xref: /qemu/target/i386/kvm/kvm.c (revision 96215036f47403438c7c7869b7cd419bd7a11f82)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "tdx.h"
42 #include "xen-emu.h"
43 #include "hyperv.h"
44 #include "hyperv-proto.h"
45 
46 #include "gdbstub/enums.h"
47 #include "qemu/host-utils.h"
48 #include "qemu/main-loop.h"
49 #include "qemu/ratelimit.h"
50 #include "qemu/config-file.h"
51 #include "qemu/error-report.h"
52 #include "qemu/memalign.h"
53 #include "hw/i386/x86.h"
54 #include "hw/i386/kvm/xen_evtchn.h"
55 #include "hw/i386/pc.h"
56 #include "hw/i386/apic.h"
57 #include "hw/i386/apic_internal.h"
58 #include "hw/i386/apic-msidef.h"
59 #include "hw/i386/intel_iommu.h"
60 #include "hw/i386/topology.h"
61 #include "hw/i386/x86-iommu.h"
62 #include "hw/i386/e820_memory_layout.h"
63 
64 #include "hw/xen/xen.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/pci/msi.h"
68 #include "hw/pci/msix.h"
69 #include "migration/blocker.h"
70 #include "exec/memattrs.h"
71 #include "exec/target_page.h"
72 #include "trace.h"
73 
74 #include CONFIG_DEVICES
75 
76 //#define DEBUG_KVM
77 
78 #ifdef DEBUG_KVM
79 #define DPRINTF(fmt, ...) \
80     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
81 #else
82 #define DPRINTF(fmt, ...) \
83     do { } while (0)
84 #endif
85 
86 /*
87  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
88  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
89  * Since these must be part of guest physical memory, we need to allocate
90  * them, both by setting their start addresses in the kernel and by
91  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
92  * so this value allows up to 16M BIOSes.
93  */
94 #define KVM_IDENTITY_BASE 0xfeffc000
95 
96 /* From arch/x86/kvm/lapic.h */
97 #define KVM_APIC_BUS_CYCLE_NS       1
98 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
99 
100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
101  * 255 kvm_msr_entry structs */
102 #define MSR_BUF_SIZE 4096
103 
104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
106 typedef struct {
107     uint32_t msr;
108     QEMURDMSRHandler *rdmsr;
109     QEMUWRMSRHandler *wrmsr;
110 } KVMMSRHandlers;
111 
112 static void kvm_init_msrs(X86CPU *cpu);
113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
114                           QEMUWRMSRHandler *wrmsr);
115 
116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
117     KVM_CAP_INFO(SET_TSS_ADDR),
118     KVM_CAP_INFO(EXT_CPUID),
119     KVM_CAP_INFO(MP_STATE),
120     KVM_CAP_INFO(SIGNAL_MSI),
121     KVM_CAP_INFO(IRQ_ROUTING),
122     KVM_CAP_INFO(DEBUGREGS),
123     KVM_CAP_INFO(XSAVE),
124     KVM_CAP_INFO(VCPU_EVENTS),
125     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
126     KVM_CAP_INFO(MCE),
127     KVM_CAP_INFO(ADJUST_CLOCK),
128     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
129     KVM_CAP_LAST_INFO
130 };
131 
132 static bool has_msr_star;
133 static bool has_msr_hsave_pa;
134 static bool has_msr_tsc_aux;
135 static bool has_msr_tsc_adjust;
136 static bool has_msr_tsc_deadline;
137 static bool has_msr_feature_control;
138 static bool has_msr_misc_enable;
139 static bool has_msr_smbase;
140 static bool has_msr_bndcfgs;
141 static int lm_capable_kernel;
142 static bool has_msr_hv_hypercall;
143 static bool has_msr_hv_crash;
144 static bool has_msr_hv_reset;
145 static bool has_msr_hv_vpindex;
146 static bool hv_vpindex_settable;
147 static bool has_msr_hv_runtime;
148 static bool has_msr_hv_synic;
149 static bool has_msr_hv_stimer;
150 static bool has_msr_hv_frequencies;
151 static bool has_msr_hv_reenlightenment;
152 static bool has_msr_hv_syndbg_options;
153 static bool has_msr_xss;
154 static bool has_msr_umwait;
155 static bool has_msr_spec_ctrl;
156 static bool has_tsc_scale_msr;
157 static bool has_msr_tsx_ctrl;
158 static bool has_msr_virt_ssbd;
159 static bool has_msr_smi_count;
160 static bool has_msr_arch_capabs;
161 static bool has_msr_core_capabs;
162 static bool has_msr_vmx_vmfunc;
163 static bool has_msr_ucode_rev;
164 static bool has_msr_vmx_procbased_ctls2;
165 static bool has_msr_perf_capabs;
166 static bool has_msr_pkrs;
167 static bool has_msr_hwcr;
168 
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
172 
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
178 
179 static bool has_msr_mcg_ext_ctl;
180 
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
184 
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
186 
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
190 
191 static const char *vm_type_name[] = {
192     [KVM_X86_DEFAULT_VM] = "default",
193     [KVM_X86_SEV_VM] = "SEV",
194     [KVM_X86_SEV_ES_VM] = "SEV-ES",
195     [KVM_X86_SNP_VM] = "SEV-SNP",
196     [KVM_X86_TDX_VM] = "TDX",
197 };
198 
kvm_is_vm_type_supported(int type)199 bool kvm_is_vm_type_supported(int type)
200 {
201     uint32_t machine_types;
202 
203     /*
204      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
205      * is always supported
206      */
207     if (type == KVM_X86_DEFAULT_VM) {
208         return true;
209     }
210 
211     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
212                                         KVM_CAP_VM_TYPES);
213     return !!(machine_types & BIT(type));
214 }
215 
kvm_get_vm_type(MachineState * ms)216 int kvm_get_vm_type(MachineState *ms)
217 {
218     int kvm_type = KVM_X86_DEFAULT_VM;
219 
220     if (ms->cgs) {
221         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
222             error_report("configuration type %s not supported for x86 guests",
223                          object_get_typename(OBJECT(ms->cgs)));
224             exit(1);
225         }
226         kvm_type = x86_confidential_guest_kvm_type(
227             X86_CONFIDENTIAL_GUEST(ms->cgs));
228     }
229 
230     if (!kvm_is_vm_type_supported(kvm_type)) {
231         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
232         exit(1);
233     }
234 
235     return kvm_type;
236 }
237 
kvm_enable_hypercall(uint64_t enable_mask)238 bool kvm_enable_hypercall(uint64_t enable_mask)
239 {
240     KVMState *s = KVM_STATE(current_accel());
241 
242     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
243 }
244 
kvm_has_smm(void)245 bool kvm_has_smm(void)
246 {
247     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
248 }
249 
kvm_has_adjust_clock_stable(void)250 bool kvm_has_adjust_clock_stable(void)
251 {
252     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
253 
254     return (ret & KVM_CLOCK_TSC_STABLE);
255 }
256 
kvm_has_exception_payload(void)257 bool kvm_has_exception_payload(void)
258 {
259     return has_exception_payload;
260 }
261 
kvm_x2apic_api_set_flags(uint64_t flags)262 static bool kvm_x2apic_api_set_flags(uint64_t flags)
263 {
264     KVMState *s = KVM_STATE(current_accel());
265 
266     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
267 }
268 
269 #define MEMORIZE(fn, _result) \
270     ({ \
271         static bool _memorized; \
272         \
273         if (_memorized) { \
274             return _result; \
275         } \
276         _memorized = true; \
277         _result = fn; \
278     })
279 
280 static bool has_x2apic_api;
281 
kvm_has_x2apic_api(void)282 bool kvm_has_x2apic_api(void)
283 {
284     return has_x2apic_api;
285 }
286 
kvm_enable_x2apic(void)287 bool kvm_enable_x2apic(void)
288 {
289     return MEMORIZE(
290              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
291                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
292              has_x2apic_api);
293 }
294 
kvm_hv_vpindex_settable(void)295 bool kvm_hv_vpindex_settable(void)
296 {
297     return hv_vpindex_settable;
298 }
299 
kvm_get_tsc(CPUState * cs)300 static int kvm_get_tsc(CPUState *cs)
301 {
302     X86CPU *cpu = X86_CPU(cs);
303     CPUX86State *env = &cpu->env;
304     uint64_t value;
305     int ret;
306 
307     if (env->tsc_valid) {
308         return 0;
309     }
310 
311     env->tsc_valid = !runstate_is_running();
312 
313     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
314     if (ret < 0) {
315         return ret;
316     }
317 
318     env->tsc = value;
319     return 0;
320 }
321 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
323 {
324     kvm_get_tsc(cpu);
325 }
326 
kvm_synchronize_all_tsc(void)327 void kvm_synchronize_all_tsc(void)
328 {
329     CPUState *cpu;
330 
331     if (kvm_enabled() && !is_tdx_vm()) {
332         CPU_FOREACH(cpu) {
333             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
334         }
335     }
336 }
337 
try_get_cpuid(KVMState * s,int max)338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
339 {
340     struct kvm_cpuid2 *cpuid;
341     int r, size;
342 
343     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
344     cpuid = g_malloc0(size);
345     cpuid->nent = max;
346     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
347     if (r == 0 && cpuid->nent >= max) {
348         r = -E2BIG;
349     }
350     if (r < 0) {
351         if (r == -E2BIG) {
352             g_free(cpuid);
353             return NULL;
354         } else {
355             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
356                     strerror(-r));
357             exit(1);
358         }
359     }
360     return cpuid;
361 }
362 
363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
364  * for all entries.
365  */
get_supported_cpuid(KVMState * s)366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
367 {
368     struct kvm_cpuid2 *cpuid;
369     int max = 1;
370 
371     if (cpuid_cache != NULL) {
372         return cpuid_cache;
373     }
374     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
375         max *= 2;
376     }
377     cpuid_cache = cpuid;
378     return cpuid;
379 }
380 
host_tsx_broken(void)381 static bool host_tsx_broken(void)
382 {
383     int family, model, stepping;\
384     char vendor[CPUID_VENDOR_SZ + 1];
385 
386     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
387 
388     /* Check if we are running on a Haswell host known to have broken TSX */
389     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
390            (family == 6) &&
391            ((model == 63 && stepping < 4) ||
392             model == 60 || model == 69 || model == 70);
393 }
394 
395 /* Returns the value for a specific register on the cpuid entry
396  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
398 {
399     uint32_t ret = 0;
400     switch (reg) {
401     case R_EAX:
402         ret = entry->eax;
403         break;
404     case R_EBX:
405         ret = entry->ebx;
406         break;
407     case R_ECX:
408         ret = entry->ecx;
409         break;
410     case R_EDX:
411         ret = entry->edx;
412         break;
413     }
414     return ret;
415 }
416 
417 /* Find matching entry for function/index on kvm_cpuid2 struct
418  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
420                                           uint32_t function,
421                                           uint32_t index)
422 {
423     int i;
424     for (i = 0; i < cpuid->nent; ++i) {
425         if (cpuid->entries[i].function == function &&
426             cpuid->entries[i].index == index) {
427             return &cpuid->entries[i];
428         }
429     }
430     /* not found: */
431     return NULL;
432 }
433 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
435                                       uint32_t index, int reg)
436 {
437     struct kvm_cpuid2 *cpuid;
438     uint32_t ret = 0;
439     uint32_t cpuid_1_edx, unused;
440     uint64_t bitmask;
441 
442     cpuid = get_supported_cpuid(s);
443 
444     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
445     if (entry) {
446         ret = cpuid_entry_get_reg(entry, reg);
447     }
448 
449     /* Fixups for the data returned by KVM, below */
450 
451     if (function == 1 && reg == R_EDX) {
452         /* KVM before 2.6.30 misreports the following features */
453         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
454         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
455         ret |= CPUID_HT;
456     } else if (function == 1 && reg == R_ECX) {
457         /* We can set the hypervisor flag, even if KVM does not return it on
458          * GET_SUPPORTED_CPUID
459          */
460         ret |= CPUID_EXT_HYPERVISOR;
461         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
462          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
463          * and the irqchip is in the kernel.
464          */
465         if (kvm_irqchip_in_kernel() &&
466                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
467             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
468         }
469 
470         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
471          * without the in-kernel irqchip
472          */
473         if (!kvm_irqchip_in_kernel()) {
474             ret &= ~CPUID_EXT_X2APIC;
475         }
476 
477         if (enable_cpu_pm) {
478             int disable_exits = kvm_check_extension(s,
479                                                     KVM_CAP_X86_DISABLE_EXITS);
480 
481             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
482                 ret |= CPUID_EXT_MONITOR;
483             }
484         }
485     } else if (function == 6 && reg == R_EAX) {
486         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
487     } else if (function == 7 && index == 0 && reg == R_EBX) {
488         /* Not new instructions, just an optimization.  */
489         uint32_t ebx;
490         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
491         ret |= ebx & CPUID_7_0_EBX_ERMS;
492 
493         if (host_tsx_broken()) {
494             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
495         }
496     } else if (function == 7 && index == 0 && reg == R_EDX) {
497         /* Not new instructions, just an optimization.  */
498         uint32_t edx;
499         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
500         ret |= edx & CPUID_7_0_EDX_FSRM;
501 
502         /*
503          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
504          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
505          * returned by KVM_GET_MSR_INDEX_LIST.
506          */
507         if (!has_msr_arch_capabs) {
508             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
509         }
510     } else if (function == 7 && index == 1 && reg == R_EAX) {
511         /* Not new instructions, just an optimization.  */
512         uint32_t eax;
513         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
514         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
515     } else if (function == 7 && index == 2 && reg == R_EDX) {
516         uint32_t edx;
517         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
518         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
519     } else if (function == 0xd && index == 0 &&
520                (reg == R_EAX || reg == R_EDX)) {
521         /*
522          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
523          * features that still have to be enabled with the arch_prctl
524          * system call.  QEMU needs the full value, which is retrieved
525          * with KVM_GET_DEVICE_ATTR.
526          */
527         struct kvm_device_attr attr = {
528             .group = 0,
529             .attr = KVM_X86_XCOMP_GUEST_SUPP,
530             .addr = (unsigned long) &bitmask
531         };
532 
533         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
534         if (!sys_attr) {
535             return ret;
536         }
537 
538         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
539         if (rc < 0) {
540             if (rc != -ENXIO) {
541                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
542                             "error: %d", rc);
543             }
544             return ret;
545         }
546         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
547     } else if (function == 0x80000001 && reg == R_ECX) {
548         /*
549          * It's safe to enable TOPOEXT even if it's not returned by
550          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
551          * us to keep CPU models including TOPOEXT runnable on older kernels.
552          */
553         ret |= CPUID_EXT3_TOPOEXT;
554     } else if (function == 0x80000001 && reg == R_EDX) {
555         /* On Intel, kvm returns cpuid according to the Intel spec,
556          * so add missing bits according to the AMD spec:
557          */
558         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
559         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
560     } else if (function == 0x80000007 && reg == R_EBX) {
561         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
562     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
563         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
564          * be enabled without the in-kernel irqchip
565          */
566         if (!kvm_irqchip_in_kernel()) {
567             ret &= ~CPUID_KVM_PV_UNHALT;
568         }
569         if (kvm_irqchip_is_split()) {
570             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
571         }
572     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
573         ret |= CPUID_KVM_HINTS_REALTIME;
574     }
575 
576     if (current_machine->cgs) {
577         ret = x86_confidential_guest_adjust_cpuid_features(
578             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
579             function, index, reg, ret);
580     }
581     return ret;
582 }
583 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)584 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
585 {
586     struct {
587         struct kvm_msrs info;
588         struct kvm_msr_entry entries[1];
589     } msr_data = {};
590     uint64_t value;
591     uint32_t ret, can_be_one, must_be_one;
592 
593     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
594         return 0;
595     }
596 
597     /* Check if requested MSR is supported feature MSR */
598     int i;
599     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
600         if (kvm_feature_msrs->indices[i] == index) {
601             break;
602         }
603     if (i == kvm_feature_msrs->nmsrs) {
604         return 0; /* if the feature MSR is not supported, simply return 0 */
605     }
606 
607     msr_data.info.nmsrs = 1;
608     msr_data.entries[0].index = index;
609 
610     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
611     if (ret != 1) {
612         error_report("KVM get MSR (index=0x%x) feature failed, %s",
613             index, strerror(-ret));
614         exit(1);
615     }
616 
617     value = msr_data.entries[0].data;
618     switch (index) {
619     case MSR_IA32_VMX_PROCBASED_CTLS2:
620         if (!has_msr_vmx_procbased_ctls2) {
621             /* KVM forgot to add these bits for some time, do this ourselves. */
622             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
623                 CPUID_XSAVE_XSAVES) {
624                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
625             }
626             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
627                 CPUID_EXT_RDRAND) {
628                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
629             }
630             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
631                 CPUID_7_0_EBX_INVPCID) {
632                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
633             }
634             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
635                 CPUID_7_0_EBX_RDSEED) {
636                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
637             }
638             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
639                 CPUID_EXT2_RDTSCP) {
640                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
641             }
642         }
643         /* fall through */
644     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
645     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
646     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
647     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
648         /*
649          * Return true for bits that can be one, but do not have to be one.
650          * The SDM tells us which bits could have a "must be one" setting,
651          * so we can do the opposite transformation in make_vmx_msr_value.
652          */
653         must_be_one = (uint32_t)value;
654         can_be_one = (uint32_t)(value >> 32);
655         return can_be_one & ~must_be_one;
656 
657     default:
658         return value;
659     }
660 }
661 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)662 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
663                                      int *max_banks)
664 {
665     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
666     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
667 }
668 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)669 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
670 {
671     CPUState *cs = CPU(cpu);
672     CPUX86State *env = &cpu->env;
673     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
674                       MCI_STATUS_ADDRV;
675     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
676     int flags = 0;
677 
678     if (!IS_AMD_CPU(env)) {
679         status |= MCI_STATUS_S | MCI_STATUS_UC;
680         if (code == BUS_MCEERR_AR) {
681             status |= MCI_STATUS_AR | 0x134;
682             mcg_status |= MCG_STATUS_EIPV;
683         } else {
684             status |= 0xc0;
685         }
686     } else {
687         if (code == BUS_MCEERR_AR) {
688             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
689             mcg_status |= MCG_STATUS_EIPV;
690         } else {
691             /* Setting the POISON bit for deferred errors indicates to the
692              * guest kernel that the address provided by the MCE is valid
693              * and usable which will ensure that the guest kernel will send
694              * a SIGBUS_AO signal to the guest process. This allows for
695              * more desirable behavior in the case that the guest process
696              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
697              * which indicates that the process would prefer to handle or
698              * shutdown due to the poisoned memory condition before the
699              * memory has been accessed.
700              *
701              * While the POISON bit would not be set in a deferred error
702              * sent from hardware, the bit is not meaningful for deferred
703              * errors and can be reused in this scenario.
704              */
705             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
706         }
707     }
708 
709     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
710     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
711      * guest kernel back into env->mcg_ext_ctl.
712      */
713     cpu_synchronize_state(cs);
714     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
715         mcg_status |= MCG_STATUS_LMCE;
716         flags = 0;
717     }
718 
719     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
720                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
721 }
722 
emit_hypervisor_memory_failure(MemoryFailureAction action,bool ar)723 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
724 {
725     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
726 
727     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
728                                    &mff);
729 }
730 
hardware_memory_error(void * host_addr)731 static void hardware_memory_error(void *host_addr)
732 {
733     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
734     error_report("QEMU got Hardware memory error at addr %p", host_addr);
735     exit(1);
736 }
737 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)738 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
739 {
740     X86CPU *cpu = X86_CPU(c);
741     CPUX86State *env = &cpu->env;
742     ram_addr_t ram_addr;
743     hwaddr paddr;
744 
745     /* If we get an action required MCE, it has been injected by KVM
746      * while the VM was running.  An action optional MCE instead should
747      * be coming from the main thread, which qemu_init_sigbus identifies
748      * as the "early kill" thread.
749      */
750     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
751 
752     if ((env->mcg_cap & MCG_SER_P) && addr) {
753         ram_addr = qemu_ram_addr_from_host(addr);
754         if (ram_addr != RAM_ADDR_INVALID &&
755             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
756             kvm_hwpoison_page_add(ram_addr);
757             kvm_mce_inject(cpu, paddr, code);
758 
759             /*
760              * Use different logging severity based on error type.
761              * If there is additional MCE reporting on the hypervisor, QEMU VA
762              * could be another source to identify the PA and MCE details.
763              */
764             if (code == BUS_MCEERR_AR) {
765                 error_report("Guest MCE Memory Error at QEMU addr %p and "
766                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
767                     addr, paddr, "BUS_MCEERR_AR");
768             } else {
769                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
770                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
771                      addr, paddr, "BUS_MCEERR_AO");
772             }
773 
774             return;
775         }
776 
777         if (code == BUS_MCEERR_AO) {
778             warn_report("Hardware memory error at addr %p of type %s "
779                 "for memory used by QEMU itself instead of guest system!",
780                  addr, "BUS_MCEERR_AO");
781         }
782     }
783 
784     if (code == BUS_MCEERR_AR) {
785         hardware_memory_error(addr);
786     }
787 
788     /* Hope we are lucky for AO MCE, just notify a event */
789     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
790 }
791 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)792 static void kvm_queue_exception(CPUX86State *env,
793                                 int32_t exception_nr,
794                                 uint8_t exception_has_payload,
795                                 uint64_t exception_payload)
796 {
797     assert(env->exception_nr == -1);
798     assert(!env->exception_pending);
799     assert(!env->exception_injected);
800     assert(!env->exception_has_payload);
801 
802     env->exception_nr = exception_nr;
803 
804     if (has_exception_payload) {
805         env->exception_pending = 1;
806 
807         env->exception_has_payload = exception_has_payload;
808         env->exception_payload = exception_payload;
809     } else {
810         env->exception_injected = 1;
811 
812         if (exception_nr == EXCP01_DB) {
813             assert(exception_has_payload);
814             env->dr[6] = exception_payload;
815         } else if (exception_nr == EXCP0E_PAGE) {
816             assert(exception_has_payload);
817             env->cr[2] = exception_payload;
818         } else {
819             assert(!exception_has_payload);
820         }
821     }
822 }
823 
cpu_update_state(void * opaque,bool running,RunState state)824 static void cpu_update_state(void *opaque, bool running, RunState state)
825 {
826     CPUX86State *env = opaque;
827 
828     if (running) {
829         env->tsc_valid = false;
830     }
831 }
832 
kvm_arch_vcpu_id(CPUState * cs)833 unsigned long kvm_arch_vcpu_id(CPUState *cs)
834 {
835     X86CPU *cpu = X86_CPU(cs);
836     return cpu->apic_id;
837 }
838 
839 #ifndef KVM_CPUID_SIGNATURE_NEXT
840 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
841 #endif
842 
hyperv_enabled(X86CPU * cpu)843 static bool hyperv_enabled(X86CPU *cpu)
844 {
845     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
846         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
847          cpu->hyperv_features || cpu->hyperv_passthrough);
848 }
849 
850 /*
851  * Check whether target_freq is within conservative
852  * ntp correctable bounds (250ppm) of freq
853  */
freq_within_bounds(int freq,int target_freq)854 static inline bool freq_within_bounds(int freq, int target_freq)
855 {
856         int max_freq = freq + (freq * 250 / 1000000);
857         int min_freq = freq - (freq * 250 / 1000000);
858 
859         if (target_freq >= min_freq && target_freq <= max_freq) {
860                 return true;
861         }
862 
863         return false;
864 }
865 
kvm_arch_set_tsc_khz(CPUState * cs)866 static int kvm_arch_set_tsc_khz(CPUState *cs)
867 {
868     X86CPU *cpu = X86_CPU(cs);
869     CPUX86State *env = &cpu->env;
870     int r, cur_freq;
871     bool set_ioctl = false;
872 
873     /*
874      * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope
875      * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ
876      * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu()
877      */
878     if (is_tdx_vm()) {
879         return 0;
880     }
881 
882     if (!env->tsc_khz) {
883         return 0;
884     }
885 
886     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
887                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
888 
889     /*
890      * If TSC scaling is supported, attempt to set TSC frequency.
891      */
892     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
893         set_ioctl = true;
894     }
895 
896     /*
897      * If desired TSC frequency is within bounds of NTP correction,
898      * attempt to set TSC frequency.
899      */
900     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
901         set_ioctl = true;
902     }
903 
904     r = set_ioctl ?
905         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
906         -ENOTSUP;
907 
908     if (r < 0) {
909         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
910          * TSC frequency doesn't match the one we want.
911          */
912         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
913                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
914                    -ENOTSUP;
915         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
916             warn_report("TSC frequency mismatch between "
917                         "VM (%" PRId64 " kHz) and host (%d kHz), "
918                         "and TSC scaling unavailable",
919                         env->tsc_khz, cur_freq);
920             return r;
921         }
922     }
923 
924     return 0;
925 }
926 
tsc_is_stable_and_known(CPUX86State * env)927 static bool tsc_is_stable_and_known(CPUX86State *env)
928 {
929     if (!env->tsc_khz) {
930         return false;
931     }
932     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
933         || env->user_tsc_khz;
934 }
935 
936 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
937 
938 static struct {
939     const char *desc;
940     struct {
941         uint32_t func;
942         int reg;
943         uint32_t bits;
944     } flags[2];
945     uint64_t dependencies;
946     bool skip_passthrough;
947 } kvm_hyperv_properties[] = {
948     [HYPERV_FEAT_RELAXED] = {
949         .desc = "relaxed timing (hv-relaxed)",
950         .flags = {
951             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
952              .bits = HV_RELAXED_TIMING_RECOMMENDED}
953         }
954     },
955     [HYPERV_FEAT_VAPIC] = {
956         .desc = "virtual APIC (hv-vapic)",
957         .flags = {
958             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
959              .bits = HV_APIC_ACCESS_AVAILABLE}
960         }
961     },
962     [HYPERV_FEAT_TIME] = {
963         .desc = "clocksources (hv-time)",
964         .flags = {
965             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
966              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
967         }
968     },
969     [HYPERV_FEAT_CRASH] = {
970         .desc = "crash MSRs (hv-crash)",
971         .flags = {
972             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
973              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
974         }
975     },
976     [HYPERV_FEAT_RESET] = {
977         .desc = "reset MSR (hv-reset)",
978         .flags = {
979             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
980              .bits = HV_RESET_AVAILABLE}
981         }
982     },
983     [HYPERV_FEAT_VPINDEX] = {
984         .desc = "VP_INDEX MSR (hv-vpindex)",
985         .flags = {
986             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
987              .bits = HV_VP_INDEX_AVAILABLE}
988         }
989     },
990     [HYPERV_FEAT_RUNTIME] = {
991         .desc = "VP_RUNTIME MSR (hv-runtime)",
992         .flags = {
993             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
994              .bits = HV_VP_RUNTIME_AVAILABLE}
995         }
996     },
997     [HYPERV_FEAT_SYNIC] = {
998         .desc = "synthetic interrupt controller (hv-synic)",
999         .flags = {
1000             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1001              .bits = HV_SYNIC_AVAILABLE}
1002         }
1003     },
1004     [HYPERV_FEAT_STIMER] = {
1005         .desc = "synthetic timers (hv-stimer)",
1006         .flags = {
1007             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1008              .bits = HV_SYNTIMERS_AVAILABLE}
1009         },
1010         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1011     },
1012     [HYPERV_FEAT_FREQUENCIES] = {
1013         .desc = "frequency MSRs (hv-frequencies)",
1014         .flags = {
1015             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1016              .bits = HV_ACCESS_FREQUENCY_MSRS},
1017             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1018              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1019         }
1020     },
1021     [HYPERV_FEAT_REENLIGHTENMENT] = {
1022         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1023         .flags = {
1024             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1025              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1026         }
1027     },
1028     [HYPERV_FEAT_TLBFLUSH] = {
1029         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1030         .flags = {
1031             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1032              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1033              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1034         },
1035         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1036     },
1037     [HYPERV_FEAT_EVMCS] = {
1038         .desc = "enlightened VMCS (hv-evmcs)",
1039         .flags = {
1040             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1041              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1042         },
1043         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1044     },
1045     [HYPERV_FEAT_IPI] = {
1046         .desc = "paravirtualized IPI (hv-ipi)",
1047         .flags = {
1048             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1049              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1050              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1051         },
1052         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1053     },
1054     [HYPERV_FEAT_STIMER_DIRECT] = {
1055         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1056         .flags = {
1057             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1058              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1059         },
1060         .dependencies = BIT(HYPERV_FEAT_STIMER)
1061     },
1062     [HYPERV_FEAT_AVIC] = {
1063         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1064         .flags = {
1065             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1066              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1067         }
1068     },
1069     [HYPERV_FEAT_SYNDBG] = {
1070         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1071         .flags = {
1072             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1073              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1074         },
1075         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1076         .skip_passthrough = true,
1077     },
1078     [HYPERV_FEAT_MSR_BITMAP] = {
1079         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1080         .flags = {
1081             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1082              .bits = HV_NESTED_MSR_BITMAP}
1083         }
1084     },
1085     [HYPERV_FEAT_XMM_INPUT] = {
1086         .desc = "XMM fast hypercall input (hv-xmm-input)",
1087         .flags = {
1088             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1089              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1090         }
1091     },
1092     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1093         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1094         .flags = {
1095             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1096              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1097         },
1098         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1099     },
1100     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1101         .desc = "direct TLB flush (hv-tlbflush-direct)",
1102         .flags = {
1103             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1104              .bits = HV_NESTED_DIRECT_FLUSH}
1105         },
1106         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1107     },
1108 };
1109 
try_get_hv_cpuid(CPUState * cs,int max,bool do_sys_ioctl)1110 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1111                                            bool do_sys_ioctl)
1112 {
1113     struct kvm_cpuid2 *cpuid;
1114     int r, size;
1115 
1116     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1117     cpuid = g_malloc0(size);
1118     cpuid->nent = max;
1119 
1120     if (do_sys_ioctl) {
1121         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1122     } else {
1123         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1124     }
1125     if (r == 0 && cpuid->nent >= max) {
1126         r = -E2BIG;
1127     }
1128     if (r < 0) {
1129         if (r == -E2BIG) {
1130             g_free(cpuid);
1131             return NULL;
1132         } else {
1133             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1134                     strerror(-r));
1135             exit(1);
1136         }
1137     }
1138     return cpuid;
1139 }
1140 
1141 /*
1142  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1143  * for all entries.
1144  */
get_supported_hv_cpuid(CPUState * cs)1145 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1146 {
1147     struct kvm_cpuid2 *cpuid;
1148     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1149     int max = 11;
1150     int i;
1151     bool do_sys_ioctl;
1152 
1153     do_sys_ioctl =
1154         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1155 
1156     /*
1157      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1158      * unsupported, kvm_hyperv_expand_features() checks for that.
1159      */
1160     assert(do_sys_ioctl || cs->kvm_state);
1161 
1162     /*
1163      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1164      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1165      * it and re-trying until we succeed.
1166      */
1167     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1168         max++;
1169     }
1170 
1171     /*
1172      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1173      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1174      * information early, just check for the capability and set the bit
1175      * manually.
1176      */
1177     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1178                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1179         for (i = 0; i < cpuid->nent; i++) {
1180             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1181                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1182             }
1183         }
1184     }
1185 
1186     return cpuid;
1187 }
1188 
1189 /*
1190  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1191  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1192  */
get_supported_hv_cpuid_legacy(CPUState * cs)1193 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1194 {
1195     X86CPU *cpu = X86_CPU(cs);
1196     struct kvm_cpuid2 *cpuid;
1197     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1198 
1199     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1200     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1201     cpuid->nent = 2;
1202 
1203     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1204     entry_feat = &cpuid->entries[0];
1205     entry_feat->function = HV_CPUID_FEATURES;
1206 
1207     entry_recomm = &cpuid->entries[1];
1208     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1209     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1210 
1211     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1212         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1213         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1214         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1215         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1216         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1217     }
1218 
1219     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1220         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1221         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1222     }
1223 
1224     if (has_msr_hv_frequencies) {
1225         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1226         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1227     }
1228 
1229     if (has_msr_hv_crash) {
1230         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1231     }
1232 
1233     if (has_msr_hv_reenlightenment) {
1234         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1235     }
1236 
1237     if (has_msr_hv_reset) {
1238         entry_feat->eax |= HV_RESET_AVAILABLE;
1239     }
1240 
1241     if (has_msr_hv_vpindex) {
1242         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1243     }
1244 
1245     if (has_msr_hv_runtime) {
1246         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1247     }
1248 
1249     if (has_msr_hv_synic) {
1250         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1251             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1252 
1253         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1254             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1255         }
1256     }
1257 
1258     if (has_msr_hv_stimer) {
1259         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1260     }
1261 
1262     if (has_msr_hv_syndbg_options) {
1263         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1264         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1265         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1266     }
1267 
1268     if (kvm_check_extension(cs->kvm_state,
1269                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1270         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1271         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1272     }
1273 
1274     if (kvm_check_extension(cs->kvm_state,
1275                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1276         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1277     }
1278 
1279     if (kvm_check_extension(cs->kvm_state,
1280                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1281         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1282         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1283     }
1284 
1285     return cpuid;
1286 }
1287 
hv_cpuid_get_host(CPUState * cs,uint32_t func,int reg)1288 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1289 {
1290     struct kvm_cpuid_entry2 *entry;
1291     struct kvm_cpuid2 *cpuid;
1292 
1293     if (hv_cpuid_cache) {
1294         cpuid = hv_cpuid_cache;
1295     } else {
1296         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1297             cpuid = get_supported_hv_cpuid(cs);
1298         } else {
1299             /*
1300              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1301              * before KVM context is created but this is only done when
1302              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1303              * KVM_CAP_HYPERV_CPUID.
1304              */
1305             assert(cs->kvm_state);
1306 
1307             cpuid = get_supported_hv_cpuid_legacy(cs);
1308         }
1309         hv_cpuid_cache = cpuid;
1310     }
1311 
1312     if (!cpuid) {
1313         return 0;
1314     }
1315 
1316     entry = cpuid_find_entry(cpuid, func, 0);
1317     if (!entry) {
1318         return 0;
1319     }
1320 
1321     return cpuid_entry_get_reg(entry, reg);
1322 }
1323 
hyperv_feature_supported(CPUState * cs,int feature)1324 static bool hyperv_feature_supported(CPUState *cs, int feature)
1325 {
1326     uint32_t func, bits;
1327     int i, reg;
1328 
1329     /*
1330      * kvm_hyperv_properties needs to define at least one CPUID flag which
1331      * must be used to detect the feature, it's hard to say whether it is
1332      * supported or not otherwise.
1333      */
1334     assert(kvm_hyperv_properties[feature].flags[0].func);
1335 
1336     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1337 
1338         func = kvm_hyperv_properties[feature].flags[i].func;
1339         reg = kvm_hyperv_properties[feature].flags[i].reg;
1340         bits = kvm_hyperv_properties[feature].flags[i].bits;
1341 
1342         if (!func) {
1343             continue;
1344         }
1345 
1346         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1347             return false;
1348         }
1349     }
1350 
1351     return true;
1352 }
1353 
1354 /* Checks that all feature dependencies are enabled */
hv_feature_check_deps(X86CPU * cpu,int feature,Error ** errp)1355 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1356 {
1357     uint64_t deps;
1358     int dep_feat;
1359 
1360     deps = kvm_hyperv_properties[feature].dependencies;
1361     while (deps) {
1362         dep_feat = ctz64(deps);
1363         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1364             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1365                        kvm_hyperv_properties[feature].desc,
1366                        kvm_hyperv_properties[dep_feat].desc);
1367             return false;
1368         }
1369         deps &= ~(1ull << dep_feat);
1370     }
1371 
1372     return true;
1373 }
1374 
hv_build_cpuid_leaf(CPUState * cs,uint32_t func,int reg)1375 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1376 {
1377     X86CPU *cpu = X86_CPU(cs);
1378     uint32_t r = 0;
1379     int i, j;
1380 
1381     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1382         if (!hyperv_feat_enabled(cpu, i)) {
1383             continue;
1384         }
1385 
1386         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1387             if (kvm_hyperv_properties[i].flags[j].func != func) {
1388                 continue;
1389             }
1390             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1391                 continue;
1392             }
1393 
1394             r |= kvm_hyperv_properties[i].flags[j].bits;
1395         }
1396     }
1397 
1398     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1399     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1400         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1401             r |= DEFAULT_EVMCS_VERSION;
1402         }
1403     }
1404 
1405     return r;
1406 }
1407 
1408 /*
1409  * Expand Hyper-V CPU features. In partucular, check that all the requested
1410  * features are supported by the host and the sanity of the configuration
1411  * (that all the required dependencies are included). Also, this takes care
1412  * of 'hv_passthrough' mode and fills the environment with all supported
1413  * Hyper-V features.
1414  */
kvm_hyperv_expand_features(X86CPU * cpu,Error ** errp)1415 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1416 {
1417     CPUState *cs = CPU(cpu);
1418     Error *local_err = NULL;
1419     int feat;
1420 
1421     if (!hyperv_enabled(cpu))
1422         return true;
1423 
1424     /*
1425      * When kvm_hyperv_expand_features is called at CPU feature expansion
1426      * time per-CPU kvm_state is not available yet so we can only proceed
1427      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1428      */
1429     if (!cs->kvm_state &&
1430         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1431         return true;
1432 
1433     if (cpu->hyperv_passthrough) {
1434         cpu->hyperv_vendor_id[0] =
1435             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1436         cpu->hyperv_vendor_id[1] =
1437             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1438         cpu->hyperv_vendor_id[2] =
1439             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1440         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1441                                        sizeof(cpu->hyperv_vendor_id) + 1);
1442         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1443                sizeof(cpu->hyperv_vendor_id));
1444         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1445 
1446         cpu->hyperv_interface_id[0] =
1447             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1448         cpu->hyperv_interface_id[1] =
1449             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1450         cpu->hyperv_interface_id[2] =
1451             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1452         cpu->hyperv_interface_id[3] =
1453             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1454 
1455         cpu->hyperv_ver_id_build =
1456             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1457         cpu->hyperv_ver_id_major =
1458             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1459         cpu->hyperv_ver_id_minor =
1460             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1461         cpu->hyperv_ver_id_sp =
1462             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1463         cpu->hyperv_ver_id_sb =
1464             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1465         cpu->hyperv_ver_id_sn =
1466             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1467 
1468         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1469                                             R_EAX);
1470         cpu->hyperv_limits[0] =
1471             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1472         cpu->hyperv_limits[1] =
1473             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1474         cpu->hyperv_limits[2] =
1475             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1476 
1477         cpu->hyperv_spinlock_attempts =
1478             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1479 
1480         /*
1481          * Mark feature as enabled in 'cpu->hyperv_features' as
1482          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1483          */
1484         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1485             if (hyperv_feature_supported(cs, feat) &&
1486                 !kvm_hyperv_properties[feat].skip_passthrough) {
1487                 cpu->hyperv_features |= BIT(feat);
1488             }
1489         }
1490     } else {
1491         /* Check features availability and dependencies */
1492         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1493             /* If the feature was not requested skip it. */
1494             if (!hyperv_feat_enabled(cpu, feat)) {
1495                 continue;
1496             }
1497 
1498             /* Check if the feature is supported by KVM */
1499             if (!hyperv_feature_supported(cs, feat)) {
1500                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1501                            kvm_hyperv_properties[feat].desc);
1502                 return false;
1503             }
1504 
1505             /* Check dependencies */
1506             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1507                 error_propagate(errp, local_err);
1508                 return false;
1509             }
1510         }
1511     }
1512 
1513     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1514     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1515         !cpu->hyperv_synic_kvm_only &&
1516         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1517         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1518                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1519                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1520         return false;
1521     }
1522 
1523     return true;
1524 }
1525 
1526 /*
1527  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1528  */
hyperv_fill_cpuids(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1529 static int hyperv_fill_cpuids(CPUState *cs,
1530                               struct kvm_cpuid_entry2 *cpuid_ent)
1531 {
1532     X86CPU *cpu = X86_CPU(cs);
1533     struct kvm_cpuid_entry2 *c;
1534     uint32_t signature[3];
1535     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1536     uint32_t nested_eax =
1537         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1538 
1539     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1540         HV_CPUID_IMPLEMENT_LIMITS;
1541 
1542     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1543         max_cpuid_leaf =
1544             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1545     }
1546 
1547     c = &cpuid_ent[cpuid_i++];
1548     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1549     c->eax = max_cpuid_leaf;
1550     c->ebx = cpu->hyperv_vendor_id[0];
1551     c->ecx = cpu->hyperv_vendor_id[1];
1552     c->edx = cpu->hyperv_vendor_id[2];
1553 
1554     c = &cpuid_ent[cpuid_i++];
1555     c->function = HV_CPUID_INTERFACE;
1556     c->eax = cpu->hyperv_interface_id[0];
1557     c->ebx = cpu->hyperv_interface_id[1];
1558     c->ecx = cpu->hyperv_interface_id[2];
1559     c->edx = cpu->hyperv_interface_id[3];
1560 
1561     c = &cpuid_ent[cpuid_i++];
1562     c->function = HV_CPUID_VERSION;
1563     c->eax = cpu->hyperv_ver_id_build;
1564     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1565         cpu->hyperv_ver_id_minor;
1566     c->ecx = cpu->hyperv_ver_id_sp;
1567     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1568         (cpu->hyperv_ver_id_sn & 0xffffff);
1569 
1570     c = &cpuid_ent[cpuid_i++];
1571     c->function = HV_CPUID_FEATURES;
1572     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1573     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1574     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1575 
1576     /* Unconditionally required with any Hyper-V enlightenment */
1577     c->eax |= HV_HYPERCALL_AVAILABLE;
1578 
1579     /* SynIC and Vmbus devices require messages/signals hypercalls */
1580     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1581         !cpu->hyperv_synic_kvm_only) {
1582         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1583     }
1584 
1585 
1586     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1587     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1588 
1589     c = &cpuid_ent[cpuid_i++];
1590     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1591     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1592     c->ebx = cpu->hyperv_spinlock_attempts;
1593 
1594     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1595         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1596         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1597     }
1598 
1599     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1600         c->eax |= HV_NO_NONARCH_CORESHARING;
1601     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1602         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1603             HV_NO_NONARCH_CORESHARING;
1604     }
1605 
1606     c = &cpuid_ent[cpuid_i++];
1607     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1608     c->eax = cpu->hv_max_vps;
1609     c->ebx = cpu->hyperv_limits[0];
1610     c->ecx = cpu->hyperv_limits[1];
1611     c->edx = cpu->hyperv_limits[2];
1612 
1613     if (nested_eax) {
1614         uint32_t function;
1615 
1616         /* Create zeroed 0x40000006..0x40000009 leaves */
1617         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1618              function < HV_CPUID_NESTED_FEATURES; function++) {
1619             c = &cpuid_ent[cpuid_i++];
1620             c->function = function;
1621         }
1622 
1623         c = &cpuid_ent[cpuid_i++];
1624         c->function = HV_CPUID_NESTED_FEATURES;
1625         c->eax = nested_eax;
1626     }
1627 
1628     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1629         c = &cpuid_ent[cpuid_i++];
1630         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1631         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1632             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1633         memcpy(signature, "Microsoft VS", 12);
1634         c->eax = 0;
1635         c->ebx = signature[0];
1636         c->ecx = signature[1];
1637         c->edx = signature[2];
1638 
1639         c = &cpuid_ent[cpuid_i++];
1640         c->function = HV_CPUID_SYNDBG_INTERFACE;
1641         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1642         c->eax = signature[0];
1643         c->ebx = 0;
1644         c->ecx = 0;
1645         c->edx = 0;
1646 
1647         c = &cpuid_ent[cpuid_i++];
1648         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1649         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1650         c->ebx = 0;
1651         c->ecx = 0;
1652         c->edx = 0;
1653     }
1654 
1655     return cpuid_i;
1656 }
1657 
1658 static Error *hv_passthrough_mig_blocker;
1659 static Error *hv_no_nonarch_cs_mig_blocker;
1660 
1661 /* Checks that the exposed eVMCS version range is supported by KVM */
evmcs_version_supported(uint16_t evmcs_version,uint16_t supported_evmcs_version)1662 static bool evmcs_version_supported(uint16_t evmcs_version,
1663                                     uint16_t supported_evmcs_version)
1664 {
1665     uint8_t min_version = evmcs_version & 0xff;
1666     uint8_t max_version = evmcs_version >> 8;
1667     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1668     uint8_t max_supported_version = supported_evmcs_version >> 8;
1669 
1670     return (min_version >= min_supported_version) &&
1671         (max_version <= max_supported_version);
1672 }
1673 
hyperv_init_vcpu(X86CPU * cpu)1674 static int hyperv_init_vcpu(X86CPU *cpu)
1675 {
1676     CPUState *cs = CPU(cpu);
1677     Error *local_err = NULL;
1678     int ret;
1679 
1680     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1681         error_setg(&hv_passthrough_mig_blocker,
1682                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1683                    " set of hv-* flags instead");
1684         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1685         if (ret < 0) {
1686             error_report_err(local_err);
1687             return ret;
1688         }
1689     }
1690 
1691     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1692         hv_no_nonarch_cs_mig_blocker == NULL) {
1693         error_setg(&hv_no_nonarch_cs_mig_blocker,
1694                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1695                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1696                    " make sure SMT is disabled and/or that vCPUs are properly"
1697                    " pinned)");
1698         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1699         if (ret < 0) {
1700             error_report_err(local_err);
1701             return ret;
1702         }
1703     }
1704 
1705     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1706         /*
1707          * the kernel doesn't support setting vp_index; assert that its value
1708          * is in sync
1709          */
1710         uint64_t value;
1711 
1712         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1713         if (ret < 0) {
1714             return ret;
1715         }
1716 
1717         if (value != hyperv_vp_index(CPU(cpu))) {
1718             error_report("kernel's vp_index != QEMU's vp_index");
1719             return -ENXIO;
1720         }
1721     }
1722 
1723     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1724         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1725             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1726         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1727         if (ret < 0) {
1728             error_report("failed to turn on HyperV SynIC in KVM: %s",
1729                          strerror(-ret));
1730             return ret;
1731         }
1732 
1733         if (!cpu->hyperv_synic_kvm_only) {
1734             ret = hyperv_x86_synic_add(cpu);
1735             if (ret < 0) {
1736                 error_report("failed to create HyperV SynIC: %s",
1737                              strerror(-ret));
1738                 return ret;
1739             }
1740         }
1741     }
1742 
1743     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1744         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1745         uint16_t supported_evmcs_version;
1746 
1747         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1748                                   (uintptr_t)&supported_evmcs_version);
1749 
1750         /*
1751          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1752          * option sets. Note: we hardcode the maximum supported eVMCS version
1753          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1754          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1755          * to be added.
1756          */
1757         if (ret < 0) {
1758             error_report("Hyper-V %s is not supported by kernel",
1759                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1760             return ret;
1761         }
1762 
1763         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1764             error_report("eVMCS version range [%d..%d] is not supported by "
1765                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1766                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1767                          supported_evmcs_version >> 8);
1768             return -ENOTSUP;
1769         }
1770     }
1771 
1772     if (cpu->hyperv_enforce_cpuid) {
1773         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1774         if (ret < 0) {
1775             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1776                          strerror(-ret));
1777             return ret;
1778         }
1779     }
1780 
1781     /* Skip SynIC and VP_INDEX since they are hard deps already */
1782     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1783         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1784         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1785         hyperv_x86_set_vmbus_recommended_features_enabled();
1786     }
1787 
1788     return 0;
1789 }
1790 
1791 static Error *invtsc_mig_blocker;
1792 
kvm_init_xsave(CPUX86State * env)1793 static void kvm_init_xsave(CPUX86State *env)
1794 {
1795     if (has_xsave2) {
1796         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1797     } else {
1798         env->xsave_buf_len = sizeof(struct kvm_xsave);
1799     }
1800 
1801     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1802     memset(env->xsave_buf, 0, env->xsave_buf_len);
1803     /*
1804      * The allocated storage must be large enough for all of the
1805      * possible XSAVE state components.
1806      */
1807     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1808            env->xsave_buf_len);
1809 }
1810 
kvm_init_nested_state(CPUX86State * env)1811 static void kvm_init_nested_state(CPUX86State *env)
1812 {
1813     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1814     uint32_t size;
1815 
1816     if (!env->nested_state) {
1817         return;
1818     }
1819 
1820     size = env->nested_state->size;
1821 
1822     memset(env->nested_state, 0, size);
1823     env->nested_state->size = size;
1824 
1825     if (cpu_has_vmx(env)) {
1826         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1827         vmx_hdr = &env->nested_state->hdr.vmx;
1828         vmx_hdr->vmxon_pa = -1ull;
1829         vmx_hdr->vmcs12_pa = -1ull;
1830     } else if (cpu_has_svm(env)) {
1831         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1832     }
1833 }
1834 
kvm_x86_build_cpuid(CPUX86State * env,struct kvm_cpuid_entry2 * entries,uint32_t cpuid_i)1835 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries,
1836                              uint32_t cpuid_i)
1837 {
1838     uint32_t limit, i, j;
1839     uint32_t unused;
1840     struct kvm_cpuid_entry2 *c;
1841 
1842     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1843 
1844     for (i = 0; i <= limit; i++) {
1845         j = 0;
1846         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1847             goto full;
1848         }
1849         c = &entries[cpuid_i++];
1850         switch (i) {
1851         case 2: {
1852             /* Keep reading function 2 till all the input is received */
1853             int times;
1854 
1855             c->function = i;
1856             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1857             times = c->eax & 0xff;
1858             if (times > 1) {
1859                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1860                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1861             }
1862 
1863             for (j = 1; j < times; ++j) {
1864                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1865                     goto full;
1866                 }
1867                 c = &entries[cpuid_i++];
1868                 c->function = i;
1869                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1870                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1871             }
1872             break;
1873         }
1874         case 0x1f:
1875             if (!x86_has_cpuid_0x1f(env_archcpu(env))) {
1876                 cpuid_i--;
1877                 break;
1878             }
1879             /* fallthrough */
1880         case 4:
1881         case 0xb:
1882         case 0xd:
1883             for (j = 0; ; j++) {
1884                 c->function = i;
1885                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1886                 c->index = j;
1887                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1888 
1889                 if (i == 4 && c->eax == 0) {
1890                     break;
1891                 }
1892                 if (i == 0xb && !(c->ecx & 0xff00)) {
1893                     break;
1894                 }
1895                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1896                     break;
1897                 }
1898                 if (i == 0xd && c->eax == 0) {
1899                     if (j < 63) {
1900                         continue;
1901                     } else {
1902                         cpuid_i--;
1903                         break;
1904                     }
1905                 }
1906                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1907                     goto full;
1908                 }
1909                 c = &entries[cpuid_i++];
1910             }
1911             break;
1912         case 0x12:
1913             for (j = 0; ; j++) {
1914                 c->function = i;
1915                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1916                 c->index = j;
1917                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1918 
1919                 if (j > 1 && (c->eax & 0xf) != 1) {
1920                     break;
1921                 }
1922 
1923                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1924                     goto full;
1925                 }
1926                 c = &entries[cpuid_i++];
1927             }
1928             break;
1929         case 0x7:
1930         case 0x14:
1931         case 0x1d:
1932         case 0x1e:
1933         case 0x24: {
1934             uint32_t times;
1935 
1936             c->function = i;
1937             c->index = 0;
1938             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1939             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1940             times = c->eax;
1941 
1942             for (j = 1; j <= times; ++j) {
1943                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1944                     goto full;
1945                 }
1946                 c = &entries[cpuid_i++];
1947                 c->function = i;
1948                 c->index = j;
1949                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1950                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1951             }
1952             break;
1953         }
1954         default:
1955             c->function = i;
1956             c->flags = 0;
1957             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1958             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1959                 /*
1960                  * KVM already returns all zeroes if a CPUID entry is missing,
1961                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1962                  */
1963                 cpuid_i--;
1964             }
1965             break;
1966         }
1967     }
1968 
1969     if (limit >= 0x0a) {
1970         uint32_t eax, edx;
1971 
1972         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1973 
1974         has_architectural_pmu_version = eax & 0xff;
1975         if (has_architectural_pmu_version > 0) {
1976             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1977 
1978             /* Shouldn't be more than 32, since that's the number of bits
1979              * available in EBX to tell us _which_ counters are available.
1980              * Play it safe.
1981              */
1982             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1983                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1984             }
1985 
1986             if (has_architectural_pmu_version > 1) {
1987                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1988 
1989                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1990                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1991                 }
1992             }
1993         }
1994     }
1995 
1996     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1997 
1998     for (i = 0x80000000; i <= limit; i++) {
1999         j = 0;
2000         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2001             goto full;
2002         }
2003         c = &entries[cpuid_i++];
2004 
2005         switch (i) {
2006         case 0x8000001d:
2007             /* Query for all AMD cache information leaves */
2008             for (j = 0; ; j++) {
2009                 c->function = i;
2010                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2011                 c->index = j;
2012                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2013 
2014                 if (c->eax == 0) {
2015                     break;
2016                 }
2017                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2018                     goto full;
2019                 }
2020                 c = &entries[cpuid_i++];
2021             }
2022             break;
2023         default:
2024             c->function = i;
2025             c->flags = 0;
2026             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2027             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2028                 /*
2029                  * KVM already returns all zeroes if a CPUID entry is missing,
2030                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2031                  */
2032                 cpuid_i--;
2033             }
2034             break;
2035         }
2036     }
2037 
2038     /* Call Centaur's CPUID instructions they are supported. */
2039     if (env->cpuid_xlevel2 > 0) {
2040         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2041 
2042         for (i = 0xC0000000; i <= limit; i++) {
2043             j = 0;
2044             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2045                 goto full;
2046             }
2047             c = &entries[cpuid_i++];
2048 
2049             c->function = i;
2050             c->flags = 0;
2051             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2052         }
2053     }
2054 
2055     return cpuid_i;
2056 
2057 full:
2058     fprintf(stderr, "cpuid_data is full, no space for "
2059             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2060     abort();
2061 }
2062 
kvm_arch_pre_create_vcpu(CPUState * cpu,Error ** errp)2063 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
2064 {
2065     if (is_tdx_vm()) {
2066         return tdx_pre_create_vcpu(cpu, errp);
2067     }
2068 
2069     return 0;
2070 }
2071 
kvm_arch_init_vcpu(CPUState * cs)2072 int kvm_arch_init_vcpu(CPUState *cs)
2073 {
2074     struct {
2075         struct kvm_cpuid2 cpuid;
2076         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2077     } cpuid_data;
2078     /*
2079      * The kernel defines these structs with padding fields so there
2080      * should be no extra padding in our cpuid_data struct.
2081      */
2082     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2083                       sizeof(struct kvm_cpuid2) +
2084                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2085 
2086     X86CPU *cpu = X86_CPU(cs);
2087     CPUX86State *env = &cpu->env;
2088     uint32_t cpuid_i;
2089     struct kvm_cpuid_entry2 *c;
2090     uint32_t signature[3];
2091     int kvm_base = KVM_CPUID_SIGNATURE;
2092     int max_nested_state_len;
2093     int r;
2094     Error *local_err = NULL;
2095 
2096     if (current_machine->cgs) {
2097         r = x86_confidential_guest_check_features(
2098                 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs);
2099         if (r < 0) {
2100             return r;
2101         }
2102     }
2103 
2104     memset(&cpuid_data, 0, sizeof(cpuid_data));
2105 
2106     cpuid_i = 0;
2107 
2108     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2109 
2110     r = kvm_arch_set_tsc_khz(cs);
2111     if (r < 0) {
2112         return r;
2113     }
2114 
2115     /* vcpu's TSC frequency is either specified by user, or following
2116      * the value used by KVM if the former is not present. In the
2117      * latter case, we query it from KVM and record in env->tsc_khz,
2118      * so that vcpu's TSC frequency can be migrated later via this field.
2119      */
2120     if (!env->tsc_khz) {
2121         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2122             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2123             -ENOTSUP;
2124         if (r > 0) {
2125             env->tsc_khz = r;
2126         }
2127     }
2128 
2129     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2130 
2131     /*
2132      * kvm_hyperv_expand_features() is called here for the second time in case
2133      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2134      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2135      * check which Hyper-V enlightenments are supported and which are not, we
2136      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2137      * behavior is preserved.
2138      */
2139     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2140         error_report_err(local_err);
2141         return -ENOSYS;
2142     }
2143 
2144     if (hyperv_enabled(cpu)) {
2145         r = hyperv_init_vcpu(cpu);
2146         if (r) {
2147             return r;
2148         }
2149 
2150         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2151         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2152         has_msr_hv_hypercall = true;
2153     }
2154 
2155     if (cs->kvm_state->xen_version) {
2156 #ifdef CONFIG_XEN_EMU
2157         struct kvm_cpuid_entry2 *xen_max_leaf;
2158 
2159         memcpy(signature, "XenVMMXenVMM", 12);
2160 
2161         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2162         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2163         c->eax = kvm_base + XEN_CPUID_TIME;
2164         c->ebx = signature[0];
2165         c->ecx = signature[1];
2166         c->edx = signature[2];
2167 
2168         c = &cpuid_data.entries[cpuid_i++];
2169         c->function = kvm_base + XEN_CPUID_VENDOR;
2170         c->eax = cs->kvm_state->xen_version;
2171         c->ebx = 0;
2172         c->ecx = 0;
2173         c->edx = 0;
2174 
2175         c = &cpuid_data.entries[cpuid_i++];
2176         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2177         /* Number of hypercall-transfer pages */
2178         c->eax = 1;
2179         /* Hypercall MSR base address */
2180         if (hyperv_enabled(cpu)) {
2181             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2182             kvm_xen_init(cs->kvm_state, c->ebx);
2183         } else {
2184             c->ebx = XEN_HYPERCALL_MSR;
2185         }
2186         c->ecx = 0;
2187         c->edx = 0;
2188 
2189         c = &cpuid_data.entries[cpuid_i++];
2190         c->function = kvm_base + XEN_CPUID_TIME;
2191         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2192             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2193         /* default=0 (emulate if necessary) */
2194         c->ebx = 0;
2195         /* guest tsc frequency */
2196         c->ecx = env->user_tsc_khz;
2197         /* guest tsc incarnation (migration count) */
2198         c->edx = 0;
2199 
2200         c = &cpuid_data.entries[cpuid_i++];
2201         c->function = kvm_base + XEN_CPUID_HVM;
2202         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2203         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2204             c->function = kvm_base + XEN_CPUID_HVM;
2205 
2206             if (cpu->xen_vapic) {
2207                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2208                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2209             }
2210 
2211             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2212 
2213             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2214                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2215                 c->ebx = cs->cpu_index;
2216             }
2217 
2218             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2219                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2220             }
2221         }
2222 
2223         r = kvm_xen_init_vcpu(cs);
2224         if (r) {
2225             return r;
2226         }
2227 
2228         kvm_base += 0x100;
2229 #else /* CONFIG_XEN_EMU */
2230         /* This should never happen as kvm_arch_init() would have died first. */
2231         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2232         abort();
2233 #endif
2234     } else if (cpu->expose_kvm) {
2235         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2236         c = &cpuid_data.entries[cpuid_i++];
2237         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2238         c->eax = KVM_CPUID_FEATURES | kvm_base;
2239         c->ebx = signature[0];
2240         c->ecx = signature[1];
2241         c->edx = signature[2];
2242 
2243         c = &cpuid_data.entries[cpuid_i++];
2244         c->function = KVM_CPUID_FEATURES | kvm_base;
2245         c->eax = env->features[FEAT_KVM];
2246         c->edx = env->features[FEAT_KVM_HINTS];
2247     }
2248 
2249     if (cpu->kvm_pv_enforce_cpuid) {
2250         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2251         if (r < 0) {
2252             fprintf(stderr,
2253                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2254                     strerror(-r));
2255             abort();
2256         }
2257     }
2258 
2259     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2260     cpuid_data.cpuid.nent = cpuid_i;
2261 
2262     if (((env->cpuid_version >> 8)&0xF) >= 6
2263         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2264            (CPUID_MCE | CPUID_MCA)) {
2265         uint64_t mcg_cap, unsupported_caps;
2266         int banks;
2267         int ret;
2268 
2269         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2270         if (ret < 0) {
2271             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2272             return ret;
2273         }
2274 
2275         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2276             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2277                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2278             return -ENOTSUP;
2279         }
2280 
2281         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2282         if (unsupported_caps) {
2283             if (unsupported_caps & MCG_LMCE_P) {
2284                 error_report("kvm: LMCE not supported");
2285                 return -ENOTSUP;
2286             }
2287             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2288                         unsupported_caps);
2289         }
2290 
2291         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2292         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2293         if (ret < 0) {
2294             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2295             return ret;
2296         }
2297     }
2298 
2299     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2300 
2301     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2302     if (c) {
2303         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2304                                   !!(c->ecx & CPUID_EXT_SMX);
2305     }
2306 
2307     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2308     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2309         has_msr_feature_control = true;
2310     }
2311 
2312     if (env->mcg_cap & MCG_LMCE_P) {
2313         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2314     }
2315 
2316     if (!env->user_tsc_khz) {
2317         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2318             invtsc_mig_blocker == NULL) {
2319             error_setg(&invtsc_mig_blocker,
2320                        "State blocked by non-migratable CPU device"
2321                        " (invtsc flag)");
2322             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2323             if (r < 0) {
2324                 error_report_err(local_err);
2325                 return r;
2326             }
2327         }
2328     }
2329 
2330     if (cpu->vmware_cpuid_freq
2331         /* Guests depend on 0x40000000 to detect this feature, so only expose
2332          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2333         && cpu->expose_kvm
2334         && kvm_base == KVM_CPUID_SIGNATURE
2335         /* TSC clock must be stable and known for this feature. */
2336         && tsc_is_stable_and_known(env)) {
2337 
2338         c = &cpuid_data.entries[cpuid_i++];
2339         c->function = KVM_CPUID_SIGNATURE | 0x10;
2340         c->eax = env->tsc_khz;
2341         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2342         c->ecx = c->edx = 0;
2343 
2344         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2345         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2346     }
2347 
2348     cpuid_data.cpuid.nent = cpuid_i;
2349 
2350     cpuid_data.cpuid.padding = 0;
2351     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2352     if (r) {
2353         goto fail;
2354     }
2355     kvm_init_xsave(env);
2356 
2357     max_nested_state_len = kvm_max_nested_state_length();
2358     if (max_nested_state_len > 0) {
2359         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2360 
2361         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2362             env->nested_state = g_malloc0(max_nested_state_len);
2363             env->nested_state->size = max_nested_state_len;
2364 
2365             kvm_init_nested_state(env);
2366         }
2367     }
2368 
2369     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2370 
2371     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2372         has_msr_tsc_aux = false;
2373     }
2374 
2375     kvm_init_msrs(cpu);
2376 
2377     return 0;
2378 
2379  fail:
2380     migrate_del_blocker(&invtsc_mig_blocker);
2381 
2382     return r;
2383 }
2384 
kvm_arch_destroy_vcpu(CPUState * cs)2385 int kvm_arch_destroy_vcpu(CPUState *cs)
2386 {
2387     X86CPU *cpu = X86_CPU(cs);
2388     CPUX86State *env = &cpu->env;
2389 
2390     g_free(env->xsave_buf);
2391 
2392     g_free(cpu->kvm_msr_buf);
2393     cpu->kvm_msr_buf = NULL;
2394 
2395     g_free(env->nested_state);
2396     env->nested_state = NULL;
2397 
2398     qemu_del_vm_change_state_handler(cpu->vmsentry);
2399 
2400     return 0;
2401 }
2402 
kvm_arch_reset_vcpu(X86CPU * cpu)2403 void kvm_arch_reset_vcpu(X86CPU *cpu)
2404 {
2405     CPUX86State *env = &cpu->env;
2406 
2407     env->xcr0 = 1;
2408     if (kvm_irqchip_in_kernel()) {
2409         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2410                                           KVM_MP_STATE_UNINITIALIZED;
2411     } else {
2412         env->mp_state = KVM_MP_STATE_RUNNABLE;
2413     }
2414 
2415     /* enabled by default */
2416     env->poll_control_msr = 1;
2417 
2418     kvm_init_nested_state(env);
2419 
2420     sev_es_set_reset_vector(CPU(cpu));
2421 }
2422 
kvm_arch_after_reset_vcpu(X86CPU * cpu)2423 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2424 {
2425     CPUX86State *env = &cpu->env;
2426     int i;
2427 
2428     /*
2429      * Reset SynIC after all other devices have been reset to let them remove
2430      * their SINT routes first.
2431      */
2432     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2433         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2434             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2435         }
2436 
2437         hyperv_x86_synic_reset(cpu);
2438     }
2439 }
2440 
kvm_arch_reset_parked_vcpu(unsigned long vcpu_id,int kvm_fd)2441 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2442 {
2443     g_autofree struct kvm_msrs *msrs = NULL;
2444 
2445     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2446     msrs->entries[0].index = MSR_IA32_TSC;
2447     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2448     msrs->nmsrs++;
2449 
2450     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2451         warn_report("parked vCPU %lu TSC reset failed: %d",
2452                     vcpu_id, errno);
2453     }
2454 }
2455 
kvm_arch_do_init_vcpu(X86CPU * cpu)2456 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2457 {
2458     CPUX86State *env = &cpu->env;
2459 
2460     /* APs get directly into wait-for-SIPI state.  */
2461     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2462         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2463     }
2464 }
2465 
kvm_get_supported_feature_msrs(KVMState * s)2466 static int kvm_get_supported_feature_msrs(KVMState *s)
2467 {
2468     int ret = 0;
2469 
2470     if (kvm_feature_msrs != NULL) {
2471         return 0;
2472     }
2473 
2474     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2475         return 0;
2476     }
2477 
2478     struct kvm_msr_list msr_list;
2479 
2480     msr_list.nmsrs = 0;
2481     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2482     if (ret < 0 && ret != -E2BIG) {
2483         error_report("Fetch KVM feature MSR list failed: %s",
2484             strerror(-ret));
2485         return ret;
2486     }
2487 
2488     assert(msr_list.nmsrs > 0);
2489     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2490                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2491 
2492     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2493     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2494 
2495     if (ret < 0) {
2496         error_report("Fetch KVM feature MSR list failed: %s",
2497             strerror(-ret));
2498         g_free(kvm_feature_msrs);
2499         kvm_feature_msrs = NULL;
2500         return ret;
2501     }
2502 
2503     return 0;
2504 }
2505 
kvm_get_supported_msrs(KVMState * s)2506 static int kvm_get_supported_msrs(KVMState *s)
2507 {
2508     int ret = 0;
2509     struct kvm_msr_list msr_list, *kvm_msr_list;
2510 
2511     /*
2512      *  Obtain MSR list from KVM.  These are the MSRs that we must
2513      *  save/restore.
2514      */
2515     msr_list.nmsrs = 0;
2516     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2517     if (ret < 0 && ret != -E2BIG) {
2518         return ret;
2519     }
2520     /*
2521      * Old kernel modules had a bug and could write beyond the provided
2522      * memory. Allocate at least a safe amount of 1K.
2523      */
2524     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2525                                           msr_list.nmsrs *
2526                                           sizeof(msr_list.indices[0])));
2527 
2528     kvm_msr_list->nmsrs = msr_list.nmsrs;
2529     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2530     if (ret >= 0) {
2531         int i;
2532 
2533         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2534             switch (kvm_msr_list->indices[i]) {
2535             case MSR_STAR:
2536                 has_msr_star = true;
2537                 break;
2538             case MSR_VM_HSAVE_PA:
2539                 has_msr_hsave_pa = true;
2540                 break;
2541             case MSR_TSC_AUX:
2542                 has_msr_tsc_aux = true;
2543                 break;
2544             case MSR_TSC_ADJUST:
2545                 has_msr_tsc_adjust = true;
2546                 break;
2547             case MSR_IA32_TSCDEADLINE:
2548                 has_msr_tsc_deadline = true;
2549                 break;
2550             case MSR_IA32_SMBASE:
2551                 has_msr_smbase = true;
2552                 break;
2553             case MSR_SMI_COUNT:
2554                 has_msr_smi_count = true;
2555                 break;
2556             case MSR_IA32_MISC_ENABLE:
2557                 has_msr_misc_enable = true;
2558                 break;
2559             case MSR_IA32_BNDCFGS:
2560                 has_msr_bndcfgs = true;
2561                 break;
2562             case MSR_IA32_XSS:
2563                 has_msr_xss = true;
2564                 break;
2565             case MSR_IA32_UMWAIT_CONTROL:
2566                 has_msr_umwait = true;
2567                 break;
2568             case HV_X64_MSR_CRASH_CTL:
2569                 has_msr_hv_crash = true;
2570                 break;
2571             case HV_X64_MSR_RESET:
2572                 has_msr_hv_reset = true;
2573                 break;
2574             case HV_X64_MSR_VP_INDEX:
2575                 has_msr_hv_vpindex = true;
2576                 break;
2577             case HV_X64_MSR_VP_RUNTIME:
2578                 has_msr_hv_runtime = true;
2579                 break;
2580             case HV_X64_MSR_SCONTROL:
2581                 has_msr_hv_synic = true;
2582                 break;
2583             case HV_X64_MSR_STIMER0_CONFIG:
2584                 has_msr_hv_stimer = true;
2585                 break;
2586             case HV_X64_MSR_TSC_FREQUENCY:
2587                 has_msr_hv_frequencies = true;
2588                 break;
2589             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2590                 has_msr_hv_reenlightenment = true;
2591                 break;
2592             case HV_X64_MSR_SYNDBG_OPTIONS:
2593                 has_msr_hv_syndbg_options = true;
2594                 break;
2595             case MSR_IA32_SPEC_CTRL:
2596                 has_msr_spec_ctrl = true;
2597                 break;
2598             case MSR_AMD64_TSC_RATIO:
2599                 has_tsc_scale_msr = true;
2600                 break;
2601             case MSR_IA32_TSX_CTRL:
2602                 has_msr_tsx_ctrl = true;
2603                 break;
2604             case MSR_VIRT_SSBD:
2605                 has_msr_virt_ssbd = true;
2606                 break;
2607             case MSR_IA32_ARCH_CAPABILITIES:
2608                 has_msr_arch_capabs = true;
2609                 break;
2610             case MSR_IA32_CORE_CAPABILITY:
2611                 has_msr_core_capabs = true;
2612                 break;
2613             case MSR_IA32_PERF_CAPABILITIES:
2614                 has_msr_perf_capabs = true;
2615                 break;
2616             case MSR_IA32_VMX_VMFUNC:
2617                 has_msr_vmx_vmfunc = true;
2618                 break;
2619             case MSR_IA32_UCODE_REV:
2620                 has_msr_ucode_rev = true;
2621                 break;
2622             case MSR_IA32_VMX_PROCBASED_CTLS2:
2623                 has_msr_vmx_procbased_ctls2 = true;
2624                 break;
2625             case MSR_IA32_PKRS:
2626                 has_msr_pkrs = true;
2627                 break;
2628             case MSR_K7_HWCR:
2629                 has_msr_hwcr = true;
2630             }
2631         }
2632     }
2633 
2634     g_free(kvm_msr_list);
2635 
2636     return ret;
2637 }
2638 
kvm_rdmsr_core_thread_count(X86CPU * cpu,uint32_t msr,uint64_t * val)2639 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2640                                         uint32_t msr,
2641                                         uint64_t *val)
2642 {
2643     *val = cpu_x86_get_msr_core_thread_count(cpu);
2644 
2645     return true;
2646 }
2647 
kvm_rdmsr_rapl_power_unit(X86CPU * cpu,uint32_t msr,uint64_t * val)2648 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2649                                       uint32_t msr,
2650                                       uint64_t *val)
2651 {
2652 
2653     CPUState *cs = CPU(cpu);
2654 
2655     *val = cs->kvm_state->msr_energy.msr_unit;
2656 
2657     return true;
2658 }
2659 
kvm_rdmsr_pkg_power_limit(X86CPU * cpu,uint32_t msr,uint64_t * val)2660 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2661                                       uint32_t msr,
2662                                       uint64_t *val)
2663 {
2664 
2665     CPUState *cs = CPU(cpu);
2666 
2667     *val = cs->kvm_state->msr_energy.msr_limit;
2668 
2669     return true;
2670 }
2671 
kvm_rdmsr_pkg_power_info(X86CPU * cpu,uint32_t msr,uint64_t * val)2672 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2673                                      uint32_t msr,
2674                                      uint64_t *val)
2675 {
2676 
2677     CPUState *cs = CPU(cpu);
2678 
2679     *val = cs->kvm_state->msr_energy.msr_info;
2680 
2681     return true;
2682 }
2683 
kvm_rdmsr_pkg_energy_status(X86CPU * cpu,uint32_t msr,uint64_t * val)2684 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2685                                         uint32_t msr,
2686                                         uint64_t *val)
2687 {
2688 
2689     CPUState *cs = CPU(cpu);
2690     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2691 
2692     return true;
2693 }
2694 
2695 static Notifier smram_machine_done;
2696 static KVMMemoryListener smram_listener;
2697 static AddressSpace smram_address_space;
2698 static MemoryRegion smram_as_root;
2699 static MemoryRegion smram_as_mem;
2700 
register_smram_listener(Notifier * n,void * unused)2701 static void register_smram_listener(Notifier *n, void *unused)
2702 {
2703     MemoryRegion *smram =
2704         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2705 
2706     /* Outer container... */
2707     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2708     memory_region_set_enabled(&smram_as_root, true);
2709 
2710     /* ... with two regions inside: normal system memory with low
2711      * priority, and...
2712      */
2713     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2714                              get_system_memory(), 0, ~0ull);
2715     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2716     memory_region_set_enabled(&smram_as_mem, true);
2717 
2718     if (smram) {
2719         /* ... SMRAM with higher priority */
2720         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2721         memory_region_set_enabled(smram, true);
2722     }
2723 
2724     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2725     kvm_memory_listener_register(kvm_state, &smram_listener,
2726                                  &smram_address_space, 1, "kvm-smram");
2727 }
2728 
kvm_msr_energy_thread(void * data)2729 static void *kvm_msr_energy_thread(void *data)
2730 {
2731     KVMState *s = data;
2732     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2733 
2734     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2735     g_autofree vmsr_thread_stat *thd_stat = NULL;
2736     g_autofree CPUState *cpu = NULL;
2737     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2738     unsigned int num_threads = 0;
2739 
2740     X86CPUTopoIDs topo_ids;
2741 
2742     rcu_register_thread();
2743 
2744     /* Allocate memory for each package energy status */
2745     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2746 
2747     /* Allocate memory for thread stats */
2748     thd_stat = g_new0(vmsr_thread_stat, 1);
2749 
2750     /* Allocate memory for holding virtual package energy counter */
2751     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2752 
2753     /* Populate the max tick of each packages */
2754     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2755         /*
2756          * Max numbers of ticks per package
2757          * Time in second * Number of ticks/second * Number of cores/package
2758          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2759          */
2760         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2761                         * sysconf(_SC_CLK_TCK)
2762                         * vmsr->host_topo.pkg_cpu_count[i];
2763     }
2764 
2765     while (true) {
2766         /* Get all qemu threads id */
2767         g_autofree pid_t *thread_ids
2768             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2769 
2770         if (thread_ids == NULL) {
2771             goto clean;
2772         }
2773 
2774         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2775         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2776         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2777 
2778         /* Populate all the thread stats */
2779         for (int i = 0; i < num_threads; i++) {
2780             thd_stat[i].utime = g_new0(unsigned long long, 2);
2781             thd_stat[i].stime = g_new0(unsigned long long, 2);
2782             thd_stat[i].thread_id = thread_ids[i];
2783             vmsr_read_thread_stat(vmsr->pid,
2784                                   thd_stat[i].thread_id,
2785                                   &thd_stat[i].utime[0],
2786                                   &thd_stat[i].stime[0],
2787                                   &thd_stat[i].cpu_id);
2788             thd_stat[i].pkg_id =
2789                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2790         }
2791 
2792         /* Retrieve all packages power plane energy counter */
2793         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2794             for (int j = 0; j < num_threads; j++) {
2795                 /*
2796                  * Use the first thread we found that ran on the CPU
2797                  * of the package to read the packages energy counter
2798                  */
2799                 if (thd_stat[j].pkg_id == i) {
2800                     pkg_stat[i].e_start =
2801                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2802                                   thd_stat[j].cpu_id,
2803                                   thd_stat[j].thread_id,
2804                                   s->msr_energy.sioc);
2805                     break;
2806                 }
2807             }
2808         }
2809 
2810         /* Sleep a short period while the other threads are working */
2811         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2812 
2813         /*
2814          * Retrieve all packages power plane energy counter
2815          * Calculate the delta of all packages
2816          */
2817         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2818             for (int j = 0; j < num_threads; j++) {
2819                 /*
2820                  * Use the first thread we found that ran on the CPU
2821                  * of the package to read the packages energy counter
2822                  */
2823                 if (thd_stat[j].pkg_id == i) {
2824                     pkg_stat[i].e_end =
2825                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2826                                   thd_stat[j].cpu_id,
2827                                   thd_stat[j].thread_id,
2828                                   s->msr_energy.sioc);
2829                     /*
2830                      * Prevent the case we have migrate the VM
2831                      * during the sleep period or any other cases
2832                      * were energy counter might be lower after
2833                      * the sleep period.
2834                      */
2835                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2836                         pkg_stat[i].e_delta =
2837                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2838                     } else {
2839                         pkg_stat[i].e_delta = 0;
2840                     }
2841                     break;
2842                 }
2843             }
2844         }
2845 
2846         /* Delta of ticks spend by each thread between the sample */
2847         for (int i = 0; i < num_threads; i++) {
2848             vmsr_read_thread_stat(vmsr->pid,
2849                                   thd_stat[i].thread_id,
2850                                   &thd_stat[i].utime[1],
2851                                   &thd_stat[i].stime[1],
2852                                   &thd_stat[i].cpu_id);
2853 
2854             if (vmsr->pid < 0) {
2855                 /*
2856                  * We don't count the dead thread
2857                  * i.e threads that existed before the sleep
2858                  * and not anymore
2859                  */
2860                 thd_stat[i].delta_ticks = 0;
2861             } else {
2862                 vmsr_delta_ticks(thd_stat, i);
2863             }
2864         }
2865 
2866         /*
2867          * Identify the vcpu threads
2868          * Calculate the number of vcpu per package
2869          */
2870         CPU_FOREACH(cpu) {
2871             for (int i = 0; i < num_threads; i++) {
2872                 if (cpu->thread_id == thd_stat[i].thread_id) {
2873                     thd_stat[i].is_vcpu = true;
2874                     thd_stat[i].vcpu_id = cpu->cpu_index;
2875                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2876                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2877                     break;
2878                 }
2879             }
2880         }
2881 
2882         /* Retrieve the virtual package number of each vCPU */
2883         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2884             for (int j = 0; j < num_threads; j++) {
2885                 if ((thd_stat[j].acpi_id ==
2886                         vmsr->guest_cpu_list->cpus[i].arch_id)
2887                     && (thd_stat[j].is_vcpu == true)) {
2888                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2889                         &vmsr->guest_topo_info, &topo_ids);
2890                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2891                 }
2892             }
2893         }
2894 
2895         /* Calculate the total energy of all non-vCPU thread */
2896         for (int i = 0; i < num_threads; i++) {
2897             if ((thd_stat[i].is_vcpu != true) &&
2898                 (thd_stat[i].delta_ticks > 0)) {
2899                 double temp;
2900                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2901                     thd_stat[i].delta_ticks,
2902                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2903                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2904                     += (uint64_t)lround(temp);
2905             }
2906         }
2907 
2908         /* Calculate the ratio per non-vCPU thread of each package */
2909         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2910             if (pkg_stat[i].nb_vcpu > 0) {
2911                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2912             }
2913         }
2914 
2915         /*
2916          * Calculate the energy for each Package:
2917          * Energy Package = sum of each vCPU energy that belongs to the package
2918          */
2919         for (int i = 0; i < num_threads; i++) {
2920             if ((thd_stat[i].is_vcpu == true) && \
2921                     (thd_stat[i].delta_ticks > 0)) {
2922                 double temp;
2923                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2924                     thd_stat[i].delta_ticks,
2925                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2926                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2927                     (uint64_t)lround(temp);
2928                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2929                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2930             }
2931         }
2932 
2933         /*
2934          * Finally populate the vmsr register of each vCPU with the total
2935          * package value to emulate the real hardware where each CPU return the
2936          * value of the package it belongs.
2937          */
2938         for (int i = 0; i < num_threads; i++) {
2939             if ((thd_stat[i].is_vcpu == true) && \
2940                     (thd_stat[i].delta_ticks > 0)) {
2941                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2942                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2943           }
2944         }
2945 
2946         /* Freeing memory before zeroing the pointer */
2947         for (int i = 0; i < num_threads; i++) {
2948             g_free(thd_stat[i].utime);
2949             g_free(thd_stat[i].stime);
2950         }
2951    }
2952 
2953 clean:
2954     rcu_unregister_thread();
2955     return NULL;
2956 }
2957 
kvm_msr_energy_thread_init(KVMState * s,MachineState * ms)2958 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2959 {
2960     MachineClass *mc = MACHINE_GET_CLASS(ms);
2961     struct KVMMsrEnergy *r = &s->msr_energy;
2962 
2963     /*
2964      * Sanity check
2965      * 1. Host cpu must be Intel cpu
2966      * 2. RAPL must be enabled on the Host
2967      */
2968     if (!is_host_cpu_intel()) {
2969         error_report("The RAPL feature can only be enabled on hosts "
2970                      "with Intel CPU models");
2971         return -1;
2972     }
2973 
2974     if (!is_rapl_enabled()) {
2975         return -1;
2976     }
2977 
2978     /* Retrieve the virtual topology */
2979     vmsr_init_topo_info(&r->guest_topo_info, ms);
2980 
2981     /* Retrieve the number of vcpu */
2982     r->guest_vcpus = ms->smp.cpus;
2983 
2984     /* Retrieve the number of virtual sockets */
2985     r->guest_vsockets = ms->smp.sockets;
2986 
2987     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2988     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2989 
2990     /* Retrieve the CPUArchIDlist */
2991     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2992 
2993     /* Max number of cpus on the Host */
2994     r->host_topo.maxcpus = vmsr_get_maxcpus();
2995     if (r->host_topo.maxcpus == 0) {
2996         error_report("host max cpus = 0");
2997         return -1;
2998     }
2999 
3000     /* Max number of packages on the host */
3001     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
3002     if (r->host_topo.maxpkgs == 0) {
3003         error_report("host max pkgs = 0");
3004         return -1;
3005     }
3006 
3007     /* Allocate memory for each package on the host */
3008     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
3009     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
3010 
3011     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
3012                                 r->host_topo.maxpkgs);
3013     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
3014         if (r->host_topo.pkg_cpu_count[i] == 0) {
3015             error_report("cpu per packages = 0 on package_%d", i);
3016             return -1;
3017         }
3018     }
3019 
3020     /* Get QEMU PID*/
3021     r->pid = getpid();
3022 
3023     /* Compute the socket path if necessary */
3024     if (s->msr_energy.socket_path == NULL) {
3025         s->msr_energy.socket_path = vmsr_compute_default_paths();
3026     }
3027 
3028     /* Open socket with vmsr helper */
3029     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3030 
3031     if (s->msr_energy.sioc == NULL) {
3032         error_report("vmsr socket opening failed");
3033         return -1;
3034     }
3035 
3036     /* Those MSR values should not change */
3037     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3038                                     s->msr_energy.sioc);
3039     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3040                                     s->msr_energy.sioc);
3041     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3042                                     s->msr_energy.sioc);
3043     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3044         error_report("can't read any virtual msr");
3045         return -1;
3046     }
3047 
3048     qemu_thread_create(&r->msr_thr, "kvm-msr",
3049                        kvm_msr_energy_thread,
3050                        s, QEMU_THREAD_JOINABLE);
3051     return 0;
3052 }
3053 
kvm_arch_get_default_type(MachineState * ms)3054 int kvm_arch_get_default_type(MachineState *ms)
3055 {
3056     return 0;
3057 }
3058 
kvm_vm_enable_exception_payload(KVMState * s)3059 static int kvm_vm_enable_exception_payload(KVMState *s)
3060 {
3061     int ret = 0;
3062     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3063     if (has_exception_payload) {
3064         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3065         if (ret < 0) {
3066             error_report("kvm: Failed to enable exception payload cap: %s",
3067                          strerror(-ret));
3068         }
3069     }
3070 
3071     return ret;
3072 }
3073 
kvm_vm_enable_triple_fault_event(KVMState * s)3074 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3075 {
3076     int ret = 0;
3077     has_triple_fault_event = \
3078         kvm_check_extension(s,
3079                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3080     if (has_triple_fault_event) {
3081         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3082         if (ret < 0) {
3083             error_report("kvm: Failed to enable triple fault event cap: %s",
3084                          strerror(-ret));
3085         }
3086     }
3087     return ret;
3088 }
3089 
kvm_vm_set_identity_map_addr(KVMState * s,uint64_t identity_base)3090 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3091 {
3092     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3093 }
3094 
kvm_vm_set_nr_mmu_pages(KVMState * s)3095 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3096 {
3097     uint64_t shadow_mem;
3098     int ret = 0;
3099     shadow_mem = object_property_get_int(OBJECT(s),
3100                                          "kvm-shadow-mem",
3101                                          &error_abort);
3102     if (shadow_mem != -1) {
3103         shadow_mem /= 4096;
3104         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3105     }
3106     return ret;
3107 }
3108 
kvm_vm_set_tss_addr(KVMState * s,uint64_t tss_base)3109 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3110 {
3111     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3112 }
3113 
kvm_vm_enable_disable_exits(KVMState * s)3114 static int kvm_vm_enable_disable_exits(KVMState *s)
3115 {
3116     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3117 
3118     if (disable_exits) {
3119         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3120                           KVM_X86_DISABLE_EXITS_HLT |
3121                           KVM_X86_DISABLE_EXITS_PAUSE |
3122                           KVM_X86_DISABLE_EXITS_CSTATE);
3123     }
3124 
3125     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3126                              disable_exits);
3127 }
3128 
kvm_vm_enable_bus_lock_exit(KVMState * s)3129 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3130 {
3131     int ret = 0;
3132     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3133     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3134         error_report("kvm: bus lock detection unsupported");
3135         return -ENOTSUP;
3136     }
3137     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3138                             KVM_BUS_LOCK_DETECTION_EXIT);
3139     if (ret < 0) {
3140         error_report("kvm: Failed to enable bus lock detection cap: %s",
3141                      strerror(-ret));
3142     }
3143 
3144     return ret;
3145 }
3146 
kvm_vm_enable_notify_vmexit(KVMState * s)3147 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3148 {
3149     int ret = 0;
3150     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3151         uint64_t notify_window_flags =
3152             ((uint64_t)s->notify_window << 32) |
3153             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3154             KVM_X86_NOTIFY_VMEXIT_USER;
3155         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3156                                 notify_window_flags);
3157         if (ret < 0) {
3158             error_report("kvm: Failed to enable notify vmexit cap: %s",
3159                          strerror(-ret));
3160         }
3161     }
3162     return ret;
3163 }
3164 
kvm_vm_enable_userspace_msr(KVMState * s)3165 static int kvm_vm_enable_userspace_msr(KVMState *s)
3166 {
3167     int ret;
3168 
3169     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3170                             KVM_MSR_EXIT_REASON_FILTER);
3171     if (ret < 0) {
3172         error_report("Could not enable user space MSRs: %s",
3173                      strerror(-ret));
3174         exit(1);
3175     }
3176 
3177     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3178                          kvm_rdmsr_core_thread_count, NULL);
3179     if (ret < 0) {
3180         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3181                      strerror(-ret));
3182         exit(1);
3183     }
3184 
3185     return 0;
3186 }
3187 
kvm_vm_enable_energy_msrs(KVMState * s)3188 static int kvm_vm_enable_energy_msrs(KVMState *s)
3189 {
3190     int ret;
3191 
3192     if (s->msr_energy.enable == true) {
3193         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3194                              kvm_rdmsr_rapl_power_unit, NULL);
3195         if (ret < 0) {
3196             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3197                          strerror(-ret));
3198             return ret;
3199         }
3200 
3201         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3202                              kvm_rdmsr_pkg_power_limit, NULL);
3203         if (ret < 0) {
3204             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3205                          strerror(-ret));
3206             return ret;
3207         }
3208 
3209         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3210                              kvm_rdmsr_pkg_power_info, NULL);
3211         if (ret < 0) {
3212             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3213                          strerror(-ret));
3214             return ret;
3215         }
3216         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3217                              kvm_rdmsr_pkg_energy_status, NULL);
3218         if (ret < 0) {
3219             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3220                          strerror(-ret));
3221             return ret;
3222         }
3223     }
3224     return 0;
3225 }
3226 
kvm_arch_init(MachineState * ms,KVMState * s)3227 int kvm_arch_init(MachineState *ms, KVMState *s)
3228 {
3229     int ret;
3230     struct utsname utsname;
3231     Error *local_err = NULL;
3232 
3233     /*
3234      * Initialize confidential guest (SEV/TDX) context, if required
3235      */
3236     if (ms->cgs) {
3237         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3238         if (ret < 0) {
3239             error_report_err(local_err);
3240             return ret;
3241         }
3242     }
3243 
3244     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3245     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3246 
3247     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3248 
3249     ret = kvm_vm_enable_exception_payload(s);
3250     if (ret < 0) {
3251         return ret;
3252     }
3253 
3254     ret = kvm_vm_enable_triple_fault_event(s);
3255     if (ret < 0) {
3256         return ret;
3257     }
3258 
3259     if (s->xen_version) {
3260 #ifdef CONFIG_XEN_EMU
3261         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3262             error_report("kvm: Xen support only available in PC machine");
3263             return -ENOTSUP;
3264         }
3265         /* hyperv_enabled() doesn't work yet. */
3266         uint32_t msr = XEN_HYPERCALL_MSR;
3267         ret = kvm_xen_init(s, msr);
3268         if (ret < 0) {
3269             return ret;
3270         }
3271 #else
3272         error_report("kvm: Xen support not enabled in qemu");
3273         return -ENOTSUP;
3274 #endif
3275     }
3276 
3277     ret = kvm_get_supported_msrs(s);
3278     if (ret < 0) {
3279         return ret;
3280     }
3281 
3282     ret = kvm_get_supported_feature_msrs(s);
3283     if (ret < 0) {
3284         return ret;
3285     }
3286 
3287     uname(&utsname);
3288     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3289 
3290     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3291     if (ret < 0) {
3292         return ret;
3293     }
3294 
3295     /* Set TSS base one page after EPT identity map. */
3296     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3297     if (ret < 0) {
3298         return ret;
3299     }
3300 
3301     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3302     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3303 
3304     ret = kvm_vm_set_nr_mmu_pages(s);
3305     if (ret < 0) {
3306         return ret;
3307     }
3308 
3309     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3310         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3311         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3312         smram_machine_done.notify = register_smram_listener;
3313         qemu_add_machine_init_done_notifier(&smram_machine_done);
3314     }
3315 
3316     if (enable_cpu_pm) {
3317         ret = kvm_vm_enable_disable_exits(s);
3318         if (ret < 0) {
3319             error_report("kvm: guest stopping CPU not supported: %s",
3320                          strerror(-ret));
3321             return ret;
3322         }
3323     }
3324 
3325     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3326         X86MachineState *x86ms = X86_MACHINE(ms);
3327 
3328         if (x86ms->bus_lock_ratelimit > 0) {
3329             ret = kvm_vm_enable_bus_lock_exit(s);
3330             if (ret < 0) {
3331                 return ret;
3332             }
3333             ratelimit_init(&bus_lock_ratelimit_ctrl);
3334             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3335                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3336         }
3337     }
3338 
3339     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3340         ret = kvm_vm_enable_notify_vmexit(s);
3341         if (ret < 0) {
3342             return ret;
3343         }
3344     }
3345 
3346     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3347         ret = kvm_vm_enable_userspace_msr(s);
3348         if (ret < 0) {
3349             return ret;
3350         }
3351 
3352         if (s->msr_energy.enable == true) {
3353             ret = kvm_vm_enable_energy_msrs(s);
3354             if (ret < 0) {
3355                 return ret;
3356             }
3357 
3358             ret = kvm_msr_energy_thread_init(s, ms);
3359             if (ret < 0) {
3360                 error_report("kvm : error RAPL feature requirement not met");
3361                 return ret;
3362             }
3363         }
3364     }
3365 
3366     return 0;
3367 }
3368 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3369 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3370 {
3371     lhs->selector = rhs->selector;
3372     lhs->base = rhs->base;
3373     lhs->limit = rhs->limit;
3374     lhs->type = 3;
3375     lhs->present = 1;
3376     lhs->dpl = 3;
3377     lhs->db = 0;
3378     lhs->s = 1;
3379     lhs->l = 0;
3380     lhs->g = 0;
3381     lhs->avl = 0;
3382     lhs->unusable = 0;
3383 }
3384 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)3385 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3386 {
3387     unsigned flags = rhs->flags;
3388     lhs->selector = rhs->selector;
3389     lhs->base = rhs->base;
3390     lhs->limit = rhs->limit;
3391     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3392     lhs->present = (flags & DESC_P_MASK) != 0;
3393     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3394     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3395     lhs->s = (flags & DESC_S_MASK) != 0;
3396     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3397     lhs->g = (flags & DESC_G_MASK) != 0;
3398     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3399     lhs->unusable = !lhs->present;
3400     lhs->padding = 0;
3401 }
3402 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)3403 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3404 {
3405     lhs->selector = rhs->selector;
3406     lhs->base = rhs->base;
3407     lhs->limit = rhs->limit;
3408     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3409                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3410                  (rhs->dpl << DESC_DPL_SHIFT) |
3411                  (rhs->db << DESC_B_SHIFT) |
3412                  (rhs->s * DESC_S_MASK) |
3413                  (rhs->l << DESC_L_SHIFT) |
3414                  (rhs->g * DESC_G_MASK) |
3415                  (rhs->avl * DESC_AVL_MASK);
3416 }
3417 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)3418 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3419 {
3420     if (set) {
3421         *kvm_reg = *qemu_reg;
3422     } else {
3423         *qemu_reg = *kvm_reg;
3424     }
3425 }
3426 
kvm_getput_regs(X86CPU * cpu,int set)3427 static int kvm_getput_regs(X86CPU *cpu, int set)
3428 {
3429     CPUX86State *env = &cpu->env;
3430     struct kvm_regs regs;
3431     int ret = 0;
3432 
3433     if (!set) {
3434         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3435         if (ret < 0) {
3436             return ret;
3437         }
3438     }
3439 
3440     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3441     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3442     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3443     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3444     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3445     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3446     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3447     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3448 #ifdef TARGET_X86_64
3449     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3450     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3451     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3452     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3453     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3454     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3455     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3456     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3457 #endif
3458 
3459     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3460     kvm_getput_reg(&regs.rip, &env->eip, set);
3461 
3462     if (set) {
3463         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3464     }
3465 
3466     return ret;
3467 }
3468 
kvm_put_xsave(X86CPU * cpu)3469 static int kvm_put_xsave(X86CPU *cpu)
3470 {
3471     CPUX86State *env = &cpu->env;
3472     void *xsave = env->xsave_buf;
3473 
3474     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3475 
3476     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3477 }
3478 
kvm_put_xcrs(X86CPU * cpu)3479 static int kvm_put_xcrs(X86CPU *cpu)
3480 {
3481     CPUX86State *env = &cpu->env;
3482     struct kvm_xcrs xcrs = {};
3483 
3484     if (!has_xcrs) {
3485         return 0;
3486     }
3487 
3488     xcrs.nr_xcrs = 1;
3489     xcrs.flags = 0;
3490     xcrs.xcrs[0].xcr = 0;
3491     xcrs.xcrs[0].value = env->xcr0;
3492     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3493 }
3494 
kvm_put_sregs(X86CPU * cpu)3495 static int kvm_put_sregs(X86CPU *cpu)
3496 {
3497     CPUX86State *env = &cpu->env;
3498     struct kvm_sregs sregs;
3499 
3500     /*
3501      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3502      * always followed by KVM_SET_VCPU_EVENTS.
3503      */
3504     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3505 
3506     if ((env->eflags & VM_MASK)) {
3507         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3508         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3509         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3510         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3511         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3512         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3513     } else {
3514         set_seg(&sregs.cs, &env->segs[R_CS]);
3515         set_seg(&sregs.ds, &env->segs[R_DS]);
3516         set_seg(&sregs.es, &env->segs[R_ES]);
3517         set_seg(&sregs.fs, &env->segs[R_FS]);
3518         set_seg(&sregs.gs, &env->segs[R_GS]);
3519         set_seg(&sregs.ss, &env->segs[R_SS]);
3520     }
3521 
3522     set_seg(&sregs.tr, &env->tr);
3523     set_seg(&sregs.ldt, &env->ldt);
3524 
3525     sregs.idt.limit = env->idt.limit;
3526     sregs.idt.base = env->idt.base;
3527     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3528     sregs.gdt.limit = env->gdt.limit;
3529     sregs.gdt.base = env->gdt.base;
3530     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3531 
3532     sregs.cr0 = env->cr[0];
3533     sregs.cr2 = env->cr[2];
3534     sregs.cr3 = env->cr[3];
3535     sregs.cr4 = env->cr[4];
3536 
3537     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3538     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3539 
3540     sregs.efer = env->efer;
3541 
3542     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3543 }
3544 
kvm_put_sregs2(X86CPU * cpu)3545 static int kvm_put_sregs2(X86CPU *cpu)
3546 {
3547     CPUX86State *env = &cpu->env;
3548     struct kvm_sregs2 sregs;
3549     int i;
3550 
3551     sregs.flags = 0;
3552 
3553     if ((env->eflags & VM_MASK)) {
3554         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3555         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3556         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3557         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3558         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3559         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3560     } else {
3561         set_seg(&sregs.cs, &env->segs[R_CS]);
3562         set_seg(&sregs.ds, &env->segs[R_DS]);
3563         set_seg(&sregs.es, &env->segs[R_ES]);
3564         set_seg(&sregs.fs, &env->segs[R_FS]);
3565         set_seg(&sregs.gs, &env->segs[R_GS]);
3566         set_seg(&sregs.ss, &env->segs[R_SS]);
3567     }
3568 
3569     set_seg(&sregs.tr, &env->tr);
3570     set_seg(&sregs.ldt, &env->ldt);
3571 
3572     sregs.idt.limit = env->idt.limit;
3573     sregs.idt.base = env->idt.base;
3574     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3575     sregs.gdt.limit = env->gdt.limit;
3576     sregs.gdt.base = env->gdt.base;
3577     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3578 
3579     sregs.cr0 = env->cr[0];
3580     sregs.cr2 = env->cr[2];
3581     sregs.cr3 = env->cr[3];
3582     sregs.cr4 = env->cr[4];
3583 
3584     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3585     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3586 
3587     sregs.efer = env->efer;
3588 
3589     if (env->pdptrs_valid) {
3590         for (i = 0; i < 4; i++) {
3591             sregs.pdptrs[i] = env->pdptrs[i];
3592         }
3593         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3594     }
3595 
3596     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3597 }
3598 
3599 
kvm_msr_buf_reset(X86CPU * cpu)3600 static void kvm_msr_buf_reset(X86CPU *cpu)
3601 {
3602     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3603 }
3604 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)3605 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3606 {
3607     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3608     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3609     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3610 
3611     assert((void *)(entry + 1) <= limit);
3612 
3613     entry->index = index;
3614     entry->reserved = 0;
3615     entry->data = value;
3616     msrs->nmsrs++;
3617 }
3618 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)3619 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3620 {
3621     kvm_msr_buf_reset(cpu);
3622     kvm_msr_entry_add(cpu, index, value);
3623 
3624     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3625 }
3626 
kvm_get_one_msr(X86CPU * cpu,int index,uint64_t * value)3627 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3628 {
3629     int ret;
3630     struct {
3631         struct kvm_msrs info;
3632         struct kvm_msr_entry entries[1];
3633     } msr_data = {
3634         .info.nmsrs = 1,
3635         .entries[0].index = index,
3636     };
3637 
3638     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3639     if (ret < 0) {
3640         return ret;
3641     }
3642     assert(ret == 1);
3643     *value = msr_data.entries[0].data;
3644     return ret;
3645 }
kvm_put_apicbase(X86CPU * cpu,uint64_t value)3646 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3647 {
3648     int ret;
3649 
3650     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3651     assert(ret == 1);
3652 }
3653 
kvm_put_tscdeadline_msr(X86CPU * cpu)3654 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3655 {
3656     CPUX86State *env = &cpu->env;
3657     int ret;
3658 
3659     if (!has_msr_tsc_deadline) {
3660         return 0;
3661     }
3662 
3663     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3664     if (ret < 0) {
3665         return ret;
3666     }
3667 
3668     assert(ret == 1);
3669     return 0;
3670 }
3671 
3672 /*
3673  * Provide a separate write service for the feature control MSR in order to
3674  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3675  * before writing any other state because forcibly leaving nested mode
3676  * invalidates the VCPU state.
3677  */
kvm_put_msr_feature_control(X86CPU * cpu)3678 static int kvm_put_msr_feature_control(X86CPU *cpu)
3679 {
3680     int ret;
3681 
3682     if (!has_msr_feature_control) {
3683         return 0;
3684     }
3685 
3686     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3687                           cpu->env.msr_ia32_feature_control);
3688     if (ret < 0) {
3689         return ret;
3690     }
3691 
3692     assert(ret == 1);
3693     return 0;
3694 }
3695 
make_vmx_msr_value(uint32_t index,uint32_t features)3696 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3697 {
3698     uint32_t default1, can_be_one, can_be_zero;
3699     uint32_t must_be_one;
3700 
3701     switch (index) {
3702     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3703         default1 = 0x00000016;
3704         break;
3705     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3706         default1 = 0x0401e172;
3707         break;
3708     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3709         default1 = 0x000011ff;
3710         break;
3711     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3712         default1 = 0x00036dff;
3713         break;
3714     case MSR_IA32_VMX_PROCBASED_CTLS2:
3715         default1 = 0;
3716         break;
3717     default:
3718         abort();
3719     }
3720 
3721     /* If a feature bit is set, the control can be either set or clear.
3722      * Otherwise the value is limited to either 0 or 1 by default1.
3723      */
3724     can_be_one = features | default1;
3725     can_be_zero = features | ~default1;
3726     must_be_one = ~can_be_zero;
3727 
3728     /*
3729      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3730      * Bit 32:63 -> 1 if the control bit can be one.
3731      */
3732     return must_be_one | (((uint64_t)can_be_one) << 32);
3733 }
3734 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)3735 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3736 {
3737     uint64_t kvm_vmx_basic =
3738         kvm_arch_get_supported_msr_feature(kvm_state,
3739                                            MSR_IA32_VMX_BASIC);
3740 
3741     if (!kvm_vmx_basic) {
3742         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3743          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3744          */
3745         return;
3746     }
3747 
3748     uint64_t kvm_vmx_misc =
3749         kvm_arch_get_supported_msr_feature(kvm_state,
3750                                            MSR_IA32_VMX_MISC);
3751     uint64_t kvm_vmx_ept_vpid =
3752         kvm_arch_get_supported_msr_feature(kvm_state,
3753                                            MSR_IA32_VMX_EPT_VPID_CAP);
3754 
3755     /*
3756      * If the guest is 64-bit, a value of 1 is allowed for the host address
3757      * space size vmexit control.
3758      */
3759     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3760         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3761 
3762     /*
3763      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3764      * not change them for backwards compatibility.
3765      */
3766     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3767         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3768          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3769          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3770 
3771     /*
3772      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3773      * change in the future but are always zero for now, clear them to be
3774      * future proof.  Bits 32-63 in theory could change, though KVM does
3775      * not support dual-monitor treatment and probably never will; mask
3776      * them out as well.
3777      */
3778     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3779         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3780          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3781 
3782     /*
3783      * EPT memory types should not change either, so we do not bother
3784      * adding features for them.
3785      */
3786     uint64_t fixed_vmx_ept_mask =
3787             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3788              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3789     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3790 
3791     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3792                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3793                                          f[FEAT_VMX_PROCBASED_CTLS]));
3794     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3795                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3796                                          f[FEAT_VMX_PINBASED_CTLS]));
3797     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3798                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3799                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3800     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3801                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3802                                          f[FEAT_VMX_ENTRY_CTLS]));
3803     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3804                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3805                                          f[FEAT_VMX_SECONDARY_CTLS]));
3806     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3807                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3808     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3809                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3810     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3811                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3812     if (has_msr_vmx_vmfunc) {
3813         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3814     }
3815 
3816     /*
3817      * Just to be safe, write these with constant values.  The CRn_FIXED1
3818      * MSRs are generated by KVM based on the vCPU's CPUID.
3819      */
3820     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3821                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3822     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3823                       CR4_VMXE_MASK);
3824 
3825     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3826         /* FRED injected-event data (0x2052).  */
3827         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3828     } else if (f[FEAT_VMX_EXIT_CTLS] &
3829                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3830         /* Secondary VM-exit controls (0x2044).  */
3831         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3832     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3833         /* TSC multiplier (0x2032).  */
3834         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3835     } else {
3836         /* Preemption timer (0x482E).  */
3837         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3838     }
3839 }
3840 
kvm_msr_entry_add_perf(X86CPU * cpu,FeatureWordArray f)3841 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3842 {
3843     uint64_t kvm_perf_cap =
3844         kvm_arch_get_supported_msr_feature(kvm_state,
3845                                            MSR_IA32_PERF_CAPABILITIES);
3846 
3847     if (kvm_perf_cap) {
3848         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3849                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3850     }
3851 }
3852 
kvm_buf_set_msrs(X86CPU * cpu)3853 static int kvm_buf_set_msrs(X86CPU *cpu)
3854 {
3855     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3856     if (ret < 0) {
3857         return ret;
3858     }
3859 
3860     if (ret < cpu->kvm_msr_buf->nmsrs) {
3861         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3862         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3863                      (uint32_t)e->index, (uint64_t)e->data);
3864     }
3865 
3866     assert(ret == cpu->kvm_msr_buf->nmsrs);
3867     return 0;
3868 }
3869 
kvm_init_msrs(X86CPU * cpu)3870 static void kvm_init_msrs(X86CPU *cpu)
3871 {
3872     CPUX86State *env = &cpu->env;
3873 
3874     kvm_msr_buf_reset(cpu);
3875 
3876     if (!is_tdx_vm()) {
3877         if (has_msr_arch_capabs) {
3878             kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3879                                 env->features[FEAT_ARCH_CAPABILITIES]);
3880         }
3881 
3882         if (has_msr_core_capabs) {
3883             kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3884                                 env->features[FEAT_CORE_CAPABILITY]);
3885         }
3886 
3887         if (has_msr_perf_capabs && cpu->enable_pmu) {
3888             kvm_msr_entry_add_perf(cpu, env->features);
3889         }
3890 
3891         /*
3892          * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3893          * all kernels with MSR features should have them.
3894          */
3895         if (kvm_feature_msrs && cpu_has_vmx(env)) {
3896             kvm_msr_entry_add_vmx(cpu, env->features);
3897         }
3898     }
3899 
3900     if (has_msr_ucode_rev) {
3901         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3902     }
3903     assert(kvm_buf_set_msrs(cpu) == 0);
3904 }
3905 
kvm_put_msrs(X86CPU * cpu,int level)3906 static int kvm_put_msrs(X86CPU *cpu, int level)
3907 {
3908     CPUX86State *env = &cpu->env;
3909     int i;
3910 
3911     kvm_msr_buf_reset(cpu);
3912 
3913     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3914     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3915     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3916     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3917     if (has_msr_star) {
3918         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3919     }
3920     if (has_msr_hsave_pa) {
3921         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3922     }
3923     if (has_msr_tsc_aux) {
3924         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3925     }
3926     if (has_msr_tsc_adjust) {
3927         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3928     }
3929     if (has_msr_misc_enable) {
3930         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3931                           env->msr_ia32_misc_enable);
3932     }
3933     if (has_msr_smbase) {
3934         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3935     }
3936     if (has_msr_smi_count) {
3937         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3938     }
3939     if (has_msr_pkrs) {
3940         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3941     }
3942     if (has_msr_bndcfgs) {
3943         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3944     }
3945     if (has_msr_xss) {
3946         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3947     }
3948     if (has_msr_umwait) {
3949         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3950     }
3951     if (has_msr_spec_ctrl) {
3952         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3953     }
3954     if (has_tsc_scale_msr) {
3955         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3956     }
3957 
3958     if (has_msr_tsx_ctrl) {
3959         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3960     }
3961     if (has_msr_virt_ssbd) {
3962         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3963     }
3964     if (has_msr_hwcr) {
3965         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3966     }
3967 
3968 #ifdef TARGET_X86_64
3969     if (lm_capable_kernel) {
3970         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3971         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3972         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3973         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3974         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3975             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3976             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3977             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3978             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3979             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3980             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3981             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3982             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3983             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3984         }
3985     }
3986 #endif
3987 
3988     /*
3989      * The following MSRs have side effects on the guest or are too heavy
3990      * for normal writeback. Limit them to reset or full state updates.
3991      */
3992     if (level >= KVM_PUT_RESET_STATE) {
3993         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3994         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3995             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3996             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3997         }
3998         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
3999             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
4000         }
4001         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4002             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
4003         }
4004         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4005             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
4006         }
4007         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4008             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
4009         }
4010 
4011         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4012             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
4013         }
4014 
4015         if (has_architectural_pmu_version > 0) {
4016             if (has_architectural_pmu_version > 1) {
4017                 /* Stop the counter.  */
4018                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4019                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4020             }
4021 
4022             /* Set the counter values.  */
4023             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4024                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4025                                   env->msr_fixed_counters[i]);
4026             }
4027             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4028                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4029                                   env->msr_gp_counters[i]);
4030                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4031                                   env->msr_gp_evtsel[i]);
4032             }
4033             if (has_architectural_pmu_version > 1) {
4034                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4035                                   env->msr_global_status);
4036                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4037                                   env->msr_global_ovf_ctrl);
4038 
4039                 /* Now start the PMU.  */
4040                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4041                                   env->msr_fixed_ctr_ctrl);
4042                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4043                                   env->msr_global_ctrl);
4044             }
4045         }
4046         /*
4047          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4048          * only sync them to KVM on the first cpu
4049          */
4050         if (current_cpu == first_cpu) {
4051             if (has_msr_hv_hypercall) {
4052                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4053                                   env->msr_hv_guest_os_id);
4054                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4055                                   env->msr_hv_hypercall);
4056             }
4057             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4058                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4059                                   env->msr_hv_tsc);
4060             }
4061             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4062                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4063                                   env->msr_hv_reenlightenment_control);
4064                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4065                                   env->msr_hv_tsc_emulation_control);
4066                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4067                                   env->msr_hv_tsc_emulation_status);
4068             }
4069             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4070                 has_msr_hv_syndbg_options) {
4071                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4072                                   hyperv_syndbg_query_options());
4073             }
4074         }
4075         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4076             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4077                               env->msr_hv_vapic);
4078         }
4079         if (has_msr_hv_crash) {
4080             int j;
4081 
4082             for (j = 0; j < HV_CRASH_PARAMS; j++)
4083                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4084                                   env->msr_hv_crash_params[j]);
4085 
4086             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4087         }
4088         if (has_msr_hv_runtime) {
4089             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4090         }
4091         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4092             && hv_vpindex_settable) {
4093             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4094                               hyperv_vp_index(CPU(cpu)));
4095         }
4096         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4097             int j;
4098 
4099             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4100 
4101             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4102                               env->msr_hv_synic_control);
4103             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4104                               env->msr_hv_synic_evt_page);
4105             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4106                               env->msr_hv_synic_msg_page);
4107 
4108             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4109                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4110                                   env->msr_hv_synic_sint[j]);
4111             }
4112         }
4113         if (has_msr_hv_stimer) {
4114             int j;
4115 
4116             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4117                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4118                                 env->msr_hv_stimer_config[j]);
4119             }
4120 
4121             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4122                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4123                                 env->msr_hv_stimer_count[j]);
4124             }
4125         }
4126         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4127             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4128 
4129             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4130             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4131             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4132             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4133             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4134             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4135             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4136             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4137             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4138             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4139             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4140             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4141             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4142                 /* The CPU GPs if we write to a bit above the physical limit of
4143                  * the host CPU (and KVM emulates that)
4144                  */
4145                 uint64_t mask = env->mtrr_var[i].mask;
4146                 mask &= phys_mask;
4147 
4148                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4149                                   env->mtrr_var[i].base);
4150                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4151             }
4152         }
4153         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4154             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4155                                                     0x14, 1, R_EAX) & 0x7;
4156 
4157             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4158                             env->msr_rtit_ctrl);
4159             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4160                             env->msr_rtit_status);
4161             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4162                             env->msr_rtit_output_base);
4163             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4164                             env->msr_rtit_output_mask);
4165             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4166                             env->msr_rtit_cr3_match);
4167             for (i = 0; i < addr_num; i++) {
4168                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4169                             env->msr_rtit_addrs[i]);
4170             }
4171         }
4172 
4173         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4174             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4175                               env->msr_ia32_sgxlepubkeyhash[0]);
4176             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4177                               env->msr_ia32_sgxlepubkeyhash[1]);
4178             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4179                               env->msr_ia32_sgxlepubkeyhash[2]);
4180             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4181                               env->msr_ia32_sgxlepubkeyhash[3]);
4182         }
4183 
4184         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4185             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4186                               env->msr_xfd);
4187             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4188                               env->msr_xfd_err);
4189         }
4190 
4191         if (kvm_enabled() && cpu->enable_pmu &&
4192             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4193             uint64_t depth;
4194             int ret;
4195 
4196             /*
4197              * Only migrate Arch LBR states when the host Arch LBR depth
4198              * equals that of source guest's, this is to avoid mismatch
4199              * of guest/host config for the msr hence avoid unexpected
4200              * misbehavior.
4201              */
4202             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4203 
4204             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4205                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4206                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4207 
4208                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4209                     if (!env->lbr_records[i].from) {
4210                         continue;
4211                     }
4212                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4213                                       env->lbr_records[i].from);
4214                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4215                                       env->lbr_records[i].to);
4216                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4217                                       env->lbr_records[i].info);
4218                 }
4219             }
4220         }
4221 
4222         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4223          *       kvm_put_msr_feature_control. */
4224     }
4225 
4226     if (env->mcg_cap) {
4227         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4228         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4229         if (has_msr_mcg_ext_ctl) {
4230             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4231         }
4232         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4233             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4234         }
4235     }
4236 
4237     return kvm_buf_set_msrs(cpu);
4238 }
4239 
4240 
kvm_get_xsave(X86CPU * cpu)4241 static int kvm_get_xsave(X86CPU *cpu)
4242 {
4243     CPUX86State *env = &cpu->env;
4244     void *xsave = env->xsave_buf;
4245     unsigned long type;
4246     int ret;
4247 
4248     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4249     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4250     if (ret < 0) {
4251         return ret;
4252     }
4253     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4254 
4255     return 0;
4256 }
4257 
kvm_get_xcrs(X86CPU * cpu)4258 static int kvm_get_xcrs(X86CPU *cpu)
4259 {
4260     CPUX86State *env = &cpu->env;
4261     int i, ret;
4262     struct kvm_xcrs xcrs;
4263 
4264     if (!has_xcrs) {
4265         return 0;
4266     }
4267 
4268     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4269     if (ret < 0) {
4270         return ret;
4271     }
4272 
4273     for (i = 0; i < xcrs.nr_xcrs; i++) {
4274         /* Only support xcr0 now */
4275         if (xcrs.xcrs[i].xcr == 0) {
4276             env->xcr0 = xcrs.xcrs[i].value;
4277             break;
4278         }
4279     }
4280     return 0;
4281 }
4282 
kvm_get_sregs(X86CPU * cpu)4283 static int kvm_get_sregs(X86CPU *cpu)
4284 {
4285     CPUX86State *env = &cpu->env;
4286     struct kvm_sregs sregs;
4287     int ret;
4288 
4289     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4290     if (ret < 0) {
4291         return ret;
4292     }
4293 
4294     /*
4295      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4296      * always preceded by KVM_GET_VCPU_EVENTS.
4297      */
4298 
4299     get_seg(&env->segs[R_CS], &sregs.cs);
4300     get_seg(&env->segs[R_DS], &sregs.ds);
4301     get_seg(&env->segs[R_ES], &sregs.es);
4302     get_seg(&env->segs[R_FS], &sregs.fs);
4303     get_seg(&env->segs[R_GS], &sregs.gs);
4304     get_seg(&env->segs[R_SS], &sregs.ss);
4305 
4306     get_seg(&env->tr, &sregs.tr);
4307     get_seg(&env->ldt, &sregs.ldt);
4308 
4309     env->idt.limit = sregs.idt.limit;
4310     env->idt.base = sregs.idt.base;
4311     env->gdt.limit = sregs.gdt.limit;
4312     env->gdt.base = sregs.gdt.base;
4313 
4314     env->cr[0] = sregs.cr0;
4315     env->cr[2] = sregs.cr2;
4316     env->cr[3] = sregs.cr3;
4317     env->cr[4] = sregs.cr4;
4318 
4319     env->efer = sregs.efer;
4320     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4321         env->cr[0] & CR0_PG_MASK) {
4322         env->efer |= MSR_EFER_LMA;
4323     }
4324 
4325     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4326     x86_update_hflags(env);
4327 
4328     return 0;
4329 }
4330 
kvm_get_sregs2(X86CPU * cpu)4331 static int kvm_get_sregs2(X86CPU *cpu)
4332 {
4333     CPUX86State *env = &cpu->env;
4334     struct kvm_sregs2 sregs;
4335     int i, ret;
4336 
4337     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4338     if (ret < 0) {
4339         return ret;
4340     }
4341 
4342     get_seg(&env->segs[R_CS], &sregs.cs);
4343     get_seg(&env->segs[R_DS], &sregs.ds);
4344     get_seg(&env->segs[R_ES], &sregs.es);
4345     get_seg(&env->segs[R_FS], &sregs.fs);
4346     get_seg(&env->segs[R_GS], &sregs.gs);
4347     get_seg(&env->segs[R_SS], &sregs.ss);
4348 
4349     get_seg(&env->tr, &sregs.tr);
4350     get_seg(&env->ldt, &sregs.ldt);
4351 
4352     env->idt.limit = sregs.idt.limit;
4353     env->idt.base = sregs.idt.base;
4354     env->gdt.limit = sregs.gdt.limit;
4355     env->gdt.base = sregs.gdt.base;
4356 
4357     env->cr[0] = sregs.cr0;
4358     env->cr[2] = sregs.cr2;
4359     env->cr[3] = sregs.cr3;
4360     env->cr[4] = sregs.cr4;
4361 
4362     env->efer = sregs.efer;
4363     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4364         env->cr[0] & CR0_PG_MASK) {
4365         env->efer |= MSR_EFER_LMA;
4366     }
4367 
4368     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4369 
4370     if (env->pdptrs_valid) {
4371         for (i = 0; i < 4; i++) {
4372             env->pdptrs[i] = sregs.pdptrs[i];
4373         }
4374     }
4375 
4376     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4377     x86_update_hflags(env);
4378 
4379     return 0;
4380 }
4381 
kvm_get_msrs(X86CPU * cpu)4382 static int kvm_get_msrs(X86CPU *cpu)
4383 {
4384     CPUX86State *env = &cpu->env;
4385     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4386     int ret, i;
4387     uint64_t mtrr_top_bits;
4388 
4389     kvm_msr_buf_reset(cpu);
4390 
4391     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4392     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4393     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4394     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4395     if (has_msr_star) {
4396         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4397     }
4398     if (has_msr_hsave_pa) {
4399         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4400     }
4401     if (has_msr_tsc_aux) {
4402         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4403     }
4404     if (has_msr_tsc_adjust) {
4405         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4406     }
4407     if (has_msr_tsc_deadline) {
4408         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4409     }
4410     if (has_msr_misc_enable) {
4411         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4412     }
4413     if (has_msr_smbase) {
4414         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4415     }
4416     if (has_msr_smi_count) {
4417         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4418     }
4419     if (has_msr_feature_control) {
4420         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4421     }
4422     if (has_msr_pkrs) {
4423         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4424     }
4425     if (has_msr_bndcfgs) {
4426         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4427     }
4428     if (has_msr_xss) {
4429         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4430     }
4431     if (has_msr_umwait) {
4432         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4433     }
4434     if (has_msr_spec_ctrl) {
4435         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4436     }
4437     if (has_tsc_scale_msr) {
4438         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4439     }
4440 
4441     if (has_msr_tsx_ctrl) {
4442         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4443     }
4444     if (has_msr_virt_ssbd) {
4445         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4446     }
4447     if (!env->tsc_valid) {
4448         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4449         env->tsc_valid = !runstate_is_running();
4450     }
4451     if (has_msr_hwcr) {
4452         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4453     }
4454 
4455 #ifdef TARGET_X86_64
4456     if (lm_capable_kernel) {
4457         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4458         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4459         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4460         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4461         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4462             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4463             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4464             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4465             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4466             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4467             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4468             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4469             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4470             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4471         }
4472     }
4473 #endif
4474     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4475         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4476         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4477     }
4478     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4479         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4480     }
4481     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4482         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4483     }
4484     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4485         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4486     }
4487     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4488         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4489     }
4490     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4491         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4492     }
4493     if (has_architectural_pmu_version > 0) {
4494         if (has_architectural_pmu_version > 1) {
4495             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4496             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4497             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4498             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4499         }
4500         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4501             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4502         }
4503         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4504             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4505             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4506         }
4507     }
4508 
4509     if (env->mcg_cap) {
4510         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4511         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4512         if (has_msr_mcg_ext_ctl) {
4513             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4514         }
4515         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4516             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4517         }
4518     }
4519 
4520     if (has_msr_hv_hypercall) {
4521         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4522         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4523     }
4524     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4525         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4526     }
4527     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4528         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4529     }
4530     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4531         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4532         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4533         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4534     }
4535     if (has_msr_hv_syndbg_options) {
4536         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4537     }
4538     if (has_msr_hv_crash) {
4539         int j;
4540 
4541         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4542             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4543         }
4544     }
4545     if (has_msr_hv_runtime) {
4546         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4547     }
4548     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4549         uint32_t msr;
4550 
4551         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4552         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4553         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4554         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4555             kvm_msr_entry_add(cpu, msr, 0);
4556         }
4557     }
4558     if (has_msr_hv_stimer) {
4559         uint32_t msr;
4560 
4561         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4562              msr++) {
4563             kvm_msr_entry_add(cpu, msr, 0);
4564         }
4565     }
4566     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4567         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4568         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4569         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4570         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4571         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4572         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4573         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4574         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4575         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4576         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4577         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4578         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4579         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4580             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4581             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4582         }
4583     }
4584 
4585     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4586         int addr_num =
4587             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4588 
4589         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4590         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4591         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4592         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4593         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4594         for (i = 0; i < addr_num; i++) {
4595             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4596         }
4597     }
4598 
4599     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4600         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4601         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4602         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4603         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4604     }
4605 
4606     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4607         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4608         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4609     }
4610 
4611     if (kvm_enabled() && cpu->enable_pmu &&
4612         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4613         uint64_t depth;
4614 
4615         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4616         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4617             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4618             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4619 
4620             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4621                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4622                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4623                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4624             }
4625         }
4626     }
4627 
4628     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4629     if (ret < 0) {
4630         return ret;
4631     }
4632 
4633     if (ret < cpu->kvm_msr_buf->nmsrs) {
4634         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4635         error_report("error: failed to get MSR 0x%" PRIx32,
4636                      (uint32_t)e->index);
4637     }
4638 
4639     assert(ret == cpu->kvm_msr_buf->nmsrs);
4640     /*
4641      * MTRR masks: Each mask consists of 5 parts
4642      * a  10..0: must be zero
4643      * b  11   : valid bit
4644      * c n-1.12: actual mask bits
4645      * d  51..n: reserved must be zero
4646      * e  63.52: reserved must be zero
4647      *
4648      * 'n' is the number of physical bits supported by the CPU and is
4649      * apparently always <= 52.   We know our 'n' but don't know what
4650      * the destinations 'n' is; it might be smaller, in which case
4651      * it masks (c) on loading. It might be larger, in which case
4652      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4653      * we're migrating to.
4654      */
4655 
4656     if (cpu->fill_mtrr_mask) {
4657         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4658         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4659         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4660     } else {
4661         mtrr_top_bits = 0;
4662     }
4663 
4664     for (i = 0; i < ret; i++) {
4665         uint32_t index = msrs[i].index;
4666         switch (index) {
4667         case MSR_IA32_SYSENTER_CS:
4668             env->sysenter_cs = msrs[i].data;
4669             break;
4670         case MSR_IA32_SYSENTER_ESP:
4671             env->sysenter_esp = msrs[i].data;
4672             break;
4673         case MSR_IA32_SYSENTER_EIP:
4674             env->sysenter_eip = msrs[i].data;
4675             break;
4676         case MSR_PAT:
4677             env->pat = msrs[i].data;
4678             break;
4679         case MSR_STAR:
4680             env->star = msrs[i].data;
4681             break;
4682 #ifdef TARGET_X86_64
4683         case MSR_CSTAR:
4684             env->cstar = msrs[i].data;
4685             break;
4686         case MSR_KERNELGSBASE:
4687             env->kernelgsbase = msrs[i].data;
4688             break;
4689         case MSR_FMASK:
4690             env->fmask = msrs[i].data;
4691             break;
4692         case MSR_LSTAR:
4693             env->lstar = msrs[i].data;
4694             break;
4695         case MSR_IA32_FRED_RSP0:
4696             env->fred_rsp0 = msrs[i].data;
4697             break;
4698         case MSR_IA32_FRED_RSP1:
4699             env->fred_rsp1 = msrs[i].data;
4700             break;
4701         case MSR_IA32_FRED_RSP2:
4702             env->fred_rsp2 = msrs[i].data;
4703             break;
4704         case MSR_IA32_FRED_RSP3:
4705             env->fred_rsp3 = msrs[i].data;
4706             break;
4707         case MSR_IA32_FRED_STKLVLS:
4708             env->fred_stklvls = msrs[i].data;
4709             break;
4710         case MSR_IA32_FRED_SSP1:
4711             env->fred_ssp1 = msrs[i].data;
4712             break;
4713         case MSR_IA32_FRED_SSP2:
4714             env->fred_ssp2 = msrs[i].data;
4715             break;
4716         case MSR_IA32_FRED_SSP3:
4717             env->fred_ssp3 = msrs[i].data;
4718             break;
4719         case MSR_IA32_FRED_CONFIG:
4720             env->fred_config = msrs[i].data;
4721             break;
4722 #endif
4723         case MSR_IA32_TSC:
4724             env->tsc = msrs[i].data;
4725             break;
4726         case MSR_TSC_AUX:
4727             env->tsc_aux = msrs[i].data;
4728             break;
4729         case MSR_TSC_ADJUST:
4730             env->tsc_adjust = msrs[i].data;
4731             break;
4732         case MSR_IA32_TSCDEADLINE:
4733             env->tsc_deadline = msrs[i].data;
4734             break;
4735         case MSR_VM_HSAVE_PA:
4736             env->vm_hsave = msrs[i].data;
4737             break;
4738         case MSR_KVM_SYSTEM_TIME:
4739             env->system_time_msr = msrs[i].data;
4740             break;
4741         case MSR_KVM_WALL_CLOCK:
4742             env->wall_clock_msr = msrs[i].data;
4743             break;
4744         case MSR_MCG_STATUS:
4745             env->mcg_status = msrs[i].data;
4746             break;
4747         case MSR_MCG_CTL:
4748             env->mcg_ctl = msrs[i].data;
4749             break;
4750         case MSR_MCG_EXT_CTL:
4751             env->mcg_ext_ctl = msrs[i].data;
4752             break;
4753         case MSR_IA32_MISC_ENABLE:
4754             env->msr_ia32_misc_enable = msrs[i].data;
4755             break;
4756         case MSR_IA32_SMBASE:
4757             env->smbase = msrs[i].data;
4758             break;
4759         case MSR_SMI_COUNT:
4760             env->msr_smi_count = msrs[i].data;
4761             break;
4762         case MSR_IA32_FEATURE_CONTROL:
4763             env->msr_ia32_feature_control = msrs[i].data;
4764             break;
4765         case MSR_IA32_BNDCFGS:
4766             env->msr_bndcfgs = msrs[i].data;
4767             break;
4768         case MSR_IA32_XSS:
4769             env->xss = msrs[i].data;
4770             break;
4771         case MSR_IA32_UMWAIT_CONTROL:
4772             env->umwait = msrs[i].data;
4773             break;
4774         case MSR_IA32_PKRS:
4775             env->pkrs = msrs[i].data;
4776             break;
4777         default:
4778             if (msrs[i].index >= MSR_MC0_CTL &&
4779                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4780                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4781             }
4782             break;
4783         case MSR_KVM_ASYNC_PF_EN:
4784             env->async_pf_en_msr = msrs[i].data;
4785             break;
4786         case MSR_KVM_ASYNC_PF_INT:
4787             env->async_pf_int_msr = msrs[i].data;
4788             break;
4789         case MSR_KVM_PV_EOI_EN:
4790             env->pv_eoi_en_msr = msrs[i].data;
4791             break;
4792         case MSR_KVM_STEAL_TIME:
4793             env->steal_time_msr = msrs[i].data;
4794             break;
4795         case MSR_KVM_POLL_CONTROL: {
4796             env->poll_control_msr = msrs[i].data;
4797             break;
4798         }
4799         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4800             env->msr_fixed_ctr_ctrl = msrs[i].data;
4801             break;
4802         case MSR_CORE_PERF_GLOBAL_CTRL:
4803             env->msr_global_ctrl = msrs[i].data;
4804             break;
4805         case MSR_CORE_PERF_GLOBAL_STATUS:
4806             env->msr_global_status = msrs[i].data;
4807             break;
4808         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4809             env->msr_global_ovf_ctrl = msrs[i].data;
4810             break;
4811         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4812             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4813             break;
4814         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4815             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4816             break;
4817         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4818             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4819             break;
4820         case HV_X64_MSR_HYPERCALL:
4821             env->msr_hv_hypercall = msrs[i].data;
4822             break;
4823         case HV_X64_MSR_GUEST_OS_ID:
4824             env->msr_hv_guest_os_id = msrs[i].data;
4825             break;
4826         case HV_X64_MSR_APIC_ASSIST_PAGE:
4827             env->msr_hv_vapic = msrs[i].data;
4828             break;
4829         case HV_X64_MSR_REFERENCE_TSC:
4830             env->msr_hv_tsc = msrs[i].data;
4831             break;
4832         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4833             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4834             break;
4835         case HV_X64_MSR_VP_RUNTIME:
4836             env->msr_hv_runtime = msrs[i].data;
4837             break;
4838         case HV_X64_MSR_SCONTROL:
4839             env->msr_hv_synic_control = msrs[i].data;
4840             break;
4841         case HV_X64_MSR_SIEFP:
4842             env->msr_hv_synic_evt_page = msrs[i].data;
4843             break;
4844         case HV_X64_MSR_SIMP:
4845             env->msr_hv_synic_msg_page = msrs[i].data;
4846             break;
4847         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4848             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4849             break;
4850         case HV_X64_MSR_STIMER0_CONFIG:
4851         case HV_X64_MSR_STIMER1_CONFIG:
4852         case HV_X64_MSR_STIMER2_CONFIG:
4853         case HV_X64_MSR_STIMER3_CONFIG:
4854             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4855                                 msrs[i].data;
4856             break;
4857         case HV_X64_MSR_STIMER0_COUNT:
4858         case HV_X64_MSR_STIMER1_COUNT:
4859         case HV_X64_MSR_STIMER2_COUNT:
4860         case HV_X64_MSR_STIMER3_COUNT:
4861             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4862                                 msrs[i].data;
4863             break;
4864         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4865             env->msr_hv_reenlightenment_control = msrs[i].data;
4866             break;
4867         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4868             env->msr_hv_tsc_emulation_control = msrs[i].data;
4869             break;
4870         case HV_X64_MSR_TSC_EMULATION_STATUS:
4871             env->msr_hv_tsc_emulation_status = msrs[i].data;
4872             break;
4873         case HV_X64_MSR_SYNDBG_OPTIONS:
4874             env->msr_hv_syndbg_options = msrs[i].data;
4875             break;
4876         case MSR_MTRRdefType:
4877             env->mtrr_deftype = msrs[i].data;
4878             break;
4879         case MSR_MTRRfix64K_00000:
4880             env->mtrr_fixed[0] = msrs[i].data;
4881             break;
4882         case MSR_MTRRfix16K_80000:
4883             env->mtrr_fixed[1] = msrs[i].data;
4884             break;
4885         case MSR_MTRRfix16K_A0000:
4886             env->mtrr_fixed[2] = msrs[i].data;
4887             break;
4888         case MSR_MTRRfix4K_C0000:
4889             env->mtrr_fixed[3] = msrs[i].data;
4890             break;
4891         case MSR_MTRRfix4K_C8000:
4892             env->mtrr_fixed[4] = msrs[i].data;
4893             break;
4894         case MSR_MTRRfix4K_D0000:
4895             env->mtrr_fixed[5] = msrs[i].data;
4896             break;
4897         case MSR_MTRRfix4K_D8000:
4898             env->mtrr_fixed[6] = msrs[i].data;
4899             break;
4900         case MSR_MTRRfix4K_E0000:
4901             env->mtrr_fixed[7] = msrs[i].data;
4902             break;
4903         case MSR_MTRRfix4K_E8000:
4904             env->mtrr_fixed[8] = msrs[i].data;
4905             break;
4906         case MSR_MTRRfix4K_F0000:
4907             env->mtrr_fixed[9] = msrs[i].data;
4908             break;
4909         case MSR_MTRRfix4K_F8000:
4910             env->mtrr_fixed[10] = msrs[i].data;
4911             break;
4912         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4913             if (index & 1) {
4914                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4915                                                                mtrr_top_bits;
4916             } else {
4917                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4918             }
4919             break;
4920         case MSR_IA32_SPEC_CTRL:
4921             env->spec_ctrl = msrs[i].data;
4922             break;
4923         case MSR_AMD64_TSC_RATIO:
4924             env->amd_tsc_scale_msr = msrs[i].data;
4925             break;
4926         case MSR_IA32_TSX_CTRL:
4927             env->tsx_ctrl = msrs[i].data;
4928             break;
4929         case MSR_VIRT_SSBD:
4930             env->virt_ssbd = msrs[i].data;
4931             break;
4932         case MSR_IA32_RTIT_CTL:
4933             env->msr_rtit_ctrl = msrs[i].data;
4934             break;
4935         case MSR_IA32_RTIT_STATUS:
4936             env->msr_rtit_status = msrs[i].data;
4937             break;
4938         case MSR_IA32_RTIT_OUTPUT_BASE:
4939             env->msr_rtit_output_base = msrs[i].data;
4940             break;
4941         case MSR_IA32_RTIT_OUTPUT_MASK:
4942             env->msr_rtit_output_mask = msrs[i].data;
4943             break;
4944         case MSR_IA32_RTIT_CR3_MATCH:
4945             env->msr_rtit_cr3_match = msrs[i].data;
4946             break;
4947         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4948             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4949             break;
4950         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4951             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4952                            msrs[i].data;
4953             break;
4954         case MSR_IA32_XFD:
4955             env->msr_xfd = msrs[i].data;
4956             break;
4957         case MSR_IA32_XFD_ERR:
4958             env->msr_xfd_err = msrs[i].data;
4959             break;
4960         case MSR_ARCH_LBR_CTL:
4961             env->msr_lbr_ctl = msrs[i].data;
4962             break;
4963         case MSR_ARCH_LBR_DEPTH:
4964             env->msr_lbr_depth = msrs[i].data;
4965             break;
4966         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4967             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4968             break;
4969         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4970             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4971             break;
4972         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4973             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4974             break;
4975         case MSR_K7_HWCR:
4976             env->msr_hwcr = msrs[i].data;
4977             break;
4978         }
4979     }
4980 
4981     return 0;
4982 }
4983 
kvm_put_mp_state(X86CPU * cpu)4984 static int kvm_put_mp_state(X86CPU *cpu)
4985 {
4986     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4987 
4988     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4989 }
4990 
kvm_get_mp_state(X86CPU * cpu)4991 static int kvm_get_mp_state(X86CPU *cpu)
4992 {
4993     CPUState *cs = CPU(cpu);
4994     CPUX86State *env = &cpu->env;
4995     struct kvm_mp_state mp_state;
4996     int ret;
4997 
4998     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4999     if (ret < 0) {
5000         return ret;
5001     }
5002     env->mp_state = mp_state.mp_state;
5003     if (kvm_irqchip_in_kernel()) {
5004         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
5005     }
5006     return 0;
5007 }
5008 
kvm_get_apic(X86CPU * cpu)5009 static int kvm_get_apic(X86CPU *cpu)
5010 {
5011     DeviceState *apic = cpu->apic_state;
5012     struct kvm_lapic_state kapic;
5013     int ret;
5014 
5015     if (apic && kvm_irqchip_in_kernel()) {
5016         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
5017         if (ret < 0) {
5018             return ret;
5019         }
5020 
5021         kvm_get_apic_state(apic, &kapic);
5022     }
5023     return 0;
5024 }
5025 
kvm_put_vcpu_events(X86CPU * cpu,int level)5026 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5027 {
5028     CPUState *cs = CPU(cpu);
5029     CPUX86State *env = &cpu->env;
5030     struct kvm_vcpu_events events = {};
5031 
5032     events.flags = 0;
5033 
5034     if (has_exception_payload) {
5035         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5036         events.exception.pending = env->exception_pending;
5037         events.exception_has_payload = env->exception_has_payload;
5038         events.exception_payload = env->exception_payload;
5039     }
5040     events.exception.nr = env->exception_nr;
5041     events.exception.injected = env->exception_injected;
5042     events.exception.has_error_code = env->has_error_code;
5043     events.exception.error_code = env->error_code;
5044 
5045     events.interrupt.injected = (env->interrupt_injected >= 0);
5046     events.interrupt.nr = env->interrupt_injected;
5047     events.interrupt.soft = env->soft_interrupt;
5048 
5049     events.nmi.injected = env->nmi_injected;
5050     events.nmi.pending = env->nmi_pending;
5051     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5052 
5053     events.sipi_vector = env->sipi_vector;
5054 
5055     if (has_msr_smbase) {
5056         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5057         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5058         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5059         if (kvm_irqchip_in_kernel()) {
5060             /* As soon as these are moved to the kernel, remove them
5061              * from cs->interrupt_request.
5062              */
5063             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5064             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5065             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5066         } else {
5067             /* Keep these in cs->interrupt_request.  */
5068             events.smi.pending = 0;
5069             events.smi.latched_init = 0;
5070         }
5071     }
5072 
5073     if (level >= KVM_PUT_RESET_STATE) {
5074         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5075         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5076             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5077         }
5078     }
5079 
5080     if (has_triple_fault_event) {
5081         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5082         events.triple_fault.pending = env->triple_fault_pending;
5083     }
5084 
5085     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5086 }
5087 
kvm_get_vcpu_events(X86CPU * cpu)5088 static int kvm_get_vcpu_events(X86CPU *cpu)
5089 {
5090     CPUX86State *env = &cpu->env;
5091     struct kvm_vcpu_events events;
5092     int ret;
5093 
5094     memset(&events, 0, sizeof(events));
5095     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5096     if (ret < 0) {
5097        return ret;
5098     }
5099 
5100     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5101         env->exception_pending = events.exception.pending;
5102         env->exception_has_payload = events.exception_has_payload;
5103         env->exception_payload = events.exception_payload;
5104     } else {
5105         env->exception_pending = 0;
5106         env->exception_has_payload = false;
5107     }
5108     env->exception_injected = events.exception.injected;
5109     env->exception_nr =
5110         (env->exception_pending || env->exception_injected) ?
5111         events.exception.nr : -1;
5112     env->has_error_code = events.exception.has_error_code;
5113     env->error_code = events.exception.error_code;
5114 
5115     env->interrupt_injected =
5116         events.interrupt.injected ? events.interrupt.nr : -1;
5117     env->soft_interrupt = events.interrupt.soft;
5118 
5119     env->nmi_injected = events.nmi.injected;
5120     env->nmi_pending = events.nmi.pending;
5121     if (events.nmi.masked) {
5122         env->hflags2 |= HF2_NMI_MASK;
5123     } else {
5124         env->hflags2 &= ~HF2_NMI_MASK;
5125     }
5126 
5127     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5128         if (events.smi.smm) {
5129             env->hflags |= HF_SMM_MASK;
5130         } else {
5131             env->hflags &= ~HF_SMM_MASK;
5132         }
5133         if (events.smi.pending) {
5134             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5135         } else {
5136             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5137         }
5138         if (events.smi.smm_inside_nmi) {
5139             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5140         } else {
5141             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5142         }
5143         if (events.smi.latched_init) {
5144             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5145         } else {
5146             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5147         }
5148     }
5149 
5150     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5151         env->triple_fault_pending = events.triple_fault.pending;
5152     }
5153 
5154     env->sipi_vector = events.sipi_vector;
5155 
5156     return 0;
5157 }
5158 
kvm_put_debugregs(X86CPU * cpu)5159 static int kvm_put_debugregs(X86CPU *cpu)
5160 {
5161     CPUX86State *env = &cpu->env;
5162     struct kvm_debugregs dbgregs;
5163     int i;
5164 
5165     memset(&dbgregs, 0, sizeof(dbgregs));
5166     for (i = 0; i < 4; i++) {
5167         dbgregs.db[i] = env->dr[i];
5168     }
5169     dbgregs.dr6 = env->dr[6];
5170     dbgregs.dr7 = env->dr[7];
5171     dbgregs.flags = 0;
5172 
5173     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5174 }
5175 
kvm_get_debugregs(X86CPU * cpu)5176 static int kvm_get_debugregs(X86CPU *cpu)
5177 {
5178     CPUX86State *env = &cpu->env;
5179     struct kvm_debugregs dbgregs;
5180     int i, ret;
5181 
5182     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5183     if (ret < 0) {
5184         return ret;
5185     }
5186     for (i = 0; i < 4; i++) {
5187         env->dr[i] = dbgregs.db[i];
5188     }
5189     env->dr[4] = env->dr[6] = dbgregs.dr6;
5190     env->dr[5] = env->dr[7] = dbgregs.dr7;
5191 
5192     return 0;
5193 }
5194 
kvm_put_nested_state(X86CPU * cpu)5195 static int kvm_put_nested_state(X86CPU *cpu)
5196 {
5197     CPUX86State *env = &cpu->env;
5198     int max_nested_state_len = kvm_max_nested_state_length();
5199 
5200     if (!env->nested_state) {
5201         return 0;
5202     }
5203 
5204     /*
5205      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5206      */
5207     if (env->hflags & HF_GUEST_MASK) {
5208         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5209     } else {
5210         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5211     }
5212 
5213     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5214     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5215         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5216     } else {
5217         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5218     }
5219 
5220     assert(env->nested_state->size <= max_nested_state_len);
5221     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5222 }
5223 
kvm_get_nested_state(X86CPU * cpu)5224 static int kvm_get_nested_state(X86CPU *cpu)
5225 {
5226     CPUX86State *env = &cpu->env;
5227     int max_nested_state_len = kvm_max_nested_state_length();
5228     int ret;
5229 
5230     if (!env->nested_state) {
5231         return 0;
5232     }
5233 
5234     /*
5235      * It is possible that migration restored a smaller size into
5236      * nested_state->hdr.size than what our kernel support.
5237      * We preserve migration origin nested_state->hdr.size for
5238      * call to KVM_SET_NESTED_STATE but wish that our next call
5239      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5240      */
5241     env->nested_state->size = max_nested_state_len;
5242 
5243     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5244     if (ret < 0) {
5245         return ret;
5246     }
5247 
5248     /*
5249      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5250      */
5251     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5252         env->hflags |= HF_GUEST_MASK;
5253     } else {
5254         env->hflags &= ~HF_GUEST_MASK;
5255     }
5256 
5257     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5258     if (cpu_has_svm(env)) {
5259         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5260             env->hflags2 |= HF2_GIF_MASK;
5261         } else {
5262             env->hflags2 &= ~HF2_GIF_MASK;
5263         }
5264     }
5265 
5266     return ret;
5267 }
5268 
kvm_arch_put_registers(CPUState * cpu,int level,Error ** errp)5269 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5270 {
5271     X86CPU *x86_cpu = X86_CPU(cpu);
5272     int ret;
5273 
5274     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5275 
5276     /*
5277      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5278      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5279      * precede kvm_put_nested_state() when 'real' nested state is set.
5280      */
5281     if (level >= KVM_PUT_RESET_STATE) {
5282         ret = kvm_put_msr_feature_control(x86_cpu);
5283         if (ret < 0) {
5284             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5285             return ret;
5286         }
5287     }
5288 
5289     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5290     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5291     if (ret < 0) {
5292         error_setg_errno(errp, -ret, "Failed to set special registers");
5293         return ret;
5294     }
5295 
5296     if (level >= KVM_PUT_RESET_STATE) {
5297         ret = kvm_put_nested_state(x86_cpu);
5298         if (ret < 0) {
5299             error_setg_errno(errp, -ret, "Failed to set nested state");
5300             return ret;
5301         }
5302     }
5303 
5304     if (level == KVM_PUT_FULL_STATE) {
5305         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5306          * because TSC frequency mismatch shouldn't abort migration,
5307          * unless the user explicitly asked for a more strict TSC
5308          * setting (e.g. using an explicit "tsc-freq" option).
5309          */
5310         kvm_arch_set_tsc_khz(cpu);
5311     }
5312 
5313 #ifdef CONFIG_XEN_EMU
5314     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5315         ret = kvm_put_xen_state(cpu);
5316         if (ret < 0) {
5317             error_setg_errno(errp, -ret, "Failed to set Xen state");
5318             return ret;
5319         }
5320     }
5321 #endif
5322 
5323     ret = kvm_getput_regs(x86_cpu, 1);
5324     if (ret < 0) {
5325         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5326         return ret;
5327     }
5328     ret = kvm_put_xsave(x86_cpu);
5329     if (ret < 0) {
5330         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5331         return ret;
5332     }
5333     ret = kvm_put_xcrs(x86_cpu);
5334     if (ret < 0) {
5335         error_setg_errno(errp, -ret, "Failed to set XCRs");
5336         return ret;
5337     }
5338     ret = kvm_put_msrs(x86_cpu, level);
5339     if (ret < 0) {
5340         error_setg_errno(errp, -ret, "Failed to set MSRs");
5341         return ret;
5342     }
5343     ret = kvm_put_vcpu_events(x86_cpu, level);
5344     if (ret < 0) {
5345         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5346         return ret;
5347     }
5348     if (level >= KVM_PUT_RESET_STATE) {
5349         ret = kvm_put_mp_state(x86_cpu);
5350         if (ret < 0) {
5351             error_setg_errno(errp, -ret, "Failed to set MP state");
5352             return ret;
5353         }
5354     }
5355 
5356     ret = kvm_put_tscdeadline_msr(x86_cpu);
5357     if (ret < 0) {
5358         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5359         return ret;
5360     }
5361     ret = kvm_put_debugregs(x86_cpu);
5362     if (ret < 0) {
5363         error_setg_errno(errp, -ret, "Failed to set debug registers");
5364         return ret;
5365     }
5366     return 0;
5367 }
5368 
kvm_arch_get_registers(CPUState * cs,Error ** errp)5369 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5370 {
5371     X86CPU *cpu = X86_CPU(cs);
5372     int ret;
5373 
5374     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5375 
5376     ret = kvm_get_vcpu_events(cpu);
5377     if (ret < 0) {
5378         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5379         goto out;
5380     }
5381     /*
5382      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5383      * KVM_GET_REGS and KVM_GET_SREGS.
5384      */
5385     ret = kvm_get_mp_state(cpu);
5386     if (ret < 0) {
5387         error_setg_errno(errp, -ret, "Failed to get MP state");
5388         goto out;
5389     }
5390     ret = kvm_getput_regs(cpu, 0);
5391     if (ret < 0) {
5392         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5393         goto out;
5394     }
5395     ret = kvm_get_xsave(cpu);
5396     if (ret < 0) {
5397         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5398         goto out;
5399     }
5400     ret = kvm_get_xcrs(cpu);
5401     if (ret < 0) {
5402         error_setg_errno(errp, -ret, "Failed to get XCRs");
5403         goto out;
5404     }
5405     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5406     if (ret < 0) {
5407         error_setg_errno(errp, -ret, "Failed to get special registers");
5408         goto out;
5409     }
5410     ret = kvm_get_msrs(cpu);
5411     if (ret < 0) {
5412         error_setg_errno(errp, -ret, "Failed to get MSRs");
5413         goto out;
5414     }
5415     ret = kvm_get_apic(cpu);
5416     if (ret < 0) {
5417         error_setg_errno(errp, -ret, "Failed to get APIC");
5418         goto out;
5419     }
5420     ret = kvm_get_debugregs(cpu);
5421     if (ret < 0) {
5422         error_setg_errno(errp, -ret, "Failed to get debug registers");
5423         goto out;
5424     }
5425     ret = kvm_get_nested_state(cpu);
5426     if (ret < 0) {
5427         error_setg_errno(errp, -ret, "Failed to get nested state");
5428         goto out;
5429     }
5430 #ifdef CONFIG_XEN_EMU
5431     if (xen_mode == XEN_EMULATE) {
5432         ret = kvm_get_xen_state(cs);
5433         if (ret < 0) {
5434             error_setg_errno(errp, -ret, "Failed to get Xen state");
5435             goto out;
5436         }
5437     }
5438 #endif
5439     ret = 0;
5440  out:
5441     cpu_sync_bndcs_hflags(&cpu->env);
5442     return ret;
5443 }
5444 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)5445 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5446 {
5447     X86CPU *x86_cpu = X86_CPU(cpu);
5448     CPUX86State *env = &x86_cpu->env;
5449     int ret;
5450 
5451     /* Inject NMI */
5452     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5453         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5454             bql_lock();
5455             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5456             bql_unlock();
5457             DPRINTF("injected NMI\n");
5458             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5459             if (ret < 0) {
5460                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5461                         strerror(-ret));
5462             }
5463         }
5464         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5465             bql_lock();
5466             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5467             bql_unlock();
5468             DPRINTF("injected SMI\n");
5469             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5470             if (ret < 0) {
5471                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5472                         strerror(-ret));
5473             }
5474         }
5475     }
5476 
5477     if (!kvm_pic_in_kernel()) {
5478         bql_lock();
5479     }
5480 
5481     /* Force the VCPU out of its inner loop to process any INIT requests
5482      * or (for userspace APIC, but it is cheap to combine the checks here)
5483      * pending TPR access reports.
5484      */
5485     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5486         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5487             !(env->hflags & HF_SMM_MASK)) {
5488             cpu->exit_request = 1;
5489         }
5490         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5491             cpu->exit_request = 1;
5492         }
5493     }
5494 
5495     if (!kvm_pic_in_kernel()) {
5496         /* Try to inject an interrupt if the guest can accept it */
5497         if (run->ready_for_interrupt_injection &&
5498             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5499             (env->eflags & IF_MASK)) {
5500             int irq;
5501 
5502             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5503             irq = cpu_get_pic_interrupt(env);
5504             if (irq >= 0) {
5505                 struct kvm_interrupt intr;
5506 
5507                 intr.irq = irq;
5508                 DPRINTF("injected interrupt %d\n", irq);
5509                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5510                 if (ret < 0) {
5511                     fprintf(stderr,
5512                             "KVM: injection failed, interrupt lost (%s)\n",
5513                             strerror(-ret));
5514                 }
5515             }
5516         }
5517 
5518         /* If we have an interrupt but the guest is not ready to receive an
5519          * interrupt, request an interrupt window exit.  This will
5520          * cause a return to userspace as soon as the guest is ready to
5521          * receive interrupts. */
5522         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5523             run->request_interrupt_window = 1;
5524         } else {
5525             run->request_interrupt_window = 0;
5526         }
5527 
5528         DPRINTF("setting tpr\n");
5529         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5530 
5531         bql_unlock();
5532     }
5533 }
5534 
kvm_rate_limit_on_bus_lock(void)5535 static void kvm_rate_limit_on_bus_lock(void)
5536 {
5537     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5538 
5539     if (delay_ns) {
5540         g_usleep(delay_ns / SCALE_US);
5541     }
5542 }
5543 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)5544 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5545 {
5546     X86CPU *x86_cpu = X86_CPU(cpu);
5547     CPUX86State *env = &x86_cpu->env;
5548 
5549     if (run->flags & KVM_RUN_X86_SMM) {
5550         env->hflags |= HF_SMM_MASK;
5551     } else {
5552         env->hflags &= ~HF_SMM_MASK;
5553     }
5554     if (run->if_flag) {
5555         env->eflags |= IF_MASK;
5556     } else {
5557         env->eflags &= ~IF_MASK;
5558     }
5559     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5560         kvm_rate_limit_on_bus_lock();
5561     }
5562 
5563 #ifdef CONFIG_XEN_EMU
5564     /*
5565      * If the callback is asserted as a GSI (or PCI INTx) then check if
5566      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5567      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5568      * EOI and only resample then, exactly how the VFIO eventfd pairs
5569      * are designed to work for level triggered interrupts.
5570      */
5571     if (x86_cpu->env.xen_callback_asserted) {
5572         kvm_xen_maybe_deassert_callback(cpu);
5573     }
5574 #endif
5575 
5576     /* We need to protect the apic state against concurrent accesses from
5577      * different threads in case the userspace irqchip is used. */
5578     if (!kvm_irqchip_in_kernel()) {
5579         bql_lock();
5580     }
5581     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5582     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5583     if (!kvm_irqchip_in_kernel()) {
5584         bql_unlock();
5585     }
5586     return cpu_get_mem_attrs(env);
5587 }
5588 
kvm_arch_process_async_events(CPUState * cs)5589 int kvm_arch_process_async_events(CPUState *cs)
5590 {
5591     X86CPU *cpu = X86_CPU(cs);
5592     CPUX86State *env = &cpu->env;
5593 
5594     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5595         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5596         assert(env->mcg_cap);
5597 
5598         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5599 
5600         kvm_cpu_synchronize_state(cs);
5601 
5602         if (env->exception_nr == EXCP08_DBLE) {
5603             /* this means triple fault */
5604             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5605             cs->exit_request = 1;
5606             return 0;
5607         }
5608         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5609         env->has_error_code = 0;
5610 
5611         cs->halted = 0;
5612         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5613             env->mp_state = KVM_MP_STATE_RUNNABLE;
5614         }
5615     }
5616 
5617     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5618         !(env->hflags & HF_SMM_MASK)) {
5619         kvm_cpu_synchronize_state(cs);
5620         do_cpu_init(cpu);
5621     }
5622 
5623     if (kvm_irqchip_in_kernel()) {
5624         return 0;
5625     }
5626 
5627     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5628         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5629         apic_poll_irq(cpu->apic_state);
5630     }
5631     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5632          (env->eflags & IF_MASK)) ||
5633         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5634         cs->halted = 0;
5635     }
5636     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5637         kvm_cpu_synchronize_state(cs);
5638         do_cpu_sipi(cpu);
5639     }
5640     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5641         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5642         kvm_cpu_synchronize_state(cs);
5643         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5644                                       env->tpr_access_type);
5645     }
5646 
5647     return cs->halted;
5648 }
5649 
kvm_handle_halt(X86CPU * cpu)5650 static int kvm_handle_halt(X86CPU *cpu)
5651 {
5652     CPUState *cs = CPU(cpu);
5653     CPUX86State *env = &cpu->env;
5654 
5655     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5656           (env->eflags & IF_MASK)) &&
5657         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5658         cs->halted = 1;
5659         return EXCP_HLT;
5660     }
5661 
5662     return 0;
5663 }
5664 
kvm_handle_tpr_access(X86CPU * cpu)5665 static int kvm_handle_tpr_access(X86CPU *cpu)
5666 {
5667     CPUState *cs = CPU(cpu);
5668     struct kvm_run *run = cs->kvm_run;
5669 
5670     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5671                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5672                                                            : TPR_ACCESS_READ);
5673     return 1;
5674 }
5675 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5676 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5677 {
5678     static const uint8_t int3 = 0xcc;
5679 
5680     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5681         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5682         return -EINVAL;
5683     }
5684     return 0;
5685 }
5686 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)5687 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5688 {
5689     uint8_t int3;
5690 
5691     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5692         return -EINVAL;
5693     }
5694     if (int3 != 0xcc) {
5695         return 0;
5696     }
5697     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5698         return -EINVAL;
5699     }
5700     return 0;
5701 }
5702 
5703 static struct {
5704     target_ulong addr;
5705     int len;
5706     int type;
5707 } hw_breakpoint[4];
5708 
5709 static int nb_hw_breakpoint;
5710 
find_hw_breakpoint(target_ulong addr,int len,int type)5711 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5712 {
5713     int n;
5714 
5715     for (n = 0; n < nb_hw_breakpoint; n++) {
5716         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5717             (hw_breakpoint[n].len == len || len == -1)) {
5718             return n;
5719         }
5720     }
5721     return -1;
5722 }
5723 
kvm_arch_insert_hw_breakpoint(vaddr addr,vaddr len,int type)5724 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5725 {
5726     switch (type) {
5727     case GDB_BREAKPOINT_HW:
5728         len = 1;
5729         break;
5730     case GDB_WATCHPOINT_WRITE:
5731     case GDB_WATCHPOINT_ACCESS:
5732         switch (len) {
5733         case 1:
5734             break;
5735         case 2:
5736         case 4:
5737         case 8:
5738             if (addr & (len - 1)) {
5739                 return -EINVAL;
5740             }
5741             break;
5742         default:
5743             return -EINVAL;
5744         }
5745         break;
5746     default:
5747         return -ENOSYS;
5748     }
5749 
5750     if (nb_hw_breakpoint == 4) {
5751         return -ENOBUFS;
5752     }
5753     if (find_hw_breakpoint(addr, len, type) >= 0) {
5754         return -EEXIST;
5755     }
5756     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5757     hw_breakpoint[nb_hw_breakpoint].len = len;
5758     hw_breakpoint[nb_hw_breakpoint].type = type;
5759     nb_hw_breakpoint++;
5760 
5761     return 0;
5762 }
5763 
kvm_arch_remove_hw_breakpoint(vaddr addr,vaddr len,int type)5764 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5765 {
5766     int n;
5767 
5768     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5769     if (n < 0) {
5770         return -ENOENT;
5771     }
5772     nb_hw_breakpoint--;
5773     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5774 
5775     return 0;
5776 }
5777 
kvm_arch_remove_all_hw_breakpoints(void)5778 void kvm_arch_remove_all_hw_breakpoints(void)
5779 {
5780     nb_hw_breakpoint = 0;
5781 }
5782 
5783 static CPUWatchpoint hw_watchpoint;
5784 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)5785 static int kvm_handle_debug(X86CPU *cpu,
5786                             struct kvm_debug_exit_arch *arch_info)
5787 {
5788     CPUState *cs = CPU(cpu);
5789     CPUX86State *env = &cpu->env;
5790     int ret = 0;
5791     int n;
5792 
5793     if (arch_info->exception == EXCP01_DB) {
5794         if (arch_info->dr6 & DR6_BS) {
5795             if (cs->singlestep_enabled) {
5796                 ret = EXCP_DEBUG;
5797             }
5798         } else {
5799             for (n = 0; n < 4; n++) {
5800                 if (arch_info->dr6 & (1 << n)) {
5801                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5802                     case 0x0:
5803                         ret = EXCP_DEBUG;
5804                         break;
5805                     case 0x1:
5806                         ret = EXCP_DEBUG;
5807                         cs->watchpoint_hit = &hw_watchpoint;
5808                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5809                         hw_watchpoint.flags = BP_MEM_WRITE;
5810                         break;
5811                     case 0x3:
5812                         ret = EXCP_DEBUG;
5813                         cs->watchpoint_hit = &hw_watchpoint;
5814                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5815                         hw_watchpoint.flags = BP_MEM_ACCESS;
5816                         break;
5817                     }
5818                 }
5819             }
5820         }
5821     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5822         ret = EXCP_DEBUG;
5823     }
5824     if (ret == 0) {
5825         cpu_synchronize_state(cs);
5826         assert(env->exception_nr == -1);
5827 
5828         /* pass to guest */
5829         kvm_queue_exception(env, arch_info->exception,
5830                             arch_info->exception == EXCP01_DB,
5831                             arch_info->dr6);
5832         env->has_error_code = 0;
5833     }
5834 
5835     return ret;
5836 }
5837 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)5838 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5839 {
5840     const uint8_t type_code[] = {
5841         [GDB_BREAKPOINT_HW] = 0x0,
5842         [GDB_WATCHPOINT_WRITE] = 0x1,
5843         [GDB_WATCHPOINT_ACCESS] = 0x3
5844     };
5845     const uint8_t len_code[] = {
5846         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5847     };
5848     int n;
5849 
5850     if (kvm_sw_breakpoints_active(cpu)) {
5851         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5852     }
5853     if (nb_hw_breakpoint > 0) {
5854         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5855         dbg->arch.debugreg[7] = 0x0600;
5856         for (n = 0; n < nb_hw_breakpoint; n++) {
5857             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5858             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5859                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5860                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5861         }
5862     }
5863 }
5864 
kvm_install_msr_filters(KVMState * s)5865 static int kvm_install_msr_filters(KVMState *s)
5866 {
5867     uint64_t zero = 0;
5868     struct kvm_msr_filter filter = {
5869         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5870     };
5871     int i, j = 0;
5872 
5873     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5874     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5875         KVMMSRHandlers *handler = &msr_handlers[i];
5876         if (handler->msr) {
5877             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5878 
5879             *range = (struct kvm_msr_filter_range) {
5880                 .flags = 0,
5881                 .nmsrs = 1,
5882                 .base = handler->msr,
5883                 .bitmap = (__u8 *)&zero,
5884             };
5885 
5886             if (handler->rdmsr) {
5887                 range->flags |= KVM_MSR_FILTER_READ;
5888             }
5889 
5890             if (handler->wrmsr) {
5891                 range->flags |= KVM_MSR_FILTER_WRITE;
5892             }
5893         }
5894     }
5895 
5896     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5897 }
5898 
kvm_filter_msr(KVMState * s,uint32_t msr,QEMURDMSRHandler * rdmsr,QEMUWRMSRHandler * wrmsr)5899 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5900                           QEMUWRMSRHandler *wrmsr)
5901 {
5902     int i, ret;
5903 
5904     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5905         if (!msr_handlers[i].msr) {
5906             msr_handlers[i] = (KVMMSRHandlers) {
5907                 .msr = msr,
5908                 .rdmsr = rdmsr,
5909                 .wrmsr = wrmsr,
5910             };
5911 
5912             ret = kvm_install_msr_filters(s);
5913             if (ret) {
5914                 msr_handlers[i] = (KVMMSRHandlers) { };
5915                 return ret;
5916             }
5917 
5918             return 0;
5919         }
5920     }
5921 
5922     return -EINVAL;
5923 }
5924 
kvm_handle_rdmsr(X86CPU * cpu,struct kvm_run * run)5925 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5926 {
5927     int i;
5928     bool r;
5929 
5930     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5931         KVMMSRHandlers *handler = &msr_handlers[i];
5932         if (run->msr.index == handler->msr) {
5933             if (handler->rdmsr) {
5934                 r = handler->rdmsr(cpu, handler->msr,
5935                                    (uint64_t *)&run->msr.data);
5936                 run->msr.error = r ? 0 : 1;
5937                 return 0;
5938             }
5939         }
5940     }
5941 
5942     g_assert_not_reached();
5943 }
5944 
kvm_handle_wrmsr(X86CPU * cpu,struct kvm_run * run)5945 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5946 {
5947     int i;
5948     bool r;
5949 
5950     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5951         KVMMSRHandlers *handler = &msr_handlers[i];
5952         if (run->msr.index == handler->msr) {
5953             if (handler->wrmsr) {
5954                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5955                 run->msr.error = r ? 0 : 1;
5956                 return 0;
5957             }
5958         }
5959     }
5960 
5961     g_assert_not_reached();
5962 }
5963 
5964 static bool has_sgx_provisioning;
5965 
__kvm_enable_sgx_provisioning(KVMState * s)5966 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5967 {
5968     int fd, ret;
5969 
5970     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5971         return false;
5972     }
5973 
5974     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5975     if (fd < 0) {
5976         return false;
5977     }
5978 
5979     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5980     if (ret) {
5981         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5982         exit(1);
5983     }
5984     close(fd);
5985     return true;
5986 }
5987 
kvm_enable_sgx_provisioning(KVMState * s)5988 bool kvm_enable_sgx_provisioning(KVMState *s)
5989 {
5990     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5991 }
5992 
host_supports_vmx(void)5993 static bool host_supports_vmx(void)
5994 {
5995     uint32_t ecx, unused;
5996 
5997     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5998     return ecx & CPUID_EXT_VMX;
5999 }
6000 
6001 /*
6002  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
6003  * to service guest-initiated memory attribute update requests so that
6004  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
6005  * backed by the private memory pool provided by guest_memfd, and as such
6006  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
6007  *
6008  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
6009  * migration, are not implemented here currently.
6010  *
6011  * For the guest_memfd use-case, these exits will generally be synthesized
6012  * by KVM based on platform-specific hypercalls, like GHCB requests in the
6013  * case of SEV-SNP, and not issued directly within the guest though the
6014  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
6015  * not actually advertised to guests via the KVM CPUID feature bit, as
6016  * opposed to SEV live migration where it would be. Since it is unlikely the
6017  * SEV live migration use-case would be useful for guest-memfd backed guests,
6018  * because private/shared page tracking is already provided through other
6019  * means, these 2 use-cases should be treated as being mutually-exclusive.
6020  */
kvm_handle_hc_map_gpa_range(X86CPU * cpu,struct kvm_run * run)6021 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run)
6022 {
6023     struct kvm_pre_fault_memory mem;
6024     uint64_t gpa, size, attributes;
6025     int ret;
6026 
6027     if (!machine_require_guest_memfd(current_machine))
6028         return -EINVAL;
6029 
6030     gpa = run->hypercall.args[0];
6031     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6032     attributes = run->hypercall.args[2];
6033 
6034     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6035 
6036     ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6037     if (ret || !kvm_pre_fault_memory_supported) {
6038         return ret;
6039     }
6040 
6041     /*
6042      * Opportunistically pre-fault memory in. Failures are ignored so that any
6043      * errors in faulting in the memory will get captured in KVM page fault
6044      * path when the guest first accesses the page.
6045      */
6046     memset(&mem, 0, sizeof(mem));
6047     mem.gpa = gpa;
6048     mem.size = size;
6049     while (mem.size) {
6050         if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) {
6051             break;
6052         }
6053     }
6054 
6055     return 0;
6056 }
6057 
kvm_handle_hypercall(X86CPU * cpu,struct kvm_run * run)6058 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run)
6059 {
6060     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6061         return kvm_handle_hc_map_gpa_range(cpu, run);
6062 
6063     return -EINVAL;
6064 }
6065 
6066 #define VMX_INVALID_GUEST_STATE 0x80000021
6067 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)6068 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6069 {
6070     X86CPU *cpu = X86_CPU(cs);
6071     uint64_t code;
6072     int ret;
6073     bool ctx_invalid;
6074     KVMState *state;
6075 
6076     switch (run->exit_reason) {
6077     case KVM_EXIT_HLT:
6078         DPRINTF("handle_hlt\n");
6079         bql_lock();
6080         ret = kvm_handle_halt(cpu);
6081         bql_unlock();
6082         break;
6083     case KVM_EXIT_SET_TPR:
6084         ret = 0;
6085         break;
6086     case KVM_EXIT_TPR_ACCESS:
6087         bql_lock();
6088         ret = kvm_handle_tpr_access(cpu);
6089         bql_unlock();
6090         break;
6091     case KVM_EXIT_FAIL_ENTRY:
6092         code = run->fail_entry.hardware_entry_failure_reason;
6093         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6094                 code);
6095         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6096             fprintf(stderr,
6097                     "\nIf you're running a guest on an Intel machine without "
6098                         "unrestricted mode\n"
6099                     "support, the failure can be most likely due to the guest "
6100                         "entering an invalid\n"
6101                     "state for Intel VT. For example, the guest maybe running "
6102                         "in big real mode\n"
6103                     "which is not supported on less recent Intel processors."
6104                         "\n\n");
6105         }
6106         ret = -1;
6107         break;
6108     case KVM_EXIT_EXCEPTION:
6109         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6110                 run->ex.exception, run->ex.error_code);
6111         ret = -1;
6112         break;
6113     case KVM_EXIT_DEBUG:
6114         DPRINTF("kvm_exit_debug\n");
6115         bql_lock();
6116         ret = kvm_handle_debug(cpu, &run->debug.arch);
6117         bql_unlock();
6118         break;
6119     case KVM_EXIT_HYPERV:
6120         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6121         break;
6122     case KVM_EXIT_IOAPIC_EOI:
6123         ioapic_eoi_broadcast(run->eoi.vector);
6124         ret = 0;
6125         break;
6126     case KVM_EXIT_X86_BUS_LOCK:
6127         /* already handled in kvm_arch_post_run */
6128         ret = 0;
6129         break;
6130     case KVM_EXIT_NOTIFY:
6131         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6132         state = KVM_STATE(current_accel());
6133         if (ctx_invalid ||
6134             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6135             warn_report("KVM internal error: Encountered a notify exit "
6136                         "with invalid context in guest.");
6137             ret = -1;
6138         } else {
6139             warn_report_once("KVM: Encountered a notify exit with valid "
6140                              "context in guest. "
6141                              "The guest could be misbehaving.");
6142             ret = 0;
6143         }
6144         break;
6145     case KVM_EXIT_X86_RDMSR:
6146         /* We only enable MSR filtering, any other exit is bogus */
6147         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6148         ret = kvm_handle_rdmsr(cpu, run);
6149         break;
6150     case KVM_EXIT_X86_WRMSR:
6151         /* We only enable MSR filtering, any other exit is bogus */
6152         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6153         ret = kvm_handle_wrmsr(cpu, run);
6154         break;
6155 #ifdef CONFIG_XEN_EMU
6156     case KVM_EXIT_XEN:
6157         ret = kvm_xen_handle_exit(cpu, &run->xen);
6158         break;
6159 #endif
6160     case KVM_EXIT_HYPERCALL:
6161         ret = kvm_handle_hypercall(cpu, run);
6162         break;
6163     case KVM_EXIT_SYSTEM_EVENT:
6164         switch (run->system_event.type) {
6165         case KVM_SYSTEM_EVENT_TDX_FATAL:
6166             ret = tdx_handle_report_fatal_error(cpu, run);
6167             break;
6168         default:
6169             ret = -1;
6170             break;
6171         }
6172         break;
6173     default:
6174         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6175         ret = -1;
6176         break;
6177     }
6178 
6179     return ret;
6180 }
6181 
kvm_arch_stop_on_emulation_error(CPUState * cs)6182 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6183 {
6184     X86CPU *cpu = X86_CPU(cs);
6185     CPUX86State *env = &cpu->env;
6186 
6187     kvm_cpu_synchronize_state(cs);
6188     return !(env->cr[0] & CR0_PE_MASK) ||
6189            ((env->segs[R_CS].selector  & 3) != 3);
6190 }
6191 
kvm_arch_init_irq_routing(KVMState * s)6192 void kvm_arch_init_irq_routing(KVMState *s)
6193 {
6194     /* We know at this point that we're using the in-kernel
6195      * irqchip, so we can use irqfds, and on x86 we know
6196      * we can use msi via irqfd and GSI routing.
6197      */
6198     kvm_msi_via_irqfd_allowed = true;
6199     kvm_gsi_routing_allowed = true;
6200 
6201     if (kvm_irqchip_is_split()) {
6202         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6203         int i;
6204 
6205         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6206            MSI routes for signaling interrupts to the local apics. */
6207         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6208             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6209                 error_report("Could not enable split IRQ mode.");
6210                 exit(1);
6211             }
6212         }
6213         kvm_irqchip_commit_route_changes(&c);
6214     }
6215 }
6216 
kvm_arch_irqchip_create(KVMState * s)6217 int kvm_arch_irqchip_create(KVMState *s)
6218 {
6219     int ret;
6220     if (kvm_kernel_irqchip_split()) {
6221         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6222         if (ret) {
6223             error_report("Could not enable split irqchip mode: %s",
6224                          strerror(-ret));
6225             exit(1);
6226         } else {
6227             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6228             kvm_split_irqchip = true;
6229             return 1;
6230         }
6231     } else {
6232         return 0;
6233     }
6234 }
6235 
kvm_swizzle_msi_ext_dest_id(uint64_t address)6236 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6237 {
6238     CPUX86State *env;
6239     uint64_t ext_id;
6240 
6241     if (!first_cpu) {
6242         return address;
6243     }
6244     env = &X86_CPU(first_cpu)->env;
6245     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6246         return address;
6247     }
6248 
6249     /*
6250      * If the remappable format bit is set, or the upper bits are
6251      * already set in address_hi, or the low extended bits aren't
6252      * there anyway, do nothing.
6253      */
6254     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6255     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6256         return address;
6257     }
6258 
6259     address &= ~ext_id;
6260     address |= ext_id << 35;
6261     return address;
6262 }
6263 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)6264 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6265                              uint64_t address, uint32_t data, PCIDevice *dev)
6266 {
6267     X86IOMMUState *iommu = x86_iommu_get_default();
6268 
6269     if (iommu) {
6270         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6271 
6272         if (class->int_remap) {
6273             int ret;
6274             MSIMessage src, dst;
6275 
6276             src.address = route->u.msi.address_hi;
6277             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6278             src.address |= route->u.msi.address_lo;
6279             src.data = route->u.msi.data;
6280 
6281             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6282                                    pci_requester_id(dev) :      \
6283                                    X86_IOMMU_SID_INVALID);
6284             if (ret) {
6285                 trace_kvm_x86_fixup_msi_error(route->gsi);
6286                 return 1;
6287             }
6288 
6289             /*
6290              * Handled untranslated compatibility format interrupt with
6291              * extended destination ID in the low bits 11-5. */
6292             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6293 
6294             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6295             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6296             route->u.msi.data = dst.data;
6297             return 0;
6298         }
6299     }
6300 
6301 #ifdef CONFIG_XEN_EMU
6302     if (xen_mode == XEN_EMULATE) {
6303         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6304 
6305         /*
6306          * If it was a PIRQ and successfully routed (handled == 0) or it was
6307          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6308          */
6309         if (handled <= 0) {
6310             return handled;
6311         }
6312     }
6313 #endif
6314 
6315     address = kvm_swizzle_msi_ext_dest_id(address);
6316     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6317     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6318     return 0;
6319 }
6320 
6321 typedef struct MSIRouteEntry MSIRouteEntry;
6322 
6323 struct MSIRouteEntry {
6324     PCIDevice *dev;             /* Device pointer */
6325     int vector;                 /* MSI/MSIX vector index */
6326     int virq;                   /* Virtual IRQ index */
6327     QLIST_ENTRY(MSIRouteEntry) list;
6328 };
6329 
6330 /* List of used GSI routes */
6331 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6332     QLIST_HEAD_INITIALIZER(msi_route_list);
6333 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)6334 void kvm_update_msi_routes_all(void *private, bool global,
6335                                uint32_t index, uint32_t mask)
6336 {
6337     int cnt = 0, vector;
6338     MSIRouteEntry *entry;
6339     MSIMessage msg;
6340     PCIDevice *dev;
6341 
6342     /* TODO: explicit route update */
6343     QLIST_FOREACH(entry, &msi_route_list, list) {
6344         cnt++;
6345         vector = entry->vector;
6346         dev = entry->dev;
6347         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6348             msg = msix_get_message(dev, vector);
6349         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6350             msg = msi_get_message(dev, vector);
6351         } else {
6352             /*
6353              * Either MSI/MSIX is disabled for the device, or the
6354              * specific message was masked out.  Skip this one.
6355              */
6356             continue;
6357         }
6358         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6359     }
6360     kvm_irqchip_commit_routes(kvm_state);
6361     trace_kvm_x86_update_msi_routes(cnt);
6362 }
6363 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)6364 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6365                                 int vector, PCIDevice *dev)
6366 {
6367     static bool notify_list_inited = false;
6368     MSIRouteEntry *entry;
6369 
6370     if (!dev) {
6371         /* These are (possibly) IOAPIC routes only used for split
6372          * kernel irqchip mode, while what we are housekeeping are
6373          * PCI devices only. */
6374         return 0;
6375     }
6376 
6377     entry = g_new0(MSIRouteEntry, 1);
6378     entry->dev = dev;
6379     entry->vector = vector;
6380     entry->virq = route->gsi;
6381     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6382 
6383     trace_kvm_x86_add_msi_route(route->gsi);
6384 
6385     if (!notify_list_inited) {
6386         /* For the first time we do add route, add ourselves into
6387          * IOMMU's IEC notify list if needed. */
6388         X86IOMMUState *iommu = x86_iommu_get_default();
6389         if (iommu) {
6390             x86_iommu_iec_register_notifier(iommu,
6391                                             kvm_update_msi_routes_all,
6392                                             NULL);
6393         }
6394         notify_list_inited = true;
6395     }
6396     return 0;
6397 }
6398 
kvm_arch_release_virq_post(int virq)6399 int kvm_arch_release_virq_post(int virq)
6400 {
6401     MSIRouteEntry *entry, *next;
6402     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6403         if (entry->virq == virq) {
6404             trace_kvm_x86_remove_msi_route(virq);
6405             QLIST_REMOVE(entry, list);
6406             g_free(entry);
6407             break;
6408         }
6409     }
6410     return 0;
6411 }
6412 
kvm_arch_msi_data_to_gsi(uint32_t data)6413 int kvm_arch_msi_data_to_gsi(uint32_t data)
6414 {
6415     abort();
6416 }
6417 
kvm_has_waitpkg(void)6418 bool kvm_has_waitpkg(void)
6419 {
6420     return has_msr_umwait;
6421 }
6422 
6423 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6424 
kvm_request_xsave_components(X86CPU * cpu,uint64_t mask)6425 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6426 {
6427     KVMState *s = kvm_state;
6428     uint64_t supported;
6429 
6430     mask &= XSTATE_DYNAMIC_MASK;
6431     if (!mask) {
6432         return;
6433     }
6434     /*
6435      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6436      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6437      * about them already because they are not supported features.
6438      */
6439     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6440     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6441     mask &= supported;
6442 
6443     while (mask) {
6444         int bit = ctz64(mask);
6445         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6446         if (rc) {
6447             /*
6448              * Older kernel version (<5.17) do not support
6449              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6450              * any dynamic feature from kvm_arch_get_supported_cpuid.
6451              */
6452             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6453                         "for feature bit %d", bit);
6454         }
6455         mask &= ~BIT_ULL(bit);
6456     }
6457 }
6458 
kvm_arch_get_notify_vmexit(Object * obj,Error ** errp)6459 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6460 {
6461     KVMState *s = KVM_STATE(obj);
6462     return s->notify_vmexit;
6463 }
6464 
kvm_arch_set_notify_vmexit(Object * obj,int value,Error ** errp)6465 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6466 {
6467     KVMState *s = KVM_STATE(obj);
6468 
6469     if (s->fd != -1) {
6470         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6471         return;
6472     }
6473 
6474     s->notify_vmexit = value;
6475 }
6476 
kvm_arch_get_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6477 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6478                                        const char *name, void *opaque,
6479                                        Error **errp)
6480 {
6481     KVMState *s = KVM_STATE(obj);
6482     uint32_t value = s->notify_window;
6483 
6484     visit_type_uint32(v, name, &value, errp);
6485 }
6486 
kvm_arch_set_notify_window(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6487 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6488                                        const char *name, void *opaque,
6489                                        Error **errp)
6490 {
6491     KVMState *s = KVM_STATE(obj);
6492     uint32_t value;
6493 
6494     if (s->fd != -1) {
6495         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6496         return;
6497     }
6498 
6499     if (!visit_type_uint32(v, name, &value, errp)) {
6500         return;
6501     }
6502 
6503     s->notify_window = value;
6504 }
6505 
kvm_arch_get_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6506 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6507                                      const char *name, void *opaque,
6508                                      Error **errp)
6509 {
6510     KVMState *s = KVM_STATE(obj);
6511     uint32_t value = s->xen_version;
6512 
6513     visit_type_uint32(v, name, &value, errp);
6514 }
6515 
kvm_arch_set_xen_version(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6516 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6517                                      const char *name, void *opaque,
6518                                      Error **errp)
6519 {
6520     KVMState *s = KVM_STATE(obj);
6521     Error *error = NULL;
6522     uint32_t value;
6523 
6524     visit_type_uint32(v, name, &value, &error);
6525     if (error) {
6526         error_propagate(errp, error);
6527         return;
6528     }
6529 
6530     s->xen_version = value;
6531     if (value && xen_mode == XEN_DISABLED) {
6532         xen_mode = XEN_EMULATE;
6533     }
6534 }
6535 
kvm_arch_get_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6536 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6537                                                const char *name, void *opaque,
6538                                                Error **errp)
6539 {
6540     KVMState *s = KVM_STATE(obj);
6541     uint16_t value = s->xen_gnttab_max_frames;
6542 
6543     visit_type_uint16(v, name, &value, errp);
6544 }
6545 
kvm_arch_set_xen_gnttab_max_frames(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6546 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6547                                                const char *name, void *opaque,
6548                                                Error **errp)
6549 {
6550     KVMState *s = KVM_STATE(obj);
6551     Error *error = NULL;
6552     uint16_t value;
6553 
6554     visit_type_uint16(v, name, &value, &error);
6555     if (error) {
6556         error_propagate(errp, error);
6557         return;
6558     }
6559 
6560     s->xen_gnttab_max_frames = value;
6561 }
6562 
kvm_arch_get_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6563 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6564                                              const char *name, void *opaque,
6565                                              Error **errp)
6566 {
6567     KVMState *s = KVM_STATE(obj);
6568     uint16_t value = s->xen_evtchn_max_pirq;
6569 
6570     visit_type_uint16(v, name, &value, errp);
6571 }
6572 
kvm_arch_set_xen_evtchn_max_pirq(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)6573 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6574                                              const char *name, void *opaque,
6575                                              Error **errp)
6576 {
6577     KVMState *s = KVM_STATE(obj);
6578     Error *error = NULL;
6579     uint16_t value;
6580 
6581     visit_type_uint16(v, name, &value, &error);
6582     if (error) {
6583         error_propagate(errp, error);
6584         return;
6585     }
6586 
6587     s->xen_evtchn_max_pirq = value;
6588 }
6589 
kvm_arch_accel_class_init(ObjectClass * oc)6590 void kvm_arch_accel_class_init(ObjectClass *oc)
6591 {
6592     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6593                                    &NotifyVmexitOption_lookup,
6594                                    kvm_arch_get_notify_vmexit,
6595                                    kvm_arch_set_notify_vmexit);
6596     object_class_property_set_description(oc, "notify-vmexit",
6597                                           "Enable notify VM exit");
6598 
6599     object_class_property_add(oc, "notify-window", "uint32",
6600                               kvm_arch_get_notify_window,
6601                               kvm_arch_set_notify_window,
6602                               NULL, NULL);
6603     object_class_property_set_description(oc, "notify-window",
6604                                           "Clock cycles without an event window "
6605                                           "after which a notification VM exit occurs");
6606 
6607     object_class_property_add(oc, "xen-version", "uint32",
6608                               kvm_arch_get_xen_version,
6609                               kvm_arch_set_xen_version,
6610                               NULL, NULL);
6611     object_class_property_set_description(oc, "xen-version",
6612                                           "Xen version to be emulated "
6613                                           "(in XENVER_version form "
6614                                           "e.g. 0x4000a for 4.10)");
6615 
6616     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6617                               kvm_arch_get_xen_gnttab_max_frames,
6618                               kvm_arch_set_xen_gnttab_max_frames,
6619                               NULL, NULL);
6620     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6621                                           "Maximum number of grant table frames");
6622 
6623     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6624                               kvm_arch_get_xen_evtchn_max_pirq,
6625                               kvm_arch_set_xen_evtchn_max_pirq,
6626                               NULL, NULL);
6627     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6628                                           "Maximum number of Xen PIRQs");
6629 }
6630 
kvm_set_max_apic_id(uint32_t max_apic_id)6631 void kvm_set_max_apic_id(uint32_t max_apic_id)
6632 {
6633     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6634 }
6635