1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Implementation of [`Vec`].
4 
5 // May not be needed in Rust 1.87.0 (pending beta backport).
6 #![allow(clippy::ptr_eq)]
7 
8 use super::{
9     allocator::{KVmalloc, Kmalloc, Vmalloc},
10     layout::ArrayLayout,
11     AllocError, Allocator, Box, Flags,
12 };
13 use core::{
14     fmt,
15     marker::PhantomData,
16     mem::{ManuallyDrop, MaybeUninit},
17     ops::Deref,
18     ops::DerefMut,
19     ops::Index,
20     ops::IndexMut,
21     ptr,
22     ptr::NonNull,
23     slice,
24     slice::SliceIndex,
25 };
26 
27 /// Create a [`KVec`] containing the arguments.
28 ///
29 /// New memory is allocated with `GFP_KERNEL`.
30 ///
31 /// # Examples
32 ///
33 /// ```
34 /// let mut v = kernel::kvec![];
35 /// v.push(1, GFP_KERNEL)?;
36 /// assert_eq!(v, [1]);
37 ///
38 /// let mut v = kernel::kvec![1; 3]?;
39 /// v.push(4, GFP_KERNEL)?;
40 /// assert_eq!(v, [1, 1, 1, 4]);
41 ///
42 /// let mut v = kernel::kvec![1, 2, 3]?;
43 /// v.push(4, GFP_KERNEL)?;
44 /// assert_eq!(v, [1, 2, 3, 4]);
45 ///
46 /// # Ok::<(), Error>(())
47 /// ```
48 #[macro_export]
49 macro_rules! kvec {
50     () => (
51         $crate::alloc::KVec::new()
52     );
53     ($elem:expr; $n:expr) => (
54         $crate::alloc::KVec::from_elem($elem, $n, GFP_KERNEL)
55     );
56     ($($x:expr),+ $(,)?) => (
57         match $crate::alloc::KBox::new_uninit(GFP_KERNEL) {
58             Ok(b) => Ok($crate::alloc::KVec::from($crate::alloc::KBox::write(b, [$($x),+]))),
59             Err(e) => Err(e),
60         }
61     );
62 }
63 
64 /// The kernel's [`Vec`] type.
65 ///
66 /// A contiguous growable array type with contents allocated with the kernel's allocators (e.g.
67 /// [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`]), written `Vec<T, A>`.
68 ///
69 /// For non-zero-sized values, a [`Vec`] will use the given allocator `A` for its allocation. For
70 /// the most common allocators the type aliases [`KVec`], [`VVec`] and [`KVVec`] exist.
71 ///
72 /// For zero-sized types the [`Vec`]'s pointer must be `dangling_mut::<T>`; no memory is allocated.
73 ///
74 /// Generally, [`Vec`] consists of a pointer that represents the vector's backing buffer, the
75 /// capacity of the vector (the number of elements that currently fit into the vector), its length
76 /// (the number of elements that are currently stored in the vector) and the `Allocator` type used
77 /// to allocate (and free) the backing buffer.
78 ///
79 /// A [`Vec`] can be deconstructed into and (re-)constructed from its previously named raw parts
80 /// and manually modified.
81 ///
82 /// [`Vec`]'s backing buffer gets, if required, automatically increased (re-allocated) when elements
83 /// are added to the vector.
84 ///
85 /// # Invariants
86 ///
87 /// - `self.ptr` is always properly aligned and either points to memory allocated with `A` or, for
88 ///   zero-sized types, is a dangling, well aligned pointer.
89 ///
90 /// - `self.len` always represents the exact number of elements stored in the vector.
91 ///
92 /// - `self.layout` represents the absolute number of elements that can be stored within the vector
93 ///   without re-allocation. For ZSTs `self.layout`'s capacity is zero. However, it is legal for the
94 ///   backing buffer to be larger than `layout`.
95 ///
96 /// - The `Allocator` type `A` of the vector is the exact same `Allocator` type the backing buffer
97 ///   was allocated with (and must be freed with).
98 pub struct Vec<T, A: Allocator> {
99     ptr: NonNull<T>,
100     /// Represents the actual buffer size as `cap` times `size_of::<T>` bytes.
101     ///
102     /// Note: This isn't quite the same as `Self::capacity`, which in contrast returns the number of
103     /// elements we can still store without reallocating.
104     layout: ArrayLayout<T>,
105     len: usize,
106     _p: PhantomData<A>,
107 }
108 
109 /// Type alias for [`Vec`] with a [`Kmalloc`] allocator.
110 ///
111 /// # Examples
112 ///
113 /// ```
114 /// let mut v = KVec::new();
115 /// v.push(1, GFP_KERNEL)?;
116 /// assert_eq!(&v, &[1]);
117 ///
118 /// # Ok::<(), Error>(())
119 /// ```
120 pub type KVec<T> = Vec<T, Kmalloc>;
121 
122 /// Type alias for [`Vec`] with a [`Vmalloc`] allocator.
123 ///
124 /// # Examples
125 ///
126 /// ```
127 /// let mut v = VVec::new();
128 /// v.push(1, GFP_KERNEL)?;
129 /// assert_eq!(&v, &[1]);
130 ///
131 /// # Ok::<(), Error>(())
132 /// ```
133 pub type VVec<T> = Vec<T, Vmalloc>;
134 
135 /// Type alias for [`Vec`] with a [`KVmalloc`] allocator.
136 ///
137 /// # Examples
138 ///
139 /// ```
140 /// let mut v = KVVec::new();
141 /// v.push(1, GFP_KERNEL)?;
142 /// assert_eq!(&v, &[1]);
143 ///
144 /// # Ok::<(), Error>(())
145 /// ```
146 pub type KVVec<T> = Vec<T, KVmalloc>;
147 
148 // SAFETY: `Vec` is `Send` if `T` is `Send` because `Vec` owns its elements.
149 unsafe impl<T, A> Send for Vec<T, A>
150 where
151     T: Send,
152     A: Allocator,
153 {
154 }
155 
156 // SAFETY: `Vec` is `Sync` if `T` is `Sync` because `Vec` owns its elements.
157 unsafe impl<T, A> Sync for Vec<T, A>
158 where
159     T: Sync,
160     A: Allocator,
161 {
162 }
163 
164 impl<T, A> Vec<T, A>
165 where
166     A: Allocator,
167 {
168     #[inline]
is_zst() -> bool169     const fn is_zst() -> bool {
170         core::mem::size_of::<T>() == 0
171     }
172 
173     /// Returns the number of elements that can be stored within the vector without allocating
174     /// additional memory.
capacity(&self) -> usize175     pub fn capacity(&self) -> usize {
176         if const { Self::is_zst() } {
177             usize::MAX
178         } else {
179             self.layout.len()
180         }
181     }
182 
183     /// Returns the number of elements stored within the vector.
184     #[inline]
len(&self) -> usize185     pub fn len(&self) -> usize {
186         self.len
187     }
188 
189     /// Forcefully sets `self.len` to `new_len`.
190     ///
191     /// # Safety
192     ///
193     /// - `new_len` must be less than or equal to [`Self::capacity`].
194     /// - If `new_len` is greater than `self.len`, all elements within the interval
195     ///   [`self.len`,`new_len`) must be initialized.
196     #[inline]
set_len(&mut self, new_len: usize)197     pub unsafe fn set_len(&mut self, new_len: usize) {
198         debug_assert!(new_len <= self.capacity());
199         self.len = new_len;
200     }
201 
202     /// Returns a slice of the entire vector.
203     #[inline]
as_slice(&self) -> &[T]204     pub fn as_slice(&self) -> &[T] {
205         self
206     }
207 
208     /// Returns a mutable slice of the entire vector.
209     #[inline]
as_mut_slice(&mut self) -> &mut [T]210     pub fn as_mut_slice(&mut self) -> &mut [T] {
211         self
212     }
213 
214     /// Returns a mutable raw pointer to the vector's backing buffer, or, if `T` is a ZST, a
215     /// dangling raw pointer.
216     #[inline]
as_mut_ptr(&mut self) -> *mut T217     pub fn as_mut_ptr(&mut self) -> *mut T {
218         self.ptr.as_ptr()
219     }
220 
221     /// Returns a raw pointer to the vector's backing buffer, or, if `T` is a ZST, a dangling raw
222     /// pointer.
223     #[inline]
as_ptr(&self) -> *const T224     pub fn as_ptr(&self) -> *const T {
225         self.ptr.as_ptr()
226     }
227 
228     /// Returns `true` if the vector contains no elements, `false` otherwise.
229     ///
230     /// # Examples
231     ///
232     /// ```
233     /// let mut v = KVec::new();
234     /// assert!(v.is_empty());
235     ///
236     /// v.push(1, GFP_KERNEL);
237     /// assert!(!v.is_empty());
238     /// ```
239     #[inline]
is_empty(&self) -> bool240     pub fn is_empty(&self) -> bool {
241         self.len() == 0
242     }
243 
244     /// Creates a new, empty `Vec<T, A>`.
245     ///
246     /// This method does not allocate by itself.
247     #[inline]
new() -> Self248     pub const fn new() -> Self {
249         // INVARIANT: Since this is a new, empty `Vec` with no backing memory yet,
250         // - `ptr` is a properly aligned dangling pointer for type `T`,
251         // - `layout` is an empty `ArrayLayout` (zero capacity)
252         // - `len` is zero, since no elements can be or have been stored,
253         // - `A` is always valid.
254         Self {
255             ptr: NonNull::dangling(),
256             layout: ArrayLayout::empty(),
257             len: 0,
258             _p: PhantomData::<A>,
259         }
260     }
261 
262     /// Returns a slice of `MaybeUninit<T>` for the remaining spare capacity of the vector.
spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>]263     pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
264         // SAFETY:
265         // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
266         //   guaranteed to be part of the same allocated object.
267         // - `self.len` can not overflow `isize`.
268         let ptr = unsafe { self.as_mut_ptr().add(self.len) } as *mut MaybeUninit<T>;
269 
270         // SAFETY: The memory between `self.len` and `self.capacity` is guaranteed to be allocated
271         // and valid, but uninitialized.
272         unsafe { slice::from_raw_parts_mut(ptr, self.capacity() - self.len) }
273     }
274 
275     /// Appends an element to the back of the [`Vec`] instance.
276     ///
277     /// # Examples
278     ///
279     /// ```
280     /// let mut v = KVec::new();
281     /// v.push(1, GFP_KERNEL)?;
282     /// assert_eq!(&v, &[1]);
283     ///
284     /// v.push(2, GFP_KERNEL)?;
285     /// assert_eq!(&v, &[1, 2]);
286     /// # Ok::<(), Error>(())
287     /// ```
push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>288     pub fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
289         self.reserve(1, flags)?;
290 
291         // SAFETY:
292         // - `self.len` is smaller than `self.capacity` and hence, the resulting pointer is
293         //   guaranteed to be part of the same allocated object.
294         // - `self.len` can not overflow `isize`.
295         let ptr = unsafe { self.as_mut_ptr().add(self.len) };
296 
297         // SAFETY:
298         // - `ptr` is properly aligned and valid for writes.
299         unsafe { core::ptr::write(ptr, v) };
300 
301         // SAFETY: We just initialised the first spare entry, so it is safe to increase the length
302         // by 1. We also know that the new length is <= capacity because of the previous call to
303         // `reserve` above.
304         unsafe { self.set_len(self.len() + 1) };
305         Ok(())
306     }
307 
308     /// Creates a new [`Vec`] instance with at least the given capacity.
309     ///
310     /// # Examples
311     ///
312     /// ```
313     /// let v = KVec::<u32>::with_capacity(20, GFP_KERNEL)?;
314     ///
315     /// assert!(v.capacity() >= 20);
316     /// # Ok::<(), Error>(())
317     /// ```
with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>318     pub fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
319         let mut v = Vec::new();
320 
321         v.reserve(capacity, flags)?;
322 
323         Ok(v)
324     }
325 
326     /// Creates a `Vec<T, A>` from a pointer, a length and a capacity using the allocator `A`.
327     ///
328     /// # Examples
329     ///
330     /// ```
331     /// let mut v = kernel::kvec![1, 2, 3]?;
332     /// v.reserve(1, GFP_KERNEL)?;
333     ///
334     /// let (mut ptr, mut len, cap) = v.into_raw_parts();
335     ///
336     /// // SAFETY: We've just reserved memory for another element.
337     /// unsafe { ptr.add(len).write(4) };
338     /// len += 1;
339     ///
340     /// // SAFETY: We only wrote an additional element at the end of the `KVec`'s buffer and
341     /// // correspondingly increased the length of the `KVec` by one. Otherwise, we construct it
342     /// // from the exact same raw parts.
343     /// let v = unsafe { KVec::from_raw_parts(ptr, len, cap) };
344     ///
345     /// assert_eq!(v, [1, 2, 3, 4]);
346     ///
347     /// # Ok::<(), Error>(())
348     /// ```
349     ///
350     /// # Safety
351     ///
352     /// If `T` is a ZST:
353     ///
354     /// - `ptr` must be a dangling, well aligned pointer.
355     ///
356     /// Otherwise:
357     ///
358     /// - `ptr` must have been allocated with the allocator `A`.
359     /// - `ptr` must satisfy or exceed the alignment requirements of `T`.
360     /// - `ptr` must point to memory with a size of at least `size_of::<T>() * capacity` bytes.
361     /// - The allocated size in bytes must not be larger than `isize::MAX`.
362     /// - `length` must be less than or equal to `capacity`.
363     /// - The first `length` elements must be initialized values of type `T`.
364     ///
365     /// It is also valid to create an empty `Vec` passing a dangling pointer for `ptr` and zero for
366     /// `cap` and `len`.
from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self367     pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
368         let layout = if Self::is_zst() {
369             ArrayLayout::empty()
370         } else {
371             // SAFETY: By the safety requirements of this function, `capacity * size_of::<T>()` is
372             // smaller than `isize::MAX`.
373             unsafe { ArrayLayout::new_unchecked(capacity) }
374         };
375 
376         // INVARIANT: For ZSTs, we store an empty `ArrayLayout`, all other type invariants are
377         // covered by the safety requirements of this function.
378         Self {
379             // SAFETY: By the safety requirements, `ptr` is either dangling or pointing to a valid
380             // memory allocation, allocated with `A`.
381             ptr: unsafe { NonNull::new_unchecked(ptr) },
382             layout,
383             len: length,
384             _p: PhantomData::<A>,
385         }
386     }
387 
388     /// Consumes the `Vec<T, A>` and returns its raw components `pointer`, `length` and `capacity`.
389     ///
390     /// This will not run the destructor of the contained elements and for non-ZSTs the allocation
391     /// will stay alive indefinitely. Use [`Vec::from_raw_parts`] to recover the [`Vec`], drop the
392     /// elements and free the allocation, if any.
into_raw_parts(self) -> (*mut T, usize, usize)393     pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
394         let mut me = ManuallyDrop::new(self);
395         let len = me.len();
396         let capacity = me.capacity();
397         let ptr = me.as_mut_ptr();
398         (ptr, len, capacity)
399     }
400 
401     /// Ensures that the capacity exceeds the length by at least `additional` elements.
402     ///
403     /// # Examples
404     ///
405     /// ```
406     /// let mut v = KVec::new();
407     /// v.push(1, GFP_KERNEL)?;
408     ///
409     /// v.reserve(10, GFP_KERNEL)?;
410     /// let cap = v.capacity();
411     /// assert!(cap >= 10);
412     ///
413     /// v.reserve(10, GFP_KERNEL)?;
414     /// let new_cap = v.capacity();
415     /// assert_eq!(new_cap, cap);
416     ///
417     /// # Ok::<(), Error>(())
418     /// ```
reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>419     pub fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
420         let len = self.len();
421         let cap = self.capacity();
422 
423         if cap - len >= additional {
424             return Ok(());
425         }
426 
427         if Self::is_zst() {
428             // The capacity is already `usize::MAX` for ZSTs, we can't go higher.
429             return Err(AllocError);
430         }
431 
432         // We know that `cap <= isize::MAX` because of the type invariants of `Self`. So the
433         // multiplication by two won't overflow.
434         let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
435         let layout = ArrayLayout::new(new_cap).map_err(|_| AllocError)?;
436 
437         // SAFETY:
438         // - `ptr` is valid because it's either `None` or comes from a previous call to
439         //   `A::realloc`.
440         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
441         let ptr = unsafe {
442             A::realloc(
443                 Some(self.ptr.cast()),
444                 layout.into(),
445                 self.layout.into(),
446                 flags,
447             )?
448         };
449 
450         // INVARIANT:
451         // - `layout` is some `ArrayLayout::<T>`,
452         // - `ptr` has been created by `A::realloc` from `layout`.
453         self.ptr = ptr.cast();
454         self.layout = layout;
455 
456         Ok(())
457     }
458 }
459 
460 impl<T: Clone, A: Allocator> Vec<T, A> {
461     /// Extend the vector by `n` clones of `value`.
extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError>462     pub fn extend_with(&mut self, n: usize, value: T, flags: Flags) -> Result<(), AllocError> {
463         if n == 0 {
464             return Ok(());
465         }
466 
467         self.reserve(n, flags)?;
468 
469         let spare = self.spare_capacity_mut();
470 
471         for item in spare.iter_mut().take(n - 1) {
472             item.write(value.clone());
473         }
474 
475         // We can write the last element directly without cloning needlessly.
476         spare[n - 1].write(value);
477 
478         // SAFETY:
479         // - `self.len() + n < self.capacity()` due to the call to reserve above,
480         // - the loop and the line above initialized the next `n` elements.
481         unsafe { self.set_len(self.len() + n) };
482 
483         Ok(())
484     }
485 
486     /// Pushes clones of the elements of slice into the [`Vec`] instance.
487     ///
488     /// # Examples
489     ///
490     /// ```
491     /// let mut v = KVec::new();
492     /// v.push(1, GFP_KERNEL)?;
493     ///
494     /// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
495     /// assert_eq!(&v, &[1, 20, 30, 40]);
496     ///
497     /// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
498     /// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
499     /// # Ok::<(), Error>(())
500     /// ```
extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>501     pub fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError> {
502         self.reserve(other.len(), flags)?;
503         for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
504             slot.write(item.clone());
505         }
506 
507         // SAFETY:
508         // - `other.len()` spare entries have just been initialized, so it is safe to increase
509         //   the length by the same number.
510         // - `self.len() + other.len() <= self.capacity()` is guaranteed by the preceding `reserve`
511         //   call.
512         unsafe { self.set_len(self.len() + other.len()) };
513         Ok(())
514     }
515 
516     /// Create a new `Vec<T, A>` and extend it by `n` clones of `value`.
from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError>517     pub fn from_elem(value: T, n: usize, flags: Flags) -> Result<Self, AllocError> {
518         let mut v = Self::with_capacity(n, flags)?;
519 
520         v.extend_with(n, value, flags)?;
521 
522         Ok(v)
523     }
524 }
525 
526 impl<T, A> Drop for Vec<T, A>
527 where
528     A: Allocator,
529 {
drop(&mut self)530     fn drop(&mut self) {
531         // SAFETY: `self.as_mut_ptr` is guaranteed to be valid by the type invariant.
532         unsafe {
533             ptr::drop_in_place(core::ptr::slice_from_raw_parts_mut(
534                 self.as_mut_ptr(),
535                 self.len,
536             ))
537         };
538 
539         // SAFETY:
540         // - `self.ptr` was previously allocated with `A`.
541         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
542         unsafe { A::free(self.ptr.cast(), self.layout.into()) };
543     }
544 }
545 
546 impl<T, A, const N: usize> From<Box<[T; N], A>> for Vec<T, A>
547 where
548     A: Allocator,
549 {
from(b: Box<[T; N], A>) -> Vec<T, A>550     fn from(b: Box<[T; N], A>) -> Vec<T, A> {
551         let len = b.len();
552         let ptr = Box::into_raw(b);
553 
554         // SAFETY:
555         // - `b` has been allocated with `A`,
556         // - `ptr` fulfills the alignment requirements for `T`,
557         // - `ptr` points to memory with at least a size of `size_of::<T>() * len`,
558         // - all elements within `b` are initialized values of `T`,
559         // - `len` does not exceed `isize::MAX`.
560         unsafe { Vec::from_raw_parts(ptr as _, len, len) }
561     }
562 }
563 
564 impl<T> Default for KVec<T> {
565     #[inline]
default() -> Self566     fn default() -> Self {
567         Self::new()
568     }
569 }
570 
571 impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result572     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
573         fmt::Debug::fmt(&**self, f)
574     }
575 }
576 
577 impl<T, A> Deref for Vec<T, A>
578 where
579     A: Allocator,
580 {
581     type Target = [T];
582 
583     #[inline]
deref(&self) -> &[T]584     fn deref(&self) -> &[T] {
585         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
586         // initialized elements of type `T`.
587         unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
588     }
589 }
590 
591 impl<T, A> DerefMut for Vec<T, A>
592 where
593     A: Allocator,
594 {
595     #[inline]
deref_mut(&mut self) -> &mut [T]596     fn deref_mut(&mut self) -> &mut [T] {
597         // SAFETY: The memory behind `self.as_ptr()` is guaranteed to contain `self.len`
598         // initialized elements of type `T`.
599         unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
600     }
601 }
602 
603 impl<T: Eq, A> Eq for Vec<T, A> where A: Allocator {}
604 
605 impl<T, I: SliceIndex<[T]>, A> Index<I> for Vec<T, A>
606 where
607     A: Allocator,
608 {
609     type Output = I::Output;
610 
611     #[inline]
index(&self, index: I) -> &Self::Output612     fn index(&self, index: I) -> &Self::Output {
613         Index::index(&**self, index)
614     }
615 }
616 
617 impl<T, I: SliceIndex<[T]>, A> IndexMut<I> for Vec<T, A>
618 where
619     A: Allocator,
620 {
621     #[inline]
index_mut(&mut self, index: I) -> &mut Self::Output622     fn index_mut(&mut self, index: I) -> &mut Self::Output {
623         IndexMut::index_mut(&mut **self, index)
624     }
625 }
626 
627 macro_rules! impl_slice_eq {
628     ($([$($vars:tt)*] $lhs:ty, $rhs:ty,)*) => {
629         $(
630             impl<T, U, $($vars)*> PartialEq<$rhs> for $lhs
631             where
632                 T: PartialEq<U>,
633             {
634                 #[inline]
635                 fn eq(&self, other: &$rhs) -> bool { self[..] == other[..] }
636             }
637         )*
638     }
639 }
640 
641 impl_slice_eq! {
642     [A1: Allocator, A2: Allocator] Vec<T, A1>, Vec<U, A2>,
643     [A: Allocator] Vec<T, A>, &[U],
644     [A: Allocator] Vec<T, A>, &mut [U],
645     [A: Allocator] &[T], Vec<U, A>,
646     [A: Allocator] &mut [T], Vec<U, A>,
647     [A: Allocator] Vec<T, A>, [U],
648     [A: Allocator] [T], Vec<U, A>,
649     [A: Allocator, const N: usize] Vec<T, A>, [U; N],
650     [A: Allocator, const N: usize] Vec<T, A>, &[U; N],
651 }
652 
653 impl<'a, T, A> IntoIterator for &'a Vec<T, A>
654 where
655     A: Allocator,
656 {
657     type Item = &'a T;
658     type IntoIter = slice::Iter<'a, T>;
659 
into_iter(self) -> Self::IntoIter660     fn into_iter(self) -> Self::IntoIter {
661         self.iter()
662     }
663 }
664 
665 impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A>
666 where
667     A: Allocator,
668 {
669     type Item = &'a mut T;
670     type IntoIter = slice::IterMut<'a, T>;
671 
into_iter(self) -> Self::IntoIter672     fn into_iter(self) -> Self::IntoIter {
673         self.iter_mut()
674     }
675 }
676 
677 /// An [`Iterator`] implementation for [`Vec`] that moves elements out of a vector.
678 ///
679 /// This structure is created by the [`Vec::into_iter`] method on [`Vec`] (provided by the
680 /// [`IntoIterator`] trait).
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// let v = kernel::kvec![0, 1, 2]?;
686 /// let iter = v.into_iter();
687 ///
688 /// # Ok::<(), Error>(())
689 /// ```
690 pub struct IntoIter<T, A: Allocator> {
691     ptr: *mut T,
692     buf: NonNull<T>,
693     len: usize,
694     layout: ArrayLayout<T>,
695     _p: PhantomData<A>,
696 }
697 
698 impl<T, A> IntoIter<T, A>
699 where
700     A: Allocator,
701 {
into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize)702     fn into_raw_parts(self) -> (*mut T, NonNull<T>, usize, usize) {
703         let me = ManuallyDrop::new(self);
704         let ptr = me.ptr;
705         let buf = me.buf;
706         let len = me.len;
707         let cap = me.layout.len();
708         (ptr, buf, len, cap)
709     }
710 
711     /// Same as `Iterator::collect` but specialized for `Vec`'s `IntoIter`.
712     ///
713     /// # Examples
714     ///
715     /// ```
716     /// let v = kernel::kvec![1, 2, 3]?;
717     /// let mut it = v.into_iter();
718     ///
719     /// assert_eq!(it.next(), Some(1));
720     ///
721     /// let v = it.collect(GFP_KERNEL);
722     /// assert_eq!(v, [2, 3]);
723     ///
724     /// # Ok::<(), Error>(())
725     /// ```
726     ///
727     /// # Implementation details
728     ///
729     /// Currently, we can't implement `FromIterator`. There are a couple of issues with this trait
730     /// in the kernel, namely:
731     ///
732     /// - Rust's specialization feature is unstable. This prevents us to optimize for the special
733     ///   case where `I::IntoIter` equals `Vec`'s `IntoIter` type.
734     /// - We also can't use `I::IntoIter`'s type ID either to work around this, since `FromIterator`
735     ///   doesn't require this type to be `'static`.
736     /// - `FromIterator::from_iter` does return `Self` instead of `Result<Self, AllocError>`, hence
737     ///   we can't properly handle allocation failures.
738     /// - Neither `Iterator::collect` nor `FromIterator::from_iter` can handle additional allocation
739     ///   flags.
740     ///
741     /// Instead, provide `IntoIter::collect`, such that we can at least convert a `IntoIter` into a
742     /// `Vec` again.
743     ///
744     /// Note that `IntoIter::collect` doesn't require `Flags`, since it re-uses the existing backing
745     /// buffer. However, this backing buffer may be shrunk to the actual count of elements.
collect(self, flags: Flags) -> Vec<T, A>746     pub fn collect(self, flags: Flags) -> Vec<T, A> {
747         let old_layout = self.layout;
748         let (mut ptr, buf, len, mut cap) = self.into_raw_parts();
749         let has_advanced = ptr != buf.as_ptr();
750 
751         if has_advanced {
752             // Copy the contents we have advanced to at the beginning of the buffer.
753             //
754             // SAFETY:
755             // - `ptr` is valid for reads of `len * size_of::<T>()` bytes,
756             // - `buf.as_ptr()` is valid for writes of `len * size_of::<T>()` bytes,
757             // - `ptr` and `buf.as_ptr()` are not be subject to aliasing restrictions relative to
758             //   each other,
759             // - both `ptr` and `buf.ptr()` are properly aligned.
760             unsafe { ptr::copy(ptr, buf.as_ptr(), len) };
761             ptr = buf.as_ptr();
762 
763             // SAFETY: `len` is guaranteed to be smaller than `self.layout.len()`.
764             let layout = unsafe { ArrayLayout::<T>::new_unchecked(len) };
765 
766             // SAFETY: `buf` points to the start of the backing buffer and `len` is guaranteed to be
767             // smaller than `cap`. Depending on `alloc` this operation may shrink the buffer or leaves
768             // it as it is.
769             ptr = match unsafe {
770                 A::realloc(Some(buf.cast()), layout.into(), old_layout.into(), flags)
771             } {
772                 // If we fail to shrink, which likely can't even happen, continue with the existing
773                 // buffer.
774                 Err(_) => ptr,
775                 Ok(ptr) => {
776                     cap = len;
777                     ptr.as_ptr().cast()
778                 }
779             };
780         }
781 
782         // SAFETY: If the iterator has been advanced, the advanced elements have been copied to
783         // the beginning of the buffer and `len` has been adjusted accordingly.
784         //
785         // - `ptr` is guaranteed to point to the start of the backing buffer.
786         // - `cap` is either the original capacity or, after shrinking the buffer, equal to `len`.
787         // - `alloc` is guaranteed to be unchanged since `into_iter` has been called on the original
788         //   `Vec`.
789         unsafe { Vec::from_raw_parts(ptr, len, cap) }
790     }
791 }
792 
793 impl<T, A> Iterator for IntoIter<T, A>
794 where
795     A: Allocator,
796 {
797     type Item = T;
798 
799     /// # Examples
800     ///
801     /// ```
802     /// let v = kernel::kvec![1, 2, 3]?;
803     /// let mut it = v.into_iter();
804     ///
805     /// assert_eq!(it.next(), Some(1));
806     /// assert_eq!(it.next(), Some(2));
807     /// assert_eq!(it.next(), Some(3));
808     /// assert_eq!(it.next(), None);
809     ///
810     /// # Ok::<(), Error>(())
811     /// ```
next(&mut self) -> Option<T>812     fn next(&mut self) -> Option<T> {
813         if self.len == 0 {
814             return None;
815         }
816 
817         let current = self.ptr;
818 
819         // SAFETY: We can't overflow; decreasing `self.len` by one every time we advance `self.ptr`
820         // by one guarantees that.
821         unsafe { self.ptr = self.ptr.add(1) };
822 
823         self.len -= 1;
824 
825         // SAFETY: `current` is guaranteed to point at a valid element within the buffer.
826         Some(unsafe { current.read() })
827     }
828 
829     /// # Examples
830     ///
831     /// ```
832     /// let v: KVec<u32> = kernel::kvec![1, 2, 3]?;
833     /// let mut iter = v.into_iter();
834     /// let size = iter.size_hint().0;
835     ///
836     /// iter.next();
837     /// assert_eq!(iter.size_hint().0, size - 1);
838     ///
839     /// iter.next();
840     /// assert_eq!(iter.size_hint().0, size - 2);
841     ///
842     /// iter.next();
843     /// assert_eq!(iter.size_hint().0, size - 3);
844     ///
845     /// # Ok::<(), Error>(())
846     /// ```
size_hint(&self) -> (usize, Option<usize>)847     fn size_hint(&self) -> (usize, Option<usize>) {
848         (self.len, Some(self.len))
849     }
850 }
851 
852 impl<T, A> Drop for IntoIter<T, A>
853 where
854     A: Allocator,
855 {
drop(&mut self)856     fn drop(&mut self) {
857         // SAFETY: `self.ptr` is guaranteed to be valid by the type invariant.
858         unsafe { ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.ptr, self.len)) };
859 
860         // SAFETY:
861         // - `self.buf` was previously allocated with `A`.
862         // - `self.layout` matches the `ArrayLayout` of the preceding allocation.
863         unsafe { A::free(self.buf.cast(), self.layout.into()) };
864     }
865 }
866 
867 impl<T, A> IntoIterator for Vec<T, A>
868 where
869     A: Allocator,
870 {
871     type Item = T;
872     type IntoIter = IntoIter<T, A>;
873 
874     /// Consumes the `Vec<T, A>` and creates an `Iterator`, which moves each value out of the
875     /// vector (from start to end).
876     ///
877     /// # Examples
878     ///
879     /// ```
880     /// let v = kernel::kvec![1, 2]?;
881     /// let mut v_iter = v.into_iter();
882     ///
883     /// let first_element: Option<u32> = v_iter.next();
884     ///
885     /// assert_eq!(first_element, Some(1));
886     /// assert_eq!(v_iter.next(), Some(2));
887     /// assert_eq!(v_iter.next(), None);
888     ///
889     /// # Ok::<(), Error>(())
890     /// ```
891     ///
892     /// ```
893     /// let v = kernel::kvec![];
894     /// let mut v_iter = v.into_iter();
895     ///
896     /// let first_element: Option<u32> = v_iter.next();
897     ///
898     /// assert_eq!(first_element, None);
899     ///
900     /// # Ok::<(), Error>(())
901     /// ```
902     #[inline]
into_iter(self) -> Self::IntoIter903     fn into_iter(self) -> Self::IntoIter {
904         let buf = self.ptr;
905         let layout = self.layout;
906         let (ptr, len, _) = self.into_raw_parts();
907 
908         IntoIter {
909             ptr,
910             buf,
911             len,
912             layout,
913             _p: PhantomData::<A>,
914         }
915     }
916 }
917