xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "regs/xe_irq_regs.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_force_wake.h"
21 #include "xe_gt.h"
22 #include "xe_gt_printk.h"
23 #include "xe_gt_sriov_vf.h"
24 #include "xe_gt_throttle.h"
25 #include "xe_guc_ads.h"
26 #include "xe_guc_buf.h"
27 #include "xe_guc_capture.h"
28 #include "xe_guc_ct.h"
29 #include "xe_guc_db_mgr.h"
30 #include "xe_guc_engine_activity.h"
31 #include "xe_guc_hwconfig.h"
32 #include "xe_guc_klv_helpers.h"
33 #include "xe_guc_log.h"
34 #include "xe_guc_pc.h"
35 #include "xe_guc_relay.h"
36 #include "xe_guc_submit.h"
37 #include "xe_memirq.h"
38 #include "xe_mmio.h"
39 #include "xe_platform_types.h"
40 #include "xe_sriov.h"
41 #include "xe_uc.h"
42 #include "xe_uc_fw.h"
43 #include "xe_wa.h"
44 #include "xe_wopcm.h"
45 
guc_bo_ggtt_addr(struct xe_guc * guc,struct xe_bo * bo)46 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
47 			    struct xe_bo *bo)
48 {
49 	struct xe_device *xe = guc_to_xe(guc);
50 	u32 addr;
51 
52 	/*
53 	 * For most BOs, the address on the allocating tile is fine. However for
54 	 * some, e.g. G2G CTB, the address on a specific tile is required as it
55 	 * might be different for each tile. So, just always ask for the address
56 	 * on the target GuC.
57 	 */
58 	addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
59 
60 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
61 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
62 	xe_assert(xe, addr < GUC_GGTT_TOP);
63 	xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr);
64 
65 	return addr;
66 }
67 
guc_ctl_debug_flags(struct xe_guc * guc)68 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
69 {
70 	u32 level = xe_guc_log_get_level(&guc->log);
71 	u32 flags = 0;
72 
73 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
74 		flags |= GUC_LOG_DISABLED;
75 	else
76 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
77 			 GUC_LOG_VERBOSITY_SHIFT;
78 
79 	return flags;
80 }
81 
guc_ctl_feature_flags(struct xe_guc * guc)82 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
83 {
84 	u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
85 
86 	if (!guc_to_xe(guc)->info.skip_guc_pc)
87 		flags |= GUC_CTL_ENABLE_SLPC;
88 
89 	return flags;
90 }
91 
guc_ctl_log_params_flags(struct xe_guc * guc)92 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
93 {
94 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
95 	u32 flags;
96 
97 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
98 	#define LOG_UNIT SZ_1M
99 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
100 	#else
101 	#define LOG_UNIT SZ_4K
102 	#define LOG_FLAG 0
103 	#endif
104 
105 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
106 	#define CAPTURE_UNIT SZ_1M
107 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
108 	#else
109 	#define CAPTURE_UNIT SZ_4K
110 	#define CAPTURE_FLAG 0
111 	#endif
112 
113 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
114 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
115 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
116 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
117 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
118 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
119 
120 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
121 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
122 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
123 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
124 	BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
125 			(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
126 
127 	flags = GUC_LOG_VALID |
128 		GUC_LOG_NOTIFY_ON_HALF_FULL |
129 		CAPTURE_FLAG |
130 		LOG_FLAG |
131 		((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
132 		((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
133 		((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
134 		 GUC_LOG_CAPTURE_SHIFT) |
135 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
136 
137 	#undef LOG_UNIT
138 	#undef LOG_FLAG
139 	#undef CAPTURE_UNIT
140 	#undef CAPTURE_FLAG
141 
142 	return flags;
143 }
144 
guc_ctl_ads_flags(struct xe_guc * guc)145 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
146 {
147 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
148 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
149 
150 	return flags;
151 }
152 
needs_wa_dual_queue(struct xe_gt * gt)153 static bool needs_wa_dual_queue(struct xe_gt *gt)
154 {
155 	/*
156 	 * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
157 	 * on RCS and CCSes with different address spaces, which on DG2 is
158 	 * required as a WA for an HW bug.
159 	 */
160 	if (XE_WA(gt, 22011391025))
161 		return true;
162 
163 	/*
164 	 * On newer platforms, the HW has been updated to not allow parallel
165 	 * execution of different address spaces, so the RCS/CCS will stall the
166 	 * context switch if one of the other RCS/CCSes is busy with a different
167 	 * address space. While functionally correct, having a submission
168 	 * stalled on the HW limits the GuC ability to shuffle things around and
169 	 * can cause complications if the non-stalled submission runs for a long
170 	 * time, because the GuC doesn't know that the stalled submission isn't
171 	 * actually running and might declare it as hung. Therefore, we enable
172 	 * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
173 	 * to move management back to the GuC.
174 	 */
175 	if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
176 		return true;
177 
178 	return false;
179 }
180 
guc_ctl_wa_flags(struct xe_guc * guc)181 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
182 {
183 	struct xe_device *xe = guc_to_xe(guc);
184 	struct xe_gt *gt = guc_to_gt(guc);
185 	u32 flags = 0;
186 
187 	if (XE_WA(gt, 22012773006))
188 		flags |= GUC_WA_POLLCS;
189 
190 	if (XE_WA(gt, 14014475959))
191 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
192 
193 	if (needs_wa_dual_queue(gt))
194 		flags |= GUC_WA_DUAL_QUEUE;
195 
196 	/*
197 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
198 	 * this flag: make sure each CS is stopped when preparing for GT reset
199 	 * and wait for pending MI_FW.
200 	 */
201 	if (GRAPHICS_VERx100(xe) < 1270)
202 		flags |= GUC_WA_PRE_PARSER;
203 
204 	if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
205 		flags |= GUC_WA_CONTEXT_ISOLATION;
206 
207 	if (XE_WA(gt, 18020744125) &&
208 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
209 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
210 
211 	if (XE_WA(gt, 1509372804))
212 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
213 
214 	if (XE_WA(gt, 14018913170))
215 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
216 
217 	return flags;
218 }
219 
guc_ctl_devid(struct xe_guc * guc)220 static u32 guc_ctl_devid(struct xe_guc *guc)
221 {
222 	struct xe_device *xe = guc_to_xe(guc);
223 
224 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
225 }
226 
guc_print_params(struct xe_guc * guc)227 static void guc_print_params(struct xe_guc *guc)
228 {
229 	struct xe_gt *gt = guc_to_gt(guc);
230 	u32 *params = guc->params;
231 	int i;
232 
233 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
234 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
235 
236 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
237 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
238 }
239 
guc_init_params(struct xe_guc * guc)240 static void guc_init_params(struct xe_guc *guc)
241 {
242 	u32 *params = guc->params;
243 
244 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
245 	params[GUC_CTL_FEATURE] = 0;
246 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
247 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
248 	params[GUC_CTL_WA] = 0;
249 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
250 
251 	guc_print_params(guc);
252 }
253 
guc_init_params_post_hwconfig(struct xe_guc * guc)254 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
255 {
256 	u32 *params = guc->params;
257 
258 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
259 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
260 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
261 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
262 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
263 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
264 
265 	guc_print_params(guc);
266 }
267 
268 /*
269  * Initialize the GuC parameter block before starting the firmware
270  * transfer. These parameters are read by the firmware on startup
271  * and cannot be changed thereafter.
272  */
guc_write_params(struct xe_guc * guc)273 static void guc_write_params(struct xe_guc *guc)
274 {
275 	struct xe_gt *gt = guc_to_gt(guc);
276 	int i;
277 
278 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
279 
280 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(0), 0);
281 
282 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
283 		xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
284 }
285 
guc_action_register_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev,u32 desc_addr,u32 buff_addr,u32 size)286 static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
287 					  u32 desc_addr, u32 buff_addr, u32 size)
288 {
289 	struct xe_gt *gt = guc_to_gt(guc);
290 	struct xe_device *xe = gt_to_xe(gt);
291 	u32 action[] = {
292 		XE_GUC_ACTION_REGISTER_G2G,
293 		FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
294 		FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
295 		FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
296 		FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
297 		desc_addr,
298 		buff_addr,
299 	};
300 
301 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
302 	xe_assert(xe, !(size % SZ_4K));
303 
304 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
305 }
306 
guc_action_deregister_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev)307 static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
308 {
309 	struct xe_gt *gt = guc_to_gt(guc);
310 	struct xe_device *xe = gt_to_xe(gt);
311 	u32 action[] = {
312 		XE_GUC_ACTION_DEREGISTER_G2G,
313 		FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
314 		FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
315 		FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
316 	};
317 
318 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
319 
320 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
321 }
322 
323 #define G2G_DEV(gt)	(((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
324 
325 #define G2G_BUFFER_SIZE (SZ_4K)
326 #define G2G_DESC_SIZE (64)
327 #define G2G_DESC_AREA_SIZE (SZ_4K)
328 
329 /*
330  * Generate a unique id for each bi-directional CTB for each pair of
331  * near and far tiles/devices. The id can then be used as an index into
332  * a single allocation that is sub-divided into multiple CTBs.
333  *
334  * For example, with two devices per tile and two tiles, the table should
335  * look like:
336  *           Far <tile>.<dev>
337  *         0.0   0.1   1.0   1.1
338  * N 0.0  --/-- 00/01 02/03 04/05
339  * e 0.1  01/00 --/-- 06/07 08/09
340  * a 1.0  03/02 07/06 --/-- 10/11
341  * r 1.1  05/04 09/08 11/10 --/--
342  *
343  * Where each entry is Rx/Tx channel id.
344  *
345  * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
346  * be reading from channel #11 and writing to channel #10. Whereas,
347  * GuC #2 talking to GuC #3 would be read on #10 and write to #11.
348  */
g2g_slot(u32 near_tile,u32 near_dev,u32 far_tile,u32 far_dev,u32 type,u32 max_inst,bool have_dev)349 static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
350 			     u32 type, u32 max_inst, bool have_dev)
351 {
352 	u32 near = near_tile, far = far_tile;
353 	u32 idx = 0, x, y, direction;
354 	int i;
355 
356 	if (have_dev) {
357 		near = (near << 1) | near_dev;
358 		far = (far << 1) | far_dev;
359 	}
360 
361 	/* No need to send to one's self */
362 	if (far == near)
363 		return -1;
364 
365 	if (far > near) {
366 		/* Top right table half */
367 		x = far;
368 		y = near;
369 
370 		/* T/R is 'forwards' direction */
371 		direction = type;
372 	} else {
373 		/* Bottom left table half */
374 		x = near;
375 		y = far;
376 
377 		/* B/L is 'backwards' direction */
378 		direction = (1 - type);
379 	}
380 
381 	/* Count the rows prior to the target */
382 	for (i = y; i > 0; i--)
383 		idx += max_inst - i;
384 
385 	/* Count this row up to the target */
386 	idx += (x - 1 - y);
387 
388 	/* Slots are in Rx/Tx pairs */
389 	idx *= 2;
390 
391 	/* Pick Rx/Tx direction */
392 	idx += direction;
393 
394 	return idx;
395 }
396 
guc_g2g_register(struct xe_guc * near_guc,struct xe_gt * far_gt,u32 type,bool have_dev)397 static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
398 {
399 	struct xe_gt *near_gt = guc_to_gt(near_guc);
400 	struct xe_device *xe = gt_to_xe(near_gt);
401 	struct xe_bo *g2g_bo;
402 	u32 near_tile = gt_to_tile(near_gt)->id;
403 	u32 near_dev = G2G_DEV(near_gt);
404 	u32 far_tile = gt_to_tile(far_gt)->id;
405 	u32 far_dev = G2G_DEV(far_gt);
406 	u32 max = xe->info.gt_count;
407 	u32 base, desc, buf;
408 	int slot;
409 
410 	/* G2G is not allowed between different cards */
411 	xe_assert(xe, xe == gt_to_xe(far_gt));
412 
413 	g2g_bo = near_guc->g2g.bo;
414 	xe_assert(xe, g2g_bo);
415 
416 	slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
417 	xe_assert(xe, slot >= 0);
418 
419 	base = guc_bo_ggtt_addr(near_guc, g2g_bo);
420 	desc = base + slot * G2G_DESC_SIZE;
421 	buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
422 
423 	xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
424 	xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo));
425 
426 	return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
427 					      desc, buf, G2G_BUFFER_SIZE);
428 }
429 
guc_g2g_deregister(struct xe_guc * guc,u32 far_tile,u32 far_dev,u32 type)430 static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
431 {
432 	guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
433 }
434 
guc_g2g_size(struct xe_guc * guc)435 static u32 guc_g2g_size(struct xe_guc *guc)
436 {
437 	struct xe_gt *gt = guc_to_gt(guc);
438 	struct xe_device *xe = gt_to_xe(gt);
439 	unsigned int count = xe->info.gt_count;
440 	u32 num_channels = (count * (count - 1)) / 2;
441 
442 	xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
443 
444 	return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
445 }
446 
xe_guc_g2g_wanted(struct xe_device * xe)447 static bool xe_guc_g2g_wanted(struct xe_device *xe)
448 {
449 	/* Can't do GuC to GuC communication if there is only one GuC */
450 	if (xe->info.gt_count <= 1)
451 		return false;
452 
453 	/* No current user */
454 	return false;
455 }
456 
guc_g2g_alloc(struct xe_guc * guc)457 static int guc_g2g_alloc(struct xe_guc *guc)
458 {
459 	struct xe_gt *gt = guc_to_gt(guc);
460 	struct xe_device *xe = gt_to_xe(gt);
461 	struct xe_tile *tile = gt_to_tile(gt);
462 	struct xe_bo *bo;
463 	u32 g2g_size;
464 
465 	if (guc->g2g.bo)
466 		return 0;
467 
468 	if (gt->info.id != 0) {
469 		struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
470 		struct xe_guc *root_guc = &root_gt->uc.guc;
471 		struct xe_bo *bo;
472 
473 		bo = xe_bo_get(root_guc->g2g.bo);
474 		if (!bo)
475 			return -ENODEV;
476 
477 		guc->g2g.bo = bo;
478 		guc->g2g.owned = false;
479 		return 0;
480 	}
481 
482 	g2g_size = guc_g2g_size(guc);
483 	bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
484 					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
485 					  XE_BO_FLAG_GGTT |
486 					  XE_BO_FLAG_GGTT_ALL |
487 					  XE_BO_FLAG_GGTT_INVALIDATE |
488 					  XE_BO_FLAG_PINNED_NORESTORE);
489 	if (IS_ERR(bo))
490 		return PTR_ERR(bo);
491 
492 	xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
493 	guc->g2g.bo = bo;
494 	guc->g2g.owned = true;
495 
496 	return 0;
497 }
498 
guc_g2g_fini(struct xe_guc * guc)499 static void guc_g2g_fini(struct xe_guc *guc)
500 {
501 	if (!guc->g2g.bo)
502 		return;
503 
504 	/* Unpinning the owned object is handled by generic shutdown */
505 	if (!guc->g2g.owned)
506 		xe_bo_put(guc->g2g.bo);
507 
508 	guc->g2g.bo = NULL;
509 }
510 
guc_g2g_start(struct xe_guc * guc)511 static int guc_g2g_start(struct xe_guc *guc)
512 {
513 	struct xe_gt *far_gt, *gt = guc_to_gt(guc);
514 	struct xe_device *xe = gt_to_xe(gt);
515 	unsigned int i, j;
516 	int t, err;
517 	bool have_dev;
518 
519 	if (!guc->g2g.bo) {
520 		int ret;
521 
522 		ret = guc_g2g_alloc(guc);
523 		if (ret)
524 			return ret;
525 	}
526 
527 	/* GuC interface will need extending if more GT device types are ever created. */
528 	xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
529 
530 	/* Channel numbering depends on whether there are multiple GTs per tile */
531 	have_dev = xe->info.gt_count > xe->info.tile_count;
532 
533 	for_each_gt(far_gt, xe, i) {
534 		u32 far_tile, far_dev;
535 
536 		if (far_gt->info.id == gt->info.id)
537 			continue;
538 
539 		far_tile = gt_to_tile(far_gt)->id;
540 		far_dev = G2G_DEV(far_gt);
541 
542 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
543 			err = guc_g2g_register(guc, far_gt, t, have_dev);
544 			if (err) {
545 				while (--t >= 0)
546 					guc_g2g_deregister(guc, far_tile, far_dev, t);
547 				goto err_deregister;
548 			}
549 		}
550 	}
551 
552 	return 0;
553 
554 err_deregister:
555 	for_each_gt(far_gt, xe, j) {
556 		u32 tile, dev;
557 
558 		if (far_gt->info.id == gt->info.id)
559 			continue;
560 
561 		if (j >= i)
562 			break;
563 
564 		tile = gt_to_tile(far_gt)->id;
565 		dev = G2G_DEV(far_gt);
566 
567 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
568 			guc_g2g_deregister(guc, tile, dev, t);
569 	}
570 
571 	return err;
572 }
573 
__guc_opt_in_features_enable(struct xe_guc * guc,u64 addr,u32 num_dwords)574 static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords)
575 {
576 	u32 action[] = {
577 		XE_GUC_ACTION_OPT_IN_FEATURE_KLV,
578 		lower_32_bits(addr),
579 		upper_32_bits(addr),
580 		num_dwords
581 	};
582 
583 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
584 }
585 
supports_dynamic_ics(struct xe_guc * guc)586 static bool supports_dynamic_ics(struct xe_guc *guc)
587 {
588 	struct xe_device *xe = guc_to_xe(guc);
589 	struct xe_gt *gt = guc_to_gt(guc);
590 
591 	/* Dynamic ICS is available for PVC and Xe2 and newer platforms. */
592 	if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20)
593 		return false;
594 
595 	/*
596 	 * The feature is currently not compatible with multi-lrc, so the GuC
597 	 * does not support it at all on the media engines (which are the main
598 	 * users of mlrc). On the primary GT side, to avoid it being used in
599 	 * conjunction with mlrc, we only enable it if we are in single CCS
600 	 * mode.
601 	 */
602 	if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1)
603 		return false;
604 
605 	/*
606 	 * Dynamic ICS requires GuC v70.40.1, which maps to compatibility
607 	 * version v1.18.4.
608 	 */
609 	return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4);
610 }
611 
612 #define OPT_IN_MAX_DWORDS 16
xe_guc_opt_in_features_enable(struct xe_guc * guc)613 int xe_guc_opt_in_features_enable(struct xe_guc *guc)
614 {
615 	struct xe_device *xe = guc_to_xe(guc);
616 	CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS);
617 	u32 count = 0;
618 	u32 *klvs;
619 	int ret;
620 
621 	if (!xe_guc_buf_is_valid(buf))
622 		return -ENOBUFS;
623 
624 	klvs = xe_guc_buf_cpu_ptr(buf);
625 
626 	/*
627 	 * The extra CAT error type opt-in was added in GuC v70.17.0, which maps
628 	 * to compatibility version v1.7.0.
629 	 * Note that the GuC allows enabling this KLV even on platforms that do
630 	 * not support the extra type; in such case the returned type variable
631 	 * will be set to a known invalid value which we can check against.
632 	 */
633 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0))
634 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE);
635 
636 	if (supports_dynamic_ics(guc))
637 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH);
638 
639 	if (count) {
640 		xe_assert(xe, count <= OPT_IN_MAX_DWORDS);
641 
642 		ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count);
643 		if (ret < 0) {
644 			xe_gt_err(guc_to_gt(guc),
645 				  "failed to enable GuC opt-in features: %pe\n",
646 				  ERR_PTR(ret));
647 			return ret;
648 		}
649 	}
650 
651 	return 0;
652 }
653 
guc_fini_hw(void * arg)654 static void guc_fini_hw(void *arg)
655 {
656 	struct xe_guc *guc = arg;
657 	struct xe_gt *gt = guc_to_gt(guc);
658 	unsigned int fw_ref;
659 
660 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
661 	xe_uc_sanitize_reset(&guc_to_gt(guc)->uc);
662 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
663 
664 	guc_g2g_fini(guc);
665 }
666 
667 /**
668  * xe_guc_comm_init_early - early initialization of GuC communication
669  * @guc: the &xe_guc to initialize
670  *
671  * Must be called prior to first MMIO communication with GuC firmware.
672  */
xe_guc_comm_init_early(struct xe_guc * guc)673 void xe_guc_comm_init_early(struct xe_guc *guc)
674 {
675 	struct xe_gt *gt = guc_to_gt(guc);
676 
677 	if (xe_gt_is_media_type(gt))
678 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
679 	else
680 		guc->notify_reg = GUC_HOST_INTERRUPT;
681 }
682 
xe_guc_realloc_post_hwconfig(struct xe_guc * guc)683 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
684 {
685 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
686 	struct xe_device *xe = guc_to_xe(guc);
687 	int ret;
688 
689 	if (!IS_DGFX(guc_to_xe(guc)))
690 		return 0;
691 
692 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
693 	if (ret)
694 		return ret;
695 
696 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
697 	if (ret)
698 		return ret;
699 
700 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
701 	if (ret)
702 		return ret;
703 
704 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
705 	if (ret)
706 		return ret;
707 
708 	return 0;
709 }
710 
vf_guc_init_noalloc(struct xe_guc * guc)711 static int vf_guc_init_noalloc(struct xe_guc *guc)
712 {
713 	struct xe_gt *gt = guc_to_gt(guc);
714 	int err;
715 
716 	err = xe_gt_sriov_vf_bootstrap(gt);
717 	if (err)
718 		return err;
719 
720 	err = xe_gt_sriov_vf_query_config(gt);
721 	if (err)
722 		return err;
723 
724 	return 0;
725 }
726 
xe_guc_init_noalloc(struct xe_guc * guc)727 int xe_guc_init_noalloc(struct xe_guc *guc)
728 {
729 	struct xe_device *xe = guc_to_xe(guc);
730 	struct xe_gt *gt = guc_to_gt(guc);
731 	int ret;
732 
733 	xe_guc_comm_init_early(guc);
734 
735 	ret = xe_guc_ct_init_noalloc(&guc->ct);
736 	if (ret)
737 		goto out;
738 
739 	ret = xe_guc_relay_init(&guc->relay);
740 	if (ret)
741 		goto out;
742 
743 	if (IS_SRIOV_VF(xe)) {
744 		ret = vf_guc_init_noalloc(guc);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	return 0;
750 
751 out:
752 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
753 	return ret;
754 }
755 
xe_guc_init(struct xe_guc * guc)756 int xe_guc_init(struct xe_guc *guc)
757 {
758 	struct xe_device *xe = guc_to_xe(guc);
759 	struct xe_gt *gt = guc_to_gt(guc);
760 	int ret;
761 
762 	guc->fw.type = XE_UC_FW_TYPE_GUC;
763 	ret = xe_uc_fw_init(&guc->fw);
764 	if (ret)
765 		return ret;
766 
767 	if (!xe_uc_fw_is_enabled(&guc->fw))
768 		return 0;
769 
770 	if (IS_SRIOV_VF(xe)) {
771 		ret = xe_guc_ct_init(&guc->ct);
772 		if (ret)
773 			goto out;
774 		return 0;
775 	}
776 
777 	ret = xe_guc_log_init(&guc->log);
778 	if (ret)
779 		goto out;
780 
781 	ret = xe_guc_capture_init(guc);
782 	if (ret)
783 		goto out;
784 
785 	ret = xe_guc_ads_init(&guc->ads);
786 	if (ret)
787 		goto out;
788 
789 	ret = xe_guc_ct_init(&guc->ct);
790 	if (ret)
791 		goto out;
792 
793 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
794 
795 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
796 	if (ret)
797 		goto out;
798 
799 	guc_init_params(guc);
800 
801 	return 0;
802 
803 out:
804 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
805 	return ret;
806 }
807 
vf_guc_init_post_hwconfig(struct xe_guc * guc)808 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
809 {
810 	int err;
811 
812 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
813 	if (err)
814 		return err;
815 
816 	err = xe_guc_buf_cache_init(&guc->buf);
817 	if (err)
818 		return err;
819 
820 	/* XXX xe_guc_db_mgr_init not needed for now */
821 
822 	return 0;
823 }
824 
825 /**
826  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
827  * @guc: The GuC object
828  *
829  * Return: 0 on success, negative error code on error.
830  */
xe_guc_init_post_hwconfig(struct xe_guc * guc)831 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
832 {
833 	int ret;
834 
835 	if (IS_SRIOV_VF(guc_to_xe(guc)))
836 		return vf_guc_init_post_hwconfig(guc);
837 
838 	ret = xe_guc_realloc_post_hwconfig(guc);
839 	if (ret)
840 		return ret;
841 
842 	guc_init_params_post_hwconfig(guc);
843 
844 	ret = xe_guc_submit_init(guc, ~0);
845 	if (ret)
846 		return ret;
847 
848 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
849 	if (ret)
850 		return ret;
851 
852 	ret = xe_guc_pc_init(&guc->pc);
853 	if (ret)
854 		return ret;
855 
856 	ret = xe_guc_engine_activity_init(guc);
857 	if (ret)
858 		return ret;
859 
860 	ret = xe_guc_buf_cache_init(&guc->buf);
861 	if (ret)
862 		return ret;
863 
864 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
865 }
866 
xe_guc_post_load_init(struct xe_guc * guc)867 int xe_guc_post_load_init(struct xe_guc *guc)
868 {
869 	int ret;
870 
871 	xe_guc_ads_populate_post_load(&guc->ads);
872 
873 	ret = xe_guc_opt_in_features_enable(guc);
874 	if (ret)
875 		return ret;
876 
877 	if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
878 		ret = guc_g2g_start(guc);
879 		if (ret)
880 			return ret;
881 	}
882 
883 	guc->submission_state.enabled = true;
884 
885 	return 0;
886 }
887 
xe_guc_reset(struct xe_guc * guc)888 int xe_guc_reset(struct xe_guc *guc)
889 {
890 	struct xe_gt *gt = guc_to_gt(guc);
891 	struct xe_mmio *mmio = &gt->mmio;
892 	u32 guc_status, gdrst;
893 	int ret;
894 
895 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
896 
897 	if (IS_SRIOV_VF(gt_to_xe(gt)))
898 		return xe_gt_sriov_vf_bootstrap(gt);
899 
900 	xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
901 
902 	ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
903 	if (ret) {
904 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
905 		goto err_out;
906 	}
907 
908 	guc_status = xe_mmio_read32(mmio, GUC_STATUS);
909 	if (!(guc_status & GS_MIA_IN_RESET)) {
910 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
911 			  guc_status);
912 		ret = -EIO;
913 		goto err_out;
914 	}
915 
916 	return 0;
917 
918 err_out:
919 
920 	return ret;
921 }
922 
guc_prepare_xfer(struct xe_guc * guc)923 static void guc_prepare_xfer(struct xe_guc *guc)
924 {
925 	struct xe_gt *gt = guc_to_gt(guc);
926 	struct xe_mmio *mmio = &gt->mmio;
927 	struct xe_device *xe =  guc_to_xe(guc);
928 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
929 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
930 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
931 		GUC_ENABLE_MIA_CLOCK_GATING;
932 
933 	if (GRAPHICS_VERx100(xe) < 1250)
934 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
935 				GUC_ENABLE_MIA_CACHING;
936 
937 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
938 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
939 
940 	/* Must program this register before loading the ucode with DMA */
941 	xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
942 
943 	xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
944 
945 	/* Make sure GuC receives ARAT interrupts */
946 	xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
947 }
948 
949 /*
950  * Supporting MMIO & in memory RSA
951  */
guc_xfer_rsa(struct xe_guc * guc)952 static int guc_xfer_rsa(struct xe_guc *guc)
953 {
954 	struct xe_gt *gt = guc_to_gt(guc);
955 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
956 	size_t copied;
957 	int i;
958 
959 	if (guc->fw.rsa_size > 256) {
960 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
961 				    xe_uc_fw_rsa_offset(&guc->fw);
962 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
963 		return 0;
964 	}
965 
966 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
967 	if (copied < sizeof(rsa))
968 		return -ENOMEM;
969 
970 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
971 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
972 
973 	return 0;
974 }
975 
976 /*
977  * Check a previously read GuC status register (GUC_STATUS) looking for
978  * known terminal states (either completion or failure) of either the
979  * microkernel status field or the boot ROM status field. Returns +1 for
980  * successful completion, -1 for failure and 0 for any intermediate state.
981  */
guc_load_done(u32 status)982 static int guc_load_done(u32 status)
983 {
984 	u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
985 	u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
986 
987 	switch (uk_val) {
988 	case XE_GUC_LOAD_STATUS_READY:
989 		return 1;
990 
991 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
992 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
993 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
994 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
995 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
996 	case XE_GUC_LOAD_STATUS_EXCEPTION:
997 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
998 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
999 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1000 		return -1;
1001 	}
1002 
1003 	switch (br_val) {
1004 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1005 	case XE_BOOTROM_STATUS_RSA_FAILED:
1006 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
1007 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
1008 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
1009 	case XE_BOOTROM_STATUS_JUMP_FAILED:
1010 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
1011 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
1012 	case XE_BOOTROM_STATUS_EXCEPTION:
1013 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1014 		return -1;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
guc_pc_get_cur_freq(struct xe_guc_pc * guc_pc)1020 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
1021 {
1022 	u32 freq;
1023 	int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
1024 
1025 	return ret ? ret : freq;
1026 }
1027 
1028 /*
1029  * Wait for the GuC to start up.
1030  *
1031  * Measurements indicate this should take no more than 20ms (assuming the GT
1032  * clock is at maximum frequency). However, thermal throttling and other issues
1033  * can prevent the clock hitting max and thus making the load take significantly
1034  * longer. Allow up to 200ms as a safety margin for real world worst case situations.
1035  *
1036  * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
1037  * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
1038  * the load times can be in the seconds range. So the timeout is increased for debug
1039  * builds to ensure that problems can be correctly analysed. For release builds, the
1040  * timeout is kept short so that users don't wait forever to find out that there is a
1041  * problem. In either case, if the load took longer than is reasonable even with some
1042  * 'sensible' throttling, then flag a warning because something is not right.
1043  *
1044  * Note that there is a limit on how long an individual usleep_range() can wait for,
1045  * hence longer waits require wrapping a shorter wait in a loop.
1046  *
1047  * Note that the only reason an end user should hit the shorter timeout is in case of
1048  * extreme thermal throttling. And a system that is that hot during boot is probably
1049  * dead anyway!
1050  */
1051 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1052 #define GUC_LOAD_RETRY_LIMIT	20
1053 #else
1054 #define GUC_LOAD_RETRY_LIMIT	3
1055 #endif
1056 #define GUC_LOAD_TIME_WARN_MS      200
1057 
guc_wait_ucode(struct xe_guc * guc)1058 static void guc_wait_ucode(struct xe_guc *guc)
1059 {
1060 	struct xe_gt *gt = guc_to_gt(guc);
1061 	struct xe_mmio *mmio = &gt->mmio;
1062 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
1063 	ktime_t before, after, delta;
1064 	int load_done;
1065 	u32 status = 0;
1066 	int count = 0;
1067 	u64 delta_ms;
1068 	u32 before_freq;
1069 
1070 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
1071 	before = ktime_get();
1072 	/*
1073 	 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
1074 	 * It could return a thousand intermediate stages at random times. Instead, must
1075 	 * manually track the total time taken and locally implement the timeout.
1076 	 */
1077 	do {
1078 		u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
1079 		int ret;
1080 
1081 		/*
1082 		 * Wait for any change (intermediate or terminal) in the status register.
1083 		 * Note, the return value is a don't care. The only failure code is timeout
1084 		 * but the timeouts need to be accumulated over all the intermediate partial
1085 		 * timeouts rather than allowing a huge timeout each time. So basically, need
1086 		 * to treat a timeout no different to a value change.
1087 		 */
1088 		ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
1089 					 last_status, 1000 * 1000, &status, false);
1090 		if (ret < 0)
1091 			count++;
1092 		after = ktime_get();
1093 		delta = ktime_sub(after, before);
1094 		delta_ms = ktime_to_ms(delta);
1095 
1096 		load_done = guc_load_done(status);
1097 		if (load_done != 0)
1098 			break;
1099 
1100 		if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
1101 			break;
1102 
1103 		xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
1104 			  count, xe_guc_pc_get_act_freq(guc_pc),
1105 			  guc_pc_get_cur_freq(guc_pc), status,
1106 			  REG_FIELD_GET(GS_BOOTROM_MASK, status),
1107 			  REG_FIELD_GET(GS_UKERNEL_MASK, status));
1108 	} while (1);
1109 
1110 	if (load_done != 1) {
1111 		u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
1112 		u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
1113 
1114 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
1115 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
1116 			  guc_pc_get_cur_freq(guc_pc), load_done);
1117 		xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
1118 			  REG_FIELD_GET(GS_MIA_IN_RESET, status),
1119 			  bootrom, ukernel,
1120 			  REG_FIELD_GET(GS_MIA_MASK, status),
1121 			  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
1122 
1123 		switch (bootrom) {
1124 		case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1125 			xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
1126 				  xe_mmio_read32(mmio, GUC_HEADER_INFO));
1127 			break;
1128 
1129 		case XE_BOOTROM_STATUS_RSA_FAILED:
1130 			xe_gt_err(gt, "firmware signature verification failed\n");
1131 			break;
1132 
1133 		case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1134 			xe_gt_err(gt, "firmware production part check failure\n");
1135 			break;
1136 		}
1137 
1138 		switch (ukernel) {
1139 		case XE_GUC_LOAD_STATUS_EXCEPTION:
1140 			xe_gt_err(gt, "firmware exception. EIP: %#x\n",
1141 				  xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
1142 			break;
1143 
1144 		case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1145 			xe_gt_err(gt, "illegal register in save/restore workaround list\n");
1146 			break;
1147 
1148 		case XE_GUC_LOAD_STATUS_HWCONFIG_START:
1149 			xe_gt_err(gt, "still extracting hwconfig table.\n");
1150 			break;
1151 		}
1152 
1153 		xe_device_declare_wedged(gt_to_xe(gt));
1154 	} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
1155 		xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
1156 			   delta_ms, status, count);
1157 		xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
1158 			   xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
1159 			   before_freq, xe_gt_throttle_get_limit_reasons(gt));
1160 	} else {
1161 		xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
1162 			  delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
1163 			  before_freq, status, count);
1164 	}
1165 }
1166 
__xe_guc_upload(struct xe_guc * guc)1167 static int __xe_guc_upload(struct xe_guc *guc)
1168 {
1169 	int ret;
1170 
1171 	/* Raise GT freq to speed up HuC/GuC load */
1172 	xe_guc_pc_raise_unslice(&guc->pc);
1173 
1174 	guc_write_params(guc);
1175 	guc_prepare_xfer(guc);
1176 
1177 	/*
1178 	 * Note that GuC needs the CSS header plus uKernel code to be copied
1179 	 * by the DMA engine in one operation, whereas the RSA signature is
1180 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
1181 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
1182 	 * size > 256). The RSA size and therefore the way we provide it to the
1183 	 * HW is fixed for each platform and hard-coded in the bootrom.
1184 	 */
1185 	ret = guc_xfer_rsa(guc);
1186 	if (ret)
1187 		goto out;
1188 	/*
1189 	 * Current uCode expects the code to be loaded at 8k; locations below
1190 	 * this are used for the stack.
1191 	 */
1192 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
1193 	if (ret)
1194 		goto out;
1195 
1196 	/* Wait for authentication */
1197 	guc_wait_ucode(guc);
1198 
1199 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
1200 	return 0;
1201 
1202 out:
1203 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
1204 	return 0	/* FIXME: ret, don't want to stop load currently */;
1205 }
1206 
vf_guc_min_load_for_hwconfig(struct xe_guc * guc)1207 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
1208 {
1209 	struct xe_gt *gt = guc_to_gt(guc);
1210 	int ret;
1211 
1212 	ret = xe_guc_hwconfig_init(guc);
1213 	if (ret)
1214 		return ret;
1215 
1216 	ret = xe_guc_enable_communication(guc);
1217 	if (ret)
1218 		return ret;
1219 
1220 	ret = xe_gt_sriov_vf_connect(gt);
1221 	if (ret)
1222 		goto err_out;
1223 
1224 	ret = xe_gt_sriov_vf_query_runtime(gt);
1225 	if (ret)
1226 		goto err_out;
1227 
1228 	return 0;
1229 
1230 err_out:
1231 	xe_guc_sanitize(guc);
1232 	return ret;
1233 }
1234 
1235 /**
1236  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
1237  * @guc: The GuC object
1238  *
1239  * This function uploads a minimal GuC that does not support submissions but
1240  * in a state where the hwconfig table can be read. Next, it reads and parses
1241  * the hwconfig table so it can be used for subsequent steps in the driver load.
1242  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
1243  *
1244  * Return: 0 on success, negative error code on error.
1245  */
xe_guc_min_load_for_hwconfig(struct xe_guc * guc)1246 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
1247 {
1248 	int ret;
1249 
1250 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1251 		return vf_guc_min_load_for_hwconfig(guc);
1252 
1253 	xe_guc_ads_populate_minimal(&guc->ads);
1254 
1255 	xe_guc_pc_init_early(&guc->pc);
1256 
1257 	ret = __xe_guc_upload(guc);
1258 	if (ret)
1259 		return ret;
1260 
1261 	ret = xe_guc_hwconfig_init(guc);
1262 	if (ret)
1263 		return ret;
1264 
1265 	ret = xe_guc_enable_communication(guc);
1266 	if (ret)
1267 		return ret;
1268 
1269 	return 0;
1270 }
1271 
xe_guc_upload(struct xe_guc * guc)1272 int xe_guc_upload(struct xe_guc *guc)
1273 {
1274 	xe_guc_ads_populate(&guc->ads);
1275 
1276 	return __xe_guc_upload(guc);
1277 }
1278 
guc_handle_mmio_msg(struct xe_guc * guc)1279 static void guc_handle_mmio_msg(struct xe_guc *guc)
1280 {
1281 	struct xe_gt *gt = guc_to_gt(guc);
1282 	u32 msg;
1283 
1284 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1285 		return;
1286 
1287 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
1288 
1289 	msg = xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(15));
1290 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
1291 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
1292 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(15), 0);
1293 
1294 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
1295 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
1296 
1297 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
1298 		xe_gt_err(gt, "Received early GuC exception notification!\n");
1299 }
1300 
guc_enable_irq(struct xe_guc * guc)1301 static void guc_enable_irq(struct xe_guc *guc)
1302 {
1303 	struct xe_gt *gt = guc_to_gt(guc);
1304 	u32 events = xe_gt_is_media_type(gt) ?
1305 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
1306 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
1307 
1308 	/* Primary GuC and media GuC share a single enable bit */
1309 	xe_mmio_write32(&gt->mmio, GUC_SG_INTR_ENABLE,
1310 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
1311 
1312 	/*
1313 	 * There are separate mask bits for primary and media GuCs, so use
1314 	 * a RMW operation to avoid clobbering the other GuC's setting.
1315 	 */
1316 	xe_mmio_rmw32(&gt->mmio, GUC_SG_INTR_MASK, events, 0);
1317 }
1318 
xe_guc_enable_communication(struct xe_guc * guc)1319 int xe_guc_enable_communication(struct xe_guc *guc)
1320 {
1321 	struct xe_device *xe = guc_to_xe(guc);
1322 	int err;
1323 
1324 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
1325 		struct xe_gt *gt = guc_to_gt(guc);
1326 		struct xe_tile *tile = gt_to_tile(gt);
1327 
1328 		err = xe_memirq_init_guc(&tile->memirq, guc);
1329 		if (err)
1330 			return err;
1331 	} else {
1332 		guc_enable_irq(guc);
1333 	}
1334 
1335 	err = xe_guc_ct_enable(&guc->ct);
1336 	if (err)
1337 		return err;
1338 
1339 	guc_handle_mmio_msg(guc);
1340 
1341 	return 0;
1342 }
1343 
xe_guc_suspend(struct xe_guc * guc)1344 int xe_guc_suspend(struct xe_guc *guc)
1345 {
1346 	struct xe_gt *gt = guc_to_gt(guc);
1347 	u32 action[] = {
1348 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
1349 	};
1350 	int ret;
1351 
1352 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
1353 	if (ret) {
1354 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
1355 		return ret;
1356 	}
1357 
1358 	xe_guc_sanitize(guc);
1359 	return 0;
1360 }
1361 
xe_guc_notify(struct xe_guc * guc)1362 void xe_guc_notify(struct xe_guc *guc)
1363 {
1364 	struct xe_gt *gt = guc_to_gt(guc);
1365 	const u32 default_notify_data = 0;
1366 
1367 	/*
1368 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
1369 	 * additional payload data to the GuC but this capability is not
1370 	 * used by the firmware yet. Use default value in the meantime.
1371 	 */
1372 	xe_mmio_write32(&gt->mmio, guc->notify_reg, default_notify_data);
1373 }
1374 
xe_guc_auth_huc(struct xe_guc * guc,u32 rsa_addr)1375 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
1376 {
1377 	u32 action[] = {
1378 		XE_GUC_ACTION_AUTHENTICATE_HUC,
1379 		rsa_addr
1380 	};
1381 
1382 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
1383 }
1384 
xe_guc_mmio_send_recv(struct xe_guc * guc,const u32 * request,u32 len,u32 * response_buf)1385 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
1386 			  u32 len, u32 *response_buf)
1387 {
1388 	struct xe_device *xe = guc_to_xe(guc);
1389 	struct xe_gt *gt = guc_to_gt(guc);
1390 	struct xe_mmio *mmio = &gt->mmio;
1391 	u32 header, reply;
1392 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
1393 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
1394 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
1395 	bool lost = false;
1396 	int ret;
1397 	int i;
1398 
1399 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
1400 
1401 	xe_assert(xe, len);
1402 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
1403 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
1404 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
1405 		  GUC_HXG_ORIGIN_HOST);
1406 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
1407 		  GUC_HXG_TYPE_REQUEST);
1408 
1409 retry:
1410 	/* Not in critical data-path, just do if else for GT type */
1411 	if (xe_gt_is_media_type(gt)) {
1412 		for (i = 0; i < len; ++i)
1413 			xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
1414 					request[i]);
1415 		xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
1416 	} else {
1417 		for (i = 0; i < len; ++i)
1418 			xe_mmio_write32(mmio, VF_SW_FLAG(i),
1419 					request[i]);
1420 		xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
1421 	}
1422 
1423 	xe_guc_notify(guc);
1424 
1425 	ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
1426 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
1427 			     50000, &reply, false);
1428 	if (ret) {
1429 		/* scratch registers might be cleared during FLR, try once more */
1430 		if (!reply && !lost) {
1431 			xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]);
1432 			lost = true;
1433 			goto retry;
1434 		}
1435 timeout:
1436 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
1437 			  request[0], reply);
1438 		return ret;
1439 	}
1440 
1441 	header = xe_mmio_read32(mmio, reply_reg);
1442 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1443 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
1444 		/*
1445 		 * Once we got a BUSY reply we must wait again for the final
1446 		 * response but this time we can't use ORIGIN mask anymore.
1447 		 * To spot a right change in the reply, we take advantage that
1448 		 * response SUCCESS and FAILURE differ only by the single bit
1449 		 * and all other bits are set and can be used as a new mask.
1450 		 */
1451 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
1452 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
1453 
1454 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
1455 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
1456 
1457 		ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1458 				     1000000, &header, false);
1459 
1460 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1461 			     GUC_HXG_ORIGIN_GUC))
1462 			goto proto;
1463 		if (unlikely(ret)) {
1464 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1465 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1466 				goto proto;
1467 			goto timeout;
1468 		}
1469 	}
1470 
1471 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1472 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1473 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1474 
1475 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1476 			  request[0], reason);
1477 		goto retry;
1478 	}
1479 
1480 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1481 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1482 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1483 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1484 
1485 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1486 			  request[0], error, hint);
1487 		return -ENXIO;
1488 	}
1489 
1490 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1491 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1492 proto:
1493 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1494 			  request[0], header);
1495 		return -EPROTO;
1496 	}
1497 
1498 	/* Just copy entire possible message response */
1499 	if (response_buf) {
1500 		response_buf[0] = header;
1501 
1502 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1503 			reply_reg.addr += sizeof(u32);
1504 			response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1505 		}
1506 	}
1507 
1508 	/* Use data from the GuC response as our return value */
1509 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1510 }
1511 ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
1512 
xe_guc_mmio_send(struct xe_guc * guc,const u32 * request,u32 len)1513 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1514 {
1515 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1516 }
1517 
guc_self_cfg(struct xe_guc * guc,u16 key,u16 len,u64 val)1518 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1519 {
1520 	struct xe_device *xe = guc_to_xe(guc);
1521 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1522 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1523 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1524 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1525 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1526 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1527 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1528 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1529 			   lower_32_bits(val)),
1530 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1531 			   upper_32_bits(val)),
1532 	};
1533 	int ret;
1534 
1535 	xe_assert(xe, len <= 2);
1536 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1537 
1538 	/* Self config must go over MMIO */
1539 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1540 
1541 	if (unlikely(ret < 0))
1542 		return ret;
1543 	if (unlikely(ret > 1))
1544 		return -EPROTO;
1545 	if (unlikely(!ret))
1546 		return -ENOKEY;
1547 
1548 	return 0;
1549 }
1550 
xe_guc_self_cfg32(struct xe_guc * guc,u16 key,u32 val)1551 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1552 {
1553 	return guc_self_cfg(guc, key, 1, val);
1554 }
1555 
xe_guc_self_cfg64(struct xe_guc * guc,u16 key,u64 val)1556 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1557 {
1558 	return guc_self_cfg(guc, key, 2, val);
1559 }
1560 
xe_guc_sw_0_irq_handler(struct xe_guc * guc)1561 static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
1562 {
1563 	struct xe_gt *gt = guc_to_gt(guc);
1564 
1565 	if (IS_SRIOV_VF(gt_to_xe(gt)))
1566 		xe_gt_sriov_vf_migrated_event_handler(gt);
1567 }
1568 
xe_guc_irq_handler(struct xe_guc * guc,const u16 iir)1569 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1570 {
1571 	if (iir & GUC_INTR_GUC2HOST)
1572 		xe_guc_ct_irq_handler(&guc->ct);
1573 
1574 	if (iir & GUC_INTR_SW_INT_0)
1575 		xe_guc_sw_0_irq_handler(guc);
1576 }
1577 
xe_guc_sanitize(struct xe_guc * guc)1578 void xe_guc_sanitize(struct xe_guc *guc)
1579 {
1580 	xe_uc_fw_sanitize(&guc->fw);
1581 	xe_guc_ct_disable(&guc->ct);
1582 	guc->submission_state.enabled = false;
1583 }
1584 
xe_guc_reset_prepare(struct xe_guc * guc)1585 int xe_guc_reset_prepare(struct xe_guc *guc)
1586 {
1587 	return xe_guc_submit_reset_prepare(guc);
1588 }
1589 
xe_guc_reset_wait(struct xe_guc * guc)1590 void xe_guc_reset_wait(struct xe_guc *guc)
1591 {
1592 	xe_guc_submit_reset_wait(guc);
1593 }
1594 
xe_guc_stop_prepare(struct xe_guc * guc)1595 void xe_guc_stop_prepare(struct xe_guc *guc)
1596 {
1597 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1598 		int err;
1599 
1600 		err = xe_guc_pc_stop(&guc->pc);
1601 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1602 			   ERR_PTR(err));
1603 	}
1604 }
1605 
xe_guc_stop(struct xe_guc * guc)1606 void xe_guc_stop(struct xe_guc *guc)
1607 {
1608 	xe_guc_ct_stop(&guc->ct);
1609 
1610 	xe_guc_submit_stop(guc);
1611 }
1612 
xe_guc_start(struct xe_guc * guc)1613 int xe_guc_start(struct xe_guc *guc)
1614 {
1615 	return xe_guc_submit_start(guc);
1616 }
1617 
xe_guc_print_info(struct xe_guc * guc,struct drm_printer * p)1618 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1619 {
1620 	struct xe_gt *gt = guc_to_gt(guc);
1621 	unsigned int fw_ref;
1622 	u32 status;
1623 	int i;
1624 
1625 	xe_uc_fw_print(&guc->fw, p);
1626 
1627 	if (!IS_SRIOV_VF(gt_to_xe(gt))) {
1628 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1629 		if (!fw_ref)
1630 			return;
1631 
1632 		status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
1633 
1634 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
1635 		drm_printf(p, "\tBootrom status = 0x%x\n",
1636 			   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1637 		drm_printf(p, "\tuKernel status = 0x%x\n",
1638 			   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1639 		drm_printf(p, "\tMIA Core status = 0x%x\n",
1640 			   REG_FIELD_GET(GS_MIA_MASK, status));
1641 		drm_printf(p, "\tLog level = %d\n",
1642 			   xe_guc_log_get_level(&guc->log));
1643 
1644 		drm_puts(p, "\nScratch registers:\n");
1645 		for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1646 			drm_printf(p, "\t%2d: \t0x%x\n",
1647 				   i, xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(i)));
1648 		}
1649 
1650 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1651 	}
1652 
1653 	drm_puts(p, "\n");
1654 	xe_guc_ct_print(&guc->ct, p, false);
1655 
1656 	drm_puts(p, "\n");
1657 	xe_guc_submit_print(guc, p);
1658 }
1659 
1660 /**
1661  * xe_guc_declare_wedged() - Declare GuC wedged
1662  * @guc: the GuC object
1663  *
1664  * Wedge the GuC which stops all submission, saves desired debug state, and
1665  * cleans up anything which could timeout.
1666  */
xe_guc_declare_wedged(struct xe_guc * guc)1667 void xe_guc_declare_wedged(struct xe_guc *guc)
1668 {
1669 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1670 
1671 	xe_guc_reset_prepare(guc);
1672 	xe_guc_ct_stop(&guc->ct);
1673 	xe_guc_submit_wedge(guc);
1674 }
1675