1 // SPDX-License-Identifier: GPL-2.0-only
2 /* net/core/xdp.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9 #include <linux/filter.h>
10 #include <linux/types.h>
11 #include <linux/mm.h>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/idr.h>
15 #include <linux/rhashtable.h>
16 #include <linux/bug.h>
17 #include <net/page_pool/helpers.h>
18
19 #include <net/hotdata.h>
20 #include <net/netdev_lock.h>
21 #include <net/xdp.h>
22 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */
23 #include <trace/events/xdp.h>
24 #include <net/xdp_sock_drv.h>
25
26 #define REG_STATE_NEW 0x0
27 #define REG_STATE_REGISTERED 0x1
28 #define REG_STATE_UNREGISTERED 0x2
29 #define REG_STATE_UNUSED 0x3
30
31 static DEFINE_IDA(mem_id_pool);
32 static DEFINE_MUTEX(mem_id_lock);
33 #define MEM_ID_MAX 0xFFFE
34 #define MEM_ID_MIN 1
35 static int mem_id_next = MEM_ID_MIN;
36
37 static bool mem_id_init; /* false */
38 static struct rhashtable *mem_id_ht;
39
xdp_mem_id_hashfn(const void * data,u32 len,u32 seed)40 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed)
41 {
42 const u32 *k = data;
43 const u32 key = *k;
44
45 BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id)
46 != sizeof(u32));
47
48 /* Use cyclic increasing ID as direct hash key */
49 return key;
50 }
51
xdp_mem_id_cmp(struct rhashtable_compare_arg * arg,const void * ptr)52 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg,
53 const void *ptr)
54 {
55 const struct xdp_mem_allocator *xa = ptr;
56 u32 mem_id = *(u32 *)arg->key;
57
58 return xa->mem.id != mem_id;
59 }
60
61 static const struct rhashtable_params mem_id_rht_params = {
62 .nelem_hint = 64,
63 .head_offset = offsetof(struct xdp_mem_allocator, node),
64 .key_offset = offsetof(struct xdp_mem_allocator, mem.id),
65 .key_len = sizeof_field(struct xdp_mem_allocator, mem.id),
66 .max_size = MEM_ID_MAX,
67 .min_size = 8,
68 .automatic_shrinking = true,
69 .hashfn = xdp_mem_id_hashfn,
70 .obj_cmpfn = xdp_mem_id_cmp,
71 };
72
__xdp_mem_allocator_rcu_free(struct rcu_head * rcu)73 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu)
74 {
75 struct xdp_mem_allocator *xa;
76
77 xa = container_of(rcu, struct xdp_mem_allocator, rcu);
78
79 /* Allow this ID to be reused */
80 ida_free(&mem_id_pool, xa->mem.id);
81
82 kfree(xa);
83 }
84
mem_xa_remove(struct xdp_mem_allocator * xa)85 static void mem_xa_remove(struct xdp_mem_allocator *xa)
86 {
87 trace_mem_disconnect(xa);
88
89 if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params))
90 call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free);
91 }
92
mem_allocator_disconnect(void * allocator)93 static void mem_allocator_disconnect(void *allocator)
94 {
95 struct xdp_mem_allocator *xa;
96 struct rhashtable_iter iter;
97
98 mutex_lock(&mem_id_lock);
99
100 rhashtable_walk_enter(mem_id_ht, &iter);
101 do {
102 rhashtable_walk_start(&iter);
103
104 while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) {
105 if (xa->allocator == allocator)
106 mem_xa_remove(xa);
107 }
108
109 rhashtable_walk_stop(&iter);
110
111 } while (xa == ERR_PTR(-EAGAIN));
112 rhashtable_walk_exit(&iter);
113
114 mutex_unlock(&mem_id_lock);
115 }
116
xdp_unreg_mem_model(struct xdp_mem_info * mem)117 void xdp_unreg_mem_model(struct xdp_mem_info *mem)
118 {
119 struct xdp_mem_allocator *xa;
120 int type = mem->type;
121 int id = mem->id;
122
123 /* Reset mem info to defaults */
124 mem->id = 0;
125 mem->type = 0;
126
127 if (id == 0)
128 return;
129
130 if (type == MEM_TYPE_PAGE_POOL) {
131 xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params);
132 page_pool_destroy(xa->page_pool);
133 }
134 }
135 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model);
136
xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info * xdp_rxq)137 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq)
138 {
139 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
140 WARN(1, "Missing register, driver bug");
141 return;
142 }
143
144 xdp_unreg_mem_model(&xdp_rxq->mem);
145 }
146 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model);
147
xdp_rxq_info_unreg(struct xdp_rxq_info * xdp_rxq)148 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq)
149 {
150 /* Simplify driver cleanup code paths, allow unreg "unused" */
151 if (xdp_rxq->reg_state == REG_STATE_UNUSED)
152 return;
153
154 xdp_rxq_info_unreg_mem_model(xdp_rxq);
155
156 xdp_rxq->reg_state = REG_STATE_UNREGISTERED;
157 xdp_rxq->dev = NULL;
158 }
159 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg);
160
xdp_rxq_info_init(struct xdp_rxq_info * xdp_rxq)161 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq)
162 {
163 memset(xdp_rxq, 0, sizeof(*xdp_rxq));
164 }
165
166 /* Returns 0 on success, negative on failure */
__xdp_rxq_info_reg(struct xdp_rxq_info * xdp_rxq,struct net_device * dev,u32 queue_index,unsigned int napi_id,u32 frag_size)167 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
168 struct net_device *dev, u32 queue_index,
169 unsigned int napi_id, u32 frag_size)
170 {
171 if (!dev) {
172 WARN(1, "Missing net_device from driver");
173 return -ENODEV;
174 }
175
176 if (xdp_rxq->reg_state == REG_STATE_UNUSED) {
177 WARN(1, "Driver promised not to register this");
178 return -EINVAL;
179 }
180
181 if (xdp_rxq->reg_state == REG_STATE_REGISTERED) {
182 WARN(1, "Missing unregister, handled but fix driver");
183 xdp_rxq_info_unreg(xdp_rxq);
184 }
185
186 /* State either UNREGISTERED or NEW */
187 xdp_rxq_info_init(xdp_rxq);
188 xdp_rxq->dev = dev;
189 xdp_rxq->queue_index = queue_index;
190 xdp_rxq->frag_size = frag_size;
191
192 xdp_rxq->reg_state = REG_STATE_REGISTERED;
193 return 0;
194 }
195 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg);
196
xdp_rxq_info_unused(struct xdp_rxq_info * xdp_rxq)197 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq)
198 {
199 xdp_rxq->reg_state = REG_STATE_UNUSED;
200 }
201 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused);
202
xdp_rxq_info_is_reg(struct xdp_rxq_info * xdp_rxq)203 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq)
204 {
205 return (xdp_rxq->reg_state == REG_STATE_REGISTERED);
206 }
207 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg);
208
__mem_id_init_hash_table(void)209 static int __mem_id_init_hash_table(void)
210 {
211 struct rhashtable *rht;
212 int ret;
213
214 if (unlikely(mem_id_init))
215 return 0;
216
217 rht = kzalloc(sizeof(*rht), GFP_KERNEL);
218 if (!rht)
219 return -ENOMEM;
220
221 ret = rhashtable_init(rht, &mem_id_rht_params);
222 if (ret < 0) {
223 kfree(rht);
224 return ret;
225 }
226 mem_id_ht = rht;
227 smp_mb(); /* mutex lock should provide enough pairing */
228 mem_id_init = true;
229
230 return 0;
231 }
232
233 /* Allocate a cyclic ID that maps to allocator pointer.
234 * See: https://www.kernel.org/doc/html/latest/core-api/idr.html
235 *
236 * Caller must lock mem_id_lock.
237 */
__mem_id_cyclic_get(gfp_t gfp)238 static int __mem_id_cyclic_get(gfp_t gfp)
239 {
240 int retries = 1;
241 int id;
242
243 again:
244 id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp);
245 if (id < 0) {
246 if (id == -ENOSPC) {
247 /* Cyclic allocator, reset next id */
248 if (retries--) {
249 mem_id_next = MEM_ID_MIN;
250 goto again;
251 }
252 }
253 return id; /* errno */
254 }
255 mem_id_next = id + 1;
256
257 return id;
258 }
259
__is_supported_mem_type(enum xdp_mem_type type)260 static bool __is_supported_mem_type(enum xdp_mem_type type)
261 {
262 if (type == MEM_TYPE_PAGE_POOL)
263 return is_page_pool_compiled_in();
264
265 if (type >= MEM_TYPE_MAX)
266 return false;
267
268 return true;
269 }
270
__xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)271 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem,
272 enum xdp_mem_type type,
273 void *allocator)
274 {
275 struct xdp_mem_allocator *xdp_alloc;
276 gfp_t gfp = GFP_KERNEL;
277 int id, errno, ret;
278 void *ptr;
279
280 if (!__is_supported_mem_type(type))
281 return ERR_PTR(-EOPNOTSUPP);
282
283 mem->type = type;
284
285 if (!allocator) {
286 if (type == MEM_TYPE_PAGE_POOL)
287 return ERR_PTR(-EINVAL); /* Setup time check page_pool req */
288 return NULL;
289 }
290
291 /* Delay init of rhashtable to save memory if feature isn't used */
292 if (!mem_id_init) {
293 mutex_lock(&mem_id_lock);
294 ret = __mem_id_init_hash_table();
295 mutex_unlock(&mem_id_lock);
296 if (ret < 0)
297 return ERR_PTR(ret);
298 }
299
300 xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp);
301 if (!xdp_alloc)
302 return ERR_PTR(-ENOMEM);
303
304 mutex_lock(&mem_id_lock);
305 id = __mem_id_cyclic_get(gfp);
306 if (id < 0) {
307 errno = id;
308 goto err;
309 }
310 mem->id = id;
311 xdp_alloc->mem = *mem;
312 xdp_alloc->allocator = allocator;
313
314 /* Insert allocator into ID lookup table */
315 ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node);
316 if (IS_ERR(ptr)) {
317 ida_free(&mem_id_pool, mem->id);
318 mem->id = 0;
319 errno = PTR_ERR(ptr);
320 goto err;
321 }
322
323 if (type == MEM_TYPE_PAGE_POOL)
324 page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem);
325
326 mutex_unlock(&mem_id_lock);
327
328 return xdp_alloc;
329 err:
330 mutex_unlock(&mem_id_lock);
331 kfree(xdp_alloc);
332 return ERR_PTR(errno);
333 }
334
xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)335 int xdp_reg_mem_model(struct xdp_mem_info *mem,
336 enum xdp_mem_type type, void *allocator)
337 {
338 struct xdp_mem_allocator *xdp_alloc;
339
340 xdp_alloc = __xdp_reg_mem_model(mem, type, allocator);
341 if (IS_ERR(xdp_alloc))
342 return PTR_ERR(xdp_alloc);
343 return 0;
344 }
345 EXPORT_SYMBOL_GPL(xdp_reg_mem_model);
346
xdp_rxq_info_reg_mem_model(struct xdp_rxq_info * xdp_rxq,enum xdp_mem_type type,void * allocator)347 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
348 enum xdp_mem_type type, void *allocator)
349 {
350 struct xdp_mem_allocator *xdp_alloc;
351
352 if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
353 WARN(1, "Missing register, driver bug");
354 return -EFAULT;
355 }
356
357 xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator);
358 if (IS_ERR(xdp_alloc))
359 return PTR_ERR(xdp_alloc);
360
361 if (type == MEM_TYPE_XSK_BUFF_POOL && allocator)
362 xsk_pool_set_rxq_info(allocator, xdp_rxq);
363
364 if (trace_mem_connect_enabled() && xdp_alloc)
365 trace_mem_connect(xdp_alloc, xdp_rxq);
366 return 0;
367 }
368
369 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model);
370
371 /**
372 * xdp_reg_page_pool - register &page_pool as a memory provider for XDP
373 * @pool: &page_pool to register
374 *
375 * Can be used to register pools manually without connecting to any XDP RxQ
376 * info, so that the XDP layer will be aware of them. Then, they can be
377 * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool().
378 *
379 * Return: %0 on success, -errno on error.
380 */
xdp_reg_page_pool(struct page_pool * pool)381 int xdp_reg_page_pool(struct page_pool *pool)
382 {
383 struct xdp_mem_info mem;
384
385 return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool);
386 }
387 EXPORT_SYMBOL_GPL(xdp_reg_page_pool);
388
389 /**
390 * xdp_unreg_page_pool - unregister &page_pool from the memory providers list
391 * @pool: &page_pool to unregister
392 *
393 * A shorthand for manual unregistering page pools. If the pool was previously
394 * attached to an RxQ info, it must be detached first.
395 */
xdp_unreg_page_pool(const struct page_pool * pool)396 void xdp_unreg_page_pool(const struct page_pool *pool)
397 {
398 struct xdp_mem_info mem = {
399 .type = MEM_TYPE_PAGE_POOL,
400 .id = pool->xdp_mem_id,
401 };
402
403 xdp_unreg_mem_model(&mem);
404 }
405 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool);
406
407 /**
408 * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info
409 * @xdp_rxq: XDP RxQ info to attach the pool to
410 * @pool: pool to attach
411 *
412 * If the pool was registered manually, this function must be called instead
413 * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info.
414 */
xdp_rxq_info_attach_page_pool(struct xdp_rxq_info * xdp_rxq,const struct page_pool * pool)415 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq,
416 const struct page_pool *pool)
417 {
418 struct xdp_mem_info mem = {
419 .type = MEM_TYPE_PAGE_POOL,
420 .id = pool->xdp_mem_id,
421 };
422
423 xdp_rxq_info_attach_mem_model(xdp_rxq, &mem);
424 }
425 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool);
426
427 /* XDP RX runs under NAPI protection, and in different delivery error
428 * scenarios (e.g. queue full), it is possible to return the xdp_frame
429 * while still leveraging this protection. The @napi_direct boolean
430 * is used for those calls sites. Thus, allowing for faster recycling
431 * of xdp_frames/pages in those cases.
432 */
__xdp_return(netmem_ref netmem,enum xdp_mem_type mem_type,bool napi_direct,struct xdp_buff * xdp)433 void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type,
434 bool napi_direct, struct xdp_buff *xdp)
435 {
436 switch (mem_type) {
437 case MEM_TYPE_PAGE_POOL:
438 netmem = netmem_compound_head(netmem);
439 if (napi_direct && xdp_return_frame_no_direct())
440 napi_direct = false;
441 /* No need to check netmem_is_pp() as mem->type knows this a
442 * page_pool page
443 */
444 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem,
445 napi_direct);
446 break;
447 case MEM_TYPE_PAGE_SHARED:
448 page_frag_free(__netmem_address(netmem));
449 break;
450 case MEM_TYPE_PAGE_ORDER0:
451 put_page(__netmem_to_page(netmem));
452 break;
453 case MEM_TYPE_XSK_BUFF_POOL:
454 /* NB! Only valid from an xdp_buff! */
455 xsk_buff_free(xdp);
456 break;
457 default:
458 /* Not possible, checked in xdp_rxq_info_reg_mem_model() */
459 WARN(1, "Incorrect XDP memory type (%d) usage", mem_type);
460 break;
461 }
462 }
463
xdp_return_frame(struct xdp_frame * xdpf)464 void xdp_return_frame(struct xdp_frame *xdpf)
465 {
466 struct skb_shared_info *sinfo;
467
468 if (likely(!xdp_frame_has_frags(xdpf)))
469 goto out;
470
471 sinfo = xdp_get_shared_info_from_frame(xdpf);
472 for (u32 i = 0; i < sinfo->nr_frags; i++)
473 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
474 false, NULL);
475
476 out:
477 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, false, NULL);
478 }
479 EXPORT_SYMBOL_GPL(xdp_return_frame);
480
xdp_return_frame_rx_napi(struct xdp_frame * xdpf)481 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf)
482 {
483 struct skb_shared_info *sinfo;
484
485 if (likely(!xdp_frame_has_frags(xdpf)))
486 goto out;
487
488 sinfo = xdp_get_shared_info_from_frame(xdpf);
489 for (u32 i = 0; i < sinfo->nr_frags; i++)
490 __xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
491 true, NULL);
492
493 out:
494 __xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, true, NULL);
495 }
496 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi);
497
498 /* XDP bulk APIs introduce a defer/flush mechanism to return
499 * pages belonging to the same xdp_mem_allocator object
500 * (identified via the mem.id field) in bulk to optimize
501 * I-cache and D-cache.
502 * The bulk queue size is set to 16 to be aligned to how
503 * XDP_REDIRECT bulking works. The bulk is flushed when
504 * it is full or when mem.id changes.
505 * xdp_frame_bulk is usually stored/allocated on the function
506 * call-stack to avoid locking penalties.
507 */
508
509 /* Must be called with rcu_read_lock held */
xdp_return_frame_bulk(struct xdp_frame * xdpf,struct xdp_frame_bulk * bq)510 void xdp_return_frame_bulk(struct xdp_frame *xdpf,
511 struct xdp_frame_bulk *bq)
512 {
513 if (xdpf->mem_type != MEM_TYPE_PAGE_POOL) {
514 xdp_return_frame(xdpf);
515 return;
516 }
517
518 if (bq->count == XDP_BULK_QUEUE_SIZE)
519 xdp_flush_frame_bulk(bq);
520
521 if (unlikely(xdp_frame_has_frags(xdpf))) {
522 struct skb_shared_info *sinfo;
523 int i;
524
525 sinfo = xdp_get_shared_info_from_frame(xdpf);
526 for (i = 0; i < sinfo->nr_frags; i++) {
527 skb_frag_t *frag = &sinfo->frags[i];
528
529 bq->q[bq->count++] = skb_frag_netmem(frag);
530 if (bq->count == XDP_BULK_QUEUE_SIZE)
531 xdp_flush_frame_bulk(bq);
532 }
533 }
534 bq->q[bq->count++] = virt_to_netmem(xdpf->data);
535 }
536 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk);
537
538 /**
539 * xdp_return_frag -- free one XDP frag or decrement its refcount
540 * @netmem: network memory reference to release
541 * @xdp: &xdp_buff to release the frag for
542 */
xdp_return_frag(netmem_ref netmem,const struct xdp_buff * xdp)543 void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp)
544 {
545 __xdp_return(netmem, xdp->rxq->mem.type, true, NULL);
546 }
547 EXPORT_SYMBOL_GPL(xdp_return_frag);
548
xdp_return_buff(struct xdp_buff * xdp)549 void xdp_return_buff(struct xdp_buff *xdp)
550 {
551 struct skb_shared_info *sinfo;
552
553 if (likely(!xdp_buff_has_frags(xdp)))
554 goto out;
555
556 sinfo = xdp_get_shared_info_from_buff(xdp);
557 for (u32 i = 0; i < sinfo->nr_frags; i++)
558 __xdp_return(skb_frag_netmem(&sinfo->frags[i]),
559 xdp->rxq->mem.type, true, xdp);
560
561 out:
562 __xdp_return(virt_to_netmem(xdp->data), xdp->rxq->mem.type, true, xdp);
563 }
564 EXPORT_SYMBOL_GPL(xdp_return_buff);
565
xdp_attachment_setup(struct xdp_attachment_info * info,struct netdev_bpf * bpf)566 void xdp_attachment_setup(struct xdp_attachment_info *info,
567 struct netdev_bpf *bpf)
568 {
569 if (info->prog)
570 bpf_prog_put(info->prog);
571 info->prog = bpf->prog;
572 info->flags = bpf->flags;
573 }
574 EXPORT_SYMBOL_GPL(xdp_attachment_setup);
575
xdp_convert_zc_to_xdp_frame(struct xdp_buff * xdp)576 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp)
577 {
578 unsigned int metasize, totsize;
579 void *addr, *data_to_copy;
580 struct xdp_frame *xdpf;
581 struct page *page;
582
583 /* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */
584 metasize = xdp_data_meta_unsupported(xdp) ? 0 :
585 xdp->data - xdp->data_meta;
586 totsize = xdp->data_end - xdp->data + metasize;
587
588 if (sizeof(*xdpf) + totsize > PAGE_SIZE)
589 return NULL;
590
591 page = dev_alloc_page();
592 if (!page)
593 return NULL;
594
595 addr = page_to_virt(page);
596 xdpf = addr;
597 memset(xdpf, 0, sizeof(*xdpf));
598
599 addr += sizeof(*xdpf);
600 data_to_copy = metasize ? xdp->data_meta : xdp->data;
601 memcpy(addr, data_to_copy, totsize);
602
603 xdpf->data = addr + metasize;
604 xdpf->len = totsize - metasize;
605 xdpf->headroom = 0;
606 xdpf->metasize = metasize;
607 xdpf->frame_sz = PAGE_SIZE;
608 xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
609
610 xsk_buff_free(xdp);
611 return xdpf;
612 }
613 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame);
614
615 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */
xdp_warn(const char * msg,const char * func,const int line)616 void xdp_warn(const char *msg, const char *func, const int line)
617 {
618 WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg);
619 };
620 EXPORT_SYMBOL_GPL(xdp_warn);
621
622 /**
623 * xdp_build_skb_from_buff - create an skb from &xdp_buff
624 * @xdp: &xdp_buff to convert to an skb
625 *
626 * Perform common operations to create a new skb to pass up the stack from
627 * &xdp_buff: allocate an skb head from the NAPI percpu cache, initialize
628 * skb data pointers and offsets, set the recycle bit if the buff is
629 * PP-backed, Rx queue index, protocol and update frags info.
630 *
631 * Return: new &sk_buff on success, %NULL on error.
632 */
xdp_build_skb_from_buff(const struct xdp_buff * xdp)633 struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp)
634 {
635 const struct xdp_rxq_info *rxq = xdp->rxq;
636 const struct skb_shared_info *sinfo;
637 struct sk_buff *skb;
638 u32 nr_frags = 0;
639 int metalen;
640
641 if (unlikely(xdp_buff_has_frags(xdp))) {
642 sinfo = xdp_get_shared_info_from_buff(xdp);
643 nr_frags = sinfo->nr_frags;
644 }
645
646 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
647 if (unlikely(!skb))
648 return NULL;
649
650 skb_reserve(skb, xdp->data - xdp->data_hard_start);
651 __skb_put(skb, xdp->data_end - xdp->data);
652
653 metalen = xdp->data - xdp->data_meta;
654 if (metalen > 0)
655 skb_metadata_set(skb, metalen);
656
657 if (rxq->mem.type == MEM_TYPE_PAGE_POOL)
658 skb_mark_for_recycle(skb);
659
660 skb_record_rx_queue(skb, rxq->queue_index);
661
662 if (unlikely(nr_frags)) {
663 u32 tsize;
664
665 tsize = sinfo->xdp_frags_truesize ? : nr_frags * xdp->frame_sz;
666 xdp_update_skb_frags_info(skb, nr_frags, sinfo->xdp_frags_size,
667 tsize, xdp_buff_get_skb_flags(xdp));
668 }
669
670 skb->protocol = eth_type_trans(skb, rxq->dev);
671
672 return skb;
673 }
674 EXPORT_SYMBOL_GPL(xdp_build_skb_from_buff);
675
676 /**
677 * xdp_copy_frags_from_zc - copy frags from XSk buff to skb
678 * @skb: skb to copy frags to
679 * @xdp: XSk &xdp_buff from which the frags will be copied
680 * @pp: &page_pool backing page allocation, if available
681 *
682 * Copy all frags from XSk &xdp_buff to the skb to pass it up the stack.
683 * Allocate a new buffer for each frag, copy it and attach to the skb.
684 *
685 * Return: true on success, false on netmem allocation fail.
686 */
xdp_copy_frags_from_zc(struct sk_buff * skb,const struct xdp_buff * xdp,struct page_pool * pp)687 static noinline bool xdp_copy_frags_from_zc(struct sk_buff *skb,
688 const struct xdp_buff *xdp,
689 struct page_pool *pp)
690 {
691 struct skb_shared_info *sinfo = skb_shinfo(skb);
692 const struct skb_shared_info *xinfo;
693 u32 nr_frags, tsize = 0;
694 u32 flags = 0;
695
696 xinfo = xdp_get_shared_info_from_buff(xdp);
697 nr_frags = xinfo->nr_frags;
698
699 for (u32 i = 0; i < nr_frags; i++) {
700 const skb_frag_t *frag = &xinfo->frags[i];
701 u32 len = skb_frag_size(frag);
702 u32 offset, truesize = len;
703 struct page *page;
704
705 page = page_pool_dev_alloc(pp, &offset, &truesize);
706 if (unlikely(!page)) {
707 sinfo->nr_frags = i;
708 return false;
709 }
710
711 memcpy(page_address(page) + offset, skb_frag_address(frag),
712 LARGEST_ALIGN(len));
713 __skb_fill_page_desc_noacc(sinfo, i, page, offset, len);
714
715 tsize += truesize;
716 if (page_is_pfmemalloc(page))
717 flags |= XDP_FLAGS_FRAGS_PF_MEMALLOC;
718 }
719
720 xdp_update_skb_frags_info(skb, nr_frags, xinfo->xdp_frags_size, tsize,
721 flags);
722
723 return true;
724 }
725
726 /**
727 * xdp_build_skb_from_zc - create an skb from XSk &xdp_buff
728 * @xdp: source XSk buff
729 *
730 * Similar to xdp_build_skb_from_buff(), but for XSk frames. Allocate an skb
731 * head, new buffer for the head, copy the data and initialize the skb fields.
732 * If there are frags, allocate new buffers for them and copy.
733 * Buffers are allocated from the system percpu pools to try recycling them.
734 * If new skb was built successfully, @xdp is returned to XSk pool's freelist.
735 * On error, it remains untouched and the caller must take care of this.
736 *
737 * Return: new &sk_buff on success, %NULL on error.
738 */
xdp_build_skb_from_zc(struct xdp_buff * xdp)739 struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp)
740 {
741 const struct xdp_rxq_info *rxq = xdp->rxq;
742 u32 len = xdp->data_end - xdp->data_meta;
743 u32 truesize = xdp->frame_sz;
744 struct sk_buff *skb = NULL;
745 struct page_pool *pp;
746 int metalen;
747 void *data;
748
749 if (!IS_ENABLED(CONFIG_PAGE_POOL))
750 return NULL;
751
752 local_lock_nested_bh(&system_page_pool.bh_lock);
753 pp = this_cpu_read(system_page_pool.pool);
754 data = page_pool_dev_alloc_va(pp, &truesize);
755 if (unlikely(!data))
756 goto out;
757
758 skb = napi_build_skb(data, truesize);
759 if (unlikely(!skb)) {
760 page_pool_free_va(pp, data, true);
761 goto out;
762 }
763
764 skb_mark_for_recycle(skb);
765 skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
766
767 memcpy(__skb_put(skb, len), xdp->data_meta, LARGEST_ALIGN(len));
768
769 metalen = xdp->data - xdp->data_meta;
770 if (metalen > 0) {
771 skb_metadata_set(skb, metalen);
772 __skb_pull(skb, metalen);
773 }
774
775 skb_record_rx_queue(skb, rxq->queue_index);
776
777 if (unlikely(xdp_buff_has_frags(xdp)) &&
778 unlikely(!xdp_copy_frags_from_zc(skb, xdp, pp))) {
779 napi_consume_skb(skb, true);
780 skb = NULL;
781 goto out;
782 }
783
784 xsk_buff_free(xdp);
785
786 skb->protocol = eth_type_trans(skb, rxq->dev);
787
788 out:
789 local_unlock_nested_bh(&system_page_pool.bh_lock);
790 return skb;
791 }
792 EXPORT_SYMBOL_GPL(xdp_build_skb_from_zc);
793
__xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct sk_buff * skb,struct net_device * dev)794 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
795 struct sk_buff *skb,
796 struct net_device *dev)
797 {
798 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
799 unsigned int headroom, frame_size;
800 void *hard_start;
801 u8 nr_frags;
802
803 /* xdp frags frame */
804 if (unlikely(xdp_frame_has_frags(xdpf)))
805 nr_frags = sinfo->nr_frags;
806
807 /* Part of headroom was reserved to xdpf */
808 headroom = sizeof(*xdpf) + xdpf->headroom;
809
810 /* Memory size backing xdp_frame data already have reserved
811 * room for build_skb to place skb_shared_info in tailroom.
812 */
813 frame_size = xdpf->frame_sz;
814
815 hard_start = xdpf->data - headroom;
816 skb = build_skb_around(skb, hard_start, frame_size);
817 if (unlikely(!skb))
818 return NULL;
819
820 skb_reserve(skb, headroom);
821 __skb_put(skb, xdpf->len);
822 if (xdpf->metasize)
823 skb_metadata_set(skb, xdpf->metasize);
824
825 if (unlikely(xdp_frame_has_frags(xdpf)))
826 xdp_update_skb_frags_info(skb, nr_frags, sinfo->xdp_frags_size,
827 nr_frags * xdpf->frame_sz,
828 xdp_frame_get_skb_flags(xdpf));
829
830 /* Essential SKB info: protocol and skb->dev */
831 skb->protocol = eth_type_trans(skb, dev);
832
833 /* Optional SKB info, currently missing:
834 * - HW checksum info (skb->ip_summed)
835 * - HW RX hash (skb_set_hash)
836 * - RX ring dev queue index (skb_record_rx_queue)
837 */
838
839 if (xdpf->mem_type == MEM_TYPE_PAGE_POOL)
840 skb_mark_for_recycle(skb);
841
842 /* Allow SKB to reuse area used by xdp_frame */
843 xdp_scrub_frame(xdpf);
844
845 return skb;
846 }
847 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame);
848
xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct net_device * dev)849 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
850 struct net_device *dev)
851 {
852 struct sk_buff *skb;
853
854 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
855 if (unlikely(!skb))
856 return NULL;
857
858 memset(skb, 0, offsetof(struct sk_buff, tail));
859
860 return __xdp_build_skb_from_frame(xdpf, skb, dev);
861 }
862 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame);
863
xdpf_clone(struct xdp_frame * xdpf)864 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf)
865 {
866 unsigned int headroom, totalsize;
867 struct xdp_frame *nxdpf;
868 struct page *page;
869 void *addr;
870
871 headroom = xdpf->headroom + sizeof(*xdpf);
872 totalsize = headroom + xdpf->len;
873
874 if (unlikely(totalsize > PAGE_SIZE))
875 return NULL;
876 page = dev_alloc_page();
877 if (!page)
878 return NULL;
879 addr = page_to_virt(page);
880
881 memcpy(addr, xdpf, totalsize);
882
883 nxdpf = addr;
884 nxdpf->data = addr + headroom;
885 nxdpf->frame_sz = PAGE_SIZE;
886 nxdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
887
888 return nxdpf;
889 }
890
891 __bpf_kfunc_start_defs();
892
893 /**
894 * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp.
895 * @ctx: XDP context pointer.
896 * @timestamp: Return value pointer.
897 *
898 * Return:
899 * * Returns 0 on success or ``-errno`` on error.
900 * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc
901 * * ``-ENODATA`` : means no RX-timestamp available for this frame
902 */
bpf_xdp_metadata_rx_timestamp(const struct xdp_md * ctx,u64 * timestamp)903 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
904 {
905 return -EOPNOTSUPP;
906 }
907
908 /**
909 * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash.
910 * @ctx: XDP context pointer.
911 * @hash: Return value pointer.
912 * @rss_type: Return value pointer for RSS type.
913 *
914 * The RSS hash type (@rss_type) specifies what portion of packet headers NIC
915 * hardware used when calculating RSS hash value. The RSS type can be decoded
916 * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits
917 * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types*
918 * ``XDP_RSS_TYPE_L*``.
919 *
920 * Return:
921 * * Returns 0 on success or ``-errno`` on error.
922 * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc
923 * * ``-ENODATA`` : means no RX-hash available for this frame
924 */
bpf_xdp_metadata_rx_hash(const struct xdp_md * ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)925 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash,
926 enum xdp_rss_hash_type *rss_type)
927 {
928 return -EOPNOTSUPP;
929 }
930
931 /**
932 * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag
933 * @ctx: XDP context pointer.
934 * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID).
935 * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP)
936 *
937 * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*,
938 * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use
939 * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)**
940 * and should be used as follows:
941 * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();``
942 *
943 * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag.
944 * Driver is expected to provide those in **host byte order (usually LE)**,
945 * so the bpf program should not perform byte conversion.
946 * According to 802.1Q standard, *VLAN TCI (Tag control information)*
947 * is a bit field that contains:
948 * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``,
949 * *Drop eligible indicator (DEI)* - 1 bit,
950 * *Priority code point (PCP)* - 3 bits.
951 * For detailed meaning of DEI and PCP, please refer to other sources.
952 *
953 * Return:
954 * * Returns 0 on success or ``-errno`` on error.
955 * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc
956 * * ``-ENODATA`` : VLAN tag was not stripped or is not available
957 */
bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md * ctx,__be16 * vlan_proto,u16 * vlan_tci)958 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx,
959 __be16 *vlan_proto, u16 *vlan_tci)
960 {
961 return -EOPNOTSUPP;
962 }
963
964 __bpf_kfunc_end_defs();
965
966 BTF_KFUNCS_START(xdp_metadata_kfunc_ids)
967 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS)
968 XDP_METADATA_KFUNC_xxx
969 #undef XDP_METADATA_KFUNC
970 BTF_KFUNCS_END(xdp_metadata_kfunc_ids)
971
972 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = {
973 .owner = THIS_MODULE,
974 .set = &xdp_metadata_kfunc_ids,
975 };
976
BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)977 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)
978 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str)
979 XDP_METADATA_KFUNC_xxx
980 #undef XDP_METADATA_KFUNC
981
982 u32 bpf_xdp_metadata_kfunc_id(int id)
983 {
984 /* xdp_metadata_kfunc_ids is sorted and can't be used */
985 return xdp_metadata_kfunc_ids_unsorted[id];
986 }
987
bpf_dev_bound_kfunc_id(u32 btf_id)988 bool bpf_dev_bound_kfunc_id(u32 btf_id)
989 {
990 return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id);
991 }
992
xdp_metadata_init(void)993 static int __init xdp_metadata_init(void)
994 {
995 return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set);
996 }
997 late_initcall(xdp_metadata_init);
998
xdp_set_features_flag_locked(struct net_device * dev,xdp_features_t val)999 void xdp_set_features_flag_locked(struct net_device *dev, xdp_features_t val)
1000 {
1001 val &= NETDEV_XDP_ACT_MASK;
1002 if (dev->xdp_features == val)
1003 return;
1004
1005 netdev_assert_locked_or_invisible(dev);
1006 dev->xdp_features = val;
1007
1008 if (dev->reg_state == NETREG_REGISTERED)
1009 call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev);
1010 }
1011 EXPORT_SYMBOL_GPL(xdp_set_features_flag_locked);
1012
xdp_set_features_flag(struct net_device * dev,xdp_features_t val)1013 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
1014 {
1015 netdev_lock(dev);
1016 xdp_set_features_flag_locked(dev, val);
1017 netdev_unlock(dev);
1018 }
1019 EXPORT_SYMBOL_GPL(xdp_set_features_flag);
1020
xdp_features_set_redirect_target_locked(struct net_device * dev,bool support_sg)1021 void xdp_features_set_redirect_target_locked(struct net_device *dev,
1022 bool support_sg)
1023 {
1024 xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT);
1025
1026 if (support_sg)
1027 val |= NETDEV_XDP_ACT_NDO_XMIT_SG;
1028 xdp_set_features_flag_locked(dev, val);
1029 }
1030 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target_locked);
1031
xdp_features_set_redirect_target(struct net_device * dev,bool support_sg)1032 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
1033 {
1034 netdev_lock(dev);
1035 xdp_features_set_redirect_target_locked(dev, support_sg);
1036 netdev_unlock(dev);
1037 }
1038 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target);
1039
xdp_features_clear_redirect_target_locked(struct net_device * dev)1040 void xdp_features_clear_redirect_target_locked(struct net_device *dev)
1041 {
1042 xdp_features_t val = dev->xdp_features;
1043
1044 val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG);
1045 xdp_set_features_flag_locked(dev, val);
1046 }
1047 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target_locked);
1048
xdp_features_clear_redirect_target(struct net_device * dev)1049 void xdp_features_clear_redirect_target(struct net_device *dev)
1050 {
1051 netdev_lock(dev);
1052 xdp_features_clear_redirect_target_locked(dev);
1053 netdev_unlock(dev);
1054 }
1055 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target);
1056