xref: /qemu/hw/intc/xive.c (revision 06b40d250ecfa1633209c2e431a7a38acfd03a98)
1 /*
2  * QEMU PowerPC XIVE interrupt controller model
3  *
4  * Copyright (c) 2017-2018, IBM Corporation.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/module.h"
12 #include "qapi/error.h"
13 #include "target/ppc/cpu.h"
14 #include "system/cpus.h"
15 #include "system/dma.h"
16 #include "system/reset.h"
17 #include "hw/qdev-properties.h"
18 #include "migration/vmstate.h"
19 #include "hw/irq.h"
20 #include "hw/ppc/xive.h"
21 #include "hw/ppc/xive2.h"
22 #include "hw/ppc/xive_regs.h"
23 #include "trace.h"
24 
25 /*
26  * XIVE Thread Interrupt Management context
27  */
28 
xive_tctx_output(XiveTCTX * tctx,uint8_t ring)29 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring)
30 {
31         switch (ring) {
32         case TM_QW0_USER:
33                 return 0; /* Not supported */
34         case TM_QW1_OS:
35                 return tctx->os_output;
36         case TM_QW2_HV_POOL:
37         case TM_QW3_HV_PHYS:
38                 return tctx->hv_output;
39         default:
40                 return 0;
41         }
42 }
43 
xive_tctx_accept(XiveTCTX * tctx,uint8_t ring)44 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
45 {
46     uint8_t *regs = &tctx->regs[ring];
47     uint8_t nsr = regs[TM_NSR];
48 
49     qemu_irq_lower(xive_tctx_output(tctx, ring));
50 
51     if (regs[TM_NSR] != 0) {
52         uint8_t cppr = regs[TM_PIPR];
53         uint8_t alt_ring;
54         uint8_t *alt_regs;
55 
56         /* POOL interrupt uses IPB in QW2, POOL ring */
57         if ((ring == TM_QW3_HV_PHYS) && (nsr & (TM_QW3_NSR_HE_POOL << 6))) {
58             alt_ring = TM_QW2_HV_POOL;
59         } else {
60             alt_ring = ring;
61         }
62         alt_regs = &tctx->regs[alt_ring];
63 
64         regs[TM_CPPR] = cppr;
65 
66         /*
67          * If the interrupt was for a specific VP, reset the pending
68          * buffer bit, otherwise clear the logical server indicator
69          */
70         if (regs[TM_NSR] & TM_NSR_GRP_LVL) {
71             regs[TM_NSR] &= ~TM_NSR_GRP_LVL;
72         } else {
73             alt_regs[TM_IPB] &= ~xive_priority_to_ipb(cppr);
74         }
75 
76         /* Drop the exception bit and any group/crowd */
77         regs[TM_NSR] = 0;
78 
79         trace_xive_tctx_accept(tctx->cs->cpu_index, alt_ring,
80                                alt_regs[TM_IPB], regs[TM_PIPR],
81                                regs[TM_CPPR], regs[TM_NSR]);
82     }
83 
84     return ((uint64_t)nsr << 8) | regs[TM_CPPR];
85 }
86 
xive_tctx_notify(XiveTCTX * tctx,uint8_t ring,uint8_t group_level)87 void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring, uint8_t group_level)
88 {
89     /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */
90     uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring;
91     uint8_t *alt_regs = &tctx->regs[alt_ring];
92     uint8_t *regs = &tctx->regs[ring];
93 
94     if (alt_regs[TM_PIPR] < alt_regs[TM_CPPR]) {
95         switch (ring) {
96         case TM_QW1_OS:
97             regs[TM_NSR] = TM_QW1_NSR_EO | (group_level & 0x3F);
98             break;
99         case TM_QW2_HV_POOL:
100             alt_regs[TM_NSR] = (TM_QW3_NSR_HE_POOL << 6) | (group_level & 0x3F);
101             break;
102         case TM_QW3_HV_PHYS:
103             regs[TM_NSR] = (TM_QW3_NSR_HE_PHYS << 6) | (group_level & 0x3F);
104             break;
105         default:
106             g_assert_not_reached();
107         }
108         trace_xive_tctx_notify(tctx->cs->cpu_index, ring,
109                                regs[TM_IPB], alt_regs[TM_PIPR],
110                                alt_regs[TM_CPPR], alt_regs[TM_NSR]);
111         qemu_irq_raise(xive_tctx_output(tctx, ring));
112     }
113 }
114 
xive_tctx_reset_signal(XiveTCTX * tctx,uint8_t ring)115 void xive_tctx_reset_signal(XiveTCTX *tctx, uint8_t ring)
116 {
117     /*
118      * Lower the External interrupt. Used when pulling a context. It is
119      * necessary to avoid catching it in the higher privilege context. It
120      * should be raised again when re-pushing the lower privilege context.
121      */
122     qemu_irq_lower(xive_tctx_output(tctx, ring));
123 }
124 
xive_tctx_set_cppr(XiveTCTX * tctx,uint8_t ring,uint8_t cppr)125 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
126 {
127     uint8_t *regs = &tctx->regs[ring];
128     uint8_t pipr_min;
129     uint8_t ring_min;
130 
131     trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring,
132                              regs[TM_IPB], regs[TM_PIPR],
133                              cppr, regs[TM_NSR]);
134 
135     if (cppr > XIVE_PRIORITY_MAX) {
136         cppr = 0xff;
137     }
138 
139     tctx->regs[ring + TM_CPPR] = cppr;
140 
141     /*
142      * Recompute the PIPR based on local pending interrupts.  The PHYS
143      * ring must take the minimum of both the PHYS and POOL PIPR values.
144      */
145     pipr_min = xive_ipb_to_pipr(regs[TM_IPB]);
146     ring_min = ring;
147 
148     /* PHYS updates also depend on POOL values */
149     if (ring == TM_QW3_HV_PHYS) {
150         uint8_t *pool_regs = &tctx->regs[TM_QW2_HV_POOL];
151 
152         /* POOL values only matter if POOL ctx is valid */
153         if (pool_regs[TM_WORD2] & 0x80) {
154 
155             uint8_t pool_pipr = xive_ipb_to_pipr(pool_regs[TM_IPB]);
156 
157             /*
158              * Determine highest priority interrupt and
159              * remember which ring has it.
160              */
161             if (pool_pipr < pipr_min) {
162                 pipr_min = pool_pipr;
163                 ring_min = TM_QW2_HV_POOL;
164             }
165         }
166     }
167 
168     regs[TM_PIPR] = pipr_min;
169 
170     /* CPPR has changed, check if we need to raise a pending exception */
171     xive_tctx_notify(tctx, ring_min, 0);
172 }
173 
xive_tctx_pipr_update(XiveTCTX * tctx,uint8_t ring,uint8_t priority,uint8_t group_level)174 void xive_tctx_pipr_update(XiveTCTX *tctx, uint8_t ring, uint8_t priority,
175                            uint8_t group_level)
176  {
177     /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */
178     uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring;
179     uint8_t *alt_regs = &tctx->regs[alt_ring];
180     uint8_t *regs = &tctx->regs[ring];
181 
182     if (group_level == 0) {
183         /* VP-specific */
184         regs[TM_IPB] |= xive_priority_to_ipb(priority);
185         alt_regs[TM_PIPR] = xive_ipb_to_pipr(regs[TM_IPB]);
186     } else {
187         /* VP-group */
188         alt_regs[TM_PIPR] = xive_priority_to_pipr(priority);
189     }
190     xive_tctx_notify(tctx, ring, group_level);
191  }
192 
193 /*
194  * XIVE Thread Interrupt Management Area (TIMA)
195  */
196 
xive_tm_set_hv_cppr(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)197 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx,
198                                 hwaddr offset, uint64_t value, unsigned size)
199 {
200     xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
201 }
202 
xive_tm_ack_hv_reg(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)203 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx,
204                                    hwaddr offset, unsigned size)
205 {
206     return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
207 }
208 
xive_tm_pull_pool_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)209 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx,
210                                       hwaddr offset, unsigned size)
211 {
212     uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
213     uint32_t qw2w2;
214 
215     qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0);
216     memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4);
217     return qw2w2;
218 }
219 
xive_tm_pull_phys_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)220 static uint64_t xive_tm_pull_phys_ctx(XivePresenter *xptr, XiveTCTX *tctx,
221                                       hwaddr offset, unsigned size)
222 {
223     uint8_t qw3b8_prev = tctx->regs[TM_QW3_HV_PHYS + TM_WORD2];
224     uint8_t qw3b8;
225 
226     qw3b8 = qw3b8_prev & ~TM_QW3B8_VT;
227     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = qw3b8;
228     return qw3b8;
229 }
230 
xive_tm_vt_push(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)231 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
232                             uint64_t value, unsigned size)
233 {
234     tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
235 }
236 
xive_tm_vt_poll(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)237 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx,
238                                 hwaddr offset, unsigned size)
239 {
240     return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
241 }
242 
243 /*
244  * Define an access map for each page of the TIMA that we will use in
245  * the memory region ops to filter values when doing loads and stores
246  * of raw registers values
247  *
248  * Registers accessibility bits :
249  *
250  *    0x0 - no access
251  *    0x1 - write only
252  *    0x2 - read only
253  *    0x3 - read/write
254  */
255 
256 static const uint8_t xive_tm_hw_view[] = {
257     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
258     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
259     0, 0, 3, 3,   0, 3, 3, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
260     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   3, 3, 3, 0, /* QW-3 PHYS */
261 };
262 
263 static const uint8_t xive_tm_hv_view[] = {
264     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
265     3, 3, 3, 3,   3, 3, 0, 2,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-1 OS   */
266     0, 0, 3, 3,   0, 3, 3, 0,   0, 3, 3, 3,   0, 0, 0, 0, /* QW-2 POOL */
267     3, 3, 3, 3,   0, 3, 0, 2,   3, 0, 0, 3,   0, 0, 0, 0, /* QW-3 PHYS */
268 };
269 
270 static const uint8_t xive_tm_os_view[] = {
271     3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0, /* QW-0 User */
272     2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
273     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
274     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
275 };
276 
277 static const uint8_t xive_tm_user_view[] = {
278     3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-0 User */
279     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-1 OS   */
280     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-2 POOL */
281     0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0, /* QW-3 PHYS */
282 };
283 
284 /*
285  * Overall TIMA access map for the thread interrupt management context
286  * registers
287  */
288 static const uint8_t *xive_tm_views[] = {
289     [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
290     [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
291     [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
292     [XIVE_TM_USER_PAGE] = xive_tm_user_view,
293 };
294 
295 /*
296  * Computes a register access mask for a given offset in the TIMA
297  */
xive_tm_mask(hwaddr offset,unsigned size,bool write)298 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
299 {
300     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
301     uint8_t reg_offset = offset & TM_REG_OFFSET;
302     uint8_t reg_mask = write ? 0x1 : 0x2;
303     uint64_t mask = 0x0;
304     int i;
305 
306     for (i = 0; i < size; i++) {
307         if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
308             mask |= (uint64_t) 0xff << (8 * (size - i - 1));
309         }
310     }
311 
312     return mask;
313 }
314 
xive_tm_raw_write(XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)315 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
316                               unsigned size)
317 {
318     uint8_t ring_offset = offset & TM_RING_OFFSET;
319     uint8_t reg_offset = offset & TM_REG_OFFSET;
320     uint64_t mask = xive_tm_mask(offset, size, true);
321     int i;
322 
323     /*
324      * Only 4 or 8 bytes stores are allowed and the User ring is
325      * excluded
326      */
327     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
328         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
329                       HWADDR_PRIx"\n", offset);
330         return;
331     }
332 
333     /*
334      * Use the register offset for the raw values and filter out
335      * reserved values
336      */
337     for (i = 0; i < size; i++) {
338         uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
339         if (byte_mask) {
340             tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
341                 byte_mask;
342         }
343     }
344 }
345 
xive_tm_raw_read(XiveTCTX * tctx,hwaddr offset,unsigned size)346 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
347 {
348     uint8_t ring_offset = offset & TM_RING_OFFSET;
349     uint8_t reg_offset = offset & TM_REG_OFFSET;
350     uint64_t mask = xive_tm_mask(offset, size, false);
351     uint64_t ret;
352     int i;
353 
354     /*
355      * Only 4 or 8 bytes loads are allowed and the User ring is
356      * excluded
357      */
358     if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
359         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
360                       HWADDR_PRIx"\n", offset);
361         return -1;
362     }
363 
364     /* Use the register offset for the raw values */
365     ret = 0;
366     for (i = 0; i < size; i++) {
367         ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
368     }
369 
370     /* filter out reserved values */
371     return ret & mask;
372 }
373 
374 /*
375  * The TM context is mapped twice within each page. Stores and loads
376  * to the first mapping below 2K write and read the specified values
377  * without modification. The second mapping above 2K performs specific
378  * state changes (side effects) in addition to setting/returning the
379  * interrupt management area context of the processor thread.
380  */
xive_tm_ack_os_reg(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)381 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx,
382                                    hwaddr offset, unsigned size)
383 {
384     return xive_tctx_accept(tctx, TM_QW1_OS);
385 }
386 
xive_tm_set_os_cppr(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)387 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx,
388                                 hwaddr offset, uint64_t value, unsigned size)
389 {
390     xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
391 }
392 
xive_tctx_set_lgs(XiveTCTX * tctx,uint8_t ring,uint8_t lgs)393 static void xive_tctx_set_lgs(XiveTCTX *tctx, uint8_t ring, uint8_t lgs)
394 {
395     uint8_t *regs = &tctx->regs[ring];
396 
397     regs[TM_LGS] = lgs;
398 }
399 
xive_tm_set_os_lgs(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)400 static void xive_tm_set_os_lgs(XivePresenter *xptr, XiveTCTX *tctx,
401                           hwaddr offset, uint64_t value, unsigned size)
402 {
403     xive_tctx_set_lgs(tctx, TM_QW1_OS, value & 0xff);
404 }
405 
406 /*
407  * Adjust the PIPR to allow a CPU to process event queues of other
408  * priorities during one physical interrupt cycle.
409  */
xive_tm_set_os_pending(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)410 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx,
411                                    hwaddr offset, uint64_t value, unsigned size)
412 {
413     xive_tctx_pipr_update(tctx, TM_QW1_OS, value & 0xff, 0);
414 }
415 
xive_os_cam_decode(uint32_t cam,uint8_t * nvt_blk,uint32_t * nvt_idx,bool * vo)416 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk,
417                                uint32_t *nvt_idx, bool *vo)
418 {
419     if (nvt_blk) {
420         *nvt_blk = xive_nvt_blk(cam);
421     }
422     if (nvt_idx) {
423         *nvt_idx = xive_nvt_idx(cam);
424     }
425     if (vo) {
426         *vo = !!(cam & TM_QW1W2_VO);
427     }
428 }
429 
xive_tctx_get_os_cam(XiveTCTX * tctx,uint8_t * nvt_blk,uint32_t * nvt_idx,bool * vo)430 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk,
431                                      uint32_t *nvt_idx, bool *vo)
432 {
433     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
434     uint32_t cam = be32_to_cpu(qw1w2);
435 
436     xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo);
437     return qw1w2;
438 }
439 
xive_tctx_set_os_cam(XiveTCTX * tctx,uint32_t qw1w2)440 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2)
441 {
442     memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
443 }
444 
xive_tm_pull_os_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)445 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
446                                     hwaddr offset, unsigned size)
447 {
448     uint32_t qw1w2;
449     uint32_t qw1w2_new;
450     uint8_t nvt_blk;
451     uint32_t nvt_idx;
452     bool vo;
453 
454     qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo);
455 
456     if (!vo) {
457         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n",
458                       nvt_blk, nvt_idx);
459     }
460 
461     /* Invalidate CAM line */
462     qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0);
463     xive_tctx_set_os_cam(tctx, qw1w2_new);
464 
465     xive_tctx_reset_signal(tctx, TM_QW1_OS);
466     return qw1w2;
467 }
468 
xive_tctx_need_resend(XiveRouter * xrtr,XiveTCTX * tctx,uint8_t nvt_blk,uint32_t nvt_idx)469 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx,
470                                   uint8_t nvt_blk, uint32_t nvt_idx)
471 {
472     XiveNVT nvt;
473     uint8_t ipb;
474 
475     /*
476      * Grab the associated NVT to pull the pending bits, and merge
477      * them with the IPB of the thread interrupt context registers
478      */
479     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
480         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n",
481                           nvt_blk, nvt_idx);
482         return;
483     }
484 
485     ipb = xive_get_field32(NVT_W4_IPB, nvt.w4);
486 
487     if (ipb) {
488         /* Reset the NVT value */
489         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0);
490         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
491 
492         uint8_t *regs = &tctx->regs[TM_QW1_OS];
493         regs[TM_IPB] |= ipb;
494     }
495 
496     /*
497      * Always call xive_tctx_pipr_update(). Even if there were no
498      * escalation triggered, there could be a pending interrupt which
499      * was saved when the context was pulled and that we need to take
500      * into account by recalculating the PIPR (which is not
501      * saved/restored).
502      * It will also raise the External interrupt signal if needed.
503      */
504     xive_tctx_pipr_update(tctx, TM_QW1_OS, 0xFF, 0); /* fxb */
505 }
506 
507 /*
508  * Updating the OS CAM line can trigger a resend of interrupt
509  */
xive_tm_push_os_ctx(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)510 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx,
511                                 hwaddr offset, uint64_t value, unsigned size)
512 {
513     uint32_t cam = value;
514     uint32_t qw1w2 = cpu_to_be32(cam);
515     uint8_t nvt_blk;
516     uint32_t nvt_idx;
517     bool vo;
518 
519     xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo);
520 
521     /* First update the registers */
522     xive_tctx_set_os_cam(tctx, qw1w2);
523 
524     /* Check the interrupt pending bits */
525     if (vo) {
526         xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx);
527     }
528 }
529 
xive_presenter_get_config(XivePresenter * xptr)530 static uint32_t xive_presenter_get_config(XivePresenter *xptr)
531 {
532     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
533 
534     return xpc->get_config(xptr);
535 }
536 
537 /*
538  * Define a mapping of "special" operations depending on the TIMA page
539  * offset and the size of the operation.
540  */
541 typedef struct XiveTmOp {
542     uint8_t  page_offset;
543     uint32_t op_offset;
544     unsigned size;
545     void     (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx,
546                               hwaddr offset,
547                               uint64_t value, unsigned size);
548     uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
549                              unsigned size);
550 } XiveTmOp;
551 
552 static const XiveTmOp xive_tm_operations[] = {
553     /*
554      * MMIOs below 2K : raw values and special operations without side
555      * effects
556      */
557     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,       1, xive_tm_set_os_cppr,
558                                                      NULL },
559     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      4, xive_tm_push_os_ctx,
560                                                      NULL },
561     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR,  1, xive_tm_set_hv_cppr,
562                                                      NULL },
563     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push,
564                                                      NULL },
565     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL,
566                                                      xive_tm_vt_poll },
567 
568     /* MMIOs above 2K : special operations with side effects */
569     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,         2, NULL,
570                                                      xive_tm_ack_os_reg },
571     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING,     1, xive_tm_set_os_pending,
572                                                      NULL },
573     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        4, NULL,
574                                                      xive_tm_pull_os_ctx },
575     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        8, NULL,
576                                                      xive_tm_pull_os_ctx },
577     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,         2, NULL,
578                                                      xive_tm_ack_hv_reg },
579     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      4, NULL,
580                                                      xive_tm_pull_pool_ctx },
581     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      8, NULL,
582                                                      xive_tm_pull_pool_ctx },
583     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX,      1, NULL,
584                                                      xive_tm_pull_phys_ctx },
585 };
586 
587 static const XiveTmOp xive2_tm_operations[] = {
588     /*
589      * MMIOs below 2K : raw values and special operations without side
590      * effects
591      */
592     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,       1, xive2_tm_set_os_cppr,
593                                                      NULL },
594     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      4, xive2_tm_push_os_ctx,
595                                                      NULL },
596     { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2,      8, xive2_tm_push_os_ctx,
597                                                      NULL },
598     { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_LGS,        1, xive_tm_set_os_lgs,
599                                                      NULL },
600     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR,  1, xive2_tm_set_hv_cppr,
601                                                      NULL },
602     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push,
603                                                      NULL },
604     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL,
605                                                      xive_tm_vt_poll },
606     { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_T,     1, xive2_tm_set_hv_target,
607                                                      NULL },
608 
609     /* MMIOs above 2K : special operations with side effects */
610     { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,         2, NULL,
611                                                      xive_tm_ack_os_reg },
612     { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING,     1, xive_tm_set_os_pending,
613                                                      NULL },
614     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_G2,     4, NULL,
615                                                      xive2_tm_pull_os_ctx },
616     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        4, NULL,
617                                                      xive2_tm_pull_os_ctx },
618     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX,        8, NULL,
619                                                      xive2_tm_pull_os_ctx },
620     { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,         2, NULL,
621                                                      xive_tm_ack_hv_reg },
622     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX_G2,   4, NULL,
623                                                      xive_tm_pull_pool_ctx },
624     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      4, NULL,
625                                                      xive_tm_pull_pool_ctx },
626     { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,      8, NULL,
627                                                      xive_tm_pull_pool_ctx },
628     { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_OL,     1, xive2_tm_pull_os_ctx_ol,
629                                                      NULL },
630     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_G2,   4, NULL,
631                                                      xive_tm_pull_phys_ctx },
632     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX,      1, NULL,
633                                                      xive_tm_pull_phys_ctx },
634     { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_OL,   1, xive2_tm_pull_phys_ctx_ol,
635                                                      NULL },
636 };
637 
xive_tm_find_op(XivePresenter * xptr,hwaddr offset,unsigned size,bool write)638 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset,
639                                        unsigned size, bool write)
640 {
641     uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
642     uint32_t op_offset = offset & TM_ADDRESS_MASK;
643     const XiveTmOp *tm_ops;
644     int i, tm_ops_count;
645     uint32_t cfg;
646 
647     cfg = xive_presenter_get_config(xptr);
648     if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) {
649         tm_ops = xive_tm_operations;
650         tm_ops_count = ARRAY_SIZE(xive_tm_operations);
651     } else {
652         tm_ops = xive2_tm_operations;
653         tm_ops_count = ARRAY_SIZE(xive2_tm_operations);
654     }
655 
656     for (i = 0; i < tm_ops_count; i++) {
657         const XiveTmOp *xto = &tm_ops[i];
658 
659         /* Accesses done from a more privileged TIMA page is allowed */
660         if (xto->page_offset >= page_offset &&
661             xto->op_offset == op_offset &&
662             xto->size == size &&
663             ((write && xto->write_handler) || (!write && xto->read_handler))) {
664             return xto;
665         }
666     }
667     return NULL;
668 }
669 
670 /*
671  * TIMA MMIO handlers
672  */
xive_tctx_tm_write(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,uint64_t value,unsigned size)673 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
674                         uint64_t value, unsigned size)
675 {
676     const XiveTmOp *xto;
677 
678     trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value);
679 
680     /*
681      * TODO: check V bit in Q[0-3]W2
682      */
683 
684     /*
685      * First, check for special operations in the 2K region
686      */
687     if (offset & TM_SPECIAL_OP) {
688         xto = xive_tm_find_op(tctx->xptr, offset, size, true);
689         if (!xto) {
690             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA "
691                           "@%"HWADDR_PRIx"\n", offset);
692         } else {
693             xto->write_handler(xptr, tctx, offset, value, size);
694         }
695         return;
696     }
697 
698     /*
699      * Then, for special operations in the region below 2K.
700      */
701     xto = xive_tm_find_op(tctx->xptr, offset, size, true);
702     if (xto) {
703         xto->write_handler(xptr, tctx, offset, value, size);
704         return;
705     }
706 
707     /*
708      * Finish with raw access to the register values
709      */
710     xive_tm_raw_write(tctx, offset, value, size);
711 }
712 
xive_tctx_tm_read(XivePresenter * xptr,XiveTCTX * tctx,hwaddr offset,unsigned size)713 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset,
714                            unsigned size)
715 {
716     const XiveTmOp *xto;
717     uint64_t ret;
718 
719     /*
720      * TODO: check V bit in Q[0-3]W2
721      */
722 
723     /*
724      * First, check for special operations in the 2K region
725      */
726     if (offset & TM_SPECIAL_OP) {
727         xto = xive_tm_find_op(tctx->xptr, offset, size, false);
728         if (!xto) {
729             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
730                           "@%"HWADDR_PRIx"\n", offset);
731             return -1;
732         }
733         ret = xto->read_handler(xptr, tctx, offset, size);
734         goto out;
735     }
736 
737     /*
738      * Then, for special operations in the region below 2K.
739      */
740     xto = xive_tm_find_op(tctx->xptr, offset, size, false);
741     if (xto) {
742         ret = xto->read_handler(xptr, tctx, offset, size);
743         goto out;
744     }
745 
746     /*
747      * Finish with raw access to the register values
748      */
749     ret = xive_tm_raw_read(tctx, offset, size);
750 out:
751     trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret);
752     return ret;
753 }
754 
xive_tctx_ring_print(uint8_t * ring)755 static char *xive_tctx_ring_print(uint8_t *ring)
756 {
757     uint32_t w2 = xive_tctx_word2(ring);
758 
759     return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
760                    "%02x  %02x   %02x  %08x",
761                    ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
762                    ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
763                    be32_to_cpu(w2));
764 }
765 
766 static const char * const xive_tctx_ring_names[] = {
767     "USER", "OS", "POOL", "PHYS",
768 };
769 
770 /*
771  * kvm_irqchip_in_kernel() will cause the compiler to turn this
772  * info a nop if CONFIG_KVM isn't defined.
773  */
774 #define xive_in_kernel(xptr)                                            \
775     (kvm_irqchip_in_kernel() &&                                         \
776      ({                                                                 \
777          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);      \
778          xpc->in_kernel ? xpc->in_kernel(xptr) : false;                 \
779      }))
780 
xive_tctx_pic_print_info(XiveTCTX * tctx,GString * buf)781 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf)
782 {
783     int cpu_index;
784     int i;
785 
786     /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs
787      * are hot plugged or unplugged.
788      */
789     if (!tctx) {
790         return;
791     }
792 
793     cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
794 
795     if (xive_in_kernel(tctx->xptr)) {
796         Error *local_err = NULL;
797 
798         kvmppc_xive_cpu_synchronize_state(tctx, &local_err);
799         if (local_err) {
800             error_report_err(local_err);
801             return;
802         }
803     }
804 
805     if (xive_presenter_get_config(tctx->xptr) & XIVE_PRESENTER_GEN1_TIMA_OS) {
806         g_string_append_printf(buf, "CPU[%04x]:   "
807                                "QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
808                                "  W2\n", cpu_index);
809     } else {
810         g_string_append_printf(buf, "CPU[%04x]:   "
811                                "QW   NSR CPPR IPB LSMFB   -  LGS  T  PIPR"
812                                "  W2\n", cpu_index);
813     }
814 
815     for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
816         char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
817         g_string_append_printf(buf, "CPU[%04x]: %4s    %s\n",
818                                cpu_index, xive_tctx_ring_names[i], s);
819         g_free(s);
820     }
821 }
822 
xive_tctx_reset(XiveTCTX * tctx)823 void xive_tctx_reset(XiveTCTX *tctx)
824 {
825     memset(tctx->regs, 0, sizeof(tctx->regs));
826 
827     /* Set some defaults */
828     tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
829     tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
830     tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
831     if (!(xive_presenter_get_config(tctx->xptr) &
832           XIVE_PRESENTER_GEN1_TIMA_OS)) {
833         tctx->regs[TM_QW1_OS + TM_OGEN] = 2;
834     }
835 
836     /*
837      * Initialize PIPR to 0xFF to avoid phantom interrupts when the
838      * CPPR is first set.
839      */
840     tctx->regs[TM_QW1_OS + TM_PIPR] =
841         xive_ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
842     tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
843         xive_ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
844 }
845 
xive_tctx_realize(DeviceState * dev,Error ** errp)846 static void xive_tctx_realize(DeviceState *dev, Error **errp)
847 {
848     XiveTCTX *tctx = XIVE_TCTX(dev);
849     PowerPCCPU *cpu;
850     CPUPPCState *env;
851 
852     assert(tctx->cs);
853     assert(tctx->xptr);
854 
855     cpu = POWERPC_CPU(tctx->cs);
856     env = &cpu->env;
857     switch (PPC_INPUT(env)) {
858     case PPC_FLAGS_INPUT_POWER9:
859         tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT);
860         tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT);
861         break;
862 
863     default:
864         error_setg(errp, "XIVE interrupt controller does not support "
865                    "this CPU bus model");
866         return;
867     }
868 
869     /* Connect the presenter to the VCPU (required for CPU hotplug) */
870     if (xive_in_kernel(tctx->xptr)) {
871         if (kvmppc_xive_cpu_connect(tctx, errp) < 0) {
872             return;
873         }
874     }
875 }
876 
vmstate_xive_tctx_pre_save(void * opaque)877 static int vmstate_xive_tctx_pre_save(void *opaque)
878 {
879     XiveTCTX *tctx = XIVE_TCTX(opaque);
880     Error *local_err = NULL;
881     int ret;
882 
883     if (xive_in_kernel(tctx->xptr)) {
884         ret = kvmppc_xive_cpu_get_state(tctx, &local_err);
885         if (ret < 0) {
886             error_report_err(local_err);
887             return ret;
888         }
889     }
890 
891     return 0;
892 }
893 
vmstate_xive_tctx_post_load(void * opaque,int version_id)894 static int vmstate_xive_tctx_post_load(void *opaque, int version_id)
895 {
896     XiveTCTX *tctx = XIVE_TCTX(opaque);
897     Error *local_err = NULL;
898     int ret;
899 
900     if (xive_in_kernel(tctx->xptr)) {
901         /*
902          * Required for hotplugged CPU, for which the state comes
903          * after all states of the machine.
904          */
905         ret = kvmppc_xive_cpu_set_state(tctx, &local_err);
906         if (ret < 0) {
907             error_report_err(local_err);
908             return ret;
909         }
910     }
911 
912     return 0;
913 }
914 
915 static const VMStateDescription vmstate_xive_tctx = {
916     .name = TYPE_XIVE_TCTX,
917     .version_id = 1,
918     .minimum_version_id = 1,
919     .pre_save = vmstate_xive_tctx_pre_save,
920     .post_load = vmstate_xive_tctx_post_load,
921     .fields = (const VMStateField[]) {
922         VMSTATE_BUFFER(regs, XiveTCTX),
923         VMSTATE_END_OF_LIST()
924     },
925 };
926 
927 static const Property xive_tctx_properties[] = {
928     DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *),
929     DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER,
930                      XivePresenter *),
931 };
932 
xive_tctx_class_init(ObjectClass * klass,const void * data)933 static void xive_tctx_class_init(ObjectClass *klass, const void *data)
934 {
935     DeviceClass *dc = DEVICE_CLASS(klass);
936 
937     dc->desc = "XIVE Interrupt Thread Context";
938     dc->realize = xive_tctx_realize;
939     dc->vmsd = &vmstate_xive_tctx;
940     device_class_set_props(dc, xive_tctx_properties);
941     /*
942      * Reason: part of XIVE interrupt controller, needs to be wired up
943      * by xive_tctx_create().
944      */
945     dc->user_creatable = false;
946 }
947 
948 static const TypeInfo xive_tctx_info = {
949     .name          = TYPE_XIVE_TCTX,
950     .parent        = TYPE_DEVICE,
951     .instance_size = sizeof(XiveTCTX),
952     .class_init    = xive_tctx_class_init,
953 };
954 
xive_tctx_create(Object * cpu,XivePresenter * xptr,Error ** errp)955 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp)
956 {
957     Object *obj;
958 
959     obj = object_new(TYPE_XIVE_TCTX);
960     object_property_add_child(cpu, TYPE_XIVE_TCTX, obj);
961     object_unref(obj);
962     object_property_set_link(obj, "cpu", cpu, &error_abort);
963     object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort);
964     if (!qdev_realize(DEVICE(obj), NULL, errp)) {
965         object_unparent(obj);
966         return NULL;
967     }
968     return obj;
969 }
970 
xive_tctx_destroy(XiveTCTX * tctx)971 void xive_tctx_destroy(XiveTCTX *tctx)
972 {
973     Object *obj = OBJECT(tctx);
974 
975     object_unparent(obj);
976 }
977 
978 /*
979  * XIVE ESB helpers
980  */
981 
xive_esb_set(uint8_t * pq,uint8_t value)982 uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
983 {
984     uint8_t old_pq = *pq & 0x3;
985 
986     *pq &= ~0x3;
987     *pq |= value & 0x3;
988 
989     return old_pq;
990 }
991 
xive_esb_trigger(uint8_t * pq)992 bool xive_esb_trigger(uint8_t *pq)
993 {
994     uint8_t old_pq = *pq & 0x3;
995 
996     switch (old_pq) {
997     case XIVE_ESB_RESET:
998         xive_esb_set(pq, XIVE_ESB_PENDING);
999         return true;
1000     case XIVE_ESB_PENDING:
1001     case XIVE_ESB_QUEUED:
1002         xive_esb_set(pq, XIVE_ESB_QUEUED);
1003         return false;
1004     case XIVE_ESB_OFF:
1005         xive_esb_set(pq, XIVE_ESB_OFF);
1006         return false;
1007     default:
1008          g_assert_not_reached();
1009     }
1010 }
1011 
xive_esb_eoi(uint8_t * pq)1012 bool xive_esb_eoi(uint8_t *pq)
1013 {
1014     uint8_t old_pq = *pq & 0x3;
1015 
1016     switch (old_pq) {
1017     case XIVE_ESB_RESET:
1018     case XIVE_ESB_PENDING:
1019         xive_esb_set(pq, XIVE_ESB_RESET);
1020         return false;
1021     case XIVE_ESB_QUEUED:
1022         xive_esb_set(pq, XIVE_ESB_PENDING);
1023         return true;
1024     case XIVE_ESB_OFF:
1025         xive_esb_set(pq, XIVE_ESB_OFF);
1026         return false;
1027     default:
1028          g_assert_not_reached();
1029     }
1030 }
1031 
1032 /*
1033  * XIVE Interrupt Source (or IVSE)
1034  */
1035 
xive_source_esb_get(XiveSource * xsrc,uint32_t srcno)1036 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
1037 {
1038     assert(srcno < xsrc->nr_irqs);
1039 
1040     return xsrc->status[srcno] & 0x3;
1041 }
1042 
xive_source_esb_set(XiveSource * xsrc,uint32_t srcno,uint8_t pq)1043 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
1044 {
1045     assert(srcno < xsrc->nr_irqs);
1046 
1047     return xive_esb_set(&xsrc->status[srcno], pq);
1048 }
1049 
1050 /*
1051  * Returns whether the event notification should be forwarded.
1052  */
xive_source_lsi_trigger(XiveSource * xsrc,uint32_t srcno)1053 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
1054 {
1055     uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
1056 
1057     xive_source_set_asserted(xsrc, srcno, true);
1058 
1059     switch (old_pq) {
1060     case XIVE_ESB_RESET:
1061         xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
1062         return true;
1063     default:
1064         return false;
1065     }
1066 }
1067 
1068 /*
1069  * Sources can be configured with PQ offloading in which case the check
1070  * on the PQ state bits of MSIs is disabled
1071  */
xive_source_esb_disabled(XiveSource * xsrc,uint32_t srcno)1072 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno)
1073 {
1074     return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) &&
1075         !xive_source_irq_is_lsi(xsrc, srcno);
1076 }
1077 
1078 /*
1079  * Returns whether the event notification should be forwarded.
1080  */
xive_source_esb_trigger(XiveSource * xsrc,uint32_t srcno)1081 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
1082 {
1083     bool ret;
1084 
1085     assert(srcno < xsrc->nr_irqs);
1086 
1087     if (xive_source_esb_disabled(xsrc, srcno)) {
1088         return true;
1089     }
1090 
1091     ret = xive_esb_trigger(&xsrc->status[srcno]);
1092 
1093     if (xive_source_irq_is_lsi(xsrc, srcno) &&
1094         xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
1095         qemu_log_mask(LOG_GUEST_ERROR,
1096                       "XIVE: queued an event on LSI IRQ %d\n", srcno);
1097     }
1098 
1099     return ret;
1100 }
1101 
1102 /*
1103  * Returns whether the event notification should be forwarded.
1104  */
xive_source_esb_eoi(XiveSource * xsrc,uint32_t srcno)1105 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
1106 {
1107     bool ret;
1108 
1109     assert(srcno < xsrc->nr_irqs);
1110 
1111     if (xive_source_esb_disabled(xsrc, srcno)) {
1112         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno);
1113         return false;
1114     }
1115 
1116     ret = xive_esb_eoi(&xsrc->status[srcno]);
1117 
1118     /*
1119      * LSI sources do not set the Q bit but they can still be
1120      * asserted, in which case we should forward a new event
1121      * notification
1122      */
1123     if (xive_source_irq_is_lsi(xsrc, srcno) &&
1124         xive_source_is_asserted(xsrc, srcno)) {
1125         ret = xive_source_lsi_trigger(xsrc, srcno);
1126     }
1127 
1128     return ret;
1129 }
1130 
1131 /*
1132  * Forward the source event notification to the Router
1133  */
xive_source_notify(XiveSource * xsrc,int srcno)1134 static void xive_source_notify(XiveSource *xsrc, int srcno)
1135 {
1136     XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
1137     bool pq_checked = !xive_source_esb_disabled(xsrc, srcno);
1138 
1139     if (xnc->notify) {
1140         xnc->notify(xsrc->xive, srcno, pq_checked);
1141     }
1142 }
1143 
1144 /*
1145  * In a two pages ESB MMIO setting, even page is the trigger page, odd
1146  * page is for management
1147  */
addr_is_even(hwaddr addr,uint32_t shift)1148 static inline bool addr_is_even(hwaddr addr, uint32_t shift)
1149 {
1150     return !((addr >> shift) & 1);
1151 }
1152 
xive_source_is_trigger_page(XiveSource * xsrc,hwaddr addr)1153 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
1154 {
1155     return xive_source_esb_has_2page(xsrc) &&
1156         addr_is_even(addr, xsrc->esb_shift - 1);
1157 }
1158 
1159 /*
1160  * ESB MMIO loads
1161  *                      Trigger page    Management/EOI page
1162  *
1163  * ESB MMIO setting     2 pages         1 or 2 pages
1164  *
1165  * 0x000 .. 0x3FF       -1              EOI and return 0|1
1166  * 0x400 .. 0x7FF       -1              EOI and return 0|1
1167  * 0x800 .. 0xBFF       -1              return PQ
1168  * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
1169  * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
1170  * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
1171  * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
1172  */
xive_source_esb_read(void * opaque,hwaddr addr,unsigned size)1173 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
1174 {
1175     XiveSource *xsrc = XIVE_SOURCE(opaque);
1176     uint32_t offset = addr & 0xFFF;
1177     uint32_t srcno = addr >> xsrc->esb_shift;
1178     uint64_t ret = -1;
1179 
1180     /* In a two pages ESB MMIO setting, trigger page should not be read */
1181     if (xive_source_is_trigger_page(xsrc, addr)) {
1182         qemu_log_mask(LOG_GUEST_ERROR,
1183                       "XIVE: invalid load on IRQ %d trigger page at "
1184                       "0x%"HWADDR_PRIx"\n", srcno, addr);
1185         return -1;
1186     }
1187 
1188     switch (offset) {
1189     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1190         ret = xive_source_esb_eoi(xsrc, srcno);
1191 
1192         /* Forward the source event notification for routing */
1193         if (ret) {
1194             xive_source_notify(xsrc, srcno);
1195         }
1196         break;
1197 
1198     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1199         ret = xive_source_esb_get(xsrc, srcno);
1200         break;
1201 
1202     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1203     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1204     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1205     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1206         ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1207         break;
1208     default:
1209         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
1210                       offset);
1211     }
1212 
1213     trace_xive_source_esb_read(addr, srcno, ret);
1214 
1215     return ret;
1216 }
1217 
1218 /*
1219  * ESB MMIO stores
1220  *                      Trigger page    Management/EOI page
1221  *
1222  * ESB MMIO setting     2 pages         1 or 2 pages
1223  *
1224  * 0x000 .. 0x3FF       Trigger         Trigger
1225  * 0x400 .. 0x7FF       Trigger         EOI
1226  * 0x800 .. 0xBFF       Trigger         undefined
1227  * 0xC00 .. 0xCFF       Trigger         PQ=00
1228  * 0xD00 .. 0xDFF       Trigger         PQ=01
1229  * 0xE00 .. 0xDFF       Trigger         PQ=10
1230  * 0xF00 .. 0xDFF       Trigger         PQ=11
1231  */
xive_source_esb_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)1232 static void xive_source_esb_write(void *opaque, hwaddr addr,
1233                                   uint64_t value, unsigned size)
1234 {
1235     XiveSource *xsrc = XIVE_SOURCE(opaque);
1236     uint32_t offset = addr & 0xFFF;
1237     uint32_t srcno = addr >> xsrc->esb_shift;
1238     bool notify = false;
1239 
1240     trace_xive_source_esb_write(addr, srcno, value);
1241 
1242     /* In a two pages ESB MMIO setting, trigger page only triggers */
1243     if (xive_source_is_trigger_page(xsrc, addr)) {
1244         notify = xive_source_esb_trigger(xsrc, srcno);
1245         goto out;
1246     }
1247 
1248     switch (offset) {
1249     case 0 ... 0x3FF:
1250         notify = xive_source_esb_trigger(xsrc, srcno);
1251         break;
1252 
1253     case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
1254         if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
1255             qemu_log_mask(LOG_GUEST_ERROR,
1256                           "XIVE: invalid Store EOI for IRQ %d\n", srcno);
1257             return;
1258         }
1259 
1260         notify = xive_source_esb_eoi(xsrc, srcno);
1261         break;
1262 
1263     /*
1264      * This is an internal offset used to inject triggers when the PQ
1265      * state bits are not controlled locally. Such as for LSIs when
1266      * under ABT mode.
1267      */
1268     case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF:
1269         notify = true;
1270         break;
1271 
1272     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1273     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1274     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1275     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1276         xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
1277         break;
1278 
1279     default:
1280         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
1281                       offset);
1282         return;
1283     }
1284 
1285 out:
1286     /* Forward the source event notification for routing */
1287     if (notify) {
1288         xive_source_notify(xsrc, srcno);
1289     }
1290 }
1291 
1292 static const MemoryRegionOps xive_source_esb_ops = {
1293     .read = xive_source_esb_read,
1294     .write = xive_source_esb_write,
1295     .endianness = DEVICE_BIG_ENDIAN,
1296     .valid = {
1297         .min_access_size = 1,
1298         .max_access_size = 8,
1299     },
1300     .impl = {
1301         .min_access_size = 1,
1302         .max_access_size = 8,
1303     },
1304 };
1305 
xive_source_set_irq(void * opaque,int srcno,int val)1306 void xive_source_set_irq(void *opaque, int srcno, int val)
1307 {
1308     XiveSource *xsrc = XIVE_SOURCE(opaque);
1309     bool notify = false;
1310 
1311     if (xive_source_irq_is_lsi(xsrc, srcno)) {
1312         if (val) {
1313             notify = xive_source_lsi_trigger(xsrc, srcno);
1314         } else {
1315             xive_source_set_asserted(xsrc, srcno, false);
1316         }
1317     } else {
1318         if (val) {
1319             notify = xive_source_esb_trigger(xsrc, srcno);
1320         }
1321     }
1322 
1323     /* Forward the source event notification for routing */
1324     if (notify) {
1325         xive_source_notify(xsrc, srcno);
1326     }
1327 }
1328 
xive_source_pic_print_info(XiveSource * xsrc,uint32_t offset,GString * buf)1329 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, GString *buf)
1330 {
1331     for (unsigned i = 0; i < xsrc->nr_irqs; i++) {
1332         uint8_t pq = xive_source_esb_get(xsrc, i);
1333 
1334         if (pq == XIVE_ESB_OFF) {
1335             continue;
1336         }
1337 
1338         g_string_append_printf(buf, "  %08x %s %c%c%c\n", i + offset,
1339                                xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
1340                                pq & XIVE_ESB_VAL_P ? 'P' : '-',
1341                                pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1342                                xive_source_is_asserted(xsrc, i) ? 'A' : ' ');
1343     }
1344 }
1345 
xive_source_reset(void * dev)1346 static void xive_source_reset(void *dev)
1347 {
1348     XiveSource *xsrc = XIVE_SOURCE(dev);
1349 
1350     /* Do not clear the LSI bitmap */
1351 
1352     memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs);
1353 }
1354 
xive_source_realize(DeviceState * dev,Error ** errp)1355 static void xive_source_realize(DeviceState *dev, Error **errp)
1356 {
1357     XiveSource *xsrc = XIVE_SOURCE(dev);
1358     uint64_t esb_len = xive_source_esb_len(xsrc);
1359 
1360     assert(xsrc->xive);
1361 
1362     if (!xsrc->nr_irqs) {
1363         error_setg(errp, "Number of interrupt needs to be greater than 0");
1364         return;
1365     }
1366 
1367     if (xsrc->esb_shift != XIVE_ESB_4K &&
1368         xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
1369         xsrc->esb_shift != XIVE_ESB_64K &&
1370         xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
1371         error_setg(errp, "Invalid ESB shift setting");
1372         return;
1373     }
1374 
1375     xsrc->status = g_malloc0(xsrc->nr_irqs);
1376     xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
1377 
1378     memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len);
1379     memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc),
1380                           &xive_source_esb_ops, xsrc, "xive.esb-emulated",
1381                           esb_len);
1382     memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated);
1383 
1384     qemu_register_reset(xive_source_reset, dev);
1385 }
1386 
1387 static const VMStateDescription vmstate_xive_source = {
1388     .name = TYPE_XIVE_SOURCE,
1389     .version_id = 1,
1390     .minimum_version_id = 1,
1391     .fields = (const VMStateField[]) {
1392         VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1393         VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1394         VMSTATE_END_OF_LIST()
1395     },
1396 };
1397 
1398 /*
1399  * The default XIVE interrupt source setting for the ESB MMIOs is two
1400  * 64k pages without Store EOI, to be in sync with KVM.
1401  */
1402 static const Property xive_source_properties[] = {
1403     DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1404     DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1405     DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1406     /*
1407      * By default, PQs are initialized to 0b01 (Q=1) which corresponds
1408      * to "ints off"
1409      */
1410     DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF),
1411     DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER,
1412                      XiveNotifier *),
1413 };
1414 
xive_source_class_init(ObjectClass * klass,const void * data)1415 static void xive_source_class_init(ObjectClass *klass, const void *data)
1416 {
1417     DeviceClass *dc = DEVICE_CLASS(klass);
1418 
1419     dc->desc    = "XIVE Interrupt Source";
1420     device_class_set_props(dc, xive_source_properties);
1421     dc->realize = xive_source_realize;
1422     dc->vmsd    = &vmstate_xive_source;
1423     /*
1424      * Reason: part of XIVE interrupt controller, needs to be wired up,
1425      * e.g. by spapr_xive_instance_init().
1426      */
1427     dc->user_creatable = false;
1428 }
1429 
1430 static const TypeInfo xive_source_info = {
1431     .name          = TYPE_XIVE_SOURCE,
1432     .parent        = TYPE_DEVICE,
1433     .instance_size = sizeof(XiveSource),
1434     .class_init    = xive_source_class_init,
1435 };
1436 
1437 /*
1438  * XiveEND helpers
1439  */
1440 
xive_end_queue_pic_print_info(XiveEND * end,uint32_t width,GString * buf)1441 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf)
1442 {
1443     uint64_t qaddr_base = xive_end_qaddr(end);
1444     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1445     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1446     uint32_t qentries = 1 << (qsize + 10);
1447     int i;
1448 
1449     /*
1450      * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1451      */
1452     g_string_append_printf(buf, " [ ");
1453     qindex = (qindex - (width - 1)) & (qentries - 1);
1454     for (i = 0; i < width; i++) {
1455         uint64_t qaddr = qaddr_base + (qindex << 2);
1456         uint32_t qdata = -1;
1457 
1458         if (dma_memory_read(&address_space_memory, qaddr,
1459                             &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1460             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1461                           HWADDR_PRIx "\n", qaddr);
1462             return;
1463         }
1464         g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "",
1465                                be32_to_cpu(qdata));
1466         qindex = (qindex + 1) & (qentries - 1);
1467     }
1468     g_string_append_c(buf, ']');
1469 }
1470 
xive_end_pic_print_info(XiveEND * end,uint32_t end_idx,GString * buf)1471 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1472 {
1473     uint64_t qaddr_base = xive_end_qaddr(end);
1474     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1475     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1476     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1477     uint32_t qentries = 1 << (qsize + 10);
1478 
1479     uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1480     uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1481     uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1482     uint8_t pq;
1483 
1484     if (!xive_end_is_valid(end)) {
1485         return;
1486     }
1487 
1488     pq = xive_get_field32(END_W1_ESn, end->w1);
1489 
1490     g_string_append_printf(buf,
1491                            "  %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x",
1492                            end_idx,
1493                            pq & XIVE_ESB_VAL_P ? 'P' : '-',
1494                            pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1495                            xive_end_is_valid(end)    ? 'v' : '-',
1496                            xive_end_is_enqueue(end)  ? 'q' : '-',
1497                            xive_end_is_notify(end)   ? 'n' : '-',
1498                            xive_end_is_backlog(end)  ? 'b' : '-',
1499                            xive_end_is_escalate(end) ? 'e' : '-',
1500                            xive_end_is_uncond_escalation(end)   ? 'u' : '-',
1501                            xive_end_is_silent_escalation(end)   ? 's' : '-',
1502                            xive_end_is_firmware(end)   ? 'f' : '-',
1503                            priority, nvt_blk, nvt_idx);
1504 
1505     if (qaddr_base) {
1506         g_string_append_printf(buf, " eq:@%08"PRIx64"% 6d/%5d ^%d",
1507                                qaddr_base, qindex, qentries, qgen);
1508         xive_end_queue_pic_print_info(end, 6, buf);
1509     }
1510     g_string_append_c(buf, '\n');
1511 }
1512 
xive_end_enqueue(XiveEND * end,uint32_t data)1513 static void xive_end_enqueue(XiveEND *end, uint32_t data)
1514 {
1515     uint64_t qaddr_base = xive_end_qaddr(end);
1516     uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1517     uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1518     uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1519 
1520     uint64_t qaddr = qaddr_base + (qindex << 2);
1521     uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1522     uint32_t qentries = 1 << (qsize + 10);
1523 
1524     if (dma_memory_write(&address_space_memory, qaddr,
1525                          &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) {
1526         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1527                       HWADDR_PRIx "\n", qaddr);
1528         return;
1529     }
1530 
1531     qindex = (qindex + 1) & (qentries - 1);
1532     if (qindex == 0) {
1533         qgen ^= 1;
1534         end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1535     }
1536     end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1537 }
1538 
xive_end_eas_pic_print_info(XiveEND * end,uint32_t end_idx,GString * buf)1539 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf)
1540 {
1541     XiveEAS *eas = (XiveEAS *) &end->w4;
1542     uint8_t pq;
1543 
1544     if (!xive_end_is_escalate(end)) {
1545         return;
1546     }
1547 
1548     pq = xive_get_field32(END_W1_ESe, end->w1);
1549 
1550     g_string_append_printf(buf, "  %08x %c%c %c%c end:%02x/%04x data:%08x\n",
1551                            end_idx,
1552                            pq & XIVE_ESB_VAL_P ? 'P' : '-',
1553                            pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
1554                            xive_eas_is_valid(eas) ? 'V' : ' ',
1555                            xive_eas_is_masked(eas) ? 'M' : ' ',
1556                            (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1557                            (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1558                            (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1559 }
1560 
1561 /*
1562  * XIVE Router (aka. Virtualization Controller or IVRE)
1563  */
1564 
xive_router_get_eas(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,XiveEAS * eas)1565 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1566                         XiveEAS *eas)
1567 {
1568     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1569 
1570     return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1571 }
1572 
1573 static
xive_router_get_pq(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,uint8_t * pq)1574 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1575                        uint8_t *pq)
1576 {
1577     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1578 
1579     return xrc->get_pq(xrtr, eas_blk, eas_idx, pq);
1580 }
1581 
1582 static
xive_router_set_pq(XiveRouter * xrtr,uint8_t eas_blk,uint32_t eas_idx,uint8_t * pq)1583 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1584                        uint8_t *pq)
1585 {
1586     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1587 
1588     return xrc->set_pq(xrtr, eas_blk, eas_idx, pq);
1589 }
1590 
xive_router_get_end(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end)1591 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1592                         XiveEND *end)
1593 {
1594    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1595 
1596    return xrc->get_end(xrtr, end_blk, end_idx, end);
1597 }
1598 
xive_router_write_end(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end,uint8_t word_number)1599 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1600                           XiveEND *end, uint8_t word_number)
1601 {
1602    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1603 
1604    return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1605 }
1606 
xive_router_get_nvt(XiveRouter * xrtr,uint8_t nvt_blk,uint32_t nvt_idx,XiveNVT * nvt)1607 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1608                         XiveNVT *nvt)
1609 {
1610    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1611 
1612    return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1613 }
1614 
xive_router_write_nvt(XiveRouter * xrtr,uint8_t nvt_blk,uint32_t nvt_idx,XiveNVT * nvt,uint8_t word_number)1615 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1616                         XiveNVT *nvt, uint8_t word_number)
1617 {
1618    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1619 
1620    return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1621 }
1622 
xive_router_get_block_id(XiveRouter * xrtr)1623 static int xive_router_get_block_id(XiveRouter *xrtr)
1624 {
1625    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1626 
1627    return xrc->get_block_id(xrtr);
1628 }
1629 
xive_router_realize(DeviceState * dev,Error ** errp)1630 static void xive_router_realize(DeviceState *dev, Error **errp)
1631 {
1632     XiveRouter *xrtr = XIVE_ROUTER(dev);
1633 
1634     assert(xrtr->xfb);
1635 }
1636 
xive_router_end_notify_handler(XiveRouter * xrtr,XiveEAS * eas)1637 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas)
1638 {
1639     XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1640 
1641     return xrc->end_notify(xrtr, eas);
1642 }
1643 
1644 /*
1645  * Encode the HW CAM line in the block group mode format :
1646  *
1647  *   chip << 19 | 0000000 0 0001 thread (7Bit)
1648  */
xive_tctx_hw_cam_line(XivePresenter * xptr,XiveTCTX * tctx)1649 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx)
1650 {
1651     CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1652     uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1653     uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr));
1654 
1655     return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f));
1656 }
1657 
xive_get_vpgroup_size(uint32_t nvp_index)1658 uint32_t xive_get_vpgroup_size(uint32_t nvp_index)
1659 {
1660     /*
1661      * Group size is a power of 2. The position of the first 0
1662      * (starting with the least significant bits) in the NVP index
1663      * gives the size of the group.
1664      */
1665     int first_zero = cto32(nvp_index);
1666     if (first_zero >= 31) {
1667         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x",
1668                                        nvp_index);
1669         return 0;
1670     }
1671 
1672     return 1U << (first_zero + 1);
1673 }
1674 
xive_get_group_level(bool crowd,bool ignore,uint32_t nvp_blk,uint32_t nvp_index)1675 static uint8_t xive_get_group_level(bool crowd, bool ignore,
1676                                     uint32_t nvp_blk, uint32_t nvp_index)
1677 {
1678     int first_zero;
1679     uint8_t level;
1680 
1681     if (!ignore) {
1682         g_assert(!crowd);
1683         return 0;
1684     }
1685 
1686     first_zero = cto32(nvp_index);
1687     if (first_zero >= 31) {
1688         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x",
1689                                        nvp_index);
1690         return 0;
1691     }
1692 
1693     level = (first_zero + 1) & 0b1111;
1694     if (crowd) {
1695         uint32_t blk;
1696 
1697         /* crowd level is bit position of first 0 from the right in nvp_blk */
1698         first_zero = cto32(nvp_blk);
1699         if (first_zero >= 31) {
1700             qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid crowd block 0x%08x",
1701                                            nvp_blk);
1702             return 0;
1703         }
1704         blk = first_zero + 1;
1705 
1706         /*
1707          * Supported crowd sizes are 2^1, 2^2, and 2^4. 2^3 is not supported.
1708          * HW will encode level 4 as the value 3.  See xive2_pgofnext().
1709          */
1710         switch (blk) {
1711         case 1:
1712         case 2:
1713             break;
1714         case 4:
1715             blk = 3;
1716             break;
1717         default:
1718             g_assert_not_reached();
1719         }
1720 
1721         /* Crowd level bits reside in upper 2 bits of the 6 bit group level */
1722         level |= blk << 4;
1723     }
1724     return level;
1725 }
1726 
1727 /*
1728  * The thread context register words are in big-endian format.
1729  */
xive_presenter_tctx_match(XivePresenter * xptr,XiveTCTX * tctx,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint32_t logic_serv)1730 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx,
1731                               uint8_t format,
1732                               uint8_t nvt_blk, uint32_t nvt_idx,
1733                               bool cam_ignore, uint32_t logic_serv)
1734 {
1735     uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1736     uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1737     uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1738     uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1739     uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1740 
1741     /*
1742      * TODO (PowerNV): ignore mode. The low order bits of the NVT
1743      * identifier are ignored in the "CAM" match.
1744      */
1745 
1746     if (format == 0) {
1747         if (cam_ignore == true) {
1748             /*
1749              * F=0 & i=1: Logical server notification (bits ignored at
1750              * the end of the NVT identifier)
1751              */
1752             qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1753                           nvt_blk, nvt_idx);
1754              return -1;
1755         }
1756 
1757         /* F=0 & i=0: Specific NVT notification */
1758 
1759         /* PHYS ring */
1760         if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1761             cam == xive_tctx_hw_cam_line(xptr, tctx)) {
1762             return TM_QW3_HV_PHYS;
1763         }
1764 
1765         /* HV POOL ring */
1766         if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1767             cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1768             return TM_QW2_HV_POOL;
1769         }
1770 
1771         /* OS ring */
1772         if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1773             cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1774             return TM_QW1_OS;
1775         }
1776     } else {
1777         /* F=1 : User level Event-Based Branch (EBB) notification */
1778 
1779         /* USER ring */
1780         if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1781              (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1782              (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1783              (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1784             return TM_QW0_USER;
1785         }
1786     }
1787     return -1;
1788 }
1789 
1790 /*
1791  * This is our simple Xive Presenter Engine model. It is merged in the
1792  * Router as it does not require an extra object.
1793  */
xive_presenter_notify(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,bool * precluded)1794 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format,
1795                            uint8_t nvt_blk, uint32_t nvt_idx,
1796                            bool crowd, bool cam_ignore, uint8_t priority,
1797                            uint32_t logic_serv, bool *precluded)
1798 {
1799     XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb);
1800     XiveTCTXMatch match = { .tctx = NULL, .ring = 0, .precluded = false };
1801     uint8_t group_level;
1802     int count;
1803 
1804     /*
1805      * Ask the machine to scan the interrupt controllers for a match.
1806      *
1807      * For VP-specific notification, we expect at most one match and
1808      * one call to the presenters is all we need (abbreviated notify
1809      * sequence documented by the architecture).
1810      *
1811      * For VP-group notification, match_nvt() is the equivalent of the
1812      * "histogram" and "poll" commands sent to the power bus to the
1813      * presenters. 'count' could be more than one, but we always
1814      * select the first match for now. 'precluded' tells if (at least)
1815      * one thread matches but can't take the interrupt now because
1816      * it's running at a more favored priority. We return the
1817      * information to the router so that it can take appropriate
1818      * actions (backlog, escalation, broadcast, etc...)
1819      *
1820      * If we were to implement a better way of dispatching the
1821      * interrupt in case of multiple matches (instead of the first
1822      * match), we would need a heuristic to elect a thread (for
1823      * example, the hardware keeps track of an 'age' in the TIMA) and
1824      * a new command to the presenters (the equivalent of the "assign"
1825      * power bus command in the documented full notify sequence.
1826      */
1827     count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, crowd, cam_ignore,
1828                            priority, logic_serv, &match);
1829     if (count < 0) {
1830         return false;
1831     }
1832 
1833     /* handle CPU exception delivery */
1834     if (count) {
1835         group_level = xive_get_group_level(crowd, cam_ignore, nvt_blk, nvt_idx);
1836         trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring, group_level);
1837         xive_tctx_pipr_update(match.tctx, match.ring, priority, group_level);
1838     } else {
1839         *precluded = match.precluded;
1840     }
1841 
1842     return !!count;
1843 }
1844 
1845 /*
1846  * Notification using the END ESe/ESn bit (Event State Buffer for
1847  * escalation and notification). Provide further coalescing in the
1848  * Router.
1849  */
xive_router_end_es_notify(XiveRouter * xrtr,uint8_t end_blk,uint32_t end_idx,XiveEND * end,uint32_t end_esmask)1850 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk,
1851                                       uint32_t end_idx, XiveEND *end,
1852                                       uint32_t end_esmask)
1853 {
1854     uint8_t pq = xive_get_field32(end_esmask, end->w1);
1855     bool notify = xive_esb_trigger(&pq);
1856 
1857     if (pq != xive_get_field32(end_esmask, end->w1)) {
1858         end->w1 = xive_set_field32(end_esmask, end->w1, pq);
1859         xive_router_write_end(xrtr, end_blk, end_idx, end, 1);
1860     }
1861 
1862     /* ESe/n[Q]=1 : end of notification */
1863     return notify;
1864 }
1865 
1866 /*
1867  * An END trigger can come from an event trigger (IPI or HW) or from
1868  * another chip. We don't model the PowerBus but the END trigger
1869  * message has the same parameters than in the function below.
1870  */
xive_router_end_notify(XiveRouter * xrtr,XiveEAS * eas)1871 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas)
1872 {
1873     XiveEND end;
1874     uint8_t priority;
1875     uint8_t format;
1876     uint8_t nvt_blk;
1877     uint32_t nvt_idx;
1878     XiveNVT nvt;
1879     bool found, precluded;
1880 
1881     uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
1882     uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
1883     uint32_t end_data = xive_get_field64(EAS_END_DATA,  eas->w);
1884 
1885     /* END cache lookup */
1886     if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1887         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1888                       end_idx);
1889         return;
1890     }
1891 
1892     if (!xive_end_is_valid(&end)) {
1893         trace_xive_router_end_notify(end_blk, end_idx, end_data);
1894         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1895                       end_blk, end_idx);
1896         return;
1897     }
1898 
1899     if (xive_end_is_enqueue(&end)) {
1900         xive_end_enqueue(&end, end_data);
1901         /* Enqueuing event data modifies the EQ toggle and index */
1902         xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1903     }
1904 
1905     /*
1906      * When the END is silent, we skip the notification part.
1907      */
1908     if (xive_end_is_silent_escalation(&end)) {
1909         goto do_escalation;
1910     }
1911 
1912     /*
1913      * The W7 format depends on the F bit in W6. It defines the type
1914      * of the notification :
1915      *
1916      *   F=0 : single or multiple NVT notification
1917      *   F=1 : User level Event-Based Branch (EBB) notification, no
1918      *         priority
1919      */
1920     format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1921     priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1922 
1923     /* The END is masked */
1924     if (format == 0 && priority == 0xff) {
1925         return;
1926     }
1927 
1928     /*
1929      * Check the END ESn (Event State Buffer for notification) for
1930      * even further coalescing in the Router
1931      */
1932     if (!xive_end_is_notify(&end)) {
1933         /* ESn[Q]=1 : end of notification */
1934         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
1935                                        &end, END_W1_ESn)) {
1936             return;
1937         }
1938     }
1939 
1940     /*
1941      * Follows IVPE notification
1942      */
1943     nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6);
1944     nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6);
1945 
1946     /* NVT cache lookup */
1947     if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1948         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1949                       nvt_blk, nvt_idx);
1950         return;
1951     }
1952 
1953     if (!xive_nvt_is_valid(&nvt)) {
1954         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1955                       nvt_blk, nvt_idx);
1956         return;
1957     }
1958 
1959     found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx,
1960                           false /* crowd */,
1961                           xive_get_field32(END_W7_F0_IGNORE, end.w7),
1962                           priority,
1963                           xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7),
1964                           &precluded);
1965     /* we don't support VP-group notification on P9, so precluded is not used */
1966     /* TODO: Auto EOI. */
1967 
1968     if (found) {
1969         return;
1970     }
1971 
1972     /*
1973      * If no matching NVT is dispatched on a HW thread :
1974      * - specific VP: update the NVT structure if backlog is activated
1975      * - logical server : forward request to IVPE (not supported)
1976      */
1977     if (xive_end_is_backlog(&end)) {
1978         uint8_t ipb;
1979 
1980         if (format == 1) {
1981             qemu_log_mask(LOG_GUEST_ERROR,
1982                           "XIVE: END %x/%x invalid config: F1 & backlog\n",
1983                           end_blk, end_idx);
1984             return;
1985         }
1986         /*
1987          * Record the IPB in the associated NVT structure for later
1988          * use. The presenter will resend the interrupt when the vCPU
1989          * is dispatched again on a HW thread.
1990          */
1991         ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) |
1992             xive_priority_to_ipb(priority);
1993         nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb);
1994         xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1995 
1996         /*
1997          * On HW, follows a "Broadcast Backlog" to IVPEs
1998          */
1999     }
2000 
2001 do_escalation:
2002     /*
2003      * If activated, escalate notification using the ESe PQ bits and
2004      * the EAS in w4-5
2005      */
2006     if (!xive_end_is_escalate(&end)) {
2007         return;
2008     }
2009 
2010     /*
2011      * Check the END ESe (Event State Buffer for escalation) for even
2012      * further coalescing in the Router
2013      */
2014     if (!xive_end_is_uncond_escalation(&end)) {
2015         /* ESe[Q]=1 : end of notification */
2016         if (!xive_router_end_es_notify(xrtr, end_blk, end_idx,
2017                                        &end, END_W1_ESe)) {
2018             return;
2019         }
2020     }
2021 
2022     trace_xive_router_end_escalate(end_blk, end_idx,
2023            (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4),
2024            (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4),
2025            (uint32_t) xive_get_field32(END_W5_ESC_END_DATA,  end.w5));
2026     /*
2027      * The END trigger becomes an Escalation trigger
2028      */
2029     xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4);
2030 }
2031 
xive_router_notify(XiveNotifier * xn,uint32_t lisn,bool pq_checked)2032 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked)
2033 {
2034     XiveRouter *xrtr = XIVE_ROUTER(xn);
2035     uint8_t eas_blk = XIVE_EAS_BLOCK(lisn);
2036     uint32_t eas_idx = XIVE_EAS_INDEX(lisn);
2037     XiveEAS eas;
2038 
2039     /* EAS cache lookup */
2040     if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
2041         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
2042         return;
2043     }
2044 
2045     if (!pq_checked) {
2046         bool notify;
2047         uint8_t pq;
2048 
2049         /* PQ cache lookup */
2050         if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) {
2051             /* Set FIR */
2052             g_assert_not_reached();
2053         }
2054 
2055         notify = xive_esb_trigger(&pq);
2056 
2057         if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) {
2058             /* Set FIR */
2059             g_assert_not_reached();
2060         }
2061 
2062         if (!notify) {
2063             return;
2064         }
2065     }
2066 
2067     if (!xive_eas_is_valid(&eas)) {
2068         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
2069         return;
2070     }
2071 
2072     if (xive_eas_is_masked(&eas)) {
2073         /* Notification completed */
2074         return;
2075     }
2076 
2077     /*
2078      * The event trigger becomes an END trigger
2079      */
2080     xive_router_end_notify_handler(xrtr, &eas);
2081 }
2082 
2083 static const Property xive_router_properties[] = {
2084     DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb,
2085                      TYPE_XIVE_FABRIC, XiveFabric *),
2086 };
2087 
xive_router_class_init(ObjectClass * klass,const void * data)2088 static void xive_router_class_init(ObjectClass *klass, const void *data)
2089 {
2090     DeviceClass *dc = DEVICE_CLASS(klass);
2091     XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
2092     XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
2093 
2094     dc->desc    = "XIVE Router Engine";
2095     device_class_set_props(dc, xive_router_properties);
2096     /* Parent is SysBusDeviceClass. No need to call its realize hook */
2097     dc->realize = xive_router_realize;
2098     xnc->notify = xive_router_notify;
2099 
2100     /* By default, the router handles END triggers locally */
2101     xrc->end_notify = xive_router_end_notify;
2102 }
2103 
2104 static const TypeInfo xive_router_info = {
2105     .name          = TYPE_XIVE_ROUTER,
2106     .parent        = TYPE_SYS_BUS_DEVICE,
2107     .abstract      = true,
2108     .instance_size = sizeof(XiveRouter),
2109     .class_size    = sizeof(XiveRouterClass),
2110     .class_init    = xive_router_class_init,
2111     .interfaces    = (const InterfaceInfo[]) {
2112         { TYPE_XIVE_NOTIFIER },
2113         { TYPE_XIVE_PRESENTER },
2114         { }
2115     }
2116 };
2117 
xive_eas_pic_print_info(XiveEAS * eas,uint32_t lisn,GString * buf)2118 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf)
2119 {
2120     if (!xive_eas_is_valid(eas)) {
2121         return;
2122     }
2123 
2124     g_string_append_printf(buf, "  %08x %s end:%02x/%04x data:%08x\n",
2125                            lisn, xive_eas_is_masked(eas) ? "M" : " ",
2126                            (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
2127                            (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
2128                            (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
2129 }
2130 
2131 /*
2132  * END ESB MMIO loads
2133  */
xive_end_source_read(void * opaque,hwaddr addr,unsigned size)2134 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
2135 {
2136     XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
2137     uint32_t offset = addr & 0xFFF;
2138     uint8_t end_blk;
2139     uint32_t end_idx;
2140     XiveEND end;
2141     uint32_t end_esmask;
2142     uint8_t pq;
2143     uint64_t ret = -1;
2144 
2145     /*
2146      * The block id should be deduced from the load address on the END
2147      * ESB MMIO but our model only supports a single block per XIVE chip.
2148      */
2149     end_blk = xive_router_get_block_id(xsrc->xrtr);
2150     end_idx = addr >> (xsrc->esb_shift + 1);
2151 
2152     trace_xive_end_source_read(end_blk, end_idx, addr);
2153 
2154     if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
2155         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
2156                       end_idx);
2157         return -1;
2158     }
2159 
2160     if (!xive_end_is_valid(&end)) {
2161         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
2162                       end_blk, end_idx);
2163         return -1;
2164     }
2165 
2166     end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
2167     pq = xive_get_field32(end_esmask, end.w1);
2168 
2169     switch (offset) {
2170     case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
2171         ret = xive_esb_eoi(&pq);
2172 
2173         /* Forward the source event notification for routing ?? */
2174         break;
2175 
2176     case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
2177         ret = pq;
2178         break;
2179 
2180     case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
2181     case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
2182     case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
2183     case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
2184         ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
2185         break;
2186     default:
2187         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
2188                       offset);
2189         return -1;
2190     }
2191 
2192     if (pq != xive_get_field32(end_esmask, end.w1)) {
2193         end.w1 = xive_set_field32(end_esmask, end.w1, pq);
2194         xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
2195     }
2196 
2197     return ret;
2198 }
2199 
2200 /*
2201  * END ESB MMIO stores are invalid
2202  */
xive_end_source_write(void * opaque,hwaddr addr,uint64_t value,unsigned size)2203 static void xive_end_source_write(void *opaque, hwaddr addr,
2204                                   uint64_t value, unsigned size)
2205 {
2206     qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
2207                   HWADDR_PRIx"\n", addr);
2208 }
2209 
2210 static const MemoryRegionOps xive_end_source_ops = {
2211     .read = xive_end_source_read,
2212     .write = xive_end_source_write,
2213     .endianness = DEVICE_BIG_ENDIAN,
2214     .valid = {
2215         .min_access_size = 1,
2216         .max_access_size = 8,
2217     },
2218     .impl = {
2219         .min_access_size = 1,
2220         .max_access_size = 8,
2221     },
2222 };
2223 
xive_end_source_realize(DeviceState * dev,Error ** errp)2224 static void xive_end_source_realize(DeviceState *dev, Error **errp)
2225 {
2226     XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
2227 
2228     assert(xsrc->xrtr);
2229 
2230     if (!xsrc->nr_ends) {
2231         error_setg(errp, "Number of interrupt needs to be greater than 0");
2232         return;
2233     }
2234 
2235     if (xsrc->esb_shift != XIVE_ESB_4K &&
2236         xsrc->esb_shift != XIVE_ESB_64K) {
2237         error_setg(errp, "Invalid ESB shift setting");
2238         return;
2239     }
2240 
2241     /*
2242      * Each END is assigned an even/odd pair of MMIO pages, the even page
2243      * manages the ESn field while the odd page manages the ESe field.
2244      */
2245     memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
2246                           &xive_end_source_ops, xsrc, "xive.end",
2247                           (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
2248 }
2249 
2250 static const Property xive_end_source_properties[] = {
2251     DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
2252     DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
2253     DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER,
2254                      XiveRouter *),
2255 };
2256 
xive_end_source_class_init(ObjectClass * klass,const void * data)2257 static void xive_end_source_class_init(ObjectClass *klass, const void *data)
2258 {
2259     DeviceClass *dc = DEVICE_CLASS(klass);
2260 
2261     dc->desc    = "XIVE END Source";
2262     device_class_set_props(dc, xive_end_source_properties);
2263     dc->realize = xive_end_source_realize;
2264     /*
2265      * Reason: part of XIVE interrupt controller, needs to be wired up,
2266      * e.g. by spapr_xive_instance_init().
2267      */
2268     dc->user_creatable = false;
2269 }
2270 
2271 static const TypeInfo xive_end_source_info = {
2272     .name          = TYPE_XIVE_END_SOURCE,
2273     .parent        = TYPE_DEVICE,
2274     .instance_size = sizeof(XiveENDSource),
2275     .class_init    = xive_end_source_class_init,
2276 };
2277 
2278 /*
2279  * XIVE Notifier
2280  */
2281 static const TypeInfo xive_notifier_info = {
2282     .name = TYPE_XIVE_NOTIFIER,
2283     .parent = TYPE_INTERFACE,
2284     .class_size = sizeof(XiveNotifierClass),
2285 };
2286 
2287 /*
2288  * XIVE Presenter
2289  */
2290 static const TypeInfo xive_presenter_info = {
2291     .name = TYPE_XIVE_PRESENTER,
2292     .parent = TYPE_INTERFACE,
2293     .class_size = sizeof(XivePresenterClass),
2294 };
2295 
2296 /*
2297  * XIVE Fabric
2298  */
2299 static const TypeInfo xive_fabric_info = {
2300     .name = TYPE_XIVE_FABRIC,
2301     .parent = TYPE_INTERFACE,
2302     .class_size = sizeof(XiveFabricClass),
2303 };
2304 
xive_register_types(void)2305 static void xive_register_types(void)
2306 {
2307     type_register_static(&xive_fabric_info);
2308     type_register_static(&xive_source_info);
2309     type_register_static(&xive_notifier_info);
2310     type_register_static(&xive_presenter_info);
2311     type_register_static(&xive_router_info);
2312     type_register_static(&xive_end_source_info);
2313     type_register_static(&xive_tctx_info);
2314 }
2315 
2316 type_init(xive_register_types)
2317