1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* W: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			nr_drainers;	/* W: drain in progress */
244 	int			saved_max_active; /* W: saved cwq max_active */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 	char			name[];		/* I: workqueue name */
249 };
250 
251 struct workqueue_struct *system_wq __read_mostly;
252 struct workqueue_struct *system_long_wq __read_mostly;
253 struct workqueue_struct *system_nrt_wq __read_mostly;
254 struct workqueue_struct *system_unbound_wq __read_mostly;
255 struct workqueue_struct *system_freezable_wq __read_mostly;
256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
257 EXPORT_SYMBOL_GPL(system_wq);
258 EXPORT_SYMBOL_GPL(system_long_wq);
259 EXPORT_SYMBOL_GPL(system_nrt_wq);
260 EXPORT_SYMBOL_GPL(system_unbound_wq);
261 EXPORT_SYMBOL_GPL(system_freezable_wq);
262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
263 
264 #define CREATE_TRACE_POINTS
265 #include <trace/events/workqueue.h>
266 
267 #define for_each_busy_worker(worker, i, pos, gcwq)			\
268 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
269 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
270 
__next_gcwq_cpu(int cpu,const struct cpumask * mask,unsigned int sw)271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
272 				  unsigned int sw)
273 {
274 	if (cpu < nr_cpu_ids) {
275 		if (sw & 1) {
276 			cpu = cpumask_next(cpu, mask);
277 			if (cpu < nr_cpu_ids)
278 				return cpu;
279 		}
280 		if (sw & 2)
281 			return WORK_CPU_UNBOUND;
282 	}
283 	return WORK_CPU_NONE;
284 }
285 
__next_wq_cpu(int cpu,const struct cpumask * mask,struct workqueue_struct * wq)286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
287 				struct workqueue_struct *wq)
288 {
289 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
290 }
291 
292 /*
293  * CPU iterators
294  *
295  * An extra gcwq is defined for an invalid cpu number
296  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
297  * specific CPU.  The following iterators are similar to
298  * for_each_*_cpu() iterators but also considers the unbound gcwq.
299  *
300  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
301  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
302  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
303  *				  WORK_CPU_UNBOUND for unbound workqueues
304  */
305 #define for_each_gcwq_cpu(cpu)						\
306 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
307 	     (cpu) < WORK_CPU_NONE;					\
308 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
309 
310 #define for_each_online_gcwq_cpu(cpu)					\
311 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
312 	     (cpu) < WORK_CPU_NONE;					\
313 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
314 
315 #define for_each_cwq_cpu(cpu, wq)					\
316 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
317 	     (cpu) < WORK_CPU_NONE;					\
318 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
319 
320 #ifdef CONFIG_DEBUG_OBJECTS_WORK
321 
322 static struct debug_obj_descr work_debug_descr;
323 
work_debug_hint(void * addr)324 static void *work_debug_hint(void *addr)
325 {
326 	return ((struct work_struct *) addr)->func;
327 }
328 
329 /*
330  * fixup_init is called when:
331  * - an active object is initialized
332  */
work_fixup_init(void * addr,enum debug_obj_state state)333 static int work_fixup_init(void *addr, enum debug_obj_state state)
334 {
335 	struct work_struct *work = addr;
336 
337 	switch (state) {
338 	case ODEBUG_STATE_ACTIVE:
339 		cancel_work_sync(work);
340 		debug_object_init(work, &work_debug_descr);
341 		return 1;
342 	default:
343 		return 0;
344 	}
345 }
346 
347 /*
348  * fixup_activate is called when:
349  * - an active object is activated
350  * - an unknown object is activated (might be a statically initialized object)
351  */
work_fixup_activate(void * addr,enum debug_obj_state state)352 static int work_fixup_activate(void *addr, enum debug_obj_state state)
353 {
354 	struct work_struct *work = addr;
355 
356 	switch (state) {
357 
358 	case ODEBUG_STATE_NOTAVAILABLE:
359 		/*
360 		 * This is not really a fixup. The work struct was
361 		 * statically initialized. We just make sure that it
362 		 * is tracked in the object tracker.
363 		 */
364 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
365 			debug_object_init(work, &work_debug_descr);
366 			debug_object_activate(work, &work_debug_descr);
367 			return 0;
368 		}
369 		WARN_ON_ONCE(1);
370 		return 0;
371 
372 	case ODEBUG_STATE_ACTIVE:
373 		WARN_ON(1);
374 
375 	default:
376 		return 0;
377 	}
378 }
379 
380 /*
381  * fixup_free is called when:
382  * - an active object is freed
383  */
work_fixup_free(void * addr,enum debug_obj_state state)384 static int work_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 	struct work_struct *work = addr;
387 
388 	switch (state) {
389 	case ODEBUG_STATE_ACTIVE:
390 		cancel_work_sync(work);
391 		debug_object_free(work, &work_debug_descr);
392 		return 1;
393 	default:
394 		return 0;
395 	}
396 }
397 
398 static struct debug_obj_descr work_debug_descr = {
399 	.name		= "work_struct",
400 	.debug_hint	= work_debug_hint,
401 	.fixup_init	= work_fixup_init,
402 	.fixup_activate	= work_fixup_activate,
403 	.fixup_free	= work_fixup_free,
404 };
405 
debug_work_activate(struct work_struct * work)406 static inline void debug_work_activate(struct work_struct *work)
407 {
408 	debug_object_activate(work, &work_debug_descr);
409 }
410 
debug_work_deactivate(struct work_struct * work)411 static inline void debug_work_deactivate(struct work_struct *work)
412 {
413 	debug_object_deactivate(work, &work_debug_descr);
414 }
415 
__init_work(struct work_struct * work,int onstack)416 void __init_work(struct work_struct *work, int onstack)
417 {
418 	if (onstack)
419 		debug_object_init_on_stack(work, &work_debug_descr);
420 	else
421 		debug_object_init(work, &work_debug_descr);
422 }
423 EXPORT_SYMBOL_GPL(__init_work);
424 
destroy_work_on_stack(struct work_struct * work)425 void destroy_work_on_stack(struct work_struct *work)
426 {
427 	debug_object_free(work, &work_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
430 
431 #else
debug_work_activate(struct work_struct * work)432 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)433 static inline void debug_work_deactivate(struct work_struct *work) { }
434 #endif
435 
436 /* Serializes the accesses to the list of workqueues. */
437 static DEFINE_SPINLOCK(workqueue_lock);
438 static LIST_HEAD(workqueues);
439 static bool workqueue_freezing;		/* W: have wqs started freezing? */
440 
441 /*
442  * The almighty global cpu workqueues.  nr_running is the only field
443  * which is expected to be used frequently by other cpus via
444  * try_to_wake_up().  Put it in a separate cacheline.
445  */
446 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
448 
449 /*
450  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
451  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
452  * workers have WORKER_UNBOUND set.
453  */
454 static struct global_cwq unbound_global_cwq;
455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
456 
457 static int worker_thread(void *__worker);
458 
get_gcwq(unsigned int cpu)459 static struct global_cwq *get_gcwq(unsigned int cpu)
460 {
461 	if (cpu != WORK_CPU_UNBOUND)
462 		return &per_cpu(global_cwq, cpu);
463 	else
464 		return &unbound_global_cwq;
465 }
466 
get_gcwq_nr_running(unsigned int cpu)467 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
468 {
469 	if (cpu != WORK_CPU_UNBOUND)
470 		return &per_cpu(gcwq_nr_running, cpu);
471 	else
472 		return &unbound_gcwq_nr_running;
473 }
474 
get_cwq(unsigned int cpu,struct workqueue_struct * wq)475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
476 					    struct workqueue_struct *wq)
477 {
478 	if (!(wq->flags & WQ_UNBOUND)) {
479 		if (likely(cpu < nr_cpu_ids)) {
480 #ifdef CONFIG_SMP
481 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
482 #else
483 			return wq->cpu_wq.single;
484 #endif
485 		}
486 	} else if (likely(cpu == WORK_CPU_UNBOUND))
487 		return wq->cpu_wq.single;
488 	return NULL;
489 }
490 
work_color_to_flags(int color)491 static unsigned int work_color_to_flags(int color)
492 {
493 	return color << WORK_STRUCT_COLOR_SHIFT;
494 }
495 
get_work_color(struct work_struct * work)496 static int get_work_color(struct work_struct *work)
497 {
498 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
499 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
500 }
501 
work_next_color(int color)502 static int work_next_color(int color)
503 {
504 	return (color + 1) % WORK_NR_COLORS;
505 }
506 
507 /*
508  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
509  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
510  * cleared and the work data contains the cpu number it was last on.
511  *
512  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
513  * cwq, cpu or clear work->data.  These functions should only be
514  * called while the work is owned - ie. while the PENDING bit is set.
515  *
516  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
517  * corresponding to a work.  gcwq is available once the work has been
518  * queued anywhere after initialization.  cwq is available only from
519  * queueing until execution starts.
520  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)521 static inline void set_work_data(struct work_struct *work, unsigned long data,
522 				 unsigned long flags)
523 {
524 	BUG_ON(!work_pending(work));
525 	atomic_long_set(&work->data, data | flags | work_static(work));
526 }
527 
set_work_cwq(struct work_struct * work,struct cpu_workqueue_struct * cwq,unsigned long extra_flags)528 static void set_work_cwq(struct work_struct *work,
529 			 struct cpu_workqueue_struct *cwq,
530 			 unsigned long extra_flags)
531 {
532 	set_work_data(work, (unsigned long)cwq,
533 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
534 }
535 
set_work_cpu(struct work_struct * work,unsigned int cpu)536 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
537 {
538 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
539 }
540 
clear_work_data(struct work_struct * work)541 static void clear_work_data(struct work_struct *work)
542 {
543 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
544 }
545 
get_work_cwq(struct work_struct * work)546 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
547 {
548 	unsigned long data = atomic_long_read(&work->data);
549 
550 	if (data & WORK_STRUCT_CWQ)
551 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
552 	else
553 		return NULL;
554 }
555 
get_work_gcwq(struct work_struct * work)556 static struct global_cwq *get_work_gcwq(struct work_struct *work)
557 {
558 	unsigned long data = atomic_long_read(&work->data);
559 	unsigned int cpu;
560 
561 	if (data & WORK_STRUCT_CWQ)
562 		return ((struct cpu_workqueue_struct *)
563 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
564 
565 	cpu = data >> WORK_STRUCT_FLAG_BITS;
566 	if (cpu == WORK_CPU_NONE)
567 		return NULL;
568 
569 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
570 	return get_gcwq(cpu);
571 }
572 
573 /*
574  * Policy functions.  These define the policies on how the global
575  * worker pool is managed.  Unless noted otherwise, these functions
576  * assume that they're being called with gcwq->lock held.
577  */
578 
__need_more_worker(struct global_cwq * gcwq)579 static bool __need_more_worker(struct global_cwq *gcwq)
580 {
581 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
582 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
583 }
584 
585 /*
586  * Need to wake up a worker?  Called from anything but currently
587  * running workers.
588  */
need_more_worker(struct global_cwq * gcwq)589 static bool need_more_worker(struct global_cwq *gcwq)
590 {
591 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
592 }
593 
594 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct global_cwq * gcwq)595 static bool may_start_working(struct global_cwq *gcwq)
596 {
597 	return gcwq->nr_idle;
598 }
599 
600 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct global_cwq * gcwq)601 static bool keep_working(struct global_cwq *gcwq)
602 {
603 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
604 
605 	return !list_empty(&gcwq->worklist) &&
606 		(atomic_read(nr_running) <= 1 ||
607 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
608 }
609 
610 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct global_cwq * gcwq)611 static bool need_to_create_worker(struct global_cwq *gcwq)
612 {
613 	return need_more_worker(gcwq) && !may_start_working(gcwq);
614 }
615 
616 /* Do I need to be the manager? */
need_to_manage_workers(struct global_cwq * gcwq)617 static bool need_to_manage_workers(struct global_cwq *gcwq)
618 {
619 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
620 }
621 
622 /* Do we have too many workers and should some go away? */
too_many_workers(struct global_cwq * gcwq)623 static bool too_many_workers(struct global_cwq *gcwq)
624 {
625 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
626 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
627 	int nr_busy = gcwq->nr_workers - nr_idle;
628 
629 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
630 }
631 
632 /*
633  * Wake up functions.
634  */
635 
636 /* Return the first worker.  Safe with preemption disabled */
first_worker(struct global_cwq * gcwq)637 static struct worker *first_worker(struct global_cwq *gcwq)
638 {
639 	if (unlikely(list_empty(&gcwq->idle_list)))
640 		return NULL;
641 
642 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
643 }
644 
645 /**
646  * wake_up_worker - wake up an idle worker
647  * @gcwq: gcwq to wake worker for
648  *
649  * Wake up the first idle worker of @gcwq.
650  *
651  * CONTEXT:
652  * spin_lock_irq(gcwq->lock).
653  */
wake_up_worker(struct global_cwq * gcwq)654 static void wake_up_worker(struct global_cwq *gcwq)
655 {
656 	struct worker *worker = first_worker(gcwq);
657 
658 	if (likely(worker))
659 		wake_up_process(worker->task);
660 }
661 
662 /**
663  * wq_worker_waking_up - a worker is waking up
664  * @task: task waking up
665  * @cpu: CPU @task is waking up to
666  *
667  * This function is called during try_to_wake_up() when a worker is
668  * being awoken.
669  *
670  * CONTEXT:
671  * spin_lock_irq(rq->lock)
672  */
wq_worker_waking_up(struct task_struct * task,unsigned int cpu)673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
674 {
675 	struct worker *worker = kthread_data(task);
676 
677 	if (!(worker->flags & WORKER_NOT_RUNNING))
678 		atomic_inc(get_gcwq_nr_running(cpu));
679 }
680 
681 /**
682  * wq_worker_sleeping - a worker is going to sleep
683  * @task: task going to sleep
684  * @cpu: CPU in question, must be the current CPU number
685  *
686  * This function is called during schedule() when a busy worker is
687  * going to sleep.  Worker on the same cpu can be woken up by
688  * returning pointer to its task.
689  *
690  * CONTEXT:
691  * spin_lock_irq(rq->lock)
692  *
693  * RETURNS:
694  * Worker task on @cpu to wake up, %NULL if none.
695  */
wq_worker_sleeping(struct task_struct * task,unsigned int cpu)696 struct task_struct *wq_worker_sleeping(struct task_struct *task,
697 				       unsigned int cpu)
698 {
699 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
700 	struct global_cwq *gcwq = get_gcwq(cpu);
701 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
702 
703 	if (worker->flags & WORKER_NOT_RUNNING)
704 		return NULL;
705 
706 	/* this can only happen on the local cpu */
707 	BUG_ON(cpu != raw_smp_processor_id());
708 
709 	/*
710 	 * The counterpart of the following dec_and_test, implied mb,
711 	 * worklist not empty test sequence is in insert_work().
712 	 * Please read comment there.
713 	 *
714 	 * NOT_RUNNING is clear.  This means that trustee is not in
715 	 * charge and we're running on the local cpu w/ rq lock held
716 	 * and preemption disabled, which in turn means that none else
717 	 * could be manipulating idle_list, so dereferencing idle_list
718 	 * without gcwq lock is safe.
719 	 */
720 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
721 		to_wakeup = first_worker(gcwq);
722 	return to_wakeup ? to_wakeup->task : NULL;
723 }
724 
725 /**
726  * worker_set_flags - set worker flags and adjust nr_running accordingly
727  * @worker: self
728  * @flags: flags to set
729  * @wakeup: wakeup an idle worker if necessary
730  *
731  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
732  * nr_running becomes zero and @wakeup is %true, an idle worker is
733  * woken up.
734  *
735  * CONTEXT:
736  * spin_lock_irq(gcwq->lock)
737  */
worker_set_flags(struct worker * worker,unsigned int flags,bool wakeup)738 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
739 				    bool wakeup)
740 {
741 	struct global_cwq *gcwq = worker->gcwq;
742 
743 	WARN_ON_ONCE(worker->task != current);
744 
745 	/*
746 	 * If transitioning into NOT_RUNNING, adjust nr_running and
747 	 * wake up an idle worker as necessary if requested by
748 	 * @wakeup.
749 	 */
750 	if ((flags & WORKER_NOT_RUNNING) &&
751 	    !(worker->flags & WORKER_NOT_RUNNING)) {
752 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
753 
754 		if (wakeup) {
755 			if (atomic_dec_and_test(nr_running) &&
756 			    !list_empty(&gcwq->worklist))
757 				wake_up_worker(gcwq);
758 		} else
759 			atomic_dec(nr_running);
760 	}
761 
762 	worker->flags |= flags;
763 }
764 
765 /**
766  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
767  * @worker: self
768  * @flags: flags to clear
769  *
770  * Clear @flags in @worker->flags and adjust nr_running accordingly.
771  *
772  * CONTEXT:
773  * spin_lock_irq(gcwq->lock)
774  */
worker_clr_flags(struct worker * worker,unsigned int flags)775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
776 {
777 	struct global_cwq *gcwq = worker->gcwq;
778 	unsigned int oflags = worker->flags;
779 
780 	WARN_ON_ONCE(worker->task != current);
781 
782 	worker->flags &= ~flags;
783 
784 	/*
785 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
786 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
787 	 * of multiple flags, not a single flag.
788 	 */
789 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
790 		if (!(worker->flags & WORKER_NOT_RUNNING))
791 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
792 }
793 
794 /**
795  * busy_worker_head - return the busy hash head for a work
796  * @gcwq: gcwq of interest
797  * @work: work to be hashed
798  *
799  * Return hash head of @gcwq for @work.
800  *
801  * CONTEXT:
802  * spin_lock_irq(gcwq->lock).
803  *
804  * RETURNS:
805  * Pointer to the hash head.
806  */
busy_worker_head(struct global_cwq * gcwq,struct work_struct * work)807 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
808 					   struct work_struct *work)
809 {
810 	const int base_shift = ilog2(sizeof(struct work_struct));
811 	unsigned long v = (unsigned long)work;
812 
813 	/* simple shift and fold hash, do we need something better? */
814 	v >>= base_shift;
815 	v += v >> BUSY_WORKER_HASH_ORDER;
816 	v &= BUSY_WORKER_HASH_MASK;
817 
818 	return &gcwq->busy_hash[v];
819 }
820 
821 /**
822  * __find_worker_executing_work - find worker which is executing a work
823  * @gcwq: gcwq of interest
824  * @bwh: hash head as returned by busy_worker_head()
825  * @work: work to find worker for
826  *
827  * Find a worker which is executing @work on @gcwq.  @bwh should be
828  * the hash head obtained by calling busy_worker_head() with the same
829  * work.
830  *
831  * CONTEXT:
832  * spin_lock_irq(gcwq->lock).
833  *
834  * RETURNS:
835  * Pointer to worker which is executing @work if found, NULL
836  * otherwise.
837  */
__find_worker_executing_work(struct global_cwq * gcwq,struct hlist_head * bwh,struct work_struct * work)838 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
839 						   struct hlist_head *bwh,
840 						   struct work_struct *work)
841 {
842 	struct worker *worker;
843 	struct hlist_node *tmp;
844 
845 	hlist_for_each_entry(worker, tmp, bwh, hentry)
846 		if (worker->current_work == work)
847 			return worker;
848 	return NULL;
849 }
850 
851 /**
852  * find_worker_executing_work - find worker which is executing a work
853  * @gcwq: gcwq of interest
854  * @work: work to find worker for
855  *
856  * Find a worker which is executing @work on @gcwq.  This function is
857  * identical to __find_worker_executing_work() except that this
858  * function calculates @bwh itself.
859  *
860  * CONTEXT:
861  * spin_lock_irq(gcwq->lock).
862  *
863  * RETURNS:
864  * Pointer to worker which is executing @work if found, NULL
865  * otherwise.
866  */
find_worker_executing_work(struct global_cwq * gcwq,struct work_struct * work)867 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
868 						 struct work_struct *work)
869 {
870 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
871 					    work);
872 }
873 
874 /**
875  * gcwq_determine_ins_pos - find insertion position
876  * @gcwq: gcwq of interest
877  * @cwq: cwq a work is being queued for
878  *
879  * A work for @cwq is about to be queued on @gcwq, determine insertion
880  * position for the work.  If @cwq is for HIGHPRI wq, the work is
881  * queued at the head of the queue but in FIFO order with respect to
882  * other HIGHPRI works; otherwise, at the end of the queue.  This
883  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
884  * there are HIGHPRI works pending.
885  *
886  * CONTEXT:
887  * spin_lock_irq(gcwq->lock).
888  *
889  * RETURNS:
890  * Pointer to inserstion position.
891  */
gcwq_determine_ins_pos(struct global_cwq * gcwq,struct cpu_workqueue_struct * cwq)892 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
893 					       struct cpu_workqueue_struct *cwq)
894 {
895 	struct work_struct *twork;
896 
897 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
898 		return &gcwq->worklist;
899 
900 	list_for_each_entry(twork, &gcwq->worklist, entry) {
901 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
902 
903 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
904 			break;
905 	}
906 
907 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
908 	return &twork->entry;
909 }
910 
911 /**
912  * insert_work - insert a work into gcwq
913  * @cwq: cwq @work belongs to
914  * @work: work to insert
915  * @head: insertion point
916  * @extra_flags: extra WORK_STRUCT_* flags to set
917  *
918  * Insert @work which belongs to @cwq into @gcwq after @head.
919  * @extra_flags is or'd to work_struct flags.
920  *
921  * CONTEXT:
922  * spin_lock_irq(gcwq->lock).
923  */
insert_work(struct cpu_workqueue_struct * cwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)924 static void insert_work(struct cpu_workqueue_struct *cwq,
925 			struct work_struct *work, struct list_head *head,
926 			unsigned int extra_flags)
927 {
928 	struct global_cwq *gcwq = cwq->gcwq;
929 
930 	/* we own @work, set data and link */
931 	set_work_cwq(work, cwq, extra_flags);
932 
933 	/*
934 	 * Ensure that we get the right work->data if we see the
935 	 * result of list_add() below, see try_to_grab_pending().
936 	 */
937 	smp_wmb();
938 
939 	list_add_tail(&work->entry, head);
940 
941 	/*
942 	 * Ensure either worker_sched_deactivated() sees the above
943 	 * list_add_tail() or we see zero nr_running to avoid workers
944 	 * lying around lazily while there are works to be processed.
945 	 */
946 	smp_mb();
947 
948 	if (__need_more_worker(gcwq))
949 		wake_up_worker(gcwq);
950 }
951 
952 /*
953  * Test whether @work is being queued from another work executing on the
954  * same workqueue.  This is rather expensive and should only be used from
955  * cold paths.
956  */
is_chained_work(struct workqueue_struct * wq)957 static bool is_chained_work(struct workqueue_struct *wq)
958 {
959 	unsigned long flags;
960 	unsigned int cpu;
961 
962 	for_each_gcwq_cpu(cpu) {
963 		struct global_cwq *gcwq = get_gcwq(cpu);
964 		struct worker *worker;
965 		struct hlist_node *pos;
966 		int i;
967 
968 		spin_lock_irqsave(&gcwq->lock, flags);
969 		for_each_busy_worker(worker, i, pos, gcwq) {
970 			if (worker->task != current)
971 				continue;
972 			spin_unlock_irqrestore(&gcwq->lock, flags);
973 			/*
974 			 * I'm @worker, no locking necessary.  See if @work
975 			 * is headed to the same workqueue.
976 			 */
977 			return worker->current_cwq->wq == wq;
978 		}
979 		spin_unlock_irqrestore(&gcwq->lock, flags);
980 	}
981 	return false;
982 }
983 
__queue_work(unsigned int cpu,struct workqueue_struct * wq,struct work_struct * work)984 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
985 			 struct work_struct *work)
986 {
987 	struct global_cwq *gcwq;
988 	struct cpu_workqueue_struct *cwq;
989 	struct list_head *worklist;
990 	unsigned int work_flags;
991 	unsigned long flags;
992 
993 	debug_work_activate(work);
994 
995 	/* if dying, only works from the same workqueue are allowed */
996 	if (unlikely(wq->flags & WQ_DRAINING) &&
997 	    WARN_ON_ONCE(!is_chained_work(wq)))
998 		return;
999 
1000 	/* determine gcwq to use */
1001 	if (!(wq->flags & WQ_UNBOUND)) {
1002 		struct global_cwq *last_gcwq;
1003 
1004 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1005 			cpu = raw_smp_processor_id();
1006 
1007 		/*
1008 		 * It's multi cpu.  If @wq is non-reentrant and @work
1009 		 * was previously on a different cpu, it might still
1010 		 * be running there, in which case the work needs to
1011 		 * be queued on that cpu to guarantee non-reentrance.
1012 		 */
1013 		gcwq = get_gcwq(cpu);
1014 		if (wq->flags & WQ_NON_REENTRANT &&
1015 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1016 			struct worker *worker;
1017 
1018 			spin_lock_irqsave(&last_gcwq->lock, flags);
1019 
1020 			worker = find_worker_executing_work(last_gcwq, work);
1021 
1022 			if (worker && worker->current_cwq->wq == wq)
1023 				gcwq = last_gcwq;
1024 			else {
1025 				/* meh... not running there, queue here */
1026 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1027 				spin_lock_irqsave(&gcwq->lock, flags);
1028 			}
1029 		} else
1030 			spin_lock_irqsave(&gcwq->lock, flags);
1031 	} else {
1032 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1033 		spin_lock_irqsave(&gcwq->lock, flags);
1034 	}
1035 
1036 	/* gcwq determined, get cwq and queue */
1037 	cwq = get_cwq(gcwq->cpu, wq);
1038 	trace_workqueue_queue_work(cpu, cwq, work);
1039 
1040 	BUG_ON(!list_empty(&work->entry));
1041 
1042 	cwq->nr_in_flight[cwq->work_color]++;
1043 	work_flags = work_color_to_flags(cwq->work_color);
1044 
1045 	if (likely(cwq->nr_active < cwq->max_active)) {
1046 		trace_workqueue_activate_work(work);
1047 		cwq->nr_active++;
1048 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1049 	} else {
1050 		work_flags |= WORK_STRUCT_DELAYED;
1051 		worklist = &cwq->delayed_works;
1052 	}
1053 
1054 	insert_work(cwq, work, worklist, work_flags);
1055 
1056 	spin_unlock_irqrestore(&gcwq->lock, flags);
1057 }
1058 
1059 /**
1060  * queue_work - queue work on a workqueue
1061  * @wq: workqueue to use
1062  * @work: work to queue
1063  *
1064  * Returns 0 if @work was already on a queue, non-zero otherwise.
1065  *
1066  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1067  * it can be processed by another CPU.
1068  */
queue_work(struct workqueue_struct * wq,struct work_struct * work)1069 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1070 {
1071 	int ret;
1072 
1073 	ret = queue_work_on(get_cpu(), wq, work);
1074 	put_cpu();
1075 
1076 	return ret;
1077 }
1078 EXPORT_SYMBOL_GPL(queue_work);
1079 
1080 /**
1081  * queue_work_on - queue work on specific cpu
1082  * @cpu: CPU number to execute work on
1083  * @wq: workqueue to use
1084  * @work: work to queue
1085  *
1086  * Returns 0 if @work was already on a queue, non-zero otherwise.
1087  *
1088  * We queue the work to a specific CPU, the caller must ensure it
1089  * can't go away.
1090  */
1091 int
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1092 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1093 {
1094 	int ret = 0;
1095 
1096 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1097 		__queue_work(cpu, wq, work);
1098 		ret = 1;
1099 	}
1100 	return ret;
1101 }
1102 EXPORT_SYMBOL_GPL(queue_work_on);
1103 
delayed_work_timer_fn(unsigned long __data)1104 static void delayed_work_timer_fn(unsigned long __data)
1105 {
1106 	struct delayed_work *dwork = (struct delayed_work *)__data;
1107 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1108 
1109 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1110 }
1111 
1112 /**
1113  * queue_delayed_work - queue work on a workqueue after delay
1114  * @wq: workqueue to use
1115  * @dwork: delayable work to queue
1116  * @delay: number of jiffies to wait before queueing
1117  *
1118  * Returns 0 if @work was already on a queue, non-zero otherwise.
1119  */
queue_delayed_work(struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1120 int queue_delayed_work(struct workqueue_struct *wq,
1121 			struct delayed_work *dwork, unsigned long delay)
1122 {
1123 	if (delay == 0)
1124 		return queue_work(wq, &dwork->work);
1125 
1126 	return queue_delayed_work_on(-1, wq, dwork, delay);
1127 }
1128 EXPORT_SYMBOL_GPL(queue_delayed_work);
1129 
1130 /**
1131  * queue_delayed_work_on - queue work on specific CPU after delay
1132  * @cpu: CPU number to execute work on
1133  * @wq: workqueue to use
1134  * @dwork: work to queue
1135  * @delay: number of jiffies to wait before queueing
1136  *
1137  * Returns 0 if @work was already on a queue, non-zero otherwise.
1138  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1139 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1140 			struct delayed_work *dwork, unsigned long delay)
1141 {
1142 	int ret = 0;
1143 	struct timer_list *timer = &dwork->timer;
1144 	struct work_struct *work = &dwork->work;
1145 
1146 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1147 		unsigned int lcpu;
1148 
1149 		BUG_ON(timer_pending(timer));
1150 		BUG_ON(!list_empty(&work->entry));
1151 
1152 		timer_stats_timer_set_start_info(&dwork->timer);
1153 
1154 		/*
1155 		 * This stores cwq for the moment, for the timer_fn.
1156 		 * Note that the work's gcwq is preserved to allow
1157 		 * reentrance detection for delayed works.
1158 		 */
1159 		if (!(wq->flags & WQ_UNBOUND)) {
1160 			struct global_cwq *gcwq = get_work_gcwq(work);
1161 
1162 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1163 				lcpu = gcwq->cpu;
1164 			else
1165 				lcpu = raw_smp_processor_id();
1166 		} else
1167 			lcpu = WORK_CPU_UNBOUND;
1168 
1169 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1170 
1171 		timer->expires = jiffies + delay;
1172 		timer->data = (unsigned long)dwork;
1173 		timer->function = delayed_work_timer_fn;
1174 
1175 		if (unlikely(cpu >= 0))
1176 			add_timer_on(timer, cpu);
1177 		else
1178 			add_timer(timer);
1179 		ret = 1;
1180 	}
1181 	return ret;
1182 }
1183 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1184 
1185 /**
1186  * worker_enter_idle - enter idle state
1187  * @worker: worker which is entering idle state
1188  *
1189  * @worker is entering idle state.  Update stats and idle timer if
1190  * necessary.
1191  *
1192  * LOCKING:
1193  * spin_lock_irq(gcwq->lock).
1194  */
worker_enter_idle(struct worker * worker)1195 static void worker_enter_idle(struct worker *worker)
1196 {
1197 	struct global_cwq *gcwq = worker->gcwq;
1198 
1199 	BUG_ON(worker->flags & WORKER_IDLE);
1200 	BUG_ON(!list_empty(&worker->entry) &&
1201 	       (worker->hentry.next || worker->hentry.pprev));
1202 
1203 	/* can't use worker_set_flags(), also called from start_worker() */
1204 	worker->flags |= WORKER_IDLE;
1205 	gcwq->nr_idle++;
1206 	worker->last_active = jiffies;
1207 
1208 	/* idle_list is LIFO */
1209 	list_add(&worker->entry, &gcwq->idle_list);
1210 
1211 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1212 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1213 			mod_timer(&gcwq->idle_timer,
1214 				  jiffies + IDLE_WORKER_TIMEOUT);
1215 	} else
1216 		wake_up_all(&gcwq->trustee_wait);
1217 
1218 	/* sanity check nr_running */
1219 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1220 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1221 }
1222 
1223 /**
1224  * worker_leave_idle - leave idle state
1225  * @worker: worker which is leaving idle state
1226  *
1227  * @worker is leaving idle state.  Update stats.
1228  *
1229  * LOCKING:
1230  * spin_lock_irq(gcwq->lock).
1231  */
worker_leave_idle(struct worker * worker)1232 static void worker_leave_idle(struct worker *worker)
1233 {
1234 	struct global_cwq *gcwq = worker->gcwq;
1235 
1236 	BUG_ON(!(worker->flags & WORKER_IDLE));
1237 	worker_clr_flags(worker, WORKER_IDLE);
1238 	gcwq->nr_idle--;
1239 	list_del_init(&worker->entry);
1240 }
1241 
1242 /**
1243  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1244  * @worker: self
1245  *
1246  * Works which are scheduled while the cpu is online must at least be
1247  * scheduled to a worker which is bound to the cpu so that if they are
1248  * flushed from cpu callbacks while cpu is going down, they are
1249  * guaranteed to execute on the cpu.
1250  *
1251  * This function is to be used by rogue workers and rescuers to bind
1252  * themselves to the target cpu and may race with cpu going down or
1253  * coming online.  kthread_bind() can't be used because it may put the
1254  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255  * verbatim as it's best effort and blocking and gcwq may be
1256  * [dis]associated in the meantime.
1257  *
1258  * This function tries set_cpus_allowed() and locks gcwq and verifies
1259  * the binding against GCWQ_DISASSOCIATED which is set during
1260  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1261  * idle state or fetches works without dropping lock, it can guarantee
1262  * the scheduling requirement described in the first paragraph.
1263  *
1264  * CONTEXT:
1265  * Might sleep.  Called without any lock but returns with gcwq->lock
1266  * held.
1267  *
1268  * RETURNS:
1269  * %true if the associated gcwq is online (@worker is successfully
1270  * bound), %false if offline.
1271  */
worker_maybe_bind_and_lock(struct worker * worker)1272 static bool worker_maybe_bind_and_lock(struct worker *worker)
1273 __acquires(&gcwq->lock)
1274 {
1275 	struct global_cwq *gcwq = worker->gcwq;
1276 	struct task_struct *task = worker->task;
1277 
1278 	while (true) {
1279 		/*
1280 		 * The following call may fail, succeed or succeed
1281 		 * without actually migrating the task to the cpu if
1282 		 * it races with cpu hotunplug operation.  Verify
1283 		 * against GCWQ_DISASSOCIATED.
1284 		 */
1285 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1287 
1288 		spin_lock_irq(&gcwq->lock);
1289 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1290 			return false;
1291 		if (task_cpu(task) == gcwq->cpu &&
1292 		    cpumask_equal(&current->cpus_allowed,
1293 				  get_cpu_mask(gcwq->cpu)))
1294 			return true;
1295 		spin_unlock_irq(&gcwq->lock);
1296 
1297 		/*
1298 		 * We've raced with CPU hot[un]plug.  Give it a breather
1299 		 * and retry migration.  cond_resched() is required here;
1300 		 * otherwise, we might deadlock against cpu_stop trying to
1301 		 * bring down the CPU on non-preemptive kernel.
1302 		 */
1303 		cpu_relax();
1304 		cond_resched();
1305 	}
1306 }
1307 
1308 /*
1309  * Function for worker->rebind_work used to rebind rogue busy workers
1310  * to the associated cpu which is coming back online.  This is
1311  * scheduled by cpu up but can race with other cpu hotplug operations
1312  * and may be executed twice without intervening cpu down.
1313  */
worker_rebind_fn(struct work_struct * work)1314 static void worker_rebind_fn(struct work_struct *work)
1315 {
1316 	struct worker *worker = container_of(work, struct worker, rebind_work);
1317 	struct global_cwq *gcwq = worker->gcwq;
1318 
1319 	if (worker_maybe_bind_and_lock(worker))
1320 		worker_clr_flags(worker, WORKER_REBIND);
1321 
1322 	spin_unlock_irq(&gcwq->lock);
1323 }
1324 
alloc_worker(void)1325 static struct worker *alloc_worker(void)
1326 {
1327 	struct worker *worker;
1328 
1329 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1330 	if (worker) {
1331 		INIT_LIST_HEAD(&worker->entry);
1332 		INIT_LIST_HEAD(&worker->scheduled);
1333 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1334 		/* on creation a worker is in !idle && prep state */
1335 		worker->flags = WORKER_PREP;
1336 	}
1337 	return worker;
1338 }
1339 
1340 /**
1341  * create_worker - create a new workqueue worker
1342  * @gcwq: gcwq the new worker will belong to
1343  * @bind: whether to set affinity to @cpu or not
1344  *
1345  * Create a new worker which is bound to @gcwq.  The returned worker
1346  * can be started by calling start_worker() or destroyed using
1347  * destroy_worker().
1348  *
1349  * CONTEXT:
1350  * Might sleep.  Does GFP_KERNEL allocations.
1351  *
1352  * RETURNS:
1353  * Pointer to the newly created worker.
1354  */
create_worker(struct global_cwq * gcwq,bool bind)1355 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1356 {
1357 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1358 	struct worker *worker = NULL;
1359 	int id = -1;
1360 
1361 	spin_lock_irq(&gcwq->lock);
1362 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1363 		spin_unlock_irq(&gcwq->lock);
1364 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1365 			goto fail;
1366 		spin_lock_irq(&gcwq->lock);
1367 	}
1368 	spin_unlock_irq(&gcwq->lock);
1369 
1370 	worker = alloc_worker();
1371 	if (!worker)
1372 		goto fail;
1373 
1374 	worker->gcwq = gcwq;
1375 	worker->id = id;
1376 
1377 	if (!on_unbound_cpu)
1378 		worker->task = kthread_create_on_node(worker_thread,
1379 						      worker,
1380 						      cpu_to_node(gcwq->cpu),
1381 						      "kworker/%u:%d", gcwq->cpu, id);
1382 	else
1383 		worker->task = kthread_create(worker_thread, worker,
1384 					      "kworker/u:%d", id);
1385 	if (IS_ERR(worker->task))
1386 		goto fail;
1387 
1388 	/*
1389 	 * A rogue worker will become a regular one if CPU comes
1390 	 * online later on.  Make sure every worker has
1391 	 * PF_THREAD_BOUND set.
1392 	 */
1393 	if (bind && !on_unbound_cpu)
1394 		kthread_bind(worker->task, gcwq->cpu);
1395 	else {
1396 		worker->task->flags |= PF_THREAD_BOUND;
1397 		if (on_unbound_cpu)
1398 			worker->flags |= WORKER_UNBOUND;
1399 	}
1400 
1401 	return worker;
1402 fail:
1403 	if (id >= 0) {
1404 		spin_lock_irq(&gcwq->lock);
1405 		ida_remove(&gcwq->worker_ida, id);
1406 		spin_unlock_irq(&gcwq->lock);
1407 	}
1408 	kfree(worker);
1409 	return NULL;
1410 }
1411 
1412 /**
1413  * start_worker - start a newly created worker
1414  * @worker: worker to start
1415  *
1416  * Make the gcwq aware of @worker and start it.
1417  *
1418  * CONTEXT:
1419  * spin_lock_irq(gcwq->lock).
1420  */
start_worker(struct worker * worker)1421 static void start_worker(struct worker *worker)
1422 {
1423 	worker->flags |= WORKER_STARTED;
1424 	worker->gcwq->nr_workers++;
1425 	worker_enter_idle(worker);
1426 	wake_up_process(worker->task);
1427 }
1428 
1429 /**
1430  * destroy_worker - destroy a workqueue worker
1431  * @worker: worker to be destroyed
1432  *
1433  * Destroy @worker and adjust @gcwq stats accordingly.
1434  *
1435  * CONTEXT:
1436  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1437  */
destroy_worker(struct worker * worker)1438 static void destroy_worker(struct worker *worker)
1439 {
1440 	struct global_cwq *gcwq = worker->gcwq;
1441 	int id = worker->id;
1442 
1443 	/* sanity check frenzy */
1444 	BUG_ON(worker->current_work);
1445 	BUG_ON(!list_empty(&worker->scheduled));
1446 
1447 	if (worker->flags & WORKER_STARTED)
1448 		gcwq->nr_workers--;
1449 	if (worker->flags & WORKER_IDLE)
1450 		gcwq->nr_idle--;
1451 
1452 	list_del_init(&worker->entry);
1453 	worker->flags |= WORKER_DIE;
1454 
1455 	spin_unlock_irq(&gcwq->lock);
1456 
1457 	kthread_stop(worker->task);
1458 	kfree(worker);
1459 
1460 	spin_lock_irq(&gcwq->lock);
1461 	ida_remove(&gcwq->worker_ida, id);
1462 }
1463 
idle_worker_timeout(unsigned long __gcwq)1464 static void idle_worker_timeout(unsigned long __gcwq)
1465 {
1466 	struct global_cwq *gcwq = (void *)__gcwq;
1467 
1468 	spin_lock_irq(&gcwq->lock);
1469 
1470 	if (too_many_workers(gcwq)) {
1471 		struct worker *worker;
1472 		unsigned long expires;
1473 
1474 		/* idle_list is kept in LIFO order, check the last one */
1475 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1476 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1477 
1478 		if (time_before(jiffies, expires))
1479 			mod_timer(&gcwq->idle_timer, expires);
1480 		else {
1481 			/* it's been idle for too long, wake up manager */
1482 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1483 			wake_up_worker(gcwq);
1484 		}
1485 	}
1486 
1487 	spin_unlock_irq(&gcwq->lock);
1488 }
1489 
send_mayday(struct work_struct * work)1490 static bool send_mayday(struct work_struct *work)
1491 {
1492 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1493 	struct workqueue_struct *wq = cwq->wq;
1494 	unsigned int cpu;
1495 
1496 	if (!(wq->flags & WQ_RESCUER))
1497 		return false;
1498 
1499 	/* mayday mayday mayday */
1500 	cpu = cwq->gcwq->cpu;
1501 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1502 	if (cpu == WORK_CPU_UNBOUND)
1503 		cpu = 0;
1504 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1505 		wake_up_process(wq->rescuer->task);
1506 	return true;
1507 }
1508 
gcwq_mayday_timeout(unsigned long __gcwq)1509 static void gcwq_mayday_timeout(unsigned long __gcwq)
1510 {
1511 	struct global_cwq *gcwq = (void *)__gcwq;
1512 	struct work_struct *work;
1513 
1514 	spin_lock_irq(&gcwq->lock);
1515 
1516 	if (need_to_create_worker(gcwq)) {
1517 		/*
1518 		 * We've been trying to create a new worker but
1519 		 * haven't been successful.  We might be hitting an
1520 		 * allocation deadlock.  Send distress signals to
1521 		 * rescuers.
1522 		 */
1523 		list_for_each_entry(work, &gcwq->worklist, entry)
1524 			send_mayday(work);
1525 	}
1526 
1527 	spin_unlock_irq(&gcwq->lock);
1528 
1529 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1530 }
1531 
1532 /**
1533  * maybe_create_worker - create a new worker if necessary
1534  * @gcwq: gcwq to create a new worker for
1535  *
1536  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1537  * have at least one idle worker on return from this function.  If
1538  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1539  * sent to all rescuers with works scheduled on @gcwq to resolve
1540  * possible allocation deadlock.
1541  *
1542  * On return, need_to_create_worker() is guaranteed to be false and
1543  * may_start_working() true.
1544  *
1545  * LOCKING:
1546  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1547  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1548  * manager.
1549  *
1550  * RETURNS:
1551  * false if no action was taken and gcwq->lock stayed locked, true
1552  * otherwise.
1553  */
maybe_create_worker(struct global_cwq * gcwq)1554 static bool maybe_create_worker(struct global_cwq *gcwq)
1555 __releases(&gcwq->lock)
1556 __acquires(&gcwq->lock)
1557 {
1558 	if (!need_to_create_worker(gcwq))
1559 		return false;
1560 restart:
1561 	spin_unlock_irq(&gcwq->lock);
1562 
1563 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1564 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1565 
1566 	while (true) {
1567 		struct worker *worker;
1568 
1569 		worker = create_worker(gcwq, true);
1570 		if (worker) {
1571 			del_timer_sync(&gcwq->mayday_timer);
1572 			spin_lock_irq(&gcwq->lock);
1573 			start_worker(worker);
1574 			BUG_ON(need_to_create_worker(gcwq));
1575 			return true;
1576 		}
1577 
1578 		if (!need_to_create_worker(gcwq))
1579 			break;
1580 
1581 		__set_current_state(TASK_INTERRUPTIBLE);
1582 		schedule_timeout(CREATE_COOLDOWN);
1583 
1584 		if (!need_to_create_worker(gcwq))
1585 			break;
1586 	}
1587 
1588 	del_timer_sync(&gcwq->mayday_timer);
1589 	spin_lock_irq(&gcwq->lock);
1590 	if (need_to_create_worker(gcwq))
1591 		goto restart;
1592 	return true;
1593 }
1594 
1595 /**
1596  * maybe_destroy_worker - destroy workers which have been idle for a while
1597  * @gcwq: gcwq to destroy workers for
1598  *
1599  * Destroy @gcwq workers which have been idle for longer than
1600  * IDLE_WORKER_TIMEOUT.
1601  *
1602  * LOCKING:
1603  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1604  * multiple times.  Called only from manager.
1605  *
1606  * RETURNS:
1607  * false if no action was taken and gcwq->lock stayed locked, true
1608  * otherwise.
1609  */
maybe_destroy_workers(struct global_cwq * gcwq)1610 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1611 {
1612 	bool ret = false;
1613 
1614 	while (too_many_workers(gcwq)) {
1615 		struct worker *worker;
1616 		unsigned long expires;
1617 
1618 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1619 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1620 
1621 		if (time_before(jiffies, expires)) {
1622 			mod_timer(&gcwq->idle_timer, expires);
1623 			break;
1624 		}
1625 
1626 		destroy_worker(worker);
1627 		ret = true;
1628 	}
1629 
1630 	return ret;
1631 }
1632 
1633 /**
1634  * manage_workers - manage worker pool
1635  * @worker: self
1636  *
1637  * Assume the manager role and manage gcwq worker pool @worker belongs
1638  * to.  At any given time, there can be only zero or one manager per
1639  * gcwq.  The exclusion is handled automatically by this function.
1640  *
1641  * The caller can safely start processing works on false return.  On
1642  * true return, it's guaranteed that need_to_create_worker() is false
1643  * and may_start_working() is true.
1644  *
1645  * CONTEXT:
1646  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1647  * multiple times.  Does GFP_KERNEL allocations.
1648  *
1649  * RETURNS:
1650  * false if no action was taken and gcwq->lock stayed locked, true if
1651  * some action was taken.
1652  */
manage_workers(struct worker * worker)1653 static bool manage_workers(struct worker *worker)
1654 {
1655 	struct global_cwq *gcwq = worker->gcwq;
1656 	bool ret = false;
1657 
1658 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1659 		return ret;
1660 
1661 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1662 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1663 
1664 	/*
1665 	 * Destroy and then create so that may_start_working() is true
1666 	 * on return.
1667 	 */
1668 	ret |= maybe_destroy_workers(gcwq);
1669 	ret |= maybe_create_worker(gcwq);
1670 
1671 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1672 
1673 	/*
1674 	 * The trustee might be waiting to take over the manager
1675 	 * position, tell it we're done.
1676 	 */
1677 	if (unlikely(gcwq->trustee))
1678 		wake_up_all(&gcwq->trustee_wait);
1679 
1680 	return ret;
1681 }
1682 
1683 /**
1684  * move_linked_works - move linked works to a list
1685  * @work: start of series of works to be scheduled
1686  * @head: target list to append @work to
1687  * @nextp: out paramter for nested worklist walking
1688  *
1689  * Schedule linked works starting from @work to @head.  Work series to
1690  * be scheduled starts at @work and includes any consecutive work with
1691  * WORK_STRUCT_LINKED set in its predecessor.
1692  *
1693  * If @nextp is not NULL, it's updated to point to the next work of
1694  * the last scheduled work.  This allows move_linked_works() to be
1695  * nested inside outer list_for_each_entry_safe().
1696  *
1697  * CONTEXT:
1698  * spin_lock_irq(gcwq->lock).
1699  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1700 static void move_linked_works(struct work_struct *work, struct list_head *head,
1701 			      struct work_struct **nextp)
1702 {
1703 	struct work_struct *n;
1704 
1705 	/*
1706 	 * Linked worklist will always end before the end of the list,
1707 	 * use NULL for list head.
1708 	 */
1709 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1710 		list_move_tail(&work->entry, head);
1711 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1712 			break;
1713 	}
1714 
1715 	/*
1716 	 * If we're already inside safe list traversal and have moved
1717 	 * multiple works to the scheduled queue, the next position
1718 	 * needs to be updated.
1719 	 */
1720 	if (nextp)
1721 		*nextp = n;
1722 }
1723 
cwq_activate_first_delayed(struct cpu_workqueue_struct * cwq)1724 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1725 {
1726 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1727 						    struct work_struct, entry);
1728 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1729 
1730 	trace_workqueue_activate_work(work);
1731 	move_linked_works(work, pos, NULL);
1732 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1733 	cwq->nr_active++;
1734 }
1735 
1736 /**
1737  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1738  * @cwq: cwq of interest
1739  * @color: color of work which left the queue
1740  * @delayed: for a delayed work
1741  *
1742  * A work either has completed or is removed from pending queue,
1743  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1744  *
1745  * CONTEXT:
1746  * spin_lock_irq(gcwq->lock).
1747  */
cwq_dec_nr_in_flight(struct cpu_workqueue_struct * cwq,int color,bool delayed)1748 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1749 				 bool delayed)
1750 {
1751 	/* ignore uncolored works */
1752 	if (color == WORK_NO_COLOR)
1753 		return;
1754 
1755 	cwq->nr_in_flight[color]--;
1756 
1757 	if (!delayed) {
1758 		cwq->nr_active--;
1759 		if (!list_empty(&cwq->delayed_works)) {
1760 			/* one down, submit a delayed one */
1761 			if (cwq->nr_active < cwq->max_active)
1762 				cwq_activate_first_delayed(cwq);
1763 		}
1764 	}
1765 
1766 	/* is flush in progress and are we at the flushing tip? */
1767 	if (likely(cwq->flush_color != color))
1768 		return;
1769 
1770 	/* are there still in-flight works? */
1771 	if (cwq->nr_in_flight[color])
1772 		return;
1773 
1774 	/* this cwq is done, clear flush_color */
1775 	cwq->flush_color = -1;
1776 
1777 	/*
1778 	 * If this was the last cwq, wake up the first flusher.  It
1779 	 * will handle the rest.
1780 	 */
1781 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1782 		complete(&cwq->wq->first_flusher->done);
1783 }
1784 
1785 /**
1786  * process_one_work - process single work
1787  * @worker: self
1788  * @work: work to process
1789  *
1790  * Process @work.  This function contains all the logics necessary to
1791  * process a single work including synchronization against and
1792  * interaction with other workers on the same cpu, queueing and
1793  * flushing.  As long as context requirement is met, any worker can
1794  * call this function to process a work.
1795  *
1796  * CONTEXT:
1797  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1798  */
process_one_work(struct worker * worker,struct work_struct * work)1799 static void process_one_work(struct worker *worker, struct work_struct *work)
1800 __releases(&gcwq->lock)
1801 __acquires(&gcwq->lock)
1802 {
1803 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1804 	struct global_cwq *gcwq = cwq->gcwq;
1805 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1806 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1807 	work_func_t f = work->func;
1808 	int work_color;
1809 	struct worker *collision;
1810 #ifdef CONFIG_LOCKDEP
1811 	/*
1812 	 * It is permissible to free the struct work_struct from
1813 	 * inside the function that is called from it, this we need to
1814 	 * take into account for lockdep too.  To avoid bogus "held
1815 	 * lock freed" warnings as well as problems when looking into
1816 	 * work->lockdep_map, make a copy and use that here.
1817 	 */
1818 	struct lockdep_map lockdep_map = work->lockdep_map;
1819 #endif
1820 	/*
1821 	 * A single work shouldn't be executed concurrently by
1822 	 * multiple workers on a single cpu.  Check whether anyone is
1823 	 * already processing the work.  If so, defer the work to the
1824 	 * currently executing one.
1825 	 */
1826 	collision = __find_worker_executing_work(gcwq, bwh, work);
1827 	if (unlikely(collision)) {
1828 		move_linked_works(work, &collision->scheduled, NULL);
1829 		return;
1830 	}
1831 
1832 	/* claim and process */
1833 	debug_work_deactivate(work);
1834 	hlist_add_head(&worker->hentry, bwh);
1835 	worker->current_work = work;
1836 	worker->current_cwq = cwq;
1837 	work_color = get_work_color(work);
1838 
1839 	/* record the current cpu number in the work data and dequeue */
1840 	set_work_cpu(work, gcwq->cpu);
1841 	list_del_init(&work->entry);
1842 
1843 	/*
1844 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1845 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1846 	 */
1847 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1848 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1849 						struct work_struct, entry);
1850 
1851 		if (!list_empty(&gcwq->worklist) &&
1852 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1853 			wake_up_worker(gcwq);
1854 		else
1855 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1856 	}
1857 
1858 	/*
1859 	 * CPU intensive works don't participate in concurrency
1860 	 * management.  They're the scheduler's responsibility.
1861 	 */
1862 	if (unlikely(cpu_intensive))
1863 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1864 
1865 	spin_unlock_irq(&gcwq->lock);
1866 
1867 	work_clear_pending(work);
1868 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1869 	lock_map_acquire(&lockdep_map);
1870 	trace_workqueue_execute_start(work);
1871 	f(work);
1872 	/*
1873 	 * While we must be careful to not use "work" after this, the trace
1874 	 * point will only record its address.
1875 	 */
1876 	trace_workqueue_execute_end(work);
1877 	lock_map_release(&lockdep_map);
1878 	lock_map_release(&cwq->wq->lockdep_map);
1879 
1880 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1881 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1882 		       "%s/0x%08x/%d\n",
1883 		       current->comm, preempt_count(), task_pid_nr(current));
1884 		printk(KERN_ERR "    last function: ");
1885 		print_symbol("%s\n", (unsigned long)f);
1886 		debug_show_held_locks(current);
1887 		dump_stack();
1888 	}
1889 
1890 	spin_lock_irq(&gcwq->lock);
1891 
1892 	/* clear cpu intensive status */
1893 	if (unlikely(cpu_intensive))
1894 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1895 
1896 	/* we're done with it, release */
1897 	hlist_del_init(&worker->hentry);
1898 	worker->current_work = NULL;
1899 	worker->current_cwq = NULL;
1900 	cwq_dec_nr_in_flight(cwq, work_color, false);
1901 }
1902 
1903 /**
1904  * process_scheduled_works - process scheduled works
1905  * @worker: self
1906  *
1907  * Process all scheduled works.  Please note that the scheduled list
1908  * may change while processing a work, so this function repeatedly
1909  * fetches a work from the top and executes it.
1910  *
1911  * CONTEXT:
1912  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1913  * multiple times.
1914  */
process_scheduled_works(struct worker * worker)1915 static void process_scheduled_works(struct worker *worker)
1916 {
1917 	while (!list_empty(&worker->scheduled)) {
1918 		struct work_struct *work = list_first_entry(&worker->scheduled,
1919 						struct work_struct, entry);
1920 		process_one_work(worker, work);
1921 	}
1922 }
1923 
1924 /**
1925  * worker_thread - the worker thread function
1926  * @__worker: self
1927  *
1928  * The gcwq worker thread function.  There's a single dynamic pool of
1929  * these per each cpu.  These workers process all works regardless of
1930  * their specific target workqueue.  The only exception is works which
1931  * belong to workqueues with a rescuer which will be explained in
1932  * rescuer_thread().
1933  */
worker_thread(void * __worker)1934 static int worker_thread(void *__worker)
1935 {
1936 	struct worker *worker = __worker;
1937 	struct global_cwq *gcwq = worker->gcwq;
1938 
1939 	/* tell the scheduler that this is a workqueue worker */
1940 	worker->task->flags |= PF_WQ_WORKER;
1941 woke_up:
1942 	spin_lock_irq(&gcwq->lock);
1943 
1944 	/* DIE can be set only while we're idle, checking here is enough */
1945 	if (worker->flags & WORKER_DIE) {
1946 		spin_unlock_irq(&gcwq->lock);
1947 		worker->task->flags &= ~PF_WQ_WORKER;
1948 		return 0;
1949 	}
1950 
1951 	worker_leave_idle(worker);
1952 recheck:
1953 	/* no more worker necessary? */
1954 	if (!need_more_worker(gcwq))
1955 		goto sleep;
1956 
1957 	/* do we need to manage? */
1958 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1959 		goto recheck;
1960 
1961 	/*
1962 	 * ->scheduled list can only be filled while a worker is
1963 	 * preparing to process a work or actually processing it.
1964 	 * Make sure nobody diddled with it while I was sleeping.
1965 	 */
1966 	BUG_ON(!list_empty(&worker->scheduled));
1967 
1968 	/*
1969 	 * When control reaches this point, we're guaranteed to have
1970 	 * at least one idle worker or that someone else has already
1971 	 * assumed the manager role.
1972 	 */
1973 	worker_clr_flags(worker, WORKER_PREP);
1974 
1975 	do {
1976 		struct work_struct *work =
1977 			list_first_entry(&gcwq->worklist,
1978 					 struct work_struct, entry);
1979 
1980 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1981 			/* optimization path, not strictly necessary */
1982 			process_one_work(worker, work);
1983 			if (unlikely(!list_empty(&worker->scheduled)))
1984 				process_scheduled_works(worker);
1985 		} else {
1986 			move_linked_works(work, &worker->scheduled, NULL);
1987 			process_scheduled_works(worker);
1988 		}
1989 	} while (keep_working(gcwq));
1990 
1991 	worker_set_flags(worker, WORKER_PREP, false);
1992 sleep:
1993 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1994 		goto recheck;
1995 
1996 	/*
1997 	 * gcwq->lock is held and there's no work to process and no
1998 	 * need to manage, sleep.  Workers are woken up only while
1999 	 * holding gcwq->lock or from local cpu, so setting the
2000 	 * current state before releasing gcwq->lock is enough to
2001 	 * prevent losing any event.
2002 	 */
2003 	worker_enter_idle(worker);
2004 	__set_current_state(TASK_INTERRUPTIBLE);
2005 	spin_unlock_irq(&gcwq->lock);
2006 	schedule();
2007 	goto woke_up;
2008 }
2009 
2010 /**
2011  * rescuer_thread - the rescuer thread function
2012  * @__wq: the associated workqueue
2013  *
2014  * Workqueue rescuer thread function.  There's one rescuer for each
2015  * workqueue which has WQ_RESCUER set.
2016  *
2017  * Regular work processing on a gcwq may block trying to create a new
2018  * worker which uses GFP_KERNEL allocation which has slight chance of
2019  * developing into deadlock if some works currently on the same queue
2020  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2021  * the problem rescuer solves.
2022  *
2023  * When such condition is possible, the gcwq summons rescuers of all
2024  * workqueues which have works queued on the gcwq and let them process
2025  * those works so that forward progress can be guaranteed.
2026  *
2027  * This should happen rarely.
2028  */
rescuer_thread(void * __wq)2029 static int rescuer_thread(void *__wq)
2030 {
2031 	struct workqueue_struct *wq = __wq;
2032 	struct worker *rescuer = wq->rescuer;
2033 	struct list_head *scheduled = &rescuer->scheduled;
2034 	bool is_unbound = wq->flags & WQ_UNBOUND;
2035 	unsigned int cpu;
2036 
2037 	set_user_nice(current, RESCUER_NICE_LEVEL);
2038 repeat:
2039 	set_current_state(TASK_INTERRUPTIBLE);
2040 
2041 	if (kthread_should_stop())
2042 		return 0;
2043 
2044 	/*
2045 	 * See whether any cpu is asking for help.  Unbounded
2046 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2047 	 */
2048 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2049 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2050 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2051 		struct global_cwq *gcwq = cwq->gcwq;
2052 		struct work_struct *work, *n;
2053 
2054 		__set_current_state(TASK_RUNNING);
2055 		mayday_clear_cpu(cpu, wq->mayday_mask);
2056 
2057 		/* migrate to the target cpu if possible */
2058 		rescuer->gcwq = gcwq;
2059 		worker_maybe_bind_and_lock(rescuer);
2060 
2061 		/*
2062 		 * Slurp in all works issued via this workqueue and
2063 		 * process'em.
2064 		 */
2065 		BUG_ON(!list_empty(&rescuer->scheduled));
2066 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2067 			if (get_work_cwq(work) == cwq)
2068 				move_linked_works(work, scheduled, &n);
2069 
2070 		process_scheduled_works(rescuer);
2071 
2072 		/*
2073 		 * Leave this gcwq.  If keep_working() is %true, notify a
2074 		 * regular worker; otherwise, we end up with 0 concurrency
2075 		 * and stalling the execution.
2076 		 */
2077 		if (keep_working(gcwq))
2078 			wake_up_worker(gcwq);
2079 
2080 		spin_unlock_irq(&gcwq->lock);
2081 	}
2082 
2083 	schedule();
2084 	goto repeat;
2085 }
2086 
2087 struct wq_barrier {
2088 	struct work_struct	work;
2089 	struct completion	done;
2090 };
2091 
wq_barrier_func(struct work_struct * work)2092 static void wq_barrier_func(struct work_struct *work)
2093 {
2094 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2095 	complete(&barr->done);
2096 }
2097 
2098 /**
2099  * insert_wq_barrier - insert a barrier work
2100  * @cwq: cwq to insert barrier into
2101  * @barr: wq_barrier to insert
2102  * @target: target work to attach @barr to
2103  * @worker: worker currently executing @target, NULL if @target is not executing
2104  *
2105  * @barr is linked to @target such that @barr is completed only after
2106  * @target finishes execution.  Please note that the ordering
2107  * guarantee is observed only with respect to @target and on the local
2108  * cpu.
2109  *
2110  * Currently, a queued barrier can't be canceled.  This is because
2111  * try_to_grab_pending() can't determine whether the work to be
2112  * grabbed is at the head of the queue and thus can't clear LINKED
2113  * flag of the previous work while there must be a valid next work
2114  * after a work with LINKED flag set.
2115  *
2116  * Note that when @worker is non-NULL, @target may be modified
2117  * underneath us, so we can't reliably determine cwq from @target.
2118  *
2119  * CONTEXT:
2120  * spin_lock_irq(gcwq->lock).
2121  */
insert_wq_barrier(struct cpu_workqueue_struct * cwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2122 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2123 			      struct wq_barrier *barr,
2124 			      struct work_struct *target, struct worker *worker)
2125 {
2126 	struct list_head *head;
2127 	unsigned int linked = 0;
2128 
2129 	/*
2130 	 * debugobject calls are safe here even with gcwq->lock locked
2131 	 * as we know for sure that this will not trigger any of the
2132 	 * checks and call back into the fixup functions where we
2133 	 * might deadlock.
2134 	 */
2135 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2136 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2137 	init_completion(&barr->done);
2138 
2139 	/*
2140 	 * If @target is currently being executed, schedule the
2141 	 * barrier to the worker; otherwise, put it after @target.
2142 	 */
2143 	if (worker)
2144 		head = worker->scheduled.next;
2145 	else {
2146 		unsigned long *bits = work_data_bits(target);
2147 
2148 		head = target->entry.next;
2149 		/* there can already be other linked works, inherit and set */
2150 		linked = *bits & WORK_STRUCT_LINKED;
2151 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2152 	}
2153 
2154 	debug_work_activate(&barr->work);
2155 	insert_work(cwq, &barr->work, head,
2156 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2157 }
2158 
2159 /**
2160  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2161  * @wq: workqueue being flushed
2162  * @flush_color: new flush color, < 0 for no-op
2163  * @work_color: new work color, < 0 for no-op
2164  *
2165  * Prepare cwqs for workqueue flushing.
2166  *
2167  * If @flush_color is non-negative, flush_color on all cwqs should be
2168  * -1.  If no cwq has in-flight commands at the specified color, all
2169  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2170  * has in flight commands, its cwq->flush_color is set to
2171  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2172  * wakeup logic is armed and %true is returned.
2173  *
2174  * The caller should have initialized @wq->first_flusher prior to
2175  * calling this function with non-negative @flush_color.  If
2176  * @flush_color is negative, no flush color update is done and %false
2177  * is returned.
2178  *
2179  * If @work_color is non-negative, all cwqs should have the same
2180  * work_color which is previous to @work_color and all will be
2181  * advanced to @work_color.
2182  *
2183  * CONTEXT:
2184  * mutex_lock(wq->flush_mutex).
2185  *
2186  * RETURNS:
2187  * %true if @flush_color >= 0 and there's something to flush.  %false
2188  * otherwise.
2189  */
flush_workqueue_prep_cwqs(struct workqueue_struct * wq,int flush_color,int work_color)2190 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2191 				      int flush_color, int work_color)
2192 {
2193 	bool wait = false;
2194 	unsigned int cpu;
2195 
2196 	if (flush_color >= 0) {
2197 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2198 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2199 	}
2200 
2201 	for_each_cwq_cpu(cpu, wq) {
2202 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2203 		struct global_cwq *gcwq = cwq->gcwq;
2204 
2205 		spin_lock_irq(&gcwq->lock);
2206 
2207 		if (flush_color >= 0) {
2208 			BUG_ON(cwq->flush_color != -1);
2209 
2210 			if (cwq->nr_in_flight[flush_color]) {
2211 				cwq->flush_color = flush_color;
2212 				atomic_inc(&wq->nr_cwqs_to_flush);
2213 				wait = true;
2214 			}
2215 		}
2216 
2217 		if (work_color >= 0) {
2218 			BUG_ON(work_color != work_next_color(cwq->work_color));
2219 			cwq->work_color = work_color;
2220 		}
2221 
2222 		spin_unlock_irq(&gcwq->lock);
2223 	}
2224 
2225 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2226 		complete(&wq->first_flusher->done);
2227 
2228 	return wait;
2229 }
2230 
2231 /**
2232  * flush_workqueue - ensure that any scheduled work has run to completion.
2233  * @wq: workqueue to flush
2234  *
2235  * Forces execution of the workqueue and blocks until its completion.
2236  * This is typically used in driver shutdown handlers.
2237  *
2238  * We sleep until all works which were queued on entry have been handled,
2239  * but we are not livelocked by new incoming ones.
2240  */
flush_workqueue(struct workqueue_struct * wq)2241 void flush_workqueue(struct workqueue_struct *wq)
2242 {
2243 	struct wq_flusher this_flusher = {
2244 		.list = LIST_HEAD_INIT(this_flusher.list),
2245 		.flush_color = -1,
2246 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2247 	};
2248 	int next_color;
2249 
2250 	lock_map_acquire(&wq->lockdep_map);
2251 	lock_map_release(&wq->lockdep_map);
2252 
2253 	mutex_lock(&wq->flush_mutex);
2254 
2255 	/*
2256 	 * Start-to-wait phase
2257 	 */
2258 	next_color = work_next_color(wq->work_color);
2259 
2260 	if (next_color != wq->flush_color) {
2261 		/*
2262 		 * Color space is not full.  The current work_color
2263 		 * becomes our flush_color and work_color is advanced
2264 		 * by one.
2265 		 */
2266 		BUG_ON(!list_empty(&wq->flusher_overflow));
2267 		this_flusher.flush_color = wq->work_color;
2268 		wq->work_color = next_color;
2269 
2270 		if (!wq->first_flusher) {
2271 			/* no flush in progress, become the first flusher */
2272 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2273 
2274 			wq->first_flusher = &this_flusher;
2275 
2276 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2277 						       wq->work_color)) {
2278 				/* nothing to flush, done */
2279 				wq->flush_color = next_color;
2280 				wq->first_flusher = NULL;
2281 				goto out_unlock;
2282 			}
2283 		} else {
2284 			/* wait in queue */
2285 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2286 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2287 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2288 		}
2289 	} else {
2290 		/*
2291 		 * Oops, color space is full, wait on overflow queue.
2292 		 * The next flush completion will assign us
2293 		 * flush_color and transfer to flusher_queue.
2294 		 */
2295 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2296 	}
2297 
2298 	mutex_unlock(&wq->flush_mutex);
2299 
2300 	wait_for_completion(&this_flusher.done);
2301 
2302 	/*
2303 	 * Wake-up-and-cascade phase
2304 	 *
2305 	 * First flushers are responsible for cascading flushes and
2306 	 * handling overflow.  Non-first flushers can simply return.
2307 	 */
2308 	if (wq->first_flusher != &this_flusher)
2309 		return;
2310 
2311 	mutex_lock(&wq->flush_mutex);
2312 
2313 	/* we might have raced, check again with mutex held */
2314 	if (wq->first_flusher != &this_flusher)
2315 		goto out_unlock;
2316 
2317 	wq->first_flusher = NULL;
2318 
2319 	BUG_ON(!list_empty(&this_flusher.list));
2320 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2321 
2322 	while (true) {
2323 		struct wq_flusher *next, *tmp;
2324 
2325 		/* complete all the flushers sharing the current flush color */
2326 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2327 			if (next->flush_color != wq->flush_color)
2328 				break;
2329 			list_del_init(&next->list);
2330 			complete(&next->done);
2331 		}
2332 
2333 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2334 		       wq->flush_color != work_next_color(wq->work_color));
2335 
2336 		/* this flush_color is finished, advance by one */
2337 		wq->flush_color = work_next_color(wq->flush_color);
2338 
2339 		/* one color has been freed, handle overflow queue */
2340 		if (!list_empty(&wq->flusher_overflow)) {
2341 			/*
2342 			 * Assign the same color to all overflowed
2343 			 * flushers, advance work_color and append to
2344 			 * flusher_queue.  This is the start-to-wait
2345 			 * phase for these overflowed flushers.
2346 			 */
2347 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2348 				tmp->flush_color = wq->work_color;
2349 
2350 			wq->work_color = work_next_color(wq->work_color);
2351 
2352 			list_splice_tail_init(&wq->flusher_overflow,
2353 					      &wq->flusher_queue);
2354 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2355 		}
2356 
2357 		if (list_empty(&wq->flusher_queue)) {
2358 			BUG_ON(wq->flush_color != wq->work_color);
2359 			break;
2360 		}
2361 
2362 		/*
2363 		 * Need to flush more colors.  Make the next flusher
2364 		 * the new first flusher and arm cwqs.
2365 		 */
2366 		BUG_ON(wq->flush_color == wq->work_color);
2367 		BUG_ON(wq->flush_color != next->flush_color);
2368 
2369 		list_del_init(&next->list);
2370 		wq->first_flusher = next;
2371 
2372 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2373 			break;
2374 
2375 		/*
2376 		 * Meh... this color is already done, clear first
2377 		 * flusher and repeat cascading.
2378 		 */
2379 		wq->first_flusher = NULL;
2380 	}
2381 
2382 out_unlock:
2383 	mutex_unlock(&wq->flush_mutex);
2384 }
2385 EXPORT_SYMBOL_GPL(flush_workqueue);
2386 
2387 /**
2388  * drain_workqueue - drain a workqueue
2389  * @wq: workqueue to drain
2390  *
2391  * Wait until the workqueue becomes empty.  While draining is in progress,
2392  * only chain queueing is allowed.  IOW, only currently pending or running
2393  * work items on @wq can queue further work items on it.  @wq is flushed
2394  * repeatedly until it becomes empty.  The number of flushing is detemined
2395  * by the depth of chaining and should be relatively short.  Whine if it
2396  * takes too long.
2397  */
drain_workqueue(struct workqueue_struct * wq)2398 void drain_workqueue(struct workqueue_struct *wq)
2399 {
2400 	unsigned int flush_cnt = 0;
2401 	unsigned int cpu;
2402 
2403 	/*
2404 	 * __queue_work() needs to test whether there are drainers, is much
2405 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2406 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2407 	 */
2408 	spin_lock(&workqueue_lock);
2409 	if (!wq->nr_drainers++)
2410 		wq->flags |= WQ_DRAINING;
2411 	spin_unlock(&workqueue_lock);
2412 reflush:
2413 	flush_workqueue(wq);
2414 
2415 	for_each_cwq_cpu(cpu, wq) {
2416 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2417 		bool drained;
2418 
2419 		spin_lock_irq(&cwq->gcwq->lock);
2420 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2421 		spin_unlock_irq(&cwq->gcwq->lock);
2422 
2423 		if (drained)
2424 			continue;
2425 
2426 		if (++flush_cnt == 10 ||
2427 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2428 			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2429 				   wq->name, flush_cnt);
2430 		goto reflush;
2431 	}
2432 
2433 	spin_lock(&workqueue_lock);
2434 	if (!--wq->nr_drainers)
2435 		wq->flags &= ~WQ_DRAINING;
2436 	spin_unlock(&workqueue_lock);
2437 }
2438 EXPORT_SYMBOL_GPL(drain_workqueue);
2439 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool wait_executing)2440 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2441 			     bool wait_executing)
2442 {
2443 	struct worker *worker = NULL;
2444 	struct global_cwq *gcwq;
2445 	struct cpu_workqueue_struct *cwq;
2446 
2447 	might_sleep();
2448 	gcwq = get_work_gcwq(work);
2449 	if (!gcwq)
2450 		return false;
2451 
2452 	spin_lock_irq(&gcwq->lock);
2453 	if (!list_empty(&work->entry)) {
2454 		/*
2455 		 * See the comment near try_to_grab_pending()->smp_rmb().
2456 		 * If it was re-queued to a different gcwq under us, we
2457 		 * are not going to wait.
2458 		 */
2459 		smp_rmb();
2460 		cwq = get_work_cwq(work);
2461 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2462 			goto already_gone;
2463 	} else if (wait_executing) {
2464 		worker = find_worker_executing_work(gcwq, work);
2465 		if (!worker)
2466 			goto already_gone;
2467 		cwq = worker->current_cwq;
2468 	} else
2469 		goto already_gone;
2470 
2471 	insert_wq_barrier(cwq, barr, work, worker);
2472 	spin_unlock_irq(&gcwq->lock);
2473 
2474 	/*
2475 	 * If @max_active is 1 or rescuer is in use, flushing another work
2476 	 * item on the same workqueue may lead to deadlock.  Make sure the
2477 	 * flusher is not running on the same workqueue by verifying write
2478 	 * access.
2479 	 */
2480 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2481 		lock_map_acquire(&cwq->wq->lockdep_map);
2482 	else
2483 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2484 	lock_map_release(&cwq->wq->lockdep_map);
2485 
2486 	return true;
2487 already_gone:
2488 	spin_unlock_irq(&gcwq->lock);
2489 	return false;
2490 }
2491 
2492 /**
2493  * flush_work - wait for a work to finish executing the last queueing instance
2494  * @work: the work to flush
2495  *
2496  * Wait until @work has finished execution.  This function considers
2497  * only the last queueing instance of @work.  If @work has been
2498  * enqueued across different CPUs on a non-reentrant workqueue or on
2499  * multiple workqueues, @work might still be executing on return on
2500  * some of the CPUs from earlier queueing.
2501  *
2502  * If @work was queued only on a non-reentrant, ordered or unbound
2503  * workqueue, @work is guaranteed to be idle on return if it hasn't
2504  * been requeued since flush started.
2505  *
2506  * RETURNS:
2507  * %true if flush_work() waited for the work to finish execution,
2508  * %false if it was already idle.
2509  */
flush_work(struct work_struct * work)2510 bool flush_work(struct work_struct *work)
2511 {
2512 	struct wq_barrier barr;
2513 
2514 	if (start_flush_work(work, &barr, true)) {
2515 		wait_for_completion(&barr.done);
2516 		destroy_work_on_stack(&barr.work);
2517 		return true;
2518 	} else
2519 		return false;
2520 }
2521 EXPORT_SYMBOL_GPL(flush_work);
2522 
wait_on_cpu_work(struct global_cwq * gcwq,struct work_struct * work)2523 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2524 {
2525 	struct wq_barrier barr;
2526 	struct worker *worker;
2527 
2528 	spin_lock_irq(&gcwq->lock);
2529 
2530 	worker = find_worker_executing_work(gcwq, work);
2531 	if (unlikely(worker))
2532 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2533 
2534 	spin_unlock_irq(&gcwq->lock);
2535 
2536 	if (unlikely(worker)) {
2537 		wait_for_completion(&barr.done);
2538 		destroy_work_on_stack(&barr.work);
2539 		return true;
2540 	} else
2541 		return false;
2542 }
2543 
wait_on_work(struct work_struct * work)2544 static bool wait_on_work(struct work_struct *work)
2545 {
2546 	bool ret = false;
2547 	int cpu;
2548 
2549 	might_sleep();
2550 
2551 	lock_map_acquire(&work->lockdep_map);
2552 	lock_map_release(&work->lockdep_map);
2553 
2554 	for_each_gcwq_cpu(cpu)
2555 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2556 	return ret;
2557 }
2558 
2559 /**
2560  * flush_work_sync - wait until a work has finished execution
2561  * @work: the work to flush
2562  *
2563  * Wait until @work has finished execution.  On return, it's
2564  * guaranteed that all queueing instances of @work which happened
2565  * before this function is called are finished.  In other words, if
2566  * @work hasn't been requeued since this function was called, @work is
2567  * guaranteed to be idle on return.
2568  *
2569  * RETURNS:
2570  * %true if flush_work_sync() waited for the work to finish execution,
2571  * %false if it was already idle.
2572  */
flush_work_sync(struct work_struct * work)2573 bool flush_work_sync(struct work_struct *work)
2574 {
2575 	struct wq_barrier barr;
2576 	bool pending, waited;
2577 
2578 	/* we'll wait for executions separately, queue barr only if pending */
2579 	pending = start_flush_work(work, &barr, false);
2580 
2581 	/* wait for executions to finish */
2582 	waited = wait_on_work(work);
2583 
2584 	/* wait for the pending one */
2585 	if (pending) {
2586 		wait_for_completion(&barr.done);
2587 		destroy_work_on_stack(&barr.work);
2588 	}
2589 
2590 	return pending || waited;
2591 }
2592 EXPORT_SYMBOL_GPL(flush_work_sync);
2593 
2594 /*
2595  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2596  * so this work can't be re-armed in any way.
2597  */
try_to_grab_pending(struct work_struct * work)2598 static int try_to_grab_pending(struct work_struct *work)
2599 {
2600 	struct global_cwq *gcwq;
2601 	int ret = -1;
2602 
2603 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2604 		return 0;
2605 
2606 	/*
2607 	 * The queueing is in progress, or it is already queued. Try to
2608 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2609 	 */
2610 	gcwq = get_work_gcwq(work);
2611 	if (!gcwq)
2612 		return ret;
2613 
2614 	spin_lock_irq(&gcwq->lock);
2615 	if (!list_empty(&work->entry)) {
2616 		/*
2617 		 * This work is queued, but perhaps we locked the wrong gcwq.
2618 		 * In that case we must see the new value after rmb(), see
2619 		 * insert_work()->wmb().
2620 		 */
2621 		smp_rmb();
2622 		if (gcwq == get_work_gcwq(work)) {
2623 			debug_work_deactivate(work);
2624 			list_del_init(&work->entry);
2625 			cwq_dec_nr_in_flight(get_work_cwq(work),
2626 				get_work_color(work),
2627 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2628 			ret = 1;
2629 		}
2630 	}
2631 	spin_unlock_irq(&gcwq->lock);
2632 
2633 	return ret;
2634 }
2635 
__cancel_work_timer(struct work_struct * work,struct timer_list * timer)2636 static bool __cancel_work_timer(struct work_struct *work,
2637 				struct timer_list* timer)
2638 {
2639 	int ret;
2640 
2641 	do {
2642 		ret = (timer && likely(del_timer(timer)));
2643 		if (!ret)
2644 			ret = try_to_grab_pending(work);
2645 		wait_on_work(work);
2646 	} while (unlikely(ret < 0));
2647 
2648 	clear_work_data(work);
2649 	return ret;
2650 }
2651 
2652 /**
2653  * cancel_work_sync - cancel a work and wait for it to finish
2654  * @work: the work to cancel
2655  *
2656  * Cancel @work and wait for its execution to finish.  This function
2657  * can be used even if the work re-queues itself or migrates to
2658  * another workqueue.  On return from this function, @work is
2659  * guaranteed to be not pending or executing on any CPU.
2660  *
2661  * cancel_work_sync(&delayed_work->work) must not be used for
2662  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2663  *
2664  * The caller must ensure that the workqueue on which @work was last
2665  * queued can't be destroyed before this function returns.
2666  *
2667  * RETURNS:
2668  * %true if @work was pending, %false otherwise.
2669  */
cancel_work_sync(struct work_struct * work)2670 bool cancel_work_sync(struct work_struct *work)
2671 {
2672 	return __cancel_work_timer(work, NULL);
2673 }
2674 EXPORT_SYMBOL_GPL(cancel_work_sync);
2675 
2676 /**
2677  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2678  * @dwork: the delayed work to flush
2679  *
2680  * Delayed timer is cancelled and the pending work is queued for
2681  * immediate execution.  Like flush_work(), this function only
2682  * considers the last queueing instance of @dwork.
2683  *
2684  * RETURNS:
2685  * %true if flush_work() waited for the work to finish execution,
2686  * %false if it was already idle.
2687  */
flush_delayed_work(struct delayed_work * dwork)2688 bool flush_delayed_work(struct delayed_work *dwork)
2689 {
2690 	if (del_timer_sync(&dwork->timer))
2691 		__queue_work(raw_smp_processor_id(),
2692 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2693 	return flush_work(&dwork->work);
2694 }
2695 EXPORT_SYMBOL(flush_delayed_work);
2696 
2697 /**
2698  * flush_delayed_work_sync - wait for a dwork to finish
2699  * @dwork: the delayed work to flush
2700  *
2701  * Delayed timer is cancelled and the pending work is queued for
2702  * execution immediately.  Other than timer handling, its behavior
2703  * is identical to flush_work_sync().
2704  *
2705  * RETURNS:
2706  * %true if flush_work_sync() waited for the work to finish execution,
2707  * %false if it was already idle.
2708  */
flush_delayed_work_sync(struct delayed_work * dwork)2709 bool flush_delayed_work_sync(struct delayed_work *dwork)
2710 {
2711 	if (del_timer_sync(&dwork->timer))
2712 		__queue_work(raw_smp_processor_id(),
2713 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2714 	return flush_work_sync(&dwork->work);
2715 }
2716 EXPORT_SYMBOL(flush_delayed_work_sync);
2717 
2718 /**
2719  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2720  * @dwork: the delayed work cancel
2721  *
2722  * This is cancel_work_sync() for delayed works.
2723  *
2724  * RETURNS:
2725  * %true if @dwork was pending, %false otherwise.
2726  */
cancel_delayed_work_sync(struct delayed_work * dwork)2727 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2728 {
2729 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2730 }
2731 EXPORT_SYMBOL(cancel_delayed_work_sync);
2732 
2733 /**
2734  * schedule_work - put work task in global workqueue
2735  * @work: job to be done
2736  *
2737  * Returns zero if @work was already on the kernel-global workqueue and
2738  * non-zero otherwise.
2739  *
2740  * This puts a job in the kernel-global workqueue if it was not already
2741  * queued and leaves it in the same position on the kernel-global
2742  * workqueue otherwise.
2743  */
schedule_work(struct work_struct * work)2744 int schedule_work(struct work_struct *work)
2745 {
2746 	return queue_work(system_wq, work);
2747 }
2748 EXPORT_SYMBOL(schedule_work);
2749 
2750 /*
2751  * schedule_work_on - put work task on a specific cpu
2752  * @cpu: cpu to put the work task on
2753  * @work: job to be done
2754  *
2755  * This puts a job on a specific cpu
2756  */
schedule_work_on(int cpu,struct work_struct * work)2757 int schedule_work_on(int cpu, struct work_struct *work)
2758 {
2759 	return queue_work_on(cpu, system_wq, work);
2760 }
2761 EXPORT_SYMBOL(schedule_work_on);
2762 
2763 /**
2764  * schedule_delayed_work - put work task in global workqueue after delay
2765  * @dwork: job to be done
2766  * @delay: number of jiffies to wait or 0 for immediate execution
2767  *
2768  * After waiting for a given time this puts a job in the kernel-global
2769  * workqueue.
2770  */
schedule_delayed_work(struct delayed_work * dwork,unsigned long delay)2771 int schedule_delayed_work(struct delayed_work *dwork,
2772 					unsigned long delay)
2773 {
2774 	return queue_delayed_work(system_wq, dwork, delay);
2775 }
2776 EXPORT_SYMBOL(schedule_delayed_work);
2777 
2778 /**
2779  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2780  * @cpu: cpu to use
2781  * @dwork: job to be done
2782  * @delay: number of jiffies to wait
2783  *
2784  * After waiting for a given time this puts a job in the kernel-global
2785  * workqueue on the specified CPU.
2786  */
schedule_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)2787 int schedule_delayed_work_on(int cpu,
2788 			struct delayed_work *dwork, unsigned long delay)
2789 {
2790 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2791 }
2792 EXPORT_SYMBOL(schedule_delayed_work_on);
2793 
2794 /**
2795  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2796  * @func: the function to call
2797  *
2798  * schedule_on_each_cpu() executes @func on each online CPU using the
2799  * system workqueue and blocks until all CPUs have completed.
2800  * schedule_on_each_cpu() is very slow.
2801  *
2802  * RETURNS:
2803  * 0 on success, -errno on failure.
2804  */
schedule_on_each_cpu(work_func_t func)2805 int schedule_on_each_cpu(work_func_t func)
2806 {
2807 	int cpu;
2808 	struct work_struct __percpu *works;
2809 
2810 	works = alloc_percpu(struct work_struct);
2811 	if (!works)
2812 		return -ENOMEM;
2813 
2814 	get_online_cpus();
2815 
2816 	for_each_online_cpu(cpu) {
2817 		struct work_struct *work = per_cpu_ptr(works, cpu);
2818 
2819 		INIT_WORK(work, func);
2820 		schedule_work_on(cpu, work);
2821 	}
2822 
2823 	for_each_online_cpu(cpu)
2824 		flush_work(per_cpu_ptr(works, cpu));
2825 
2826 	put_online_cpus();
2827 	free_percpu(works);
2828 	return 0;
2829 }
2830 
2831 /**
2832  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2833  *
2834  * Forces execution of the kernel-global workqueue and blocks until its
2835  * completion.
2836  *
2837  * Think twice before calling this function!  It's very easy to get into
2838  * trouble if you don't take great care.  Either of the following situations
2839  * will lead to deadlock:
2840  *
2841  *	One of the work items currently on the workqueue needs to acquire
2842  *	a lock held by your code or its caller.
2843  *
2844  *	Your code is running in the context of a work routine.
2845  *
2846  * They will be detected by lockdep when they occur, but the first might not
2847  * occur very often.  It depends on what work items are on the workqueue and
2848  * what locks they need, which you have no control over.
2849  *
2850  * In most situations flushing the entire workqueue is overkill; you merely
2851  * need to know that a particular work item isn't queued and isn't running.
2852  * In such cases you should use cancel_delayed_work_sync() or
2853  * cancel_work_sync() instead.
2854  */
flush_scheduled_work(void)2855 void flush_scheduled_work(void)
2856 {
2857 	flush_workqueue(system_wq);
2858 }
2859 EXPORT_SYMBOL(flush_scheduled_work);
2860 
2861 /**
2862  * execute_in_process_context - reliably execute the routine with user context
2863  * @fn:		the function to execute
2864  * @ew:		guaranteed storage for the execute work structure (must
2865  *		be available when the work executes)
2866  *
2867  * Executes the function immediately if process context is available,
2868  * otherwise schedules the function for delayed execution.
2869  *
2870  * Returns:	0 - function was executed
2871  *		1 - function was scheduled for execution
2872  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)2873 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2874 {
2875 	if (!in_interrupt()) {
2876 		fn(&ew->work);
2877 		return 0;
2878 	}
2879 
2880 	INIT_WORK(&ew->work, fn);
2881 	schedule_work(&ew->work);
2882 
2883 	return 1;
2884 }
2885 EXPORT_SYMBOL_GPL(execute_in_process_context);
2886 
keventd_up(void)2887 int keventd_up(void)
2888 {
2889 	return system_wq != NULL;
2890 }
2891 
alloc_cwqs(struct workqueue_struct * wq)2892 static int alloc_cwqs(struct workqueue_struct *wq)
2893 {
2894 	/*
2895 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2896 	 * Make sure that the alignment isn't lower than that of
2897 	 * unsigned long long.
2898 	 */
2899 	const size_t size = sizeof(struct cpu_workqueue_struct);
2900 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2901 				   __alignof__(unsigned long long));
2902 #ifdef CONFIG_SMP
2903 	bool percpu = !(wq->flags & WQ_UNBOUND);
2904 #else
2905 	bool percpu = false;
2906 #endif
2907 
2908 	if (percpu)
2909 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2910 	else {
2911 		void *ptr;
2912 
2913 		/*
2914 		 * Allocate enough room to align cwq and put an extra
2915 		 * pointer at the end pointing back to the originally
2916 		 * allocated pointer which will be used for free.
2917 		 */
2918 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2919 		if (ptr) {
2920 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2921 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2922 		}
2923 	}
2924 
2925 	/* just in case, make sure it's actually aligned */
2926 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2927 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2928 }
2929 
free_cwqs(struct workqueue_struct * wq)2930 static void free_cwqs(struct workqueue_struct *wq)
2931 {
2932 #ifdef CONFIG_SMP
2933 	bool percpu = !(wq->flags & WQ_UNBOUND);
2934 #else
2935 	bool percpu = false;
2936 #endif
2937 
2938 	if (percpu)
2939 		free_percpu(wq->cpu_wq.pcpu);
2940 	else if (wq->cpu_wq.single) {
2941 		/* the pointer to free is stored right after the cwq */
2942 		kfree(*(void **)(wq->cpu_wq.single + 1));
2943 	}
2944 }
2945 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)2946 static int wq_clamp_max_active(int max_active, unsigned int flags,
2947 			       const char *name)
2948 {
2949 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2950 
2951 	if (max_active < 1 || max_active > lim)
2952 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2953 		       "is out of range, clamping between %d and %d\n",
2954 		       max_active, name, 1, lim);
2955 
2956 	return clamp_val(max_active, 1, lim);
2957 }
2958 
__alloc_workqueue_key(const char * fmt,unsigned int flags,int max_active,struct lock_class_key * key,const char * lock_name,...)2959 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
2960 					       unsigned int flags,
2961 					       int max_active,
2962 					       struct lock_class_key *key,
2963 					       const char *lock_name, ...)
2964 {
2965 	va_list args, args1;
2966 	struct workqueue_struct *wq;
2967 	unsigned int cpu;
2968 	size_t namelen;
2969 
2970 	/* determine namelen, allocate wq and format name */
2971 	va_start(args, lock_name);
2972 	va_copy(args1, args);
2973 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
2974 
2975 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
2976 	if (!wq)
2977 		goto err;
2978 
2979 	vsnprintf(wq->name, namelen, fmt, args1);
2980 	va_end(args);
2981 	va_end(args1);
2982 
2983 	/*
2984 	 * Workqueues which may be used during memory reclaim should
2985 	 * have a rescuer to guarantee forward progress.
2986 	 */
2987 	if (flags & WQ_MEM_RECLAIM)
2988 		flags |= WQ_RESCUER;
2989 
2990 	/*
2991 	 * Unbound workqueues aren't concurrency managed and should be
2992 	 * dispatched to workers immediately.
2993 	 */
2994 	if (flags & WQ_UNBOUND)
2995 		flags |= WQ_HIGHPRI;
2996 
2997 	max_active = max_active ?: WQ_DFL_ACTIVE;
2998 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
2999 
3000 	/* init wq */
3001 	wq->flags = flags;
3002 	wq->saved_max_active = max_active;
3003 	mutex_init(&wq->flush_mutex);
3004 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3005 	INIT_LIST_HEAD(&wq->flusher_queue);
3006 	INIT_LIST_HEAD(&wq->flusher_overflow);
3007 
3008 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3009 	INIT_LIST_HEAD(&wq->list);
3010 
3011 	if (alloc_cwqs(wq) < 0)
3012 		goto err;
3013 
3014 	for_each_cwq_cpu(cpu, wq) {
3015 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3016 		struct global_cwq *gcwq = get_gcwq(cpu);
3017 
3018 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3019 		cwq->gcwq = gcwq;
3020 		cwq->wq = wq;
3021 		cwq->flush_color = -1;
3022 		cwq->max_active = max_active;
3023 		INIT_LIST_HEAD(&cwq->delayed_works);
3024 	}
3025 
3026 	if (flags & WQ_RESCUER) {
3027 		struct worker *rescuer;
3028 
3029 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3030 			goto err;
3031 
3032 		wq->rescuer = rescuer = alloc_worker();
3033 		if (!rescuer)
3034 			goto err;
3035 
3036 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3037 					       wq->name);
3038 		if (IS_ERR(rescuer->task))
3039 			goto err;
3040 
3041 		rescuer->task->flags |= PF_THREAD_BOUND;
3042 		wake_up_process(rescuer->task);
3043 	}
3044 
3045 	/*
3046 	 * workqueue_lock protects global freeze state and workqueues
3047 	 * list.  Grab it, set max_active accordingly and add the new
3048 	 * workqueue to workqueues list.
3049 	 */
3050 	spin_lock(&workqueue_lock);
3051 
3052 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3053 		for_each_cwq_cpu(cpu, wq)
3054 			get_cwq(cpu, wq)->max_active = 0;
3055 
3056 	list_add(&wq->list, &workqueues);
3057 
3058 	spin_unlock(&workqueue_lock);
3059 
3060 	return wq;
3061 err:
3062 	if (wq) {
3063 		free_cwqs(wq);
3064 		free_mayday_mask(wq->mayday_mask);
3065 		kfree(wq->rescuer);
3066 		kfree(wq);
3067 	}
3068 	return NULL;
3069 }
3070 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3071 
3072 /**
3073  * destroy_workqueue - safely terminate a workqueue
3074  * @wq: target workqueue
3075  *
3076  * Safely destroy a workqueue. All work currently pending will be done first.
3077  */
destroy_workqueue(struct workqueue_struct * wq)3078 void destroy_workqueue(struct workqueue_struct *wq)
3079 {
3080 	unsigned int cpu;
3081 
3082 	/* drain it before proceeding with destruction */
3083 	drain_workqueue(wq);
3084 
3085 	/*
3086 	 * wq list is used to freeze wq, remove from list after
3087 	 * flushing is complete in case freeze races us.
3088 	 */
3089 	spin_lock(&workqueue_lock);
3090 	list_del(&wq->list);
3091 	spin_unlock(&workqueue_lock);
3092 
3093 	/* sanity check */
3094 	for_each_cwq_cpu(cpu, wq) {
3095 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3096 		int i;
3097 
3098 		for (i = 0; i < WORK_NR_COLORS; i++)
3099 			BUG_ON(cwq->nr_in_flight[i]);
3100 		BUG_ON(cwq->nr_active);
3101 		BUG_ON(!list_empty(&cwq->delayed_works));
3102 	}
3103 
3104 	if (wq->flags & WQ_RESCUER) {
3105 		kthread_stop(wq->rescuer->task);
3106 		free_mayday_mask(wq->mayday_mask);
3107 		kfree(wq->rescuer);
3108 	}
3109 
3110 	free_cwqs(wq);
3111 	kfree(wq);
3112 }
3113 EXPORT_SYMBOL_GPL(destroy_workqueue);
3114 
3115 /**
3116  * workqueue_set_max_active - adjust max_active of a workqueue
3117  * @wq: target workqueue
3118  * @max_active: new max_active value.
3119  *
3120  * Set max_active of @wq to @max_active.
3121  *
3122  * CONTEXT:
3123  * Don't call from IRQ context.
3124  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)3125 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3126 {
3127 	unsigned int cpu;
3128 
3129 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3130 
3131 	spin_lock(&workqueue_lock);
3132 
3133 	wq->saved_max_active = max_active;
3134 
3135 	for_each_cwq_cpu(cpu, wq) {
3136 		struct global_cwq *gcwq = get_gcwq(cpu);
3137 
3138 		spin_lock_irq(&gcwq->lock);
3139 
3140 		if (!(wq->flags & WQ_FREEZABLE) ||
3141 		    !(gcwq->flags & GCWQ_FREEZING))
3142 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3143 
3144 		spin_unlock_irq(&gcwq->lock);
3145 	}
3146 
3147 	spin_unlock(&workqueue_lock);
3148 }
3149 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3150 
3151 /**
3152  * workqueue_congested - test whether a workqueue is congested
3153  * @cpu: CPU in question
3154  * @wq: target workqueue
3155  *
3156  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3157  * no synchronization around this function and the test result is
3158  * unreliable and only useful as advisory hints or for debugging.
3159  *
3160  * RETURNS:
3161  * %true if congested, %false otherwise.
3162  */
workqueue_congested(unsigned int cpu,struct workqueue_struct * wq)3163 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3164 {
3165 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3166 
3167 	return !list_empty(&cwq->delayed_works);
3168 }
3169 EXPORT_SYMBOL_GPL(workqueue_congested);
3170 
3171 /**
3172  * work_cpu - return the last known associated cpu for @work
3173  * @work: the work of interest
3174  *
3175  * RETURNS:
3176  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3177  */
work_cpu(struct work_struct * work)3178 unsigned int work_cpu(struct work_struct *work)
3179 {
3180 	struct global_cwq *gcwq = get_work_gcwq(work);
3181 
3182 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3183 }
3184 EXPORT_SYMBOL_GPL(work_cpu);
3185 
3186 /**
3187  * work_busy - test whether a work is currently pending or running
3188  * @work: the work to be tested
3189  *
3190  * Test whether @work is currently pending or running.  There is no
3191  * synchronization around this function and the test result is
3192  * unreliable and only useful as advisory hints or for debugging.
3193  * Especially for reentrant wqs, the pending state might hide the
3194  * running state.
3195  *
3196  * RETURNS:
3197  * OR'd bitmask of WORK_BUSY_* bits.
3198  */
work_busy(struct work_struct * work)3199 unsigned int work_busy(struct work_struct *work)
3200 {
3201 	struct global_cwq *gcwq = get_work_gcwq(work);
3202 	unsigned long flags;
3203 	unsigned int ret = 0;
3204 
3205 	if (!gcwq)
3206 		return false;
3207 
3208 	spin_lock_irqsave(&gcwq->lock, flags);
3209 
3210 	if (work_pending(work))
3211 		ret |= WORK_BUSY_PENDING;
3212 	if (find_worker_executing_work(gcwq, work))
3213 		ret |= WORK_BUSY_RUNNING;
3214 
3215 	spin_unlock_irqrestore(&gcwq->lock, flags);
3216 
3217 	return ret;
3218 }
3219 EXPORT_SYMBOL_GPL(work_busy);
3220 
3221 /*
3222  * CPU hotplug.
3223  *
3224  * There are two challenges in supporting CPU hotplug.  Firstly, there
3225  * are a lot of assumptions on strong associations among work, cwq and
3226  * gcwq which make migrating pending and scheduled works very
3227  * difficult to implement without impacting hot paths.  Secondly,
3228  * gcwqs serve mix of short, long and very long running works making
3229  * blocked draining impractical.
3230  *
3231  * This is solved by allowing a gcwq to be detached from CPU, running
3232  * it with unbound (rogue) workers and allowing it to be reattached
3233  * later if the cpu comes back online.  A separate thread is created
3234  * to govern a gcwq in such state and is called the trustee of the
3235  * gcwq.
3236  *
3237  * Trustee states and their descriptions.
3238  *
3239  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3240  *		new trustee is started with this state.
3241  *
3242  * IN_CHARGE	Once started, trustee will enter this state after
3243  *		assuming the manager role and making all existing
3244  *		workers rogue.  DOWN_PREPARE waits for trustee to
3245  *		enter this state.  After reaching IN_CHARGE, trustee
3246  *		tries to execute the pending worklist until it's empty
3247  *		and the state is set to BUTCHER, or the state is set
3248  *		to RELEASE.
3249  *
3250  * BUTCHER	Command state which is set by the cpu callback after
3251  *		the cpu has went down.  Once this state is set trustee
3252  *		knows that there will be no new works on the worklist
3253  *		and once the worklist is empty it can proceed to
3254  *		killing idle workers.
3255  *
3256  * RELEASE	Command state which is set by the cpu callback if the
3257  *		cpu down has been canceled or it has come online
3258  *		again.  After recognizing this state, trustee stops
3259  *		trying to drain or butcher and clears ROGUE, rebinds
3260  *		all remaining workers back to the cpu and releases
3261  *		manager role.
3262  *
3263  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3264  *		is complete.
3265  *
3266  *          trustee                 CPU                draining
3267  *         took over                down               complete
3268  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3269  *                        |                     |                  ^
3270  *                        | CPU is back online  v   return workers |
3271  *                         ----------------> RELEASE --------------
3272  */
3273 
3274 /**
3275  * trustee_wait_event_timeout - timed event wait for trustee
3276  * @cond: condition to wait for
3277  * @timeout: timeout in jiffies
3278  *
3279  * wait_event_timeout() for trustee to use.  Handles locking and
3280  * checks for RELEASE request.
3281  *
3282  * CONTEXT:
3283  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3284  * multiple times.  To be used by trustee.
3285  *
3286  * RETURNS:
3287  * Positive indicating left time if @cond is satisfied, 0 if timed
3288  * out, -1 if canceled.
3289  */
3290 #define trustee_wait_event_timeout(cond, timeout) ({			\
3291 	long __ret = (timeout);						\
3292 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3293 	       __ret) {							\
3294 		spin_unlock_irq(&gcwq->lock);				\
3295 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3296 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3297 			__ret);						\
3298 		spin_lock_irq(&gcwq->lock);				\
3299 	}								\
3300 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3301 })
3302 
3303 /**
3304  * trustee_wait_event - event wait for trustee
3305  * @cond: condition to wait for
3306  *
3307  * wait_event() for trustee to use.  Automatically handles locking and
3308  * checks for CANCEL request.
3309  *
3310  * CONTEXT:
3311  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3312  * multiple times.  To be used by trustee.
3313  *
3314  * RETURNS:
3315  * 0 if @cond is satisfied, -1 if canceled.
3316  */
3317 #define trustee_wait_event(cond) ({					\
3318 	long __ret1;							\
3319 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3320 	__ret1 < 0 ? -1 : 0;						\
3321 })
3322 
trustee_thread(void * __gcwq)3323 static int __cpuinit trustee_thread(void *__gcwq)
3324 {
3325 	struct global_cwq *gcwq = __gcwq;
3326 	struct worker *worker;
3327 	struct work_struct *work;
3328 	struct hlist_node *pos;
3329 	long rc;
3330 	int i;
3331 
3332 	BUG_ON(gcwq->cpu != smp_processor_id());
3333 
3334 	spin_lock_irq(&gcwq->lock);
3335 	/*
3336 	 * Claim the manager position and make all workers rogue.
3337 	 * Trustee must be bound to the target cpu and can't be
3338 	 * cancelled.
3339 	 */
3340 	BUG_ON(gcwq->cpu != smp_processor_id());
3341 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3342 	BUG_ON(rc < 0);
3343 
3344 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3345 
3346 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3347 		worker->flags |= WORKER_ROGUE;
3348 
3349 	for_each_busy_worker(worker, i, pos, gcwq)
3350 		worker->flags |= WORKER_ROGUE;
3351 
3352 	/*
3353 	 * Call schedule() so that we cross rq->lock and thus can
3354 	 * guarantee sched callbacks see the rogue flag.  This is
3355 	 * necessary as scheduler callbacks may be invoked from other
3356 	 * cpus.
3357 	 */
3358 	spin_unlock_irq(&gcwq->lock);
3359 	schedule();
3360 	spin_lock_irq(&gcwq->lock);
3361 
3362 	/*
3363 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3364 	 * this, nr_running stays zero and need_more_worker() and
3365 	 * keep_working() are always true as long as the worklist is
3366 	 * not empty.
3367 	 */
3368 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3369 
3370 	spin_unlock_irq(&gcwq->lock);
3371 	del_timer_sync(&gcwq->idle_timer);
3372 	spin_lock_irq(&gcwq->lock);
3373 
3374 	/*
3375 	 * We're now in charge.  Notify and proceed to drain.  We need
3376 	 * to keep the gcwq running during the whole CPU down
3377 	 * procedure as other cpu hotunplug callbacks may need to
3378 	 * flush currently running tasks.
3379 	 */
3380 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3381 	wake_up_all(&gcwq->trustee_wait);
3382 
3383 	/*
3384 	 * The original cpu is in the process of dying and may go away
3385 	 * anytime now.  When that happens, we and all workers would
3386 	 * be migrated to other cpus.  Try draining any left work.  We
3387 	 * want to get it over with ASAP - spam rescuers, wake up as
3388 	 * many idlers as necessary and create new ones till the
3389 	 * worklist is empty.  Note that if the gcwq is frozen, there
3390 	 * may be frozen works in freezable cwqs.  Don't declare
3391 	 * completion while frozen.
3392 	 */
3393 	while (gcwq->nr_workers != gcwq->nr_idle ||
3394 	       gcwq->flags & GCWQ_FREEZING ||
3395 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3396 		int nr_works = 0;
3397 
3398 		list_for_each_entry(work, &gcwq->worklist, entry) {
3399 			send_mayday(work);
3400 			nr_works++;
3401 		}
3402 
3403 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3404 			if (!nr_works--)
3405 				break;
3406 			wake_up_process(worker->task);
3407 		}
3408 
3409 		if (need_to_create_worker(gcwq)) {
3410 			spin_unlock_irq(&gcwq->lock);
3411 			worker = create_worker(gcwq, false);
3412 			spin_lock_irq(&gcwq->lock);
3413 			if (worker) {
3414 				worker->flags |= WORKER_ROGUE;
3415 				start_worker(worker);
3416 			}
3417 		}
3418 
3419 		/* give a breather */
3420 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3421 			break;
3422 	}
3423 
3424 	/*
3425 	 * Either all works have been scheduled and cpu is down, or
3426 	 * cpu down has already been canceled.  Wait for and butcher
3427 	 * all workers till we're canceled.
3428 	 */
3429 	do {
3430 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3431 		while (!list_empty(&gcwq->idle_list))
3432 			destroy_worker(list_first_entry(&gcwq->idle_list,
3433 							struct worker, entry));
3434 	} while (gcwq->nr_workers && rc >= 0);
3435 
3436 	/*
3437 	 * At this point, either draining has completed and no worker
3438 	 * is left, or cpu down has been canceled or the cpu is being
3439 	 * brought back up.  There shouldn't be any idle one left.
3440 	 * Tell the remaining busy ones to rebind once it finishes the
3441 	 * currently scheduled works by scheduling the rebind_work.
3442 	 */
3443 	WARN_ON(!list_empty(&gcwq->idle_list));
3444 
3445 	for_each_busy_worker(worker, i, pos, gcwq) {
3446 		struct work_struct *rebind_work = &worker->rebind_work;
3447 
3448 		/*
3449 		 * Rebind_work may race with future cpu hotplug
3450 		 * operations.  Use a separate flag to mark that
3451 		 * rebinding is scheduled.
3452 		 */
3453 		worker->flags |= WORKER_REBIND;
3454 		worker->flags &= ~WORKER_ROGUE;
3455 
3456 		/* queue rebind_work, wq doesn't matter, use the default one */
3457 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3458 				     work_data_bits(rebind_work)))
3459 			continue;
3460 
3461 		debug_work_activate(rebind_work);
3462 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3463 			    worker->scheduled.next,
3464 			    work_color_to_flags(WORK_NO_COLOR));
3465 	}
3466 
3467 	/* relinquish manager role */
3468 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3469 
3470 	/* notify completion */
3471 	gcwq->trustee = NULL;
3472 	gcwq->trustee_state = TRUSTEE_DONE;
3473 	wake_up_all(&gcwq->trustee_wait);
3474 	spin_unlock_irq(&gcwq->lock);
3475 	return 0;
3476 }
3477 
3478 /**
3479  * wait_trustee_state - wait for trustee to enter the specified state
3480  * @gcwq: gcwq the trustee of interest belongs to
3481  * @state: target state to wait for
3482  *
3483  * Wait for the trustee to reach @state.  DONE is already matched.
3484  *
3485  * CONTEXT:
3486  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3487  * multiple times.  To be used by cpu_callback.
3488  */
wait_trustee_state(struct global_cwq * gcwq,int state)3489 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3490 __releases(&gcwq->lock)
3491 __acquires(&gcwq->lock)
3492 {
3493 	if (!(gcwq->trustee_state == state ||
3494 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3495 		spin_unlock_irq(&gcwq->lock);
3496 		__wait_event(gcwq->trustee_wait,
3497 			     gcwq->trustee_state == state ||
3498 			     gcwq->trustee_state == TRUSTEE_DONE);
3499 		spin_lock_irq(&gcwq->lock);
3500 	}
3501 }
3502 
workqueue_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3503 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3504 						unsigned long action,
3505 						void *hcpu)
3506 {
3507 	unsigned int cpu = (unsigned long)hcpu;
3508 	struct global_cwq *gcwq = get_gcwq(cpu);
3509 	struct task_struct *new_trustee = NULL;
3510 	struct worker *uninitialized_var(new_worker);
3511 	unsigned long flags;
3512 
3513 	action &= ~CPU_TASKS_FROZEN;
3514 
3515 	switch (action) {
3516 	case CPU_DOWN_PREPARE:
3517 		new_trustee = kthread_create(trustee_thread, gcwq,
3518 					     "workqueue_trustee/%d\n", cpu);
3519 		if (IS_ERR(new_trustee))
3520 			return notifier_from_errno(PTR_ERR(new_trustee));
3521 		kthread_bind(new_trustee, cpu);
3522 		/* fall through */
3523 	case CPU_UP_PREPARE:
3524 		BUG_ON(gcwq->first_idle);
3525 		new_worker = create_worker(gcwq, false);
3526 		if (!new_worker) {
3527 			if (new_trustee)
3528 				kthread_stop(new_trustee);
3529 			return NOTIFY_BAD;
3530 		}
3531 	}
3532 
3533 	/* some are called w/ irq disabled, don't disturb irq status */
3534 	spin_lock_irqsave(&gcwq->lock, flags);
3535 
3536 	switch (action) {
3537 	case CPU_DOWN_PREPARE:
3538 		/* initialize trustee and tell it to acquire the gcwq */
3539 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3540 		gcwq->trustee = new_trustee;
3541 		gcwq->trustee_state = TRUSTEE_START;
3542 		wake_up_process(gcwq->trustee);
3543 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3544 		/* fall through */
3545 	case CPU_UP_PREPARE:
3546 		BUG_ON(gcwq->first_idle);
3547 		gcwq->first_idle = new_worker;
3548 		break;
3549 
3550 	case CPU_DYING:
3551 		/*
3552 		 * Before this, the trustee and all workers except for
3553 		 * the ones which are still executing works from
3554 		 * before the last CPU down must be on the cpu.  After
3555 		 * this, they'll all be diasporas.
3556 		 */
3557 		gcwq->flags |= GCWQ_DISASSOCIATED;
3558 		break;
3559 
3560 	case CPU_POST_DEAD:
3561 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3562 		/* fall through */
3563 	case CPU_UP_CANCELED:
3564 		destroy_worker(gcwq->first_idle);
3565 		gcwq->first_idle = NULL;
3566 		break;
3567 
3568 	case CPU_DOWN_FAILED:
3569 	case CPU_ONLINE:
3570 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3571 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3572 			gcwq->trustee_state = TRUSTEE_RELEASE;
3573 			wake_up_process(gcwq->trustee);
3574 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3575 		}
3576 
3577 		/*
3578 		 * Trustee is done and there might be no worker left.
3579 		 * Put the first_idle in and request a real manager to
3580 		 * take a look.
3581 		 */
3582 		spin_unlock_irq(&gcwq->lock);
3583 		kthread_bind(gcwq->first_idle->task, cpu);
3584 		spin_lock_irq(&gcwq->lock);
3585 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3586 		start_worker(gcwq->first_idle);
3587 		gcwq->first_idle = NULL;
3588 		break;
3589 	}
3590 
3591 	spin_unlock_irqrestore(&gcwq->lock, flags);
3592 
3593 	return notifier_from_errno(0);
3594 }
3595 
3596 #ifdef CONFIG_SMP
3597 
3598 struct work_for_cpu {
3599 	struct completion completion;
3600 	long (*fn)(void *);
3601 	void *arg;
3602 	long ret;
3603 };
3604 
do_work_for_cpu(void * _wfc)3605 static int do_work_for_cpu(void *_wfc)
3606 {
3607 	struct work_for_cpu *wfc = _wfc;
3608 	wfc->ret = wfc->fn(wfc->arg);
3609 	complete(&wfc->completion);
3610 	return 0;
3611 }
3612 
3613 /**
3614  * work_on_cpu - run a function in user context on a particular cpu
3615  * @cpu: the cpu to run on
3616  * @fn: the function to run
3617  * @arg: the function arg
3618  *
3619  * This will return the value @fn returns.
3620  * It is up to the caller to ensure that the cpu doesn't go offline.
3621  * The caller must not hold any locks which would prevent @fn from completing.
3622  */
work_on_cpu(unsigned int cpu,long (* fn)(void *),void * arg)3623 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3624 {
3625 	struct task_struct *sub_thread;
3626 	struct work_for_cpu wfc = {
3627 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3628 		.fn = fn,
3629 		.arg = arg,
3630 	};
3631 
3632 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3633 	if (IS_ERR(sub_thread))
3634 		return PTR_ERR(sub_thread);
3635 	kthread_bind(sub_thread, cpu);
3636 	wake_up_process(sub_thread);
3637 	wait_for_completion(&wfc.completion);
3638 	return wfc.ret;
3639 }
3640 EXPORT_SYMBOL_GPL(work_on_cpu);
3641 #endif /* CONFIG_SMP */
3642 
3643 #ifdef CONFIG_FREEZER
3644 
3645 /**
3646  * freeze_workqueues_begin - begin freezing workqueues
3647  *
3648  * Start freezing workqueues.  After this function returns, all freezable
3649  * workqueues will queue new works to their frozen_works list instead of
3650  * gcwq->worklist.
3651  *
3652  * CONTEXT:
3653  * Grabs and releases workqueue_lock and gcwq->lock's.
3654  */
freeze_workqueues_begin(void)3655 void freeze_workqueues_begin(void)
3656 {
3657 	unsigned int cpu;
3658 
3659 	spin_lock(&workqueue_lock);
3660 
3661 	BUG_ON(workqueue_freezing);
3662 	workqueue_freezing = true;
3663 
3664 	for_each_gcwq_cpu(cpu) {
3665 		struct global_cwq *gcwq = get_gcwq(cpu);
3666 		struct workqueue_struct *wq;
3667 
3668 		spin_lock_irq(&gcwq->lock);
3669 
3670 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3671 		gcwq->flags |= GCWQ_FREEZING;
3672 
3673 		list_for_each_entry(wq, &workqueues, list) {
3674 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3675 
3676 			if (cwq && wq->flags & WQ_FREEZABLE)
3677 				cwq->max_active = 0;
3678 		}
3679 
3680 		spin_unlock_irq(&gcwq->lock);
3681 	}
3682 
3683 	spin_unlock(&workqueue_lock);
3684 }
3685 
3686 /**
3687  * freeze_workqueues_busy - are freezable workqueues still busy?
3688  *
3689  * Check whether freezing is complete.  This function must be called
3690  * between freeze_workqueues_begin() and thaw_workqueues().
3691  *
3692  * CONTEXT:
3693  * Grabs and releases workqueue_lock.
3694  *
3695  * RETURNS:
3696  * %true if some freezable workqueues are still busy.  %false if freezing
3697  * is complete.
3698  */
freeze_workqueues_busy(void)3699 bool freeze_workqueues_busy(void)
3700 {
3701 	unsigned int cpu;
3702 	bool busy = false;
3703 
3704 	spin_lock(&workqueue_lock);
3705 
3706 	BUG_ON(!workqueue_freezing);
3707 
3708 	for_each_gcwq_cpu(cpu) {
3709 		struct workqueue_struct *wq;
3710 		/*
3711 		 * nr_active is monotonically decreasing.  It's safe
3712 		 * to peek without lock.
3713 		 */
3714 		list_for_each_entry(wq, &workqueues, list) {
3715 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3716 
3717 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3718 				continue;
3719 
3720 			BUG_ON(cwq->nr_active < 0);
3721 			if (cwq->nr_active) {
3722 				busy = true;
3723 				goto out_unlock;
3724 			}
3725 		}
3726 	}
3727 out_unlock:
3728 	spin_unlock(&workqueue_lock);
3729 	return busy;
3730 }
3731 
3732 /**
3733  * thaw_workqueues - thaw workqueues
3734  *
3735  * Thaw workqueues.  Normal queueing is restored and all collected
3736  * frozen works are transferred to their respective gcwq worklists.
3737  *
3738  * CONTEXT:
3739  * Grabs and releases workqueue_lock and gcwq->lock's.
3740  */
thaw_workqueues(void)3741 void thaw_workqueues(void)
3742 {
3743 	unsigned int cpu;
3744 
3745 	spin_lock(&workqueue_lock);
3746 
3747 	if (!workqueue_freezing)
3748 		goto out_unlock;
3749 
3750 	for_each_gcwq_cpu(cpu) {
3751 		struct global_cwq *gcwq = get_gcwq(cpu);
3752 		struct workqueue_struct *wq;
3753 
3754 		spin_lock_irq(&gcwq->lock);
3755 
3756 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3757 		gcwq->flags &= ~GCWQ_FREEZING;
3758 
3759 		list_for_each_entry(wq, &workqueues, list) {
3760 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3761 
3762 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3763 				continue;
3764 
3765 			/* restore max_active and repopulate worklist */
3766 			cwq->max_active = wq->saved_max_active;
3767 
3768 			while (!list_empty(&cwq->delayed_works) &&
3769 			       cwq->nr_active < cwq->max_active)
3770 				cwq_activate_first_delayed(cwq);
3771 		}
3772 
3773 		wake_up_worker(gcwq);
3774 
3775 		spin_unlock_irq(&gcwq->lock);
3776 	}
3777 
3778 	workqueue_freezing = false;
3779 out_unlock:
3780 	spin_unlock(&workqueue_lock);
3781 }
3782 #endif /* CONFIG_FREEZER */
3783 
init_workqueues(void)3784 static int __init init_workqueues(void)
3785 {
3786 	unsigned int cpu;
3787 	int i;
3788 
3789 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3790 
3791 	/* initialize gcwqs */
3792 	for_each_gcwq_cpu(cpu) {
3793 		struct global_cwq *gcwq = get_gcwq(cpu);
3794 
3795 		spin_lock_init(&gcwq->lock);
3796 		INIT_LIST_HEAD(&gcwq->worklist);
3797 		gcwq->cpu = cpu;
3798 		gcwq->flags |= GCWQ_DISASSOCIATED;
3799 
3800 		INIT_LIST_HEAD(&gcwq->idle_list);
3801 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3802 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3803 
3804 		init_timer_deferrable(&gcwq->idle_timer);
3805 		gcwq->idle_timer.function = idle_worker_timeout;
3806 		gcwq->idle_timer.data = (unsigned long)gcwq;
3807 
3808 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3809 			    (unsigned long)gcwq);
3810 
3811 		ida_init(&gcwq->worker_ida);
3812 
3813 		gcwq->trustee_state = TRUSTEE_DONE;
3814 		init_waitqueue_head(&gcwq->trustee_wait);
3815 	}
3816 
3817 	/* create the initial worker */
3818 	for_each_online_gcwq_cpu(cpu) {
3819 		struct global_cwq *gcwq = get_gcwq(cpu);
3820 		struct worker *worker;
3821 
3822 		if (cpu != WORK_CPU_UNBOUND)
3823 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3824 		worker = create_worker(gcwq, true);
3825 		BUG_ON(!worker);
3826 		spin_lock_irq(&gcwq->lock);
3827 		start_worker(worker);
3828 		spin_unlock_irq(&gcwq->lock);
3829 	}
3830 
3831 	system_wq = alloc_workqueue("events", 0, 0);
3832 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3833 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3834 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3835 					    WQ_UNBOUND_MAX_ACTIVE);
3836 	system_freezable_wq = alloc_workqueue("events_freezable",
3837 					      WQ_FREEZABLE, 0);
3838 	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3839 			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3840 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3841 	       !system_unbound_wq || !system_freezable_wq ||
3842 		!system_nrt_freezable_wq);
3843 	return 0;
3844 }
3845 early_initcall(init_workqueues);
3846