1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2023-2025 Christoph Hellwig.
4 * Copyright (c) 2024-2025, Western Digital Corporation or its affiliates.
5 */
6 #include "xfs.h"
7 #include "xfs_shared.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_mount.h"
12 #include "xfs_inode.h"
13 #include "xfs_btree.h"
14 #include "xfs_trans.h"
15 #include "xfs_icache.h"
16 #include "xfs_rmap.h"
17 #include "xfs_rtbitmap.h"
18 #include "xfs_rtrmap_btree.h"
19 #include "xfs_zone_alloc.h"
20 #include "xfs_zone_priv.h"
21 #include "xfs_zones.h"
22 #include "xfs_trace.h"
23
24 /*
25 * Implement Garbage Collection (GC) of partially used zoned.
26 *
27 * To support the purely sequential writes in each zone, zoned XFS needs to be
28 * able to move data remaining in a zone out of it to reset the zone to prepare
29 * for writing to it again.
30 *
31 * This is done by the GC thread implemented in this file. To support that a
32 * number of zones (XFS_GC_ZONES) is reserved from the user visible capacity to
33 * write the garbage collected data into.
34 *
35 * Whenever the available space is below the chosen threshold, the GC thread
36 * looks for potential non-empty but not fully used zones that are worth
37 * reclaiming. Once found the rmap for the victim zone is queried, and after
38 * a bit of sorting to reduce fragmentation, the still live extents are read
39 * into memory and written to the GC target zone, and the bmap btree of the
40 * files is updated to point to the new location. To avoid taking the IOLOCK
41 * and MMAPLOCK for the entire GC process and thus affecting the latency of
42 * user reads and writes to the files, the GC writes are speculative and the
43 * I/O completion checks that no other writes happened for the affected regions
44 * before remapping.
45 *
46 * Once a zone does not contain any valid data, be that through GC or user
47 * block removal, it is queued for for a zone reset. The reset operation
48 * carefully ensures that the RT device cache is flushed and all transactions
49 * referencing the rmap have been committed to disk.
50 */
51
52 /*
53 * Size of each GC scratch pad. This is also the upper bound for each
54 * GC I/O, which helps to keep latency down.
55 */
56 #define XFS_GC_CHUNK_SIZE SZ_1M
57
58 /*
59 * Scratchpad data to read GCed data into.
60 *
61 * The offset member tracks where the next allocation starts, and freed tracks
62 * the amount of space that is not used anymore.
63 */
64 #define XFS_ZONE_GC_NR_SCRATCH 2
65 struct xfs_zone_scratch {
66 struct folio *folio;
67 unsigned int offset;
68 unsigned int freed;
69 };
70
71 /*
72 * Chunk that is read and written for each GC operation.
73 *
74 * Note that for writes to actual zoned devices, the chunk can be split when
75 * reaching the hardware limit.
76 */
77 struct xfs_gc_bio {
78 struct xfs_zone_gc_data *data;
79
80 /*
81 * Entry into the reading/writing/resetting list. Only accessed from
82 * the GC thread, so no locking needed.
83 */
84 struct list_head entry;
85
86 /*
87 * State of this gc_bio. Done means the current I/O completed.
88 * Set from the bio end I/O handler, read from the GC thread.
89 */
90 enum {
91 XFS_GC_BIO_NEW,
92 XFS_GC_BIO_DONE,
93 } state;
94
95 /*
96 * Pointer to the inode and byte range in the inode that this
97 * GC chunk is operating on.
98 */
99 struct xfs_inode *ip;
100 loff_t offset;
101 unsigned int len;
102
103 /*
104 * Existing startblock (in the zone to be freed) and newly assigned
105 * daddr in the zone GCed into.
106 */
107 xfs_fsblock_t old_startblock;
108 xfs_daddr_t new_daddr;
109 struct xfs_zone_scratch *scratch;
110
111 /* Are we writing to a sequential write required zone? */
112 bool is_seq;
113
114 /* Open Zone being written to */
115 struct xfs_open_zone *oz;
116
117 /* Bio used for reads and writes, including the bvec used by it */
118 struct bio_vec bv;
119 struct bio bio; /* must be last */
120 };
121
122 #define XFS_ZONE_GC_RECS 1024
123
124 /* iterator, needs to be reinitialized for each victim zone */
125 struct xfs_zone_gc_iter {
126 struct xfs_rtgroup *victim_rtg;
127 unsigned int rec_count;
128 unsigned int rec_idx;
129 xfs_agblock_t next_startblock;
130 struct xfs_rmap_irec *recs;
131 };
132
133 /*
134 * Per-mount GC state.
135 */
136 struct xfs_zone_gc_data {
137 struct xfs_mount *mp;
138
139 /* bioset used to allocate the gc_bios */
140 struct bio_set bio_set;
141
142 /*
143 * Scratchpad used, and index to indicated which one is used.
144 */
145 struct xfs_zone_scratch scratch[XFS_ZONE_GC_NR_SCRATCH];
146 unsigned int scratch_idx;
147
148 /*
149 * List of bios currently being read, written and reset.
150 * These lists are only accessed by the GC thread itself, and must only
151 * be processed in order.
152 */
153 struct list_head reading;
154 struct list_head writing;
155 struct list_head resetting;
156
157 /*
158 * Iterator for the victim zone.
159 */
160 struct xfs_zone_gc_iter iter;
161 };
162
163 /*
164 * We aim to keep enough zones free in stock to fully use the open zone limit
165 * for data placement purposes. Additionally, the m_zonegc_low_space tunable
166 * can be set to make sure a fraction of the unused blocks are available for
167 * writing.
168 */
169 bool
xfs_zoned_need_gc(struct xfs_mount * mp)170 xfs_zoned_need_gc(
171 struct xfs_mount *mp)
172 {
173 s64 available, free, threshold;
174 s32 remainder;
175
176 if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_RECLAIMABLE))
177 return false;
178
179 available = xfs_estimate_freecounter(mp, XC_FREE_RTAVAILABLE);
180
181 if (available <
182 mp->m_groups[XG_TYPE_RTG].blocks *
183 (mp->m_max_open_zones - XFS_OPEN_GC_ZONES))
184 return true;
185
186 free = xfs_estimate_freecounter(mp, XC_FREE_RTEXTENTS);
187
188 threshold = div_s64_rem(free, 100, &remainder);
189 threshold = threshold * mp->m_zonegc_low_space +
190 remainder * div_s64(mp->m_zonegc_low_space, 100);
191
192 if (available < threshold)
193 return true;
194
195 return false;
196 }
197
198 static struct xfs_zone_gc_data *
xfs_zone_gc_data_alloc(struct xfs_mount * mp)199 xfs_zone_gc_data_alloc(
200 struct xfs_mount *mp)
201 {
202 struct xfs_zone_gc_data *data;
203 int i;
204
205 data = kzalloc(sizeof(*data), GFP_KERNEL);
206 if (!data)
207 return NULL;
208 data->iter.recs = kcalloc(XFS_ZONE_GC_RECS, sizeof(*data->iter.recs),
209 GFP_KERNEL);
210 if (!data->iter.recs)
211 goto out_free_data;
212
213 /*
214 * We actually only need a single bio_vec. It would be nice to have
215 * a flag that only allocates the inline bvecs and not the separate
216 * bvec pool.
217 */
218 if (bioset_init(&data->bio_set, 16, offsetof(struct xfs_gc_bio, bio),
219 BIOSET_NEED_BVECS))
220 goto out_free_recs;
221 for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++) {
222 data->scratch[i].folio =
223 folio_alloc(GFP_KERNEL, get_order(XFS_GC_CHUNK_SIZE));
224 if (!data->scratch[i].folio)
225 goto out_free_scratch;
226 }
227 INIT_LIST_HEAD(&data->reading);
228 INIT_LIST_HEAD(&data->writing);
229 INIT_LIST_HEAD(&data->resetting);
230 data->mp = mp;
231 return data;
232
233 out_free_scratch:
234 while (--i >= 0)
235 folio_put(data->scratch[i].folio);
236 bioset_exit(&data->bio_set);
237 out_free_recs:
238 kfree(data->iter.recs);
239 out_free_data:
240 kfree(data);
241 return NULL;
242 }
243
244 static void
xfs_zone_gc_data_free(struct xfs_zone_gc_data * data)245 xfs_zone_gc_data_free(
246 struct xfs_zone_gc_data *data)
247 {
248 int i;
249
250 for (i = 0; i < XFS_ZONE_GC_NR_SCRATCH; i++)
251 folio_put(data->scratch[i].folio);
252 bioset_exit(&data->bio_set);
253 kfree(data->iter.recs);
254 kfree(data);
255 }
256
257 static void
xfs_zone_gc_iter_init(struct xfs_zone_gc_iter * iter,struct xfs_rtgroup * victim_rtg)258 xfs_zone_gc_iter_init(
259 struct xfs_zone_gc_iter *iter,
260 struct xfs_rtgroup *victim_rtg)
261
262 {
263 iter->next_startblock = 0;
264 iter->rec_count = 0;
265 iter->rec_idx = 0;
266 iter->victim_rtg = victim_rtg;
267 }
268
269 /*
270 * Query the rmap of the victim zone to gather the records to evacuate.
271 */
272 static int
xfs_zone_gc_query_cb(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * irec,void * private)273 xfs_zone_gc_query_cb(
274 struct xfs_btree_cur *cur,
275 const struct xfs_rmap_irec *irec,
276 void *private)
277 {
278 struct xfs_zone_gc_iter *iter = private;
279
280 ASSERT(!XFS_RMAP_NON_INODE_OWNER(irec->rm_owner));
281 ASSERT(!xfs_is_sb_inum(cur->bc_mp, irec->rm_owner));
282 ASSERT(!(irec->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK)));
283
284 iter->recs[iter->rec_count] = *irec;
285 if (++iter->rec_count == XFS_ZONE_GC_RECS) {
286 iter->next_startblock =
287 irec->rm_startblock + irec->rm_blockcount;
288 return 1;
289 }
290 return 0;
291 }
292
293 #define cmp_int(l, r) ((l > r) - (l < r))
294
295 static int
xfs_zone_gc_rmap_rec_cmp(const void * a,const void * b)296 xfs_zone_gc_rmap_rec_cmp(
297 const void *a,
298 const void *b)
299 {
300 const struct xfs_rmap_irec *reca = a;
301 const struct xfs_rmap_irec *recb = b;
302 int diff;
303
304 diff = cmp_int(reca->rm_owner, recb->rm_owner);
305 if (diff)
306 return diff;
307 return cmp_int(reca->rm_offset, recb->rm_offset);
308 }
309
310 static int
xfs_zone_gc_query(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter)311 xfs_zone_gc_query(
312 struct xfs_mount *mp,
313 struct xfs_zone_gc_iter *iter)
314 {
315 struct xfs_rtgroup *rtg = iter->victim_rtg;
316 struct xfs_rmap_irec ri_low = { };
317 struct xfs_rmap_irec ri_high;
318 struct xfs_btree_cur *cur;
319 struct xfs_trans *tp;
320 int error;
321
322 ASSERT(iter->next_startblock <= rtg_blocks(rtg));
323 if (iter->next_startblock == rtg_blocks(rtg))
324 goto done;
325
326 ASSERT(iter->next_startblock < rtg_blocks(rtg));
327 ri_low.rm_startblock = iter->next_startblock;
328 memset(&ri_high, 0xFF, sizeof(ri_high));
329
330 iter->rec_idx = 0;
331 iter->rec_count = 0;
332
333 error = xfs_trans_alloc_empty(mp, &tp);
334 if (error)
335 return error;
336
337 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP);
338 cur = xfs_rtrmapbt_init_cursor(tp, rtg);
339 error = xfs_rmap_query_range(cur, &ri_low, &ri_high,
340 xfs_zone_gc_query_cb, iter);
341 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_RMAP);
342 xfs_btree_del_cursor(cur, error < 0 ? error : 0);
343 xfs_trans_cancel(tp);
344
345 if (error < 0)
346 return error;
347
348 /*
349 * Sort the rmap records by inode number and increasing offset to
350 * defragment the mappings.
351 *
352 * This could be further enhanced by an even bigger look ahead window,
353 * but that's better left until we have better detection of changes to
354 * inode mapping to avoid the potential of GCing already dead data.
355 */
356 sort(iter->recs, iter->rec_count, sizeof(iter->recs[0]),
357 xfs_zone_gc_rmap_rec_cmp, NULL);
358
359 if (error == 0) {
360 /*
361 * We finished iterating through the zone.
362 */
363 iter->next_startblock = rtg_blocks(rtg);
364 if (iter->rec_count == 0)
365 goto done;
366 }
367
368 return 0;
369 done:
370 xfs_rtgroup_rele(iter->victim_rtg);
371 iter->victim_rtg = NULL;
372 return 0;
373 }
374
375 static bool
xfs_zone_gc_iter_next(struct xfs_mount * mp,struct xfs_zone_gc_iter * iter,struct xfs_rmap_irec * chunk_rec,struct xfs_inode ** ipp)376 xfs_zone_gc_iter_next(
377 struct xfs_mount *mp,
378 struct xfs_zone_gc_iter *iter,
379 struct xfs_rmap_irec *chunk_rec,
380 struct xfs_inode **ipp)
381 {
382 struct xfs_rmap_irec *irec;
383 int error;
384
385 if (!iter->victim_rtg)
386 return false;
387
388 retry:
389 if (iter->rec_idx == iter->rec_count) {
390 error = xfs_zone_gc_query(mp, iter);
391 if (error)
392 goto fail;
393 if (!iter->victim_rtg)
394 return false;
395 }
396
397 irec = &iter->recs[iter->rec_idx];
398 error = xfs_iget(mp, NULL, irec->rm_owner,
399 XFS_IGET_UNTRUSTED | XFS_IGET_DONTCACHE, 0, ipp);
400 if (error) {
401 /*
402 * If the inode was already deleted, skip over it.
403 */
404 if (error == -ENOENT) {
405 iter->rec_idx++;
406 goto retry;
407 }
408 goto fail;
409 }
410
411 if (!S_ISREG(VFS_I(*ipp)->i_mode) || !XFS_IS_REALTIME_INODE(*ipp)) {
412 iter->rec_idx++;
413 xfs_irele(*ipp);
414 goto retry;
415 }
416
417 *chunk_rec = *irec;
418 return true;
419
420 fail:
421 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
422 return false;
423 }
424
425 static void
xfs_zone_gc_iter_advance(struct xfs_zone_gc_iter * iter,xfs_extlen_t count_fsb)426 xfs_zone_gc_iter_advance(
427 struct xfs_zone_gc_iter *iter,
428 xfs_extlen_t count_fsb)
429 {
430 struct xfs_rmap_irec *irec = &iter->recs[iter->rec_idx];
431
432 irec->rm_offset += count_fsb;
433 irec->rm_startblock += count_fsb;
434 irec->rm_blockcount -= count_fsb;
435 if (!irec->rm_blockcount)
436 iter->rec_idx++;
437 }
438
439 static struct xfs_rtgroup *
xfs_zone_gc_pick_victim_from(struct xfs_mount * mp,uint32_t bucket)440 xfs_zone_gc_pick_victim_from(
441 struct xfs_mount *mp,
442 uint32_t bucket)
443 {
444 struct xfs_zone_info *zi = mp->m_zone_info;
445 uint32_t victim_used = U32_MAX;
446 struct xfs_rtgroup *victim_rtg = NULL;
447 uint32_t bit;
448
449 if (!zi->zi_used_bucket_entries[bucket])
450 return NULL;
451
452 for_each_set_bit(bit, zi->zi_used_bucket_bitmap[bucket],
453 mp->m_sb.sb_rgcount) {
454 struct xfs_rtgroup *rtg = xfs_rtgroup_grab(mp, bit);
455
456 if (!rtg)
457 continue;
458
459 /* skip zones that are just waiting for a reset */
460 if (rtg_rmap(rtg)->i_used_blocks == 0 ||
461 rtg_rmap(rtg)->i_used_blocks >= victim_used) {
462 xfs_rtgroup_rele(rtg);
463 continue;
464 }
465
466 if (victim_rtg)
467 xfs_rtgroup_rele(victim_rtg);
468 victim_rtg = rtg;
469 victim_used = rtg_rmap(rtg)->i_used_blocks;
470
471 /*
472 * Any zone that is less than 1 percent used is fair game for
473 * instant reclaim. All of these zones are in the last
474 * bucket, so avoid the expensive division for the zones
475 * in the other buckets.
476 */
477 if (bucket == 0 &&
478 rtg_rmap(rtg)->i_used_blocks < rtg_blocks(rtg) / 100)
479 break;
480 }
481
482 return victim_rtg;
483 }
484
485 /*
486 * Iterate through all zones marked as reclaimable and find a candidate to
487 * reclaim.
488 */
489 static bool
xfs_zone_gc_select_victim(struct xfs_zone_gc_data * data)490 xfs_zone_gc_select_victim(
491 struct xfs_zone_gc_data *data)
492 {
493 struct xfs_zone_gc_iter *iter = &data->iter;
494 struct xfs_mount *mp = data->mp;
495 struct xfs_zone_info *zi = mp->m_zone_info;
496 struct xfs_rtgroup *victim_rtg = NULL;
497 unsigned int bucket;
498
499 if (xfs_is_shutdown(mp))
500 return false;
501
502 if (iter->victim_rtg)
503 return true;
504
505 /*
506 * Don't start new work if we are asked to stop or park.
507 */
508 if (kthread_should_stop() || kthread_should_park())
509 return false;
510
511 if (!xfs_zoned_need_gc(mp))
512 return false;
513
514 spin_lock(&zi->zi_used_buckets_lock);
515 for (bucket = 0; bucket < XFS_ZONE_USED_BUCKETS; bucket++) {
516 victim_rtg = xfs_zone_gc_pick_victim_from(mp, bucket);
517 if (victim_rtg)
518 break;
519 }
520 spin_unlock(&zi->zi_used_buckets_lock);
521
522 if (!victim_rtg)
523 return false;
524
525 trace_xfs_zone_gc_select_victim(victim_rtg, bucket);
526 xfs_zone_gc_iter_init(iter, victim_rtg);
527 return true;
528 }
529
530 static struct xfs_open_zone *
xfs_zone_gc_steal_open(struct xfs_zone_info * zi)531 xfs_zone_gc_steal_open(
532 struct xfs_zone_info *zi)
533 {
534 struct xfs_open_zone *oz, *found = NULL;
535
536 spin_lock(&zi->zi_open_zones_lock);
537 list_for_each_entry(oz, &zi->zi_open_zones, oz_entry) {
538 if (!found ||
539 oz->oz_write_pointer < found->oz_write_pointer)
540 found = oz;
541 }
542
543 if (found) {
544 found->oz_is_gc = true;
545 list_del_init(&found->oz_entry);
546 zi->zi_nr_open_zones--;
547 }
548
549 spin_unlock(&zi->zi_open_zones_lock);
550 return found;
551 }
552
553 static struct xfs_open_zone *
xfs_zone_gc_select_target(struct xfs_mount * mp)554 xfs_zone_gc_select_target(
555 struct xfs_mount *mp)
556 {
557 struct xfs_zone_info *zi = mp->m_zone_info;
558 struct xfs_open_zone *oz = zi->zi_open_gc_zone;
559
560 /*
561 * We need to wait for pending writes to finish.
562 */
563 if (oz && oz->oz_written < rtg_blocks(oz->oz_rtg))
564 return NULL;
565
566 ASSERT(zi->zi_nr_open_zones <=
567 mp->m_max_open_zones - XFS_OPEN_GC_ZONES);
568 oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
569 if (oz)
570 trace_xfs_zone_gc_target_opened(oz->oz_rtg);
571 spin_lock(&zi->zi_open_zones_lock);
572 zi->zi_open_gc_zone = oz;
573 spin_unlock(&zi->zi_open_zones_lock);
574 return oz;
575 }
576
577 /*
578 * Ensure we have a valid open zone to write the GC data to.
579 *
580 * If the current target zone has space keep writing to it, else first wait for
581 * all pending writes and then pick a new one.
582 */
583 static struct xfs_open_zone *
xfs_zone_gc_ensure_target(struct xfs_mount * mp)584 xfs_zone_gc_ensure_target(
585 struct xfs_mount *mp)
586 {
587 struct xfs_open_zone *oz = mp->m_zone_info->zi_open_gc_zone;
588
589 if (!oz || oz->oz_write_pointer == rtg_blocks(oz->oz_rtg))
590 return xfs_zone_gc_select_target(mp);
591 return oz;
592 }
593
594 static unsigned int
xfs_zone_gc_scratch_available(struct xfs_zone_gc_data * data)595 xfs_zone_gc_scratch_available(
596 struct xfs_zone_gc_data *data)
597 {
598 return XFS_GC_CHUNK_SIZE - data->scratch[data->scratch_idx].offset;
599 }
600
601 static bool
xfs_zone_gc_space_available(struct xfs_zone_gc_data * data)602 xfs_zone_gc_space_available(
603 struct xfs_zone_gc_data *data)
604 {
605 struct xfs_open_zone *oz;
606
607 oz = xfs_zone_gc_ensure_target(data->mp);
608 if (!oz)
609 return false;
610 return oz->oz_write_pointer < rtg_blocks(oz->oz_rtg) &&
611 xfs_zone_gc_scratch_available(data);
612 }
613
614 static void
xfs_zone_gc_end_io(struct bio * bio)615 xfs_zone_gc_end_io(
616 struct bio *bio)
617 {
618 struct xfs_gc_bio *chunk =
619 container_of(bio, struct xfs_gc_bio, bio);
620 struct xfs_zone_gc_data *data = chunk->data;
621
622 WRITE_ONCE(chunk->state, XFS_GC_BIO_DONE);
623 wake_up_process(data->mp->m_zone_info->zi_gc_thread);
624 }
625
626 static struct xfs_open_zone *
xfs_zone_gc_alloc_blocks(struct xfs_zone_gc_data * data,xfs_extlen_t * count_fsb,xfs_daddr_t * daddr,bool * is_seq)627 xfs_zone_gc_alloc_blocks(
628 struct xfs_zone_gc_data *data,
629 xfs_extlen_t *count_fsb,
630 xfs_daddr_t *daddr,
631 bool *is_seq)
632 {
633 struct xfs_mount *mp = data->mp;
634 struct xfs_open_zone *oz;
635
636 oz = xfs_zone_gc_ensure_target(mp);
637 if (!oz)
638 return NULL;
639
640 *count_fsb = min(*count_fsb,
641 XFS_B_TO_FSB(mp, xfs_zone_gc_scratch_available(data)));
642
643 /*
644 * Directly allocate GC blocks from the reserved pool.
645 *
646 * If we'd take them from the normal pool we could be stealing blocks
647 * from a regular writer, which would then have to wait for GC and
648 * deadlock.
649 */
650 spin_lock(&mp->m_sb_lock);
651 *count_fsb = min(*count_fsb,
652 rtg_blocks(oz->oz_rtg) - oz->oz_write_pointer);
653 *count_fsb = min3(*count_fsb,
654 mp->m_free[XC_FREE_RTEXTENTS].res_avail,
655 mp->m_free[XC_FREE_RTAVAILABLE].res_avail);
656 mp->m_free[XC_FREE_RTEXTENTS].res_avail -= *count_fsb;
657 mp->m_free[XC_FREE_RTAVAILABLE].res_avail -= *count_fsb;
658 spin_unlock(&mp->m_sb_lock);
659
660 if (!*count_fsb)
661 return NULL;
662
663 *daddr = xfs_gbno_to_daddr(&oz->oz_rtg->rtg_group, 0);
664 *is_seq = bdev_zone_is_seq(mp->m_rtdev_targp->bt_bdev, *daddr);
665 if (!*is_seq)
666 *daddr += XFS_FSB_TO_BB(mp, oz->oz_write_pointer);
667 oz->oz_write_pointer += *count_fsb;
668 atomic_inc(&oz->oz_ref);
669 return oz;
670 }
671
672 static bool
xfs_zone_gc_start_chunk(struct xfs_zone_gc_data * data)673 xfs_zone_gc_start_chunk(
674 struct xfs_zone_gc_data *data)
675 {
676 struct xfs_zone_gc_iter *iter = &data->iter;
677 struct xfs_mount *mp = data->mp;
678 struct block_device *bdev = mp->m_rtdev_targp->bt_bdev;
679 struct xfs_open_zone *oz;
680 struct xfs_rmap_irec irec;
681 struct xfs_gc_bio *chunk;
682 struct xfs_inode *ip;
683 struct bio *bio;
684 xfs_daddr_t daddr;
685 bool is_seq;
686
687 if (xfs_is_shutdown(mp))
688 return false;
689
690 if (!xfs_zone_gc_iter_next(mp, iter, &irec, &ip))
691 return false;
692 oz = xfs_zone_gc_alloc_blocks(data, &irec.rm_blockcount, &daddr,
693 &is_seq);
694 if (!oz) {
695 xfs_irele(ip);
696 return false;
697 }
698
699 bio = bio_alloc_bioset(bdev, 1, REQ_OP_READ, GFP_NOFS, &data->bio_set);
700
701 chunk = container_of(bio, struct xfs_gc_bio, bio);
702 chunk->ip = ip;
703 chunk->offset = XFS_FSB_TO_B(mp, irec.rm_offset);
704 chunk->len = XFS_FSB_TO_B(mp, irec.rm_blockcount);
705 chunk->old_startblock =
706 xfs_rgbno_to_rtb(iter->victim_rtg, irec.rm_startblock);
707 chunk->new_daddr = daddr;
708 chunk->is_seq = is_seq;
709 chunk->scratch = &data->scratch[data->scratch_idx];
710 chunk->data = data;
711 chunk->oz = oz;
712
713 bio->bi_iter.bi_sector = xfs_rtb_to_daddr(mp, chunk->old_startblock);
714 bio->bi_end_io = xfs_zone_gc_end_io;
715 bio_add_folio_nofail(bio, chunk->scratch->folio, chunk->len,
716 chunk->scratch->offset);
717 chunk->scratch->offset += chunk->len;
718 if (chunk->scratch->offset == XFS_GC_CHUNK_SIZE) {
719 data->scratch_idx =
720 (data->scratch_idx + 1) % XFS_ZONE_GC_NR_SCRATCH;
721 }
722 WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
723 list_add_tail(&chunk->entry, &data->reading);
724 xfs_zone_gc_iter_advance(iter, irec.rm_blockcount);
725
726 submit_bio(bio);
727 return true;
728 }
729
730 static void
xfs_zone_gc_free_chunk(struct xfs_gc_bio * chunk)731 xfs_zone_gc_free_chunk(
732 struct xfs_gc_bio *chunk)
733 {
734 list_del(&chunk->entry);
735 xfs_open_zone_put(chunk->oz);
736 xfs_irele(chunk->ip);
737 bio_put(&chunk->bio);
738 }
739
740 static void
xfs_zone_gc_submit_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)741 xfs_zone_gc_submit_write(
742 struct xfs_zone_gc_data *data,
743 struct xfs_gc_bio *chunk)
744 {
745 if (chunk->is_seq) {
746 chunk->bio.bi_opf &= ~REQ_OP_WRITE;
747 chunk->bio.bi_opf |= REQ_OP_ZONE_APPEND;
748 }
749 chunk->bio.bi_iter.bi_sector = chunk->new_daddr;
750 chunk->bio.bi_end_io = xfs_zone_gc_end_io;
751 submit_bio(&chunk->bio);
752 }
753
754 static struct xfs_gc_bio *
xfs_zone_gc_split_write(struct xfs_zone_gc_data * data,struct xfs_gc_bio * chunk)755 xfs_zone_gc_split_write(
756 struct xfs_zone_gc_data *data,
757 struct xfs_gc_bio *chunk)
758 {
759 struct queue_limits *lim =
760 &bdev_get_queue(chunk->bio.bi_bdev)->limits;
761 struct xfs_gc_bio *split_chunk;
762 int split_sectors;
763 unsigned int split_len;
764 struct bio *split;
765 unsigned int nsegs;
766
767 if (!chunk->is_seq)
768 return NULL;
769
770 split_sectors = bio_split_rw_at(&chunk->bio, lim, &nsegs,
771 lim->max_zone_append_sectors << SECTOR_SHIFT);
772 if (!split_sectors)
773 return NULL;
774
775 /* ensure the split chunk is still block size aligned */
776 split_sectors = ALIGN_DOWN(split_sectors << SECTOR_SHIFT,
777 data->mp->m_sb.sb_blocksize) >> SECTOR_SHIFT;
778 split_len = split_sectors << SECTOR_SHIFT;
779
780 split = bio_split(&chunk->bio, split_sectors, GFP_NOFS, &data->bio_set);
781 split_chunk = container_of(split, struct xfs_gc_bio, bio);
782 split_chunk->data = data;
783 ihold(VFS_I(chunk->ip));
784 split_chunk->ip = chunk->ip;
785 split_chunk->is_seq = chunk->is_seq;
786 split_chunk->scratch = chunk->scratch;
787 split_chunk->offset = chunk->offset;
788 split_chunk->len = split_len;
789 split_chunk->old_startblock = chunk->old_startblock;
790 split_chunk->new_daddr = chunk->new_daddr;
791 split_chunk->oz = chunk->oz;
792 atomic_inc(&chunk->oz->oz_ref);
793
794 chunk->offset += split_len;
795 chunk->len -= split_len;
796 chunk->old_startblock += XFS_B_TO_FSB(data->mp, split_len);
797
798 /* add right before the original chunk */
799 WRITE_ONCE(split_chunk->state, XFS_GC_BIO_NEW);
800 list_add_tail(&split_chunk->entry, &chunk->entry);
801 return split_chunk;
802 }
803
804 static void
xfs_zone_gc_write_chunk(struct xfs_gc_bio * chunk)805 xfs_zone_gc_write_chunk(
806 struct xfs_gc_bio *chunk)
807 {
808 struct xfs_zone_gc_data *data = chunk->data;
809 struct xfs_mount *mp = chunk->ip->i_mount;
810 phys_addr_t bvec_paddr =
811 bvec_phys(bio_first_bvec_all(&chunk->bio));
812 struct xfs_gc_bio *split_chunk;
813
814 if (chunk->bio.bi_status)
815 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
816 if (xfs_is_shutdown(mp)) {
817 xfs_zone_gc_free_chunk(chunk);
818 return;
819 }
820
821 WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
822 list_move_tail(&chunk->entry, &data->writing);
823
824 bio_reset(&chunk->bio, mp->m_rtdev_targp->bt_bdev, REQ_OP_WRITE);
825 bio_add_folio_nofail(&chunk->bio, chunk->scratch->folio, chunk->len,
826 offset_in_folio(chunk->scratch->folio, bvec_paddr));
827
828 while ((split_chunk = xfs_zone_gc_split_write(data, chunk)))
829 xfs_zone_gc_submit_write(data, split_chunk);
830 xfs_zone_gc_submit_write(data, chunk);
831 }
832
833 static void
xfs_zone_gc_finish_chunk(struct xfs_gc_bio * chunk)834 xfs_zone_gc_finish_chunk(
835 struct xfs_gc_bio *chunk)
836 {
837 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
838 struct xfs_inode *ip = chunk->ip;
839 struct xfs_mount *mp = ip->i_mount;
840 int error;
841
842 if (chunk->bio.bi_status)
843 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
844 if (xfs_is_shutdown(mp)) {
845 xfs_zone_gc_free_chunk(chunk);
846 return;
847 }
848
849 chunk->scratch->freed += chunk->len;
850 if (chunk->scratch->freed == chunk->scratch->offset) {
851 chunk->scratch->offset = 0;
852 chunk->scratch->freed = 0;
853 }
854
855 /*
856 * Cycle through the iolock and wait for direct I/O and layouts to
857 * ensure no one is reading from the old mapping before it goes away.
858 *
859 * Note that xfs_zoned_end_io() below checks that no other writer raced
860 * with us to update the mapping by checking that the old startblock
861 * didn't change.
862 */
863 xfs_ilock(ip, iolock);
864 error = xfs_break_layouts(VFS_I(ip), &iolock, BREAK_UNMAP);
865 if (!error)
866 inode_dio_wait(VFS_I(ip));
867 xfs_iunlock(ip, iolock);
868 if (error)
869 goto free;
870
871 if (chunk->is_seq)
872 chunk->new_daddr = chunk->bio.bi_iter.bi_sector;
873 error = xfs_zoned_end_io(ip, chunk->offset, chunk->len,
874 chunk->new_daddr, chunk->oz, chunk->old_startblock);
875 free:
876 if (error)
877 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
878 xfs_zone_gc_free_chunk(chunk);
879 }
880
881 static void
xfs_zone_gc_finish_reset(struct xfs_gc_bio * chunk)882 xfs_zone_gc_finish_reset(
883 struct xfs_gc_bio *chunk)
884 {
885 struct xfs_rtgroup *rtg = chunk->bio.bi_private;
886 struct xfs_mount *mp = rtg_mount(rtg);
887 struct xfs_zone_info *zi = mp->m_zone_info;
888
889 if (chunk->bio.bi_status) {
890 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
891 goto out;
892 }
893
894 xfs_group_set_mark(&rtg->rtg_group, XFS_RTG_FREE);
895 atomic_inc(&zi->zi_nr_free_zones);
896
897 xfs_zoned_add_available(mp, rtg_blocks(rtg));
898
899 wake_up_all(&zi->zi_zone_wait);
900 out:
901 list_del(&chunk->entry);
902 bio_put(&chunk->bio);
903 }
904
905 static bool
xfs_zone_gc_prepare_reset(struct bio * bio,struct xfs_rtgroup * rtg)906 xfs_zone_gc_prepare_reset(
907 struct bio *bio,
908 struct xfs_rtgroup *rtg)
909 {
910 trace_xfs_zone_reset(rtg);
911
912 ASSERT(rtg_rmap(rtg)->i_used_blocks == 0);
913 bio->bi_iter.bi_sector = xfs_gbno_to_daddr(&rtg->rtg_group, 0);
914 if (!bdev_zone_is_seq(bio->bi_bdev, bio->bi_iter.bi_sector)) {
915 if (!bdev_max_discard_sectors(bio->bi_bdev))
916 return false;
917 bio->bi_opf = REQ_OP_DISCARD | REQ_SYNC;
918 bio->bi_iter.bi_size =
919 XFS_FSB_TO_B(rtg_mount(rtg), rtg_blocks(rtg));
920 }
921
922 return true;
923 }
924
925 int
xfs_zone_gc_reset_sync(struct xfs_rtgroup * rtg)926 xfs_zone_gc_reset_sync(
927 struct xfs_rtgroup *rtg)
928 {
929 int error = 0;
930 struct bio bio;
931
932 bio_init(&bio, rtg_mount(rtg)->m_rtdev_targp->bt_bdev, NULL, 0,
933 REQ_OP_ZONE_RESET);
934 if (xfs_zone_gc_prepare_reset(&bio, rtg))
935 error = submit_bio_wait(&bio);
936 bio_uninit(&bio);
937
938 return error;
939 }
940
941 static void
xfs_zone_gc_reset_zones(struct xfs_zone_gc_data * data,struct xfs_group * reset_list)942 xfs_zone_gc_reset_zones(
943 struct xfs_zone_gc_data *data,
944 struct xfs_group *reset_list)
945 {
946 struct xfs_group *next = reset_list;
947
948 if (blkdev_issue_flush(data->mp->m_rtdev_targp->bt_bdev) < 0) {
949 xfs_force_shutdown(data->mp, SHUTDOWN_META_IO_ERROR);
950 return;
951 }
952
953 do {
954 struct xfs_rtgroup *rtg = to_rtg(next);
955 struct xfs_gc_bio *chunk;
956 struct bio *bio;
957
958 xfs_log_force_inode(rtg_rmap(rtg));
959
960 next = rtg_group(rtg)->xg_next_reset;
961 rtg_group(rtg)->xg_next_reset = NULL;
962
963 bio = bio_alloc_bioset(rtg_mount(rtg)->m_rtdev_targp->bt_bdev,
964 0, REQ_OP_ZONE_RESET, GFP_NOFS, &data->bio_set);
965 bio->bi_private = rtg;
966 bio->bi_end_io = xfs_zone_gc_end_io;
967
968 chunk = container_of(bio, struct xfs_gc_bio, bio);
969 chunk->data = data;
970 WRITE_ONCE(chunk->state, XFS_GC_BIO_NEW);
971 list_add_tail(&chunk->entry, &data->resetting);
972
973 /*
974 * Also use the bio to drive the state machine when neither
975 * zone reset nor discard is supported to keep things simple.
976 */
977 if (xfs_zone_gc_prepare_reset(bio, rtg))
978 submit_bio(bio);
979 else
980 bio_endio(bio);
981 } while (next);
982 }
983
984 /*
985 * Handle the work to read and write data for GC and to reset the zones,
986 * including handling all completions.
987 *
988 * Note that the order of the chunks is preserved so that we don't undo the
989 * optimal order established by xfs_zone_gc_query().
990 */
991 static bool
xfs_zone_gc_handle_work(struct xfs_zone_gc_data * data)992 xfs_zone_gc_handle_work(
993 struct xfs_zone_gc_data *data)
994 {
995 struct xfs_zone_info *zi = data->mp->m_zone_info;
996 struct xfs_gc_bio *chunk, *next;
997 struct xfs_group *reset_list;
998 struct blk_plug plug;
999
1000 spin_lock(&zi->zi_reset_list_lock);
1001 reset_list = zi->zi_reset_list;
1002 zi->zi_reset_list = NULL;
1003 spin_unlock(&zi->zi_reset_list_lock);
1004
1005 if (!xfs_zone_gc_select_victim(data) ||
1006 !xfs_zone_gc_space_available(data)) {
1007 if (list_empty(&data->reading) &&
1008 list_empty(&data->writing) &&
1009 list_empty(&data->resetting) &&
1010 !reset_list)
1011 return false;
1012 }
1013
1014 __set_current_state(TASK_RUNNING);
1015 try_to_freeze();
1016
1017 if (reset_list)
1018 xfs_zone_gc_reset_zones(data, reset_list);
1019
1020 list_for_each_entry_safe(chunk, next, &data->resetting, entry) {
1021 if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1022 break;
1023 xfs_zone_gc_finish_reset(chunk);
1024 }
1025
1026 list_for_each_entry_safe(chunk, next, &data->writing, entry) {
1027 if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1028 break;
1029 xfs_zone_gc_finish_chunk(chunk);
1030 }
1031
1032 blk_start_plug(&plug);
1033 list_for_each_entry_safe(chunk, next, &data->reading, entry) {
1034 if (READ_ONCE(chunk->state) != XFS_GC_BIO_DONE)
1035 break;
1036 xfs_zone_gc_write_chunk(chunk);
1037 }
1038 blk_finish_plug(&plug);
1039
1040 blk_start_plug(&plug);
1041 while (xfs_zone_gc_start_chunk(data))
1042 ;
1043 blk_finish_plug(&plug);
1044 return true;
1045 }
1046
1047 /*
1048 * Note that the current GC algorithm would break reflinks and thus duplicate
1049 * data that was shared by multiple owners before. Because of that reflinks
1050 * are currently not supported on zoned file systems and can't be created or
1051 * mounted.
1052 */
1053 static int
xfs_zoned_gcd(void * private)1054 xfs_zoned_gcd(
1055 void *private)
1056 {
1057 struct xfs_zone_gc_data *data = private;
1058 struct xfs_mount *mp = data->mp;
1059 struct xfs_zone_info *zi = mp->m_zone_info;
1060 unsigned int nofs_flag;
1061
1062 nofs_flag = memalloc_nofs_save();
1063 set_freezable();
1064
1065 for (;;) {
1066 set_current_state(TASK_INTERRUPTIBLE | TASK_FREEZABLE);
1067 xfs_set_zonegc_running(mp);
1068 if (xfs_zone_gc_handle_work(data))
1069 continue;
1070
1071 if (list_empty(&data->reading) &&
1072 list_empty(&data->writing) &&
1073 list_empty(&data->resetting) &&
1074 !zi->zi_reset_list) {
1075 xfs_clear_zonegc_running(mp);
1076 xfs_zoned_resv_wake_all(mp);
1077
1078 if (kthread_should_stop()) {
1079 __set_current_state(TASK_RUNNING);
1080 break;
1081 }
1082
1083 if (kthread_should_park()) {
1084 __set_current_state(TASK_RUNNING);
1085 kthread_parkme();
1086 continue;
1087 }
1088 }
1089
1090 schedule();
1091 }
1092 xfs_clear_zonegc_running(mp);
1093
1094 if (data->iter.victim_rtg)
1095 xfs_rtgroup_rele(data->iter.victim_rtg);
1096
1097 memalloc_nofs_restore(nofs_flag);
1098 xfs_zone_gc_data_free(data);
1099 return 0;
1100 }
1101
1102 void
xfs_zone_gc_start(struct xfs_mount * mp)1103 xfs_zone_gc_start(
1104 struct xfs_mount *mp)
1105 {
1106 if (xfs_has_zoned(mp))
1107 kthread_unpark(mp->m_zone_info->zi_gc_thread);
1108 }
1109
1110 void
xfs_zone_gc_stop(struct xfs_mount * mp)1111 xfs_zone_gc_stop(
1112 struct xfs_mount *mp)
1113 {
1114 if (xfs_has_zoned(mp))
1115 kthread_park(mp->m_zone_info->zi_gc_thread);
1116 }
1117
1118 int
xfs_zone_gc_mount(struct xfs_mount * mp)1119 xfs_zone_gc_mount(
1120 struct xfs_mount *mp)
1121 {
1122 struct xfs_zone_info *zi = mp->m_zone_info;
1123 struct xfs_zone_gc_data *data;
1124 struct xfs_open_zone *oz;
1125 int error;
1126
1127 /*
1128 * If there are no free zones available for GC, pick the open zone with
1129 * the least used space to GC into. This should only happen after an
1130 * unclean shutdown near ENOSPC while GC was ongoing.
1131 *
1132 * We also need to do this for the first gc zone allocation if we
1133 * unmounted while at the open limit.
1134 */
1135 if (!xfs_group_marked(mp, XG_TYPE_RTG, XFS_RTG_FREE) ||
1136 zi->zi_nr_open_zones == mp->m_max_open_zones)
1137 oz = xfs_zone_gc_steal_open(zi);
1138 else
1139 oz = xfs_open_zone(mp, WRITE_LIFE_NOT_SET, true);
1140 if (!oz) {
1141 xfs_warn(mp, "unable to allocate a zone for gc");
1142 error = -EIO;
1143 goto out;
1144 }
1145
1146 trace_xfs_zone_gc_target_opened(oz->oz_rtg);
1147 zi->zi_open_gc_zone = oz;
1148
1149 data = xfs_zone_gc_data_alloc(mp);
1150 if (!data) {
1151 error = -ENOMEM;
1152 goto out_put_gc_zone;
1153 }
1154
1155 mp->m_zone_info->zi_gc_thread = kthread_create(xfs_zoned_gcd, data,
1156 "xfs-zone-gc/%s", mp->m_super->s_id);
1157 if (IS_ERR(mp->m_zone_info->zi_gc_thread)) {
1158 xfs_warn(mp, "unable to create zone gc thread");
1159 error = PTR_ERR(mp->m_zone_info->zi_gc_thread);
1160 goto out_free_gc_data;
1161 }
1162
1163 /* xfs_zone_gc_start will unpark for rw mounts */
1164 kthread_park(mp->m_zone_info->zi_gc_thread);
1165 return 0;
1166
1167 out_free_gc_data:
1168 kfree(data);
1169 out_put_gc_zone:
1170 xfs_open_zone_put(zi->zi_open_gc_zone);
1171 out:
1172 return error;
1173 }
1174
1175 void
xfs_zone_gc_unmount(struct xfs_mount * mp)1176 xfs_zone_gc_unmount(
1177 struct xfs_mount *mp)
1178 {
1179 struct xfs_zone_info *zi = mp->m_zone_info;
1180
1181 kthread_stop(zi->zi_gc_thread);
1182 if (zi->zi_open_gc_zone)
1183 xfs_open_zone_put(zi->zi_open_gc_zone);
1184 }
1185