xref: /linux/drivers/media/platform/ti/vpe/vpdma.c (revision 0cdee263bc5e7b20f657ea09f9272f50c568f35b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VPDMA helper library
4  *
5  * Copyright (c) 2013 Texas Instruments Inc.
6  *
7  * David Griego, <dagriego@biglakesoftware.com>
8  * Dale Farnsworth, <dale@farnsworth.org>
9  * Archit Taneja, <archit@ti.com>
10  */
11 
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/err.h>
15 #include <linux/firmware.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/platform_device.h>
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/videodev2.h>
22 
23 #include "vpdma.h"
24 #include "vpdma_priv.h"
25 
26 #define VPDMA_FIRMWARE	"vpdma-1b8.bin"
27 
28 const struct vpdma_data_format vpdma_yuv_fmts[] = {
29 	[VPDMA_DATA_FMT_Y444] = {
30 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
31 		.data_type	= DATA_TYPE_Y444,
32 		.depth		= 8,
33 	},
34 	[VPDMA_DATA_FMT_Y422] = {
35 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
36 		.data_type	= DATA_TYPE_Y422,
37 		.depth		= 8,
38 	},
39 	[VPDMA_DATA_FMT_Y420] = {
40 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
41 		.data_type	= DATA_TYPE_Y420,
42 		.depth		= 8,
43 	},
44 	[VPDMA_DATA_FMT_C444] = {
45 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
46 		.data_type	= DATA_TYPE_C444,
47 		.depth		= 8,
48 	},
49 	[VPDMA_DATA_FMT_C422] = {
50 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
51 		.data_type	= DATA_TYPE_C422,
52 		.depth		= 8,
53 	},
54 	[VPDMA_DATA_FMT_C420] = {
55 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
56 		.data_type	= DATA_TYPE_C420,
57 		.depth		= 4,
58 	},
59 	[VPDMA_DATA_FMT_CB420] = {
60 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
61 		.data_type	= DATA_TYPE_CB420,
62 		.depth		= 4,
63 	},
64 	[VPDMA_DATA_FMT_YCR422] = {
65 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
66 		.data_type	= DATA_TYPE_YCR422,
67 		.depth		= 16,
68 	},
69 	[VPDMA_DATA_FMT_YC444] = {
70 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
71 		.data_type	= DATA_TYPE_YC444,
72 		.depth		= 24,
73 	},
74 	[VPDMA_DATA_FMT_CRY422] = {
75 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
76 		.data_type	= DATA_TYPE_CRY422,
77 		.depth		= 16,
78 	},
79 	[VPDMA_DATA_FMT_CBY422] = {
80 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
81 		.data_type	= DATA_TYPE_CBY422,
82 		.depth		= 16,
83 	},
84 	[VPDMA_DATA_FMT_YCB422] = {
85 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
86 		.data_type	= DATA_TYPE_YCB422,
87 		.depth		= 16,
88 	},
89 };
90 EXPORT_SYMBOL(vpdma_yuv_fmts);
91 
92 const struct vpdma_data_format vpdma_rgb_fmts[] = {
93 	[VPDMA_DATA_FMT_RGB565] = {
94 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
95 		.data_type	= DATA_TYPE_RGB16_565,
96 		.depth		= 16,
97 	},
98 	[VPDMA_DATA_FMT_ARGB16_1555] = {
99 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
100 		.data_type	= DATA_TYPE_ARGB_1555,
101 		.depth		= 16,
102 	},
103 	[VPDMA_DATA_FMT_ARGB16] = {
104 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
105 		.data_type	= DATA_TYPE_ARGB_4444,
106 		.depth		= 16,
107 	},
108 	[VPDMA_DATA_FMT_RGBA16_5551] = {
109 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
110 		.data_type	= DATA_TYPE_RGBA_5551,
111 		.depth		= 16,
112 	},
113 	[VPDMA_DATA_FMT_RGBA16] = {
114 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
115 		.data_type	= DATA_TYPE_RGBA_4444,
116 		.depth		= 16,
117 	},
118 	[VPDMA_DATA_FMT_ARGB24] = {
119 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
120 		.data_type	= DATA_TYPE_ARGB24_6666,
121 		.depth		= 24,
122 	},
123 	[VPDMA_DATA_FMT_RGB24] = {
124 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
125 		.data_type	= DATA_TYPE_RGB24_888,
126 		.depth		= 24,
127 	},
128 	[VPDMA_DATA_FMT_ARGB32] = {
129 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
130 		.data_type	= DATA_TYPE_ARGB32_8888,
131 		.depth		= 32,
132 	},
133 	[VPDMA_DATA_FMT_RGBA24] = {
134 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
135 		.data_type	= DATA_TYPE_RGBA24_6666,
136 		.depth		= 24,
137 	},
138 	[VPDMA_DATA_FMT_RGBA32] = {
139 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
140 		.data_type	= DATA_TYPE_RGBA32_8888,
141 		.depth		= 32,
142 	},
143 	[VPDMA_DATA_FMT_BGR565] = {
144 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
145 		.data_type	= DATA_TYPE_BGR16_565,
146 		.depth		= 16,
147 	},
148 	[VPDMA_DATA_FMT_ABGR16_1555] = {
149 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
150 		.data_type	= DATA_TYPE_ABGR_1555,
151 		.depth		= 16,
152 	},
153 	[VPDMA_DATA_FMT_ABGR16] = {
154 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
155 		.data_type	= DATA_TYPE_ABGR_4444,
156 		.depth		= 16,
157 	},
158 	[VPDMA_DATA_FMT_BGRA16_5551] = {
159 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
160 		.data_type	= DATA_TYPE_BGRA_5551,
161 		.depth		= 16,
162 	},
163 	[VPDMA_DATA_FMT_BGRA16] = {
164 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
165 		.data_type	= DATA_TYPE_BGRA_4444,
166 		.depth		= 16,
167 	},
168 	[VPDMA_DATA_FMT_ABGR24] = {
169 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
170 		.data_type	= DATA_TYPE_ABGR24_6666,
171 		.depth		= 24,
172 	},
173 	[VPDMA_DATA_FMT_BGR24] = {
174 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
175 		.data_type	= DATA_TYPE_BGR24_888,
176 		.depth		= 24,
177 	},
178 	[VPDMA_DATA_FMT_ABGR32] = {
179 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
180 		.data_type	= DATA_TYPE_ABGR32_8888,
181 		.depth		= 32,
182 	},
183 	[VPDMA_DATA_FMT_BGRA24] = {
184 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
185 		.data_type	= DATA_TYPE_BGRA24_6666,
186 		.depth		= 24,
187 	},
188 	[VPDMA_DATA_FMT_BGRA32] = {
189 		.type		= VPDMA_DATA_FMT_TYPE_RGB,
190 		.data_type	= DATA_TYPE_BGRA32_8888,
191 		.depth		= 32,
192 	},
193 };
194 EXPORT_SYMBOL(vpdma_rgb_fmts);
195 
196 /*
197  * To handle RAW format we are re-using the CBY422
198  * vpdma data type so that we use the vpdma to re-order
199  * the incoming bytes, as the parser assumes that the
200  * first byte presented on the bus is the MSB of a 2
201  * bytes value.
202  * RAW8 handles from 1 to 8 bits
203  * RAW16 handles from 9 to 16 bits
204  */
205 const struct vpdma_data_format vpdma_raw_fmts[] = {
206 	[VPDMA_DATA_FMT_RAW8] = {
207 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
208 		.data_type	= DATA_TYPE_CBY422,
209 		.depth		= 8,
210 	},
211 	[VPDMA_DATA_FMT_RAW16] = {
212 		.type		= VPDMA_DATA_FMT_TYPE_YUV,
213 		.data_type	= DATA_TYPE_CBY422,
214 		.depth		= 16,
215 	},
216 };
217 EXPORT_SYMBOL(vpdma_raw_fmts);
218 
219 const struct vpdma_data_format vpdma_misc_fmts[] = {
220 	[VPDMA_DATA_FMT_MV] = {
221 		.type		= VPDMA_DATA_FMT_TYPE_MISC,
222 		.data_type	= DATA_TYPE_MV,
223 		.depth		= 4,
224 	},
225 };
226 EXPORT_SYMBOL(vpdma_misc_fmts);
227 
228 struct vpdma_channel_info {
229 	int num;		/* VPDMA channel number */
230 	int cstat_offset;	/* client CSTAT register offset */
231 };
232 
233 static const struct vpdma_channel_info chan_info[] = {
234 	[VPE_CHAN_LUMA1_IN] = {
235 		.num		= VPE_CHAN_NUM_LUMA1_IN,
236 		.cstat_offset	= VPDMA_DEI_LUMA1_CSTAT,
237 	},
238 	[VPE_CHAN_CHROMA1_IN] = {
239 		.num		= VPE_CHAN_NUM_CHROMA1_IN,
240 		.cstat_offset	= VPDMA_DEI_CHROMA1_CSTAT,
241 	},
242 	[VPE_CHAN_LUMA2_IN] = {
243 		.num		= VPE_CHAN_NUM_LUMA2_IN,
244 		.cstat_offset	= VPDMA_DEI_LUMA2_CSTAT,
245 	},
246 	[VPE_CHAN_CHROMA2_IN] = {
247 		.num		= VPE_CHAN_NUM_CHROMA2_IN,
248 		.cstat_offset	= VPDMA_DEI_CHROMA2_CSTAT,
249 	},
250 	[VPE_CHAN_LUMA3_IN] = {
251 		.num		= VPE_CHAN_NUM_LUMA3_IN,
252 		.cstat_offset	= VPDMA_DEI_LUMA3_CSTAT,
253 	},
254 	[VPE_CHAN_CHROMA3_IN] = {
255 		.num		= VPE_CHAN_NUM_CHROMA3_IN,
256 		.cstat_offset	= VPDMA_DEI_CHROMA3_CSTAT,
257 	},
258 	[VPE_CHAN_MV_IN] = {
259 		.num		= VPE_CHAN_NUM_MV_IN,
260 		.cstat_offset	= VPDMA_DEI_MV_IN_CSTAT,
261 	},
262 	[VPE_CHAN_MV_OUT] = {
263 		.num		= VPE_CHAN_NUM_MV_OUT,
264 		.cstat_offset	= VPDMA_DEI_MV_OUT_CSTAT,
265 	},
266 	[VPE_CHAN_LUMA_OUT] = {
267 		.num		= VPE_CHAN_NUM_LUMA_OUT,
268 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
269 	},
270 	[VPE_CHAN_CHROMA_OUT] = {
271 		.num		= VPE_CHAN_NUM_CHROMA_OUT,
272 		.cstat_offset	= VPDMA_VIP_UP_UV_CSTAT,
273 	},
274 	[VPE_CHAN_RGB_OUT] = {
275 		.num		= VPE_CHAN_NUM_RGB_OUT,
276 		.cstat_offset	= VPDMA_VIP_UP_Y_CSTAT,
277 	},
278 };
279 
read_reg(struct vpdma_data * vpdma,int offset)280 static u32 read_reg(struct vpdma_data *vpdma, int offset)
281 {
282 	return ioread32(vpdma->base + offset);
283 }
284 
write_reg(struct vpdma_data * vpdma,int offset,u32 value)285 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
286 {
287 	iowrite32(value, vpdma->base + offset);
288 }
289 
read_field_reg(struct vpdma_data * vpdma,int offset,u32 mask,int shift)290 static int read_field_reg(struct vpdma_data *vpdma, int offset,
291 		u32 mask, int shift)
292 {
293 	return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
294 }
295 
write_field_reg(struct vpdma_data * vpdma,int offset,u32 field,u32 mask,int shift)296 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
297 		u32 mask, int shift)
298 {
299 	u32 val = read_reg(vpdma, offset);
300 
301 	val &= ~(mask << shift);
302 	val |= (field & mask) << shift;
303 
304 	write_reg(vpdma, offset, val);
305 }
306 
vpdma_dump_regs(struct vpdma_data * vpdma)307 void vpdma_dump_regs(struct vpdma_data *vpdma)
308 {
309 	struct device *dev = &vpdma->pdev->dev;
310 
311 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
312 
313 	dev_dbg(dev, "VPDMA Registers:\n");
314 
315 	DUMPREG(PID);
316 	DUMPREG(LIST_ADDR);
317 	DUMPREG(LIST_ATTR);
318 	DUMPREG(LIST_STAT_SYNC);
319 	DUMPREG(BG_RGB);
320 	DUMPREG(BG_YUV);
321 	DUMPREG(SETUP);
322 	DUMPREG(MAX_SIZE1);
323 	DUMPREG(MAX_SIZE2);
324 	DUMPREG(MAX_SIZE3);
325 
326 	/*
327 	 * dumping registers of only group0 and group3, because VPE channels
328 	 * lie within group0 and group3 registers
329 	 */
330 	DUMPREG(INT_CHAN_STAT(0));
331 	DUMPREG(INT_CHAN_MASK(0));
332 	DUMPREG(INT_CHAN_STAT(3));
333 	DUMPREG(INT_CHAN_MASK(3));
334 	DUMPREG(INT_CLIENT0_STAT);
335 	DUMPREG(INT_CLIENT0_MASK);
336 	DUMPREG(INT_CLIENT1_STAT);
337 	DUMPREG(INT_CLIENT1_MASK);
338 	DUMPREG(INT_LIST0_STAT);
339 	DUMPREG(INT_LIST0_MASK);
340 
341 	/*
342 	 * these are registers specific to VPE clients, we can make this
343 	 * function dump client registers specific to VPE or VIP based on
344 	 * who is using it
345 	 */
346 	DUMPREG(DEI_CHROMA1_CSTAT);
347 	DUMPREG(DEI_LUMA1_CSTAT);
348 	DUMPREG(DEI_CHROMA2_CSTAT);
349 	DUMPREG(DEI_LUMA2_CSTAT);
350 	DUMPREG(DEI_CHROMA3_CSTAT);
351 	DUMPREG(DEI_LUMA3_CSTAT);
352 	DUMPREG(DEI_MV_IN_CSTAT);
353 	DUMPREG(DEI_MV_OUT_CSTAT);
354 	DUMPREG(VIP_UP_Y_CSTAT);
355 	DUMPREG(VIP_UP_UV_CSTAT);
356 	DUMPREG(VPI_CTL_CSTAT);
357 }
358 EXPORT_SYMBOL(vpdma_dump_regs);
359 
360 /*
361  * Allocate a DMA buffer
362  */
vpdma_alloc_desc_buf(struct vpdma_buf * buf,size_t size)363 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
364 {
365 	buf->size = size;
366 	buf->mapped = false;
367 	buf->addr = kzalloc(size, GFP_KERNEL);
368 	if (!buf->addr)
369 		return -ENOMEM;
370 
371 	WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
372 
373 	return 0;
374 }
375 EXPORT_SYMBOL(vpdma_alloc_desc_buf);
376 
vpdma_free_desc_buf(struct vpdma_buf * buf)377 void vpdma_free_desc_buf(struct vpdma_buf *buf)
378 {
379 	WARN_ON(buf->mapped);
380 	kfree(buf->addr);
381 	buf->addr = NULL;
382 	buf->size = 0;
383 }
384 EXPORT_SYMBOL(vpdma_free_desc_buf);
385 
386 /*
387  * map descriptor/payload DMA buffer, enabling DMA access
388  */
vpdma_map_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)389 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
390 {
391 	struct device *dev = &vpdma->pdev->dev;
392 
393 	WARN_ON(buf->mapped);
394 	buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
395 				DMA_BIDIRECTIONAL);
396 	if (dma_mapping_error(dev, buf->dma_addr)) {
397 		dev_err(dev, "failed to map buffer\n");
398 		return -EINVAL;
399 	}
400 
401 	buf->mapped = true;
402 
403 	return 0;
404 }
405 EXPORT_SYMBOL(vpdma_map_desc_buf);
406 
407 /*
408  * unmap descriptor/payload DMA buffer, disabling DMA access and
409  * allowing the main processor to access the data
410  */
vpdma_unmap_desc_buf(struct vpdma_data * vpdma,struct vpdma_buf * buf)411 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
412 {
413 	struct device *dev = &vpdma->pdev->dev;
414 
415 	if (buf->mapped)
416 		dma_unmap_single(dev, buf->dma_addr, buf->size,
417 				DMA_BIDIRECTIONAL);
418 
419 	buf->mapped = false;
420 }
421 EXPORT_SYMBOL(vpdma_unmap_desc_buf);
422 
423 /*
424  * Cleanup all pending descriptors of a list
425  * First, stop the current list being processed.
426  * If the VPDMA was busy, this step makes vpdma to accept post lists.
427  * To cleanup the internal FSM, post abort list descriptor for all the
428  * channels from @channels array of size @size.
429  */
vpdma_list_cleanup(struct vpdma_data * vpdma,int list_num,int * channels,int size)430 int vpdma_list_cleanup(struct vpdma_data *vpdma, int list_num,
431 		int *channels, int size)
432 {
433 	struct vpdma_desc_list abort_list;
434 	int i, ret, timeout = 500;
435 
436 	write_reg(vpdma, VPDMA_LIST_ATTR,
437 			(list_num << VPDMA_LIST_NUM_SHFT) |
438 			(1 << VPDMA_LIST_STOP_SHFT));
439 
440 	if (size <= 0 || !channels)
441 		return 0;
442 
443 	ret = vpdma_create_desc_list(&abort_list,
444 		size * sizeof(struct vpdma_dtd), VPDMA_LIST_TYPE_NORMAL);
445 	if (ret)
446 		return ret;
447 
448 	for (i = 0; i < size; i++)
449 		vpdma_add_abort_channel_ctd(&abort_list, channels[i]);
450 
451 	ret = vpdma_map_desc_buf(vpdma, &abort_list.buf);
452 	if (ret)
453 		goto free_desc;
454 	ret = vpdma_submit_descs(vpdma, &abort_list, list_num);
455 	if (ret)
456 		goto unmap_desc;
457 
458 	while (vpdma_list_busy(vpdma, list_num) && --timeout)
459 		;
460 
461 	if (timeout == 0) {
462 		dev_err(&vpdma->pdev->dev, "Timed out cleaning up VPDMA list\n");
463 		ret = -EBUSY;
464 	}
465 
466 unmap_desc:
467 	vpdma_unmap_desc_buf(vpdma, &abort_list.buf);
468 free_desc:
469 	vpdma_free_desc_buf(&abort_list.buf);
470 
471 	return ret;
472 }
473 EXPORT_SYMBOL(vpdma_list_cleanup);
474 
475 /*
476  * create a descriptor list, the user of this list will append configuration,
477  * control and data descriptors to this list, this list will be submitted to
478  * VPDMA. VPDMA's list parser will go through each descriptor and perform the
479  * required DMA operations
480  */
vpdma_create_desc_list(struct vpdma_desc_list * list,size_t size,int type)481 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
482 {
483 	int r;
484 
485 	r = vpdma_alloc_desc_buf(&list->buf, size);
486 	if (r)
487 		return r;
488 
489 	list->next = list->buf.addr;
490 
491 	list->type = type;
492 
493 	return 0;
494 }
495 EXPORT_SYMBOL(vpdma_create_desc_list);
496 
497 /*
498  * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
499  * to allow new descriptors to be added to the list.
500  */
vpdma_reset_desc_list(struct vpdma_desc_list * list)501 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
502 {
503 	list->next = list->buf.addr;
504 }
505 EXPORT_SYMBOL(vpdma_reset_desc_list);
506 
507 /*
508  * free the buffer allocated for the VPDMA descriptor list, this should be
509  * called when the user doesn't want to use VPDMA any more.
510  */
vpdma_free_desc_list(struct vpdma_desc_list * list)511 void vpdma_free_desc_list(struct vpdma_desc_list *list)
512 {
513 	vpdma_free_desc_buf(&list->buf);
514 
515 	list->next = NULL;
516 }
517 EXPORT_SYMBOL(vpdma_free_desc_list);
518 
vpdma_list_busy(struct vpdma_data * vpdma,int list_num)519 bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
520 {
521 	return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
522 }
523 EXPORT_SYMBOL(vpdma_list_busy);
524 
525 /*
526  * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
527  */
vpdma_submit_descs(struct vpdma_data * vpdma,struct vpdma_desc_list * list,int list_num)528 int vpdma_submit_descs(struct vpdma_data *vpdma,
529 			struct vpdma_desc_list *list, int list_num)
530 {
531 	int list_size;
532 	unsigned long flags;
533 
534 	if (vpdma_list_busy(vpdma, list_num))
535 		return -EBUSY;
536 
537 	/* 16-byte granularity */
538 	list_size = (list->next - list->buf.addr) >> 4;
539 
540 	spin_lock_irqsave(&vpdma->lock, flags);
541 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
542 
543 	write_reg(vpdma, VPDMA_LIST_ATTR,
544 			(list_num << VPDMA_LIST_NUM_SHFT) |
545 			(list->type << VPDMA_LIST_TYPE_SHFT) |
546 			list_size);
547 	spin_unlock_irqrestore(&vpdma->lock, flags);
548 
549 	return 0;
550 }
551 EXPORT_SYMBOL(vpdma_submit_descs);
552 
553 static void dump_dtd(struct vpdma_dtd *dtd);
554 
vpdma_set_max_size(struct vpdma_data * vpdma,int reg_addr,u32 width,u32 height)555 void vpdma_set_max_size(struct vpdma_data *vpdma, int reg_addr,
556 			u32 width, u32 height)
557 {
558 	if (reg_addr != VPDMA_MAX_SIZE1 && reg_addr != VPDMA_MAX_SIZE2 &&
559 	    reg_addr != VPDMA_MAX_SIZE3)
560 		reg_addr = VPDMA_MAX_SIZE1;
561 
562 	write_field_reg(vpdma, reg_addr, width - 1,
563 			VPDMA_MAX_SIZE_WIDTH_MASK, VPDMA_MAX_SIZE_WIDTH_SHFT);
564 
565 	write_field_reg(vpdma, reg_addr, height - 1,
566 			VPDMA_MAX_SIZE_HEIGHT_MASK, VPDMA_MAX_SIZE_HEIGHT_SHFT);
567 
568 }
569 EXPORT_SYMBOL(vpdma_set_max_size);
570 
dump_cfd(struct vpdma_cfd * cfd)571 static void dump_cfd(struct vpdma_cfd *cfd)
572 {
573 	int class;
574 
575 	class = cfd_get_class(cfd);
576 
577 	pr_debug("config descriptor of payload class: %s\n",
578 		class == CFD_CLS_BLOCK ? "simple block" :
579 		"address data block");
580 
581 	if (class == CFD_CLS_BLOCK)
582 		pr_debug("word0: dst_addr_offset = 0x%08x\n",
583 			cfd->dest_addr_offset);
584 
585 	if (class == CFD_CLS_BLOCK)
586 		pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
587 
588 	pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
589 
590 	pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, payload_len = %d\n",
591 		 cfd_get_pkt_type(cfd),
592 		 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
593 		 cfd_get_payload_len(cfd));
594 }
595 
596 /*
597  * append a configuration descriptor to the given descriptor list, where the
598  * payload is in the form of a simple data block specified in the descriptor
599  * header, this is used to upload scaler coefficients to the scaler module
600  */
vpdma_add_cfd_block(struct vpdma_desc_list * list,int client,struct vpdma_buf * blk,u32 dest_offset)601 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
602 		struct vpdma_buf *blk, u32 dest_offset)
603 {
604 	struct vpdma_cfd *cfd;
605 	int len = blk->size;
606 
607 	WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
608 
609 	cfd = list->next;
610 	WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
611 
612 	cfd->dest_addr_offset = dest_offset;
613 	cfd->block_len = len;
614 	cfd->payload_addr = (u32) blk->dma_addr;
615 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
616 				client, len >> 4);
617 
618 	list->next = cfd + 1;
619 
620 	dump_cfd(cfd);
621 }
622 EXPORT_SYMBOL(vpdma_add_cfd_block);
623 
624 /*
625  * append a configuration descriptor to the given descriptor list, where the
626  * payload is in the address data block format, this is used to a configure a
627  * discontiguous set of MMRs
628  */
vpdma_add_cfd_adb(struct vpdma_desc_list * list,int client,struct vpdma_buf * adb)629 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
630 		struct vpdma_buf *adb)
631 {
632 	struct vpdma_cfd *cfd;
633 	unsigned int len = adb->size;
634 
635 	WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
636 	WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
637 
638 	cfd = list->next;
639 	BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
640 
641 	cfd->w0 = 0;
642 	cfd->w1 = 0;
643 	cfd->payload_addr = (u32) adb->dma_addr;
644 	cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
645 				client, len >> 4);
646 
647 	list->next = cfd + 1;
648 
649 	dump_cfd(cfd);
650 };
651 EXPORT_SYMBOL(vpdma_add_cfd_adb);
652 
653 /*
654  * control descriptor format change based on what type of control descriptor it
655  * is, we only use 'sync on channel' control descriptors for now, so assume it's
656  * that
657  */
dump_ctd(struct vpdma_ctd * ctd)658 static void dump_ctd(struct vpdma_ctd *ctd)
659 {
660 	pr_debug("control descriptor\n");
661 
662 	pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
663 		ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
664 }
665 
666 /*
667  * append a 'sync on channel' type control descriptor to the given descriptor
668  * list, this descriptor stalls the VPDMA list till the time DMA is completed
669  * on the specified channel
670  */
vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list * list,enum vpdma_channel chan)671 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
672 		enum vpdma_channel chan)
673 {
674 	struct vpdma_ctd *ctd;
675 
676 	ctd = list->next;
677 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
678 
679 	ctd->w0 = 0;
680 	ctd->w1 = 0;
681 	ctd->w2 = 0;
682 	ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
683 				CTD_TYPE_SYNC_ON_CHANNEL);
684 
685 	list->next = ctd + 1;
686 
687 	dump_ctd(ctd);
688 }
689 EXPORT_SYMBOL(vpdma_add_sync_on_channel_ctd);
690 
691 /*
692  * append an 'abort_channel' type control descriptor to the given descriptor
693  * list, this descriptor aborts any DMA transaction happening using the
694  * specified channel
695  */
vpdma_add_abort_channel_ctd(struct vpdma_desc_list * list,int chan_num)696 void vpdma_add_abort_channel_ctd(struct vpdma_desc_list *list,
697 		int chan_num)
698 {
699 	struct vpdma_ctd *ctd;
700 
701 	ctd = list->next;
702 	WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
703 
704 	ctd->w0 = 0;
705 	ctd->w1 = 0;
706 	ctd->w2 = 0;
707 	ctd->type_source_ctl = ctd_type_source_ctl(chan_num,
708 				CTD_TYPE_ABORT_CHANNEL);
709 
710 	list->next = ctd + 1;
711 
712 	dump_ctd(ctd);
713 }
714 EXPORT_SYMBOL(vpdma_add_abort_channel_ctd);
715 
dump_dtd(struct vpdma_dtd * dtd)716 static void dump_dtd(struct vpdma_dtd *dtd)
717 {
718 	int dir, chan;
719 
720 	dir = dtd_get_dir(dtd);
721 	chan = dtd_get_chan(dtd);
722 
723 	pr_debug("%s data transfer descriptor for channel %d\n",
724 		dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
725 
726 	pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
727 		dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
728 		dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
729 		dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
730 
731 	if (dir == DTD_DIR_IN)
732 		pr_debug("word1: line_length = %d, xfer_height = %d\n",
733 			dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
734 
735 	pr_debug("word2: start_addr = %x\n", dtd->start_addr);
736 
737 	pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, pri = %d, next_chan = %d\n",
738 		 dtd_get_pkt_type(dtd),
739 		 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
740 		 dtd_get_next_chan(dtd));
741 
742 	if (dir == DTD_DIR_IN)
743 		pr_debug("word4: frame_width = %d, frame_height = %d\n",
744 			dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
745 	else
746 		pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, drp_data = %d, use_desc_reg = %d\n",
747 			dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
748 			dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
749 
750 	if (dir == DTD_DIR_IN)
751 		pr_debug("word5: hor_start = %d, ver_start = %d\n",
752 			dtd_get_h_start(dtd), dtd_get_v_start(dtd));
753 	else
754 		pr_debug("word5: max_width %d, max_height %d\n",
755 			dtd_get_max_width(dtd), dtd_get_max_height(dtd));
756 
757 	pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
758 	pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
759 }
760 
761 /*
762  * append an outbound data transfer descriptor to the given descriptor list,
763  * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
764  *
765  * @list: vpdma desc list to which we add this descriptor
766  * @width: width of the image in pixels in memory
767  * @c_rect: compose params of output image
768  * @fmt: vpdma data format of the buffer
769  * dma_addr: dma address as seen by VPDMA
770  * max_width: enum for maximum width of data transfer
771  * max_height: enum for maximum height of data transfer
772  * chan: VPDMA channel
773  * flags: VPDMA flags to configure some descriptor fields
774  */
vpdma_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,enum vpdma_channel chan,u32 flags)775 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
776 		int stride, const struct v4l2_rect *c_rect,
777 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
778 		int max_w, int max_h, enum vpdma_channel chan, u32 flags)
779 {
780 	vpdma_rawchan_add_out_dtd(list, width, stride, c_rect, fmt, dma_addr,
781 				  max_w, max_h, chan_info[chan].num, flags);
782 }
783 EXPORT_SYMBOL(vpdma_add_out_dtd);
784 
vpdma_rawchan_add_out_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,int max_w,int max_h,int raw_vpdma_chan,u32 flags)785 void vpdma_rawchan_add_out_dtd(struct vpdma_desc_list *list, int width,
786 		int stride, const struct v4l2_rect *c_rect,
787 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
788 		int max_w, int max_h, int raw_vpdma_chan, u32 flags)
789 {
790 	int priority = 0;
791 	int field = 0;
792 	int notify = 1;
793 	int channel, next_chan;
794 	struct v4l2_rect rect = *c_rect;
795 	int depth = fmt->depth;
796 	struct vpdma_dtd *dtd;
797 
798 	channel = next_chan = raw_vpdma_chan;
799 
800 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
801 	    (fmt->data_type == DATA_TYPE_C420 ||
802 	     fmt->data_type == DATA_TYPE_CB420)) {
803 		rect.height >>= 1;
804 		rect.top >>= 1;
805 		depth = 8;
806 	}
807 
808 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
809 
810 	dtd = list->next;
811 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
812 
813 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
814 					notify,
815 					field,
816 					!!(flags & VPDMA_DATA_FRAME_1D),
817 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
818 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
819 					stride);
820 	dtd->w1 = 0;
821 	dtd->start_addr = (u32) dma_addr;
822 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
823 				DTD_DIR_OUT, channel, priority, next_chan);
824 	dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
825 	dtd->max_width_height = dtd_max_width_height(max_w, max_h);
826 	dtd->client_attr0 = 0;
827 	dtd->client_attr1 = 0;
828 
829 	list->next = dtd + 1;
830 
831 	dump_dtd(dtd);
832 }
833 EXPORT_SYMBOL(vpdma_rawchan_add_out_dtd);
834 
835 /*
836  * append an inbound data transfer descriptor to the given descriptor list,
837  * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
838  *
839  * @list: vpdma desc list to which we add this descriptor
840  * @width: width of the image in pixels in memory(not the cropped width)
841  * @c_rect: crop params of input image
842  * @fmt: vpdma data format of the buffer
843  * dma_addr: dma address as seen by VPDMA
844  * chan: VPDMA channel
845  * field: top or bottom field info of the input image
846  * flags: VPDMA flags to configure some descriptor fields
847  * frame_width/height: the complete width/height of the image presented to the
848  *			client (this makes sense when multiple channels are
849  *			connected to the same client, forming a larger frame)
850  * start_h, start_v: position where the given channel starts providing pixel
851  *			data to the client (makes sense when multiple channels
852  *			contribute to the client)
853  */
vpdma_add_in_dtd(struct vpdma_desc_list * list,int width,int stride,const struct v4l2_rect * c_rect,const struct vpdma_data_format * fmt,dma_addr_t dma_addr,enum vpdma_channel chan,int field,u32 flags,int frame_width,int frame_height,int start_h,int start_v)854 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
855 		int stride, const struct v4l2_rect *c_rect,
856 		const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
857 		enum vpdma_channel chan, int field, u32 flags, int frame_width,
858 		int frame_height, int start_h, int start_v)
859 {
860 	int priority = 0;
861 	int notify = 1;
862 	int depth = fmt->depth;
863 	int channel, next_chan;
864 	struct v4l2_rect rect = *c_rect;
865 	struct vpdma_dtd *dtd;
866 
867 	channel = next_chan = chan_info[chan].num;
868 
869 	if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
870 	    (fmt->data_type == DATA_TYPE_C420 ||
871 	     fmt->data_type == DATA_TYPE_CB420)) {
872 		rect.height >>= 1;
873 		rect.top >>= 1;
874 		depth = 8;
875 	}
876 
877 	dma_addr += rect.top * stride + (rect.left * depth >> 3);
878 
879 	dtd = list->next;
880 	WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
881 
882 	dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
883 					notify,
884 					field,
885 					!!(flags & VPDMA_DATA_FRAME_1D),
886 					!!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
887 					!!(flags & VPDMA_DATA_ODD_LINE_SKIP),
888 					stride);
889 
890 	dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
891 					rect.height);
892 	dtd->start_addr = (u32) dma_addr;
893 	dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
894 				DTD_DIR_IN, channel, priority, next_chan);
895 	dtd->frame_width_height = dtd_frame_width_height(frame_width,
896 					frame_height);
897 	dtd->start_h_v = dtd_start_h_v(start_h, start_v);
898 	dtd->client_attr0 = 0;
899 	dtd->client_attr1 = 0;
900 
901 	list->next = dtd + 1;
902 
903 	dump_dtd(dtd);
904 }
905 EXPORT_SYMBOL(vpdma_add_in_dtd);
906 
vpdma_hwlist_alloc(struct vpdma_data * vpdma,void * priv)907 int vpdma_hwlist_alloc(struct vpdma_data *vpdma, void *priv)
908 {
909 	int i, list_num = -1;
910 	unsigned long flags;
911 
912 	spin_lock_irqsave(&vpdma->lock, flags);
913 	for (i = 0; i < VPDMA_MAX_NUM_LIST && vpdma->hwlist_used[i]; i++)
914 		;
915 
916 	if (i < VPDMA_MAX_NUM_LIST) {
917 		list_num = i;
918 		vpdma->hwlist_used[i] = true;
919 		vpdma->hwlist_priv[i] = priv;
920 	}
921 	spin_unlock_irqrestore(&vpdma->lock, flags);
922 
923 	return list_num;
924 }
925 EXPORT_SYMBOL(vpdma_hwlist_alloc);
926 
vpdma_hwlist_get_priv(struct vpdma_data * vpdma,int list_num)927 void *vpdma_hwlist_get_priv(struct vpdma_data *vpdma, int list_num)
928 {
929 	if (!vpdma || list_num >= VPDMA_MAX_NUM_LIST)
930 		return NULL;
931 
932 	return vpdma->hwlist_priv[list_num];
933 }
934 EXPORT_SYMBOL(vpdma_hwlist_get_priv);
935 
vpdma_hwlist_release(struct vpdma_data * vpdma,int list_num)936 void *vpdma_hwlist_release(struct vpdma_data *vpdma, int list_num)
937 {
938 	void *priv;
939 	unsigned long flags;
940 
941 	spin_lock_irqsave(&vpdma->lock, flags);
942 	vpdma->hwlist_used[list_num] = false;
943 	priv = vpdma->hwlist_priv;
944 	spin_unlock_irqrestore(&vpdma->lock, flags);
945 
946 	return priv;
947 }
948 EXPORT_SYMBOL(vpdma_hwlist_release);
949 
950 /* set or clear the mask for list complete interrupt */
vpdma_enable_list_complete_irq(struct vpdma_data * vpdma,int irq_num,int list_num,bool enable)951 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int irq_num,
952 		int list_num, bool enable)
953 {
954 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
955 	u32 val;
956 
957 	val = read_reg(vpdma, reg_addr);
958 	if (enable)
959 		val |= (1 << (list_num * 2));
960 	else
961 		val &= ~(1 << (list_num * 2));
962 	write_reg(vpdma, reg_addr, val);
963 }
964 EXPORT_SYMBOL(vpdma_enable_list_complete_irq);
965 
966 /* get the LIST_STAT register */
vpdma_get_list_stat(struct vpdma_data * vpdma,int irq_num)967 unsigned int vpdma_get_list_stat(struct vpdma_data *vpdma, int irq_num)
968 {
969 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
970 
971 	return read_reg(vpdma, reg_addr);
972 }
973 EXPORT_SYMBOL(vpdma_get_list_stat);
974 
975 /* get the LIST_MASK register */
vpdma_get_list_mask(struct vpdma_data * vpdma,int irq_num)976 unsigned int vpdma_get_list_mask(struct vpdma_data *vpdma, int irq_num)
977 {
978 	u32 reg_addr = VPDMA_INT_LIST0_MASK + VPDMA_INTX_OFFSET * irq_num;
979 
980 	return read_reg(vpdma, reg_addr);
981 }
982 EXPORT_SYMBOL(vpdma_get_list_mask);
983 
984 /* clear previously occurred list interrupts in the LIST_STAT register */
vpdma_clear_list_stat(struct vpdma_data * vpdma,int irq_num,int list_num)985 void vpdma_clear_list_stat(struct vpdma_data *vpdma, int irq_num,
986 			   int list_num)
987 {
988 	u32 reg_addr = VPDMA_INT_LIST0_STAT + VPDMA_INTX_OFFSET * irq_num;
989 
990 	write_reg(vpdma, reg_addr, 3 << (list_num * 2));
991 }
992 EXPORT_SYMBOL(vpdma_clear_list_stat);
993 
vpdma_set_bg_color(struct vpdma_data * vpdma,struct vpdma_data_format * fmt,u32 color)994 void vpdma_set_bg_color(struct vpdma_data *vpdma,
995 		struct vpdma_data_format *fmt, u32 color)
996 {
997 	if (fmt->type == VPDMA_DATA_FMT_TYPE_RGB)
998 		write_reg(vpdma, VPDMA_BG_RGB, color);
999 	else if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV)
1000 		write_reg(vpdma, VPDMA_BG_YUV, color);
1001 }
1002 EXPORT_SYMBOL(vpdma_set_bg_color);
1003 
1004 /*
1005  * configures the output mode of the line buffer for the given client, the
1006  * line buffer content can either be mirrored(each line repeated twice) or
1007  * passed to the client as is
1008  */
vpdma_set_line_mode(struct vpdma_data * vpdma,int line_mode,enum vpdma_channel chan)1009 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
1010 		enum vpdma_channel chan)
1011 {
1012 	int client_cstat = chan_info[chan].cstat_offset;
1013 
1014 	write_field_reg(vpdma, client_cstat, line_mode,
1015 		VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
1016 }
1017 EXPORT_SYMBOL(vpdma_set_line_mode);
1018 
1019 /*
1020  * configures the event which should trigger VPDMA transfer for the given
1021  * client
1022  */
vpdma_set_frame_start_event(struct vpdma_data * vpdma,enum vpdma_frame_start_event fs_event,enum vpdma_channel chan)1023 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
1024 		enum vpdma_frame_start_event fs_event,
1025 		enum vpdma_channel chan)
1026 {
1027 	int client_cstat = chan_info[chan].cstat_offset;
1028 
1029 	write_field_reg(vpdma, client_cstat, fs_event,
1030 		VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
1031 }
1032 EXPORT_SYMBOL(vpdma_set_frame_start_event);
1033 
vpdma_firmware_cb(const struct firmware * f,void * context)1034 static void vpdma_firmware_cb(const struct firmware *f, void *context)
1035 {
1036 	struct vpdma_data *vpdma = context;
1037 	struct vpdma_buf fw_dma_buf;
1038 	int i, r;
1039 
1040 	dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
1041 
1042 	if (!f || !f->data) {
1043 		dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
1044 		return;
1045 	}
1046 
1047 	/* already initialized */
1048 	if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1049 			VPDMA_LIST_RDY_SHFT)) {
1050 		vpdma->cb(vpdma->pdev);
1051 		return;
1052 	}
1053 
1054 	r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
1055 	if (r) {
1056 		dev_err(&vpdma->pdev->dev,
1057 			"failed to allocate dma buffer for firmware\n");
1058 		goto rel_fw;
1059 	}
1060 
1061 	memcpy(fw_dma_buf.addr, f->data, f->size);
1062 
1063 	vpdma_map_desc_buf(vpdma, &fw_dma_buf);
1064 
1065 	write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
1066 
1067 	for (i = 0; i < 100; i++) {		/* max 1 second */
1068 		msleep_interruptible(10);
1069 
1070 		if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
1071 				VPDMA_LIST_RDY_SHFT))
1072 			break;
1073 	}
1074 
1075 	if (i == 100) {
1076 		dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
1077 		goto free_buf;
1078 	}
1079 
1080 	vpdma->cb(vpdma->pdev);
1081 
1082 free_buf:
1083 	vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
1084 
1085 	vpdma_free_desc_buf(&fw_dma_buf);
1086 rel_fw:
1087 	release_firmware(f);
1088 }
1089 
vpdma_load_firmware(struct vpdma_data * vpdma)1090 static int vpdma_load_firmware(struct vpdma_data *vpdma)
1091 {
1092 	int r;
1093 	struct device *dev = &vpdma->pdev->dev;
1094 
1095 	r = request_firmware_nowait(THIS_MODULE, 1,
1096 		(const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
1097 		vpdma_firmware_cb);
1098 	if (r) {
1099 		dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
1100 		return r;
1101 	} else {
1102 		dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
1103 	}
1104 
1105 	return 0;
1106 }
1107 
vpdma_create(struct platform_device * pdev,struct vpdma_data * vpdma,void (* cb)(struct platform_device * pdev))1108 int vpdma_create(struct platform_device *pdev, struct vpdma_data *vpdma,
1109 		void (*cb)(struct platform_device *pdev))
1110 {
1111 	struct resource *res;
1112 	int r;
1113 
1114 	dev_dbg(&pdev->dev, "vpdma_create\n");
1115 
1116 	vpdma->pdev = pdev;
1117 	vpdma->cb = cb;
1118 	spin_lock_init(&vpdma->lock);
1119 
1120 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
1121 	if (res == NULL) {
1122 		dev_err(&pdev->dev, "missing platform resources data\n");
1123 		return -ENODEV;
1124 	}
1125 
1126 	vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
1127 	if (!vpdma->base) {
1128 		dev_err(&pdev->dev, "failed to ioremap\n");
1129 		return -ENOMEM;
1130 	}
1131 
1132 	r = vpdma_load_firmware(vpdma);
1133 	if (r) {
1134 		pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
1135 		return r;
1136 	}
1137 
1138 	return 0;
1139 }
1140 EXPORT_SYMBOL(vpdma_create);
1141 
1142 MODULE_AUTHOR("Texas Instruments Inc.");
1143 MODULE_FIRMWARE(VPDMA_FIRMWARE);
1144 MODULE_DESCRIPTION("TI VPDMA helper library");
1145 MODULE_LICENSE("GPL v2");
1146