xref: /linux/drivers/media/platform/renesas/vsp1/vsp1_drm.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * vsp1_drm.c  --  R-Car VSP1 DRM/KMS Interface
4  *
5  * Copyright (C) 2015 Renesas Electronics Corporation
6  *
7  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8  */
9 
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/export.h>
13 #include <linux/slab.h>
14 
15 #include <media/media-entity.h>
16 #include <media/v4l2-subdev.h>
17 #include <media/vsp1.h>
18 
19 #include "vsp1.h"
20 #include "vsp1_brx.h"
21 #include "vsp1_dl.h"
22 #include "vsp1_drm.h"
23 #include "vsp1_lif.h"
24 #include "vsp1_pipe.h"
25 #include "vsp1_rwpf.h"
26 #include "vsp1_uif.h"
27 
28 #define BRX_NAME(e)	(e)->type == VSP1_ENTITY_BRU ? "BRU" : "BRS"
29 
30 /* -----------------------------------------------------------------------------
31  * Interrupt Handling
32  */
33 
vsp1_du_pipeline_frame_end(struct vsp1_pipeline * pipe,unsigned int completion)34 static void vsp1_du_pipeline_frame_end(struct vsp1_pipeline *pipe,
35 				       unsigned int completion)
36 {
37 	struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
38 
39 	if (drm_pipe->du_complete) {
40 		struct vsp1_entity *uif = drm_pipe->uif;
41 		unsigned int status = completion
42 				    & (VSP1_DU_STATUS_COMPLETE |
43 				       VSP1_DU_STATUS_WRITEBACK);
44 		u32 crc;
45 
46 		crc = uif ? vsp1_uif_get_crc(to_uif(&uif->subdev)) : 0;
47 		drm_pipe->du_complete(drm_pipe->du_private, status, crc);
48 	}
49 
50 	if (completion & VSP1_DL_FRAME_END_INTERNAL) {
51 		drm_pipe->force_brx_release = false;
52 		wake_up(&drm_pipe->wait_queue);
53 	}
54 }
55 
56 /* -----------------------------------------------------------------------------
57  * Pipeline Configuration
58  */
59 
60 /*
61  * Insert the UIF in the pipeline between the prev and next entities. If no UIF
62  * is available connect the two entities directly.
63  */
vsp1_du_insert_uif(struct vsp1_device * vsp1,struct vsp1_pipeline * pipe,struct vsp1_entity * uif,struct vsp1_entity * prev,unsigned int prev_pad,struct vsp1_entity * next,unsigned int next_pad)64 static int vsp1_du_insert_uif(struct vsp1_device *vsp1,
65 			      struct vsp1_pipeline *pipe,
66 			      struct vsp1_entity *uif,
67 			      struct vsp1_entity *prev, unsigned int prev_pad,
68 			      struct vsp1_entity *next, unsigned int next_pad)
69 {
70 	struct v4l2_subdev_format format = {
71 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
72 	};
73 	int ret;
74 
75 	if (!uif) {
76 		/*
77 		 * If there's no UIF to be inserted, connect the previous and
78 		 * next entities directly.
79 		 */
80 		prev->sink = next;
81 		prev->sink_pad = next_pad;
82 		return 0;
83 	}
84 
85 	prev->sink = uif;
86 	prev->sink_pad = UIF_PAD_SINK;
87 
88 	format.pad = prev_pad;
89 
90 	ret = v4l2_subdev_call(&prev->subdev, pad, get_fmt, NULL, &format);
91 	if (ret < 0)
92 		return ret;
93 
94 	format.pad = UIF_PAD_SINK;
95 
96 	ret = v4l2_subdev_call(&uif->subdev, pad, set_fmt, NULL, &format);
97 	if (ret < 0)
98 		return ret;
99 
100 	dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on UIF sink\n",
101 		__func__, format.format.width, format.format.height,
102 		format.format.code);
103 
104 	/*
105 	 * The UIF doesn't mangle the format between its sink and source pads,
106 	 * so there is no need to retrieve the format on its source pad.
107 	 */
108 
109 	uif->sink = next;
110 	uif->sink_pad = next_pad;
111 
112 	return 0;
113 }
114 
115 /* Setup one RPF and the connected BRx sink pad. */
vsp1_du_pipeline_setup_rpf(struct vsp1_device * vsp1,struct vsp1_pipeline * pipe,struct vsp1_rwpf * rpf,struct vsp1_entity * uif,unsigned int brx_input)116 static int vsp1_du_pipeline_setup_rpf(struct vsp1_device *vsp1,
117 				      struct vsp1_pipeline *pipe,
118 				      struct vsp1_rwpf *rpf,
119 				      struct vsp1_entity *uif,
120 				      unsigned int brx_input)
121 {
122 	const struct vsp1_drm_input *input = &vsp1->drm->inputs[rpf->entity.index];
123 	struct v4l2_subdev_selection sel = {
124 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
125 	};
126 	struct v4l2_subdev_format format = {
127 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
128 	};
129 	int ret;
130 
131 	/*
132 	 * Configure the format on the RPF sink pad and propagate it up to the
133 	 * BRx sink pad.
134 	 */
135 	format.pad = RWPF_PAD_SINK;
136 	format.format.width = input->crop.width + input->crop.left;
137 	format.format.height = input->crop.height + input->crop.top;
138 	format.format.code = rpf->fmtinfo->mbus;
139 	format.format.field = V4L2_FIELD_NONE;
140 	format.format.ycbcr_enc = input->ycbcr_enc;
141 	format.format.quantization = input->quantization;
142 
143 	ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
144 			       &format);
145 	if (ret < 0)
146 		return ret;
147 
148 	dev_dbg(vsp1->dev,
149 		"%s: set format %ux%u (%x) on RPF%u sink\n",
150 		__func__, format.format.width, format.format.height,
151 		format.format.code, rpf->entity.index);
152 
153 	sel.pad = RWPF_PAD_SINK;
154 	sel.target = V4L2_SEL_TGT_CROP;
155 	sel.r = input->crop;
156 
157 	ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_selection, NULL,
158 			       &sel);
159 	if (ret < 0)
160 		return ret;
161 
162 	dev_dbg(vsp1->dev,
163 		"%s: set selection (%u,%u)/%ux%u on RPF%u sink\n",
164 		__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
165 		rpf->entity.index);
166 
167 	/*
168 	 * RPF source, hardcode the format to ARGB8888 to turn on format
169 	 * conversion if needed.
170 	 */
171 	format.pad = RWPF_PAD_SOURCE;
172 
173 	ret = v4l2_subdev_call(&rpf->entity.subdev, pad, get_fmt, NULL,
174 			       &format);
175 	if (ret < 0)
176 		return ret;
177 
178 	dev_dbg(vsp1->dev,
179 		"%s: got format %ux%u (%x) on RPF%u source\n",
180 		__func__, format.format.width, format.format.height,
181 		format.format.code, rpf->entity.index);
182 
183 	format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
184 
185 	ret = v4l2_subdev_call(&rpf->entity.subdev, pad, set_fmt, NULL,
186 			       &format);
187 	if (ret < 0)
188 		return ret;
189 
190 	/* Insert and configure the UIF if available. */
191 	ret = vsp1_du_insert_uif(vsp1, pipe, uif, &rpf->entity, RWPF_PAD_SOURCE,
192 				 pipe->brx, brx_input);
193 	if (ret < 0)
194 		return ret;
195 
196 	/* BRx sink, propagate the format from the RPF source. */
197 	format.pad = brx_input;
198 
199 	ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_fmt, NULL,
200 			       &format);
201 	if (ret < 0)
202 		return ret;
203 
204 	dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n",
205 		__func__, format.format.width, format.format.height,
206 		format.format.code, BRX_NAME(pipe->brx), format.pad);
207 
208 	sel.pad = brx_input;
209 	sel.target = V4L2_SEL_TGT_COMPOSE;
210 	sel.r = vsp1->drm->inputs[rpf->entity.index].compose;
211 
212 	ret = v4l2_subdev_call(&pipe->brx->subdev, pad, set_selection, NULL,
213 			       &sel);
214 	if (ret < 0)
215 		return ret;
216 
217 	dev_dbg(vsp1->dev, "%s: set selection (%u,%u)/%ux%u on %s pad %u\n",
218 		__func__, sel.r.left, sel.r.top, sel.r.width, sel.r.height,
219 		BRX_NAME(pipe->brx), sel.pad);
220 
221 	return 0;
222 }
223 
224 /* Setup the BRx source pad. */
225 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1,
226 					 struct vsp1_pipeline *pipe);
227 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe);
228 
vsp1_du_pipeline_setup_brx(struct vsp1_device * vsp1,struct vsp1_pipeline * pipe)229 static int vsp1_du_pipeline_setup_brx(struct vsp1_device *vsp1,
230 				      struct vsp1_pipeline *pipe)
231 {
232 	struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
233 	struct v4l2_subdev_format format = {
234 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
235 	};
236 	struct vsp1_entity *brx;
237 	int ret;
238 
239 	/*
240 	 * Pick a BRx:
241 	 * - If we need more than two inputs, use the BRU.
242 	 * - Otherwise, if we are not forced to release our BRx, keep it.
243 	 * - Else, use any free BRx (randomly starting with the BRU).
244 	 */
245 	if (pipe->num_inputs > 2)
246 		brx = &vsp1->bru->entity;
247 	else if (pipe->brx && !drm_pipe->force_brx_release)
248 		brx = pipe->brx;
249 	else if (vsp1_feature(vsp1, VSP1_HAS_BRU) && !vsp1->bru->entity.pipe)
250 		brx = &vsp1->bru->entity;
251 	else
252 		brx = &vsp1->brs->entity;
253 
254 	/* Switch BRx if needed. */
255 	if (brx != pipe->brx) {
256 		struct vsp1_entity *released_brx = NULL;
257 
258 		/* Release our BRx if we have one. */
259 		if (pipe->brx) {
260 			dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n",
261 				__func__, pipe->lif->index,
262 				BRX_NAME(pipe->brx));
263 
264 			/*
265 			 * The BRx might be acquired by the other pipeline in
266 			 * the next step. We must thus remove it from the list
267 			 * of entities for this pipeline. The other pipeline's
268 			 * hardware configuration will reconfigure the BRx
269 			 * routing.
270 			 *
271 			 * However, if the other pipeline doesn't acquire our
272 			 * BRx, we need to keep it in the list, otherwise the
273 			 * hardware configuration step won't disconnect it from
274 			 * the pipeline. To solve this, store the released BRx
275 			 * pointer to add it back to the list of entities later
276 			 * if it isn't acquired by the other pipeline.
277 			 */
278 			released_brx = pipe->brx;
279 
280 			list_del(&pipe->brx->list_pipe);
281 			pipe->brx->sink = NULL;
282 			pipe->brx->pipe = NULL;
283 			pipe->brx = NULL;
284 		}
285 
286 		/*
287 		 * If the BRx we need is in use, force the owner pipeline to
288 		 * switch to the other BRx and wait until the switch completes.
289 		 */
290 		if (brx->pipe) {
291 			struct vsp1_drm_pipeline *owner_pipe;
292 
293 			dev_dbg(vsp1->dev, "%s: pipe %u: waiting for %s\n",
294 				__func__, pipe->lif->index, BRX_NAME(brx));
295 
296 			owner_pipe = to_vsp1_drm_pipeline(brx->pipe);
297 			owner_pipe->force_brx_release = true;
298 
299 			vsp1_du_pipeline_setup_inputs(vsp1, &owner_pipe->pipe);
300 			vsp1_du_pipeline_configure(&owner_pipe->pipe);
301 
302 			ret = wait_event_timeout(owner_pipe->wait_queue,
303 						 !owner_pipe->force_brx_release,
304 						 msecs_to_jiffies(500));
305 			if (ret == 0)
306 				dev_warn(vsp1->dev,
307 					 "DRM pipeline %u reconfiguration timeout\n",
308 					 owner_pipe->pipe.lif->index);
309 		}
310 
311 		/*
312 		 * If the BRx we have released previously hasn't been acquired
313 		 * by the other pipeline, add it back to the entities list (with
314 		 * the pipe pointer NULL) to let vsp1_du_pipeline_configure()
315 		 * disconnect it from the hardware pipeline.
316 		 */
317 		if (released_brx && !released_brx->pipe)
318 			list_add_tail(&released_brx->list_pipe,
319 				      &pipe->entities);
320 
321 		/*
322 		 * Add the BRx to the pipeline, inserting it just before the
323 		 * WPF.
324 		 */
325 		dev_dbg(vsp1->dev, "%s: pipe %u: acquired %s\n",
326 			__func__, pipe->lif->index, BRX_NAME(brx));
327 
328 		pipe->brx = brx;
329 		pipe->brx->pipe = pipe;
330 		pipe->brx->sink = &pipe->output->entity;
331 		pipe->brx->sink_pad = 0;
332 
333 		list_add_tail(&pipe->brx->list_pipe,
334 			      &pipe->output->entity.list_pipe);
335 	}
336 
337 	/*
338 	 * Configure the format on the BRx source and verify that it matches the
339 	 * requested format. We don't set the media bus code as it is configured
340 	 * on the BRx sink pad 0 and propagated inside the entity, not on the
341 	 * source pad.
342 	 */
343 	format.pad = brx->source_pad;
344 	format.format.width = drm_pipe->width;
345 	format.format.height = drm_pipe->height;
346 	format.format.field = V4L2_FIELD_NONE;
347 
348 	ret = v4l2_subdev_call(&brx->subdev, pad, set_fmt, NULL,
349 			       &format);
350 	if (ret < 0)
351 		return ret;
352 
353 	dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on %s pad %u\n",
354 		__func__, format.format.width, format.format.height,
355 		format.format.code, BRX_NAME(brx), brx->source_pad);
356 
357 	if (format.format.width != drm_pipe->width ||
358 	    format.format.height != drm_pipe->height) {
359 		dev_dbg(vsp1->dev, "%s: format mismatch\n", __func__);
360 		return -EPIPE;
361 	}
362 
363 	return 0;
364 }
365 
rpf_zpos(struct vsp1_device * vsp1,struct vsp1_rwpf * rpf)366 static unsigned int rpf_zpos(struct vsp1_device *vsp1, struct vsp1_rwpf *rpf)
367 {
368 	return vsp1->drm->inputs[rpf->entity.index].zpos;
369 }
370 
371 /* Setup the input side of the pipeline (RPFs and BRx). */
vsp1_du_pipeline_setup_inputs(struct vsp1_device * vsp1,struct vsp1_pipeline * pipe)372 static int vsp1_du_pipeline_setup_inputs(struct vsp1_device *vsp1,
373 					struct vsp1_pipeline *pipe)
374 {
375 	struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
376 	struct vsp1_rwpf *inputs[VSP1_MAX_RPF] = { NULL, };
377 	struct vsp1_entity *uif;
378 	bool use_uif = false;
379 	struct vsp1_brx *brx;
380 	unsigned int i;
381 	int ret;
382 
383 	/* Count the number of enabled inputs and sort them by Z-order. */
384 	pipe->num_inputs = 0;
385 
386 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
387 		struct vsp1_rwpf *rpf = vsp1->rpf[i];
388 		unsigned int j;
389 
390 		if (!pipe->inputs[i])
391 			continue;
392 
393 		/* Insert the RPF in the sorted RPFs array. */
394 		for (j = pipe->num_inputs++; j > 0; --j) {
395 			if (rpf_zpos(vsp1, inputs[j-1]) <= rpf_zpos(vsp1, rpf))
396 				break;
397 			inputs[j] = inputs[j-1];
398 		}
399 
400 		inputs[j] = rpf;
401 	}
402 
403 	/*
404 	 * Setup the BRx. This must be done before setting up the RPF input
405 	 * pipelines as the BRx sink compose rectangles depend on the BRx source
406 	 * format.
407 	 */
408 	ret = vsp1_du_pipeline_setup_brx(vsp1, pipe);
409 	if (ret < 0) {
410 		dev_err(vsp1->dev, "%s: failed to setup %s source\n", __func__,
411 			BRX_NAME(pipe->brx));
412 		return ret;
413 	}
414 
415 	brx = to_brx(&pipe->brx->subdev);
416 
417 	/* Setup the RPF input pipeline for every enabled input. */
418 	for (i = 0; i < pipe->brx->source_pad; ++i) {
419 		struct vsp1_rwpf *rpf = inputs[i];
420 
421 		if (!rpf) {
422 			brx->inputs[i].rpf = NULL;
423 			continue;
424 		}
425 
426 		if (!rpf->entity.pipe) {
427 			rpf->entity.pipe = pipe;
428 			list_add(&rpf->entity.list_pipe, &pipe->entities);
429 		}
430 
431 		brx->inputs[i].rpf = rpf;
432 		rpf->brx_input = i;
433 		rpf->entity.sink = pipe->brx;
434 		rpf->entity.sink_pad = i;
435 
436 		dev_dbg(vsp1->dev, "%s: connecting RPF.%u to %s:%u\n",
437 			__func__, rpf->entity.index, BRX_NAME(pipe->brx), i);
438 
439 		uif = drm_pipe->crc.source == VSP1_DU_CRC_PLANE &&
440 		      drm_pipe->crc.index == i ? drm_pipe->uif : NULL;
441 		if (uif)
442 			use_uif = true;
443 		ret = vsp1_du_pipeline_setup_rpf(vsp1, pipe, rpf, uif, i);
444 		if (ret < 0) {
445 			dev_err(vsp1->dev,
446 				"%s: failed to setup RPF.%u\n",
447 				__func__, rpf->entity.index);
448 			return ret;
449 		}
450 	}
451 
452 	/* Insert and configure the UIF at the BRx output if available. */
453 	uif = drm_pipe->crc.source == VSP1_DU_CRC_OUTPUT ? drm_pipe->uif : NULL;
454 	if (uif)
455 		use_uif = true;
456 	ret = vsp1_du_insert_uif(vsp1, pipe, uif,
457 				 pipe->brx, pipe->brx->source_pad,
458 				 &pipe->output->entity, 0);
459 	if (ret < 0)
460 		dev_err(vsp1->dev, "%s: failed to setup UIF after %s\n",
461 			__func__, BRX_NAME(pipe->brx));
462 
463 	/* If the DRM pipe does not have a UIF there is nothing we can update. */
464 	if (!drm_pipe->uif)
465 		return 0;
466 
467 	/*
468 	 * If the UIF is not in use schedule it for removal by setting its pipe
469 	 * pointer to NULL, vsp1_du_pipeline_configure() will remove it from the
470 	 * hardware pipeline and from the pipeline's list of entities. Otherwise
471 	 * make sure it is present in the pipeline's list of entities if it
472 	 * wasn't already.
473 	 */
474 	if (!use_uif) {
475 		drm_pipe->uif->pipe = NULL;
476 	} else if (!drm_pipe->uif->pipe) {
477 		drm_pipe->uif->pipe = pipe;
478 		list_add_tail(&drm_pipe->uif->list_pipe, &pipe->entities);
479 	}
480 
481 	return 0;
482 }
483 
484 /* Setup the output side of the pipeline (WPF and LIF). */
vsp1_du_pipeline_setup_output(struct vsp1_device * vsp1,struct vsp1_pipeline * pipe)485 static int vsp1_du_pipeline_setup_output(struct vsp1_device *vsp1,
486 					 struct vsp1_pipeline *pipe)
487 {
488 	struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
489 	struct v4l2_subdev_format format = {
490 		.which = V4L2_SUBDEV_FORMAT_ACTIVE,
491 	};
492 	int ret;
493 
494 	format.pad = RWPF_PAD_SINK;
495 	format.format.width = drm_pipe->width;
496 	format.format.height = drm_pipe->height;
497 	format.format.code = MEDIA_BUS_FMT_ARGB8888_1X32;
498 	format.format.field = V4L2_FIELD_NONE;
499 
500 	ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, set_fmt, NULL,
501 			       &format);
502 	if (ret < 0)
503 		return ret;
504 
505 	dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on WPF%u sink\n",
506 		__func__, format.format.width, format.format.height,
507 		format.format.code, pipe->output->entity.index);
508 
509 	format.pad = RWPF_PAD_SOURCE;
510 	ret = v4l2_subdev_call(&pipe->output->entity.subdev, pad, get_fmt, NULL,
511 			       &format);
512 	if (ret < 0)
513 		return ret;
514 
515 	dev_dbg(vsp1->dev, "%s: got format %ux%u (%x) on WPF%u source\n",
516 		__func__, format.format.width, format.format.height,
517 		format.format.code, pipe->output->entity.index);
518 
519 	format.pad = LIF_PAD_SINK;
520 	ret = v4l2_subdev_call(&pipe->lif->subdev, pad, set_fmt, NULL,
521 			       &format);
522 	if (ret < 0)
523 		return ret;
524 
525 	dev_dbg(vsp1->dev, "%s: set format %ux%u (%x) on LIF%u sink\n",
526 		__func__, format.format.width, format.format.height,
527 		format.format.code, pipe->lif->index);
528 
529 	/*
530 	 * Verify that the format at the output of the pipeline matches the
531 	 * requested frame size and media bus code.
532 	 */
533 	if (format.format.width != drm_pipe->width ||
534 	    format.format.height != drm_pipe->height ||
535 	    format.format.code != MEDIA_BUS_FMT_ARGB8888_1X32) {
536 		dev_dbg(vsp1->dev, "%s: format mismatch on LIF%u\n", __func__,
537 			pipe->lif->index);
538 		return -EPIPE;
539 	}
540 
541 	return 0;
542 }
543 
544 /* Configure all entities in the pipeline. */
vsp1_du_pipeline_configure(struct vsp1_pipeline * pipe)545 static void vsp1_du_pipeline_configure(struct vsp1_pipeline *pipe)
546 {
547 	struct vsp1_drm_pipeline *drm_pipe = to_vsp1_drm_pipeline(pipe);
548 	struct vsp1_entity *entity;
549 	struct vsp1_entity *next;
550 	struct vsp1_dl_list *dl;
551 	struct vsp1_dl_body *dlb;
552 	unsigned int dl_flags = 0;
553 
554 	vsp1_pipeline_calculate_partition(pipe, &pipe->part_table[0],
555 					  drm_pipe->width, 0);
556 
557 	if (drm_pipe->force_brx_release)
558 		dl_flags |= VSP1_DL_FRAME_END_INTERNAL;
559 	if (pipe->output->writeback)
560 		dl_flags |= VSP1_DL_FRAME_END_WRITEBACK;
561 
562 	dl = vsp1_dl_list_get(pipe->output->dlm);
563 	dlb = vsp1_dl_list_get_body0(dl);
564 
565 	list_for_each_entry_safe(entity, next, &pipe->entities, list_pipe) {
566 		/* Disconnect unused entities from the pipeline. */
567 		if (!entity->pipe) {
568 			vsp1_dl_body_write(dlb, entity->route->reg,
569 					   VI6_DPR_NODE_UNUSED);
570 
571 			entity->sink = NULL;
572 			list_del(&entity->list_pipe);
573 
574 			continue;
575 		}
576 
577 		vsp1_entity_route_setup(entity, pipe, dlb);
578 		vsp1_entity_configure_stream(entity, entity->state, pipe,
579 					     dl, dlb);
580 		vsp1_entity_configure_frame(entity, pipe, dl, dlb);
581 		vsp1_entity_configure_partition(entity, pipe,
582 						&pipe->part_table[0], dl, dlb);
583 	}
584 
585 	vsp1_dl_list_commit(dl, dl_flags);
586 }
587 
vsp1_du_pipeline_set_rwpf_format(struct vsp1_device * vsp1,struct vsp1_rwpf * rwpf,u32 pixelformat,unsigned int pitch)588 static int vsp1_du_pipeline_set_rwpf_format(struct vsp1_device *vsp1,
589 					    struct vsp1_rwpf *rwpf,
590 					    u32 pixelformat, unsigned int pitch)
591 {
592 	const struct vsp1_format_info *fmtinfo;
593 	unsigned int chroma_hsub;
594 
595 	fmtinfo = vsp1_get_format_info(vsp1, pixelformat);
596 	if (!fmtinfo) {
597 		dev_dbg(vsp1->dev, "Unsupported pixel format %p4cc\n",
598 			&pixelformat);
599 		return -EINVAL;
600 	}
601 
602 	/*
603 	 * Only formats with three planes can affect the chroma planes pitch.
604 	 * All formats with two planes have a horizontal subsampling value of 2,
605 	 * but combine U and V in a single chroma plane, which thus results in
606 	 * the luma plane and chroma plane having the same pitch.
607 	 */
608 	chroma_hsub = (fmtinfo->planes == 3) ? fmtinfo->hsub : 1;
609 
610 	rwpf->fmtinfo = fmtinfo;
611 	rwpf->format.num_planes = fmtinfo->planes;
612 	rwpf->format.plane_fmt[0].bytesperline = pitch;
613 	rwpf->format.plane_fmt[1].bytesperline = pitch / chroma_hsub;
614 
615 	return 0;
616 }
617 
618 /* -----------------------------------------------------------------------------
619  * DU Driver API
620  */
621 
vsp1_du_init(struct device * dev)622 int vsp1_du_init(struct device *dev)
623 {
624 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
625 
626 	if (!vsp1)
627 		return -EPROBE_DEFER;
628 
629 	return 0;
630 }
631 EXPORT_SYMBOL_GPL(vsp1_du_init);
632 
633 /**
634  * vsp1_du_setup_lif - Setup the output part of the VSP pipeline
635  * @dev: the VSP device
636  * @pipe_index: the DRM pipeline index
637  * @cfg: the LIF configuration
638  *
639  * Configure the output part of VSP DRM pipeline for the given frame @cfg.width
640  * and @cfg.height. This sets up formats on the BRx source pad, the WPF sink and
641  * source pads, and the LIF sink pad.
642  *
643  * The @pipe_index argument selects which DRM pipeline to setup. The number of
644  * available pipelines depend on the VSP instance.
645  *
646  * As the media bus code on the blend unit source pad is conditioned by the
647  * configuration of its sink 0 pad, we also set up the formats on all blend unit
648  * sinks, even if the configuration will be overwritten later by
649  * vsp1_du_setup_rpf(). This ensures that the blend unit configuration is set to
650  * a well defined state.
651  *
652  * Return 0 on success or a negative error code on failure.
653  */
vsp1_du_setup_lif(struct device * dev,unsigned int pipe_index,const struct vsp1_du_lif_config * cfg)654 int vsp1_du_setup_lif(struct device *dev, unsigned int pipe_index,
655 		      const struct vsp1_du_lif_config *cfg)
656 {
657 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
658 	struct vsp1_drm_pipeline *drm_pipe;
659 	struct vsp1_pipeline *pipe;
660 	unsigned long flags;
661 	unsigned int i;
662 	int ret;
663 
664 	if (pipe_index >= vsp1->info->lif_count)
665 		return -EINVAL;
666 
667 	drm_pipe = &vsp1->drm->pipe[pipe_index];
668 	pipe = &drm_pipe->pipe;
669 
670 	if (!cfg) {
671 		struct vsp1_brx *brx;
672 
673 		mutex_lock(&vsp1->drm->lock);
674 
675 		brx = to_brx(&pipe->brx->subdev);
676 
677 		/*
678 		 * NULL configuration means the CRTC is being disabled, stop
679 		 * the pipeline and turn the light off.
680 		 */
681 		ret = vsp1_pipeline_stop(pipe);
682 		if (ret == -ETIMEDOUT)
683 			dev_err(vsp1->dev, "DRM pipeline stop timeout\n");
684 
685 		for (i = 0; i < ARRAY_SIZE(pipe->inputs); ++i) {
686 			struct vsp1_rwpf *rpf = pipe->inputs[i];
687 
688 			if (!rpf)
689 				continue;
690 
691 			/*
692 			 * Remove the RPF from the pipe and the list of BRx
693 			 * inputs.
694 			 */
695 			WARN_ON(!rpf->entity.pipe);
696 			rpf->entity.pipe = NULL;
697 			list_del(&rpf->entity.list_pipe);
698 			pipe->inputs[i] = NULL;
699 
700 			brx->inputs[rpf->brx_input].rpf = NULL;
701 		}
702 
703 		drm_pipe->du_complete = NULL;
704 		pipe->num_inputs = 0;
705 
706 		dev_dbg(vsp1->dev, "%s: pipe %u: releasing %s\n",
707 			__func__, pipe->lif->index,
708 			BRX_NAME(pipe->brx));
709 
710 		list_del(&pipe->brx->list_pipe);
711 		pipe->brx->pipe = NULL;
712 		pipe->brx = NULL;
713 
714 		mutex_unlock(&vsp1->drm->lock);
715 
716 		vsp1_dlm_reset(pipe->output->dlm);
717 		vsp1_device_put(vsp1);
718 
719 		dev_dbg(vsp1->dev, "%s: pipeline disabled\n", __func__);
720 
721 		return 0;
722 	}
723 
724 	/* Reset the underrun counter */
725 	pipe->underrun_count = 0;
726 
727 	drm_pipe->width = cfg->width;
728 	drm_pipe->height = cfg->height;
729 	pipe->interlaced = cfg->interlaced;
730 
731 	dev_dbg(vsp1->dev, "%s: configuring LIF%u with format %ux%u%s\n",
732 		__func__, pipe_index, cfg->width, cfg->height,
733 		pipe->interlaced ? "i" : "");
734 
735 	mutex_lock(&vsp1->drm->lock);
736 
737 	/* Setup formats through the pipeline. */
738 	ret = vsp1_du_pipeline_setup_inputs(vsp1, pipe);
739 	if (ret < 0)
740 		goto unlock;
741 
742 	ret = vsp1_du_pipeline_setup_output(vsp1, pipe);
743 	if (ret < 0)
744 		goto unlock;
745 
746 	vsp1_pipeline_dump(pipe, "LIF setup");
747 
748 	/* Enable the VSP1. */
749 	ret = vsp1_device_get(vsp1);
750 	if (ret < 0)
751 		goto unlock;
752 
753 	/*
754 	 * Register a callback to allow us to notify the DRM driver of frame
755 	 * completion events.
756 	 */
757 	drm_pipe->du_complete = cfg->callback;
758 	drm_pipe->du_private = cfg->callback_data;
759 
760 	/* Disable the display interrupts. */
761 	vsp1_write(vsp1, VI6_DISP_IRQ_STA(pipe_index), 0);
762 	vsp1_write(vsp1, VI6_DISP_IRQ_ENB(pipe_index), 0);
763 
764 	/* Configure all entities in the pipeline. */
765 	vsp1_du_pipeline_configure(pipe);
766 
767 unlock:
768 	mutex_unlock(&vsp1->drm->lock);
769 
770 	if (ret < 0)
771 		return ret;
772 
773 	/* Start the pipeline. */
774 	spin_lock_irqsave(&pipe->irqlock, flags);
775 	vsp1_pipeline_run(pipe);
776 	spin_unlock_irqrestore(&pipe->irqlock, flags);
777 
778 	dev_dbg(vsp1->dev, "%s: pipeline enabled\n", __func__);
779 
780 	return 0;
781 }
782 EXPORT_SYMBOL_GPL(vsp1_du_setup_lif);
783 
784 /**
785  * vsp1_du_atomic_begin - Prepare for an atomic update
786  * @dev: the VSP device
787  * @pipe_index: the DRM pipeline index
788  */
vsp1_du_atomic_begin(struct device * dev,unsigned int pipe_index)789 void vsp1_du_atomic_begin(struct device *dev, unsigned int pipe_index)
790 {
791 }
792 EXPORT_SYMBOL_GPL(vsp1_du_atomic_begin);
793 
794 /**
795  * vsp1_du_atomic_update - Setup one RPF input of the VSP pipeline
796  * @dev: the VSP device
797  * @pipe_index: the DRM pipeline index
798  * @rpf_index: index of the RPF to setup (0-based)
799  * @cfg: the RPF configuration
800  *
801  * Configure the VSP to perform image composition through RPF @rpf_index as
802  * described by the @cfg configuration. The image to compose is referenced by
803  * @cfg.mem and composed using the @cfg.src crop rectangle and the @cfg.dst
804  * composition rectangle. The Z-order is configurable with higher @zpos values
805  * displayed on top.
806  *
807  * If the @cfg configuration is NULL, the RPF will be disabled. Calling the
808  * function on a disabled RPF is allowed.
809  *
810  * Image format as stored in memory is expressed as a V4L2 @cfg.pixelformat
811  * value. The memory pitch is configurable to allow for padding at end of lines,
812  * or simply for images that extend beyond the crop rectangle boundaries. The
813  * @cfg.pitch value is expressed in bytes and applies to all planes for
814  * multiplanar formats.
815  *
816  * The source memory buffer is referenced by the DMA address of its planes in
817  * the @cfg.mem array. Up to two planes are supported. The second plane DMA
818  * address is ignored for formats using a single plane.
819  *
820  * This function isn't reentrant, the caller needs to serialize calls.
821  *
822  * Return 0 on success or a negative error code on failure.
823  */
vsp1_du_atomic_update(struct device * dev,unsigned int pipe_index,unsigned int rpf_index,const struct vsp1_du_atomic_config * cfg)824 int vsp1_du_atomic_update(struct device *dev, unsigned int pipe_index,
825 			  unsigned int rpf_index,
826 			  const struct vsp1_du_atomic_config *cfg)
827 {
828 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
829 	struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index];
830 	struct vsp1_drm_input *input;
831 	struct vsp1_rwpf *rpf;
832 	int ret;
833 
834 	if (rpf_index >= vsp1->info->rpf_count)
835 		return -EINVAL;
836 
837 	input = &vsp1->drm->inputs[rpf_index];
838 	rpf = vsp1->rpf[rpf_index];
839 
840 	if (!cfg) {
841 		dev_dbg(vsp1->dev, "%s: RPF%u: disable requested\n", __func__,
842 			rpf_index);
843 
844 		/*
845 		 * Remove the RPF from the pipeline's inputs. Keep it in the
846 		 * pipeline's entity list to let vsp1_du_pipeline_configure()
847 		 * remove it from the hardware pipeline.
848 		 */
849 		rpf->entity.pipe = NULL;
850 		drm_pipe->pipe.inputs[rpf_index] = NULL;
851 		return 0;
852 	}
853 
854 	dev_dbg(vsp1->dev,
855 		"%s: RPF%u: (%u,%u)/%ux%u -> (%u,%u)/%ux%u (%p4cc), pitch %u dma { %pad, %pad, %pad } zpos %u\n",
856 		__func__, rpf_index,
857 		cfg->src.left, cfg->src.top, cfg->src.width, cfg->src.height,
858 		cfg->dst.left, cfg->dst.top, cfg->dst.width, cfg->dst.height,
859 		&cfg->pixelformat, cfg->pitch, &cfg->mem[0], &cfg->mem[1],
860 		&cfg->mem[2], cfg->zpos);
861 
862 	/*
863 	 * Store the format, stride, memory buffer address, crop and compose
864 	 * rectangles and Z-order position and for the input.
865 	 */
866 	ret = vsp1_du_pipeline_set_rwpf_format(vsp1, rpf, cfg->pixelformat,
867 					       cfg->pitch);
868 	if (ret < 0)
869 		return ret;
870 
871 	rpf->alpha = cfg->alpha;
872 
873 	rpf->mem.addr[0] = cfg->mem[0];
874 	rpf->mem.addr[1] = cfg->mem[1];
875 	rpf->mem.addr[2] = cfg->mem[2];
876 
877 	rpf->format.flags = cfg->premult ? V4L2_PIX_FMT_FLAG_PREMUL_ALPHA : 0;
878 
879 	input->crop = cfg->src;
880 	input->compose = cfg->dst;
881 	input->zpos = cfg->zpos;
882 	input->ycbcr_enc = cfg->color_encoding;
883 	input->quantization = cfg->color_range;
884 
885 	drm_pipe->pipe.inputs[rpf_index] = rpf;
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL_GPL(vsp1_du_atomic_update);
890 
891 /**
892  * vsp1_du_atomic_flush - Commit an atomic update
893  * @dev: the VSP device
894  * @pipe_index: the DRM pipeline index
895  * @cfg: atomic pipe configuration
896  */
vsp1_du_atomic_flush(struct device * dev,unsigned int pipe_index,const struct vsp1_du_atomic_pipe_config * cfg)897 void vsp1_du_atomic_flush(struct device *dev, unsigned int pipe_index,
898 			  const struct vsp1_du_atomic_pipe_config *cfg)
899 {
900 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
901 	struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[pipe_index];
902 	struct vsp1_pipeline *pipe = &drm_pipe->pipe;
903 	int ret;
904 
905 	drm_pipe->crc = cfg->crc;
906 
907 	mutex_lock(&vsp1->drm->lock);
908 
909 	if (cfg->writeback.pixelformat) {
910 		const struct vsp1_du_writeback_config *wb_cfg = &cfg->writeback;
911 
912 		ret = vsp1_du_pipeline_set_rwpf_format(vsp1, pipe->output,
913 						       wb_cfg->pixelformat,
914 						       wb_cfg->pitch);
915 		if (WARN_ON(ret < 0))
916 			goto done;
917 
918 		pipe->output->mem.addr[0] = wb_cfg->mem[0];
919 		pipe->output->mem.addr[1] = wb_cfg->mem[1];
920 		pipe->output->mem.addr[2] = wb_cfg->mem[2];
921 		pipe->output->writeback = true;
922 	}
923 
924 	vsp1_du_pipeline_setup_inputs(vsp1, pipe);
925 
926 	vsp1_pipeline_dump(pipe, "atomic update");
927 
928 	vsp1_du_pipeline_configure(pipe);
929 
930 done:
931 	mutex_unlock(&vsp1->drm->lock);
932 }
933 EXPORT_SYMBOL_GPL(vsp1_du_atomic_flush);
934 
vsp1_du_map_sg(struct device * dev,struct sg_table * sgt)935 int vsp1_du_map_sg(struct device *dev, struct sg_table *sgt)
936 {
937 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
938 
939 	/*
940 	 * As all the buffers allocated by the DU driver are coherent, we can
941 	 * skip cache sync. This will need to be revisited when support for
942 	 * non-coherent buffers will be added to the DU driver.
943 	 */
944 	return dma_map_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE,
945 			       DMA_ATTR_SKIP_CPU_SYNC);
946 }
947 EXPORT_SYMBOL_GPL(vsp1_du_map_sg);
948 
vsp1_du_unmap_sg(struct device * dev,struct sg_table * sgt)949 void vsp1_du_unmap_sg(struct device *dev, struct sg_table *sgt)
950 {
951 	struct vsp1_device *vsp1 = dev_get_drvdata(dev);
952 
953 	dma_unmap_sgtable(vsp1->bus_master, sgt, DMA_TO_DEVICE,
954 			  DMA_ATTR_SKIP_CPU_SYNC);
955 }
956 EXPORT_SYMBOL_GPL(vsp1_du_unmap_sg);
957 
958 /* -----------------------------------------------------------------------------
959  * Initialization
960  */
961 
vsp1_drm_init(struct vsp1_device * vsp1)962 int vsp1_drm_init(struct vsp1_device *vsp1)
963 {
964 	unsigned int i;
965 
966 	vsp1->drm = devm_kzalloc(vsp1->dev, sizeof(*vsp1->drm), GFP_KERNEL);
967 	if (!vsp1->drm)
968 		return -ENOMEM;
969 
970 	mutex_init(&vsp1->drm->lock);
971 
972 	/* Create one DRM pipeline per LIF. */
973 	for (i = 0; i < vsp1->info->lif_count; ++i) {
974 		struct vsp1_drm_pipeline *drm_pipe = &vsp1->drm->pipe[i];
975 		struct vsp1_pipeline *pipe = &drm_pipe->pipe;
976 
977 		init_waitqueue_head(&drm_pipe->wait_queue);
978 
979 		vsp1_pipeline_init(pipe);
980 
981 		pipe->partitions = 1;
982 		pipe->part_table = &drm_pipe->partition;
983 
984 		pipe->frame_end = vsp1_du_pipeline_frame_end;
985 
986 		/*
987 		 * The output side of the DRM pipeline is static, add the
988 		 * corresponding entities manually.
989 		 */
990 		pipe->output = vsp1->wpf[i];
991 		pipe->lif = &vsp1->lif[i]->entity;
992 
993 		pipe->output->entity.pipe = pipe;
994 		pipe->output->entity.sink = pipe->lif;
995 		pipe->output->entity.sink_pad = 0;
996 		list_add_tail(&pipe->output->entity.list_pipe, &pipe->entities);
997 
998 		pipe->lif->pipe = pipe;
999 		list_add_tail(&pipe->lif->list_pipe, &pipe->entities);
1000 
1001 		/*
1002 		 * CRC computation is initially disabled, don't add the UIF to
1003 		 * the pipeline.
1004 		 */
1005 		if (i < vsp1->info->uif_count)
1006 			drm_pipe->uif = &vsp1->uif[i]->entity;
1007 	}
1008 
1009 	/* Disable all RPFs initially. */
1010 	for (i = 0; i < vsp1->info->rpf_count; ++i) {
1011 		struct vsp1_rwpf *input = vsp1->rpf[i];
1012 
1013 		INIT_LIST_HEAD(&input->entity.list_pipe);
1014 	}
1015 
1016 	return 0;
1017 }
1018 
vsp1_drm_cleanup(struct vsp1_device * vsp1)1019 void vsp1_drm_cleanup(struct vsp1_device *vsp1)
1020 {
1021 	mutex_destroy(&vsp1->drm->lock);
1022 }
1023