1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_sync.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/kthread.h>
10 #include <linux/sched/mm.h>
11 #include <linux/uaccess.h>
12 
13 #include <drm/drm_print.h>
14 #include <drm/drm_syncobj.h>
15 #include <uapi/drm/xe_drm.h>
16 
17 #include "xe_device_types.h"
18 #include "xe_exec_queue.h"
19 #include "xe_macros.h"
20 #include "xe_sched_job_types.h"
21 
22 struct xe_user_fence {
23 	struct xe_device *xe;
24 	struct kref refcount;
25 	struct dma_fence_cb cb;
26 	struct work_struct worker;
27 	struct mm_struct *mm;
28 	u64 __user *addr;
29 	u64 value;
30 	int signalled;
31 };
32 
user_fence_destroy(struct kref * kref)33 static void user_fence_destroy(struct kref *kref)
34 {
35 	struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence,
36 						 refcount);
37 
38 	mmdrop(ufence->mm);
39 	kfree(ufence);
40 }
41 
user_fence_get(struct xe_user_fence * ufence)42 static void user_fence_get(struct xe_user_fence *ufence)
43 {
44 	kref_get(&ufence->refcount);
45 }
46 
user_fence_put(struct xe_user_fence * ufence)47 static void user_fence_put(struct xe_user_fence *ufence)
48 {
49 	kref_put(&ufence->refcount, user_fence_destroy);
50 }
51 
user_fence_create(struct xe_device * xe,u64 addr,u64 value)52 static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
53 					       u64 value)
54 {
55 	struct xe_user_fence *ufence;
56 	u64 __user *ptr = u64_to_user_ptr(addr);
57 	u64 __maybe_unused prefetch_val;
58 
59 	if (get_user(prefetch_val, ptr))
60 		return ERR_PTR(-EFAULT);
61 
62 	ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
63 	if (!ufence)
64 		return ERR_PTR(-ENOMEM);
65 
66 	ufence->xe = xe;
67 	kref_init(&ufence->refcount);
68 	ufence->addr = ptr;
69 	ufence->value = value;
70 	ufence->mm = current->mm;
71 	mmgrab(ufence->mm);
72 
73 	return ufence;
74 }
75 
user_fence_worker(struct work_struct * w)76 static void user_fence_worker(struct work_struct *w)
77 {
78 	struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker);
79 
80 	if (mmget_not_zero(ufence->mm)) {
81 		kthread_use_mm(ufence->mm);
82 		if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
83 			XE_WARN_ON("Copy to user failed");
84 		kthread_unuse_mm(ufence->mm);
85 		mmput(ufence->mm);
86 	} else {
87 		drm_dbg(&ufence->xe->drm, "mmget_not_zero() failed, ufence wasn't signaled\n");
88 	}
89 
90 	/*
91 	 * Wake up waiters only after updating the ufence state, allowing the UMD
92 	 * to safely reuse the same ufence without encountering -EBUSY errors.
93 	 */
94 	WRITE_ONCE(ufence->signalled, 1);
95 	wake_up_all(&ufence->xe->ufence_wq);
96 	user_fence_put(ufence);
97 }
98 
kick_ufence(struct xe_user_fence * ufence,struct dma_fence * fence)99 static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence)
100 {
101 	INIT_WORK(&ufence->worker, user_fence_worker);
102 	queue_work(ufence->xe->ordered_wq, &ufence->worker);
103 	dma_fence_put(fence);
104 }
105 
user_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)106 static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
107 {
108 	struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb);
109 
110 	kick_ufence(ufence, fence);
111 }
112 
xe_sync_entry_parse(struct xe_device * xe,struct xe_file * xef,struct xe_sync_entry * sync,struct drm_xe_sync __user * sync_user,unsigned int flags)113 int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
114 			struct xe_sync_entry *sync,
115 			struct drm_xe_sync __user *sync_user,
116 			unsigned int flags)
117 {
118 	struct drm_xe_sync sync_in;
119 	int err;
120 	bool exec = flags & SYNC_PARSE_FLAG_EXEC;
121 	bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
122 	bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
123 	bool signal;
124 
125 	if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
126 		return -EFAULT;
127 
128 	if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
129 	    XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
130 		return -EINVAL;
131 
132 	signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
133 	switch (sync_in.type) {
134 	case DRM_XE_SYNC_TYPE_SYNCOBJ:
135 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
136 			return -EOPNOTSUPP;
137 
138 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
139 			return -EINVAL;
140 
141 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
142 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
143 			return -ENOENT;
144 
145 		if (!signal) {
146 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
147 			if (XE_IOCTL_DBG(xe, !sync->fence))
148 				return -EINVAL;
149 		}
150 		break;
151 
152 	case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
153 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
154 			return -EOPNOTSUPP;
155 
156 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
157 			return -EINVAL;
158 
159 		if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
160 			return -EINVAL;
161 
162 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
163 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
164 			return -ENOENT;
165 
166 		if (signal) {
167 			sync->chain_fence = dma_fence_chain_alloc();
168 			if (!sync->chain_fence)
169 				return -ENOMEM;
170 		} else {
171 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
172 			if (XE_IOCTL_DBG(xe, !sync->fence))
173 				return -EINVAL;
174 
175 			err = dma_fence_chain_find_seqno(&sync->fence,
176 							 sync_in.timeline_value);
177 			if (err)
178 				return err;
179 		}
180 		break;
181 
182 	case DRM_XE_SYNC_TYPE_USER_FENCE:
183 		if (XE_IOCTL_DBG(xe, disallow_user_fence))
184 			return -EOPNOTSUPP;
185 
186 		if (XE_IOCTL_DBG(xe, !signal))
187 			return -EOPNOTSUPP;
188 
189 		if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
190 			return -EINVAL;
191 
192 		if (exec) {
193 			sync->addr = sync_in.addr;
194 		} else {
195 			sync->ufence = user_fence_create(xe, sync_in.addr,
196 							 sync_in.timeline_value);
197 			if (XE_IOCTL_DBG(xe, IS_ERR(sync->ufence)))
198 				return PTR_ERR(sync->ufence);
199 		}
200 
201 		break;
202 
203 	default:
204 		return -EINVAL;
205 	}
206 
207 	sync->type = sync_in.type;
208 	sync->flags = sync_in.flags;
209 	sync->timeline_value = sync_in.timeline_value;
210 
211 	return 0;
212 }
213 ALLOW_ERROR_INJECTION(xe_sync_entry_parse, ERRNO);
214 
xe_sync_entry_add_deps(struct xe_sync_entry * sync,struct xe_sched_job * job)215 int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
216 {
217 	if (sync->fence)
218 		return  drm_sched_job_add_dependency(&job->drm,
219 						     dma_fence_get(sync->fence));
220 
221 	return 0;
222 }
223 
xe_sync_entry_signal(struct xe_sync_entry * sync,struct dma_fence * fence)224 void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence)
225 {
226 	if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
227 		return;
228 
229 	if (sync->chain_fence) {
230 		drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
231 				      fence, sync->timeline_value);
232 		/*
233 		 * The chain's ownership is transferred to the
234 		 * timeline.
235 		 */
236 		sync->chain_fence = NULL;
237 	} else if (sync->syncobj) {
238 		drm_syncobj_replace_fence(sync->syncobj, fence);
239 	} else if (sync->ufence) {
240 		int err;
241 
242 		dma_fence_get(fence);
243 		user_fence_get(sync->ufence);
244 		err = dma_fence_add_callback(fence, &sync->ufence->cb,
245 					     user_fence_cb);
246 		if (err == -ENOENT) {
247 			kick_ufence(sync->ufence, fence);
248 		} else if (err) {
249 			XE_WARN_ON("failed to add user fence");
250 			user_fence_put(sync->ufence);
251 			dma_fence_put(fence);
252 		}
253 	}
254 }
255 
xe_sync_entry_cleanup(struct xe_sync_entry * sync)256 void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
257 {
258 	if (sync->syncobj)
259 		drm_syncobj_put(sync->syncobj);
260 	dma_fence_put(sync->fence);
261 	dma_fence_chain_free(sync->chain_fence);
262 	if (sync->ufence)
263 		user_fence_put(sync->ufence);
264 }
265 
266 /**
267  * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
268  * @sync: input syncs
269  * @num_sync: number of syncs
270  * @q: exec queue
271  * @vm: VM
272  *
273  * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
274  * and return a composite fence of all in-fences + last fence. If no in-fences
275  * return last fence on  input exec queue. Caller must drop reference to
276  * returned fence.
277  *
278  * Return: fence on success, ERR_PTR(-ENOMEM) on failure
279  */
280 struct dma_fence *
xe_sync_in_fence_get(struct xe_sync_entry * sync,int num_sync,struct xe_exec_queue * q,struct xe_vm * vm)281 xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
282 		     struct xe_exec_queue *q, struct xe_vm *vm)
283 {
284 	struct dma_fence **fences = NULL;
285 	struct dma_fence_array *cf = NULL;
286 	struct dma_fence *fence;
287 	int i, num_in_fence = 0, current_fence = 0;
288 
289 	lockdep_assert_held(&vm->lock);
290 
291 	/* Count in-fences */
292 	for (i = 0; i < num_sync; ++i) {
293 		if (sync[i].fence) {
294 			++num_in_fence;
295 			fence = sync[i].fence;
296 		}
297 	}
298 
299 	/* Easy case... */
300 	if (!num_in_fence) {
301 		fence = xe_exec_queue_last_fence_get(q, vm);
302 		return fence;
303 	}
304 
305 	/* Create composite fence */
306 	fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
307 	if (!fences)
308 		return ERR_PTR(-ENOMEM);
309 	for (i = 0; i < num_sync; ++i) {
310 		if (sync[i].fence) {
311 			dma_fence_get(sync[i].fence);
312 			fences[current_fence++] = sync[i].fence;
313 		}
314 	}
315 	fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
316 	cf = dma_fence_array_create(num_in_fence, fences,
317 				    vm->composite_fence_ctx,
318 				    vm->composite_fence_seqno++,
319 				    false);
320 	if (!cf) {
321 		--vm->composite_fence_seqno;
322 		goto err_out;
323 	}
324 
325 	return &cf->base;
326 
327 err_out:
328 	while (current_fence)
329 		dma_fence_put(fences[--current_fence]);
330 	kfree(fences);
331 	kfree(cf);
332 
333 	return ERR_PTR(-ENOMEM);
334 }
335 
336 /**
337  * __xe_sync_ufence_get() - Get user fence from user fence
338  * @ufence: input user fence
339  *
340  * Get a user fence reference from user fence
341  *
342  * Return: xe_user_fence pointer with reference
343  */
__xe_sync_ufence_get(struct xe_user_fence * ufence)344 struct xe_user_fence *__xe_sync_ufence_get(struct xe_user_fence *ufence)
345 {
346 	user_fence_get(ufence);
347 
348 	return ufence;
349 }
350 
351 /**
352  * xe_sync_ufence_get() - Get user fence from sync
353  * @sync: input sync
354  *
355  * Get a user fence reference from sync.
356  *
357  * Return: xe_user_fence pointer with reference
358  */
xe_sync_ufence_get(struct xe_sync_entry * sync)359 struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync)
360 {
361 	user_fence_get(sync->ufence);
362 
363 	return sync->ufence;
364 }
365 
366 /**
367  * xe_sync_ufence_put() - Put user fence reference
368  * @ufence: user fence reference
369  *
370  */
xe_sync_ufence_put(struct xe_user_fence * ufence)371 void xe_sync_ufence_put(struct xe_user_fence *ufence)
372 {
373 	user_fence_put(ufence);
374 }
375 
376 /**
377  * xe_sync_ufence_get_status() - Get user fence status
378  * @ufence: user fence
379  *
380  * Return: 1 if signalled, 0 not signalled, <0 on error
381  */
xe_sync_ufence_get_status(struct xe_user_fence * ufence)382 int xe_sync_ufence_get_status(struct xe_user_fence *ufence)
383 {
384 	return READ_ONCE(ufence->signalled);
385 }
386