i].hw_value)
1069 			stats.rate_idx = i;
1070 
1071 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
1072 	buffer += ZD_PLCP_HEADER_SIZE;
1073 
1074 	/* Except for bad frames, filter each frame to see if it is an ACK, in
1075 	 * which case our internal TX tracking is updated. Normally we then
1076 	 * bail here as there's no need to pass ACKs on up to the stack, but
1077 	 * there is also the case where the stack has requested us to pass
1078 	 * control frames on up (pass_ctrl) which we must consider. */
1079 	if (!bad_frame &&
1080 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
1081 			&& !mac->pass_ctrl)
1082 		return 0;
1083 
1084 	fc = get_unaligned((__le16*)buffer);
1085 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
1086 
1087 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
1088 	if (skb == NULL)
1089 		return -ENOMEM;
1090 	if (need_padding) {
1091 		/* Make sure the payload data is 4 byte aligned. */
1092 		skb_reserve(skb, 2);
1093 	}
1094 
1095 	/* FIXME : could we avoid this big memcpy ? */
1096 	memcpy(skb_put(skb, length), buffer, length);
1097 
1098 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
1099 	ieee80211_rx_irqsafe(hw, skb);
1100 	return 0;
1101 }
1102 
zd_op_add_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1103 static int zd_op_add_interface(struct ieee80211_hw *hw,
1104 				struct ieee80211_vif *vif)
1105 {
1106 	struct zd_mac *mac = zd_hw_mac(hw);
1107 
1108 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
1109 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
1110 		return -EOPNOTSUPP;
1111 
1112 	switch (vif->type) {
1113 	case NL80211_IFTYPE_MONITOR:
1114 	case NL80211_IFTYPE_MESH_POINT:
1115 	case NL80211_IFTYPE_STATION:
1116 	case NL80211_IFTYPE_ADHOC:
1117 	case NL80211_IFTYPE_AP:
1118 		mac->type = vif->type;
1119 		break;
1120 	default:
1121 		return -EOPNOTSUPP;
1122 	}
1123 
1124 	mac->vif = vif;
1125 
1126 	return set_mac_and_bssid(mac);
1127 }
1128 
zd_op_remove_interface(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1129 static void zd_op_remove_interface(struct ieee80211_hw *hw,
1130 				    struct ieee80211_vif *vif)
1131 {
1132 	struct zd_mac *mac = zd_hw_mac(hw);
1133 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1134 	mac->vif = NULL;
1135 	zd_set_beacon_interval(&mac->chip, 0, 0, NL80211_IFTYPE_UNSPECIFIED);
1136 	zd_write_mac_addr(&mac->chip, NULL);
1137 
1138 	zd_mac_free_cur_beacon(mac);
1139 }
1140 
zd_op_config(struct ieee80211_hw * hw,u32 changed)1141 static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
1142 {
1143 	struct zd_mac *mac = zd_hw_mac(hw);
1144 	struct ieee80211_conf *conf = &hw->conf;
1145 
1146 	spin_lock_irq(&mac->lock);
1147 	mac->channel = conf->channel->hw_value;
1148 	spin_unlock_irq(&mac->lock);
1149 
1150 	return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
1151 }
1152 
zd_beacon_done(struct zd_mac * mac)1153 static void zd_beacon_done(struct zd_mac *mac)
1154 {
1155 	struct sk_buff *skb, *beacon;
1156 
1157 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1158 		return;
1159 	if (!mac->vif || mac->vif->type != NL80211_IFTYPE_AP)
1160 		return;
1161 
1162 	/*
1163 	 * Send out buffered broad- and multicast frames.
1164 	 */
1165 	while (!ieee80211_queue_stopped(mac->hw, 0)) {
1166 		skb = ieee80211_get_buffered_bc(mac->hw, mac->vif);
1167 		if (!skb)
1168 			break;
1169 		zd_op_tx(mac->hw, skb);
1170 	}
1171 
1172 	/*
1173 	 * Fetch next beacon so that tim_count is updated.
1174 	 */
1175 	beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1176 	if (beacon)
1177 		zd_mac_config_beacon(mac->hw, beacon, true);
1178 
1179 	spin_lock_irq(&mac->lock);
1180 	mac->beacon.last_update = jiffies;
1181 	spin_unlock_irq(&mac->lock);
1182 }
1183 
zd_process_intr(struct work_struct * work)1184 static void zd_process_intr(struct work_struct *work)
1185 {
1186 	u16 int_status;
1187 	unsigned long flags;
1188 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
1189 
1190 	spin_lock_irqsave(&mac->lock, flags);
1191 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer + 4));
1192 	spin_unlock_irqrestore(&mac->lock, flags);
1193 
1194 	if (int_status & INT_CFG_NEXT_BCN) {
1195 		/*dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");*/
1196 		zd_beacon_done(mac);
1197 	} else {
1198 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
1199 	}
1200 
1201 	zd_chip_enable_hwint(&mac->chip);
1202 }
1203 
1204 
zd_op_prepare_multicast(struct ieee80211_hw * hw,struct netdev_hw_addr_list * mc_list)1205 static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
1206 				   struct netdev_hw_addr_list *mc_list)
1207 {
1208 	struct zd_mac *mac = zd_hw_mac(hw);
1209 	struct zd_mc_hash hash;
1210 	struct netdev_hw_addr *ha;
1211 
1212 	zd_mc_clear(&hash);
1213 
1214 	netdev_hw_addr_list_for_each(ha, mc_list) {
1215 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", ha->addr);
1216 		zd_mc_add_addr(&hash, ha->addr);
1217 	}
1218 
1219 	return hash.low | ((u64)hash.high << 32);
1220 }
1221 
1222 #define SUPPORTED_FIF_FLAGS \
1223 	(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
1224 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
zd_op_configure_filter(struct ieee80211_hw * hw,unsigned int changed_flags,unsigned int * new_flags,u64 multicast)1225 static void zd_op_configure_filter(struct ieee80211_hw *hw,
1226 			unsigned int changed_flags,
1227 			unsigned int *new_flags,
1228 			u64 multicast)
1229 {
1230 	struct zd_mc_hash hash = {
1231 		.low = multicast,
1232 		.high = multicast >> 32,
1233 	};
1234 	struct zd_mac *mac = zd_hw_mac(hw);
1235 	unsigned long flags;
1236 	int r;
1237 
1238 	/* Only deal with supported flags */
1239 	changed_flags &= SUPPORTED_FIF_FLAGS;
1240 	*new_flags &= SUPPORTED_FIF_FLAGS;
1241 
1242 	/*
1243 	 * If multicast parameter (as returned by zd_op_prepare_multicast)
1244 	 * has changed, no bit in changed_flags is set. To handle this
1245 	 * situation, we do not return if changed_flags is 0. If we do so,
1246 	 * we will have some issue with IPv6 which uses multicast for link
1247 	 * layer address resolution.
1248 	 */
1249 	if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
1250 		zd_mc_add_all(&hash);
1251 
1252 	spin_lock_irqsave(&mac->lock, flags);
1253 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1254 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1255 	mac->multicast_hash = hash;
1256 	spin_unlock_irqrestore(&mac->lock, flags);
1257 
1258 	zd_chip_set_multicast_hash(&mac->chip, &hash);
1259 
1260 	if (changed_flags & FIF_CONTROL) {
1261 		r = set_rx_filter(mac);
1262 		if (r)
1263 			dev_err(zd_mac_dev(mac), "set_rx_filter error %d\n", r);
1264 	}
1265 
1266 	/* no handling required for FIF_OTHER_BSS as we don't currently
1267 	 * do BSSID filtering */
1268 	/* FIXME: in future it would be nice to enable the probe response
1269 	 * filter (so that the driver doesn't see them) until
1270 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1271 	 * have to schedule work to enable prbresp reception, which might
1272 	 * happen too late. For now we'll just listen and forward them all the
1273 	 * time. */
1274 }
1275 
set_rts_cts(struct zd_mac * mac,unsigned int short_preamble)1276 static void set_rts_cts(struct zd_mac *mac, unsigned int short_preamble)
1277 {
1278 	mutex_lock(&mac->chip.mutex);
1279 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1280 	mutex_unlock(&mac->chip.mutex);
1281 }
1282 
zd_op_bss_info_changed(struct ieee80211_hw * hw,struct ieee80211_vif * vif,struct ieee80211_bss_conf * bss_conf,u32 changes)1283 static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1284 				   struct ieee80211_vif *vif,
1285 				   struct ieee80211_bss_conf *bss_conf,
1286 				   u32 changes)
1287 {
1288 	struct zd_mac *mac = zd_hw_mac(hw);
1289 	int associated;
1290 
1291 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1292 
1293 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1294 	    mac->type == NL80211_IFTYPE_ADHOC ||
1295 	    mac->type == NL80211_IFTYPE_AP) {
1296 		associated = true;
1297 		if (changes & BSS_CHANGED_BEACON) {
1298 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1299 
1300 			if (beacon) {
1301 				zd_chip_disable_hwint(&mac->chip);
1302 				zd_mac_config_beacon(hw, beacon, false);
1303 				zd_chip_enable_hwint(&mac->chip);
1304 			}
1305 		}
1306 
1307 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
1308 			u16 interval = 0;
1309 			u8 period = 0;
1310 
1311 			if (bss_conf->enable_beacon) {
1312 				period = bss_conf->dtim_period;
1313 				interval = bss_conf->beacon_int;
1314 			}
1315 
1316 			spin_lock_irq(&mac->lock);
1317 			mac->beacon.period = period;
1318 			mac->beacon.interval = interval;
1319 			mac->beacon.last_update = jiffies;
1320 			spin_unlock_irq(&mac->lock);
1321 
1322 			zd_set_beacon_interval(&mac->chip, interval, period,
1323 					       mac->type);
1324 		}
1325 	} else
1326 		associated = is_valid_ether_addr(bss_conf->bssid);
1327 
1328 	spin_lock_irq(&mac->lock);
1329 	mac->associated = associated;
1330 	spin_unlock_irq(&mac->lock);
1331 
1332 	/* TODO: do hardware bssid filtering */
1333 
1334 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1335 		spin_lock_irq(&mac->lock);
1336 		mac->short_preamble = bss_conf->use_short_preamble;
1337 		spin_unlock_irq(&mac->lock);
1338 
1339 		set_rts_cts(mac, bss_conf->use_short_preamble);
1340 	}
1341 }
1342 
zd_op_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1343 static u64 zd_op_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1344 {
1345 	struct zd_mac *mac = zd_hw_mac(hw);
1346 	return zd_chip_get_tsf(&mac->chip);
1347 }
1348 
1349 static const struct ieee80211_ops zd_ops = {
1350 	.tx			= zd_op_tx,
1351 	.start			= zd_op_start,
1352 	.stop			= zd_op_stop,
1353 	.add_interface		= zd_op_add_interface,
1354 	.remove_interface	= zd_op_remove_interface,
1355 	.config			= zd_op_config,
1356 	.prepare_multicast	= zd_op_prepare_multicast,
1357 	.configure_filter	= zd_op_configure_filter,
1358 	.bss_info_changed	= zd_op_bss_info_changed,
1359 	.get_tsf		= zd_op_get_tsf,
1360 };
1361 
zd_mac_alloc_hw(struct usb_interface * intf)1362 struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1363 {
1364 	struct zd_mac *mac;
1365 	struct ieee80211_hw *hw;
1366 
1367 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1368 	if (!hw) {
1369 		dev_dbg_f(&intf->dev, "out of memory\n");
1370 		return NULL;
1371 	}
1372 
1373 	mac = zd_hw_mac(hw);
1374 
1375 	memset(mac, 0, sizeof(*mac));
1376 	spin_lock_init(&mac->lock);
1377 	mac->hw = hw;
1378 
1379 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
1380 
1381 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1382 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1383 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1384 	mac->band.bitrates = mac->rates;
1385 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
1386 	mac->band.channels = mac->channels;
1387 
1388 	hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1389 
1390 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1391 		    IEEE80211_HW_SIGNAL_UNSPEC |
1392 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
1393 
1394 	hw->wiphy->interface_modes =
1395 		BIT(NL80211_IFTYPE_MESH_POINT) |
1396 		BIT(NL80211_IFTYPE_STATION) |
1397 		BIT(NL80211_IFTYPE_ADHOC) |
1398 		BIT(NL80211_IFTYPE_AP);
1399 
1400 	hw->max_signal = 100;
1401 	hw->queues = 1;
1402 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1403 
1404 	/*
1405 	 * Tell mac80211 that we support multi rate retries
1406 	 */
1407 	hw->max_rates = IEEE80211_TX_MAX_RATES;
1408 	hw->max_rate_tries = 18;	/* 9 rates * 2 retries/rate */
1409 
1410 	skb_queue_head_init(&mac->ack_wait_queue);
1411 	mac->ack_pending = 0;
1412 
1413 	zd_chip_init(&mac->chip, hw, intf);
1414 	housekeeping_init(mac);
1415 	beacon_init(mac);
1416 	INIT_WORK(&mac->process_intr, zd_process_intr);
1417 
1418 	SET_IEEE80211_DEV(hw, &intf->dev);
1419 	return hw;
1420 }
1421 
1422 #define BEACON_WATCHDOG_DELAY round_jiffies_relative(HZ)
1423 
beacon_watchdog_handler(struct work_struct * work)1424 static void beacon_watchdog_handler(struct work_struct *work)
1425 {
1426 	struct zd_mac *mac =
1427 		container_of(work, struct zd_mac, beacon.watchdog_work.work);
1428 	struct sk_buff *beacon;
1429 	unsigned long timeout;
1430 	int interval, period;
1431 
1432 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1433 		goto rearm;
1434 	if (mac->type != NL80211_IFTYPE_AP || !mac->vif)
1435 		goto rearm;
1436 
1437 	spin_lock_irq(&mac->lock);
1438 	interval = mac->beacon.interval;
1439 	period = mac->beacon.period;
1440 	timeout = mac->beacon.last_update +
1441 			msecs_to_jiffies(interval * 1024 / 1000) * 3;
1442 	spin_unlock_irq(&mac->lock);
1443 
1444 	if (interval > 0 && time_is_before_jiffies(timeout)) {
1445 		dev_dbg_f(zd_mac_dev(mac), "beacon interrupt stalled, "
1446 					   "restarting. "
1447 					   "(interval: %d, dtim: %d)\n",
1448 					   interval, period);
1449 
1450 		zd_chip_disable_hwint(&mac->chip);
1451 
1452 		beacon = ieee80211_beacon_get(mac->hw, mac->vif);
1453 		if (beacon) {
1454 			zd_mac_free_cur_beacon(mac);
1455 
1456 			zd_mac_config_beacon(mac->hw, beacon, false);
1457 		}
1458 
1459 		zd_set_beacon_interval(&mac->chip, interval, period, mac->type);
1460 
1461 		zd_chip_enable_hwint(&mac->chip);
1462 
1463 		spin_lock_irq(&mac->lock);
1464 		mac->beacon.last_update = jiffies;
1465 		spin_unlock_irq(&mac->lock);
1466 	}
1467 
1468 rearm:
1469 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1470 			   BEACON_WATCHDOG_DELAY);
1471 }
1472 
beacon_init(struct zd_mac * mac)1473 static void beacon_init(struct zd_mac *mac)
1474 {
1475 	INIT_DELAYED_WORK(&mac->beacon.watchdog_work, beacon_watchdog_handler);
1476 }
1477 
beacon_enable(struct zd_mac * mac)1478 static void beacon_enable(struct zd_mac *mac)
1479 {
1480 	dev_dbg_f(zd_mac_dev(mac), "\n");
1481 
1482 	mac->beacon.last_update = jiffies;
1483 	queue_delayed_work(zd_workqueue, &mac->beacon.watchdog_work,
1484 			   BEACON_WATCHDOG_DELAY);
1485 }
1486 
beacon_disable(struct zd_mac * mac)1487 static void beacon_disable(struct zd_mac *mac)
1488 {
1489 	dev_dbg_f(zd_mac_dev(mac), "\n");
1490 	cancel_delayed_work_sync(&mac->beacon.watchdog_work);
1491 
1492 	zd_mac_free_cur_beacon(mac);
1493 }
1494 
1495 #define LINK_LED_WORK_DELAY HZ
1496 
link_led_handler(struct work_struct * work)1497 static void link_led_handler(struct work_struct *work)
1498 {
1499 	struct zd_mac *mac =
1500 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1501 	struct zd_chip *chip = &mac->chip;
1502 	int is_associated;
1503 	int r;
1504 
1505 	if (!test_bit(ZD_DEVICE_RUNNING, &mac->flags))
1506 		goto requeue;
1507 
1508 	spin_lock_irq(&mac->lock);
1509 	is_associated = mac->associated;
1510 	spin_unlock_irq(&mac->lock);
1511 
1512 	r = zd_chip_control_leds(chip,
1513 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1514 	if (r)
1515 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1516 
1517 requeue:
1518 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1519 		           LINK_LED_WORK_DELAY);
1520 }
1521 
housekeeping_init(struct zd_mac * mac)1522 static void housekeeping_init(struct zd_mac *mac)
1523 {
1524 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1525 }
1526 
housekeeping_enable(struct zd_mac * mac)1527 static void housekeeping_enable(struct zd_mac *mac)
1528 {
1529 	dev_dbg_f(zd_mac_dev(mac), "\n");
1530 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1531 			   0);
1532 }
1533 
housekeeping_disable(struct zd_mac * mac)1534 static void housekeeping_disable(struct zd_mac *mac)
1535 {
1536 	dev_dbg_f(zd_mac_dev(mac), "\n");
1537 	cancel_delayed_work_sync(&mac->housekeeping.link_led_work);
1538 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1539 }
1540