1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <linux/dma-fence-array.h>
7
8 #include "xe_pt.h"
9
10 #include "regs/xe_gtt_defs.h"
11 #include "xe_bo.h"
12 #include "xe_device.h"
13 #include "xe_drm_client.h"
14 #include "xe_exec_queue.h"
15 #include "xe_gt.h"
16 #include "xe_gt_tlb_invalidation.h"
17 #include "xe_migrate.h"
18 #include "xe_pt_types.h"
19 #include "xe_pt_walk.h"
20 #include "xe_res_cursor.h"
21 #include "xe_sched_job.h"
22 #include "xe_sync.h"
23 #include "xe_svm.h"
24 #include "xe_trace.h"
25 #include "xe_ttm_stolen_mgr.h"
26 #include "xe_vm.h"
27
28 struct xe_pt_dir {
29 struct xe_pt pt;
30 /** @children: Array of page-table child nodes */
31 struct xe_ptw *children[XE_PDES];
32 /** @staging: Array of page-table staging nodes */
33 struct xe_ptw *staging[XE_PDES];
34 };
35
36 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
37 #define xe_pt_set_addr(__xe_pt, __addr) ((__xe_pt)->addr = (__addr))
38 #define xe_pt_addr(__xe_pt) ((__xe_pt)->addr)
39 #else
40 #define xe_pt_set_addr(__xe_pt, __addr)
41 #define xe_pt_addr(__xe_pt) 0ull
42 #endif
43
44 static const u64 xe_normal_pt_shifts[] = {12, 21, 30, 39, 48};
45 static const u64 xe_compact_pt_shifts[] = {16, 21, 30, 39, 48};
46
47 #define XE_PT_HIGHEST_LEVEL (ARRAY_SIZE(xe_normal_pt_shifts) - 1)
48
as_xe_pt_dir(struct xe_pt * pt)49 static struct xe_pt_dir *as_xe_pt_dir(struct xe_pt *pt)
50 {
51 return container_of(pt, struct xe_pt_dir, pt);
52 }
53
54 static struct xe_pt *
xe_pt_entry_staging(struct xe_pt_dir * pt_dir,unsigned int index)55 xe_pt_entry_staging(struct xe_pt_dir *pt_dir, unsigned int index)
56 {
57 return container_of(pt_dir->staging[index], struct xe_pt, base);
58 }
59
__xe_pt_empty_pte(struct xe_tile * tile,struct xe_vm * vm,unsigned int level)60 static u64 __xe_pt_empty_pte(struct xe_tile *tile, struct xe_vm *vm,
61 unsigned int level)
62 {
63 struct xe_device *xe = tile_to_xe(tile);
64 u16 pat_index = xe->pat.idx[XE_CACHE_WB];
65 u8 id = tile->id;
66
67 if (!xe_vm_has_scratch(vm))
68 return 0;
69
70 if (level > MAX_HUGEPTE_LEVEL)
71 return vm->pt_ops->pde_encode_bo(vm->scratch_pt[id][level - 1]->bo,
72 0, pat_index);
73
74 return vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0) |
75 XE_PTE_NULL;
76 }
77
xe_pt_free(struct xe_pt * pt)78 static void xe_pt_free(struct xe_pt *pt)
79 {
80 if (pt->level)
81 kfree(as_xe_pt_dir(pt));
82 else
83 kfree(pt);
84 }
85
86 /**
87 * xe_pt_create() - Create a page-table.
88 * @vm: The vm to create for.
89 * @tile: The tile to create for.
90 * @level: The page-table level.
91 *
92 * Allocate and initialize a single struct xe_pt metadata structure. Also
93 * create the corresponding page-table bo, but don't initialize it. If the
94 * level is grater than zero, then it's assumed to be a directory page-
95 * table and the directory structure is also allocated and initialized to
96 * NULL pointers.
97 *
98 * Return: A valid struct xe_pt pointer on success, Pointer error code on
99 * error.
100 */
xe_pt_create(struct xe_vm * vm,struct xe_tile * tile,unsigned int level)101 struct xe_pt *xe_pt_create(struct xe_vm *vm, struct xe_tile *tile,
102 unsigned int level)
103 {
104 struct xe_pt *pt;
105 struct xe_bo *bo;
106 u32 bo_flags;
107 int err;
108
109 if (level) {
110 struct xe_pt_dir *dir = kzalloc(sizeof(*dir), GFP_KERNEL);
111
112 pt = (dir) ? &dir->pt : NULL;
113 } else {
114 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
115 }
116 if (!pt)
117 return ERR_PTR(-ENOMEM);
118
119 bo_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) |
120 XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE |
121 XE_BO_FLAG_NO_RESV_EVICT | XE_BO_FLAG_PAGETABLE;
122 if (vm->xef) /* userspace */
123 bo_flags |= XE_BO_FLAG_PINNED_LATE_RESTORE;
124
125 pt->level = level;
126 bo = xe_bo_create_pin_map(vm->xe, tile, vm, SZ_4K,
127 ttm_bo_type_kernel,
128 bo_flags);
129 if (IS_ERR(bo)) {
130 err = PTR_ERR(bo);
131 goto err_kfree;
132 }
133 pt->bo = bo;
134 pt->base.children = level ? as_xe_pt_dir(pt)->children : NULL;
135 pt->base.staging = level ? as_xe_pt_dir(pt)->staging : NULL;
136
137 if (vm->xef)
138 xe_drm_client_add_bo(vm->xef->client, pt->bo);
139 xe_tile_assert(tile, level <= XE_VM_MAX_LEVEL);
140
141 return pt;
142
143 err_kfree:
144 xe_pt_free(pt);
145 return ERR_PTR(err);
146 }
147 ALLOW_ERROR_INJECTION(xe_pt_create, ERRNO);
148
149 /**
150 * xe_pt_populate_empty() - Populate a page-table bo with scratch- or zero
151 * entries.
152 * @tile: The tile the scratch pagetable of which to use.
153 * @vm: The vm we populate for.
154 * @pt: The pagetable the bo of which to initialize.
155 *
156 * Populate the page-table bo of @pt with entries pointing into the tile's
157 * scratch page-table tree if any. Otherwise populate with zeros.
158 */
xe_pt_populate_empty(struct xe_tile * tile,struct xe_vm * vm,struct xe_pt * pt)159 void xe_pt_populate_empty(struct xe_tile *tile, struct xe_vm *vm,
160 struct xe_pt *pt)
161 {
162 struct iosys_map *map = &pt->bo->vmap;
163 u64 empty;
164 int i;
165
166 if (!xe_vm_has_scratch(vm)) {
167 /*
168 * FIXME: Some memory is allocated already allocated to zero?
169 * Find out which memory that is and avoid this memset...
170 */
171 xe_map_memset(vm->xe, map, 0, 0, SZ_4K);
172 } else {
173 empty = __xe_pt_empty_pte(tile, vm, pt->level);
174 for (i = 0; i < XE_PDES; i++)
175 xe_pt_write(vm->xe, map, i, empty);
176 }
177 }
178
179 /**
180 * xe_pt_shift() - Return the ilog2 value of the size of the address range of
181 * a page-table at a certain level.
182 * @level: The level.
183 *
184 * Return: The ilog2 value of the size of the address range of a page-table
185 * at level @level.
186 */
xe_pt_shift(unsigned int level)187 unsigned int xe_pt_shift(unsigned int level)
188 {
189 return XE_PTE_SHIFT + XE_PDE_SHIFT * level;
190 }
191
192 /**
193 * xe_pt_destroy() - Destroy a page-table tree.
194 * @pt: The root of the page-table tree to destroy.
195 * @flags: vm flags. Currently unused.
196 * @deferred: List head of lockless list for deferred putting. NULL for
197 * immediate putting.
198 *
199 * Puts the page-table bo, recursively calls xe_pt_destroy on all children
200 * and finally frees @pt. TODO: Can we remove the @flags argument?
201 */
xe_pt_destroy(struct xe_pt * pt,u32 flags,struct llist_head * deferred)202 void xe_pt_destroy(struct xe_pt *pt, u32 flags, struct llist_head *deferred)
203 {
204 int i;
205
206 if (!pt)
207 return;
208
209 XE_WARN_ON(!list_empty(&pt->bo->ttm.base.gpuva.list));
210 xe_bo_unpin(pt->bo);
211 xe_bo_put_deferred(pt->bo, deferred);
212
213 if (pt->level > 0 && pt->num_live) {
214 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
215
216 for (i = 0; i < XE_PDES; i++) {
217 if (xe_pt_entry_staging(pt_dir, i))
218 xe_pt_destroy(xe_pt_entry_staging(pt_dir, i), flags,
219 deferred);
220 }
221 }
222 xe_pt_free(pt);
223 }
224
225 /**
226 * xe_pt_clear() - Clear a page-table.
227 * @xe: xe device.
228 * @pt: The page-table.
229 *
230 * Clears page-table by setting to zero.
231 */
xe_pt_clear(struct xe_device * xe,struct xe_pt * pt)232 void xe_pt_clear(struct xe_device *xe, struct xe_pt *pt)
233 {
234 struct iosys_map *map = &pt->bo->vmap;
235
236 xe_map_memset(xe, map, 0, 0, SZ_4K);
237 }
238
239 /**
240 * DOC: Pagetable building
241 *
242 * Below we use the term "page-table" for both page-directories, containing
243 * pointers to lower level page-directories or page-tables, and level 0
244 * page-tables that contain only page-table-entries pointing to memory pages.
245 *
246 * When inserting an address range in an already existing page-table tree
247 * there will typically be a set of page-tables that are shared with other
248 * address ranges, and a set that are private to this address range.
249 * The set of shared page-tables can be at most two per level,
250 * and those can't be updated immediately because the entries of those
251 * page-tables may still be in use by the gpu for other mappings. Therefore
252 * when inserting entries into those, we instead stage those insertions by
253 * adding insertion data into struct xe_vm_pgtable_update structures. This
254 * data, (subtrees for the cpu and page-table-entries for the gpu) is then
255 * added in a separate commit step. CPU-data is committed while still under the
256 * vm lock, the object lock and for userptr, the notifier lock in read mode.
257 * The GPU async data is committed either by the GPU or CPU after fulfilling
258 * relevant dependencies.
259 * For non-shared page-tables (and, in fact, for shared ones that aren't
260 * existing at the time of staging), we add the data in-place without the
261 * special update structures. This private part of the page-table tree will
262 * remain disconnected from the vm page-table tree until data is committed to
263 * the shared page tables of the vm tree in the commit phase.
264 */
265
266 struct xe_pt_update {
267 /** @update: The update structure we're building for this parent. */
268 struct xe_vm_pgtable_update *update;
269 /** @parent: The parent. Used to detect a parent change. */
270 struct xe_pt *parent;
271 /** @preexisting: Whether the parent was pre-existing or allocated */
272 bool preexisting;
273 };
274
275 /**
276 * struct xe_pt_stage_bind_walk - Walk state for the stage_bind walk.
277 */
278 struct xe_pt_stage_bind_walk {
279 /** @base: The base class. */
280 struct xe_pt_walk base;
281
282 /* Input parameters for the walk */
283 /** @vm: The vm we're building for. */
284 struct xe_vm *vm;
285 /** @tile: The tile we're building for. */
286 struct xe_tile *tile;
287 /** @default_vram_pte: PTE flag only template for VRAM. No address is associated */
288 u64 default_vram_pte;
289 /** @default_system_pte: PTE flag only template for System. No address is associated */
290 u64 default_system_pte;
291 /** @dma_offset: DMA offset to add to the PTE. */
292 u64 dma_offset;
293 /**
294 * @needs_64K: This address range enforces 64K alignment and
295 * granularity on VRAM.
296 */
297 bool needs_64K;
298 /** @clear_pt: clear page table entries during the bind walk */
299 bool clear_pt;
300 /**
301 * @vma: VMA being mapped
302 */
303 struct xe_vma *vma;
304
305 /* Also input, but is updated during the walk*/
306 /** @curs: The DMA address cursor. */
307 struct xe_res_cursor *curs;
308 /** @va_curs_start: The Virtual address corresponding to @curs->start */
309 u64 va_curs_start;
310
311 /* Output */
312 /** @wupd: Walk output data for page-table updates. */
313 struct xe_walk_update {
314 /** @wupd.entries: Caller provided storage. */
315 struct xe_vm_pgtable_update *entries;
316 /** @wupd.num_used_entries: Number of update @entries used. */
317 unsigned int num_used_entries;
318 /** @wupd.updates: Tracks the update entry at a given level */
319 struct xe_pt_update updates[XE_VM_MAX_LEVEL + 1];
320 } wupd;
321
322 /* Walk state */
323 /**
324 * @l0_end_addr: The end address of the current l0 leaf. Used for
325 * 64K granularity detection.
326 */
327 u64 l0_end_addr;
328 /** @addr_64K: The start address of the current 64K chunk. */
329 u64 addr_64K;
330 /** @found_64K: Whether @add_64K actually points to a 64K chunk. */
331 bool found_64K;
332 };
333
334 static int
xe_pt_new_shared(struct xe_walk_update * wupd,struct xe_pt * parent,pgoff_t offset,bool alloc_entries)335 xe_pt_new_shared(struct xe_walk_update *wupd, struct xe_pt *parent,
336 pgoff_t offset, bool alloc_entries)
337 {
338 struct xe_pt_update *upd = &wupd->updates[parent->level];
339 struct xe_vm_pgtable_update *entry;
340
341 /*
342 * For *each level*, we could only have one active
343 * struct xt_pt_update at any one time. Once we move on to a
344 * new parent and page-directory, the old one is complete, and
345 * updates are either already stored in the build tree or in
346 * @wupd->entries
347 */
348 if (likely(upd->parent == parent))
349 return 0;
350
351 upd->parent = parent;
352 upd->preexisting = true;
353
354 if (wupd->num_used_entries == XE_VM_MAX_LEVEL * 2 + 1)
355 return -EINVAL;
356
357 entry = wupd->entries + wupd->num_used_entries++;
358 upd->update = entry;
359 entry->ofs = offset;
360 entry->pt_bo = parent->bo;
361 entry->pt = parent;
362 entry->flags = 0;
363 entry->qwords = 0;
364 entry->pt_bo->update_index = -1;
365
366 if (alloc_entries) {
367 entry->pt_entries = kmalloc_array(XE_PDES,
368 sizeof(*entry->pt_entries),
369 GFP_KERNEL);
370 if (!entry->pt_entries)
371 return -ENOMEM;
372 }
373
374 return 0;
375 }
376
377 /*
378 * NOTE: This is a very frequently called function so we allow ourselves
379 * to annotate (using branch prediction hints) the fastpath of updating a
380 * non-pre-existing pagetable with leaf ptes.
381 */
382 static int
xe_pt_insert_entry(struct xe_pt_stage_bind_walk * xe_walk,struct xe_pt * parent,pgoff_t offset,struct xe_pt * xe_child,u64 pte)383 xe_pt_insert_entry(struct xe_pt_stage_bind_walk *xe_walk, struct xe_pt *parent,
384 pgoff_t offset, struct xe_pt *xe_child, u64 pte)
385 {
386 struct xe_pt_update *upd = &xe_walk->wupd.updates[parent->level];
387 struct xe_pt_update *child_upd = xe_child ?
388 &xe_walk->wupd.updates[xe_child->level] : NULL;
389 int ret;
390
391 ret = xe_pt_new_shared(&xe_walk->wupd, parent, offset, true);
392 if (unlikely(ret))
393 return ret;
394
395 /*
396 * Register this new pagetable so that it won't be recognized as
397 * a shared pagetable by a subsequent insertion.
398 */
399 if (unlikely(child_upd)) {
400 child_upd->update = NULL;
401 child_upd->parent = xe_child;
402 child_upd->preexisting = false;
403 }
404
405 if (likely(!upd->preexisting)) {
406 /* Continue building a non-connected subtree. */
407 struct iosys_map *map = &parent->bo->vmap;
408
409 if (unlikely(xe_child)) {
410 parent->base.children[offset] = &xe_child->base;
411 parent->base.staging[offset] = &xe_child->base;
412 }
413
414 xe_pt_write(xe_walk->vm->xe, map, offset, pte);
415 parent->num_live++;
416 } else {
417 /* Shared pt. Stage update. */
418 unsigned int idx;
419 struct xe_vm_pgtable_update *entry = upd->update;
420
421 idx = offset - entry->ofs;
422 entry->pt_entries[idx].pt = xe_child;
423 entry->pt_entries[idx].pte = pte;
424 entry->qwords++;
425 }
426
427 return 0;
428 }
429
xe_pt_hugepte_possible(u64 addr,u64 next,unsigned int level,struct xe_pt_stage_bind_walk * xe_walk)430 static bool xe_pt_hugepte_possible(u64 addr, u64 next, unsigned int level,
431 struct xe_pt_stage_bind_walk *xe_walk)
432 {
433 u64 size, dma;
434
435 if (level > MAX_HUGEPTE_LEVEL)
436 return false;
437
438 /* Does the virtual range requested cover a huge pte? */
439 if (!xe_pt_covers(addr, next, level, &xe_walk->base))
440 return false;
441
442 /* Does the DMA segment cover the whole pte? */
443 if (next - xe_walk->va_curs_start > xe_walk->curs->size)
444 return false;
445
446 /* null VMA's do not have dma addresses */
447 if (xe_vma_is_null(xe_walk->vma))
448 return true;
449
450 /* if we are clearing page table, no dma addresses*/
451 if (xe_walk->clear_pt)
452 return true;
453
454 /* Is the DMA address huge PTE size aligned? */
455 size = next - addr;
456 dma = addr - xe_walk->va_curs_start + xe_res_dma(xe_walk->curs);
457
458 return IS_ALIGNED(dma, size);
459 }
460
461 /*
462 * Scan the requested mapping to check whether it can be done entirely
463 * with 64K PTEs.
464 */
465 static bool
xe_pt_scan_64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)466 xe_pt_scan_64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
467 {
468 struct xe_res_cursor curs = *xe_walk->curs;
469
470 if (!IS_ALIGNED(addr, SZ_64K))
471 return false;
472
473 if (next > xe_walk->l0_end_addr)
474 return false;
475
476 /* null VMA's do not have dma addresses */
477 if (xe_vma_is_null(xe_walk->vma))
478 return true;
479
480 xe_res_next(&curs, addr - xe_walk->va_curs_start);
481 for (; addr < next; addr += SZ_64K) {
482 if (!IS_ALIGNED(xe_res_dma(&curs), SZ_64K) || curs.size < SZ_64K)
483 return false;
484
485 xe_res_next(&curs, SZ_64K);
486 }
487
488 return addr == next;
489 }
490
491 /*
492 * For non-compact "normal" 4K level-0 pagetables, we want to try to group
493 * addresses together in 64K-contigous regions to add a 64K TLB hint for the
494 * device to the PTE.
495 * This function determines whether the address is part of such a
496 * segment. For VRAM in normal pagetables, this is strictly necessary on
497 * some devices.
498 */
499 static bool
xe_pt_is_pte_ps64K(u64 addr,u64 next,struct xe_pt_stage_bind_walk * xe_walk)500 xe_pt_is_pte_ps64K(u64 addr, u64 next, struct xe_pt_stage_bind_walk *xe_walk)
501 {
502 /* Address is within an already found 64k region */
503 if (xe_walk->found_64K && addr - xe_walk->addr_64K < SZ_64K)
504 return true;
505
506 xe_walk->found_64K = xe_pt_scan_64K(addr, addr + SZ_64K, xe_walk);
507 xe_walk->addr_64K = addr;
508
509 return xe_walk->found_64K;
510 }
511
512 static int
xe_pt_stage_bind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)513 xe_pt_stage_bind_entry(struct xe_ptw *parent, pgoff_t offset,
514 unsigned int level, u64 addr, u64 next,
515 struct xe_ptw **child,
516 enum page_walk_action *action,
517 struct xe_pt_walk *walk)
518 {
519 struct xe_pt_stage_bind_walk *xe_walk =
520 container_of(walk, typeof(*xe_walk), base);
521 u16 pat_index = xe_walk->vma->pat_index;
522 struct xe_pt *xe_parent = container_of(parent, typeof(*xe_parent), base);
523 struct xe_vm *vm = xe_walk->vm;
524 struct xe_pt *xe_child;
525 bool covers;
526 int ret = 0;
527 u64 pte;
528
529 /* Is this a leaf entry ?*/
530 if (level == 0 || xe_pt_hugepte_possible(addr, next, level, xe_walk)) {
531 struct xe_res_cursor *curs = xe_walk->curs;
532 bool is_null = xe_vma_is_null(xe_walk->vma);
533 bool is_vram = is_null ? false : xe_res_is_vram(curs);
534
535 XE_WARN_ON(xe_walk->va_curs_start != addr);
536
537 if (xe_walk->clear_pt) {
538 pte = 0;
539 } else {
540 pte = vm->pt_ops->pte_encode_vma(is_null ? 0 :
541 xe_res_dma(curs) +
542 xe_walk->dma_offset,
543 xe_walk->vma,
544 pat_index, level);
545 if (!is_null)
546 pte |= is_vram ? xe_walk->default_vram_pte :
547 xe_walk->default_system_pte;
548
549 /*
550 * Set the XE_PTE_PS64 hint if possible, otherwise if
551 * this device *requires* 64K PTE size for VRAM, fail.
552 */
553 if (level == 0 && !xe_parent->is_compact) {
554 if (xe_pt_is_pte_ps64K(addr, next, xe_walk)) {
555 xe_walk->vma->gpuva.flags |=
556 XE_VMA_PTE_64K;
557 pte |= XE_PTE_PS64;
558 } else if (XE_WARN_ON(xe_walk->needs_64K &&
559 is_vram)) {
560 return -EINVAL;
561 }
562 }
563 }
564
565 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, NULL, pte);
566 if (unlikely(ret))
567 return ret;
568
569 if (!is_null && !xe_walk->clear_pt)
570 xe_res_next(curs, next - addr);
571 xe_walk->va_curs_start = next;
572 xe_walk->vma->gpuva.flags |= (XE_VMA_PTE_4K << level);
573 *action = ACTION_CONTINUE;
574
575 return ret;
576 }
577
578 /*
579 * Descending to lower level. Determine if we need to allocate a
580 * new page table or -directory, which we do if there is no
581 * previous one or there is one we can completely replace.
582 */
583 if (level == 1) {
584 walk->shifts = xe_normal_pt_shifts;
585 xe_walk->l0_end_addr = next;
586 }
587
588 covers = xe_pt_covers(addr, next, level, &xe_walk->base);
589 if (covers || !*child) {
590 u64 flags = 0;
591
592 xe_child = xe_pt_create(xe_walk->vm, xe_walk->tile, level - 1);
593 if (IS_ERR(xe_child))
594 return PTR_ERR(xe_child);
595
596 xe_pt_set_addr(xe_child,
597 round_down(addr, 1ull << walk->shifts[level]));
598
599 if (!covers)
600 xe_pt_populate_empty(xe_walk->tile, xe_walk->vm, xe_child);
601
602 *child = &xe_child->base;
603
604 /*
605 * Prefer the compact pagetable layout for L0 if possible. Only
606 * possible if VMA covers entire 2MB region as compact 64k and
607 * 4k pages cannot be mixed within a 2MB region.
608 * TODO: Suballocate the pt bo to avoid wasting a lot of
609 * memory.
610 */
611 if (GRAPHICS_VERx100(tile_to_xe(xe_walk->tile)) >= 1250 && level == 1 &&
612 covers && xe_pt_scan_64K(addr, next, xe_walk)) {
613 walk->shifts = xe_compact_pt_shifts;
614 xe_walk->vma->gpuva.flags |= XE_VMA_PTE_COMPACT;
615 flags |= XE_PDE_64K;
616 xe_child->is_compact = true;
617 }
618
619 pte = vm->pt_ops->pde_encode_bo(xe_child->bo, 0, pat_index) | flags;
620 ret = xe_pt_insert_entry(xe_walk, xe_parent, offset, xe_child,
621 pte);
622 }
623
624 *action = ACTION_SUBTREE;
625 return ret;
626 }
627
628 static const struct xe_pt_walk_ops xe_pt_stage_bind_ops = {
629 .pt_entry = xe_pt_stage_bind_entry,
630 };
631
632 /*
633 * Default atomic expectations for different allocation scenarios are as follows:
634 *
635 * 1. Traditional API: When the VM is not in LR mode:
636 * - Device atomics are expected to function with all allocations.
637 *
638 * 2. Compute/SVM API: When the VM is in LR mode:
639 * - Device atomics are the default behavior when the bo is placed in a single region.
640 * - In all other cases device atomics will be disabled with AE=0 until an application
641 * request differently using a ioctl like madvise.
642 */
xe_atomic_for_vram(struct xe_vm * vm)643 static bool xe_atomic_for_vram(struct xe_vm *vm)
644 {
645 return true;
646 }
647
xe_atomic_for_system(struct xe_vm * vm,struct xe_bo * bo)648 static bool xe_atomic_for_system(struct xe_vm *vm, struct xe_bo *bo)
649 {
650 struct xe_device *xe = vm->xe;
651
652 if (!xe->info.has_device_atomics_on_smem)
653 return false;
654
655 /*
656 * If a SMEM+LMEM allocation is backed by SMEM, a device
657 * atomics will cause a gpu page fault and which then
658 * gets migrated to LMEM, bind such allocations with
659 * device atomics enabled.
660 *
661 * TODO: Revisit this. Perhaps add something like a
662 * fault_on_atomics_in_system UAPI flag.
663 * Note that this also prohibits GPU atomics in LR mode for
664 * userptr and system memory on DGFX.
665 */
666 return (!IS_DGFX(xe) || (!xe_vm_in_lr_mode(vm) ||
667 (bo && xe_bo_has_single_placement(bo))));
668 }
669
670 /**
671 * xe_pt_stage_bind() - Build a disconnected page-table tree for a given address
672 * range.
673 * @tile: The tile we're building for.
674 * @vma: The vma indicating the address range.
675 * @range: The range indicating the address range.
676 * @entries: Storage for the update entries used for connecting the tree to
677 * the main tree at commit time.
678 * @num_entries: On output contains the number of @entries used.
679 * @clear_pt: Clear the page table entries.
680 *
681 * This function builds a disconnected page-table tree for a given address
682 * range. The tree is connected to the main vm tree for the gpu using
683 * xe_migrate_update_pgtables() and for the cpu using xe_pt_commit_bind().
684 * The function builds xe_vm_pgtable_update structures for already existing
685 * shared page-tables, and non-existing shared and non-shared page-tables
686 * are built and populated directly.
687 *
688 * Return 0 on success, negative error code on error.
689 */
690 static int
xe_pt_stage_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries,u32 * num_entries,bool clear_pt)691 xe_pt_stage_bind(struct xe_tile *tile, struct xe_vma *vma,
692 struct xe_svm_range *range,
693 struct xe_vm_pgtable_update *entries,
694 u32 *num_entries, bool clear_pt)
695 {
696 struct xe_device *xe = tile_to_xe(tile);
697 struct xe_bo *bo = xe_vma_bo(vma);
698 struct xe_res_cursor curs;
699 struct xe_vm *vm = xe_vma_vm(vma);
700 struct xe_pt_stage_bind_walk xe_walk = {
701 .base = {
702 .ops = &xe_pt_stage_bind_ops,
703 .shifts = xe_normal_pt_shifts,
704 .max_level = XE_PT_HIGHEST_LEVEL,
705 .staging = true,
706 },
707 .vm = vm,
708 .tile = tile,
709 .curs = &curs,
710 .va_curs_start = range ? range->base.itree.start :
711 xe_vma_start(vma),
712 .vma = vma,
713 .wupd.entries = entries,
714 .clear_pt = clear_pt,
715 };
716 struct xe_pt *pt = vm->pt_root[tile->id];
717 int ret;
718
719 if (range) {
720 /* Move this entire thing to xe_svm.c? */
721 xe_svm_notifier_lock(vm);
722 if (!xe_svm_range_pages_valid(range)) {
723 xe_svm_range_debug(range, "BIND PREPARE - RETRY");
724 xe_svm_notifier_unlock(vm);
725 return -EAGAIN;
726 }
727 if (xe_svm_range_has_dma_mapping(range)) {
728 xe_res_first_dma(range->base.dma_addr, 0,
729 range->base.itree.last + 1 - range->base.itree.start,
730 &curs);
731 xe_svm_range_debug(range, "BIND PREPARE - MIXED");
732 } else {
733 xe_assert(xe, false);
734 }
735 /*
736 * Note, when unlocking the resource cursor dma addresses may become
737 * stale, but the bind will be aborted anyway at commit time.
738 */
739 xe_svm_notifier_unlock(vm);
740 }
741
742 xe_walk.needs_64K = (vm->flags & XE_VM_FLAG_64K);
743 if (clear_pt)
744 goto walk_pt;
745
746 if (vma->gpuva.flags & XE_VMA_ATOMIC_PTE_BIT) {
747 xe_walk.default_vram_pte = xe_atomic_for_vram(vm) ? XE_USM_PPGTT_PTE_AE : 0;
748 xe_walk.default_system_pte = xe_atomic_for_system(vm, bo) ?
749 XE_USM_PPGTT_PTE_AE : 0;
750 }
751
752 xe_walk.default_vram_pte |= XE_PPGTT_PTE_DM;
753 xe_walk.dma_offset = bo ? vram_region_gpu_offset(bo->ttm.resource) : 0;
754 if (!range)
755 xe_bo_assert_held(bo);
756
757 if (!xe_vma_is_null(vma) && !range) {
758 if (xe_vma_is_userptr(vma))
759 xe_res_first_sg(to_userptr_vma(vma)->userptr.sg, 0,
760 xe_vma_size(vma), &curs);
761 else if (xe_bo_is_vram(bo) || xe_bo_is_stolen(bo))
762 xe_res_first(bo->ttm.resource, xe_vma_bo_offset(vma),
763 xe_vma_size(vma), &curs);
764 else
765 xe_res_first_sg(xe_bo_sg(bo), xe_vma_bo_offset(vma),
766 xe_vma_size(vma), &curs);
767 } else if (!range) {
768 curs.size = xe_vma_size(vma);
769 }
770
771 walk_pt:
772 ret = xe_pt_walk_range(&pt->base, pt->level,
773 range ? range->base.itree.start : xe_vma_start(vma),
774 range ? range->base.itree.last + 1 : xe_vma_end(vma),
775 &xe_walk.base);
776
777 *num_entries = xe_walk.wupd.num_used_entries;
778 return ret;
779 }
780
781 /**
782 * xe_pt_nonshared_offsets() - Determine the non-shared entry offsets of a
783 * shared pagetable.
784 * @addr: The start address within the non-shared pagetable.
785 * @end: The end address within the non-shared pagetable.
786 * @level: The level of the non-shared pagetable.
787 * @walk: Walk info. The function adjusts the walk action.
788 * @action: next action to perform (see enum page_walk_action)
789 * @offset: Ignored on input, First non-shared entry on output.
790 * @end_offset: Ignored on input, Last non-shared entry + 1 on output.
791 *
792 * A non-shared page-table has some entries that belong to the address range
793 * and others that don't. This function determines the entries that belong
794 * fully to the address range. Depending on level, some entries may
795 * partially belong to the address range (that can't happen at level 0).
796 * The function detects that and adjust those offsets to not include those
797 * partial entries. Iff it does detect partial entries, we know that there must
798 * be shared page tables also at lower levels, so it adjusts the walk action
799 * accordingly.
800 *
801 * Return: true if there were non-shared entries, false otherwise.
802 */
xe_pt_nonshared_offsets(u64 addr,u64 end,unsigned int level,struct xe_pt_walk * walk,enum page_walk_action * action,pgoff_t * offset,pgoff_t * end_offset)803 static bool xe_pt_nonshared_offsets(u64 addr, u64 end, unsigned int level,
804 struct xe_pt_walk *walk,
805 enum page_walk_action *action,
806 pgoff_t *offset, pgoff_t *end_offset)
807 {
808 u64 size = 1ull << walk->shifts[level];
809
810 *offset = xe_pt_offset(addr, level, walk);
811 *end_offset = xe_pt_num_entries(addr, end, level, walk) + *offset;
812
813 if (!level)
814 return true;
815
816 /*
817 * If addr or next are not size aligned, there are shared pts at lower
818 * level, so in that case traverse down the subtree
819 */
820 *action = ACTION_CONTINUE;
821 if (!IS_ALIGNED(addr, size)) {
822 *action = ACTION_SUBTREE;
823 (*offset)++;
824 }
825
826 if (!IS_ALIGNED(end, size)) {
827 *action = ACTION_SUBTREE;
828 (*end_offset)--;
829 }
830
831 return *end_offset > *offset;
832 }
833
834 struct xe_pt_zap_ptes_walk {
835 /** @base: The walk base-class */
836 struct xe_pt_walk base;
837
838 /* Input parameters for the walk */
839 /** @tile: The tile we're building for */
840 struct xe_tile *tile;
841
842 /* Output */
843 /** @needs_invalidate: Whether we need to invalidate TLB*/
844 bool needs_invalidate;
845 };
846
xe_pt_zap_ptes_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)847 static int xe_pt_zap_ptes_entry(struct xe_ptw *parent, pgoff_t offset,
848 unsigned int level, u64 addr, u64 next,
849 struct xe_ptw **child,
850 enum page_walk_action *action,
851 struct xe_pt_walk *walk)
852 {
853 struct xe_pt_zap_ptes_walk *xe_walk =
854 container_of(walk, typeof(*xe_walk), base);
855 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
856 pgoff_t end_offset;
857
858 XE_WARN_ON(!*child);
859 XE_WARN_ON(!level);
860
861 /*
862 * Note that we're called from an entry callback, and we're dealing
863 * with the child of that entry rather than the parent, so need to
864 * adjust level down.
865 */
866 if (xe_pt_nonshared_offsets(addr, next, --level, walk, action, &offset,
867 &end_offset)) {
868 xe_map_memset(tile_to_xe(xe_walk->tile), &xe_child->bo->vmap,
869 offset * sizeof(u64), 0,
870 (end_offset - offset) * sizeof(u64));
871 xe_walk->needs_invalidate = true;
872 }
873
874 return 0;
875 }
876
877 static const struct xe_pt_walk_ops xe_pt_zap_ptes_ops = {
878 .pt_entry = xe_pt_zap_ptes_entry,
879 };
880
881 /**
882 * xe_pt_zap_ptes() - Zap (zero) gpu ptes of an address range
883 * @tile: The tile we're zapping for.
884 * @vma: GPU VMA detailing address range.
885 *
886 * Eviction and Userptr invalidation needs to be able to zap the
887 * gpu ptes of a given address range in pagefaulting mode.
888 * In order to be able to do that, that function needs access to the shared
889 * page-table entrieaso it can either clear the leaf PTEs or
890 * clear the pointers to lower-level page-tables. The caller is required
891 * to hold the necessary locks to ensure neither the page-table connectivity
892 * nor the page-table entries of the range is updated from under us.
893 *
894 * Return: Whether ptes were actually updated and a TLB invalidation is
895 * required.
896 */
xe_pt_zap_ptes(struct xe_tile * tile,struct xe_vma * vma)897 bool xe_pt_zap_ptes(struct xe_tile *tile, struct xe_vma *vma)
898 {
899 struct xe_pt_zap_ptes_walk xe_walk = {
900 .base = {
901 .ops = &xe_pt_zap_ptes_ops,
902 .shifts = xe_normal_pt_shifts,
903 .max_level = XE_PT_HIGHEST_LEVEL,
904 },
905 .tile = tile,
906 };
907 struct xe_pt *pt = xe_vma_vm(vma)->pt_root[tile->id];
908 u8 pt_mask = (vma->tile_present & ~vma->tile_invalidated);
909
910 if (xe_vma_bo(vma))
911 xe_bo_assert_held(xe_vma_bo(vma));
912 else if (xe_vma_is_userptr(vma))
913 lockdep_assert_held(&xe_vma_vm(vma)->userptr.notifier_lock);
914
915 if (!(pt_mask & BIT(tile->id)))
916 return false;
917
918 (void)xe_pt_walk_shared(&pt->base, pt->level, xe_vma_start(vma),
919 xe_vma_end(vma), &xe_walk.base);
920
921 return xe_walk.needs_invalidate;
922 }
923
924 /**
925 * xe_pt_zap_ptes_range() - Zap (zero) gpu ptes of a SVM range
926 * @tile: The tile we're zapping for.
927 * @vm: The VM we're zapping for.
928 * @range: The SVM range we're zapping for.
929 *
930 * SVM invalidation needs to be able to zap the gpu ptes of a given address
931 * range. In order to be able to do that, that function needs access to the
932 * shared page-table entries so it can either clear the leaf PTEs or
933 * clear the pointers to lower-level page-tables. The caller is required
934 * to hold the SVM notifier lock.
935 *
936 * Return: Whether ptes were actually updated and a TLB invalidation is
937 * required.
938 */
xe_pt_zap_ptes_range(struct xe_tile * tile,struct xe_vm * vm,struct xe_svm_range * range)939 bool xe_pt_zap_ptes_range(struct xe_tile *tile, struct xe_vm *vm,
940 struct xe_svm_range *range)
941 {
942 struct xe_pt_zap_ptes_walk xe_walk = {
943 .base = {
944 .ops = &xe_pt_zap_ptes_ops,
945 .shifts = xe_normal_pt_shifts,
946 .max_level = XE_PT_HIGHEST_LEVEL,
947 },
948 .tile = tile,
949 };
950 struct xe_pt *pt = vm->pt_root[tile->id];
951 u8 pt_mask = (range->tile_present & ~range->tile_invalidated);
952
953 xe_svm_assert_in_notifier(vm);
954
955 if (!(pt_mask & BIT(tile->id)))
956 return false;
957
958 (void)xe_pt_walk_shared(&pt->base, pt->level, range->base.itree.start,
959 range->base.itree.last + 1, &xe_walk.base);
960
961 return xe_walk.needs_invalidate;
962 }
963
964 static void
xe_vm_populate_pgtable(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * data,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)965 xe_vm_populate_pgtable(struct xe_migrate_pt_update *pt_update, struct xe_tile *tile,
966 struct iosys_map *map, void *data,
967 u32 qword_ofs, u32 num_qwords,
968 const struct xe_vm_pgtable_update *update)
969 {
970 struct xe_pt_entry *ptes = update->pt_entries;
971 u64 *ptr = data;
972 u32 i;
973
974 for (i = 0; i < num_qwords; i++) {
975 if (map)
976 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
977 sizeof(u64), u64, ptes[i].pte);
978 else
979 ptr[i] = ptes[i].pte;
980 }
981 }
982
xe_pt_cancel_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)983 static void xe_pt_cancel_bind(struct xe_vma *vma,
984 struct xe_vm_pgtable_update *entries,
985 u32 num_entries)
986 {
987 u32 i, j;
988
989 for (i = 0; i < num_entries; i++) {
990 struct xe_pt *pt = entries[i].pt;
991
992 if (!pt)
993 continue;
994
995 if (pt->level) {
996 for (j = 0; j < entries[i].qwords; j++)
997 xe_pt_destroy(entries[i].pt_entries[j].pt,
998 xe_vma_vm(vma)->flags, NULL);
999 }
1000
1001 kfree(entries[i].pt_entries);
1002 entries[i].pt_entries = NULL;
1003 entries[i].qwords = 0;
1004 }
1005 }
1006
1007 #define XE_INVALID_VMA ((struct xe_vma *)(0xdeaddeadull))
1008
xe_pt_commit_prepare_locks_assert(struct xe_vma * vma)1009 static void xe_pt_commit_prepare_locks_assert(struct xe_vma *vma)
1010 {
1011 struct xe_vm *vm;
1012
1013 if (vma == XE_INVALID_VMA)
1014 return;
1015
1016 vm = xe_vma_vm(vma);
1017 lockdep_assert_held(&vm->lock);
1018
1019 if (!xe_vma_has_no_bo(vma))
1020 dma_resv_assert_held(xe_vma_bo(vma)->ttm.base.resv);
1021
1022 xe_vm_assert_held(vm);
1023 }
1024
xe_pt_commit_locks_assert(struct xe_vma * vma)1025 static void xe_pt_commit_locks_assert(struct xe_vma *vma)
1026 {
1027 struct xe_vm *vm;
1028
1029 if (vma == XE_INVALID_VMA)
1030 return;
1031
1032 vm = xe_vma_vm(vma);
1033 xe_pt_commit_prepare_locks_assert(vma);
1034
1035 if (xe_vma_is_userptr(vma))
1036 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1037 }
1038
xe_pt_commit(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,struct llist_head * deferred)1039 static void xe_pt_commit(struct xe_vma *vma,
1040 struct xe_vm_pgtable_update *entries,
1041 u32 num_entries, struct llist_head *deferred)
1042 {
1043 u32 i, j;
1044
1045 xe_pt_commit_locks_assert(vma);
1046
1047 for (i = 0; i < num_entries; i++) {
1048 struct xe_pt *pt = entries[i].pt;
1049 struct xe_pt_dir *pt_dir;
1050
1051 if (!pt->level)
1052 continue;
1053
1054 pt_dir = as_xe_pt_dir(pt);
1055 for (j = 0; j < entries[i].qwords; j++) {
1056 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1057 int j_ = j + entries[i].ofs;
1058
1059 pt_dir->children[j_] = pt_dir->staging[j_];
1060 xe_pt_destroy(oldpte, (vma == XE_INVALID_VMA) ? 0 :
1061 xe_vma_vm(vma)->flags, deferred);
1062 }
1063 }
1064 }
1065
xe_pt_abort_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)1066 static void xe_pt_abort_bind(struct xe_vma *vma,
1067 struct xe_vm_pgtable_update *entries,
1068 u32 num_entries, bool rebind)
1069 {
1070 int i, j;
1071
1072 xe_pt_commit_prepare_locks_assert(vma);
1073
1074 for (i = num_entries - 1; i >= 0; --i) {
1075 struct xe_pt *pt = entries[i].pt;
1076 struct xe_pt_dir *pt_dir;
1077
1078 if (!rebind)
1079 pt->num_live -= entries[i].qwords;
1080
1081 if (!pt->level)
1082 continue;
1083
1084 pt_dir = as_xe_pt_dir(pt);
1085 for (j = 0; j < entries[i].qwords; j++) {
1086 u32 j_ = j + entries[i].ofs;
1087 struct xe_pt *newpte = xe_pt_entry_staging(pt_dir, j_);
1088 struct xe_pt *oldpte = entries[i].pt_entries[j].pt;
1089
1090 pt_dir->staging[j_] = oldpte ? &oldpte->base : 0;
1091 xe_pt_destroy(newpte, xe_vma_vm(vma)->flags, NULL);
1092 }
1093 }
1094 }
1095
xe_pt_commit_prepare_bind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries,bool rebind)1096 static void xe_pt_commit_prepare_bind(struct xe_vma *vma,
1097 struct xe_vm_pgtable_update *entries,
1098 u32 num_entries, bool rebind)
1099 {
1100 u32 i, j;
1101
1102 xe_pt_commit_prepare_locks_assert(vma);
1103
1104 for (i = 0; i < num_entries; i++) {
1105 struct xe_pt *pt = entries[i].pt;
1106 struct xe_pt_dir *pt_dir;
1107
1108 if (!rebind)
1109 pt->num_live += entries[i].qwords;
1110
1111 if (!pt->level)
1112 continue;
1113
1114 pt_dir = as_xe_pt_dir(pt);
1115 for (j = 0; j < entries[i].qwords; j++) {
1116 u32 j_ = j + entries[i].ofs;
1117 struct xe_pt *newpte = entries[i].pt_entries[j].pt;
1118 struct xe_pt *oldpte = NULL;
1119
1120 if (xe_pt_entry_staging(pt_dir, j_))
1121 oldpte = xe_pt_entry_staging(pt_dir, j_);
1122
1123 pt_dir->staging[j_] = &newpte->base;
1124 entries[i].pt_entries[j].pt = oldpte;
1125 }
1126 }
1127 }
1128
xe_pt_free_bind(struct xe_vm_pgtable_update * entries,u32 num_entries)1129 static void xe_pt_free_bind(struct xe_vm_pgtable_update *entries,
1130 u32 num_entries)
1131 {
1132 u32 i;
1133
1134 for (i = 0; i < num_entries; i++)
1135 kfree(entries[i].pt_entries);
1136 }
1137
1138 static int
xe_pt_prepare_bind(struct xe_tile * tile,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries,u32 * num_entries,bool invalidate_on_bind)1139 xe_pt_prepare_bind(struct xe_tile *tile, struct xe_vma *vma,
1140 struct xe_svm_range *range,
1141 struct xe_vm_pgtable_update *entries,
1142 u32 *num_entries, bool invalidate_on_bind)
1143 {
1144 int err;
1145
1146 *num_entries = 0;
1147 err = xe_pt_stage_bind(tile, vma, range, entries, num_entries,
1148 invalidate_on_bind);
1149 if (!err)
1150 xe_tile_assert(tile, *num_entries);
1151
1152 return err;
1153 }
1154
xe_vm_dbg_print_entries(struct xe_device * xe,const struct xe_vm_pgtable_update * entries,unsigned int num_entries,bool bind)1155 static void xe_vm_dbg_print_entries(struct xe_device *xe,
1156 const struct xe_vm_pgtable_update *entries,
1157 unsigned int num_entries, bool bind)
1158 #if (IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM))
1159 {
1160 unsigned int i;
1161
1162 vm_dbg(&xe->drm, "%s: %u entries to update\n", bind ? "bind" : "unbind",
1163 num_entries);
1164 for (i = 0; i < num_entries; i++) {
1165 const struct xe_vm_pgtable_update *entry = &entries[i];
1166 struct xe_pt *xe_pt = entry->pt;
1167 u64 page_size = 1ull << xe_pt_shift(xe_pt->level);
1168 u64 end;
1169 u64 start;
1170
1171 xe_assert(xe, !entry->pt->is_compact);
1172 start = entry->ofs * page_size;
1173 end = start + page_size * entry->qwords;
1174 vm_dbg(&xe->drm,
1175 "\t%u: Update level %u at (%u + %u) [%llx...%llx) f:%x\n",
1176 i, xe_pt->level, entry->ofs, entry->qwords,
1177 xe_pt_addr(xe_pt) + start, xe_pt_addr(xe_pt) + end, 0);
1178 }
1179 }
1180 #else
1181 {}
1182 #endif
1183
no_in_syncs(struct xe_sync_entry * syncs,u32 num_syncs)1184 static bool no_in_syncs(struct xe_sync_entry *syncs, u32 num_syncs)
1185 {
1186 int i;
1187
1188 for (i = 0; i < num_syncs; i++) {
1189 struct dma_fence *fence = syncs[i].fence;
1190
1191 if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1192 &fence->flags))
1193 return false;
1194 }
1195
1196 return true;
1197 }
1198
job_test_add_deps(struct xe_sched_job * job,struct dma_resv * resv,enum dma_resv_usage usage)1199 static int job_test_add_deps(struct xe_sched_job *job,
1200 struct dma_resv *resv,
1201 enum dma_resv_usage usage)
1202 {
1203 if (!job) {
1204 if (!dma_resv_test_signaled(resv, usage))
1205 return -ETIME;
1206
1207 return 0;
1208 }
1209
1210 return xe_sched_job_add_deps(job, resv, usage);
1211 }
1212
vma_add_deps(struct xe_vma * vma,struct xe_sched_job * job)1213 static int vma_add_deps(struct xe_vma *vma, struct xe_sched_job *job)
1214 {
1215 struct xe_bo *bo = xe_vma_bo(vma);
1216
1217 xe_bo_assert_held(bo);
1218
1219 if (bo && !bo->vm)
1220 return job_test_add_deps(job, bo->ttm.base.resv,
1221 DMA_RESV_USAGE_KERNEL);
1222
1223 return 0;
1224 }
1225
op_add_deps(struct xe_vm * vm,struct xe_vma_op * op,struct xe_sched_job * job)1226 static int op_add_deps(struct xe_vm *vm, struct xe_vma_op *op,
1227 struct xe_sched_job *job)
1228 {
1229 int err = 0;
1230
1231 /*
1232 * No need to check for is_cpu_addr_mirror here as vma_add_deps is a
1233 * NOP if VMA is_cpu_addr_mirror
1234 */
1235
1236 switch (op->base.op) {
1237 case DRM_GPUVA_OP_MAP:
1238 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1239 break;
1240
1241 err = vma_add_deps(op->map.vma, job);
1242 break;
1243 case DRM_GPUVA_OP_REMAP:
1244 if (op->remap.prev)
1245 err = vma_add_deps(op->remap.prev, job);
1246 if (!err && op->remap.next)
1247 err = vma_add_deps(op->remap.next, job);
1248 break;
1249 case DRM_GPUVA_OP_UNMAP:
1250 break;
1251 case DRM_GPUVA_OP_PREFETCH:
1252 err = vma_add_deps(gpuva_to_vma(op->base.prefetch.va), job);
1253 break;
1254 case DRM_GPUVA_OP_DRIVER:
1255 break;
1256 default:
1257 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1258 }
1259
1260 return err;
1261 }
1262
xe_pt_vm_dependencies(struct xe_sched_job * job,struct xe_vm * vm,struct xe_vma_ops * vops,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_range_fence_tree * rftree)1263 static int xe_pt_vm_dependencies(struct xe_sched_job *job,
1264 struct xe_vm *vm,
1265 struct xe_vma_ops *vops,
1266 struct xe_vm_pgtable_update_ops *pt_update_ops,
1267 struct xe_range_fence_tree *rftree)
1268 {
1269 struct xe_range_fence *rtfence;
1270 struct dma_fence *fence;
1271 struct xe_vma_op *op;
1272 int err = 0, i;
1273
1274 xe_vm_assert_held(vm);
1275
1276 if (!job && !no_in_syncs(vops->syncs, vops->num_syncs))
1277 return -ETIME;
1278
1279 if (!job && !xe_exec_queue_is_idle(pt_update_ops->q))
1280 return -ETIME;
1281
1282 if (pt_update_ops->wait_vm_bookkeep || pt_update_ops->wait_vm_kernel) {
1283 err = job_test_add_deps(job, xe_vm_resv(vm),
1284 pt_update_ops->wait_vm_bookkeep ?
1285 DMA_RESV_USAGE_BOOKKEEP :
1286 DMA_RESV_USAGE_KERNEL);
1287 if (err)
1288 return err;
1289 }
1290
1291 rtfence = xe_range_fence_tree_first(rftree, pt_update_ops->start,
1292 pt_update_ops->last);
1293 while (rtfence) {
1294 fence = rtfence->fence;
1295
1296 if (!dma_fence_is_signaled(fence)) {
1297 /*
1298 * Is this a CPU update? GPU is busy updating, so return
1299 * an error
1300 */
1301 if (!job)
1302 return -ETIME;
1303
1304 dma_fence_get(fence);
1305 err = drm_sched_job_add_dependency(&job->drm, fence);
1306 if (err)
1307 return err;
1308 }
1309
1310 rtfence = xe_range_fence_tree_next(rtfence,
1311 pt_update_ops->start,
1312 pt_update_ops->last);
1313 }
1314
1315 list_for_each_entry(op, &vops->list, link) {
1316 err = op_add_deps(vm, op, job);
1317 if (err)
1318 return err;
1319 }
1320
1321 if (!(pt_update_ops->q->flags & EXEC_QUEUE_FLAG_KERNEL)) {
1322 if (job)
1323 err = xe_sched_job_last_fence_add_dep(job, vm);
1324 else
1325 err = xe_exec_queue_last_fence_test_dep(pt_update_ops->q, vm);
1326 }
1327
1328 for (i = 0; job && !err && i < vops->num_syncs; i++)
1329 err = xe_sync_entry_add_deps(&vops->syncs[i], job);
1330
1331 return err;
1332 }
1333
xe_pt_pre_commit(struct xe_migrate_pt_update * pt_update)1334 static int xe_pt_pre_commit(struct xe_migrate_pt_update *pt_update)
1335 {
1336 struct xe_vma_ops *vops = pt_update->vops;
1337 struct xe_vm *vm = vops->vm;
1338 struct xe_range_fence_tree *rftree = &vm->rftree[pt_update->tile_id];
1339 struct xe_vm_pgtable_update_ops *pt_update_ops =
1340 &vops->pt_update_ops[pt_update->tile_id];
1341
1342 return xe_pt_vm_dependencies(pt_update->job, vm, pt_update->vops,
1343 pt_update_ops, rftree);
1344 }
1345
1346 #ifdef CONFIG_DRM_XE_USERPTR_INVAL_INJECT
1347
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1348 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1349 {
1350 u32 divisor = uvma->userptr.divisor ? uvma->userptr.divisor : 2;
1351 static u32 count;
1352
1353 if (count++ % divisor == divisor - 1) {
1354 uvma->userptr.divisor = divisor << 1;
1355 return true;
1356 }
1357
1358 return false;
1359 }
1360
1361 #else
1362
xe_pt_userptr_inject_eagain(struct xe_userptr_vma * uvma)1363 static bool xe_pt_userptr_inject_eagain(struct xe_userptr_vma *uvma)
1364 {
1365 return false;
1366 }
1367
1368 #endif
1369
vma_check_userptr(struct xe_vm * vm,struct xe_vma * vma,struct xe_vm_pgtable_update_ops * pt_update)1370 static int vma_check_userptr(struct xe_vm *vm, struct xe_vma *vma,
1371 struct xe_vm_pgtable_update_ops *pt_update)
1372 {
1373 struct xe_userptr_vma *uvma;
1374 unsigned long notifier_seq;
1375
1376 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1377
1378 if (!xe_vma_is_userptr(vma))
1379 return 0;
1380
1381 uvma = to_userptr_vma(vma);
1382 if (xe_pt_userptr_inject_eagain(uvma))
1383 xe_vma_userptr_force_invalidate(uvma);
1384
1385 notifier_seq = uvma->userptr.notifier_seq;
1386
1387 if (!mmu_interval_read_retry(&uvma->userptr.notifier,
1388 notifier_seq))
1389 return 0;
1390
1391 if (xe_vm_in_fault_mode(vm))
1392 return -EAGAIN;
1393
1394 /*
1395 * Just continue the operation since exec or rebind worker
1396 * will take care of rebinding.
1397 */
1398 return 0;
1399 }
1400
op_check_userptr(struct xe_vm * vm,struct xe_vma_op * op,struct xe_vm_pgtable_update_ops * pt_update)1401 static int op_check_userptr(struct xe_vm *vm, struct xe_vma_op *op,
1402 struct xe_vm_pgtable_update_ops *pt_update)
1403 {
1404 int err = 0;
1405
1406 lockdep_assert_held_read(&vm->userptr.notifier_lock);
1407
1408 switch (op->base.op) {
1409 case DRM_GPUVA_OP_MAP:
1410 if (!op->map.immediate && xe_vm_in_fault_mode(vm))
1411 break;
1412
1413 err = vma_check_userptr(vm, op->map.vma, pt_update);
1414 break;
1415 case DRM_GPUVA_OP_REMAP:
1416 if (op->remap.prev)
1417 err = vma_check_userptr(vm, op->remap.prev, pt_update);
1418 if (!err && op->remap.next)
1419 err = vma_check_userptr(vm, op->remap.next, pt_update);
1420 break;
1421 case DRM_GPUVA_OP_UNMAP:
1422 break;
1423 case DRM_GPUVA_OP_PREFETCH:
1424 err = vma_check_userptr(vm, gpuva_to_vma(op->base.prefetch.va),
1425 pt_update);
1426 break;
1427 default:
1428 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
1429 }
1430
1431 return err;
1432 }
1433
xe_pt_userptr_pre_commit(struct xe_migrate_pt_update * pt_update)1434 static int xe_pt_userptr_pre_commit(struct xe_migrate_pt_update *pt_update)
1435 {
1436 struct xe_vm *vm = pt_update->vops->vm;
1437 struct xe_vma_ops *vops = pt_update->vops;
1438 struct xe_vm_pgtable_update_ops *pt_update_ops =
1439 &vops->pt_update_ops[pt_update->tile_id];
1440 struct xe_vma_op *op;
1441 int err;
1442
1443 err = xe_pt_pre_commit(pt_update);
1444 if (err)
1445 return err;
1446
1447 down_read(&vm->userptr.notifier_lock);
1448
1449 list_for_each_entry(op, &vops->list, link) {
1450 err = op_check_userptr(vm, op, pt_update_ops);
1451 if (err) {
1452 up_read(&vm->userptr.notifier_lock);
1453 break;
1454 }
1455 }
1456
1457 return err;
1458 }
1459
1460 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM)
xe_pt_svm_pre_commit(struct xe_migrate_pt_update * pt_update)1461 static int xe_pt_svm_pre_commit(struct xe_migrate_pt_update *pt_update)
1462 {
1463 struct xe_vm *vm = pt_update->vops->vm;
1464 struct xe_vma_ops *vops = pt_update->vops;
1465 struct xe_vma_op *op;
1466 unsigned long i;
1467 int err;
1468
1469 err = xe_pt_pre_commit(pt_update);
1470 if (err)
1471 return err;
1472
1473 xe_svm_notifier_lock(vm);
1474
1475 list_for_each_entry(op, &vops->list, link) {
1476 struct xe_svm_range *range = NULL;
1477
1478 if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE)
1479 continue;
1480
1481 if (op->base.op == DRM_GPUVA_OP_PREFETCH) {
1482 xe_assert(vm->xe,
1483 xe_vma_is_cpu_addr_mirror(gpuva_to_vma(op->base.prefetch.va)));
1484 xa_for_each(&op->prefetch_range.range, i, range) {
1485 xe_svm_range_debug(range, "PRE-COMMIT");
1486
1487 if (!xe_svm_range_pages_valid(range)) {
1488 xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1489 xe_svm_notifier_unlock(vm);
1490 return -ENODATA;
1491 }
1492 }
1493 } else {
1494 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
1495 xe_assert(vm->xe, op->subop == XE_VMA_SUBOP_MAP_RANGE);
1496 range = op->map_range.range;
1497
1498 xe_svm_range_debug(range, "PRE-COMMIT");
1499
1500 if (!xe_svm_range_pages_valid(range)) {
1501 xe_svm_range_debug(range, "PRE-COMMIT - RETRY");
1502 xe_svm_notifier_unlock(vm);
1503 return -EAGAIN;
1504 }
1505 }
1506 }
1507
1508 return 0;
1509 }
1510 #endif
1511
1512 struct invalidation_fence {
1513 struct xe_gt_tlb_invalidation_fence base;
1514 struct xe_gt *gt;
1515 struct dma_fence *fence;
1516 struct dma_fence_cb cb;
1517 struct work_struct work;
1518 u64 start;
1519 u64 end;
1520 u32 asid;
1521 };
1522
invalidation_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)1523 static void invalidation_fence_cb(struct dma_fence *fence,
1524 struct dma_fence_cb *cb)
1525 {
1526 struct invalidation_fence *ifence =
1527 container_of(cb, struct invalidation_fence, cb);
1528 struct xe_device *xe = gt_to_xe(ifence->gt);
1529
1530 trace_xe_gt_tlb_invalidation_fence_cb(xe, &ifence->base);
1531 if (!ifence->fence->error) {
1532 queue_work(system_wq, &ifence->work);
1533 } else {
1534 ifence->base.base.error = ifence->fence->error;
1535 xe_gt_tlb_invalidation_fence_signal(&ifence->base);
1536 }
1537 dma_fence_put(ifence->fence);
1538 }
1539
invalidation_fence_work_func(struct work_struct * w)1540 static void invalidation_fence_work_func(struct work_struct *w)
1541 {
1542 struct invalidation_fence *ifence =
1543 container_of(w, struct invalidation_fence, work);
1544 struct xe_device *xe = gt_to_xe(ifence->gt);
1545
1546 trace_xe_gt_tlb_invalidation_fence_work_func(xe, &ifence->base);
1547 xe_gt_tlb_invalidation_range(ifence->gt, &ifence->base, ifence->start,
1548 ifence->end, ifence->asid);
1549 }
1550
invalidation_fence_init(struct xe_gt * gt,struct invalidation_fence * ifence,struct dma_fence * fence,u64 start,u64 end,u32 asid)1551 static void invalidation_fence_init(struct xe_gt *gt,
1552 struct invalidation_fence *ifence,
1553 struct dma_fence *fence,
1554 u64 start, u64 end, u32 asid)
1555 {
1556 int ret;
1557
1558 trace_xe_gt_tlb_invalidation_fence_create(gt_to_xe(gt), &ifence->base);
1559
1560 xe_gt_tlb_invalidation_fence_init(gt, &ifence->base, false);
1561
1562 ifence->fence = fence;
1563 ifence->gt = gt;
1564 ifence->start = start;
1565 ifence->end = end;
1566 ifence->asid = asid;
1567
1568 INIT_WORK(&ifence->work, invalidation_fence_work_func);
1569 ret = dma_fence_add_callback(fence, &ifence->cb, invalidation_fence_cb);
1570 if (ret == -ENOENT) {
1571 dma_fence_put(ifence->fence); /* Usually dropped in CB */
1572 invalidation_fence_work_func(&ifence->work);
1573 } else if (ret) {
1574 dma_fence_put(&ifence->base.base); /* Caller ref */
1575 dma_fence_put(&ifence->base.base); /* Creation ref */
1576 }
1577
1578 xe_gt_assert(gt, !ret || ret == -ENOENT);
1579 }
1580
1581 struct xe_pt_stage_unbind_walk {
1582 /** @base: The pagewalk base-class. */
1583 struct xe_pt_walk base;
1584
1585 /* Input parameters for the walk */
1586 /** @tile: The tile we're unbinding from. */
1587 struct xe_tile *tile;
1588
1589 /**
1590 * @modified_start: Walk range start, modified to include any
1591 * shared pagetables that we're the only user of and can thus
1592 * treat as private.
1593 */
1594 u64 modified_start;
1595 /** @modified_end: Walk range start, modified like @modified_start. */
1596 u64 modified_end;
1597
1598 /* Output */
1599 /* @wupd: Structure to track the page-table updates we're building */
1600 struct xe_walk_update wupd;
1601 };
1602
1603 /*
1604 * Check whether this range is the only one populating this pagetable,
1605 * and in that case, update the walk range checks so that higher levels don't
1606 * view us as a shared pagetable.
1607 */
xe_pt_check_kill(u64 addr,u64 next,unsigned int level,const struct xe_pt * child,enum page_walk_action * action,struct xe_pt_walk * walk)1608 static bool xe_pt_check_kill(u64 addr, u64 next, unsigned int level,
1609 const struct xe_pt *child,
1610 enum page_walk_action *action,
1611 struct xe_pt_walk *walk)
1612 {
1613 struct xe_pt_stage_unbind_walk *xe_walk =
1614 container_of(walk, typeof(*xe_walk), base);
1615 unsigned int shift = walk->shifts[level];
1616 u64 size = 1ull << shift;
1617
1618 if (IS_ALIGNED(addr, size) && IS_ALIGNED(next, size) &&
1619 ((next - addr) >> shift) == child->num_live) {
1620 u64 size = 1ull << walk->shifts[level + 1];
1621
1622 *action = ACTION_CONTINUE;
1623
1624 if (xe_walk->modified_start >= addr)
1625 xe_walk->modified_start = round_down(addr, size);
1626 if (xe_walk->modified_end <= next)
1627 xe_walk->modified_end = round_up(next, size);
1628
1629 return true;
1630 }
1631
1632 return false;
1633 }
1634
xe_pt_stage_unbind_entry(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1635 static int xe_pt_stage_unbind_entry(struct xe_ptw *parent, pgoff_t offset,
1636 unsigned int level, u64 addr, u64 next,
1637 struct xe_ptw **child,
1638 enum page_walk_action *action,
1639 struct xe_pt_walk *walk)
1640 {
1641 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1642
1643 XE_WARN_ON(!*child);
1644 XE_WARN_ON(!level);
1645
1646 xe_pt_check_kill(addr, next, level - 1, xe_child, action, walk);
1647
1648 return 0;
1649 }
1650
1651 static int
xe_pt_stage_unbind_post_descend(struct xe_ptw * parent,pgoff_t offset,unsigned int level,u64 addr,u64 next,struct xe_ptw ** child,enum page_walk_action * action,struct xe_pt_walk * walk)1652 xe_pt_stage_unbind_post_descend(struct xe_ptw *parent, pgoff_t offset,
1653 unsigned int level, u64 addr, u64 next,
1654 struct xe_ptw **child,
1655 enum page_walk_action *action,
1656 struct xe_pt_walk *walk)
1657 {
1658 struct xe_pt_stage_unbind_walk *xe_walk =
1659 container_of(walk, typeof(*xe_walk), base);
1660 struct xe_pt *xe_child = container_of(*child, typeof(*xe_child), base);
1661 pgoff_t end_offset;
1662 u64 size = 1ull << walk->shifts[--level];
1663 int err;
1664
1665 if (!IS_ALIGNED(addr, size))
1666 addr = xe_walk->modified_start;
1667 if (!IS_ALIGNED(next, size))
1668 next = xe_walk->modified_end;
1669
1670 /* Parent == *child is the root pt. Don't kill it. */
1671 if (parent != *child &&
1672 xe_pt_check_kill(addr, next, level, xe_child, action, walk))
1673 return 0;
1674
1675 if (!xe_pt_nonshared_offsets(addr, next, level, walk, action, &offset,
1676 &end_offset))
1677 return 0;
1678
1679 err = xe_pt_new_shared(&xe_walk->wupd, xe_child, offset, true);
1680 if (err)
1681 return err;
1682
1683 xe_walk->wupd.updates[level].update->qwords = end_offset - offset;
1684
1685 return 0;
1686 }
1687
1688 static const struct xe_pt_walk_ops xe_pt_stage_unbind_ops = {
1689 .pt_entry = xe_pt_stage_unbind_entry,
1690 .pt_post_descend = xe_pt_stage_unbind_post_descend,
1691 };
1692
1693 /**
1694 * xe_pt_stage_unbind() - Build page-table update structures for an unbind
1695 * operation
1696 * @tile: The tile we're unbinding for.
1697 * @vm: The vm
1698 * @vma: The vma we're unbinding.
1699 * @range: The range we're unbinding.
1700 * @entries: Caller-provided storage for the update structures.
1701 *
1702 * Builds page-table update structures for an unbind operation. The function
1703 * will attempt to remove all page-tables that we're the only user
1704 * of, and for that to work, the unbind operation must be committed in the
1705 * same critical section that blocks racing binds to the same page-table tree.
1706 *
1707 * Return: The number of entries used.
1708 */
xe_pt_stage_unbind(struct xe_tile * tile,struct xe_vm * vm,struct xe_vma * vma,struct xe_svm_range * range,struct xe_vm_pgtable_update * entries)1709 static unsigned int xe_pt_stage_unbind(struct xe_tile *tile,
1710 struct xe_vm *vm,
1711 struct xe_vma *vma,
1712 struct xe_svm_range *range,
1713 struct xe_vm_pgtable_update *entries)
1714 {
1715 u64 start = range ? range->base.itree.start : xe_vma_start(vma);
1716 u64 end = range ? range->base.itree.last + 1 : xe_vma_end(vma);
1717 struct xe_pt_stage_unbind_walk xe_walk = {
1718 .base = {
1719 .ops = &xe_pt_stage_unbind_ops,
1720 .shifts = xe_normal_pt_shifts,
1721 .max_level = XE_PT_HIGHEST_LEVEL,
1722 .staging = true,
1723 },
1724 .tile = tile,
1725 .modified_start = start,
1726 .modified_end = end,
1727 .wupd.entries = entries,
1728 };
1729 struct xe_pt *pt = vm->pt_root[tile->id];
1730
1731 (void)xe_pt_walk_shared(&pt->base, pt->level, start, end,
1732 &xe_walk.base);
1733
1734 return xe_walk.wupd.num_used_entries;
1735 }
1736
1737 static void
xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update * pt_update,struct xe_tile * tile,struct iosys_map * map,void * ptr,u32 qword_ofs,u32 num_qwords,const struct xe_vm_pgtable_update * update)1738 xe_migrate_clear_pgtable_callback(struct xe_migrate_pt_update *pt_update,
1739 struct xe_tile *tile, struct iosys_map *map,
1740 void *ptr, u32 qword_ofs, u32 num_qwords,
1741 const struct xe_vm_pgtable_update *update)
1742 {
1743 struct xe_vm *vm = pt_update->vops->vm;
1744 u64 empty = __xe_pt_empty_pte(tile, vm, update->pt->level);
1745 int i;
1746
1747 if (map && map->is_iomem)
1748 for (i = 0; i < num_qwords; ++i)
1749 xe_map_wr(tile_to_xe(tile), map, (qword_ofs + i) *
1750 sizeof(u64), u64, empty);
1751 else if (map)
1752 memset64(map->vaddr + qword_ofs * sizeof(u64), empty,
1753 num_qwords);
1754 else
1755 memset64(ptr, empty, num_qwords);
1756 }
1757
xe_pt_abort_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1758 static void xe_pt_abort_unbind(struct xe_vma *vma,
1759 struct xe_vm_pgtable_update *entries,
1760 u32 num_entries)
1761 {
1762 int i, j;
1763
1764 xe_pt_commit_prepare_locks_assert(vma);
1765
1766 for (i = num_entries - 1; i >= 0; --i) {
1767 struct xe_vm_pgtable_update *entry = &entries[i];
1768 struct xe_pt *pt = entry->pt;
1769 struct xe_pt_dir *pt_dir = as_xe_pt_dir(pt);
1770
1771 pt->num_live += entry->qwords;
1772
1773 if (!pt->level)
1774 continue;
1775
1776 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++)
1777 pt_dir->staging[j] =
1778 entries[i].pt_entries[j - entry->ofs].pt ?
1779 &entries[i].pt_entries[j - entry->ofs].pt->base : NULL;
1780 }
1781 }
1782
1783 static void
xe_pt_commit_prepare_unbind(struct xe_vma * vma,struct xe_vm_pgtable_update * entries,u32 num_entries)1784 xe_pt_commit_prepare_unbind(struct xe_vma *vma,
1785 struct xe_vm_pgtable_update *entries,
1786 u32 num_entries)
1787 {
1788 int i, j;
1789
1790 xe_pt_commit_prepare_locks_assert(vma);
1791
1792 for (i = 0; i < num_entries; ++i) {
1793 struct xe_vm_pgtable_update *entry = &entries[i];
1794 struct xe_pt *pt = entry->pt;
1795 struct xe_pt_dir *pt_dir;
1796
1797 pt->num_live -= entry->qwords;
1798 if (!pt->level)
1799 continue;
1800
1801 pt_dir = as_xe_pt_dir(pt);
1802 for (j = entry->ofs; j < entry->ofs + entry->qwords; j++) {
1803 entry->pt_entries[j - entry->ofs].pt =
1804 xe_pt_entry_staging(pt_dir, j);
1805 pt_dir->staging[j] = NULL;
1806 }
1807 }
1808 }
1809
1810 static void
xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops * pt_update_ops,u64 start,u64 end)1811 xe_pt_update_ops_rfence_interval(struct xe_vm_pgtable_update_ops *pt_update_ops,
1812 u64 start, u64 end)
1813 {
1814 u64 last;
1815 u32 current_op = pt_update_ops->current_op;
1816 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1817 int i, level = 0;
1818
1819 for (i = 0; i < pt_op->num_entries; i++) {
1820 const struct xe_vm_pgtable_update *entry = &pt_op->entries[i];
1821
1822 if (entry->pt->level > level)
1823 level = entry->pt->level;
1824 }
1825
1826 /* Greedy (non-optimal) calculation but simple */
1827 start = ALIGN_DOWN(start, 0x1ull << xe_pt_shift(level));
1828 last = ALIGN(end, 0x1ull << xe_pt_shift(level)) - 1;
1829
1830 if (start < pt_update_ops->start)
1831 pt_update_ops->start = start;
1832 if (last > pt_update_ops->last)
1833 pt_update_ops->last = last;
1834 }
1835
vma_reserve_fences(struct xe_device * xe,struct xe_vma * vma)1836 static int vma_reserve_fences(struct xe_device *xe, struct xe_vma *vma)
1837 {
1838 int shift = xe_device_get_root_tile(xe)->media_gt ? 1 : 0;
1839
1840 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm)
1841 return dma_resv_reserve_fences(xe_vma_bo(vma)->ttm.base.resv,
1842 xe->info.tile_count << shift);
1843
1844 return 0;
1845 }
1846
bind_op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,bool invalidate_on_bind)1847 static int bind_op_prepare(struct xe_vm *vm, struct xe_tile *tile,
1848 struct xe_vm_pgtable_update_ops *pt_update_ops,
1849 struct xe_vma *vma, bool invalidate_on_bind)
1850 {
1851 u32 current_op = pt_update_ops->current_op;
1852 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1853 int err;
1854
1855 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1856 xe_bo_assert_held(xe_vma_bo(vma));
1857
1858 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1859 "Preparing bind, with range [%llx...%llx)\n",
1860 xe_vma_start(vma), xe_vma_end(vma) - 1);
1861
1862 pt_op->vma = NULL;
1863 pt_op->bind = true;
1864 pt_op->rebind = BIT(tile->id) & vma->tile_present;
1865
1866 err = vma_reserve_fences(tile_to_xe(tile), vma);
1867 if (err)
1868 return err;
1869
1870 err = xe_pt_prepare_bind(tile, vma, NULL, pt_op->entries,
1871 &pt_op->num_entries, invalidate_on_bind);
1872 if (!err) {
1873 xe_tile_assert(tile, pt_op->num_entries <=
1874 ARRAY_SIZE(pt_op->entries));
1875 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1876 pt_op->num_entries, true);
1877
1878 xe_pt_update_ops_rfence_interval(pt_update_ops,
1879 xe_vma_start(vma),
1880 xe_vma_end(vma));
1881 ++pt_update_ops->current_op;
1882 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1883
1884 /*
1885 * If rebind, we have to invalidate TLB on !LR vms to invalidate
1886 * cached PTEs point to freed memory. On LR vms this is done
1887 * automatically when the context is re-enabled by the rebind worker,
1888 * or in fault mode it was invalidated on PTE zapping.
1889 *
1890 * If !rebind, and scratch enabled VMs, there is a chance the scratch
1891 * PTE is already cached in the TLB so it needs to be invalidated.
1892 * On !LR VMs this is done in the ring ops preceding a batch, but on
1893 * LR, in particular on user-space batch buffer chaining, it needs to
1894 * be done here.
1895 */
1896 if ((!pt_op->rebind && xe_vm_has_scratch(vm) &&
1897 xe_vm_in_lr_mode(vm)))
1898 pt_update_ops->needs_invalidation = true;
1899 else if (pt_op->rebind && !xe_vm_in_lr_mode(vm))
1900 /* We bump also if batch_invalidate_tlb is true */
1901 vm->tlb_flush_seqno++;
1902
1903 vma->tile_staged |= BIT(tile->id);
1904 pt_op->vma = vma;
1905 xe_pt_commit_prepare_bind(vma, pt_op->entries,
1906 pt_op->num_entries, pt_op->rebind);
1907 } else {
1908 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1909 }
1910
1911 return err;
1912 }
1913
bind_range_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct xe_svm_range * range)1914 static int bind_range_prepare(struct xe_vm *vm, struct xe_tile *tile,
1915 struct xe_vm_pgtable_update_ops *pt_update_ops,
1916 struct xe_vma *vma, struct xe_svm_range *range)
1917 {
1918 u32 current_op = pt_update_ops->current_op;
1919 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1920 int err;
1921
1922 xe_tile_assert(tile, xe_vma_is_cpu_addr_mirror(vma));
1923
1924 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1925 "Preparing bind, with range [%lx...%lx)\n",
1926 range->base.itree.start, range->base.itree.last);
1927
1928 pt_op->vma = NULL;
1929 pt_op->bind = true;
1930 pt_op->rebind = BIT(tile->id) & range->tile_present;
1931
1932 err = xe_pt_prepare_bind(tile, vma, range, pt_op->entries,
1933 &pt_op->num_entries, false);
1934 if (!err) {
1935 xe_tile_assert(tile, pt_op->num_entries <=
1936 ARRAY_SIZE(pt_op->entries));
1937 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1938 pt_op->num_entries, true);
1939
1940 xe_pt_update_ops_rfence_interval(pt_update_ops,
1941 range->base.itree.start,
1942 range->base.itree.last + 1);
1943 ++pt_update_ops->current_op;
1944 pt_update_ops->needs_svm_lock = true;
1945
1946 pt_op->vma = vma;
1947 xe_pt_commit_prepare_bind(vma, pt_op->entries,
1948 pt_op->num_entries, pt_op->rebind);
1949 } else {
1950 xe_pt_cancel_bind(vma, pt_op->entries, pt_op->num_entries);
1951 }
1952
1953 return err;
1954 }
1955
unbind_op_prepare(struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma)1956 static int unbind_op_prepare(struct xe_tile *tile,
1957 struct xe_vm_pgtable_update_ops *pt_update_ops,
1958 struct xe_vma *vma)
1959 {
1960 u32 current_op = pt_update_ops->current_op;
1961 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
1962 int err;
1963
1964 if (!((vma->tile_present | vma->tile_staged) & BIT(tile->id)))
1965 return 0;
1966
1967 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
1968 xe_bo_assert_held(xe_vma_bo(vma));
1969
1970 vm_dbg(&xe_vma_vm(vma)->xe->drm,
1971 "Preparing unbind, with range [%llx...%llx)\n",
1972 xe_vma_start(vma), xe_vma_end(vma) - 1);
1973
1974 pt_op->vma = vma;
1975 pt_op->bind = false;
1976 pt_op->rebind = false;
1977
1978 err = vma_reserve_fences(tile_to_xe(tile), vma);
1979 if (err)
1980 return err;
1981
1982 pt_op->num_entries = xe_pt_stage_unbind(tile, xe_vma_vm(vma),
1983 vma, NULL, pt_op->entries);
1984
1985 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
1986 pt_op->num_entries, false);
1987 xe_pt_update_ops_rfence_interval(pt_update_ops, xe_vma_start(vma),
1988 xe_vma_end(vma));
1989 ++pt_update_ops->current_op;
1990 pt_update_ops->needs_userptr_lock |= xe_vma_is_userptr(vma);
1991 pt_update_ops->needs_invalidation = true;
1992
1993 xe_pt_commit_prepare_unbind(vma, pt_op->entries, pt_op->num_entries);
1994
1995 return 0;
1996 }
1997
1998 static bool
xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op * pt_op,struct xe_svm_range * range)1999 xe_pt_op_check_range_skip_invalidation(struct xe_vm_pgtable_update_op *pt_op,
2000 struct xe_svm_range *range)
2001 {
2002 struct xe_vm_pgtable_update *update = pt_op->entries;
2003
2004 XE_WARN_ON(!pt_op->num_entries);
2005
2006 /*
2007 * We can't skip the invalidation if we are removing PTEs that span more
2008 * than the range, do some checks to ensure we are removing PTEs that
2009 * are invalid.
2010 */
2011
2012 if (pt_op->num_entries > 1)
2013 return false;
2014
2015 if (update->pt->level == 0)
2016 return true;
2017
2018 if (update->pt->level == 1)
2019 return xe_svm_range_size(range) >= SZ_2M;
2020
2021 return false;
2022 }
2023
unbind_range_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_svm_range * range)2024 static int unbind_range_prepare(struct xe_vm *vm,
2025 struct xe_tile *tile,
2026 struct xe_vm_pgtable_update_ops *pt_update_ops,
2027 struct xe_svm_range *range)
2028 {
2029 u32 current_op = pt_update_ops->current_op;
2030 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[current_op];
2031
2032 if (!(range->tile_present & BIT(tile->id)))
2033 return 0;
2034
2035 vm_dbg(&vm->xe->drm,
2036 "Preparing unbind, with range [%lx...%lx)\n",
2037 range->base.itree.start, range->base.itree.last);
2038
2039 pt_op->vma = XE_INVALID_VMA;
2040 pt_op->bind = false;
2041 pt_op->rebind = false;
2042
2043 pt_op->num_entries = xe_pt_stage_unbind(tile, vm, NULL, range,
2044 pt_op->entries);
2045
2046 xe_vm_dbg_print_entries(tile_to_xe(tile), pt_op->entries,
2047 pt_op->num_entries, false);
2048 xe_pt_update_ops_rfence_interval(pt_update_ops, range->base.itree.start,
2049 range->base.itree.last + 1);
2050 ++pt_update_ops->current_op;
2051 pt_update_ops->needs_svm_lock = true;
2052 pt_update_ops->needs_invalidation |= xe_vm_has_scratch(vm) ||
2053 xe_vm_has_valid_gpu_mapping(tile, range->tile_present,
2054 range->tile_invalidated) ||
2055 !xe_pt_op_check_range_skip_invalidation(pt_op, range);
2056
2057 xe_pt_commit_prepare_unbind(XE_INVALID_VMA, pt_op->entries,
2058 pt_op->num_entries);
2059
2060 return 0;
2061 }
2062
op_prepare(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op)2063 static int op_prepare(struct xe_vm *vm,
2064 struct xe_tile *tile,
2065 struct xe_vm_pgtable_update_ops *pt_update_ops,
2066 struct xe_vma_op *op)
2067 {
2068 int err = 0;
2069
2070 xe_vm_assert_held(vm);
2071
2072 switch (op->base.op) {
2073 case DRM_GPUVA_OP_MAP:
2074 if ((!op->map.immediate && xe_vm_in_fault_mode(vm) &&
2075 !op->map.invalidate_on_bind) ||
2076 op->map.is_cpu_addr_mirror)
2077 break;
2078
2079 err = bind_op_prepare(vm, tile, pt_update_ops, op->map.vma,
2080 op->map.invalidate_on_bind);
2081 pt_update_ops->wait_vm_kernel = true;
2082 break;
2083 case DRM_GPUVA_OP_REMAP:
2084 {
2085 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2086
2087 if (xe_vma_is_cpu_addr_mirror(old))
2088 break;
2089
2090 err = unbind_op_prepare(tile, pt_update_ops, old);
2091
2092 if (!err && op->remap.prev) {
2093 err = bind_op_prepare(vm, tile, pt_update_ops,
2094 op->remap.prev, false);
2095 pt_update_ops->wait_vm_bookkeep = true;
2096 }
2097 if (!err && op->remap.next) {
2098 err = bind_op_prepare(vm, tile, pt_update_ops,
2099 op->remap.next, false);
2100 pt_update_ops->wait_vm_bookkeep = true;
2101 }
2102 break;
2103 }
2104 case DRM_GPUVA_OP_UNMAP:
2105 {
2106 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2107
2108 if (xe_vma_is_cpu_addr_mirror(vma))
2109 break;
2110
2111 err = unbind_op_prepare(tile, pt_update_ops, vma);
2112 break;
2113 }
2114 case DRM_GPUVA_OP_PREFETCH:
2115 {
2116 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2117
2118 if (xe_vma_is_cpu_addr_mirror(vma)) {
2119 struct xe_svm_range *range;
2120 unsigned long i;
2121
2122 xa_for_each(&op->prefetch_range.range, i, range) {
2123 err = bind_range_prepare(vm, tile, pt_update_ops,
2124 vma, range);
2125 if (err)
2126 return err;
2127 }
2128 } else {
2129 err = bind_op_prepare(vm, tile, pt_update_ops, vma, false);
2130 pt_update_ops->wait_vm_kernel = true;
2131 }
2132 break;
2133 }
2134 case DRM_GPUVA_OP_DRIVER:
2135 if (op->subop == XE_VMA_SUBOP_MAP_RANGE) {
2136 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(op->map_range.vma));
2137
2138 err = bind_range_prepare(vm, tile, pt_update_ops,
2139 op->map_range.vma,
2140 op->map_range.range);
2141 } else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE) {
2142 err = unbind_range_prepare(vm, tile, pt_update_ops,
2143 op->unmap_range.range);
2144 }
2145 break;
2146 default:
2147 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2148 }
2149
2150 return err;
2151 }
2152
2153 static void
xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops * pt_update_ops)2154 xe_pt_update_ops_init(struct xe_vm_pgtable_update_ops *pt_update_ops)
2155 {
2156 init_llist_head(&pt_update_ops->deferred);
2157 pt_update_ops->start = ~0x0ull;
2158 pt_update_ops->last = 0x0ull;
2159 }
2160
2161 /**
2162 * xe_pt_update_ops_prepare() - Prepare PT update operations
2163 * @tile: Tile of PT update operations
2164 * @vops: VMA operationa
2165 *
2166 * Prepare PT update operations which includes updating internal PT state,
2167 * allocate memory for page tables, populate page table being pruned in, and
2168 * create PT update operations for leaf insertion / removal.
2169 *
2170 * Return: 0 on success, negative error code on error.
2171 */
xe_pt_update_ops_prepare(struct xe_tile * tile,struct xe_vma_ops * vops)2172 int xe_pt_update_ops_prepare(struct xe_tile *tile, struct xe_vma_ops *vops)
2173 {
2174 struct xe_vm_pgtable_update_ops *pt_update_ops =
2175 &vops->pt_update_ops[tile->id];
2176 struct xe_vma_op *op;
2177 int shift = tile->media_gt ? 1 : 0;
2178 int err;
2179
2180 lockdep_assert_held(&vops->vm->lock);
2181 xe_vm_assert_held(vops->vm);
2182
2183 xe_pt_update_ops_init(pt_update_ops);
2184
2185 err = dma_resv_reserve_fences(xe_vm_resv(vops->vm),
2186 tile_to_xe(tile)->info.tile_count << shift);
2187 if (err)
2188 return err;
2189
2190 list_for_each_entry(op, &vops->list, link) {
2191 err = op_prepare(vops->vm, tile, pt_update_ops, op);
2192
2193 if (err)
2194 return err;
2195 }
2196
2197 xe_tile_assert(tile, pt_update_ops->current_op <=
2198 pt_update_ops->num_ops);
2199
2200 #ifdef TEST_VM_OPS_ERROR
2201 if (vops->inject_error &&
2202 vops->vm->xe->vm_inject_error_position == FORCE_OP_ERROR_PREPARE)
2203 return -ENOSPC;
2204 #endif
2205
2206 return 0;
2207 }
2208 ALLOW_ERROR_INJECTION(xe_pt_update_ops_prepare, ERRNO);
2209
bind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2,bool invalidate_on_bind)2210 static void bind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2211 struct xe_vm_pgtable_update_ops *pt_update_ops,
2212 struct xe_vma *vma, struct dma_fence *fence,
2213 struct dma_fence *fence2, bool invalidate_on_bind)
2214 {
2215 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2216
2217 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2218 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2219 pt_update_ops->wait_vm_bookkeep ?
2220 DMA_RESV_USAGE_KERNEL :
2221 DMA_RESV_USAGE_BOOKKEEP);
2222 if (fence2)
2223 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2224 pt_update_ops->wait_vm_bookkeep ?
2225 DMA_RESV_USAGE_KERNEL :
2226 DMA_RESV_USAGE_BOOKKEEP);
2227 }
2228 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2229 WRITE_ONCE(vma->tile_present, vma->tile_present | BIT(tile->id));
2230 if (invalidate_on_bind)
2231 WRITE_ONCE(vma->tile_invalidated,
2232 vma->tile_invalidated | BIT(tile->id));
2233 else
2234 WRITE_ONCE(vma->tile_invalidated,
2235 vma->tile_invalidated & ~BIT(tile->id));
2236 vma->tile_staged &= ~BIT(tile->id);
2237 if (xe_vma_is_userptr(vma)) {
2238 lockdep_assert_held_read(&vm->userptr.notifier_lock);
2239 to_userptr_vma(vma)->userptr.initial_bind = true;
2240 }
2241
2242 /*
2243 * Kick rebind worker if this bind triggers preempt fences and not in
2244 * the rebind worker
2245 */
2246 if (pt_update_ops->wait_vm_bookkeep &&
2247 xe_vm_in_preempt_fence_mode(vm) &&
2248 !current->mm)
2249 xe_vm_queue_rebind_worker(vm);
2250 }
2251
unbind_op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma * vma,struct dma_fence * fence,struct dma_fence * fence2)2252 static void unbind_op_commit(struct xe_vm *vm, struct xe_tile *tile,
2253 struct xe_vm_pgtable_update_ops *pt_update_ops,
2254 struct xe_vma *vma, struct dma_fence *fence,
2255 struct dma_fence *fence2)
2256 {
2257 xe_tile_assert(tile, !xe_vma_is_cpu_addr_mirror(vma));
2258
2259 if (!xe_vma_has_no_bo(vma) && !xe_vma_bo(vma)->vm) {
2260 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence,
2261 pt_update_ops->wait_vm_bookkeep ?
2262 DMA_RESV_USAGE_KERNEL :
2263 DMA_RESV_USAGE_BOOKKEEP);
2264 if (fence2)
2265 dma_resv_add_fence(xe_vma_bo(vma)->ttm.base.resv, fence2,
2266 pt_update_ops->wait_vm_bookkeep ?
2267 DMA_RESV_USAGE_KERNEL :
2268 DMA_RESV_USAGE_BOOKKEEP);
2269 }
2270 vma->tile_present &= ~BIT(tile->id);
2271 if (!vma->tile_present) {
2272 list_del_init(&vma->combined_links.rebind);
2273 if (xe_vma_is_userptr(vma)) {
2274 lockdep_assert_held_read(&vm->userptr.notifier_lock);
2275
2276 spin_lock(&vm->userptr.invalidated_lock);
2277 list_del_init(&to_userptr_vma(vma)->userptr.invalidate_link);
2278 spin_unlock(&vm->userptr.invalidated_lock);
2279 }
2280 }
2281 }
2282
range_present_and_invalidated_tile(struct xe_vm * vm,struct xe_svm_range * range,u8 tile_id)2283 static void range_present_and_invalidated_tile(struct xe_vm *vm,
2284 struct xe_svm_range *range,
2285 u8 tile_id)
2286 {
2287 /* All WRITE_ONCE pair with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2288
2289 lockdep_assert_held(&vm->svm.gpusvm.notifier_lock);
2290
2291 WRITE_ONCE(range->tile_present, range->tile_present | BIT(tile_id));
2292 WRITE_ONCE(range->tile_invalidated, range->tile_invalidated & ~BIT(tile_id));
2293 }
2294
op_commit(struct xe_vm * vm,struct xe_tile * tile,struct xe_vm_pgtable_update_ops * pt_update_ops,struct xe_vma_op * op,struct dma_fence * fence,struct dma_fence * fence2)2295 static void op_commit(struct xe_vm *vm,
2296 struct xe_tile *tile,
2297 struct xe_vm_pgtable_update_ops *pt_update_ops,
2298 struct xe_vma_op *op, struct dma_fence *fence,
2299 struct dma_fence *fence2)
2300 {
2301 xe_vm_assert_held(vm);
2302
2303 switch (op->base.op) {
2304 case DRM_GPUVA_OP_MAP:
2305 if ((!op->map.immediate && xe_vm_in_fault_mode(vm)) ||
2306 op->map.is_cpu_addr_mirror)
2307 break;
2308
2309 bind_op_commit(vm, tile, pt_update_ops, op->map.vma, fence,
2310 fence2, op->map.invalidate_on_bind);
2311 break;
2312 case DRM_GPUVA_OP_REMAP:
2313 {
2314 struct xe_vma *old = gpuva_to_vma(op->base.remap.unmap->va);
2315
2316 if (xe_vma_is_cpu_addr_mirror(old))
2317 break;
2318
2319 unbind_op_commit(vm, tile, pt_update_ops, old, fence, fence2);
2320
2321 if (op->remap.prev)
2322 bind_op_commit(vm, tile, pt_update_ops, op->remap.prev,
2323 fence, fence2, false);
2324 if (op->remap.next)
2325 bind_op_commit(vm, tile, pt_update_ops, op->remap.next,
2326 fence, fence2, false);
2327 break;
2328 }
2329 case DRM_GPUVA_OP_UNMAP:
2330 {
2331 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2332
2333 if (!xe_vma_is_cpu_addr_mirror(vma))
2334 unbind_op_commit(vm, tile, pt_update_ops, vma, fence,
2335 fence2);
2336 break;
2337 }
2338 case DRM_GPUVA_OP_PREFETCH:
2339 {
2340 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va);
2341
2342 if (xe_vma_is_cpu_addr_mirror(vma)) {
2343 struct xe_svm_range *range = NULL;
2344 unsigned long i;
2345
2346 xa_for_each(&op->prefetch_range.range, i, range)
2347 range_present_and_invalidated_tile(vm, range, tile->id);
2348 } else {
2349 bind_op_commit(vm, tile, pt_update_ops, vma, fence,
2350 fence2, false);
2351 }
2352 break;
2353 }
2354 case DRM_GPUVA_OP_DRIVER:
2355 {
2356 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */
2357 if (op->subop == XE_VMA_SUBOP_MAP_RANGE)
2358 range_present_and_invalidated_tile(vm, op->map_range.range, tile->id);
2359 else if (op->subop == XE_VMA_SUBOP_UNMAP_RANGE)
2360 WRITE_ONCE(op->unmap_range.range->tile_present,
2361 op->unmap_range.range->tile_present &
2362 ~BIT(tile->id));
2363
2364 break;
2365 }
2366 default:
2367 drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2368 }
2369 }
2370
2371 static const struct xe_migrate_pt_update_ops migrate_ops = {
2372 .populate = xe_vm_populate_pgtable,
2373 .clear = xe_migrate_clear_pgtable_callback,
2374 .pre_commit = xe_pt_pre_commit,
2375 };
2376
2377 static const struct xe_migrate_pt_update_ops userptr_migrate_ops = {
2378 .populate = xe_vm_populate_pgtable,
2379 .clear = xe_migrate_clear_pgtable_callback,
2380 .pre_commit = xe_pt_userptr_pre_commit,
2381 };
2382
2383 #if IS_ENABLED(CONFIG_DRM_XE_GPUSVM)
2384 static const struct xe_migrate_pt_update_ops svm_migrate_ops = {
2385 .populate = xe_vm_populate_pgtable,
2386 .clear = xe_migrate_clear_pgtable_callback,
2387 .pre_commit = xe_pt_svm_pre_commit,
2388 };
2389 #else
2390 static const struct xe_migrate_pt_update_ops svm_migrate_ops;
2391 #endif
2392
2393 /**
2394 * xe_pt_update_ops_run() - Run PT update operations
2395 * @tile: Tile of PT update operations
2396 * @vops: VMA operationa
2397 *
2398 * Run PT update operations which includes committing internal PT state changes,
2399 * creating job for PT update operations for leaf insertion / removal, and
2400 * installing job fence in various places.
2401 *
2402 * Return: fence on success, negative ERR_PTR on error.
2403 */
2404 struct dma_fence *
xe_pt_update_ops_run(struct xe_tile * tile,struct xe_vma_ops * vops)2405 xe_pt_update_ops_run(struct xe_tile *tile, struct xe_vma_ops *vops)
2406 {
2407 struct xe_vm *vm = vops->vm;
2408 struct xe_vm_pgtable_update_ops *pt_update_ops =
2409 &vops->pt_update_ops[tile->id];
2410 struct dma_fence *fence;
2411 struct invalidation_fence *ifence = NULL, *mfence = NULL;
2412 struct dma_fence **fences = NULL;
2413 struct dma_fence_array *cf = NULL;
2414 struct xe_range_fence *rfence;
2415 struct xe_vma_op *op;
2416 int err = 0, i;
2417 struct xe_migrate_pt_update update = {
2418 .ops = pt_update_ops->needs_svm_lock ?
2419 &svm_migrate_ops :
2420 pt_update_ops->needs_userptr_lock ?
2421 &userptr_migrate_ops :
2422 &migrate_ops,
2423 .vops = vops,
2424 .tile_id = tile->id,
2425 };
2426
2427 lockdep_assert_held(&vm->lock);
2428 xe_vm_assert_held(vm);
2429
2430 if (!pt_update_ops->current_op) {
2431 xe_tile_assert(tile, xe_vm_in_fault_mode(vm));
2432
2433 return dma_fence_get_stub();
2434 }
2435
2436 #ifdef TEST_VM_OPS_ERROR
2437 if (vops->inject_error &&
2438 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_RUN)
2439 return ERR_PTR(-ENOSPC);
2440 #endif
2441
2442 if (pt_update_ops->needs_invalidation) {
2443 ifence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2444 if (!ifence) {
2445 err = -ENOMEM;
2446 goto kill_vm_tile1;
2447 }
2448 if (tile->media_gt) {
2449 mfence = kzalloc(sizeof(*ifence), GFP_KERNEL);
2450 if (!mfence) {
2451 err = -ENOMEM;
2452 goto free_ifence;
2453 }
2454 fences = kmalloc_array(2, sizeof(*fences), GFP_KERNEL);
2455 if (!fences) {
2456 err = -ENOMEM;
2457 goto free_ifence;
2458 }
2459 cf = dma_fence_array_alloc(2);
2460 if (!cf) {
2461 err = -ENOMEM;
2462 goto free_ifence;
2463 }
2464 }
2465 }
2466
2467 rfence = kzalloc(sizeof(*rfence), GFP_KERNEL);
2468 if (!rfence) {
2469 err = -ENOMEM;
2470 goto free_ifence;
2471 }
2472
2473 fence = xe_migrate_update_pgtables(tile->migrate, &update);
2474 if (IS_ERR(fence)) {
2475 err = PTR_ERR(fence);
2476 goto free_rfence;
2477 }
2478
2479 /* Point of no return - VM killed if failure after this */
2480 for (i = 0; i < pt_update_ops->current_op; ++i) {
2481 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2482
2483 xe_pt_commit(pt_op->vma, pt_op->entries,
2484 pt_op->num_entries, &pt_update_ops->deferred);
2485 pt_op->vma = NULL; /* skip in xe_pt_update_ops_abort */
2486 }
2487
2488 if (xe_range_fence_insert(&vm->rftree[tile->id], rfence,
2489 &xe_range_fence_kfree_ops,
2490 pt_update_ops->start,
2491 pt_update_ops->last, fence))
2492 dma_fence_wait(fence, false);
2493
2494 /* tlb invalidation must be done before signaling rebind */
2495 if (ifence) {
2496 if (mfence)
2497 dma_fence_get(fence);
2498 invalidation_fence_init(tile->primary_gt, ifence, fence,
2499 pt_update_ops->start,
2500 pt_update_ops->last, vm->usm.asid);
2501 if (mfence) {
2502 invalidation_fence_init(tile->media_gt, mfence, fence,
2503 pt_update_ops->start,
2504 pt_update_ops->last, vm->usm.asid);
2505 fences[0] = &ifence->base.base;
2506 fences[1] = &mfence->base.base;
2507 dma_fence_array_init(cf, 2, fences,
2508 vm->composite_fence_ctx,
2509 vm->composite_fence_seqno++,
2510 false);
2511 fence = &cf->base;
2512 } else {
2513 fence = &ifence->base.base;
2514 }
2515 }
2516
2517 if (!mfence) {
2518 dma_resv_add_fence(xe_vm_resv(vm), fence,
2519 pt_update_ops->wait_vm_bookkeep ?
2520 DMA_RESV_USAGE_KERNEL :
2521 DMA_RESV_USAGE_BOOKKEEP);
2522
2523 list_for_each_entry(op, &vops->list, link)
2524 op_commit(vops->vm, tile, pt_update_ops, op, fence, NULL);
2525 } else {
2526 dma_resv_add_fence(xe_vm_resv(vm), &ifence->base.base,
2527 pt_update_ops->wait_vm_bookkeep ?
2528 DMA_RESV_USAGE_KERNEL :
2529 DMA_RESV_USAGE_BOOKKEEP);
2530
2531 dma_resv_add_fence(xe_vm_resv(vm), &mfence->base.base,
2532 pt_update_ops->wait_vm_bookkeep ?
2533 DMA_RESV_USAGE_KERNEL :
2534 DMA_RESV_USAGE_BOOKKEEP);
2535
2536 list_for_each_entry(op, &vops->list, link)
2537 op_commit(vops->vm, tile, pt_update_ops, op,
2538 &ifence->base.base, &mfence->base.base);
2539 }
2540
2541 if (pt_update_ops->needs_svm_lock)
2542 xe_svm_notifier_unlock(vm);
2543 if (pt_update_ops->needs_userptr_lock)
2544 up_read(&vm->userptr.notifier_lock);
2545
2546 return fence;
2547
2548 free_rfence:
2549 kfree(rfence);
2550 free_ifence:
2551 kfree(cf);
2552 kfree(fences);
2553 kfree(mfence);
2554 kfree(ifence);
2555 kill_vm_tile1:
2556 if (err != -EAGAIN && err != -ENODATA && tile->id)
2557 xe_vm_kill(vops->vm, false);
2558
2559 return ERR_PTR(err);
2560 }
2561 ALLOW_ERROR_INJECTION(xe_pt_update_ops_run, ERRNO);
2562
2563 /**
2564 * xe_pt_update_ops_fini() - Finish PT update operations
2565 * @tile: Tile of PT update operations
2566 * @vops: VMA operations
2567 *
2568 * Finish PT update operations by committing to destroy page table memory
2569 */
xe_pt_update_ops_fini(struct xe_tile * tile,struct xe_vma_ops * vops)2570 void xe_pt_update_ops_fini(struct xe_tile *tile, struct xe_vma_ops *vops)
2571 {
2572 struct xe_vm_pgtable_update_ops *pt_update_ops =
2573 &vops->pt_update_ops[tile->id];
2574 int i;
2575
2576 lockdep_assert_held(&vops->vm->lock);
2577 xe_vm_assert_held(vops->vm);
2578
2579 for (i = 0; i < pt_update_ops->current_op; ++i) {
2580 struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
2581
2582 xe_pt_free_bind(pt_op->entries, pt_op->num_entries);
2583 }
2584 xe_bo_put_commit(&vops->pt_update_ops[tile->id].deferred);
2585 }
2586
2587 /**
2588 * xe_pt_update_ops_abort() - Abort PT update operations
2589 * @tile: Tile of PT update operations
2590 * @vops: VMA operationa
2591 *
2592 * Abort PT update operations by unwinding internal PT state
2593 */
xe_pt_update_ops_abort(struct xe_tile * tile,struct xe_vma_ops * vops)2594 void xe_pt_update_ops_abort(struct xe_tile *tile, struct xe_vma_ops *vops)
2595 {
2596 struct xe_vm_pgtable_update_ops *pt_update_ops =
2597 &vops->pt_update_ops[tile->id];
2598 int i;
2599
2600 lockdep_assert_held(&vops->vm->lock);
2601 xe_vm_assert_held(vops->vm);
2602
2603 for (i = pt_update_ops->num_ops - 1; i >= 0; --i) {
2604 struct xe_vm_pgtable_update_op *pt_op =
2605 &pt_update_ops->ops[i];
2606
2607 if (!pt_op->vma || i >= pt_update_ops->current_op)
2608 continue;
2609
2610 if (pt_op->bind)
2611 xe_pt_abort_bind(pt_op->vma, pt_op->entries,
2612 pt_op->num_entries,
2613 pt_op->rebind);
2614 else
2615 xe_pt_abort_unbind(pt_op->vma, pt_op->entries,
2616 pt_op->num_entries);
2617 }
2618
2619 xe_pt_update_ops_fini(tile, vops);
2620 }
2621