1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_bo.h"
7 
8 #include <linux/dma-buf.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_drv.h>
12 #include <drm/drm_gem_ttm_helper.h>
13 #include <drm/drm_managed.h>
14 #include <drm/ttm/ttm_backup.h>
15 #include <drm/ttm/ttm_device.h>
16 #include <drm/ttm/ttm_placement.h>
17 #include <drm/ttm/ttm_tt.h>
18 #include <uapi/drm/xe_drm.h>
19 
20 #include <kunit/static_stub.h>
21 
22 #include "xe_device.h"
23 #include "xe_dma_buf.h"
24 #include "xe_drm_client.h"
25 #include "xe_ggtt.h"
26 #include "xe_gt.h"
27 #include "xe_map.h"
28 #include "xe_migrate.h"
29 #include "xe_pm.h"
30 #include "xe_preempt_fence.h"
31 #include "xe_pxp.h"
32 #include "xe_res_cursor.h"
33 #include "xe_shrinker.h"
34 #include "xe_trace_bo.h"
35 #include "xe_ttm_stolen_mgr.h"
36 #include "xe_vm.h"
37 
38 const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES]  = {
39 	[XE_PL_SYSTEM] = "system",
40 	[XE_PL_TT] = "gtt",
41 	[XE_PL_VRAM0] = "vram0",
42 	[XE_PL_VRAM1] = "vram1",
43 	[XE_PL_STOLEN] = "stolen"
44 };
45 
46 static const struct ttm_place sys_placement_flags = {
47 	.fpfn = 0,
48 	.lpfn = 0,
49 	.mem_type = XE_PL_SYSTEM,
50 	.flags = 0,
51 };
52 
53 static struct ttm_placement sys_placement = {
54 	.num_placement = 1,
55 	.placement = &sys_placement_flags,
56 };
57 
58 static const struct ttm_place tt_placement_flags[] = {
59 	{
60 		.fpfn = 0,
61 		.lpfn = 0,
62 		.mem_type = XE_PL_TT,
63 		.flags = TTM_PL_FLAG_DESIRED,
64 	},
65 	{
66 		.fpfn = 0,
67 		.lpfn = 0,
68 		.mem_type = XE_PL_SYSTEM,
69 		.flags = TTM_PL_FLAG_FALLBACK,
70 	}
71 };
72 
73 static struct ttm_placement tt_placement = {
74 	.num_placement = 2,
75 	.placement = tt_placement_flags,
76 };
77 
mem_type_is_vram(u32 mem_type)78 bool mem_type_is_vram(u32 mem_type)
79 {
80 	return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
81 }
82 
resource_is_stolen_vram(struct xe_device * xe,struct ttm_resource * res)83 static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
84 {
85 	return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
86 }
87 
resource_is_vram(struct ttm_resource * res)88 static bool resource_is_vram(struct ttm_resource *res)
89 {
90 	return mem_type_is_vram(res->mem_type);
91 }
92 
xe_bo_is_vram(struct xe_bo * bo)93 bool xe_bo_is_vram(struct xe_bo *bo)
94 {
95 	return resource_is_vram(bo->ttm.resource) ||
96 		resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
97 }
98 
xe_bo_is_stolen(struct xe_bo * bo)99 bool xe_bo_is_stolen(struct xe_bo *bo)
100 {
101 	return bo->ttm.resource->mem_type == XE_PL_STOLEN;
102 }
103 
104 /**
105  * xe_bo_has_single_placement - check if BO is placed only in one memory location
106  * @bo: The BO
107  *
108  * This function checks whether a given BO is placed in only one memory location.
109  *
110  * Returns: true if the BO is placed in a single memory location, false otherwise.
111  *
112  */
xe_bo_has_single_placement(struct xe_bo * bo)113 bool xe_bo_has_single_placement(struct xe_bo *bo)
114 {
115 	return bo->placement.num_placement == 1;
116 }
117 
118 /**
119  * xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
120  * @bo: The BO
121  *
122  * The stolen memory is accessed through the PCI BAR for both DGFX and some
123  * integrated platforms that have a dedicated bit in the PTE for devmem (DM).
124  *
125  * Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
126  */
xe_bo_is_stolen_devmem(struct xe_bo * bo)127 bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
128 {
129 	return xe_bo_is_stolen(bo) &&
130 		GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
131 }
132 
133 /**
134  * xe_bo_is_vm_bound - check if BO has any mappings through VM_BIND
135  * @bo: The BO
136  *
137  * Check if a given bo is bound through VM_BIND. This requires the
138  * reservation lock for the BO to be held.
139  *
140  * Returns: boolean
141  */
xe_bo_is_vm_bound(struct xe_bo * bo)142 bool xe_bo_is_vm_bound(struct xe_bo *bo)
143 {
144 	xe_bo_assert_held(bo);
145 
146 	return !list_empty(&bo->ttm.base.gpuva.list);
147 }
148 
xe_bo_is_user(struct xe_bo * bo)149 static bool xe_bo_is_user(struct xe_bo *bo)
150 {
151 	return bo->flags & XE_BO_FLAG_USER;
152 }
153 
154 static struct xe_migrate *
mem_type_to_migrate(struct xe_device * xe,u32 mem_type)155 mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
156 {
157 	struct xe_tile *tile;
158 
159 	xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
160 	tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
161 	return tile->migrate;
162 }
163 
res_to_mem_region(struct ttm_resource * res)164 static struct xe_vram_region *res_to_mem_region(struct ttm_resource *res)
165 {
166 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
167 	struct ttm_resource_manager *mgr;
168 	struct xe_ttm_vram_mgr *vram_mgr;
169 
170 	xe_assert(xe, resource_is_vram(res));
171 	mgr = ttm_manager_type(&xe->ttm, res->mem_type);
172 	vram_mgr = to_xe_ttm_vram_mgr(mgr);
173 
174 	return container_of(vram_mgr, struct xe_vram_region, ttm);
175 }
176 
try_add_system(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)177 static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
178 			   u32 bo_flags, u32 *c)
179 {
180 	if (bo_flags & XE_BO_FLAG_SYSTEM) {
181 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
182 
183 		bo->placements[*c] = (struct ttm_place) {
184 			.mem_type = XE_PL_TT,
185 		};
186 		*c += 1;
187 	}
188 }
189 
force_contiguous(u32 bo_flags)190 static bool force_contiguous(u32 bo_flags)
191 {
192 	/*
193 	 * For eviction / restore on suspend / resume objects pinned in VRAM
194 	 * must be contiguous, also only contiguous BOs support xe_bo_vmap.
195 	 */
196 	return bo_flags & (XE_BO_FLAG_PINNED | XE_BO_FLAG_GGTT);
197 }
198 
add_vram(struct xe_device * xe,struct xe_bo * bo,struct ttm_place * places,u32 bo_flags,u32 mem_type,u32 * c)199 static void add_vram(struct xe_device *xe, struct xe_bo *bo,
200 		     struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
201 {
202 	struct ttm_place place = { .mem_type = mem_type };
203 	struct ttm_resource_manager *mgr = ttm_manager_type(&xe->ttm, mem_type);
204 	struct xe_ttm_vram_mgr *vram_mgr = to_xe_ttm_vram_mgr(mgr);
205 
206 	struct xe_vram_region *vram;
207 	u64 io_size;
208 
209 	xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
210 
211 	vram = container_of(vram_mgr, struct xe_vram_region, ttm);
212 	xe_assert(xe, vram && vram->usable_size);
213 	io_size = vram->io_size;
214 
215 	if (force_contiguous(bo_flags))
216 		place.flags |= TTM_PL_FLAG_CONTIGUOUS;
217 
218 	if (io_size < vram->usable_size) {
219 		if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
220 			place.fpfn = 0;
221 			place.lpfn = io_size >> PAGE_SHIFT;
222 		} else {
223 			place.flags |= TTM_PL_FLAG_TOPDOWN;
224 		}
225 	}
226 	places[*c] = place;
227 	*c += 1;
228 }
229 
try_add_vram(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)230 static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
231 			 u32 bo_flags, u32 *c)
232 {
233 	if (bo_flags & XE_BO_FLAG_VRAM0)
234 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
235 	if (bo_flags & XE_BO_FLAG_VRAM1)
236 		add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
237 }
238 
try_add_stolen(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags,u32 * c)239 static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
240 			   u32 bo_flags, u32 *c)
241 {
242 	if (bo_flags & XE_BO_FLAG_STOLEN) {
243 		xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
244 
245 		bo->placements[*c] = (struct ttm_place) {
246 			.mem_type = XE_PL_STOLEN,
247 			.flags = force_contiguous(bo_flags) ?
248 				TTM_PL_FLAG_CONTIGUOUS : 0,
249 		};
250 		*c += 1;
251 	}
252 }
253 
__xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)254 static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
255 				       u32 bo_flags)
256 {
257 	u32 c = 0;
258 
259 	try_add_vram(xe, bo, bo_flags, &c);
260 	try_add_system(xe, bo, bo_flags, &c);
261 	try_add_stolen(xe, bo, bo_flags, &c);
262 
263 	if (!c)
264 		return -EINVAL;
265 
266 	bo->placement = (struct ttm_placement) {
267 		.num_placement = c,
268 		.placement = bo->placements,
269 	};
270 
271 	return 0;
272 }
273 
xe_bo_placement_for_flags(struct xe_device * xe,struct xe_bo * bo,u32 bo_flags)274 int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
275 			      u32 bo_flags)
276 {
277 	xe_bo_assert_held(bo);
278 	return __xe_bo_placement_for_flags(xe, bo, bo_flags);
279 }
280 
xe_evict_flags(struct ttm_buffer_object * tbo,struct ttm_placement * placement)281 static void xe_evict_flags(struct ttm_buffer_object *tbo,
282 			   struct ttm_placement *placement)
283 {
284 	struct xe_bo *bo;
285 
286 	if (!xe_bo_is_xe_bo(tbo)) {
287 		/* Don't handle scatter gather BOs */
288 		if (tbo->type == ttm_bo_type_sg) {
289 			placement->num_placement = 0;
290 			return;
291 		}
292 
293 		*placement = sys_placement;
294 		return;
295 	}
296 
297 	bo = ttm_to_xe_bo(tbo);
298 	if (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) {
299 		*placement = sys_placement;
300 		return;
301 	}
302 
303 	/*
304 	 * For xe, sg bos that are evicted to system just triggers a
305 	 * rebind of the sg list upon subsequent validation to XE_PL_TT.
306 	 */
307 	switch (tbo->resource->mem_type) {
308 	case XE_PL_VRAM0:
309 	case XE_PL_VRAM1:
310 	case XE_PL_STOLEN:
311 		*placement = tt_placement;
312 		break;
313 	case XE_PL_TT:
314 	default:
315 		*placement = sys_placement;
316 		break;
317 	}
318 }
319 
320 /* struct xe_ttm_tt - Subclassed ttm_tt for xe */
321 struct xe_ttm_tt {
322 	struct ttm_tt ttm;
323 	/** @xe - The xe device */
324 	struct xe_device *xe;
325 	struct sg_table sgt;
326 	struct sg_table *sg;
327 	/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
328 	bool purgeable;
329 };
330 
xe_tt_map_sg(struct ttm_tt * tt)331 static int xe_tt_map_sg(struct ttm_tt *tt)
332 {
333 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
334 	unsigned long num_pages = tt->num_pages;
335 	int ret;
336 
337 	XE_WARN_ON((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
338 		   !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE));
339 
340 	if (xe_tt->sg)
341 		return 0;
342 
343 	ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
344 						num_pages, 0,
345 						(u64)num_pages << PAGE_SHIFT,
346 						xe_sg_segment_size(xe_tt->xe->drm.dev),
347 						GFP_KERNEL);
348 	if (ret)
349 		return ret;
350 
351 	xe_tt->sg = &xe_tt->sgt;
352 	ret = dma_map_sgtable(xe_tt->xe->drm.dev, xe_tt->sg, DMA_BIDIRECTIONAL,
353 			      DMA_ATTR_SKIP_CPU_SYNC);
354 	if (ret) {
355 		sg_free_table(xe_tt->sg);
356 		xe_tt->sg = NULL;
357 		return ret;
358 	}
359 
360 	return 0;
361 }
362 
xe_tt_unmap_sg(struct ttm_tt * tt)363 static void xe_tt_unmap_sg(struct ttm_tt *tt)
364 {
365 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
366 
367 	if (xe_tt->sg) {
368 		dma_unmap_sgtable(xe_tt->xe->drm.dev, xe_tt->sg,
369 				  DMA_BIDIRECTIONAL, 0);
370 		sg_free_table(xe_tt->sg);
371 		xe_tt->sg = NULL;
372 	}
373 }
374 
xe_bo_sg(struct xe_bo * bo)375 struct sg_table *xe_bo_sg(struct xe_bo *bo)
376 {
377 	struct ttm_tt *tt = bo->ttm.ttm;
378 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
379 
380 	return xe_tt->sg;
381 }
382 
383 /*
384  * Account ttm pages against the device shrinker's shrinkable and
385  * purgeable counts.
386  */
xe_ttm_tt_account_add(struct ttm_tt * tt)387 static void xe_ttm_tt_account_add(struct ttm_tt *tt)
388 {
389 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
390 
391 	if (xe_tt->purgeable)
392 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, tt->num_pages);
393 	else
394 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, tt->num_pages, 0);
395 }
396 
xe_ttm_tt_account_subtract(struct ttm_tt * tt)397 static void xe_ttm_tt_account_subtract(struct ttm_tt *tt)
398 {
399 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
400 
401 	if (xe_tt->purgeable)
402 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, 0, -(long)tt->num_pages);
403 	else
404 		xe_shrinker_mod_pages(xe_tt->xe->mem.shrinker, -(long)tt->num_pages, 0);
405 }
406 
xe_ttm_tt_create(struct ttm_buffer_object * ttm_bo,u32 page_flags)407 static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
408 				       u32 page_flags)
409 {
410 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
411 	struct xe_device *xe = xe_bo_device(bo);
412 	struct xe_ttm_tt *xe_tt;
413 	struct ttm_tt *tt;
414 	unsigned long extra_pages;
415 	enum ttm_caching caching = ttm_cached;
416 	int err;
417 
418 	xe_tt = kzalloc(sizeof(*xe_tt), GFP_KERNEL);
419 	if (!xe_tt)
420 		return NULL;
421 
422 	tt = &xe_tt->ttm;
423 	xe_tt->xe = xe;
424 
425 	extra_pages = 0;
426 	if (xe_bo_needs_ccs_pages(bo))
427 		extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
428 					   PAGE_SIZE);
429 
430 	/*
431 	 * DGFX system memory is always WB / ttm_cached, since
432 	 * other caching modes are only supported on x86. DGFX
433 	 * GPU system memory accesses are always coherent with the
434 	 * CPU.
435 	 */
436 	if (!IS_DGFX(xe)) {
437 		switch (bo->cpu_caching) {
438 		case DRM_XE_GEM_CPU_CACHING_WC:
439 			caching = ttm_write_combined;
440 			break;
441 		default:
442 			caching = ttm_cached;
443 			break;
444 		}
445 
446 		WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
447 
448 		/*
449 		 * Display scanout is always non-coherent with the CPU cache.
450 		 *
451 		 * For Xe_LPG and beyond, PPGTT PTE lookups are also
452 		 * non-coherent and require a CPU:WC mapping.
453 		 */
454 		if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
455 		    (xe->info.graphics_verx100 >= 1270 &&
456 		     bo->flags & XE_BO_FLAG_PAGETABLE))
457 			caching = ttm_write_combined;
458 	}
459 
460 	if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
461 		/*
462 		 * Valid only for internally-created buffers only, for
463 		 * which cpu_caching is never initialized.
464 		 */
465 		xe_assert(xe, bo->cpu_caching == 0);
466 		caching = ttm_uncached;
467 	}
468 
469 	if (ttm_bo->type != ttm_bo_type_sg)
470 		page_flags |= TTM_TT_FLAG_EXTERNAL | TTM_TT_FLAG_EXTERNAL_MAPPABLE;
471 
472 	err = ttm_tt_init(tt, &bo->ttm, page_flags, caching, extra_pages);
473 	if (err) {
474 		kfree(xe_tt);
475 		return NULL;
476 	}
477 
478 	if (ttm_bo->type != ttm_bo_type_sg) {
479 		err = ttm_tt_setup_backup(tt);
480 		if (err) {
481 			ttm_tt_fini(tt);
482 			kfree(xe_tt);
483 			return NULL;
484 		}
485 	}
486 
487 	return tt;
488 }
489 
xe_ttm_tt_populate(struct ttm_device * ttm_dev,struct ttm_tt * tt,struct ttm_operation_ctx * ctx)490 static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
491 			      struct ttm_operation_ctx *ctx)
492 {
493 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
494 	int err;
495 
496 	/*
497 	 * dma-bufs are not populated with pages, and the dma-
498 	 * addresses are set up when moved to XE_PL_TT.
499 	 */
500 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
501 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
502 		return 0;
503 
504 	if (ttm_tt_is_backed_up(tt) && !xe_tt->purgeable) {
505 		err = ttm_tt_restore(ttm_dev, tt, ctx);
506 	} else {
507 		ttm_tt_clear_backed_up(tt);
508 		err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
509 	}
510 	if (err)
511 		return err;
512 
513 	xe_tt->purgeable = false;
514 	xe_ttm_tt_account_add(tt);
515 
516 	return 0;
517 }
518 
xe_ttm_tt_unpopulate(struct ttm_device * ttm_dev,struct ttm_tt * tt)519 static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
520 {
521 	if ((tt->page_flags & TTM_TT_FLAG_EXTERNAL) &&
522 	    !(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE))
523 		return;
524 
525 	xe_tt_unmap_sg(tt);
526 
527 	ttm_pool_free(&ttm_dev->pool, tt);
528 	xe_ttm_tt_account_subtract(tt);
529 }
530 
xe_ttm_tt_destroy(struct ttm_device * ttm_dev,struct ttm_tt * tt)531 static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
532 {
533 	ttm_tt_fini(tt);
534 	kfree(tt);
535 }
536 
xe_ttm_resource_visible(struct ttm_resource * mem)537 static bool xe_ttm_resource_visible(struct ttm_resource *mem)
538 {
539 	struct xe_ttm_vram_mgr_resource *vres =
540 		to_xe_ttm_vram_mgr_resource(mem);
541 
542 	return vres->used_visible_size == mem->size;
543 }
544 
xe_ttm_io_mem_reserve(struct ttm_device * bdev,struct ttm_resource * mem)545 static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
546 				 struct ttm_resource *mem)
547 {
548 	struct xe_device *xe = ttm_to_xe_device(bdev);
549 
550 	switch (mem->mem_type) {
551 	case XE_PL_SYSTEM:
552 	case XE_PL_TT:
553 		return 0;
554 	case XE_PL_VRAM0:
555 	case XE_PL_VRAM1: {
556 		struct xe_vram_region *vram = res_to_mem_region(mem);
557 
558 		if (!xe_ttm_resource_visible(mem))
559 			return -EINVAL;
560 
561 		mem->bus.offset = mem->start << PAGE_SHIFT;
562 
563 		if (vram->mapping &&
564 		    mem->placement & TTM_PL_FLAG_CONTIGUOUS)
565 			mem->bus.addr = (u8 __force *)vram->mapping +
566 				mem->bus.offset;
567 
568 		mem->bus.offset += vram->io_start;
569 		mem->bus.is_iomem = true;
570 
571 #if  !IS_ENABLED(CONFIG_X86)
572 		mem->bus.caching = ttm_write_combined;
573 #endif
574 		return 0;
575 	} case XE_PL_STOLEN:
576 		return xe_ttm_stolen_io_mem_reserve(xe, mem);
577 	default:
578 		return -EINVAL;
579 	}
580 }
581 
xe_bo_trigger_rebind(struct xe_device * xe,struct xe_bo * bo,const struct ttm_operation_ctx * ctx)582 static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
583 				const struct ttm_operation_ctx *ctx)
584 {
585 	struct dma_resv_iter cursor;
586 	struct dma_fence *fence;
587 	struct drm_gem_object *obj = &bo->ttm.base;
588 	struct drm_gpuvm_bo *vm_bo;
589 	bool idle = false;
590 	int ret = 0;
591 
592 	dma_resv_assert_held(bo->ttm.base.resv);
593 
594 	if (!list_empty(&bo->ttm.base.gpuva.list)) {
595 		dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
596 				    DMA_RESV_USAGE_BOOKKEEP);
597 		dma_resv_for_each_fence_unlocked(&cursor, fence)
598 			dma_fence_enable_sw_signaling(fence);
599 		dma_resv_iter_end(&cursor);
600 	}
601 
602 	drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
603 		struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
604 		struct drm_gpuva *gpuva;
605 
606 		if (!xe_vm_in_fault_mode(vm)) {
607 			drm_gpuvm_bo_evict(vm_bo, true);
608 			continue;
609 		}
610 
611 		if (!idle) {
612 			long timeout;
613 
614 			if (ctx->no_wait_gpu &&
615 			    !dma_resv_test_signaled(bo->ttm.base.resv,
616 						    DMA_RESV_USAGE_BOOKKEEP))
617 				return -EBUSY;
618 
619 			timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
620 							DMA_RESV_USAGE_BOOKKEEP,
621 							ctx->interruptible,
622 							MAX_SCHEDULE_TIMEOUT);
623 			if (!timeout)
624 				return -ETIME;
625 			if (timeout < 0)
626 				return timeout;
627 
628 			idle = true;
629 		}
630 
631 		drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
632 			struct xe_vma *vma = gpuva_to_vma(gpuva);
633 
634 			trace_xe_vma_evict(vma);
635 			ret = xe_vm_invalidate_vma(vma);
636 			if (XE_WARN_ON(ret))
637 				return ret;
638 		}
639 	}
640 
641 	return ret;
642 }
643 
644 /*
645  * The dma-buf map_attachment() / unmap_attachment() is hooked up here.
646  * Note that unmapping the attachment is deferred to the next
647  * map_attachment time, or to bo destroy (after idling) whichever comes first.
648  * This is to avoid syncing before unmap_attachment(), assuming that the
649  * caller relies on idling the reservation object before moving the
650  * backing store out. Should that assumption not hold, then we will be able
651  * to unconditionally call unmap_attachment() when moving out to system.
652  */
xe_bo_move_dmabuf(struct ttm_buffer_object * ttm_bo,struct ttm_resource * new_res)653 static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
654 			     struct ttm_resource *new_res)
655 {
656 	struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
657 	struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
658 					       ttm);
659 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
660 	struct sg_table *sg;
661 
662 	xe_assert(xe, attach);
663 	xe_assert(xe, ttm_bo->ttm);
664 
665 	if (new_res->mem_type == XE_PL_SYSTEM)
666 		goto out;
667 
668 	if (ttm_bo->sg) {
669 		dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
670 		ttm_bo->sg = NULL;
671 	}
672 
673 	sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
674 	if (IS_ERR(sg))
675 		return PTR_ERR(sg);
676 
677 	ttm_bo->sg = sg;
678 	xe_tt->sg = sg;
679 
680 out:
681 	ttm_bo_move_null(ttm_bo, new_res);
682 
683 	return 0;
684 }
685 
686 /**
687  * xe_bo_move_notify - Notify subsystems of a pending move
688  * @bo: The buffer object
689  * @ctx: The struct ttm_operation_ctx controlling locking and waits.
690  *
691  * This function notifies subsystems of an upcoming buffer move.
692  * Upon receiving such a notification, subsystems should schedule
693  * halting access to the underlying pages and optionally add a fence
694  * to the buffer object's dma_resv object, that signals when access is
695  * stopped. The caller will wait on all dma_resv fences before
696  * starting the move.
697  *
698  * A subsystem may commence access to the object after obtaining
699  * bindings to the new backing memory under the object lock.
700  *
701  * Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
702  * negative error code on error.
703  */
xe_bo_move_notify(struct xe_bo * bo,const struct ttm_operation_ctx * ctx)704 static int xe_bo_move_notify(struct xe_bo *bo,
705 			     const struct ttm_operation_ctx *ctx)
706 {
707 	struct ttm_buffer_object *ttm_bo = &bo->ttm;
708 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
709 	struct ttm_resource *old_mem = ttm_bo->resource;
710 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
711 	int ret;
712 
713 	/*
714 	 * If this starts to call into many components, consider
715 	 * using a notification chain here.
716 	 */
717 
718 	if (xe_bo_is_pinned(bo))
719 		return -EINVAL;
720 
721 	xe_bo_vunmap(bo);
722 	ret = xe_bo_trigger_rebind(xe, bo, ctx);
723 	if (ret)
724 		return ret;
725 
726 	/* Don't call move_notify() for imported dma-bufs. */
727 	if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
728 		dma_buf_move_notify(ttm_bo->base.dma_buf);
729 
730 	/*
731 	 * TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
732 	 * so if we moved from VRAM make sure to unlink this from the userfault
733 	 * tracking.
734 	 */
735 	if (mem_type_is_vram(old_mem_type)) {
736 		mutex_lock(&xe->mem_access.vram_userfault.lock);
737 		if (!list_empty(&bo->vram_userfault_link))
738 			list_del_init(&bo->vram_userfault_link);
739 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
740 	}
741 
742 	return 0;
743 }
744 
xe_bo_move(struct ttm_buffer_object * ttm_bo,bool evict,struct ttm_operation_ctx * ctx,struct ttm_resource * new_mem,struct ttm_place * hop)745 static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
746 		      struct ttm_operation_ctx *ctx,
747 		      struct ttm_resource *new_mem,
748 		      struct ttm_place *hop)
749 {
750 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
751 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
752 	struct ttm_resource *old_mem = ttm_bo->resource;
753 	u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
754 	struct ttm_tt *ttm = ttm_bo->ttm;
755 	struct xe_migrate *migrate = NULL;
756 	struct dma_fence *fence;
757 	bool move_lacks_source;
758 	bool tt_has_data;
759 	bool needs_clear;
760 	bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
761 				  ttm && ttm_tt_is_populated(ttm)) ? true : false;
762 	int ret = 0;
763 
764 	/* Bo creation path, moving to system or TT. */
765 	if ((!old_mem && ttm) && !handle_system_ccs) {
766 		if (new_mem->mem_type == XE_PL_TT)
767 			ret = xe_tt_map_sg(ttm);
768 		if (!ret)
769 			ttm_bo_move_null(ttm_bo, new_mem);
770 		goto out;
771 	}
772 
773 	if (ttm_bo->type == ttm_bo_type_sg) {
774 		ret = xe_bo_move_notify(bo, ctx);
775 		if (!ret)
776 			ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
777 		return ret;
778 	}
779 
780 	tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
781 			      (ttm->page_flags & TTM_TT_FLAG_SWAPPED));
782 
783 	move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
784 					 (!mem_type_is_vram(old_mem_type) && !tt_has_data));
785 
786 	needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
787 		(!ttm && ttm_bo->type == ttm_bo_type_device);
788 
789 	if (new_mem->mem_type == XE_PL_TT) {
790 		ret = xe_tt_map_sg(ttm);
791 		if (ret)
792 			goto out;
793 	}
794 
795 	if ((move_lacks_source && !needs_clear)) {
796 		ttm_bo_move_null(ttm_bo, new_mem);
797 		goto out;
798 	}
799 
800 	if (!move_lacks_source && (bo->flags & XE_BO_FLAG_CPU_ADDR_MIRROR) &&
801 	    new_mem->mem_type == XE_PL_SYSTEM) {
802 		ret = xe_svm_bo_evict(bo);
803 		if (!ret) {
804 			drm_dbg(&xe->drm, "Evict system allocator BO success\n");
805 			ttm_bo_move_null(ttm_bo, new_mem);
806 		} else {
807 			drm_dbg(&xe->drm, "Evict system allocator BO failed=%pe\n",
808 				ERR_PTR(ret));
809 		}
810 
811 		goto out;
812 	}
813 
814 	if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
815 		ttm_bo_move_null(ttm_bo, new_mem);
816 		goto out;
817 	}
818 
819 	/* Reject BO eviction if BO is bound to current VM. */
820 	if (evict && ctx->resv) {
821 		struct drm_gpuvm_bo *vm_bo;
822 
823 		drm_gem_for_each_gpuvm_bo(vm_bo, &bo->ttm.base) {
824 			struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
825 
826 			if (xe_vm_resv(vm) == ctx->resv &&
827 			    xe_vm_in_preempt_fence_mode(vm)) {
828 				ret = -EBUSY;
829 				goto out;
830 			}
831 		}
832 	}
833 
834 	/*
835 	 * Failed multi-hop where the old_mem is still marked as
836 	 * TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
837 	 */
838 	if (old_mem_type == XE_PL_TT &&
839 	    new_mem->mem_type == XE_PL_TT) {
840 		ttm_bo_move_null(ttm_bo, new_mem);
841 		goto out;
842 	}
843 
844 	if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
845 		ret = xe_bo_move_notify(bo, ctx);
846 		if (ret)
847 			goto out;
848 	}
849 
850 	if (old_mem_type == XE_PL_TT &&
851 	    new_mem->mem_type == XE_PL_SYSTEM) {
852 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
853 						     DMA_RESV_USAGE_BOOKKEEP,
854 						     false,
855 						     MAX_SCHEDULE_TIMEOUT);
856 		if (timeout < 0) {
857 			ret = timeout;
858 			goto out;
859 		}
860 
861 		if (!handle_system_ccs) {
862 			ttm_bo_move_null(ttm_bo, new_mem);
863 			goto out;
864 		}
865 	}
866 
867 	if (!move_lacks_source &&
868 	    ((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
869 	     (mem_type_is_vram(old_mem_type) &&
870 	      new_mem->mem_type == XE_PL_SYSTEM))) {
871 		hop->fpfn = 0;
872 		hop->lpfn = 0;
873 		hop->mem_type = XE_PL_TT;
874 		hop->flags = TTM_PL_FLAG_TEMPORARY;
875 		ret = -EMULTIHOP;
876 		goto out;
877 	}
878 
879 	if (bo->tile)
880 		migrate = bo->tile->migrate;
881 	else if (resource_is_vram(new_mem))
882 		migrate = mem_type_to_migrate(xe, new_mem->mem_type);
883 	else if (mem_type_is_vram(old_mem_type))
884 		migrate = mem_type_to_migrate(xe, old_mem_type);
885 	else
886 		migrate = xe->tiles[0].migrate;
887 
888 	xe_assert(xe, migrate);
889 	trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
890 	if (xe_rpm_reclaim_safe(xe)) {
891 		/*
892 		 * We might be called through swapout in the validation path of
893 		 * another TTM device, so acquire rpm here.
894 		 */
895 		xe_pm_runtime_get(xe);
896 	} else {
897 		drm_WARN_ON(&xe->drm, handle_system_ccs);
898 		xe_pm_runtime_get_noresume(xe);
899 	}
900 
901 	if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
902 		/*
903 		 * Kernel memory that is pinned should only be moved on suspend
904 		 * / resume, some of the pinned memory is required for the
905 		 * device to resume / use the GPU to move other evicted memory
906 		 * (user memory) around. This likely could be optimized a bit
907 		 * further where we find the minimum set of pinned memory
908 		 * required for resume but for simplity doing a memcpy for all
909 		 * pinned memory.
910 		 */
911 		ret = xe_bo_vmap(bo);
912 		if (!ret) {
913 			ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
914 
915 			/* Create a new VMAP once kernel BO back in VRAM */
916 			if (!ret && resource_is_vram(new_mem)) {
917 				struct xe_vram_region *vram = res_to_mem_region(new_mem);
918 				void __iomem *new_addr = vram->mapping +
919 					(new_mem->start << PAGE_SHIFT);
920 
921 				if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
922 					ret = -EINVAL;
923 					xe_pm_runtime_put(xe);
924 					goto out;
925 				}
926 
927 				xe_assert(xe, new_mem->start ==
928 					  bo->placements->fpfn);
929 
930 				iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
931 			}
932 		}
933 	} else {
934 		if (move_lacks_source) {
935 			u32 flags = 0;
936 
937 			if (mem_type_is_vram(new_mem->mem_type))
938 				flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
939 			else if (handle_system_ccs)
940 				flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
941 
942 			fence = xe_migrate_clear(migrate, bo, new_mem, flags);
943 		}
944 		else
945 			fence = xe_migrate_copy(migrate, bo, bo, old_mem,
946 						new_mem, handle_system_ccs);
947 		if (IS_ERR(fence)) {
948 			ret = PTR_ERR(fence);
949 			xe_pm_runtime_put(xe);
950 			goto out;
951 		}
952 		if (!move_lacks_source) {
953 			ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
954 							true, new_mem);
955 			if (ret) {
956 				dma_fence_wait(fence, false);
957 				ttm_bo_move_null(ttm_bo, new_mem);
958 				ret = 0;
959 			}
960 		} else {
961 			/*
962 			 * ttm_bo_move_accel_cleanup() may blow up if
963 			 * bo->resource == NULL, so just attach the
964 			 * fence and set the new resource.
965 			 */
966 			dma_resv_add_fence(ttm_bo->base.resv, fence,
967 					   DMA_RESV_USAGE_KERNEL);
968 			ttm_bo_move_null(ttm_bo, new_mem);
969 		}
970 
971 		dma_fence_put(fence);
972 	}
973 
974 	xe_pm_runtime_put(xe);
975 
976 out:
977 	if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
978 	    ttm_bo->ttm) {
979 		long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
980 						     DMA_RESV_USAGE_KERNEL,
981 						     false,
982 						     MAX_SCHEDULE_TIMEOUT);
983 		if (timeout < 0)
984 			ret = timeout;
985 
986 		xe_tt_unmap_sg(ttm_bo->ttm);
987 	}
988 
989 	return ret;
990 }
991 
xe_bo_shrink_purge(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,unsigned long * scanned)992 static long xe_bo_shrink_purge(struct ttm_operation_ctx *ctx,
993 			       struct ttm_buffer_object *bo,
994 			       unsigned long *scanned)
995 {
996 	long lret;
997 
998 	/* Fake move to system, without copying data. */
999 	if (bo->resource->mem_type != XE_PL_SYSTEM) {
1000 		struct ttm_resource *new_resource;
1001 
1002 		lret = ttm_bo_wait_ctx(bo, ctx);
1003 		if (lret)
1004 			return lret;
1005 
1006 		lret = ttm_bo_mem_space(bo, &sys_placement, &new_resource, ctx);
1007 		if (lret)
1008 			return lret;
1009 
1010 		xe_tt_unmap_sg(bo->ttm);
1011 		ttm_bo_move_null(bo, new_resource);
1012 	}
1013 
1014 	*scanned += bo->ttm->num_pages;
1015 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1016 			     {.purge = true,
1017 			      .writeback = false,
1018 			      .allow_move = false});
1019 
1020 	if (lret > 0)
1021 		xe_ttm_tt_account_subtract(bo->ttm);
1022 
1023 	return lret;
1024 }
1025 
1026 /**
1027  * xe_bo_shrink() - Try to shrink an xe bo.
1028  * @ctx: The struct ttm_operation_ctx used for shrinking.
1029  * @bo: The TTM buffer object whose pages to shrink.
1030  * @flags: Flags governing the shrink behaviour.
1031  * @scanned: Pointer to a counter of the number of pages
1032  * attempted to shrink.
1033  *
1034  * Try to shrink- or purge a bo, and if it succeeds, unmap dma.
1035  * Note that we need to be able to handle also non xe bos
1036  * (ghost bos), but only if the struct ttm_tt is embedded in
1037  * a struct xe_ttm_tt. When the function attempts to shrink
1038  * the pages of a buffer object, The value pointed to by @scanned
1039  * is updated.
1040  *
1041  * Return: The number of pages shrunken or purged, or negative error
1042  * code on failure.
1043  */
xe_bo_shrink(struct ttm_operation_ctx * ctx,struct ttm_buffer_object * bo,const struct xe_bo_shrink_flags flags,unsigned long * scanned)1044 long xe_bo_shrink(struct ttm_operation_ctx *ctx, struct ttm_buffer_object *bo,
1045 		  const struct xe_bo_shrink_flags flags,
1046 		  unsigned long *scanned)
1047 {
1048 	struct ttm_tt *tt = bo->ttm;
1049 	struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
1050 	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1051 	struct xe_bo *xe_bo = ttm_to_xe_bo(bo);
1052 	struct xe_device *xe = xe_tt->xe;
1053 	bool needs_rpm;
1054 	long lret = 0L;
1055 
1056 	if (!(tt->page_flags & TTM_TT_FLAG_EXTERNAL_MAPPABLE) ||
1057 	    (flags.purge && !xe_tt->purgeable))
1058 		return -EBUSY;
1059 
1060 	if (!ttm_bo_eviction_valuable(bo, &place))
1061 		return -EBUSY;
1062 
1063 	if (!xe_bo_is_xe_bo(bo) || !xe_bo_get_unless_zero(xe_bo))
1064 		return xe_bo_shrink_purge(ctx, bo, scanned);
1065 
1066 	if (xe_tt->purgeable) {
1067 		if (bo->resource->mem_type != XE_PL_SYSTEM)
1068 			lret = xe_bo_move_notify(xe_bo, ctx);
1069 		if (!lret)
1070 			lret = xe_bo_shrink_purge(ctx, bo, scanned);
1071 		goto out_unref;
1072 	}
1073 
1074 	/* System CCS needs gpu copy when moving PL_TT -> PL_SYSTEM */
1075 	needs_rpm = (!IS_DGFX(xe) && bo->resource->mem_type != XE_PL_SYSTEM &&
1076 		     xe_bo_needs_ccs_pages(xe_bo));
1077 	if (needs_rpm && !xe_pm_runtime_get_if_active(xe))
1078 		goto out_unref;
1079 
1080 	*scanned += tt->num_pages;
1081 	lret = ttm_bo_shrink(ctx, bo, (struct ttm_bo_shrink_flags)
1082 			     {.purge = false,
1083 			      .writeback = flags.writeback,
1084 			      .allow_move = true});
1085 	if (needs_rpm)
1086 		xe_pm_runtime_put(xe);
1087 
1088 	if (lret > 0)
1089 		xe_ttm_tt_account_subtract(tt);
1090 
1091 out_unref:
1092 	xe_bo_put(xe_bo);
1093 
1094 	return lret;
1095 }
1096 
1097 /**
1098  * xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
1099  * @bo: The buffer object to move.
1100  *
1101  * On successful completion, the object memory will be moved to system memory.
1102  *
1103  * This is needed to for special handling of pinned VRAM object during
1104  * suspend-resume.
1105  *
1106  * Return: 0 on success. Negative error code on failure.
1107  */
xe_bo_evict_pinned(struct xe_bo * bo)1108 int xe_bo_evict_pinned(struct xe_bo *bo)
1109 {
1110 	struct ttm_place place = {
1111 		.mem_type = XE_PL_TT,
1112 	};
1113 	struct ttm_placement placement = {
1114 		.placement = &place,
1115 		.num_placement = 1,
1116 	};
1117 	struct ttm_operation_ctx ctx = {
1118 		.interruptible = false,
1119 		.gfp_retry_mayfail = true,
1120 	};
1121 	struct ttm_resource *new_mem;
1122 	int ret;
1123 
1124 	xe_bo_assert_held(bo);
1125 
1126 	if (WARN_ON(!bo->ttm.resource))
1127 		return -EINVAL;
1128 
1129 	if (WARN_ON(!xe_bo_is_pinned(bo)))
1130 		return -EINVAL;
1131 
1132 	if (!xe_bo_is_vram(bo))
1133 		return 0;
1134 
1135 	ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
1136 	if (ret)
1137 		return ret;
1138 
1139 	if (!bo->ttm.ttm) {
1140 		bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
1141 		if (!bo->ttm.ttm) {
1142 			ret = -ENOMEM;
1143 			goto err_res_free;
1144 		}
1145 	}
1146 
1147 	ret = ttm_bo_populate(&bo->ttm, &ctx);
1148 	if (ret)
1149 		goto err_res_free;
1150 
1151 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1152 	if (ret)
1153 		goto err_res_free;
1154 
1155 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
1156 	if (ret)
1157 		goto err_res_free;
1158 
1159 	return 0;
1160 
1161 err_res_free:
1162 	ttm_resource_free(&bo->ttm, &new_mem);
1163 	return ret;
1164 }
1165 
1166 /**
1167  * xe_bo_restore_pinned() - Restore a pinned VRAM object
1168  * @bo: The buffer object to move.
1169  *
1170  * On successful completion, the object memory will be moved back to VRAM.
1171  *
1172  * This is needed to for special handling of pinned VRAM object during
1173  * suspend-resume.
1174  *
1175  * Return: 0 on success. Negative error code on failure.
1176  */
xe_bo_restore_pinned(struct xe_bo * bo)1177 int xe_bo_restore_pinned(struct xe_bo *bo)
1178 {
1179 	struct ttm_operation_ctx ctx = {
1180 		.interruptible = false,
1181 		.gfp_retry_mayfail = false,
1182 	};
1183 	struct ttm_resource *new_mem;
1184 	struct ttm_place *place = &bo->placements[0];
1185 	int ret;
1186 
1187 	xe_bo_assert_held(bo);
1188 
1189 	if (WARN_ON(!bo->ttm.resource))
1190 		return -EINVAL;
1191 
1192 	if (WARN_ON(!xe_bo_is_pinned(bo)))
1193 		return -EINVAL;
1194 
1195 	if (WARN_ON(xe_bo_is_vram(bo)))
1196 		return -EINVAL;
1197 
1198 	if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
1199 		return -EINVAL;
1200 
1201 	if (!mem_type_is_vram(place->mem_type))
1202 		return 0;
1203 
1204 	ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
1205 	if (ret)
1206 		return ret;
1207 
1208 	ret = ttm_bo_populate(&bo->ttm, &ctx);
1209 	if (ret)
1210 		goto err_res_free;
1211 
1212 	ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
1213 	if (ret)
1214 		goto err_res_free;
1215 
1216 	ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
1217 	if (ret)
1218 		goto err_res_free;
1219 
1220 	return 0;
1221 
1222 err_res_free:
1223 	ttm_resource_free(&bo->ttm, &new_mem);
1224 	return ret;
1225 }
1226 
xe_ttm_io_mem_pfn(struct ttm_buffer_object * ttm_bo,unsigned long page_offset)1227 static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
1228 				       unsigned long page_offset)
1229 {
1230 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1231 	struct xe_res_cursor cursor;
1232 	struct xe_vram_region *vram;
1233 
1234 	if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
1235 		return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
1236 
1237 	vram = res_to_mem_region(ttm_bo->resource);
1238 	xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
1239 	return (vram->io_start + cursor.start) >> PAGE_SHIFT;
1240 }
1241 
1242 static void __xe_bo_vunmap(struct xe_bo *bo);
1243 
1244 /*
1245  * TODO: Move this function to TTM so we don't rely on how TTM does its
1246  * locking, thereby abusing TTM internals.
1247  */
xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object * ttm_bo)1248 static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
1249 {
1250 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1251 	bool locked;
1252 
1253 	xe_assert(xe, !kref_read(&ttm_bo->kref));
1254 
1255 	/*
1256 	 * We can typically only race with TTM trylocking under the
1257 	 * lru_lock, which will immediately be unlocked again since
1258 	 * the ttm_bo refcount is zero at this point. So trylocking *should*
1259 	 * always succeed here, as long as we hold the lru lock.
1260 	 */
1261 	spin_lock(&ttm_bo->bdev->lru_lock);
1262 	locked = dma_resv_trylock(ttm_bo->base.resv);
1263 	spin_unlock(&ttm_bo->bdev->lru_lock);
1264 	xe_assert(xe, locked);
1265 
1266 	return locked;
1267 }
1268 
xe_ttm_bo_release_notify(struct ttm_buffer_object * ttm_bo)1269 static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
1270 {
1271 	struct dma_resv_iter cursor;
1272 	struct dma_fence *fence;
1273 	struct dma_fence *replacement = NULL;
1274 	struct xe_bo *bo;
1275 
1276 	if (!xe_bo_is_xe_bo(ttm_bo))
1277 		return;
1278 
1279 	bo = ttm_to_xe_bo(ttm_bo);
1280 	xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
1281 
1282 	/*
1283 	 * Corner case where TTM fails to allocate memory and this BOs resv
1284 	 * still points the VMs resv
1285 	 */
1286 	if (ttm_bo->base.resv != &ttm_bo->base._resv)
1287 		return;
1288 
1289 	if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
1290 		return;
1291 
1292 	/*
1293 	 * Scrub the preempt fences if any. The unbind fence is already
1294 	 * attached to the resv.
1295 	 * TODO: Don't do this for external bos once we scrub them after
1296 	 * unbind.
1297 	 */
1298 	dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
1299 				DMA_RESV_USAGE_BOOKKEEP, fence) {
1300 		if (xe_fence_is_xe_preempt(fence) &&
1301 		    !dma_fence_is_signaled(fence)) {
1302 			if (!replacement)
1303 				replacement = dma_fence_get_stub();
1304 
1305 			dma_resv_replace_fences(ttm_bo->base.resv,
1306 						fence->context,
1307 						replacement,
1308 						DMA_RESV_USAGE_BOOKKEEP);
1309 		}
1310 	}
1311 	dma_fence_put(replacement);
1312 
1313 	dma_resv_unlock(ttm_bo->base.resv);
1314 }
1315 
xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object * ttm_bo)1316 static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
1317 {
1318 	if (!xe_bo_is_xe_bo(ttm_bo))
1319 		return;
1320 
1321 	/*
1322 	 * Object is idle and about to be destroyed. Release the
1323 	 * dma-buf attachment.
1324 	 */
1325 	if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
1326 		struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
1327 						       struct xe_ttm_tt, ttm);
1328 
1329 		dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
1330 					 DMA_BIDIRECTIONAL);
1331 		ttm_bo->sg = NULL;
1332 		xe_tt->sg = NULL;
1333 	}
1334 }
1335 
xe_ttm_bo_purge(struct ttm_buffer_object * ttm_bo,struct ttm_operation_ctx * ctx)1336 static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
1337 {
1338 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1339 
1340 	if (ttm_bo->ttm) {
1341 		struct ttm_placement place = {};
1342 		int ret = ttm_bo_validate(ttm_bo, &place, ctx);
1343 
1344 		drm_WARN_ON(&xe->drm, ret);
1345 	}
1346 }
1347 
xe_ttm_bo_swap_notify(struct ttm_buffer_object * ttm_bo)1348 static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
1349 {
1350 	struct ttm_operation_ctx ctx = {
1351 		.interruptible = false,
1352 		.gfp_retry_mayfail = false,
1353 	};
1354 
1355 	if (ttm_bo->ttm) {
1356 		struct xe_ttm_tt *xe_tt =
1357 			container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
1358 
1359 		if (xe_tt->purgeable)
1360 			xe_ttm_bo_purge(ttm_bo, &ctx);
1361 	}
1362 }
1363 
xe_ttm_access_memory(struct ttm_buffer_object * ttm_bo,unsigned long offset,void * buf,int len,int write)1364 static int xe_ttm_access_memory(struct ttm_buffer_object *ttm_bo,
1365 				unsigned long offset, void *buf, int len,
1366 				int write)
1367 {
1368 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1369 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1370 	struct iosys_map vmap;
1371 	struct xe_res_cursor cursor;
1372 	struct xe_vram_region *vram;
1373 	int bytes_left = len;
1374 
1375 	xe_bo_assert_held(bo);
1376 	xe_device_assert_mem_access(xe);
1377 
1378 	if (!mem_type_is_vram(ttm_bo->resource->mem_type))
1379 		return -EIO;
1380 
1381 	/* FIXME: Use GPU for non-visible VRAM */
1382 	if (!xe_ttm_resource_visible(ttm_bo->resource))
1383 		return -EIO;
1384 
1385 	vram = res_to_mem_region(ttm_bo->resource);
1386 	xe_res_first(ttm_bo->resource, offset & PAGE_MASK,
1387 		     bo->size - (offset & PAGE_MASK), &cursor);
1388 
1389 	do {
1390 		unsigned long page_offset = (offset & ~PAGE_MASK);
1391 		int byte_count = min((int)(PAGE_SIZE - page_offset), bytes_left);
1392 
1393 		iosys_map_set_vaddr_iomem(&vmap, (u8 __iomem *)vram->mapping +
1394 					  cursor.start);
1395 		if (write)
1396 			xe_map_memcpy_to(xe, &vmap, page_offset, buf, byte_count);
1397 		else
1398 			xe_map_memcpy_from(xe, buf, &vmap, page_offset, byte_count);
1399 
1400 		buf += byte_count;
1401 		offset += byte_count;
1402 		bytes_left -= byte_count;
1403 		if (bytes_left)
1404 			xe_res_next(&cursor, PAGE_SIZE);
1405 	} while (bytes_left);
1406 
1407 	return len;
1408 }
1409 
1410 const struct ttm_device_funcs xe_ttm_funcs = {
1411 	.ttm_tt_create = xe_ttm_tt_create,
1412 	.ttm_tt_populate = xe_ttm_tt_populate,
1413 	.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
1414 	.ttm_tt_destroy = xe_ttm_tt_destroy,
1415 	.evict_flags = xe_evict_flags,
1416 	.move = xe_bo_move,
1417 	.io_mem_reserve = xe_ttm_io_mem_reserve,
1418 	.io_mem_pfn = xe_ttm_io_mem_pfn,
1419 	.access_memory = xe_ttm_access_memory,
1420 	.release_notify = xe_ttm_bo_release_notify,
1421 	.eviction_valuable = ttm_bo_eviction_valuable,
1422 	.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
1423 	.swap_notify = xe_ttm_bo_swap_notify,
1424 };
1425 
xe_ttm_bo_destroy(struct ttm_buffer_object * ttm_bo)1426 static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
1427 {
1428 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1429 	struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
1430 	struct xe_tile *tile;
1431 	u8 id;
1432 
1433 	if (bo->ttm.base.import_attach)
1434 		drm_prime_gem_destroy(&bo->ttm.base, NULL);
1435 	drm_gem_object_release(&bo->ttm.base);
1436 
1437 	xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
1438 
1439 	for_each_tile(tile, xe, id)
1440 		if (bo->ggtt_node[id] && bo->ggtt_node[id]->base.size)
1441 			xe_ggtt_remove_bo(tile->mem.ggtt, bo);
1442 
1443 #ifdef CONFIG_PROC_FS
1444 	if (bo->client)
1445 		xe_drm_client_remove_bo(bo);
1446 #endif
1447 
1448 	if (bo->vm && xe_bo_is_user(bo))
1449 		xe_vm_put(bo->vm);
1450 
1451 	mutex_lock(&xe->mem_access.vram_userfault.lock);
1452 	if (!list_empty(&bo->vram_userfault_link))
1453 		list_del(&bo->vram_userfault_link);
1454 	mutex_unlock(&xe->mem_access.vram_userfault.lock);
1455 
1456 	kfree(bo);
1457 }
1458 
xe_gem_object_free(struct drm_gem_object * obj)1459 static void xe_gem_object_free(struct drm_gem_object *obj)
1460 {
1461 	/* Our BO reference counting scheme works as follows:
1462 	 *
1463 	 * The gem object kref is typically used throughout the driver,
1464 	 * and the gem object holds a ttm_buffer_object refcount, so
1465 	 * that when the last gem object reference is put, which is when
1466 	 * we end up in this function, we put also that ttm_buffer_object
1467 	 * refcount. Anything using gem interfaces is then no longer
1468 	 * allowed to access the object in a way that requires a gem
1469 	 * refcount, including locking the object.
1470 	 *
1471 	 * driver ttm callbacks is allowed to use the ttm_buffer_object
1472 	 * refcount directly if needed.
1473 	 */
1474 	__xe_bo_vunmap(gem_to_xe_bo(obj));
1475 	ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
1476 }
1477 
xe_gem_object_close(struct drm_gem_object * obj,struct drm_file * file_priv)1478 static void xe_gem_object_close(struct drm_gem_object *obj,
1479 				struct drm_file *file_priv)
1480 {
1481 	struct xe_bo *bo = gem_to_xe_bo(obj);
1482 
1483 	if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
1484 		xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
1485 
1486 		xe_bo_lock(bo, false);
1487 		ttm_bo_set_bulk_move(&bo->ttm, NULL);
1488 		xe_bo_unlock(bo);
1489 	}
1490 }
1491 
xe_gem_fault(struct vm_fault * vmf)1492 static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
1493 {
1494 	struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
1495 	struct drm_device *ddev = tbo->base.dev;
1496 	struct xe_device *xe = to_xe_device(ddev);
1497 	struct xe_bo *bo = ttm_to_xe_bo(tbo);
1498 	bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
1499 	vm_fault_t ret;
1500 	int idx;
1501 
1502 	if (needs_rpm)
1503 		xe_pm_runtime_get(xe);
1504 
1505 	ret = ttm_bo_vm_reserve(tbo, vmf);
1506 	if (ret)
1507 		goto out;
1508 
1509 	if (drm_dev_enter(ddev, &idx)) {
1510 		trace_xe_bo_cpu_fault(bo);
1511 
1512 		ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
1513 					       TTM_BO_VM_NUM_PREFAULT);
1514 		drm_dev_exit(idx);
1515 	} else {
1516 		ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
1517 	}
1518 
1519 	if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
1520 		goto out;
1521 	/*
1522 	 * ttm_bo_vm_reserve() already has dma_resv_lock.
1523 	 */
1524 	if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
1525 		mutex_lock(&xe->mem_access.vram_userfault.lock);
1526 		if (list_empty(&bo->vram_userfault_link))
1527 			list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
1528 		mutex_unlock(&xe->mem_access.vram_userfault.lock);
1529 	}
1530 
1531 	dma_resv_unlock(tbo->base.resv);
1532 out:
1533 	if (needs_rpm)
1534 		xe_pm_runtime_put(xe);
1535 
1536 	return ret;
1537 }
1538 
xe_bo_vm_access(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)1539 static int xe_bo_vm_access(struct vm_area_struct *vma, unsigned long addr,
1540 			   void *buf, int len, int write)
1541 {
1542 	struct ttm_buffer_object *ttm_bo = vma->vm_private_data;
1543 	struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
1544 	struct xe_device *xe = xe_bo_device(bo);
1545 	int ret;
1546 
1547 	xe_pm_runtime_get(xe);
1548 	ret = ttm_bo_vm_access(vma, addr, buf, len, write);
1549 	xe_pm_runtime_put(xe);
1550 
1551 	return ret;
1552 }
1553 
1554 /**
1555  * xe_bo_read() - Read from an xe_bo
1556  * @bo: The buffer object to read from.
1557  * @offset: The byte offset to start reading from.
1558  * @dst: Location to store the read.
1559  * @size: Size in bytes for the read.
1560  *
1561  * Read @size bytes from the @bo, starting from @offset, storing into @dst.
1562  *
1563  * Return: Zero on success, or negative error.
1564  */
xe_bo_read(struct xe_bo * bo,u64 offset,void * dst,int size)1565 int xe_bo_read(struct xe_bo *bo, u64 offset, void *dst, int size)
1566 {
1567 	int ret;
1568 
1569 	ret = ttm_bo_access(&bo->ttm, offset, dst, size, 0);
1570 	if (ret >= 0 && ret != size)
1571 		ret = -EIO;
1572 	else if (ret == size)
1573 		ret = 0;
1574 
1575 	return ret;
1576 }
1577 
1578 static const struct vm_operations_struct xe_gem_vm_ops = {
1579 	.fault = xe_gem_fault,
1580 	.open = ttm_bo_vm_open,
1581 	.close = ttm_bo_vm_close,
1582 	.access = xe_bo_vm_access,
1583 };
1584 
1585 static const struct drm_gem_object_funcs xe_gem_object_funcs = {
1586 	.free = xe_gem_object_free,
1587 	.close = xe_gem_object_close,
1588 	.mmap = drm_gem_ttm_mmap,
1589 	.export = xe_gem_prime_export,
1590 	.vm_ops = &xe_gem_vm_ops,
1591 };
1592 
1593 /**
1594  * xe_bo_alloc - Allocate storage for a struct xe_bo
1595  *
1596  * This function is intended to allocate storage to be used for input
1597  * to __xe_bo_create_locked(), in the case a pointer to the bo to be
1598  * created is needed before the call to __xe_bo_create_locked().
1599  * If __xe_bo_create_locked ends up never to be called, then the
1600  * storage allocated with this function needs to be freed using
1601  * xe_bo_free().
1602  *
1603  * Return: A pointer to an uninitialized struct xe_bo on success,
1604  * ERR_PTR(-ENOMEM) on error.
1605  */
xe_bo_alloc(void)1606 struct xe_bo *xe_bo_alloc(void)
1607 {
1608 	struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1609 
1610 	if (!bo)
1611 		return ERR_PTR(-ENOMEM);
1612 
1613 	return bo;
1614 }
1615 
1616 /**
1617  * xe_bo_free - Free storage allocated using xe_bo_alloc()
1618  * @bo: The buffer object storage.
1619  *
1620  * Refer to xe_bo_alloc() documentation for valid use-cases.
1621  */
xe_bo_free(struct xe_bo * bo)1622 void xe_bo_free(struct xe_bo *bo)
1623 {
1624 	kfree(bo);
1625 }
1626 
___xe_bo_create_locked(struct xe_device * xe,struct xe_bo * bo,struct xe_tile * tile,struct dma_resv * resv,struct ttm_lru_bulk_move * bulk,size_t size,u16 cpu_caching,enum ttm_bo_type type,u32 flags)1627 struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
1628 				     struct xe_tile *tile, struct dma_resv *resv,
1629 				     struct ttm_lru_bulk_move *bulk, size_t size,
1630 				     u16 cpu_caching, enum ttm_bo_type type,
1631 				     u32 flags)
1632 {
1633 	struct ttm_operation_ctx ctx = {
1634 		.interruptible = true,
1635 		.no_wait_gpu = false,
1636 		.gfp_retry_mayfail = true,
1637 	};
1638 	struct ttm_placement *placement;
1639 	uint32_t alignment;
1640 	size_t aligned_size;
1641 	int err;
1642 
1643 	/* Only kernel objects should set GT */
1644 	xe_assert(xe, !tile || type == ttm_bo_type_kernel);
1645 
1646 	if (XE_WARN_ON(!size)) {
1647 		xe_bo_free(bo);
1648 		return ERR_PTR(-EINVAL);
1649 	}
1650 
1651 	/* XE_BO_FLAG_GGTTx requires XE_BO_FLAG_GGTT also be set */
1652 	if ((flags & XE_BO_FLAG_GGTT_ALL) && !(flags & XE_BO_FLAG_GGTT))
1653 		return ERR_PTR(-EINVAL);
1654 
1655 	if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
1656 	    !(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
1657 	    ((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
1658 	     (flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
1659 		size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
1660 
1661 		aligned_size = ALIGN(size, align);
1662 		if (type != ttm_bo_type_device)
1663 			size = ALIGN(size, align);
1664 		flags |= XE_BO_FLAG_INTERNAL_64K;
1665 		alignment = align >> PAGE_SHIFT;
1666 	} else {
1667 		aligned_size = ALIGN(size, SZ_4K);
1668 		flags &= ~XE_BO_FLAG_INTERNAL_64K;
1669 		alignment = SZ_4K >> PAGE_SHIFT;
1670 	}
1671 
1672 	if (type == ttm_bo_type_device && aligned_size != size)
1673 		return ERR_PTR(-EINVAL);
1674 
1675 	if (!bo) {
1676 		bo = xe_bo_alloc();
1677 		if (IS_ERR(bo))
1678 			return bo;
1679 	}
1680 
1681 	bo->ccs_cleared = false;
1682 	bo->tile = tile;
1683 	bo->size = size;
1684 	bo->flags = flags;
1685 	bo->cpu_caching = cpu_caching;
1686 	bo->ttm.base.funcs = &xe_gem_object_funcs;
1687 	bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
1688 	INIT_LIST_HEAD(&bo->pinned_link);
1689 #ifdef CONFIG_PROC_FS
1690 	INIT_LIST_HEAD(&bo->client_link);
1691 #endif
1692 	INIT_LIST_HEAD(&bo->vram_userfault_link);
1693 
1694 	drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
1695 
1696 	if (resv) {
1697 		ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
1698 		ctx.resv = resv;
1699 	}
1700 
1701 	if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
1702 		err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
1703 		if (WARN_ON(err)) {
1704 			xe_ttm_bo_destroy(&bo->ttm);
1705 			return ERR_PTR(err);
1706 		}
1707 	}
1708 
1709 	/* Defer populating type_sg bos */
1710 	placement = (type == ttm_bo_type_sg ||
1711 		     bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
1712 		&bo->placement;
1713 	err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
1714 				   placement, alignment,
1715 				   &ctx, NULL, resv, xe_ttm_bo_destroy);
1716 	if (err)
1717 		return ERR_PTR(err);
1718 
1719 	/*
1720 	 * The VRAM pages underneath are potentially still being accessed by the
1721 	 * GPU, as per async GPU clearing and async evictions. However TTM makes
1722 	 * sure to add any corresponding move/clear fences into the objects
1723 	 * dma-resv using the DMA_RESV_USAGE_KERNEL slot.
1724 	 *
1725 	 * For KMD internal buffers we don't care about GPU clearing, however we
1726 	 * still need to handle async evictions, where the VRAM is still being
1727 	 * accessed by the GPU. Most internal callers are not expecting this,
1728 	 * since they are missing the required synchronisation before accessing
1729 	 * the memory. To keep things simple just sync wait any kernel fences
1730 	 * here, if the buffer is designated KMD internal.
1731 	 *
1732 	 * For normal userspace objects we should already have the required
1733 	 * pipelining or sync waiting elsewhere, since we already have to deal
1734 	 * with things like async GPU clearing.
1735 	 */
1736 	if (type == ttm_bo_type_kernel) {
1737 		long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
1738 						     DMA_RESV_USAGE_KERNEL,
1739 						     ctx.interruptible,
1740 						     MAX_SCHEDULE_TIMEOUT);
1741 
1742 		if (timeout < 0) {
1743 			if (!resv)
1744 				dma_resv_unlock(bo->ttm.base.resv);
1745 			xe_bo_put(bo);
1746 			return ERR_PTR(timeout);
1747 		}
1748 	}
1749 
1750 	bo->created = true;
1751 	if (bulk)
1752 		ttm_bo_set_bulk_move(&bo->ttm, bulk);
1753 	else
1754 		ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
1755 
1756 	return bo;
1757 }
1758 
__xe_bo_fixed_placement(struct xe_device * xe,struct xe_bo * bo,u32 flags,u64 start,u64 end,u64 size)1759 static int __xe_bo_fixed_placement(struct xe_device *xe,
1760 				   struct xe_bo *bo,
1761 				   u32 flags,
1762 				   u64 start, u64 end, u64 size)
1763 {
1764 	struct ttm_place *place = bo->placements;
1765 
1766 	if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
1767 		return -EINVAL;
1768 
1769 	place->flags = TTM_PL_FLAG_CONTIGUOUS;
1770 	place->fpfn = start >> PAGE_SHIFT;
1771 	place->lpfn = end >> PAGE_SHIFT;
1772 
1773 	switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
1774 	case XE_BO_FLAG_VRAM0:
1775 		place->mem_type = XE_PL_VRAM0;
1776 		break;
1777 	case XE_BO_FLAG_VRAM1:
1778 		place->mem_type = XE_PL_VRAM1;
1779 		break;
1780 	case XE_BO_FLAG_STOLEN:
1781 		place->mem_type = XE_PL_STOLEN;
1782 		break;
1783 
1784 	default:
1785 		/* 0 or multiple of the above set */
1786 		return -EINVAL;
1787 	}
1788 
1789 	bo->placement = (struct ttm_placement) {
1790 		.num_placement = 1,
1791 		.placement = place,
1792 	};
1793 
1794 	return 0;
1795 }
1796 
1797 static struct xe_bo *
__xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,u16 cpu_caching,enum ttm_bo_type type,u32 flags,u64 alignment)1798 __xe_bo_create_locked(struct xe_device *xe,
1799 		      struct xe_tile *tile, struct xe_vm *vm,
1800 		      size_t size, u64 start, u64 end,
1801 		      u16 cpu_caching, enum ttm_bo_type type, u32 flags,
1802 		      u64 alignment)
1803 {
1804 	struct xe_bo *bo = NULL;
1805 	int err;
1806 
1807 	if (vm)
1808 		xe_vm_assert_held(vm);
1809 
1810 	if (start || end != ~0ULL) {
1811 		bo = xe_bo_alloc();
1812 		if (IS_ERR(bo))
1813 			return bo;
1814 
1815 		flags |= XE_BO_FLAG_FIXED_PLACEMENT;
1816 		err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
1817 		if (err) {
1818 			xe_bo_free(bo);
1819 			return ERR_PTR(err);
1820 		}
1821 	}
1822 
1823 	bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
1824 				    vm && !xe_vm_in_fault_mode(vm) &&
1825 				    flags & XE_BO_FLAG_USER ?
1826 				    &vm->lru_bulk_move : NULL, size,
1827 				    cpu_caching, type, flags);
1828 	if (IS_ERR(bo))
1829 		return bo;
1830 
1831 	bo->min_align = alignment;
1832 
1833 	/*
1834 	 * Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
1835 	 * to ensure the shared resv doesn't disappear under the bo, the bo
1836 	 * will keep a reference to the vm, and avoid circular references
1837 	 * by having all the vm's bo refereferences released at vm close
1838 	 * time.
1839 	 */
1840 	if (vm && xe_bo_is_user(bo))
1841 		xe_vm_get(vm);
1842 	bo->vm = vm;
1843 
1844 	if (bo->flags & XE_BO_FLAG_GGTT) {
1845 		struct xe_tile *t;
1846 		u8 id;
1847 
1848 		if (!(bo->flags & XE_BO_FLAG_GGTT_ALL)) {
1849 			if (!tile && flags & XE_BO_FLAG_STOLEN)
1850 				tile = xe_device_get_root_tile(xe);
1851 
1852 			xe_assert(xe, tile);
1853 		}
1854 
1855 		for_each_tile(t, xe, id) {
1856 			if (t != tile && !(bo->flags & XE_BO_FLAG_GGTTx(t)))
1857 				continue;
1858 
1859 			if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
1860 				err = xe_ggtt_insert_bo_at(t->mem.ggtt, bo,
1861 							   start + bo->size, U64_MAX);
1862 			} else {
1863 				err = xe_ggtt_insert_bo(t->mem.ggtt, bo);
1864 			}
1865 			if (err)
1866 				goto err_unlock_put_bo;
1867 		}
1868 	}
1869 
1870 	trace_xe_bo_create(bo);
1871 	return bo;
1872 
1873 err_unlock_put_bo:
1874 	__xe_bo_unset_bulk_move(bo);
1875 	xe_bo_unlock_vm_held(bo);
1876 	xe_bo_put(bo);
1877 	return ERR_PTR(err);
1878 }
1879 
1880 struct xe_bo *
xe_bo_create_locked_range(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 start,u64 end,enum ttm_bo_type type,u32 flags,u64 alignment)1881 xe_bo_create_locked_range(struct xe_device *xe,
1882 			  struct xe_tile *tile, struct xe_vm *vm,
1883 			  size_t size, u64 start, u64 end,
1884 			  enum ttm_bo_type type, u32 flags, u64 alignment)
1885 {
1886 	return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
1887 				     flags, alignment);
1888 }
1889 
xe_bo_create_locked(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1890 struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
1891 				  struct xe_vm *vm, size_t size,
1892 				  enum ttm_bo_type type, u32 flags)
1893 {
1894 	return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
1895 				     flags, 0);
1896 }
1897 
xe_bo_create_user(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u16 cpu_caching,u32 flags)1898 struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
1899 				struct xe_vm *vm, size_t size,
1900 				u16 cpu_caching,
1901 				u32 flags)
1902 {
1903 	struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
1904 						 cpu_caching, ttm_bo_type_device,
1905 						 flags | XE_BO_FLAG_USER, 0);
1906 	if (!IS_ERR(bo))
1907 		xe_bo_unlock_vm_held(bo);
1908 
1909 	return bo;
1910 }
1911 
xe_bo_create(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1912 struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
1913 			   struct xe_vm *vm, size_t size,
1914 			   enum ttm_bo_type type, u32 flags)
1915 {
1916 	struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
1917 
1918 	if (!IS_ERR(bo))
1919 		xe_bo_unlock_vm_held(bo);
1920 
1921 	return bo;
1922 }
1923 
xe_bo_create_pin_map_at(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags)1924 struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
1925 				      struct xe_vm *vm,
1926 				      size_t size, u64 offset,
1927 				      enum ttm_bo_type type, u32 flags)
1928 {
1929 	return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
1930 					       type, flags, 0);
1931 }
1932 
xe_bo_create_pin_map_at_aligned(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,u64 offset,enum ttm_bo_type type,u32 flags,u64 alignment)1933 struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
1934 					      struct xe_tile *tile,
1935 					      struct xe_vm *vm,
1936 					      size_t size, u64 offset,
1937 					      enum ttm_bo_type type, u32 flags,
1938 					      u64 alignment)
1939 {
1940 	struct xe_bo *bo;
1941 	int err;
1942 	u64 start = offset == ~0ull ? 0 : offset;
1943 	u64 end = offset == ~0ull ? offset : start + size;
1944 
1945 	if (flags & XE_BO_FLAG_STOLEN &&
1946 	    xe_ttm_stolen_cpu_access_needs_ggtt(xe))
1947 		flags |= XE_BO_FLAG_GGTT;
1948 
1949 	bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
1950 				       flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
1951 				       alignment);
1952 	if (IS_ERR(bo))
1953 		return bo;
1954 
1955 	err = xe_bo_pin(bo);
1956 	if (err)
1957 		goto err_put;
1958 
1959 	err = xe_bo_vmap(bo);
1960 	if (err)
1961 		goto err_unpin;
1962 
1963 	xe_bo_unlock_vm_held(bo);
1964 
1965 	return bo;
1966 
1967 err_unpin:
1968 	xe_bo_unpin(bo);
1969 err_put:
1970 	xe_bo_unlock_vm_held(bo);
1971 	xe_bo_put(bo);
1972 	return ERR_PTR(err);
1973 }
1974 
xe_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,struct xe_vm * vm,size_t size,enum ttm_bo_type type,u32 flags)1975 struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
1976 				   struct xe_vm *vm, size_t size,
1977 				   enum ttm_bo_type type, u32 flags)
1978 {
1979 	return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
1980 }
1981 
xe_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,enum ttm_bo_type type,u32 flags)1982 struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
1983 				     const void *data, size_t size,
1984 				     enum ttm_bo_type type, u32 flags)
1985 {
1986 	struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
1987 						ALIGN(size, PAGE_SIZE),
1988 						type, flags);
1989 	if (IS_ERR(bo))
1990 		return bo;
1991 
1992 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
1993 
1994 	return bo;
1995 }
1996 
__xe_bo_unpin_map_no_vm(void * arg)1997 static void __xe_bo_unpin_map_no_vm(void *arg)
1998 {
1999 	xe_bo_unpin_map_no_vm(arg);
2000 }
2001 
xe_managed_bo_create_pin_map(struct xe_device * xe,struct xe_tile * tile,size_t size,u32 flags)2002 struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
2003 					   size_t size, u32 flags)
2004 {
2005 	struct xe_bo *bo;
2006 	int ret;
2007 
2008 	KUNIT_STATIC_STUB_REDIRECT(xe_managed_bo_create_pin_map, xe, tile, size, flags);
2009 
2010 	bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
2011 	if (IS_ERR(bo))
2012 		return bo;
2013 
2014 	ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
2015 	if (ret)
2016 		return ERR_PTR(ret);
2017 
2018 	return bo;
2019 }
2020 
xe_managed_bo_create_from_data(struct xe_device * xe,struct xe_tile * tile,const void * data,size_t size,u32 flags)2021 struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
2022 					     const void *data, size_t size, u32 flags)
2023 {
2024 	struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
2025 
2026 	if (IS_ERR(bo))
2027 		return bo;
2028 
2029 	xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
2030 
2031 	return bo;
2032 }
2033 
2034 /**
2035  * xe_managed_bo_reinit_in_vram
2036  * @xe: xe device
2037  * @tile: Tile where the new buffer will be created
2038  * @src: Managed buffer object allocated in system memory
2039  *
2040  * Replace a managed src buffer object allocated in system memory with a new
2041  * one allocated in vram, copying the data between them.
2042  * Buffer object in VRAM is not going to have the same GGTT address, the caller
2043  * is responsible for making sure that any old references to it are updated.
2044  *
2045  * Returns 0 for success, negative error code otherwise.
2046  */
xe_managed_bo_reinit_in_vram(struct xe_device * xe,struct xe_tile * tile,struct xe_bo ** src)2047 int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
2048 {
2049 	struct xe_bo *bo;
2050 	u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
2051 
2052 	dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
2053 
2054 	xe_assert(xe, IS_DGFX(xe));
2055 	xe_assert(xe, !(*src)->vmap.is_iomem);
2056 
2057 	bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
2058 					    (*src)->size, dst_flags);
2059 	if (IS_ERR(bo))
2060 		return PTR_ERR(bo);
2061 
2062 	devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
2063 	*src = bo;
2064 
2065 	return 0;
2066 }
2067 
2068 /*
2069  * XXX: This is in the VM bind data path, likely should calculate this once and
2070  * store, with a recalculation if the BO is moved.
2071  */
vram_region_gpu_offset(struct ttm_resource * res)2072 uint64_t vram_region_gpu_offset(struct ttm_resource *res)
2073 {
2074 	struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
2075 
2076 	if (res->mem_type == XE_PL_STOLEN)
2077 		return xe_ttm_stolen_gpu_offset(xe);
2078 
2079 	return res_to_mem_region(res)->dpa_base;
2080 }
2081 
2082 /**
2083  * xe_bo_pin_external - pin an external BO
2084  * @bo: buffer object to be pinned
2085  *
2086  * Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2087  * BO. Unique call compared to xe_bo_pin as this function has it own set of
2088  * asserts and code to ensure evict / restore on suspend / resume.
2089  *
2090  * Returns 0 for success, negative error code otherwise.
2091  */
xe_bo_pin_external(struct xe_bo * bo)2092 int xe_bo_pin_external(struct xe_bo *bo)
2093 {
2094 	struct xe_device *xe = xe_bo_device(bo);
2095 	int err;
2096 
2097 	xe_assert(xe, !bo->vm);
2098 	xe_assert(xe, xe_bo_is_user(bo));
2099 
2100 	if (!xe_bo_is_pinned(bo)) {
2101 		err = xe_bo_validate(bo, NULL, false);
2102 		if (err)
2103 			return err;
2104 
2105 		if (xe_bo_is_vram(bo)) {
2106 			spin_lock(&xe->pinned.lock);
2107 			list_add_tail(&bo->pinned_link,
2108 				      &xe->pinned.external_vram);
2109 			spin_unlock(&xe->pinned.lock);
2110 		}
2111 	}
2112 
2113 	ttm_bo_pin(&bo->ttm);
2114 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2115 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2116 
2117 	/*
2118 	 * FIXME: If we always use the reserve / unreserve functions for locking
2119 	 * we do not need this.
2120 	 */
2121 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2122 
2123 	return 0;
2124 }
2125 
xe_bo_pin(struct xe_bo * bo)2126 int xe_bo_pin(struct xe_bo *bo)
2127 {
2128 	struct ttm_place *place = &bo->placements[0];
2129 	struct xe_device *xe = xe_bo_device(bo);
2130 	int err;
2131 
2132 	/* We currently don't expect user BO to be pinned */
2133 	xe_assert(xe, !xe_bo_is_user(bo));
2134 
2135 	/* Pinned object must be in GGTT or have pinned flag */
2136 	xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
2137 				   XE_BO_FLAG_GGTT));
2138 
2139 	/*
2140 	 * No reason we can't support pinning imported dma-bufs we just don't
2141 	 * expect to pin an imported dma-buf.
2142 	 */
2143 	xe_assert(xe, !bo->ttm.base.import_attach);
2144 
2145 	/* We only expect at most 1 pin */
2146 	xe_assert(xe, !xe_bo_is_pinned(bo));
2147 
2148 	err = xe_bo_validate(bo, NULL, false);
2149 	if (err)
2150 		return err;
2151 
2152 	/*
2153 	 * For pinned objects in on DGFX, which are also in vram, we expect
2154 	 * these to be in contiguous VRAM memory. Required eviction / restore
2155 	 * during suspend / resume (force restore to same physical address).
2156 	 */
2157 	if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
2158 	    bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
2159 		if (mem_type_is_vram(place->mem_type)) {
2160 			xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
2161 
2162 			place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
2163 				       vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
2164 			place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
2165 		}
2166 	}
2167 
2168 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2169 		spin_lock(&xe->pinned.lock);
2170 		list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
2171 		spin_unlock(&xe->pinned.lock);
2172 	}
2173 
2174 	ttm_bo_pin(&bo->ttm);
2175 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2176 		xe_ttm_tt_account_subtract(bo->ttm.ttm);
2177 
2178 	/*
2179 	 * FIXME: If we always use the reserve / unreserve functions for locking
2180 	 * we do not need this.
2181 	 */
2182 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2183 
2184 	return 0;
2185 }
2186 
2187 /**
2188  * xe_bo_unpin_external - unpin an external BO
2189  * @bo: buffer object to be unpinned
2190  *
2191  * Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
2192  * BO. Unique call compared to xe_bo_unpin as this function has it own set of
2193  * asserts and code to ensure evict / restore on suspend / resume.
2194  *
2195  * Returns 0 for success, negative error code otherwise.
2196  */
xe_bo_unpin_external(struct xe_bo * bo)2197 void xe_bo_unpin_external(struct xe_bo *bo)
2198 {
2199 	struct xe_device *xe = xe_bo_device(bo);
2200 
2201 	xe_assert(xe, !bo->vm);
2202 	xe_assert(xe, xe_bo_is_pinned(bo));
2203 	xe_assert(xe, xe_bo_is_user(bo));
2204 
2205 	spin_lock(&xe->pinned.lock);
2206 	if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
2207 		list_del_init(&bo->pinned_link);
2208 	spin_unlock(&xe->pinned.lock);
2209 
2210 	ttm_bo_unpin(&bo->ttm);
2211 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2212 		xe_ttm_tt_account_add(bo->ttm.ttm);
2213 
2214 	/*
2215 	 * FIXME: If we always use the reserve / unreserve functions for locking
2216 	 * we do not need this.
2217 	 */
2218 	ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
2219 }
2220 
xe_bo_unpin(struct xe_bo * bo)2221 void xe_bo_unpin(struct xe_bo *bo)
2222 {
2223 	struct ttm_place *place = &bo->placements[0];
2224 	struct xe_device *xe = xe_bo_device(bo);
2225 
2226 	xe_assert(xe, !bo->ttm.base.import_attach);
2227 	xe_assert(xe, xe_bo_is_pinned(bo));
2228 
2229 	if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
2230 		spin_lock(&xe->pinned.lock);
2231 		xe_assert(xe, !list_empty(&bo->pinned_link));
2232 		list_del_init(&bo->pinned_link);
2233 		spin_unlock(&xe->pinned.lock);
2234 	}
2235 	ttm_bo_unpin(&bo->ttm);
2236 	if (bo->ttm.ttm && ttm_tt_is_populated(bo->ttm.ttm))
2237 		xe_ttm_tt_account_add(bo->ttm.ttm);
2238 }
2239 
2240 /**
2241  * xe_bo_validate() - Make sure the bo is in an allowed placement
2242  * @bo: The bo,
2243  * @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
2244  *      NULL. Used together with @allow_res_evict.
2245  * @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
2246  *                   reservation object.
2247  *
2248  * Make sure the bo is in allowed placement, migrating it if necessary. If
2249  * needed, other bos will be evicted. If bos selected for eviction shares
2250  * the @vm's reservation object, they can be evicted iff @allow_res_evict is
2251  * set to true, otherwise they will be bypassed.
2252  *
2253  * Return: 0 on success, negative error code on failure. May return
2254  * -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
2255  */
xe_bo_validate(struct xe_bo * bo,struct xe_vm * vm,bool allow_res_evict)2256 int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
2257 {
2258 	struct ttm_operation_ctx ctx = {
2259 		.interruptible = true,
2260 		.no_wait_gpu = false,
2261 		.gfp_retry_mayfail = true,
2262 	};
2263 
2264 	if (vm) {
2265 		lockdep_assert_held(&vm->lock);
2266 		xe_vm_assert_held(vm);
2267 
2268 		ctx.allow_res_evict = allow_res_evict;
2269 		ctx.resv = xe_vm_resv(vm);
2270 	}
2271 
2272 	trace_xe_bo_validate(bo);
2273 	return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
2274 }
2275 
xe_bo_is_xe_bo(struct ttm_buffer_object * bo)2276 bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
2277 {
2278 	if (bo->destroy == &xe_ttm_bo_destroy)
2279 		return true;
2280 
2281 	return false;
2282 }
2283 
2284 /*
2285  * Resolve a BO address. There is no assert to check if the proper lock is held
2286  * so it should only be used in cases where it is not fatal to get the wrong
2287  * address, such as printing debug information, but not in cases where memory is
2288  * written based on this result.
2289  */
__xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)2290 dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2291 {
2292 	struct xe_device *xe = xe_bo_device(bo);
2293 	struct xe_res_cursor cur;
2294 	u64 page;
2295 
2296 	xe_assert(xe, page_size <= PAGE_SIZE);
2297 	page = offset >> PAGE_SHIFT;
2298 	offset &= (PAGE_SIZE - 1);
2299 
2300 	if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
2301 		xe_assert(xe, bo->ttm.ttm);
2302 
2303 		xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
2304 				page_size, &cur);
2305 		return xe_res_dma(&cur) + offset;
2306 	} else {
2307 		struct xe_res_cursor cur;
2308 
2309 		xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
2310 			     page_size, &cur);
2311 		return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
2312 	}
2313 }
2314 
xe_bo_addr(struct xe_bo * bo,u64 offset,size_t page_size)2315 dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
2316 {
2317 	if (!READ_ONCE(bo->ttm.pin_count))
2318 		xe_bo_assert_held(bo);
2319 	return __xe_bo_addr(bo, offset, page_size);
2320 }
2321 
xe_bo_vmap(struct xe_bo * bo)2322 int xe_bo_vmap(struct xe_bo *bo)
2323 {
2324 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2325 	void *virtual;
2326 	bool is_iomem;
2327 	int ret;
2328 
2329 	xe_bo_assert_held(bo);
2330 
2331 	if (drm_WARN_ON(&xe->drm, !(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) ||
2332 			!force_contiguous(bo->flags)))
2333 		return -EINVAL;
2334 
2335 	if (!iosys_map_is_null(&bo->vmap))
2336 		return 0;
2337 
2338 	/*
2339 	 * We use this more or less deprecated interface for now since
2340 	 * ttm_bo_vmap() doesn't offer the optimization of kmapping
2341 	 * single page bos, which is done here.
2342 	 * TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
2343 	 * to use struct iosys_map.
2344 	 */
2345 	ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
2346 	if (ret)
2347 		return ret;
2348 
2349 	virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
2350 	if (is_iomem)
2351 		iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
2352 	else
2353 		iosys_map_set_vaddr(&bo->vmap, virtual);
2354 
2355 	return 0;
2356 }
2357 
__xe_bo_vunmap(struct xe_bo * bo)2358 static void __xe_bo_vunmap(struct xe_bo *bo)
2359 {
2360 	if (!iosys_map_is_null(&bo->vmap)) {
2361 		iosys_map_clear(&bo->vmap);
2362 		ttm_bo_kunmap(&bo->kmap);
2363 	}
2364 }
2365 
xe_bo_vunmap(struct xe_bo * bo)2366 void xe_bo_vunmap(struct xe_bo *bo)
2367 {
2368 	xe_bo_assert_held(bo);
2369 	__xe_bo_vunmap(bo);
2370 }
2371 
gem_create_set_pxp_type(struct xe_device * xe,struct xe_bo * bo,u64 value)2372 static int gem_create_set_pxp_type(struct xe_device *xe, struct xe_bo *bo, u64 value)
2373 {
2374 	if (value == DRM_XE_PXP_TYPE_NONE)
2375 		return 0;
2376 
2377 	/* we only support DRM_XE_PXP_TYPE_HWDRM for now */
2378 	if (XE_IOCTL_DBG(xe, value != DRM_XE_PXP_TYPE_HWDRM))
2379 		return -EINVAL;
2380 
2381 	return xe_pxp_key_assign(xe->pxp, bo);
2382 }
2383 
2384 typedef int (*xe_gem_create_set_property_fn)(struct xe_device *xe,
2385 					     struct xe_bo *bo,
2386 					     u64 value);
2387 
2388 static const xe_gem_create_set_property_fn gem_create_set_property_funcs[] = {
2389 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_set_pxp_type,
2390 };
2391 
gem_create_user_ext_set_property(struct xe_device * xe,struct xe_bo * bo,u64 extension)2392 static int gem_create_user_ext_set_property(struct xe_device *xe,
2393 					    struct xe_bo *bo,
2394 					    u64 extension)
2395 {
2396 	u64 __user *address = u64_to_user_ptr(extension);
2397 	struct drm_xe_ext_set_property ext;
2398 	int err;
2399 	u32 idx;
2400 
2401 	err = __copy_from_user(&ext, address, sizeof(ext));
2402 	if (XE_IOCTL_DBG(xe, err))
2403 		return -EFAULT;
2404 
2405 	if (XE_IOCTL_DBG(xe, ext.property >=
2406 			 ARRAY_SIZE(gem_create_set_property_funcs)) ||
2407 	    XE_IOCTL_DBG(xe, ext.pad) ||
2408 	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY))
2409 		return -EINVAL;
2410 
2411 	idx = array_index_nospec(ext.property, ARRAY_SIZE(gem_create_set_property_funcs));
2412 	if (!gem_create_set_property_funcs[idx])
2413 		return -EINVAL;
2414 
2415 	return gem_create_set_property_funcs[idx](xe, bo, ext.value);
2416 }
2417 
2418 typedef int (*xe_gem_create_user_extension_fn)(struct xe_device *xe,
2419 					       struct xe_bo *bo,
2420 					       u64 extension);
2421 
2422 static const xe_gem_create_user_extension_fn gem_create_user_extension_funcs[] = {
2423 	[DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY] = gem_create_user_ext_set_property,
2424 };
2425 
2426 #define MAX_USER_EXTENSIONS	16
gem_create_user_extensions(struct xe_device * xe,struct xe_bo * bo,u64 extensions,int ext_number)2427 static int gem_create_user_extensions(struct xe_device *xe, struct xe_bo *bo,
2428 				      u64 extensions, int ext_number)
2429 {
2430 	u64 __user *address = u64_to_user_ptr(extensions);
2431 	struct drm_xe_user_extension ext;
2432 	int err;
2433 	u32 idx;
2434 
2435 	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
2436 		return -E2BIG;
2437 
2438 	err = __copy_from_user(&ext, address, sizeof(ext));
2439 	if (XE_IOCTL_DBG(xe, err))
2440 		return -EFAULT;
2441 
2442 	if (XE_IOCTL_DBG(xe, ext.pad) ||
2443 	    XE_IOCTL_DBG(xe, ext.name >= ARRAY_SIZE(gem_create_user_extension_funcs)))
2444 		return -EINVAL;
2445 
2446 	idx = array_index_nospec(ext.name,
2447 				 ARRAY_SIZE(gem_create_user_extension_funcs));
2448 	err = gem_create_user_extension_funcs[idx](xe, bo, extensions);
2449 	if (XE_IOCTL_DBG(xe, err))
2450 		return err;
2451 
2452 	if (ext.next_extension)
2453 		return gem_create_user_extensions(xe, bo, ext.next_extension,
2454 						  ++ext_number);
2455 
2456 	return 0;
2457 }
2458 
xe_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2459 int xe_gem_create_ioctl(struct drm_device *dev, void *data,
2460 			struct drm_file *file)
2461 {
2462 	struct xe_device *xe = to_xe_device(dev);
2463 	struct xe_file *xef = to_xe_file(file);
2464 	struct drm_xe_gem_create *args = data;
2465 	struct xe_vm *vm = NULL;
2466 	ktime_t end = 0;
2467 	struct xe_bo *bo;
2468 	unsigned int bo_flags;
2469 	u32 handle;
2470 	int err;
2471 
2472 	if (XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
2473 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2474 		return -EINVAL;
2475 
2476 	/* at least one valid memory placement must be specified */
2477 	if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
2478 			 !args->placement))
2479 		return -EINVAL;
2480 
2481 	if (XE_IOCTL_DBG(xe, args->flags &
2482 			 ~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
2483 			   DRM_XE_GEM_CREATE_FLAG_SCANOUT |
2484 			   DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
2485 		return -EINVAL;
2486 
2487 	if (XE_IOCTL_DBG(xe, args->handle))
2488 		return -EINVAL;
2489 
2490 	if (XE_IOCTL_DBG(xe, !args->size))
2491 		return -EINVAL;
2492 
2493 	if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
2494 		return -EINVAL;
2495 
2496 	if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
2497 		return -EINVAL;
2498 
2499 	bo_flags = 0;
2500 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
2501 		bo_flags |= XE_BO_FLAG_DEFER_BACKING;
2502 
2503 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
2504 		bo_flags |= XE_BO_FLAG_SCANOUT;
2505 
2506 	bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
2507 
2508 	/* CCS formats need physical placement at a 64K alignment in VRAM. */
2509 	if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
2510 	    (bo_flags & XE_BO_FLAG_SCANOUT) &&
2511 	    !(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
2512 	    IS_ALIGNED(args->size, SZ_64K))
2513 		bo_flags |= XE_BO_FLAG_NEEDS_64K;
2514 
2515 	if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
2516 		if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
2517 			return -EINVAL;
2518 
2519 		bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
2520 	}
2521 
2522 	if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
2523 			 args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
2524 		return -EINVAL;
2525 
2526 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
2527 			 args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
2528 		return -EINVAL;
2529 
2530 	if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
2531 			 args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
2532 		return -EINVAL;
2533 
2534 	if (args->vm_id) {
2535 		vm = xe_vm_lookup(xef, args->vm_id);
2536 		if (XE_IOCTL_DBG(xe, !vm))
2537 			return -ENOENT;
2538 	}
2539 
2540 retry:
2541 	if (vm) {
2542 		err = xe_vm_lock(vm, true);
2543 		if (err)
2544 			goto out_vm;
2545 	}
2546 
2547 	bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
2548 			       bo_flags);
2549 
2550 	if (vm)
2551 		xe_vm_unlock(vm);
2552 
2553 	if (IS_ERR(bo)) {
2554 		err = PTR_ERR(bo);
2555 		if (xe_vm_validate_should_retry(NULL, err, &end))
2556 			goto retry;
2557 		goto out_vm;
2558 	}
2559 
2560 	if (args->extensions) {
2561 		err = gem_create_user_extensions(xe, bo, args->extensions, 0);
2562 		if (err)
2563 			goto out_bulk;
2564 	}
2565 
2566 	err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
2567 	if (err)
2568 		goto out_bulk;
2569 
2570 	args->handle = handle;
2571 	goto out_put;
2572 
2573 out_bulk:
2574 	if (vm && !xe_vm_in_fault_mode(vm)) {
2575 		xe_vm_lock(vm, false);
2576 		__xe_bo_unset_bulk_move(bo);
2577 		xe_vm_unlock(vm);
2578 	}
2579 out_put:
2580 	xe_bo_put(bo);
2581 out_vm:
2582 	if (vm)
2583 		xe_vm_put(vm);
2584 
2585 	return err;
2586 }
2587 
xe_gem_mmap_offset_ioctl(struct drm_device * dev,void * data,struct drm_file * file)2588 int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
2589 			     struct drm_file *file)
2590 {
2591 	struct xe_device *xe = to_xe_device(dev);
2592 	struct drm_xe_gem_mmap_offset *args = data;
2593 	struct drm_gem_object *gem_obj;
2594 
2595 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2596 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2597 		return -EINVAL;
2598 
2599 	if (XE_IOCTL_DBG(xe, args->flags &
2600 			 ~DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER))
2601 		return -EINVAL;
2602 
2603 	if (args->flags & DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER) {
2604 		if (XE_IOCTL_DBG(xe, !IS_DGFX(xe)))
2605 			return -EINVAL;
2606 
2607 		if (XE_IOCTL_DBG(xe, args->handle))
2608 			return -EINVAL;
2609 
2610 		if (XE_IOCTL_DBG(xe, PAGE_SIZE > SZ_4K))
2611 			return -EINVAL;
2612 
2613 		BUILD_BUG_ON(((XE_PCI_BARRIER_MMAP_OFFSET >> XE_PTE_SHIFT) +
2614 			      SZ_4K) >= DRM_FILE_PAGE_OFFSET_START);
2615 		args->offset = XE_PCI_BARRIER_MMAP_OFFSET;
2616 		return 0;
2617 	}
2618 
2619 	gem_obj = drm_gem_object_lookup(file, args->handle);
2620 	if (XE_IOCTL_DBG(xe, !gem_obj))
2621 		return -ENOENT;
2622 
2623 	/* The mmap offset was set up at BO allocation time. */
2624 	args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
2625 
2626 	xe_bo_put(gem_to_xe_bo(gem_obj));
2627 	return 0;
2628 }
2629 
2630 /**
2631  * xe_bo_lock() - Lock the buffer object's dma_resv object
2632  * @bo: The struct xe_bo whose lock is to be taken
2633  * @intr: Whether to perform any wait interruptible
2634  *
2635  * Locks the buffer object's dma_resv object. If the buffer object is
2636  * pointing to a shared dma_resv object, that shared lock is locked.
2637  *
2638  * Return: 0 on success, -EINTR if @intr is true and the wait for a
2639  * contended lock was interrupted. If @intr is set to false, the
2640  * function always returns 0.
2641  */
xe_bo_lock(struct xe_bo * bo,bool intr)2642 int xe_bo_lock(struct xe_bo *bo, bool intr)
2643 {
2644 	if (intr)
2645 		return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
2646 
2647 	dma_resv_lock(bo->ttm.base.resv, NULL);
2648 
2649 	return 0;
2650 }
2651 
2652 /**
2653  * xe_bo_unlock() - Unlock the buffer object's dma_resv object
2654  * @bo: The struct xe_bo whose lock is to be released.
2655  *
2656  * Unlock a buffer object lock that was locked by xe_bo_lock().
2657  */
xe_bo_unlock(struct xe_bo * bo)2658 void xe_bo_unlock(struct xe_bo *bo)
2659 {
2660 	dma_resv_unlock(bo->ttm.base.resv);
2661 }
2662 
2663 /**
2664  * xe_bo_can_migrate - Whether a buffer object likely can be migrated
2665  * @bo: The buffer object to migrate
2666  * @mem_type: The TTM memory type intended to migrate to
2667  *
2668  * Check whether the buffer object supports migration to the
2669  * given memory type. Note that pinning may affect the ability to migrate as
2670  * returned by this function.
2671  *
2672  * This function is primarily intended as a helper for checking the
2673  * possibility to migrate buffer objects and can be called without
2674  * the object lock held.
2675  *
2676  * Return: true if migration is possible, false otherwise.
2677  */
xe_bo_can_migrate(struct xe_bo * bo,u32 mem_type)2678 bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
2679 {
2680 	unsigned int cur_place;
2681 
2682 	if (bo->ttm.type == ttm_bo_type_kernel)
2683 		return true;
2684 
2685 	if (bo->ttm.type == ttm_bo_type_sg)
2686 		return false;
2687 
2688 	for (cur_place = 0; cur_place < bo->placement.num_placement;
2689 	     cur_place++) {
2690 		if (bo->placements[cur_place].mem_type == mem_type)
2691 			return true;
2692 	}
2693 
2694 	return false;
2695 }
2696 
xe_place_from_ttm_type(u32 mem_type,struct ttm_place * place)2697 static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
2698 {
2699 	memset(place, 0, sizeof(*place));
2700 	place->mem_type = mem_type;
2701 }
2702 
2703 /**
2704  * xe_bo_migrate - Migrate an object to the desired region id
2705  * @bo: The buffer object to migrate.
2706  * @mem_type: The TTM region type to migrate to.
2707  *
2708  * Attempt to migrate the buffer object to the desired memory region. The
2709  * buffer object may not be pinned, and must be locked.
2710  * On successful completion, the object memory type will be updated,
2711  * but an async migration task may not have completed yet, and to
2712  * accomplish that, the object's kernel fences must be signaled with
2713  * the object lock held.
2714  *
2715  * Return: 0 on success. Negative error code on failure. In particular may
2716  * return -EINTR or -ERESTARTSYS if signal pending.
2717  */
xe_bo_migrate(struct xe_bo * bo,u32 mem_type)2718 int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
2719 {
2720 	struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
2721 	struct ttm_operation_ctx ctx = {
2722 		.interruptible = true,
2723 		.no_wait_gpu = false,
2724 		.gfp_retry_mayfail = true,
2725 	};
2726 	struct ttm_placement placement;
2727 	struct ttm_place requested;
2728 
2729 	xe_bo_assert_held(bo);
2730 
2731 	if (bo->ttm.resource->mem_type == mem_type)
2732 		return 0;
2733 
2734 	if (xe_bo_is_pinned(bo))
2735 		return -EBUSY;
2736 
2737 	if (!xe_bo_can_migrate(bo, mem_type))
2738 		return -EINVAL;
2739 
2740 	xe_place_from_ttm_type(mem_type, &requested);
2741 	placement.num_placement = 1;
2742 	placement.placement = &requested;
2743 
2744 	/*
2745 	 * Stolen needs to be handled like below VRAM handling if we ever need
2746 	 * to support it.
2747 	 */
2748 	drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
2749 
2750 	if (mem_type_is_vram(mem_type)) {
2751 		u32 c = 0;
2752 
2753 		add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
2754 	}
2755 
2756 	return ttm_bo_validate(&bo->ttm, &placement, &ctx);
2757 }
2758 
2759 /**
2760  * xe_bo_evict - Evict an object to evict placement
2761  * @bo: The buffer object to migrate.
2762  * @force_alloc: Set force_alloc in ttm_operation_ctx
2763  *
2764  * On successful completion, the object memory will be moved to evict
2765  * placement. This function blocks until the object has been fully moved.
2766  *
2767  * Return: 0 on success. Negative error code on failure.
2768  */
xe_bo_evict(struct xe_bo * bo,bool force_alloc)2769 int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
2770 {
2771 	struct ttm_operation_ctx ctx = {
2772 		.interruptible = false,
2773 		.no_wait_gpu = false,
2774 		.force_alloc = force_alloc,
2775 		.gfp_retry_mayfail = true,
2776 	};
2777 	struct ttm_placement placement;
2778 	int ret;
2779 
2780 	xe_evict_flags(&bo->ttm, &placement);
2781 	ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
2782 	if (ret)
2783 		return ret;
2784 
2785 	dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
2786 			      false, MAX_SCHEDULE_TIMEOUT);
2787 
2788 	return 0;
2789 }
2790 
2791 /**
2792  * xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
2793  * placed in system memory.
2794  * @bo: The xe_bo
2795  *
2796  * Return: true if extra pages need to be allocated, false otherwise.
2797  */
xe_bo_needs_ccs_pages(struct xe_bo * bo)2798 bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
2799 {
2800 	struct xe_device *xe = xe_bo_device(bo);
2801 
2802 	if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
2803 		return false;
2804 
2805 	if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
2806 		return false;
2807 
2808 	/* On discrete GPUs, if the GPU can access this buffer from
2809 	 * system memory (i.e., it allows XE_PL_TT placement), FlatCCS
2810 	 * can't be used since there's no CCS storage associated with
2811 	 * non-VRAM addresses.
2812 	 */
2813 	if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
2814 		return false;
2815 
2816 	return true;
2817 }
2818 
2819 /**
2820  * __xe_bo_release_dummy() - Dummy kref release function
2821  * @kref: The embedded struct kref.
2822  *
2823  * Dummy release function for xe_bo_put_deferred(). Keep off.
2824  */
__xe_bo_release_dummy(struct kref * kref)2825 void __xe_bo_release_dummy(struct kref *kref)
2826 {
2827 }
2828 
2829 /**
2830  * xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
2831  * @deferred: The lockless list used for the call to xe_bo_put_deferred().
2832  *
2833  * Puts all bos whose put was deferred by xe_bo_put_deferred().
2834  * The @deferred list can be either an onstack local list or a global
2835  * shared list used by a workqueue.
2836  */
xe_bo_put_commit(struct llist_head * deferred)2837 void xe_bo_put_commit(struct llist_head *deferred)
2838 {
2839 	struct llist_node *freed;
2840 	struct xe_bo *bo, *next;
2841 
2842 	if (!deferred)
2843 		return;
2844 
2845 	freed = llist_del_all(deferred);
2846 	if (!freed)
2847 		return;
2848 
2849 	llist_for_each_entry_safe(bo, next, freed, freed)
2850 		drm_gem_object_free(&bo->ttm.base.refcount);
2851 }
2852 
xe_bo_dev_work_func(struct work_struct * work)2853 static void xe_bo_dev_work_func(struct work_struct *work)
2854 {
2855 	struct xe_bo_dev *bo_dev = container_of(work, typeof(*bo_dev), async_free);
2856 
2857 	xe_bo_put_commit(&bo_dev->async_list);
2858 }
2859 
2860 /**
2861  * xe_bo_dev_init() - Initialize BO dev to manage async BO freeing
2862  * @bo_dev: The BO dev structure
2863  */
xe_bo_dev_init(struct xe_bo_dev * bo_dev)2864 void xe_bo_dev_init(struct xe_bo_dev *bo_dev)
2865 {
2866 	INIT_WORK(&bo_dev->async_free, xe_bo_dev_work_func);
2867 }
2868 
2869 /**
2870  * xe_bo_dev_fini() - Finalize BO dev managing async BO freeing
2871  * @bo_dev: The BO dev structure
2872  */
xe_bo_dev_fini(struct xe_bo_dev * bo_dev)2873 void xe_bo_dev_fini(struct xe_bo_dev *bo_dev)
2874 {
2875 	flush_work(&bo_dev->async_free);
2876 }
2877 
xe_bo_put(struct xe_bo * bo)2878 void xe_bo_put(struct xe_bo *bo)
2879 {
2880 	struct xe_tile *tile;
2881 	u8 id;
2882 
2883 	might_sleep();
2884 	if (bo) {
2885 #ifdef CONFIG_PROC_FS
2886 		if (bo->client)
2887 			might_lock(&bo->client->bos_lock);
2888 #endif
2889 		for_each_tile(tile, xe_bo_device(bo), id)
2890 			if (bo->ggtt_node[id] && bo->ggtt_node[id]->ggtt)
2891 				might_lock(&bo->ggtt_node[id]->ggtt->lock);
2892 		drm_gem_object_put(&bo->ttm.base);
2893 	}
2894 }
2895 
2896 /**
2897  * xe_bo_dumb_create - Create a dumb bo as backing for a fb
2898  * @file_priv: ...
2899  * @dev: ...
2900  * @args: ...
2901  *
2902  * See dumb_create() hook in include/drm/drm_drv.h
2903  *
2904  * Return: ...
2905  */
xe_bo_dumb_create(struct drm_file * file_priv,struct drm_device * dev,struct drm_mode_create_dumb * args)2906 int xe_bo_dumb_create(struct drm_file *file_priv,
2907 		      struct drm_device *dev,
2908 		      struct drm_mode_create_dumb *args)
2909 {
2910 	struct xe_device *xe = to_xe_device(dev);
2911 	struct xe_bo *bo;
2912 	uint32_t handle;
2913 	int cpp = DIV_ROUND_UP(args->bpp, 8);
2914 	int err;
2915 	u32 page_size = max_t(u32, PAGE_SIZE,
2916 		xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
2917 
2918 	args->pitch = ALIGN(args->width * cpp, 64);
2919 	args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
2920 			   page_size);
2921 
2922 	bo = xe_bo_create_user(xe, NULL, NULL, args->size,
2923 			       DRM_XE_GEM_CPU_CACHING_WC,
2924 			       XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
2925 			       XE_BO_FLAG_SCANOUT |
2926 			       XE_BO_FLAG_NEEDS_CPU_ACCESS);
2927 	if (IS_ERR(bo))
2928 		return PTR_ERR(bo);
2929 
2930 	err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
2931 	/* drop reference from allocate - handle holds it now */
2932 	drm_gem_object_put(&bo->ttm.base);
2933 	if (!err)
2934 		args->handle = handle;
2935 	return err;
2936 }
2937 
xe_bo_runtime_pm_release_mmap_offset(struct xe_bo * bo)2938 void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
2939 {
2940 	struct ttm_buffer_object *tbo = &bo->ttm;
2941 	struct ttm_device *bdev = tbo->bdev;
2942 
2943 	drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
2944 
2945 	list_del_init(&bo->vram_userfault_link);
2946 }
2947 
2948 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
2949 #include "tests/xe_bo.c"
2950 #endif
2951