1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2021-2023 Intel Corporation
4 */
5
6 #include "xe_mmio.h"
7
8 #include <linux/delay.h>
9 #include <linux/io-64-nonatomic-lo-hi.h>
10 #include <linux/minmax.h>
11 #include <linux/pci.h>
12
13 #include <drm/drm_managed.h>
14 #include <drm/drm_print.h>
15
16 #include "regs/xe_bars.h"
17 #include "regs/xe_regs.h"
18 #include "xe_device.h"
19 #include "xe_gt.h"
20 #include "xe_gt_printk.h"
21 #include "xe_gt_sriov_vf.h"
22 #include "xe_macros.h"
23 #include "xe_sriov.h"
24 #include "xe_trace.h"
25 #include "xe_wa.h"
26
27 #include "generated/xe_device_wa_oob.h"
28
tiles_fini(void * arg)29 static void tiles_fini(void *arg)
30 {
31 struct xe_device *xe = arg;
32 struct xe_tile *tile;
33 int id;
34
35 for_each_remote_tile(tile, xe, id)
36 tile->mmio.regs = NULL;
37 }
38
39 /*
40 * On multi-tile devices, partition the BAR space for MMIO on each tile,
41 * possibly accounting for register override on the number of tiles available.
42 * tile_mmio_size contains both the tile's 4MB register space, as well as
43 * additional space for the GTT and other (possibly unused) regions).
44 * Resulting memory layout is like below:
45 *
46 * .----------------------. <- tile_count * tile_mmio_size
47 * | .... |
48 * |----------------------| <- 2 * tile_mmio_size
49 * | tile1 GTT + other |
50 * |----------------------| <- 1 * tile_mmio_size + 4MB
51 * | tile1->mmio.regs |
52 * |----------------------| <- 1 * tile_mmio_size
53 * | tile0 GTT + other |
54 * |----------------------| <- 4MB
55 * | tile0->mmio.regs |
56 * '----------------------' <- 0MB
57 */
mmio_multi_tile_setup(struct xe_device * xe,size_t tile_mmio_size)58 static void mmio_multi_tile_setup(struct xe_device *xe, size_t tile_mmio_size)
59 {
60 struct xe_tile *tile;
61 struct xe_gt *gt;
62 u8 id;
63
64 /*
65 * Nothing to be done as tile 0 has already been setup earlier with the
66 * entire BAR mapped - see xe_mmio_probe_early()
67 */
68 if (xe->info.tile_count == 1)
69 return;
70
71 /* Possibly override number of tile based on configuration register */
72 if (!xe->info.skip_mtcfg) {
73 struct xe_mmio *mmio = xe_root_tile_mmio(xe);
74 u8 tile_count, gt_count;
75 u32 mtcfg;
76
77 /*
78 * Although the per-tile mmio regs are not yet initialized, this
79 * is fine as it's going to the root tile's mmio, that's
80 * guaranteed to be initialized earlier in xe_mmio_probe_early()
81 */
82 mtcfg = xe_mmio_read32(mmio, XEHP_MTCFG_ADDR);
83 tile_count = REG_FIELD_GET(TILE_COUNT, mtcfg) + 1;
84
85 if (tile_count < xe->info.tile_count) {
86 drm_info(&xe->drm, "tile_count: %d, reduced_tile_count %d\n",
87 xe->info.tile_count, tile_count);
88 xe->info.tile_count = tile_count;
89
90 /*
91 * We've already setup gt_count according to the full
92 * tile count. Re-calculate it to only include the GTs
93 * that belong to the remaining tile(s).
94 */
95 gt_count = 0;
96 for_each_gt(gt, xe, id)
97 if (gt->info.id < tile_count * xe->info.max_gt_per_tile)
98 gt_count++;
99 xe->info.gt_count = gt_count;
100 }
101 }
102
103 for_each_remote_tile(tile, xe, id)
104 xe_mmio_init(&tile->mmio, tile, xe->mmio.regs + id * tile_mmio_size, SZ_4M);
105 }
106
xe_mmio_probe_tiles(struct xe_device * xe)107 int xe_mmio_probe_tiles(struct xe_device *xe)
108 {
109 size_t tile_mmio_size = SZ_16M;
110
111 mmio_multi_tile_setup(xe, tile_mmio_size);
112
113 return devm_add_action_or_reset(xe->drm.dev, tiles_fini, xe);
114 }
115
mmio_fini(void * arg)116 static void mmio_fini(void *arg)
117 {
118 struct xe_device *xe = arg;
119 struct xe_tile *root_tile = xe_device_get_root_tile(xe);
120
121 pci_iounmap(to_pci_dev(xe->drm.dev), xe->mmio.regs);
122 xe->mmio.regs = NULL;
123 root_tile->mmio.regs = NULL;
124 }
125
xe_mmio_probe_early(struct xe_device * xe)126 int xe_mmio_probe_early(struct xe_device *xe)
127 {
128 struct xe_tile *root_tile = xe_device_get_root_tile(xe);
129 struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
130
131 /*
132 * Map the entire BAR.
133 * The first 16MB of the BAR, belong to the root tile, and include:
134 * registers (0-4MB), reserved space (4MB-8MB) and GGTT (8MB-16MB).
135 */
136 xe->mmio.size = pci_resource_len(pdev, GTTMMADR_BAR);
137 xe->mmio.regs = pci_iomap(pdev, GTTMMADR_BAR, 0);
138 if (!xe->mmio.regs) {
139 drm_err(&xe->drm, "failed to map registers\n");
140 return -EIO;
141 }
142
143 /* Setup first tile; other tiles (if present) will be setup later. */
144 xe_mmio_init(&root_tile->mmio, root_tile, xe->mmio.regs, SZ_4M);
145
146 return devm_add_action_or_reset(xe->drm.dev, mmio_fini, xe);
147 }
148 ALLOW_ERROR_INJECTION(xe_mmio_probe_early, ERRNO); /* See xe_pci_probe() */
149
150 /**
151 * xe_mmio_init() - Initialize an MMIO instance
152 * @mmio: Pointer to the MMIO instance to initialize
153 * @tile: The tile to which the MMIO region belongs
154 * @ptr: Pointer to the start of the MMIO region
155 * @size: The size of the MMIO region in bytes
156 *
157 * This is a convenience function for minimal initialization of struct xe_mmio.
158 */
xe_mmio_init(struct xe_mmio * mmio,struct xe_tile * tile,void __iomem * ptr,u32 size)159 void xe_mmio_init(struct xe_mmio *mmio, struct xe_tile *tile, void __iomem *ptr, u32 size)
160 {
161 xe_tile_assert(tile, size <= XE_REG_ADDR_MAX);
162
163 mmio->regs = ptr;
164 mmio->regs_size = size;
165 mmio->tile = tile;
166 }
167
mmio_flush_pending_writes(struct xe_mmio * mmio)168 static void mmio_flush_pending_writes(struct xe_mmio *mmio)
169 {
170 #define DUMMY_REG_OFFSET 0x130030
171 int i;
172
173 if (!XE_DEVICE_WA(mmio->tile->xe, 15015404425))
174 return;
175
176 /* 4 dummy writes */
177 for (i = 0; i < 4; i++)
178 writel(0, mmio->regs + DUMMY_REG_OFFSET);
179 }
180
xe_mmio_read8(struct xe_mmio * mmio,struct xe_reg reg)181 u8 xe_mmio_read8(struct xe_mmio *mmio, struct xe_reg reg)
182 {
183 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
184 u8 val;
185
186 mmio_flush_pending_writes(mmio);
187
188 val = readb(mmio->regs + addr);
189 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
190
191 return val;
192 }
193
xe_mmio_read16(struct xe_mmio * mmio,struct xe_reg reg)194 u16 xe_mmio_read16(struct xe_mmio *mmio, struct xe_reg reg)
195 {
196 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
197 u16 val;
198
199 mmio_flush_pending_writes(mmio);
200
201 val = readw(mmio->regs + addr);
202 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
203
204 return val;
205 }
206
xe_mmio_write32(struct xe_mmio * mmio,struct xe_reg reg,u32 val)207 void xe_mmio_write32(struct xe_mmio *mmio, struct xe_reg reg, u32 val)
208 {
209 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
210
211 trace_xe_reg_rw(mmio, true, addr, val, sizeof(val));
212
213 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe))
214 xe_gt_sriov_vf_write32(mmio->sriov_vf_gt ?:
215 mmio->tile->primary_gt, reg, val);
216 else
217 writel(val, mmio->regs + addr);
218 }
219
xe_mmio_read32(struct xe_mmio * mmio,struct xe_reg reg)220 u32 xe_mmio_read32(struct xe_mmio *mmio, struct xe_reg reg)
221 {
222 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
223 u32 val;
224
225 mmio_flush_pending_writes(mmio);
226
227 if (!reg.vf && IS_SRIOV_VF(mmio->tile->xe))
228 val = xe_gt_sriov_vf_read32(mmio->sriov_vf_gt ?:
229 mmio->tile->primary_gt, reg);
230 else
231 val = readl(mmio->regs + addr);
232
233 trace_xe_reg_rw(mmio, false, addr, val, sizeof(val));
234
235 return val;
236 }
237
xe_mmio_rmw32(struct xe_mmio * mmio,struct xe_reg reg,u32 clr,u32 set)238 u32 xe_mmio_rmw32(struct xe_mmio *mmio, struct xe_reg reg, u32 clr, u32 set)
239 {
240 u32 old, reg_val;
241
242 old = xe_mmio_read32(mmio, reg);
243 reg_val = (old & ~clr) | set;
244 xe_mmio_write32(mmio, reg, reg_val);
245
246 return old;
247 }
248
xe_mmio_write32_and_verify(struct xe_mmio * mmio,struct xe_reg reg,u32 val,u32 mask,u32 eval)249 int xe_mmio_write32_and_verify(struct xe_mmio *mmio,
250 struct xe_reg reg, u32 val, u32 mask, u32 eval)
251 {
252 u32 reg_val;
253
254 xe_mmio_write32(mmio, reg, val);
255 reg_val = xe_mmio_read32(mmio, reg);
256
257 return (reg_val & mask) != eval ? -EINVAL : 0;
258 }
259
xe_mmio_in_range(const struct xe_mmio * mmio,const struct xe_mmio_range * range,struct xe_reg reg)260 bool xe_mmio_in_range(const struct xe_mmio *mmio,
261 const struct xe_mmio_range *range,
262 struct xe_reg reg)
263 {
264 u32 addr = xe_mmio_adjusted_addr(mmio, reg.addr);
265
266 return range && addr >= range->start && addr <= range->end;
267 }
268
269 /**
270 * xe_mmio_read64_2x32() - Read a 64-bit register as two 32-bit reads
271 * @mmio: MMIO target
272 * @reg: register to read value from
273 *
274 * Although Intel GPUs have some 64-bit registers, the hardware officially
275 * only supports GTTMMADR register reads of 32 bits or smaller. Even if
276 * a readq operation may return a reasonable value, that violation of the
277 * spec shouldn't be relied upon and all 64-bit register reads should be
278 * performed as two 32-bit reads of the upper and lower dwords.
279 *
280 * When reading registers that may be changing (such as
281 * counters), a rollover of the lower dword between the two 32-bit reads
282 * can be problematic. This function attempts to ensure the upper dword has
283 * stabilized before returning the 64-bit value.
284 *
285 * Note that because this function may re-read the register multiple times
286 * while waiting for the value to stabilize it should not be used to read
287 * any registers where read operations have side effects.
288 *
289 * Returns the value of the 64-bit register.
290 */
xe_mmio_read64_2x32(struct xe_mmio * mmio,struct xe_reg reg)291 u64 xe_mmio_read64_2x32(struct xe_mmio *mmio, struct xe_reg reg)
292 {
293 struct xe_reg reg_udw = { .addr = reg.addr + 0x4 };
294 u32 ldw, udw, oldudw, retries;
295
296 reg.addr = xe_mmio_adjusted_addr(mmio, reg.addr);
297 reg_udw.addr = xe_mmio_adjusted_addr(mmio, reg_udw.addr);
298
299 /* we shouldn't adjust just one register address */
300 xe_tile_assert(mmio->tile, reg_udw.addr == reg.addr + 0x4);
301
302 oldudw = xe_mmio_read32(mmio, reg_udw);
303 for (retries = 5; retries; --retries) {
304 ldw = xe_mmio_read32(mmio, reg);
305 udw = xe_mmio_read32(mmio, reg_udw);
306
307 if (udw == oldudw)
308 break;
309
310 oldudw = udw;
311 }
312
313 drm_WARN(&mmio->tile->xe->drm, retries == 0,
314 "64-bit read of %#x did not stabilize\n", reg.addr);
315
316 return (u64)udw << 32 | ldw;
317 }
318
__xe_mmio_wait32(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic,bool expect_match)319 static int __xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val,
320 u32 timeout_us, u32 *out_val, bool atomic, bool expect_match)
321 {
322 ktime_t cur = ktime_get_raw();
323 const ktime_t end = ktime_add_us(cur, timeout_us);
324 int ret = -ETIMEDOUT;
325 s64 wait = 10;
326 u32 read;
327 bool check;
328
329 for (;;) {
330 read = xe_mmio_read32(mmio, reg);
331
332 check = (read & mask) == val;
333 if (!expect_match)
334 check = !check;
335
336 if (check) {
337 ret = 0;
338 break;
339 }
340
341 cur = ktime_get_raw();
342 if (!ktime_before(cur, end))
343 break;
344
345 if (ktime_after(ktime_add_us(cur, wait), end))
346 wait = ktime_us_delta(end, cur);
347
348 if (atomic)
349 udelay(wait);
350 else
351 usleep_range(wait, wait << 1);
352 wait <<= 1;
353 }
354
355 if (ret != 0) {
356 read = xe_mmio_read32(mmio, reg);
357
358 check = (read & mask) == val;
359 if (!expect_match)
360 check = !check;
361
362 if (check)
363 ret = 0;
364 }
365
366 if (out_val)
367 *out_val = read;
368
369 return ret;
370 }
371
372 /**
373 * xe_mmio_wait32() - Wait for a register to match the desired masked value
374 * @mmio: MMIO target
375 * @reg: register to read value from
376 * @mask: mask to be applied to the value read from the register
377 * @val: desired value after applying the mask
378 * @timeout_us: time out after this period of time. Wait logic tries to be
379 * smart, applying an exponential backoff until @timeout_us is reached.
380 * @out_val: if not NULL, points where to store the last unmasked value
381 * @atomic: needs to be true if calling from an atomic context
382 *
383 * This function polls for the desired masked value and returns zero on success
384 * or -ETIMEDOUT if timed out.
385 *
386 * Note that @timeout_us represents the minimum amount of time to wait before
387 * giving up. The actual time taken by this function can be a little more than
388 * @timeout_us for different reasons, specially in non-atomic contexts. Thus,
389 * it is possible that this function succeeds even after @timeout_us has passed.
390 */
xe_mmio_wait32(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic)391 int xe_mmio_wait32(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
392 u32 *out_val, bool atomic)
393 {
394 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, true);
395 }
396
397 /**
398 * xe_mmio_wait32_not() - Wait for a register to return anything other than the given masked value
399 * @mmio: MMIO target
400 * @reg: register to read value from
401 * @mask: mask to be applied to the value read from the register
402 * @val: value not to be matched after applying the mask
403 * @timeout_us: time out after this period of time
404 * @out_val: if not NULL, points where to store the last unmasked value
405 * @atomic: needs to be true if calling from an atomic context
406 *
407 * This function works exactly like xe_mmio_wait32() with the exception that
408 * @val is expected not to be matched.
409 */
xe_mmio_wait32_not(struct xe_mmio * mmio,struct xe_reg reg,u32 mask,u32 val,u32 timeout_us,u32 * out_val,bool atomic)410 int xe_mmio_wait32_not(struct xe_mmio *mmio, struct xe_reg reg, u32 mask, u32 val, u32 timeout_us,
411 u32 *out_val, bool atomic)
412 {
413 return __xe_mmio_wait32(mmio, reg, mask, val, timeout_us, out_val, atomic, false);
414 }
415