xref: /linux/fs/xfs/libxfs/xfs_alloc_btree.c (revision f3f5edc5e41e038cf66d124a4cbacf6ff0983513)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_health.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_ag.h"
23 
24 static struct kmem_cache	*xfs_allocbt_cur_cache;
25 
26 STATIC struct xfs_btree_cur *
xfs_bnobt_dup_cursor(struct xfs_btree_cur * cur)27 xfs_bnobt_dup_cursor(
28 	struct xfs_btree_cur	*cur)
29 {
30 	return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 			to_perag(cur->bc_group));
32 }
33 
34 STATIC struct xfs_btree_cur *
xfs_cntbt_dup_cursor(struct xfs_btree_cur * cur)35 xfs_cntbt_dup_cursor(
36 	struct xfs_btree_cur	*cur)
37 {
38 	return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 			to_perag(cur->bc_group));
40 }
41 
42 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)43 xfs_allocbt_set_root(
44 	struct xfs_btree_cur		*cur,
45 	const union xfs_btree_ptr	*ptr,
46 	int				inc)
47 {
48 	struct xfs_perag		*pag = to_perag(cur->bc_group);
49 	struct xfs_buf			*agbp = cur->bc_ag.agbp;
50 	struct xfs_agf			*agf = agbp->b_addr;
51 
52 	ASSERT(ptr->s != 0);
53 
54 	if (xfs_btree_is_bno(cur->bc_ops)) {
55 		agf->agf_bno_root = ptr->s;
56 		be32_add_cpu(&agf->agf_bno_level, inc);
57 		pag->pagf_bno_level += inc;
58 	} else {
59 		agf->agf_cnt_root = ptr->s;
60 		be32_add_cpu(&agf->agf_cnt_level, inc);
61 		pag->pagf_cnt_level += inc;
62 	}
63 
64 	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65 }
66 
67 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)68 xfs_allocbt_alloc_block(
69 	struct xfs_btree_cur		*cur,
70 	const union xfs_btree_ptr	*start,
71 	union xfs_btree_ptr		*new,
72 	int				*stat)
73 {
74 	int			error;
75 	xfs_agblock_t		bno;
76 
77 	/* Allocate the new block from the freelist. If we can't, give up.  */
78 	error = xfs_alloc_get_freelist(to_perag(cur->bc_group), cur->bc_tp,
79 			cur->bc_ag.agbp, &bno, 1);
80 	if (error)
81 		return error;
82 
83 	if (bno == NULLAGBLOCK) {
84 		*stat = 0;
85 		return 0;
86 	}
87 
88 	atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 	xfs_extent_busy_reuse(cur->bc_group, bno, 1, false);
90 
91 	new->s = cpu_to_be32(bno);
92 
93 	*stat = 1;
94 	return 0;
95 }
96 
97 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)98 xfs_allocbt_free_block(
99 	struct xfs_btree_cur	*cur,
100 	struct xfs_buf		*bp)
101 {
102 	struct xfs_buf		*agbp = cur->bc_ag.agbp;
103 	xfs_agblock_t		bno;
104 	int			error;
105 
106 	bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 	error = xfs_alloc_put_freelist(to_perag(cur->bc_group), cur->bc_tp,
108 			agbp, NULL, bno, 1);
109 	if (error)
110 		return error;
111 
112 	atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 	xfs_extent_busy_insert(cur->bc_tp, pag_group(agbp->b_pag), bno, 1,
114 			      XFS_EXTENT_BUSY_SKIP_DISCARD);
115 	return 0;
116 }
117 
118 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)119 xfs_allocbt_get_minrecs(
120 	struct xfs_btree_cur	*cur,
121 	int			level)
122 {
123 	return cur->bc_mp->m_alloc_mnr[level != 0];
124 }
125 
126 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)127 xfs_allocbt_get_maxrecs(
128 	struct xfs_btree_cur	*cur,
129 	int			level)
130 {
131 	return cur->bc_mp->m_alloc_mxr[level != 0];
132 }
133 
134 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)135 xfs_allocbt_init_key_from_rec(
136 	union xfs_btree_key		*key,
137 	const union xfs_btree_rec	*rec)
138 {
139 	key->alloc.ar_startblock = rec->alloc.ar_startblock;
140 	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
141 }
142 
143 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)144 xfs_bnobt_init_high_key_from_rec(
145 	union xfs_btree_key		*key,
146 	const union xfs_btree_rec	*rec)
147 {
148 	__u32				x;
149 
150 	x = be32_to_cpu(rec->alloc.ar_startblock);
151 	x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
152 	key->alloc.ar_startblock = cpu_to_be32(x);
153 	key->alloc.ar_blockcount = 0;
154 }
155 
156 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)157 xfs_cntbt_init_high_key_from_rec(
158 	union xfs_btree_key		*key,
159 	const union xfs_btree_rec	*rec)
160 {
161 	key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
162 	key->alloc.ar_startblock = 0;
163 }
164 
165 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)166 xfs_allocbt_init_rec_from_cur(
167 	struct xfs_btree_cur	*cur,
168 	union xfs_btree_rec	*rec)
169 {
170 	rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
171 	rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
172 }
173 
174 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)175 xfs_allocbt_init_ptr_from_cur(
176 	struct xfs_btree_cur	*cur,
177 	union xfs_btree_ptr	*ptr)
178 {
179 	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
180 
181 	ASSERT(cur->bc_group->xg_gno == be32_to_cpu(agf->agf_seqno));
182 
183 	if (xfs_btree_is_bno(cur->bc_ops))
184 		ptr->s = agf->agf_bno_root;
185 	else
186 		ptr->s = agf->agf_cnt_root;
187 }
188 
189 STATIC int
xfs_bnobt_cmp_key_with_cur(struct xfs_btree_cur * cur,const union xfs_btree_key * key)190 xfs_bnobt_cmp_key_with_cur(
191 	struct xfs_btree_cur		*cur,
192 	const union xfs_btree_key	*key)
193 {
194 	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
195 	const struct xfs_alloc_rec	*kp = &key->alloc;
196 
197 	return cmp_int(be32_to_cpu(kp->ar_startblock),
198 		       rec->ar_startblock);
199 }
200 
201 STATIC int
xfs_cntbt_cmp_key_with_cur(struct xfs_btree_cur * cur,const union xfs_btree_key * key)202 xfs_cntbt_cmp_key_with_cur(
203 	struct xfs_btree_cur		*cur,
204 	const union xfs_btree_key	*key)
205 {
206 	struct xfs_alloc_rec_incore	*rec = &cur->bc_rec.a;
207 	const struct xfs_alloc_rec	*kp = &key->alloc;
208 
209 	return cmp_int(be32_to_cpu(kp->ar_blockcount), rec->ar_blockcount) ?:
210 	       cmp_int(be32_to_cpu(kp->ar_startblock), rec->ar_startblock);
211 }
212 
213 STATIC int
xfs_bnobt_cmp_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)214 xfs_bnobt_cmp_two_keys(
215 	struct xfs_btree_cur		*cur,
216 	const union xfs_btree_key	*k1,
217 	const union xfs_btree_key	*k2,
218 	const union xfs_btree_key	*mask)
219 {
220 	ASSERT(!mask || mask->alloc.ar_startblock);
221 
222 	return cmp_int(be32_to_cpu(k1->alloc.ar_startblock),
223 		       be32_to_cpu(k2->alloc.ar_startblock));
224 }
225 
226 STATIC int
xfs_cntbt_cmp_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)227 xfs_cntbt_cmp_two_keys(
228 	struct xfs_btree_cur		*cur,
229 	const union xfs_btree_key	*k1,
230 	const union xfs_btree_key	*k2,
231 	const union xfs_btree_key	*mask)
232 {
233 	ASSERT(!mask || (mask->alloc.ar_blockcount &&
234 			 mask->alloc.ar_startblock));
235 
236 	return cmp_int(be32_to_cpu(k1->alloc.ar_blockcount),
237 		       be32_to_cpu(k2->alloc.ar_blockcount)) ?:
238 	       cmp_int(be32_to_cpu(k1->alloc.ar_startblock),
239 		       be32_to_cpu(k2->alloc.ar_startblock));
240 }
241 
242 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)243 xfs_allocbt_verify(
244 	struct xfs_buf		*bp)
245 {
246 	struct xfs_mount	*mp = bp->b_mount;
247 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
248 	struct xfs_perag	*pag = bp->b_pag;
249 	xfs_failaddr_t		fa;
250 	unsigned int		level;
251 
252 	if (!xfs_verify_magic(bp, block->bb_magic))
253 		return __this_address;
254 
255 	if (xfs_has_crc(mp)) {
256 		fa = xfs_btree_agblock_v5hdr_verify(bp);
257 		if (fa)
258 			return fa;
259 	}
260 
261 	/*
262 	 * The perag may not be attached during grow operations or fully
263 	 * initialized from the AGF during log recovery. Therefore we can only
264 	 * check against maximum tree depth from those contexts.
265 	 *
266 	 * Otherwise check against the per-tree limit. Peek at one of the
267 	 * verifier magic values to determine the type of tree we're verifying
268 	 * against.
269 	 */
270 	level = be16_to_cpu(block->bb_level);
271 	if (pag && xfs_perag_initialised_agf(pag)) {
272 		unsigned int	maxlevel, repair_maxlevel = 0;
273 
274 		/*
275 		 * Online repair could be rewriting the free space btrees, so
276 		 * we'll validate against the larger of either tree while this
277 		 * is going on.
278 		 */
279 		if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
280 			maxlevel = pag->pagf_cnt_level;
281 #ifdef CONFIG_XFS_ONLINE_REPAIR
282 			repair_maxlevel = pag->pagf_repair_cnt_level;
283 #endif
284 		} else {
285 			maxlevel = pag->pagf_bno_level;
286 #ifdef CONFIG_XFS_ONLINE_REPAIR
287 			repair_maxlevel = pag->pagf_repair_bno_level;
288 #endif
289 		}
290 
291 		if (level >= max(maxlevel, repair_maxlevel))
292 			return __this_address;
293 	} else if (level >= mp->m_alloc_maxlevels)
294 		return __this_address;
295 
296 	return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
297 }
298 
299 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)300 xfs_allocbt_read_verify(
301 	struct xfs_buf	*bp)
302 {
303 	xfs_failaddr_t	fa;
304 
305 	if (!xfs_btree_agblock_verify_crc(bp))
306 		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
307 	else {
308 		fa = xfs_allocbt_verify(bp);
309 		if (fa)
310 			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
311 	}
312 
313 	if (bp->b_error)
314 		trace_xfs_btree_corrupt(bp, _RET_IP_);
315 }
316 
317 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)318 xfs_allocbt_write_verify(
319 	struct xfs_buf	*bp)
320 {
321 	xfs_failaddr_t	fa;
322 
323 	fa = xfs_allocbt_verify(bp);
324 	if (fa) {
325 		trace_xfs_btree_corrupt(bp, _RET_IP_);
326 		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
327 		return;
328 	}
329 	xfs_btree_agblock_calc_crc(bp);
330 
331 }
332 
333 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
334 	.name = "xfs_bnobt",
335 	.magic = { cpu_to_be32(XFS_ABTB_MAGIC),
336 		   cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
337 	.verify_read = xfs_allocbt_read_verify,
338 	.verify_write = xfs_allocbt_write_verify,
339 	.verify_struct = xfs_allocbt_verify,
340 };
341 
342 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
343 	.name = "xfs_cntbt",
344 	.magic = { cpu_to_be32(XFS_ABTC_MAGIC),
345 		   cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
346 	.verify_read = xfs_allocbt_read_verify,
347 	.verify_write = xfs_allocbt_write_verify,
348 	.verify_struct = xfs_allocbt_verify,
349 };
350 
351 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)352 xfs_bnobt_keys_inorder(
353 	struct xfs_btree_cur		*cur,
354 	const union xfs_btree_key	*k1,
355 	const union xfs_btree_key	*k2)
356 {
357 	return be32_to_cpu(k1->alloc.ar_startblock) <
358 	       be32_to_cpu(k2->alloc.ar_startblock);
359 }
360 
361 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)362 xfs_bnobt_recs_inorder(
363 	struct xfs_btree_cur		*cur,
364 	const union xfs_btree_rec	*r1,
365 	const union xfs_btree_rec	*r2)
366 {
367 	return be32_to_cpu(r1->alloc.ar_startblock) +
368 		be32_to_cpu(r1->alloc.ar_blockcount) <=
369 		be32_to_cpu(r2->alloc.ar_startblock);
370 }
371 
372 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)373 xfs_cntbt_keys_inorder(
374 	struct xfs_btree_cur		*cur,
375 	const union xfs_btree_key	*k1,
376 	const union xfs_btree_key	*k2)
377 {
378 	return be32_to_cpu(k1->alloc.ar_blockcount) <
379 		be32_to_cpu(k2->alloc.ar_blockcount) ||
380 		(k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
381 		 be32_to_cpu(k1->alloc.ar_startblock) <
382 		 be32_to_cpu(k2->alloc.ar_startblock));
383 }
384 
385 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)386 xfs_cntbt_recs_inorder(
387 	struct xfs_btree_cur		*cur,
388 	const union xfs_btree_rec	*r1,
389 	const union xfs_btree_rec	*r2)
390 {
391 	return be32_to_cpu(r1->alloc.ar_blockcount) <
392 		be32_to_cpu(r2->alloc.ar_blockcount) ||
393 		(r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
394 		 be32_to_cpu(r1->alloc.ar_startblock) <
395 		 be32_to_cpu(r2->alloc.ar_startblock));
396 }
397 
398 STATIC enum xbtree_key_contig
xfs_allocbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)399 xfs_allocbt_keys_contiguous(
400 	struct xfs_btree_cur		*cur,
401 	const union xfs_btree_key	*key1,
402 	const union xfs_btree_key	*key2,
403 	const union xfs_btree_key	*mask)
404 {
405 	ASSERT(!mask || mask->alloc.ar_startblock);
406 
407 	return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
408 				 be32_to_cpu(key2->alloc.ar_startblock));
409 }
410 
411 const struct xfs_btree_ops xfs_bnobt_ops = {
412 	.name			= "bno",
413 	.type			= XFS_BTREE_TYPE_AG,
414 
415 	.rec_len		= sizeof(xfs_alloc_rec_t),
416 	.key_len		= sizeof(xfs_alloc_key_t),
417 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
418 
419 	.lru_refs		= XFS_ALLOC_BTREE_REF,
420 	.statoff		= XFS_STATS_CALC_INDEX(xs_abtb_2),
421 	.sick_mask		= XFS_SICK_AG_BNOBT,
422 
423 	.dup_cursor		= xfs_bnobt_dup_cursor,
424 	.set_root		= xfs_allocbt_set_root,
425 	.alloc_block		= xfs_allocbt_alloc_block,
426 	.free_block		= xfs_allocbt_free_block,
427 	.get_minrecs		= xfs_allocbt_get_minrecs,
428 	.get_maxrecs		= xfs_allocbt_get_maxrecs,
429 	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
430 	.init_high_key_from_rec	= xfs_bnobt_init_high_key_from_rec,
431 	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
432 	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
433 	.cmp_key_with_cur	= xfs_bnobt_cmp_key_with_cur,
434 	.buf_ops		= &xfs_bnobt_buf_ops,
435 	.cmp_two_keys		= xfs_bnobt_cmp_two_keys,
436 	.keys_inorder		= xfs_bnobt_keys_inorder,
437 	.recs_inorder		= xfs_bnobt_recs_inorder,
438 	.keys_contiguous	= xfs_allocbt_keys_contiguous,
439 };
440 
441 const struct xfs_btree_ops xfs_cntbt_ops = {
442 	.name			= "cnt",
443 	.type			= XFS_BTREE_TYPE_AG,
444 
445 	.rec_len		= sizeof(xfs_alloc_rec_t),
446 	.key_len		= sizeof(xfs_alloc_key_t),
447 	.ptr_len		= XFS_BTREE_SHORT_PTR_LEN,
448 
449 	.lru_refs		= XFS_ALLOC_BTREE_REF,
450 	.statoff		= XFS_STATS_CALC_INDEX(xs_abtc_2),
451 	.sick_mask		= XFS_SICK_AG_CNTBT,
452 
453 	.dup_cursor		= xfs_cntbt_dup_cursor,
454 	.set_root		= xfs_allocbt_set_root,
455 	.alloc_block		= xfs_allocbt_alloc_block,
456 	.free_block		= xfs_allocbt_free_block,
457 	.get_minrecs		= xfs_allocbt_get_minrecs,
458 	.get_maxrecs		= xfs_allocbt_get_maxrecs,
459 	.init_key_from_rec	= xfs_allocbt_init_key_from_rec,
460 	.init_high_key_from_rec	= xfs_cntbt_init_high_key_from_rec,
461 	.init_rec_from_cur	= xfs_allocbt_init_rec_from_cur,
462 	.init_ptr_from_cur	= xfs_allocbt_init_ptr_from_cur,
463 	.cmp_key_with_cur	= xfs_cntbt_cmp_key_with_cur,
464 	.buf_ops		= &xfs_cntbt_buf_ops,
465 	.cmp_two_keys		= xfs_cntbt_cmp_two_keys,
466 	.keys_inorder		= xfs_cntbt_keys_inorder,
467 	.recs_inorder		= xfs_cntbt_recs_inorder,
468 	.keys_contiguous	= NULL, /* not needed right now */
469 };
470 
471 /*
472  * Allocate a new bnobt cursor.
473  *
474  * For staging cursors tp and agbp are NULL.
475  */
476 struct xfs_btree_cur *
xfs_bnobt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)477 xfs_bnobt_init_cursor(
478 	struct xfs_mount	*mp,
479 	struct xfs_trans	*tp,
480 	struct xfs_buf		*agbp,
481 	struct xfs_perag	*pag)
482 {
483 	struct xfs_btree_cur	*cur;
484 
485 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
486 			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
487 	cur->bc_group = xfs_group_hold(pag_group(pag));
488 	cur->bc_ag.agbp = agbp;
489 	if (agbp) {
490 		struct xfs_agf		*agf = agbp->b_addr;
491 
492 		cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
493 	}
494 	return cur;
495 }
496 
497 /*
498  * Allocate a new cntbt cursor.
499  *
500  * For staging cursors tp and agbp are NULL.
501  */
502 struct xfs_btree_cur *
xfs_cntbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)503 xfs_cntbt_init_cursor(
504 	struct xfs_mount	*mp,
505 	struct xfs_trans	*tp,
506 	struct xfs_buf		*agbp,
507 	struct xfs_perag	*pag)
508 {
509 	struct xfs_btree_cur	*cur;
510 
511 	cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
512 			mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
513 	cur->bc_group = xfs_group_hold(pag_group(pag));
514 	cur->bc_ag.agbp = agbp;
515 	if (agbp) {
516 		struct xfs_agf		*agf = agbp->b_addr;
517 
518 		cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
519 	}
520 	return cur;
521 }
522 
523 /*
524  * Install a new free space btree root.  Caller is responsible for invalidating
525  * and freeing the old btree blocks.
526  */
527 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)528 xfs_allocbt_commit_staged_btree(
529 	struct xfs_btree_cur	*cur,
530 	struct xfs_trans	*tp,
531 	struct xfs_buf		*agbp)
532 {
533 	struct xfs_agf		*agf = agbp->b_addr;
534 	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
535 
536 	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537 
538 	if (xfs_btree_is_bno(cur->bc_ops)) {
539 		agf->agf_bno_root = cpu_to_be32(afake->af_root);
540 		agf->agf_bno_level = cpu_to_be32(afake->af_levels);
541 	} else {
542 		agf->agf_cnt_root = cpu_to_be32(afake->af_root);
543 		agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
544 	}
545 	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
546 
547 	xfs_btree_commit_afakeroot(cur, tp, agbp);
548 }
549 
550 /* Calculate number of records in an alloc btree block. */
551 static inline unsigned int
xfs_allocbt_block_maxrecs(unsigned int blocklen,bool leaf)552 xfs_allocbt_block_maxrecs(
553 	unsigned int		blocklen,
554 	bool			leaf)
555 {
556 	if (leaf)
557 		return blocklen / sizeof(xfs_alloc_rec_t);
558 	return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
559 }
560 
561 /*
562  * Calculate number of records in an alloc btree block.
563  */
564 unsigned int
xfs_allocbt_maxrecs(struct xfs_mount * mp,unsigned int blocklen,bool leaf)565 xfs_allocbt_maxrecs(
566 	struct xfs_mount	*mp,
567 	unsigned int		blocklen,
568 	bool			leaf)
569 {
570 	blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
571 	return xfs_allocbt_block_maxrecs(blocklen, leaf);
572 }
573 
574 /* Free space btrees are at their largest when every other block is free. */
575 #define XFS_MAX_FREESP_RECORDS	((XFS_MAX_AG_BLOCKS + 1) / 2)
576 
577 /* Compute the max possible height for free space btrees. */
578 unsigned int
xfs_allocbt_maxlevels_ondisk(void)579 xfs_allocbt_maxlevels_ondisk(void)
580 {
581 	unsigned int		minrecs[2];
582 	unsigned int		blocklen;
583 
584 	blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
585 		       XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
586 
587 	minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
588 	minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
589 
590 	return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
591 }
592 
593 /* Calculate the freespace btree size for some records. */
594 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)595 xfs_allocbt_calc_size(
596 	struct xfs_mount	*mp,
597 	unsigned long long	len)
598 {
599 	return xfs_btree_calc_size(mp->m_alloc_mnr, len);
600 }
601 
602 int __init
xfs_allocbt_init_cur_cache(void)603 xfs_allocbt_init_cur_cache(void)
604 {
605 	xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
606 			xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
607 			0, 0, NULL);
608 
609 	if (!xfs_allocbt_cur_cache)
610 		return -ENOMEM;
611 	return 0;
612 }
613 
614 void
xfs_allocbt_destroy_cur_cache(void)615 xfs_allocbt_destroy_cur_cache(void)
616 {
617 	kmem_cache_destroy(xfs_allocbt_cur_cache);
618 	xfs_allocbt_cur_cache = NULL;
619 }
620