1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * buffered writeback throttling. loosely based on CoDel. We can't drop
4 * packets for IO scheduling, so the logic is something like this:
5 *
6 * - Monitor latencies in a defined window of time.
7 * - If the minimum latency in the above window exceeds some target, increment
8 * scaling step and scale down queue depth by a factor of 2x. The monitoring
9 * window is then shrunk to 100 / sqrt(scaling step + 1).
10 * - For any window where we don't have solid data on what the latencies
11 * look like, retain status quo.
12 * - If latencies look good, decrement scaling step.
13 * - If we're only doing writes, allow the scaling step to go negative. This
14 * will temporarily boost write performance, snapping back to a stable
15 * scaling step of 0 if reads show up or the heavy writers finish. Unlike
16 * positive scaling steps where we shrink the monitoring window, a negative
17 * scaling step retains the default step==0 window size.
18 *
19 * Copyright (C) 2016 Jens Axboe
20 *
21 */
22 #include <linux/kernel.h>
23 #include <linux/blk_types.h>
24 #include <linux/slab.h>
25 #include <linux/backing-dev.h>
26 #include <linux/swap.h>
27
28 #include "blk-stat.h"
29 #include "blk-wbt.h"
30 #include "blk-rq-qos.h"
31 #include "elevator.h"
32 #include "blk.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/wbt.h>
36
37 enum wbt_flags {
38 WBT_TRACKED = 1, /* write, tracked for throttling */
39 WBT_READ = 2, /* read */
40 WBT_SWAP = 4, /* write, from swap_writepage() */
41 WBT_DISCARD = 8, /* discard */
42
43 WBT_NR_BITS = 4, /* number of bits */
44 };
45
46 enum {
47 WBT_RWQ_BG = 0,
48 WBT_RWQ_SWAP,
49 WBT_RWQ_DISCARD,
50 WBT_NUM_RWQ,
51 };
52
53 /*
54 * If current state is WBT_STATE_ON/OFF_DEFAULT, it can be covered to any other
55 * state, if current state is WBT_STATE_ON/OFF_MANUAL, it can only be covered
56 * to WBT_STATE_OFF/ON_MANUAL.
57 */
58 enum {
59 WBT_STATE_ON_DEFAULT = 1, /* on by default */
60 WBT_STATE_ON_MANUAL = 2, /* on manually by sysfs */
61 WBT_STATE_OFF_DEFAULT = 3, /* off by default */
62 WBT_STATE_OFF_MANUAL = 4, /* off manually by sysfs */
63 };
64
65 struct rq_wb {
66 /*
67 * Settings that govern how we throttle
68 */
69 unsigned int wb_background; /* background writeback */
70 unsigned int wb_normal; /* normal writeback */
71
72 short enable_state; /* WBT_STATE_* */
73
74 /*
75 * Number of consecutive periods where we don't have enough
76 * information to make a firm scale up/down decision.
77 */
78 unsigned int unknown_cnt;
79
80 u64 win_nsec; /* default window size */
81 u64 cur_win_nsec; /* current window size */
82
83 struct blk_stat_callback *cb;
84
85 u64 sync_issue;
86 void *sync_cookie;
87
88 unsigned long last_issue; /* last non-throttled issue */
89 unsigned long last_comp; /* last non-throttled comp */
90 unsigned long min_lat_nsec;
91 struct rq_qos rqos;
92 struct rq_wait rq_wait[WBT_NUM_RWQ];
93 struct rq_depth rq_depth;
94 };
95
RQWB(struct rq_qos * rqos)96 static inline struct rq_wb *RQWB(struct rq_qos *rqos)
97 {
98 return container_of(rqos, struct rq_wb, rqos);
99 }
100
wbt_clear_state(struct request * rq)101 static inline void wbt_clear_state(struct request *rq)
102 {
103 rq->wbt_flags = 0;
104 }
105
wbt_flags(struct request * rq)106 static inline enum wbt_flags wbt_flags(struct request *rq)
107 {
108 return rq->wbt_flags;
109 }
110
wbt_is_tracked(struct request * rq)111 static inline bool wbt_is_tracked(struct request *rq)
112 {
113 return rq->wbt_flags & WBT_TRACKED;
114 }
115
wbt_is_read(struct request * rq)116 static inline bool wbt_is_read(struct request *rq)
117 {
118 return rq->wbt_flags & WBT_READ;
119 }
120
121 enum {
122 /*
123 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
124 * from here depending on device stats
125 */
126 RWB_DEF_DEPTH = 16,
127
128 /*
129 * 100msec window
130 */
131 RWB_WINDOW_NSEC = 100 * 1000 * 1000ULL,
132
133 /*
134 * Disregard stats, if we don't meet this minimum
135 */
136 RWB_MIN_WRITE_SAMPLES = 3,
137
138 /*
139 * If we have this number of consecutive windows without enough
140 * information to scale up or down, slowly return to center state
141 * (step == 0).
142 */
143 RWB_UNKNOWN_BUMP = 5,
144 };
145
rwb_enabled(struct rq_wb * rwb)146 static inline bool rwb_enabled(struct rq_wb *rwb)
147 {
148 return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
149 rwb->enable_state != WBT_STATE_OFF_MANUAL;
150 }
151
wb_timestamp(struct rq_wb * rwb,unsigned long * var)152 static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
153 {
154 if (rwb_enabled(rwb)) {
155 const unsigned long cur = jiffies;
156
157 if (cur != *var)
158 *var = cur;
159 }
160 }
161
162 /*
163 * If a task was rate throttled in balance_dirty_pages() within the last
164 * second or so, use that to indicate a higher cleaning rate.
165 */
wb_recent_wait(struct rq_wb * rwb)166 static bool wb_recent_wait(struct rq_wb *rwb)
167 {
168 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
169
170 return time_before(jiffies, bdi->last_bdp_sleep + HZ);
171 }
172
get_rq_wait(struct rq_wb * rwb,enum wbt_flags wb_acct)173 static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
174 enum wbt_flags wb_acct)
175 {
176 if (wb_acct & WBT_SWAP)
177 return &rwb->rq_wait[WBT_RWQ_SWAP];
178 else if (wb_acct & WBT_DISCARD)
179 return &rwb->rq_wait[WBT_RWQ_DISCARD];
180
181 return &rwb->rq_wait[WBT_RWQ_BG];
182 }
183
rwb_wake_all(struct rq_wb * rwb)184 static void rwb_wake_all(struct rq_wb *rwb)
185 {
186 int i;
187
188 for (i = 0; i < WBT_NUM_RWQ; i++) {
189 struct rq_wait *rqw = &rwb->rq_wait[i];
190
191 if (wq_has_sleeper(&rqw->wait))
192 wake_up_all(&rqw->wait);
193 }
194 }
195
wbt_rqw_done(struct rq_wb * rwb,struct rq_wait * rqw,enum wbt_flags wb_acct)196 static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
197 enum wbt_flags wb_acct)
198 {
199 int inflight, limit;
200
201 inflight = atomic_dec_return(&rqw->inflight);
202
203 /*
204 * For discards, our limit is always the background. For writes, if
205 * the device does write back caching, drop further down before we
206 * wake people up.
207 */
208 if (wb_acct & WBT_DISCARD)
209 limit = rwb->wb_background;
210 else if (blk_queue_write_cache(rwb->rqos.disk->queue) &&
211 !wb_recent_wait(rwb))
212 limit = 0;
213 else
214 limit = rwb->wb_normal;
215
216 /*
217 * Don't wake anyone up if we are above the normal limit.
218 */
219 if (inflight && inflight >= limit)
220 return;
221
222 if (wq_has_sleeper(&rqw->wait)) {
223 int diff = limit - inflight;
224
225 if (!inflight || diff >= rwb->wb_background / 2)
226 wake_up_all(&rqw->wait);
227 }
228 }
229
__wbt_done(struct rq_qos * rqos,enum wbt_flags wb_acct)230 static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
231 {
232 struct rq_wb *rwb = RQWB(rqos);
233 struct rq_wait *rqw;
234
235 if (!(wb_acct & WBT_TRACKED))
236 return;
237
238 rqw = get_rq_wait(rwb, wb_acct);
239 wbt_rqw_done(rwb, rqw, wb_acct);
240 }
241
242 /*
243 * Called on completion of a request. Note that it's also called when
244 * a request is merged, when the request gets freed.
245 */
wbt_done(struct rq_qos * rqos,struct request * rq)246 static void wbt_done(struct rq_qos *rqos, struct request *rq)
247 {
248 struct rq_wb *rwb = RQWB(rqos);
249
250 if (!wbt_is_tracked(rq)) {
251 if (rwb->sync_cookie == rq) {
252 rwb->sync_issue = 0;
253 rwb->sync_cookie = NULL;
254 }
255
256 if (wbt_is_read(rq))
257 wb_timestamp(rwb, &rwb->last_comp);
258 } else {
259 WARN_ON_ONCE(rq == rwb->sync_cookie);
260 __wbt_done(rqos, wbt_flags(rq));
261 }
262 wbt_clear_state(rq);
263 }
264
stat_sample_valid(struct blk_rq_stat * stat)265 static inline bool stat_sample_valid(struct blk_rq_stat *stat)
266 {
267 /*
268 * We need at least one read sample, and a minimum of
269 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
270 * that it's writes impacting us, and not just some sole read on
271 * a device that is in a lower power state.
272 */
273 return (stat[READ].nr_samples >= 1 &&
274 stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
275 }
276
rwb_sync_issue_lat(struct rq_wb * rwb)277 static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
278 {
279 u64 issue = READ_ONCE(rwb->sync_issue);
280
281 if (!issue || !rwb->sync_cookie)
282 return 0;
283
284 return blk_time_get_ns() - issue;
285 }
286
wbt_inflight(struct rq_wb * rwb)287 static inline unsigned int wbt_inflight(struct rq_wb *rwb)
288 {
289 unsigned int i, ret = 0;
290
291 for (i = 0; i < WBT_NUM_RWQ; i++)
292 ret += atomic_read(&rwb->rq_wait[i].inflight);
293
294 return ret;
295 }
296
297 enum {
298 LAT_OK = 1,
299 LAT_UNKNOWN,
300 LAT_UNKNOWN_WRITES,
301 LAT_EXCEEDED,
302 };
303
latency_exceeded(struct rq_wb * rwb,struct blk_rq_stat * stat)304 static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
305 {
306 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
307 struct rq_depth *rqd = &rwb->rq_depth;
308 u64 thislat;
309
310 /*
311 * If our stored sync issue exceeds the window size, or it
312 * exceeds our min target AND we haven't logged any entries,
313 * flag the latency as exceeded. wbt works off completion latencies,
314 * but for a flooded device, a single sync IO can take a long time
315 * to complete after being issued. If this time exceeds our
316 * monitoring window AND we didn't see any other completions in that
317 * window, then count that sync IO as a violation of the latency.
318 */
319 thislat = rwb_sync_issue_lat(rwb);
320 if (thislat > rwb->cur_win_nsec ||
321 (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
322 trace_wbt_lat(bdi, thislat);
323 return LAT_EXCEEDED;
324 }
325
326 /*
327 * No read/write mix, if stat isn't valid
328 */
329 if (!stat_sample_valid(stat)) {
330 /*
331 * If we had writes in this stat window and the window is
332 * current, we're only doing writes. If a task recently
333 * waited or still has writes in flights, consider us doing
334 * just writes as well.
335 */
336 if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
337 wbt_inflight(rwb))
338 return LAT_UNKNOWN_WRITES;
339 return LAT_UNKNOWN;
340 }
341
342 /*
343 * If the 'min' latency exceeds our target, step down.
344 */
345 if (stat[READ].min > rwb->min_lat_nsec) {
346 trace_wbt_lat(bdi, stat[READ].min);
347 trace_wbt_stat(bdi, stat);
348 return LAT_EXCEEDED;
349 }
350
351 if (rqd->scale_step)
352 trace_wbt_stat(bdi, stat);
353
354 return LAT_OK;
355 }
356
rwb_trace_step(struct rq_wb * rwb,const char * msg)357 static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
358 {
359 struct backing_dev_info *bdi = rwb->rqos.disk->bdi;
360 struct rq_depth *rqd = &rwb->rq_depth;
361
362 trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
363 rwb->wb_background, rwb->wb_normal, rqd->max_depth);
364 }
365
calc_wb_limits(struct rq_wb * rwb)366 static void calc_wb_limits(struct rq_wb *rwb)
367 {
368 if (rwb->min_lat_nsec == 0) {
369 rwb->wb_normal = rwb->wb_background = 0;
370 } else if (rwb->rq_depth.max_depth <= 2) {
371 rwb->wb_normal = rwb->rq_depth.max_depth;
372 rwb->wb_background = 1;
373 } else {
374 rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
375 rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
376 }
377 }
378
scale_up(struct rq_wb * rwb)379 static void scale_up(struct rq_wb *rwb)
380 {
381 if (!rq_depth_scale_up(&rwb->rq_depth))
382 return;
383 calc_wb_limits(rwb);
384 rwb->unknown_cnt = 0;
385 rwb_wake_all(rwb);
386 rwb_trace_step(rwb, tracepoint_string("scale up"));
387 }
388
scale_down(struct rq_wb * rwb,bool hard_throttle)389 static void scale_down(struct rq_wb *rwb, bool hard_throttle)
390 {
391 if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
392 return;
393 calc_wb_limits(rwb);
394 rwb->unknown_cnt = 0;
395 rwb_trace_step(rwb, tracepoint_string("scale down"));
396 }
397
rwb_arm_timer(struct rq_wb * rwb)398 static void rwb_arm_timer(struct rq_wb *rwb)
399 {
400 struct rq_depth *rqd = &rwb->rq_depth;
401
402 if (rqd->scale_step > 0) {
403 /*
404 * We should speed this up, using some variant of a fast
405 * integer inverse square root calculation. Since we only do
406 * this for every window expiration, it's not a huge deal,
407 * though.
408 */
409 rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
410 int_sqrt((rqd->scale_step + 1) << 8));
411 } else {
412 /*
413 * For step < 0, we don't want to increase/decrease the
414 * window size.
415 */
416 rwb->cur_win_nsec = rwb->win_nsec;
417 }
418
419 blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
420 }
421
wb_timer_fn(struct blk_stat_callback * cb)422 static void wb_timer_fn(struct blk_stat_callback *cb)
423 {
424 struct rq_wb *rwb = cb->data;
425 struct rq_depth *rqd = &rwb->rq_depth;
426 unsigned int inflight = wbt_inflight(rwb);
427 int status;
428
429 if (!rwb->rqos.disk)
430 return;
431
432 status = latency_exceeded(rwb, cb->stat);
433
434 trace_wbt_timer(rwb->rqos.disk->bdi, status, rqd->scale_step, inflight);
435
436 /*
437 * If we exceeded the latency target, step down. If we did not,
438 * step one level up. If we don't know enough to say either exceeded
439 * or ok, then don't do anything.
440 */
441 switch (status) {
442 case LAT_EXCEEDED:
443 scale_down(rwb, true);
444 break;
445 case LAT_OK:
446 scale_up(rwb);
447 break;
448 case LAT_UNKNOWN_WRITES:
449 /*
450 * We don't have a valid read/write sample, but we do have
451 * writes going on. Allow step to go negative, to increase
452 * write performance.
453 */
454 scale_up(rwb);
455 break;
456 case LAT_UNKNOWN:
457 if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
458 break;
459 /*
460 * We get here when previously scaled reduced depth, and we
461 * currently don't have a valid read/write sample. For that
462 * case, slowly return to center state (step == 0).
463 */
464 if (rqd->scale_step > 0)
465 scale_up(rwb);
466 else if (rqd->scale_step < 0)
467 scale_down(rwb, false);
468 break;
469 default:
470 break;
471 }
472
473 /*
474 * Re-arm timer, if we have IO in flight
475 */
476 if (rqd->scale_step || inflight)
477 rwb_arm_timer(rwb);
478 }
479
wbt_update_limits(struct rq_wb * rwb)480 static void wbt_update_limits(struct rq_wb *rwb)
481 {
482 struct rq_depth *rqd = &rwb->rq_depth;
483
484 rqd->scale_step = 0;
485 rqd->scaled_max = false;
486
487 rq_depth_calc_max_depth(rqd);
488 calc_wb_limits(rwb);
489
490 rwb_wake_all(rwb);
491 }
492
wbt_disabled(struct request_queue * q)493 bool wbt_disabled(struct request_queue *q)
494 {
495 struct rq_qos *rqos = wbt_rq_qos(q);
496
497 return !rqos || !rwb_enabled(RQWB(rqos));
498 }
499
wbt_get_min_lat(struct request_queue * q)500 u64 wbt_get_min_lat(struct request_queue *q)
501 {
502 struct rq_qos *rqos = wbt_rq_qos(q);
503 if (!rqos)
504 return 0;
505 return RQWB(rqos)->min_lat_nsec;
506 }
507
wbt_set_min_lat(struct request_queue * q,u64 val)508 void wbt_set_min_lat(struct request_queue *q, u64 val)
509 {
510 struct rq_qos *rqos = wbt_rq_qos(q);
511 if (!rqos)
512 return;
513
514 RQWB(rqos)->min_lat_nsec = val;
515 if (val)
516 RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
517 else
518 RQWB(rqos)->enable_state = WBT_STATE_OFF_MANUAL;
519
520 wbt_update_limits(RQWB(rqos));
521 }
522
523
close_io(struct rq_wb * rwb)524 static bool close_io(struct rq_wb *rwb)
525 {
526 const unsigned long now = jiffies;
527
528 return time_before(now, rwb->last_issue + HZ / 10) ||
529 time_before(now, rwb->last_comp + HZ / 10);
530 }
531
532 #define REQ_HIPRIO (REQ_SYNC | REQ_META | REQ_PRIO | REQ_SWAP)
533
get_limit(struct rq_wb * rwb,blk_opf_t opf)534 static inline unsigned int get_limit(struct rq_wb *rwb, blk_opf_t opf)
535 {
536 unsigned int limit;
537
538 if ((opf & REQ_OP_MASK) == REQ_OP_DISCARD)
539 return rwb->wb_background;
540
541 /*
542 * At this point we know it's a buffered write. If this is
543 * swap trying to free memory, or REQ_SYNC is set, then
544 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
545 * that. If the write is marked as a background write, then use
546 * the idle limit, or go to normal if we haven't had competing
547 * IO for a bit.
548 */
549 if ((opf & REQ_HIPRIO) || wb_recent_wait(rwb))
550 limit = rwb->rq_depth.max_depth;
551 else if ((opf & REQ_BACKGROUND) || close_io(rwb)) {
552 /*
553 * If less than 100ms since we completed unrelated IO,
554 * limit us to half the depth for background writeback.
555 */
556 limit = rwb->wb_background;
557 } else
558 limit = rwb->wb_normal;
559
560 return limit;
561 }
562
563 struct wbt_wait_data {
564 struct rq_wb *rwb;
565 enum wbt_flags wb_acct;
566 blk_opf_t opf;
567 };
568
wbt_inflight_cb(struct rq_wait * rqw,void * private_data)569 static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
570 {
571 struct wbt_wait_data *data = private_data;
572 return rq_wait_inc_below(rqw, get_limit(data->rwb, data->opf));
573 }
574
wbt_cleanup_cb(struct rq_wait * rqw,void * private_data)575 static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
576 {
577 struct wbt_wait_data *data = private_data;
578 wbt_rqw_done(data->rwb, rqw, data->wb_acct);
579 }
580
581 /*
582 * Block if we will exceed our limit, or if we are currently waiting for
583 * the timer to kick off queuing again.
584 */
__wbt_wait(struct rq_wb * rwb,enum wbt_flags wb_acct,blk_opf_t opf)585 static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
586 blk_opf_t opf)
587 {
588 struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
589 struct wbt_wait_data data = {
590 .rwb = rwb,
591 .wb_acct = wb_acct,
592 .opf = opf,
593 };
594
595 rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
596 }
597
wbt_should_throttle(struct bio * bio)598 static inline bool wbt_should_throttle(struct bio *bio)
599 {
600 switch (bio_op(bio)) {
601 case REQ_OP_WRITE:
602 /*
603 * Don't throttle WRITE_ODIRECT
604 */
605 if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
606 (REQ_SYNC | REQ_IDLE))
607 return false;
608 fallthrough;
609 case REQ_OP_DISCARD:
610 return true;
611 default:
612 return false;
613 }
614 }
615
bio_to_wbt_flags(struct rq_wb * rwb,struct bio * bio)616 static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
617 {
618 enum wbt_flags flags = 0;
619
620 if (!rwb_enabled(rwb))
621 return 0;
622
623 if (bio_op(bio) == REQ_OP_READ) {
624 flags = WBT_READ;
625 } else if (wbt_should_throttle(bio)) {
626 if (bio->bi_opf & REQ_SWAP)
627 flags |= WBT_SWAP;
628 if (bio_op(bio) == REQ_OP_DISCARD)
629 flags |= WBT_DISCARD;
630 flags |= WBT_TRACKED;
631 }
632 return flags;
633 }
634
wbt_cleanup(struct rq_qos * rqos,struct bio * bio)635 static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
636 {
637 struct rq_wb *rwb = RQWB(rqos);
638 enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
639 __wbt_done(rqos, flags);
640 }
641
642 /* May sleep, if we have exceeded the writeback limits. */
wbt_wait(struct rq_qos * rqos,struct bio * bio)643 static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
644 {
645 struct rq_wb *rwb = RQWB(rqos);
646 enum wbt_flags flags;
647
648 flags = bio_to_wbt_flags(rwb, bio);
649 if (!(flags & WBT_TRACKED)) {
650 if (flags & WBT_READ)
651 wb_timestamp(rwb, &rwb->last_issue);
652 return;
653 }
654
655 __wbt_wait(rwb, flags, bio->bi_opf);
656
657 if (!blk_stat_is_active(rwb->cb))
658 rwb_arm_timer(rwb);
659 }
660
wbt_track(struct rq_qos * rqos,struct request * rq,struct bio * bio)661 static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
662 {
663 struct rq_wb *rwb = RQWB(rqos);
664 rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
665 }
666
wbt_issue(struct rq_qos * rqos,struct request * rq)667 static void wbt_issue(struct rq_qos *rqos, struct request *rq)
668 {
669 struct rq_wb *rwb = RQWB(rqos);
670
671 if (!rwb_enabled(rwb))
672 return;
673
674 /*
675 * Track sync issue, in case it takes a long time to complete. Allows us
676 * to react quicker, if a sync IO takes a long time to complete. Note
677 * that this is just a hint. The request can go away when it completes,
678 * so it's important we never dereference it. We only use the address to
679 * compare with, which is why we store the sync_issue time locally.
680 */
681 if (wbt_is_read(rq) && !rwb->sync_issue) {
682 rwb->sync_cookie = rq;
683 rwb->sync_issue = rq->io_start_time_ns;
684 }
685 }
686
wbt_requeue(struct rq_qos * rqos,struct request * rq)687 static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
688 {
689 struct rq_wb *rwb = RQWB(rqos);
690 if (!rwb_enabled(rwb))
691 return;
692 if (rq == rwb->sync_cookie) {
693 rwb->sync_issue = 0;
694 rwb->sync_cookie = NULL;
695 }
696 }
697
698 /*
699 * Enable wbt if defaults are configured that way
700 */
wbt_enable_default(struct gendisk * disk)701 void wbt_enable_default(struct gendisk *disk)
702 {
703 struct request_queue *q = disk->queue;
704 struct rq_qos *rqos;
705 bool enable = IS_ENABLED(CONFIG_BLK_WBT_MQ);
706
707 if (q->elevator &&
708 test_bit(ELEVATOR_FLAG_DISABLE_WBT, &q->elevator->flags))
709 enable = false;
710
711 /* Throttling already enabled? */
712 rqos = wbt_rq_qos(q);
713 if (rqos) {
714 if (enable && RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
715 RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
716 return;
717 }
718
719 /* Queue not registered? Maybe shutting down... */
720 if (!blk_queue_registered(q))
721 return;
722
723 if (queue_is_mq(q) && enable)
724 wbt_init(disk);
725 }
726 EXPORT_SYMBOL_GPL(wbt_enable_default);
727
wbt_default_latency_nsec(struct request_queue * q)728 u64 wbt_default_latency_nsec(struct request_queue *q)
729 {
730 /*
731 * We default to 2msec for non-rotational storage, and 75msec
732 * for rotational storage.
733 */
734 if (blk_queue_nonrot(q))
735 return 2000000ULL;
736 else
737 return 75000000ULL;
738 }
739
wbt_data_dir(const struct request * rq)740 static int wbt_data_dir(const struct request *rq)
741 {
742 const enum req_op op = req_op(rq);
743
744 if (op == REQ_OP_READ)
745 return READ;
746 else if (op_is_write(op))
747 return WRITE;
748
749 /* don't account */
750 return -1;
751 }
752
wbt_queue_depth_changed(struct rq_qos * rqos)753 static void wbt_queue_depth_changed(struct rq_qos *rqos)
754 {
755 RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->disk->queue);
756 wbt_update_limits(RQWB(rqos));
757 }
758
wbt_exit(struct rq_qos * rqos)759 static void wbt_exit(struct rq_qos *rqos)
760 {
761 struct rq_wb *rwb = RQWB(rqos);
762
763 blk_stat_remove_callback(rqos->disk->queue, rwb->cb);
764 blk_stat_free_callback(rwb->cb);
765 kfree(rwb);
766 }
767
768 /*
769 * Disable wbt, if enabled by default.
770 */
wbt_disable_default(struct gendisk * disk)771 void wbt_disable_default(struct gendisk *disk)
772 {
773 struct rq_qos *rqos = wbt_rq_qos(disk->queue);
774 struct rq_wb *rwb;
775 if (!rqos)
776 return;
777 rwb = RQWB(rqos);
778 if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
779 blk_stat_deactivate(rwb->cb);
780 rwb->enable_state = WBT_STATE_OFF_DEFAULT;
781 }
782 }
783 EXPORT_SYMBOL_GPL(wbt_disable_default);
784
785 #ifdef CONFIG_BLK_DEBUG_FS
wbt_curr_win_nsec_show(void * data,struct seq_file * m)786 static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
787 {
788 struct rq_qos *rqos = data;
789 struct rq_wb *rwb = RQWB(rqos);
790
791 seq_printf(m, "%llu\n", rwb->cur_win_nsec);
792 return 0;
793 }
794
wbt_enabled_show(void * data,struct seq_file * m)795 static int wbt_enabled_show(void *data, struct seq_file *m)
796 {
797 struct rq_qos *rqos = data;
798 struct rq_wb *rwb = RQWB(rqos);
799
800 seq_printf(m, "%d\n", rwb->enable_state);
801 return 0;
802 }
803
wbt_id_show(void * data,struct seq_file * m)804 static int wbt_id_show(void *data, struct seq_file *m)
805 {
806 struct rq_qos *rqos = data;
807
808 seq_printf(m, "%u\n", rqos->id);
809 return 0;
810 }
811
wbt_inflight_show(void * data,struct seq_file * m)812 static int wbt_inflight_show(void *data, struct seq_file *m)
813 {
814 struct rq_qos *rqos = data;
815 struct rq_wb *rwb = RQWB(rqos);
816 int i;
817
818 for (i = 0; i < WBT_NUM_RWQ; i++)
819 seq_printf(m, "%d: inflight %d\n", i,
820 atomic_read(&rwb->rq_wait[i].inflight));
821 return 0;
822 }
823
wbt_min_lat_nsec_show(void * data,struct seq_file * m)824 static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
825 {
826 struct rq_qos *rqos = data;
827 struct rq_wb *rwb = RQWB(rqos);
828
829 seq_printf(m, "%lu\n", rwb->min_lat_nsec);
830 return 0;
831 }
832
wbt_unknown_cnt_show(void * data,struct seq_file * m)833 static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
834 {
835 struct rq_qos *rqos = data;
836 struct rq_wb *rwb = RQWB(rqos);
837
838 seq_printf(m, "%u\n", rwb->unknown_cnt);
839 return 0;
840 }
841
wbt_normal_show(void * data,struct seq_file * m)842 static int wbt_normal_show(void *data, struct seq_file *m)
843 {
844 struct rq_qos *rqos = data;
845 struct rq_wb *rwb = RQWB(rqos);
846
847 seq_printf(m, "%u\n", rwb->wb_normal);
848 return 0;
849 }
850
wbt_background_show(void * data,struct seq_file * m)851 static int wbt_background_show(void *data, struct seq_file *m)
852 {
853 struct rq_qos *rqos = data;
854 struct rq_wb *rwb = RQWB(rqos);
855
856 seq_printf(m, "%u\n", rwb->wb_background);
857 return 0;
858 }
859
860 static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
861 {"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
862 {"enabled", 0400, wbt_enabled_show},
863 {"id", 0400, wbt_id_show},
864 {"inflight", 0400, wbt_inflight_show},
865 {"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
866 {"unknown_cnt", 0400, wbt_unknown_cnt_show},
867 {"wb_normal", 0400, wbt_normal_show},
868 {"wb_background", 0400, wbt_background_show},
869 {},
870 };
871 #endif
872
873 static const struct rq_qos_ops wbt_rqos_ops = {
874 .throttle = wbt_wait,
875 .issue = wbt_issue,
876 .track = wbt_track,
877 .requeue = wbt_requeue,
878 .done = wbt_done,
879 .cleanup = wbt_cleanup,
880 .queue_depth_changed = wbt_queue_depth_changed,
881 .exit = wbt_exit,
882 #ifdef CONFIG_BLK_DEBUG_FS
883 .debugfs_attrs = wbt_debugfs_attrs,
884 #endif
885 };
886
wbt_init(struct gendisk * disk)887 int wbt_init(struct gendisk *disk)
888 {
889 struct request_queue *q = disk->queue;
890 struct rq_wb *rwb;
891 int i;
892 int ret;
893
894 rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
895 if (!rwb)
896 return -ENOMEM;
897
898 rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
899 if (!rwb->cb) {
900 kfree(rwb);
901 return -ENOMEM;
902 }
903
904 for (i = 0; i < WBT_NUM_RWQ; i++)
905 rq_wait_init(&rwb->rq_wait[i]);
906
907 rwb->last_comp = rwb->last_issue = jiffies;
908 rwb->win_nsec = RWB_WINDOW_NSEC;
909 rwb->enable_state = WBT_STATE_ON_DEFAULT;
910 rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
911 rwb->min_lat_nsec = wbt_default_latency_nsec(q);
912 rwb->rq_depth.queue_depth = blk_queue_depth(q);
913 wbt_update_limits(rwb);
914
915 /*
916 * Assign rwb and add the stats callback.
917 */
918 mutex_lock(&q->rq_qos_mutex);
919 ret = rq_qos_add(&rwb->rqos, disk, RQ_QOS_WBT, &wbt_rqos_ops);
920 mutex_unlock(&q->rq_qos_mutex);
921 if (ret)
922 goto err_free;
923
924 blk_stat_add_callback(q, rwb->cb);
925
926 return 0;
927
928 err_free:
929 blk_stat_free_callback(rwb->cb);
930 kfree(rwb);
931 return ret;
932
933 }
934