1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021 Intel Corporation
4 */
5
6 #include "xe_sync.h"
7
8 #include <linux/dma-fence-array.h>
9 #include <linux/kthread.h>
10 #include <linux/sched/mm.h>
11 #include <linux/uaccess.h>
12
13 #include <drm/drm_print.h>
14 #include <drm/drm_syncobj.h>
15 #include <uapi/drm/xe_drm.h>
16
17 #include "xe_device_types.h"
18 #include "xe_exec_queue.h"
19 #include "xe_macros.h"
20 #include "xe_sched_job_types.h"
21
22 struct xe_user_fence {
23 struct xe_device *xe;
24 struct kref refcount;
25 struct dma_fence_cb cb;
26 struct work_struct worker;
27 struct mm_struct *mm;
28 u64 __user *addr;
29 u64 value;
30 int signalled;
31 };
32
user_fence_destroy(struct kref * kref)33 static void user_fence_destroy(struct kref *kref)
34 {
35 struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence,
36 refcount);
37
38 mmdrop(ufence->mm);
39 kfree(ufence);
40 }
41
user_fence_get(struct xe_user_fence * ufence)42 static void user_fence_get(struct xe_user_fence *ufence)
43 {
44 kref_get(&ufence->refcount);
45 }
46
user_fence_put(struct xe_user_fence * ufence)47 static void user_fence_put(struct xe_user_fence *ufence)
48 {
49 kref_put(&ufence->refcount, user_fence_destroy);
50 }
51
user_fence_create(struct xe_device * xe,u64 addr,u64 value)52 static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
53 u64 value)
54 {
55 struct xe_user_fence *ufence;
56 u64 __user *ptr = u64_to_user_ptr(addr);
57 u64 __maybe_unused prefetch_val;
58
59 if (get_user(prefetch_val, ptr))
60 return ERR_PTR(-EFAULT);
61
62 ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
63 if (!ufence)
64 return ERR_PTR(-ENOMEM);
65
66 ufence->xe = xe;
67 kref_init(&ufence->refcount);
68 ufence->addr = ptr;
69 ufence->value = value;
70 ufence->mm = current->mm;
71 mmgrab(ufence->mm);
72
73 return ufence;
74 }
75
user_fence_worker(struct work_struct * w)76 static void user_fence_worker(struct work_struct *w)
77 {
78 struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker);
79
80 if (mmget_not_zero(ufence->mm)) {
81 kthread_use_mm(ufence->mm);
82 if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
83 XE_WARN_ON("Copy to user failed");
84 kthread_unuse_mm(ufence->mm);
85 mmput(ufence->mm);
86 } else {
87 drm_dbg(&ufence->xe->drm, "mmget_not_zero() failed, ufence wasn't signaled\n");
88 }
89
90 /*
91 * Wake up waiters only after updating the ufence state, allowing the UMD
92 * to safely reuse the same ufence without encountering -EBUSY errors.
93 */
94 WRITE_ONCE(ufence->signalled, 1);
95 wake_up_all(&ufence->xe->ufence_wq);
96 user_fence_put(ufence);
97 }
98
kick_ufence(struct xe_user_fence * ufence,struct dma_fence * fence)99 static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence)
100 {
101 INIT_WORK(&ufence->worker, user_fence_worker);
102 queue_work(ufence->xe->ordered_wq, &ufence->worker);
103 dma_fence_put(fence);
104 }
105
user_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)106 static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
107 {
108 struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb);
109
110 kick_ufence(ufence, fence);
111 }
112
xe_sync_entry_parse(struct xe_device * xe,struct xe_file * xef,struct xe_sync_entry * sync,struct drm_xe_sync __user * sync_user,unsigned int flags)113 int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
114 struct xe_sync_entry *sync,
115 struct drm_xe_sync __user *sync_user,
116 unsigned int flags)
117 {
118 struct drm_xe_sync sync_in;
119 int err;
120 bool exec = flags & SYNC_PARSE_FLAG_EXEC;
121 bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
122 bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
123 bool signal;
124
125 if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
126 return -EFAULT;
127
128 if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
129 XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
130 return -EINVAL;
131
132 signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
133 switch (sync_in.type) {
134 case DRM_XE_SYNC_TYPE_SYNCOBJ:
135 if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
136 return -EOPNOTSUPP;
137
138 if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
139 return -EINVAL;
140
141 sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
142 if (XE_IOCTL_DBG(xe, !sync->syncobj))
143 return -ENOENT;
144
145 if (!signal) {
146 sync->fence = drm_syncobj_fence_get(sync->syncobj);
147 if (XE_IOCTL_DBG(xe, !sync->fence))
148 return -EINVAL;
149 }
150 break;
151
152 case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
153 if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
154 return -EOPNOTSUPP;
155
156 if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
157 return -EINVAL;
158
159 if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
160 return -EINVAL;
161
162 sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
163 if (XE_IOCTL_DBG(xe, !sync->syncobj))
164 return -ENOENT;
165
166 if (signal) {
167 sync->chain_fence = dma_fence_chain_alloc();
168 if (!sync->chain_fence)
169 return -ENOMEM;
170 } else {
171 sync->fence = drm_syncobj_fence_get(sync->syncobj);
172 if (XE_IOCTL_DBG(xe, !sync->fence))
173 return -EINVAL;
174
175 err = dma_fence_chain_find_seqno(&sync->fence,
176 sync_in.timeline_value);
177 if (err)
178 return err;
179 }
180 break;
181
182 case DRM_XE_SYNC_TYPE_USER_FENCE:
183 if (XE_IOCTL_DBG(xe, disallow_user_fence))
184 return -EOPNOTSUPP;
185
186 if (XE_IOCTL_DBG(xe, !signal))
187 return -EOPNOTSUPP;
188
189 if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
190 return -EINVAL;
191
192 if (exec) {
193 sync->addr = sync_in.addr;
194 } else {
195 sync->ufence = user_fence_create(xe, sync_in.addr,
196 sync_in.timeline_value);
197 if (XE_IOCTL_DBG(xe, IS_ERR(sync->ufence)))
198 return PTR_ERR(sync->ufence);
199 }
200
201 break;
202
203 default:
204 return -EINVAL;
205 }
206
207 sync->type = sync_in.type;
208 sync->flags = sync_in.flags;
209 sync->timeline_value = sync_in.timeline_value;
210
211 return 0;
212 }
213 ALLOW_ERROR_INJECTION(xe_sync_entry_parse, ERRNO);
214
xe_sync_entry_add_deps(struct xe_sync_entry * sync,struct xe_sched_job * job)215 int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
216 {
217 if (sync->fence)
218 return drm_sched_job_add_dependency(&job->drm,
219 dma_fence_get(sync->fence));
220
221 return 0;
222 }
223
xe_sync_entry_signal(struct xe_sync_entry * sync,struct dma_fence * fence)224 void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence)
225 {
226 if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
227 return;
228
229 if (sync->chain_fence) {
230 drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
231 fence, sync->timeline_value);
232 /*
233 * The chain's ownership is transferred to the
234 * timeline.
235 */
236 sync->chain_fence = NULL;
237 } else if (sync->syncobj) {
238 drm_syncobj_replace_fence(sync->syncobj, fence);
239 } else if (sync->ufence) {
240 int err;
241
242 dma_fence_get(fence);
243 user_fence_get(sync->ufence);
244 err = dma_fence_add_callback(fence, &sync->ufence->cb,
245 user_fence_cb);
246 if (err == -ENOENT) {
247 kick_ufence(sync->ufence, fence);
248 } else if (err) {
249 XE_WARN_ON("failed to add user fence");
250 user_fence_put(sync->ufence);
251 dma_fence_put(fence);
252 }
253 }
254 }
255
xe_sync_entry_cleanup(struct xe_sync_entry * sync)256 void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
257 {
258 if (sync->syncobj)
259 drm_syncobj_put(sync->syncobj);
260 dma_fence_put(sync->fence);
261 dma_fence_chain_free(sync->chain_fence);
262 if (sync->ufence)
263 user_fence_put(sync->ufence);
264 }
265
266 /**
267 * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
268 * @sync: input syncs
269 * @num_sync: number of syncs
270 * @q: exec queue
271 * @vm: VM
272 *
273 * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
274 * and return a composite fence of all in-fences + last fence. If no in-fences
275 * return last fence on input exec queue. Caller must drop reference to
276 * returned fence.
277 *
278 * Return: fence on success, ERR_PTR(-ENOMEM) on failure
279 */
280 struct dma_fence *
xe_sync_in_fence_get(struct xe_sync_entry * sync,int num_sync,struct xe_exec_queue * q,struct xe_vm * vm)281 xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
282 struct xe_exec_queue *q, struct xe_vm *vm)
283 {
284 struct dma_fence **fences = NULL;
285 struct dma_fence_array *cf = NULL;
286 struct dma_fence *fence;
287 int i, num_in_fence = 0, current_fence = 0;
288
289 lockdep_assert_held(&vm->lock);
290
291 /* Count in-fences */
292 for (i = 0; i < num_sync; ++i) {
293 if (sync[i].fence) {
294 ++num_in_fence;
295 fence = sync[i].fence;
296 }
297 }
298
299 /* Easy case... */
300 if (!num_in_fence) {
301 fence = xe_exec_queue_last_fence_get(q, vm);
302 return fence;
303 }
304
305 /* Create composite fence */
306 fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
307 if (!fences)
308 return ERR_PTR(-ENOMEM);
309 for (i = 0; i < num_sync; ++i) {
310 if (sync[i].fence) {
311 dma_fence_get(sync[i].fence);
312 fences[current_fence++] = sync[i].fence;
313 }
314 }
315 fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
316 cf = dma_fence_array_create(num_in_fence, fences,
317 vm->composite_fence_ctx,
318 vm->composite_fence_seqno++,
319 false);
320 if (!cf) {
321 --vm->composite_fence_seqno;
322 goto err_out;
323 }
324
325 return &cf->base;
326
327 err_out:
328 while (current_fence)
329 dma_fence_put(fences[--current_fence]);
330 kfree(fences);
331 kfree(cf);
332
333 return ERR_PTR(-ENOMEM);
334 }
335
336 /**
337 * __xe_sync_ufence_get() - Get user fence from user fence
338 * @ufence: input user fence
339 *
340 * Get a user fence reference from user fence
341 *
342 * Return: xe_user_fence pointer with reference
343 */
__xe_sync_ufence_get(struct xe_user_fence * ufence)344 struct xe_user_fence *__xe_sync_ufence_get(struct xe_user_fence *ufence)
345 {
346 user_fence_get(ufence);
347
348 return ufence;
349 }
350
351 /**
352 * xe_sync_ufence_get() - Get user fence from sync
353 * @sync: input sync
354 *
355 * Get a user fence reference from sync.
356 *
357 * Return: xe_user_fence pointer with reference
358 */
xe_sync_ufence_get(struct xe_sync_entry * sync)359 struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync)
360 {
361 user_fence_get(sync->ufence);
362
363 return sync->ufence;
364 }
365
366 /**
367 * xe_sync_ufence_put() - Put user fence reference
368 * @ufence: user fence reference
369 *
370 */
xe_sync_ufence_put(struct xe_user_fence * ufence)371 void xe_sync_ufence_put(struct xe_user_fence *ufence)
372 {
373 user_fence_put(ufence);
374 }
375
376 /**
377 * xe_sync_ufence_get_status() - Get user fence status
378 * @ufence: user fence
379 *
380 * Return: 1 if signalled, 0 not signalled, <0 on error
381 */
xe_sync_ufence_get_status(struct xe_user_fence * ufence)382 int xe_sync_ufence_get_status(struct xe_user_fence *ufence)
383 {
384 return READ_ONCE(ufence->signalled);
385 }
386