xref: /linux/include/linux/mm.h (revision 0074281bb6316108e0cff094bd4db78ab3eee236)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/compiler.h>
16 #include <linux/mm_types.h>
17 #include <linux/mmap_lock.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page-flags.h>
27 #include <linux/page_ref.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 #include <linux/sched.h>
31 #include <linux/pgtable.h>
32 #include <linux/kasan.h>
33 #include <linux/memremap.h>
34 #include <linux/slab.h>
35 #include <linux/cacheinfo.h>
36 #include <linux/rcuwait.h>
37 
38 struct mempolicy;
39 struct anon_vma;
40 struct anon_vma_chain;
41 struct user_struct;
42 struct pt_regs;
43 struct folio_batch;
44 
45 void arch_mm_preinit(void);
46 void mm_core_init(void);
47 void init_mm_internals(void);
48 
49 extern atomic_long_t _totalram_pages;
totalram_pages(void)50 static inline unsigned long totalram_pages(void)
51 {
52 	return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54 
totalram_pages_inc(void)55 static inline void totalram_pages_inc(void)
56 {
57 	atomic_long_inc(&_totalram_pages);
58 }
59 
totalram_pages_dec(void)60 static inline void totalram_pages_dec(void)
61 {
62 	atomic_long_dec(&_totalram_pages);
63 }
64 
totalram_pages_add(long count)65 static inline void totalram_pages_add(long count)
66 {
67 	atomic_long_add(count, &_totalram_pages);
68 }
69 
70 extern void * high_memory;
71 
72 #ifdef CONFIG_SYSCTL
73 extern int sysctl_legacy_va_layout;
74 #else
75 #define sysctl_legacy_va_layout 0
76 #endif
77 
78 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
79 extern const int mmap_rnd_bits_min;
80 extern int mmap_rnd_bits_max __ro_after_init;
81 extern int mmap_rnd_bits __read_mostly;
82 #endif
83 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
84 extern const int mmap_rnd_compat_bits_min;
85 extern const int mmap_rnd_compat_bits_max;
86 extern int mmap_rnd_compat_bits __read_mostly;
87 #endif
88 
89 #ifndef DIRECT_MAP_PHYSMEM_END
90 # ifdef MAX_PHYSMEM_BITS
91 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
92 # else
93 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
94 # endif
95 #endif
96 
97 #include <asm/page.h>
98 #include <asm/processor.h>
99 
100 #ifndef __pa_symbol
101 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
102 #endif
103 
104 #ifndef page_to_virt
105 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
106 #endif
107 
108 #ifndef lm_alias
109 #define lm_alias(x)	__va(__pa_symbol(x))
110 #endif
111 
112 /*
113  * To prevent common memory management code establishing
114  * a zero page mapping on a read fault.
115  * This macro should be defined within <asm/pgtable.h>.
116  * s390 does this to prevent multiplexing of hardware bits
117  * related to the physical page in case of virtualization.
118  */
119 #ifndef mm_forbids_zeropage
120 #define mm_forbids_zeropage(X)	(0)
121 #endif
122 
123 /*
124  * On some architectures it is expensive to call memset() for small sizes.
125  * If an architecture decides to implement their own version of
126  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
127  * define their own version of this macro in <asm/pgtable.h>
128  */
129 #if BITS_PER_LONG == 64
130 /* This function must be updated when the size of struct page grows above 96
131  * or reduces below 56. The idea that compiler optimizes out switch()
132  * statement, and only leaves move/store instructions. Also the compiler can
133  * combine write statements if they are both assignments and can be reordered,
134  * this can result in several of the writes here being dropped.
135  */
136 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)137 static inline void __mm_zero_struct_page(struct page *page)
138 {
139 	unsigned long *_pp = (void *)page;
140 
141 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
142 	BUILD_BUG_ON(sizeof(struct page) & 7);
143 	BUILD_BUG_ON(sizeof(struct page) < 56);
144 	BUILD_BUG_ON(sizeof(struct page) > 96);
145 
146 	switch (sizeof(struct page)) {
147 	case 96:
148 		_pp[11] = 0;
149 		fallthrough;
150 	case 88:
151 		_pp[10] = 0;
152 		fallthrough;
153 	case 80:
154 		_pp[9] = 0;
155 		fallthrough;
156 	case 72:
157 		_pp[8] = 0;
158 		fallthrough;
159 	case 64:
160 		_pp[7] = 0;
161 		fallthrough;
162 	case 56:
163 		_pp[6] = 0;
164 		_pp[5] = 0;
165 		_pp[4] = 0;
166 		_pp[3] = 0;
167 		_pp[2] = 0;
168 		_pp[1] = 0;
169 		_pp[0] = 0;
170 	}
171 }
172 #else
173 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
174 #endif
175 
176 /*
177  * Default maximum number of active map areas, this limits the number of vmas
178  * per mm struct. Users can overwrite this number by sysctl but there is a
179  * problem.
180  *
181  * When a program's coredump is generated as ELF format, a section is created
182  * per a vma. In ELF, the number of sections is represented in unsigned short.
183  * This means the number of sections should be smaller than 65535 at coredump.
184  * Because the kernel adds some informative sections to a image of program at
185  * generating coredump, we need some margin. The number of extra sections is
186  * 1-3 now and depends on arch. We use "5" as safe margin, here.
187  *
188  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
189  * not a hard limit any more. Although some userspace tools can be surprised by
190  * that.
191  */
192 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
193 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
194 
195 extern int sysctl_max_map_count;
196 
197 extern unsigned long sysctl_user_reserve_kbytes;
198 extern unsigned long sysctl_admin_reserve_kbytes;
199 
200 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
201 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
202 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
203 #else
204 #define nth_page(page,n) ((page) + (n))
205 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
206 #endif
207 
208 /* to align the pointer to the (next) page boundary */
209 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
210 
211 /* to align the pointer to the (prev) page boundary */
212 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
213 
214 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
215 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
216 
lru_to_folio(struct list_head * head)217 static inline struct folio *lru_to_folio(struct list_head *head)
218 {
219 	return list_entry((head)->prev, struct folio, lru);
220 }
221 
222 void setup_initial_init_mm(void *start_code, void *end_code,
223 			   void *end_data, void *brk);
224 
225 /*
226  * Linux kernel virtual memory manager primitives.
227  * The idea being to have a "virtual" mm in the same way
228  * we have a virtual fs - giving a cleaner interface to the
229  * mm details, and allowing different kinds of memory mappings
230  * (from shared memory to executable loading to arbitrary
231  * mmap() functions).
232  */
233 
234 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
235 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
236 void vm_area_free(struct vm_area_struct *);
237 
238 #ifndef CONFIG_MMU
239 extern struct rb_root nommu_region_tree;
240 extern struct rw_semaphore nommu_region_sem;
241 
242 extern unsigned int kobjsize(const void *objp);
243 #endif
244 
245 /*
246  * vm_flags in vm_area_struct, see mm_types.h.
247  * When changing, update also include/trace/events/mmflags.h
248  */
249 #define VM_NONE		0x00000000
250 
251 #define VM_READ		0x00000001	/* currently active flags */
252 #define VM_WRITE	0x00000002
253 #define VM_EXEC		0x00000004
254 #define VM_SHARED	0x00000008
255 
256 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
257 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
258 #define VM_MAYWRITE	0x00000020
259 #define VM_MAYEXEC	0x00000040
260 #define VM_MAYSHARE	0x00000080
261 
262 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
263 #ifdef CONFIG_MMU
264 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
265 #else /* CONFIG_MMU */
266 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
267 #define VM_UFFD_MISSING	0
268 #endif /* CONFIG_MMU */
269 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
271 
272 #define VM_LOCKED	0x00002000
273 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
274 
275 					/* Used by sys_madvise() */
276 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
277 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
278 
279 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
280 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
281 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
282 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
283 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
284 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
285 #define VM_SYNC		0x00800000	/* Synchronous page faults */
286 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
287 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
288 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
292 #else
293 # define VM_SOFTDIRTY	0
294 #endif
295 
296 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
297 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
298 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
299 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
300 
301 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
302 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
309 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
310 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
311 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
312 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
313 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
314 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
315 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
317 
318 #ifdef CONFIG_ARCH_HAS_PKEYS
319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
320 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
321 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
322 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
323 #if CONFIG_ARCH_PKEY_BITS > 3
324 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
325 #else
326 # define VM_PKEY_BIT3  0
327 #endif
328 #if CONFIG_ARCH_PKEY_BITS > 4
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #ifdef CONFIG_X86_USER_SHADOW_STACK
336 /*
337  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
338  * support core mm.
339  *
340  * These VMAs will get a single end guard page. This helps userspace protect
341  * itself from attacks. A single page is enough for current shadow stack archs
342  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
343  * for more details on the guard size.
344  */
345 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
346 #endif
347 
348 #if defined(CONFIG_ARM64_GCS)
349 /*
350  * arm64's Guarded Control Stack implements similar functionality and
351  * has similar constraints to shadow stacks.
352  */
353 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
354 #endif
355 
356 #ifndef VM_SHADOW_STACK
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_PPC64)
361 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
362 #elif defined(CONFIG_PARISC)
363 # define VM_GROWSUP	VM_ARCH_1
364 #elif defined(CONFIG_SPARC64)
365 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
366 # define VM_ARCH_CLEAR	VM_SPARC_ADI
367 #elif defined(CONFIG_ARM64)
368 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
369 # define VM_ARCH_CLEAR	VM_ARM64_BTI
370 #elif !defined(CONFIG_MMU)
371 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
372 #endif
373 
374 #if defined(CONFIG_ARM64_MTE)
375 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
376 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
377 #else
378 # define VM_MTE		VM_NONE
379 # define VM_MTE_ALLOWED	VM_NONE
380 #endif
381 
382 #ifndef VM_GROWSUP
383 # define VM_GROWSUP	VM_NONE
384 #endif
385 
386 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
387 # define VM_UFFD_MINOR_BIT	41
388 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
389 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
390 # define VM_UFFD_MINOR		VM_NONE
391 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 
393 /*
394  * This flag is used to connect VFIO to arch specific KVM code. It
395  * indicates that the memory under this VMA is safe for use with any
396  * non-cachable memory type inside KVM. Some VFIO devices, on some
397  * platforms, are thought to be unsafe and can cause machine crashes
398  * if KVM does not lock down the memory type.
399  */
400 #ifdef CONFIG_64BIT
401 #define VM_ALLOW_ANY_UNCACHED_BIT	39
402 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
403 #else
404 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
405 #endif
406 
407 #ifdef CONFIG_64BIT
408 #define VM_DROPPABLE_BIT	40
409 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
410 #elif defined(CONFIG_PPC32)
411 #define VM_DROPPABLE		VM_ARCH_1
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 #define VM_SEALED_BIT	42
418 #define VM_SEALED	BIT(VM_SEALED_BIT)
419 #else
420 #define VM_SEALED	VM_NONE
421 #endif
422 
423 /* Bits set in the VMA until the stack is in its final location */
424 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
425 
426 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
427 
428 /* Common data flag combinations */
429 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
430 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
432 				 VM_MAYWRITE | VM_MAYEXEC)
433 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
434 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
435 
436 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
437 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
438 #endif
439 
440 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
441 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
442 #endif
443 
444 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
445 
446 #ifdef CONFIG_STACK_GROWSUP
447 #define VM_STACK	VM_GROWSUP
448 #define VM_STACK_EARLY	VM_GROWSDOWN
449 #else
450 #define VM_STACK	VM_GROWSDOWN
451 #define VM_STACK_EARLY	0
452 #endif
453 
454 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
455 
456 /* VMA basic access permission flags */
457 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
458 
459 
460 /*
461  * Special vmas that are non-mergable, non-mlock()able.
462  */
463 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
464 
465 /* This mask prevents VMA from being scanned with khugepaged */
466 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
467 
468 /* This mask defines which mm->def_flags a process can inherit its parent */
469 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
470 
471 /* This mask represents all the VMA flag bits used by mlock */
472 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
473 
474 /* Arch-specific flags to clear when updating VM flags on protection change */
475 #ifndef VM_ARCH_CLEAR
476 # define VM_ARCH_CLEAR	VM_NONE
477 #endif
478 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
479 
480 /*
481  * mapping from the currently active vm_flags protection bits (the
482  * low four bits) to a page protection mask..
483  */
484 
485 /*
486  * The default fault flags that should be used by most of the
487  * arch-specific page fault handlers.
488  */
489 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
490 			     FAULT_FLAG_KILLABLE | \
491 			     FAULT_FLAG_INTERRUPTIBLE)
492 
493 /**
494  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
495  * @flags: Fault flags.
496  *
497  * This is mostly used for places where we want to try to avoid taking
498  * the mmap_lock for too long a time when waiting for another condition
499  * to change, in which case we can try to be polite to release the
500  * mmap_lock in the first round to avoid potential starvation of other
501  * processes that would also want the mmap_lock.
502  *
503  * Return: true if the page fault allows retry and this is the first
504  * attempt of the fault handling; false otherwise.
505  */
fault_flag_allow_retry_first(enum fault_flag flags)506 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
507 {
508 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
509 	    (!(flags & FAULT_FLAG_TRIED));
510 }
511 
512 #define FAULT_FLAG_TRACE \
513 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
514 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
515 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
516 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
517 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
518 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
519 	{ FAULT_FLAG_USER,		"USER" }, \
520 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
521 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
522 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
523 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
524 
525 /*
526  * vm_fault is filled by the pagefault handler and passed to the vma's
527  * ->fault function. The vma's ->fault is responsible for returning a bitmask
528  * of VM_FAULT_xxx flags that give details about how the fault was handled.
529  *
530  * MM layer fills up gfp_mask for page allocations but fault handler might
531  * alter it if its implementation requires a different allocation context.
532  *
533  * pgoff should be used in favour of virtual_address, if possible.
534  */
535 struct vm_fault {
536 	const struct {
537 		struct vm_area_struct *vma;	/* Target VMA */
538 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
539 		pgoff_t pgoff;			/* Logical page offset based on vma */
540 		unsigned long address;		/* Faulting virtual address - masked */
541 		unsigned long real_address;	/* Faulting virtual address - unmasked */
542 	};
543 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
544 					 * XXX: should really be 'const' */
545 	pmd_t *pmd;			/* Pointer to pmd entry matching
546 					 * the 'address' */
547 	pud_t *pud;			/* Pointer to pud entry matching
548 					 * the 'address'
549 					 */
550 	union {
551 		pte_t orig_pte;		/* Value of PTE at the time of fault */
552 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
553 					 * used by PMD fault only.
554 					 */
555 	};
556 
557 	struct page *cow_page;		/* Page handler may use for COW fault */
558 	struct page *page;		/* ->fault handlers should return a
559 					 * page here, unless VM_FAULT_NOPAGE
560 					 * is set (which is also implied by
561 					 * VM_FAULT_ERROR).
562 					 */
563 	/* These three entries are valid only while holding ptl lock */
564 	pte_t *pte;			/* Pointer to pte entry matching
565 					 * the 'address'. NULL if the page
566 					 * table hasn't been allocated.
567 					 */
568 	spinlock_t *ptl;		/* Page table lock.
569 					 * Protects pte page table if 'pte'
570 					 * is not NULL, otherwise pmd.
571 					 */
572 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
573 					 * vm_ops->map_pages() sets up a page
574 					 * table from atomic context.
575 					 * do_fault_around() pre-allocates
576 					 * page table to avoid allocation from
577 					 * atomic context.
578 					 */
579 };
580 
581 /*
582  * These are the virtual MM functions - opening of an area, closing and
583  * unmapping it (needed to keep files on disk up-to-date etc), pointer
584  * to the functions called when a no-page or a wp-page exception occurs.
585  */
586 struct vm_operations_struct {
587 	void (*open)(struct vm_area_struct * area);
588 	/**
589 	 * @close: Called when the VMA is being removed from the MM.
590 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
591 	 */
592 	void (*close)(struct vm_area_struct * area);
593 	/* Called any time before splitting to check if it's allowed */
594 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
595 	int (*mremap)(struct vm_area_struct *area);
596 	/*
597 	 * Called by mprotect() to make driver-specific permission
598 	 * checks before mprotect() is finalised.   The VMA must not
599 	 * be modified.  Returns 0 if mprotect() can proceed.
600 	 */
601 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
602 			unsigned long end, unsigned long newflags);
603 	vm_fault_t (*fault)(struct vm_fault *vmf);
604 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
605 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 			pgoff_t start_pgoff, pgoff_t end_pgoff);
607 	unsigned long (*pagesize)(struct vm_area_struct * area);
608 
609 	/* notification that a previously read-only page is about to become
610 	 * writable, if an error is returned it will cause a SIGBUS */
611 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
612 
613 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
615 
616 	/* called by access_process_vm when get_user_pages() fails, typically
617 	 * for use by special VMAs. See also generic_access_phys() for a generic
618 	 * implementation useful for any iomem mapping.
619 	 */
620 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 		      void *buf, int len, int write);
622 
623 	/* Called by the /proc/PID/maps code to ask the vma whether it
624 	 * has a special name.  Returning non-NULL will also cause this
625 	 * vma to be dumped unconditionally. */
626 	const char *(*name)(struct vm_area_struct *vma);
627 
628 #ifdef CONFIG_NUMA
629 	/*
630 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 	 * to hold the policy upon return.  Caller should pass NULL @new to
632 	 * remove a policy and fall back to surrounding context--i.e. do not
633 	 * install a MPOL_DEFAULT policy, nor the task or system default
634 	 * mempolicy.
635 	 */
636 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637 
638 	/*
639 	 * get_policy() op must add reference [mpol_get()] to any policy at
640 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
641 	 * in mm/mempolicy.c will do this automatically.
642 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 	 * must return NULL--i.e., do not "fallback" to task or system default
646 	 * policy.
647 	 */
648 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
649 					unsigned long addr, pgoff_t *ilx);
650 #endif
651 	/*
652 	 * Called by vm_normal_page() for special PTEs to find the
653 	 * page for @addr.  This is useful if the default behavior
654 	 * (using pte_page()) would not find the correct page.
655 	 */
656 	struct page *(*find_special_page)(struct vm_area_struct *vma,
657 					  unsigned long addr);
658 };
659 
660 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)661 static inline void vma_numab_state_init(struct vm_area_struct *vma)
662 {
663 	vma->numab_state = NULL;
664 }
vma_numab_state_free(struct vm_area_struct * vma)665 static inline void vma_numab_state_free(struct vm_area_struct *vma)
666 {
667 	kfree(vma->numab_state);
668 }
669 #else
vma_numab_state_init(struct vm_area_struct * vma)670 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)671 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
672 #endif /* CONFIG_NUMA_BALANCING */
673 
674 /*
675  * These must be here rather than mmap_lock.h as dependent on vm_fault type,
676  * declared in this header.
677  */
678 #ifdef CONFIG_PER_VMA_LOCK
release_fault_lock(struct vm_fault * vmf)679 static inline void release_fault_lock(struct vm_fault *vmf)
680 {
681 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
682 		vma_end_read(vmf->vma);
683 	else
684 		mmap_read_unlock(vmf->vma->vm_mm);
685 }
686 
assert_fault_locked(struct vm_fault * vmf)687 static inline void assert_fault_locked(struct vm_fault *vmf)
688 {
689 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
690 		vma_assert_locked(vmf->vma);
691 	else
692 		mmap_assert_locked(vmf->vma->vm_mm);
693 }
694 #else
release_fault_lock(struct vm_fault * vmf)695 static inline void release_fault_lock(struct vm_fault *vmf)
696 {
697 	mmap_read_unlock(vmf->vma->vm_mm);
698 }
699 
assert_fault_locked(struct vm_fault * vmf)700 static inline void assert_fault_locked(struct vm_fault *vmf)
701 {
702 	mmap_assert_locked(vmf->vma->vm_mm);
703 }
704 #endif /* CONFIG_PER_VMA_LOCK */
705 
706 extern const struct vm_operations_struct vma_dummy_vm_ops;
707 
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)708 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
709 {
710 	memset(vma, 0, sizeof(*vma));
711 	vma->vm_mm = mm;
712 	vma->vm_ops = &vma_dummy_vm_ops;
713 	INIT_LIST_HEAD(&vma->anon_vma_chain);
714 	vma_lock_init(vma, false);
715 }
716 
717 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)718 static inline void vm_flags_init(struct vm_area_struct *vma,
719 				 vm_flags_t flags)
720 {
721 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
722 }
723 
724 /*
725  * Use when VMA is part of the VMA tree and modifications need coordination
726  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
727  * it should be locked explicitly beforehand.
728  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)729 static inline void vm_flags_reset(struct vm_area_struct *vma,
730 				  vm_flags_t flags)
731 {
732 	vma_assert_write_locked(vma);
733 	vm_flags_init(vma, flags);
734 }
735 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)736 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
737 				       vm_flags_t flags)
738 {
739 	vma_assert_write_locked(vma);
740 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
741 }
742 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)743 static inline void vm_flags_set(struct vm_area_struct *vma,
744 				vm_flags_t flags)
745 {
746 	vma_start_write(vma);
747 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
748 }
749 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)750 static inline void vm_flags_clear(struct vm_area_struct *vma,
751 				  vm_flags_t flags)
752 {
753 	vma_start_write(vma);
754 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
755 }
756 
757 /*
758  * Use only if VMA is not part of the VMA tree or has no other users and
759  * therefore needs no locking.
760  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)761 static inline void __vm_flags_mod(struct vm_area_struct *vma,
762 				  vm_flags_t set, vm_flags_t clear)
763 {
764 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
765 }
766 
767 /*
768  * Use only when the order of set/clear operations is unimportant, otherwise
769  * use vm_flags_{set|clear} explicitly.
770  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)771 static inline void vm_flags_mod(struct vm_area_struct *vma,
772 				vm_flags_t set, vm_flags_t clear)
773 {
774 	vma_start_write(vma);
775 	__vm_flags_mod(vma, set, clear);
776 }
777 
vma_set_anonymous(struct vm_area_struct * vma)778 static inline void vma_set_anonymous(struct vm_area_struct *vma)
779 {
780 	vma->vm_ops = NULL;
781 }
782 
vma_is_anonymous(struct vm_area_struct * vma)783 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
784 {
785 	return !vma->vm_ops;
786 }
787 
788 /*
789  * Indicate if the VMA is a heap for the given task; for
790  * /proc/PID/maps that is the heap of the main task.
791  */
vma_is_initial_heap(const struct vm_area_struct * vma)792 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
793 {
794 	return vma->vm_start < vma->vm_mm->brk &&
795 		vma->vm_end > vma->vm_mm->start_brk;
796 }
797 
798 /*
799  * Indicate if the VMA is a stack for the given task; for
800  * /proc/PID/maps that is the stack of the main task.
801  */
vma_is_initial_stack(const struct vm_area_struct * vma)802 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
803 {
804 	/*
805 	 * We make no effort to guess what a given thread considers to be
806 	 * its "stack".  It's not even well-defined for programs written
807 	 * languages like Go.
808 	 */
809 	return vma->vm_start <= vma->vm_mm->start_stack &&
810 		vma->vm_end >= vma->vm_mm->start_stack;
811 }
812 
vma_is_temporary_stack(struct vm_area_struct * vma)813 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
814 {
815 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
816 
817 	if (!maybe_stack)
818 		return false;
819 
820 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
821 						VM_STACK_INCOMPLETE_SETUP)
822 		return true;
823 
824 	return false;
825 }
826 
vma_is_foreign(struct vm_area_struct * vma)827 static inline bool vma_is_foreign(struct vm_area_struct *vma)
828 {
829 	if (!current->mm)
830 		return true;
831 
832 	if (current->mm != vma->vm_mm)
833 		return true;
834 
835 	return false;
836 }
837 
vma_is_accessible(struct vm_area_struct * vma)838 static inline bool vma_is_accessible(struct vm_area_struct *vma)
839 {
840 	return vma->vm_flags & VM_ACCESS_FLAGS;
841 }
842 
is_shared_maywrite(vm_flags_t vm_flags)843 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
844 {
845 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
846 		(VM_SHARED | VM_MAYWRITE);
847 }
848 
vma_is_shared_maywrite(struct vm_area_struct * vma)849 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
850 {
851 	return is_shared_maywrite(vma->vm_flags);
852 }
853 
854 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)855 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856 {
857 	return mas_find(&vmi->mas, max - 1);
858 }
859 
vma_next(struct vma_iterator * vmi)860 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861 {
862 	/*
863 	 * Uses mas_find() to get the first VMA when the iterator starts.
864 	 * Calling mas_next() could skip the first entry.
865 	 */
866 	return mas_find(&vmi->mas, ULONG_MAX);
867 }
868 
869 static inline
vma_iter_next_range(struct vma_iterator * vmi)870 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
871 {
872 	return mas_next_range(&vmi->mas, ULONG_MAX);
873 }
874 
875 
vma_prev(struct vma_iterator * vmi)876 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
877 {
878 	return mas_prev(&vmi->mas, 0);
879 }
880 
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)881 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
882 			unsigned long start, unsigned long end, gfp_t gfp)
883 {
884 	__mas_set_range(&vmi->mas, start, end - 1);
885 	mas_store_gfp(&vmi->mas, NULL, gfp);
886 	if (unlikely(mas_is_err(&vmi->mas)))
887 		return -ENOMEM;
888 
889 	return 0;
890 }
891 
892 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)893 static inline void vma_iter_free(struct vma_iterator *vmi)
894 {
895 	mas_destroy(&vmi->mas);
896 }
897 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)898 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
899 				      struct vm_area_struct *vma)
900 {
901 	vmi->mas.index = vma->vm_start;
902 	vmi->mas.last = vma->vm_end - 1;
903 	mas_store(&vmi->mas, vma);
904 	if (unlikely(mas_is_err(&vmi->mas)))
905 		return -ENOMEM;
906 
907 	vma_mark_attached(vma);
908 	return 0;
909 }
910 
vma_iter_invalidate(struct vma_iterator * vmi)911 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
912 {
913 	mas_pause(&vmi->mas);
914 }
915 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)916 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
917 {
918 	mas_set(&vmi->mas, addr);
919 }
920 
921 #define for_each_vma(__vmi, __vma)					\
922 	while (((__vma) = vma_next(&(__vmi))) != NULL)
923 
924 /* The MM code likes to work with exclusive end addresses */
925 #define for_each_vma_range(__vmi, __vma, __end)				\
926 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
927 
928 #ifdef CONFIG_SHMEM
929 /*
930  * The vma_is_shmem is not inline because it is used only by slow
931  * paths in userfault.
932  */
933 bool vma_is_shmem(struct vm_area_struct *vma);
934 bool vma_is_anon_shmem(struct vm_area_struct *vma);
935 #else
vma_is_shmem(struct vm_area_struct * vma)936 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)937 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
938 #endif
939 
940 int vma_is_stack_for_current(struct vm_area_struct *vma);
941 
942 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
943 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
944 
945 struct mmu_gather;
946 struct inode;
947 
948 extern void prep_compound_page(struct page *page, unsigned int order);
949 
folio_large_order(const struct folio * folio)950 static inline unsigned int folio_large_order(const struct folio *folio)
951 {
952 	return folio->_flags_1 & 0xff;
953 }
954 
955 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)956 static inline long folio_large_nr_pages(const struct folio *folio)
957 {
958 	return folio->_nr_pages;
959 }
960 #else
folio_large_nr_pages(const struct folio * folio)961 static inline long folio_large_nr_pages(const struct folio *folio)
962 {
963 	return 1L << folio_large_order(folio);
964 }
965 #endif
966 
967 /*
968  * compound_order() can be called without holding a reference, which means
969  * that niceties like page_folio() don't work.  These callers should be
970  * prepared to handle wild return values.  For example, PG_head may be
971  * set before the order is initialised, or this may be a tail page.
972  * See compaction.c for some good examples.
973  */
compound_order(struct page * page)974 static inline unsigned int compound_order(struct page *page)
975 {
976 	struct folio *folio = (struct folio *)page;
977 
978 	if (!test_bit(PG_head, &folio->flags))
979 		return 0;
980 	return folio_large_order(folio);
981 }
982 
983 /**
984  * folio_order - The allocation order of a folio.
985  * @folio: The folio.
986  *
987  * A folio is composed of 2^order pages.  See get_order() for the definition
988  * of order.
989  *
990  * Return: The order of the folio.
991  */
folio_order(const struct folio * folio)992 static inline unsigned int folio_order(const struct folio *folio)
993 {
994 	if (!folio_test_large(folio))
995 		return 0;
996 	return folio_large_order(folio);
997 }
998 
999 /**
1000  * folio_reset_order - Reset the folio order and derived _nr_pages
1001  * @folio: The folio.
1002  *
1003  * Reset the order and derived _nr_pages to 0. Must only be used in the
1004  * process of splitting large folios.
1005  */
folio_reset_order(struct folio * folio)1006 static inline void folio_reset_order(struct folio *folio)
1007 {
1008 	if (WARN_ON_ONCE(!folio_test_large(folio)))
1009 		return;
1010 	folio->_flags_1 &= ~0xffUL;
1011 #ifdef NR_PAGES_IN_LARGE_FOLIO
1012 	folio->_nr_pages = 0;
1013 #endif
1014 }
1015 
1016 #include <linux/huge_mm.h>
1017 
1018 /*
1019  * Methods to modify the page usage count.
1020  *
1021  * What counts for a page usage:
1022  * - cache mapping   (page->mapping)
1023  * - private data    (page->private)
1024  * - page mapped in a task's page tables, each mapping
1025  *   is counted separately
1026  *
1027  * Also, many kernel routines increase the page count before a critical
1028  * routine so they can be sure the page doesn't go away from under them.
1029  */
1030 
1031 /*
1032  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1033  */
put_page_testzero(struct page * page)1034 static inline int put_page_testzero(struct page *page)
1035 {
1036 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1037 	return page_ref_dec_and_test(page);
1038 }
1039 
folio_put_testzero(struct folio * folio)1040 static inline int folio_put_testzero(struct folio *folio)
1041 {
1042 	return put_page_testzero(&folio->page);
1043 }
1044 
1045 /*
1046  * Try to grab a ref unless the page has a refcount of zero, return false if
1047  * that is the case.
1048  * This can be called when MMU is off so it must not access
1049  * any of the virtual mappings.
1050  */
get_page_unless_zero(struct page * page)1051 static inline bool get_page_unless_zero(struct page *page)
1052 {
1053 	return page_ref_add_unless(page, 1, 0);
1054 }
1055 
folio_get_nontail_page(struct page * page)1056 static inline struct folio *folio_get_nontail_page(struct page *page)
1057 {
1058 	if (unlikely(!get_page_unless_zero(page)))
1059 		return NULL;
1060 	return (struct folio *)page;
1061 }
1062 
1063 extern int page_is_ram(unsigned long pfn);
1064 
1065 enum {
1066 	REGION_INTERSECTS,
1067 	REGION_DISJOINT,
1068 	REGION_MIXED,
1069 };
1070 
1071 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1072 		      unsigned long desc);
1073 
1074 /* Support for virtually mapped pages */
1075 struct page *vmalloc_to_page(const void *addr);
1076 unsigned long vmalloc_to_pfn(const void *addr);
1077 
1078 /*
1079  * Determine if an address is within the vmalloc range
1080  *
1081  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1082  * is no special casing required.
1083  */
1084 #ifdef CONFIG_MMU
1085 extern bool is_vmalloc_addr(const void *x);
1086 extern int is_vmalloc_or_module_addr(const void *x);
1087 #else
is_vmalloc_addr(const void * x)1088 static inline bool is_vmalloc_addr(const void *x)
1089 {
1090 	return false;
1091 }
is_vmalloc_or_module_addr(const void * x)1092 static inline int is_vmalloc_or_module_addr(const void *x)
1093 {
1094 	return 0;
1095 }
1096 #endif
1097 
1098 /*
1099  * How many times the entire folio is mapped as a single unit (eg by a
1100  * PMD or PUD entry).  This is probably not what you want, except for
1101  * debugging purposes or implementation of other core folio_*() primitives.
1102  */
folio_entire_mapcount(const struct folio * folio)1103 static inline int folio_entire_mapcount(const struct folio *folio)
1104 {
1105 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1106 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1107 		return 0;
1108 	return atomic_read(&folio->_entire_mapcount) + 1;
1109 }
1110 
folio_large_mapcount(const struct folio * folio)1111 static inline int folio_large_mapcount(const struct folio *folio)
1112 {
1113 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1114 	return atomic_read(&folio->_large_mapcount) + 1;
1115 }
1116 
1117 /**
1118  * folio_mapcount() - Number of mappings of this folio.
1119  * @folio: The folio.
1120  *
1121  * The folio mapcount corresponds to the number of present user page table
1122  * entries that reference any part of a folio. Each such present user page
1123  * table entry must be paired with exactly on folio reference.
1124  *
1125  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1126  * exactly once.
1127  *
1128  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1129  * references the entire folio counts exactly once, even when such special
1130  * page table entries are comprised of multiple ordinary page table entries.
1131  *
1132  * Will report 0 for pages which cannot be mapped into userspace, such as
1133  * slab, page tables and similar.
1134  *
1135  * Return: The number of times this folio is mapped.
1136  */
folio_mapcount(const struct folio * folio)1137 static inline int folio_mapcount(const struct folio *folio)
1138 {
1139 	int mapcount;
1140 
1141 	if (likely(!folio_test_large(folio))) {
1142 		mapcount = atomic_read(&folio->_mapcount) + 1;
1143 		if (page_mapcount_is_type(mapcount))
1144 			mapcount = 0;
1145 		return mapcount;
1146 	}
1147 	return folio_large_mapcount(folio);
1148 }
1149 
1150 /**
1151  * folio_mapped - Is this folio mapped into userspace?
1152  * @folio: The folio.
1153  *
1154  * Return: True if any page in this folio is referenced by user page tables.
1155  */
folio_mapped(const struct folio * folio)1156 static inline bool folio_mapped(const struct folio *folio)
1157 {
1158 	return folio_mapcount(folio) >= 1;
1159 }
1160 
1161 /*
1162  * Return true if this page is mapped into pagetables.
1163  * For compound page it returns true if any sub-page of compound page is mapped,
1164  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1165  */
page_mapped(const struct page * page)1166 static inline bool page_mapped(const struct page *page)
1167 {
1168 	return folio_mapped(page_folio(page));
1169 }
1170 
virt_to_head_page(const void * x)1171 static inline struct page *virt_to_head_page(const void *x)
1172 {
1173 	struct page *page = virt_to_page(x);
1174 
1175 	return compound_head(page);
1176 }
1177 
virt_to_folio(const void * x)1178 static inline struct folio *virt_to_folio(const void *x)
1179 {
1180 	struct page *page = virt_to_page(x);
1181 
1182 	return page_folio(page);
1183 }
1184 
1185 void __folio_put(struct folio *folio);
1186 
1187 void split_page(struct page *page, unsigned int order);
1188 void folio_copy(struct folio *dst, struct folio *src);
1189 int folio_mc_copy(struct folio *dst, struct folio *src);
1190 
1191 unsigned long nr_free_buffer_pages(void);
1192 
1193 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1194 static inline unsigned long page_size(struct page *page)
1195 {
1196 	return PAGE_SIZE << compound_order(page);
1197 }
1198 
1199 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1200 static inline unsigned int page_shift(struct page *page)
1201 {
1202 	return PAGE_SHIFT + compound_order(page);
1203 }
1204 
1205 /**
1206  * thp_order - Order of a transparent huge page.
1207  * @page: Head page of a transparent huge page.
1208  */
thp_order(struct page * page)1209 static inline unsigned int thp_order(struct page *page)
1210 {
1211 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1212 	return compound_order(page);
1213 }
1214 
1215 /**
1216  * thp_size - Size of a transparent huge page.
1217  * @page: Head page of a transparent huge page.
1218  *
1219  * Return: Number of bytes in this page.
1220  */
thp_size(struct page * page)1221 static inline unsigned long thp_size(struct page *page)
1222 {
1223 	return PAGE_SIZE << thp_order(page);
1224 }
1225 
1226 #ifdef CONFIG_MMU
1227 /*
1228  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1229  * servicing faults for write access.  In the normal case, do always want
1230  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1231  * that do not have writing enabled, when used by access_process_vm.
1232  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1233 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1234 {
1235 	if (likely(vma->vm_flags & VM_WRITE))
1236 		pte = pte_mkwrite(pte, vma);
1237 	return pte;
1238 }
1239 
1240 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page);
1241 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1242 		struct page *page, unsigned int nr, unsigned long addr);
1243 
1244 vm_fault_t finish_fault(struct vm_fault *vmf);
1245 #endif
1246 
1247 /*
1248  * Multiple processes may "see" the same page. E.g. for untouched
1249  * mappings of /dev/null, all processes see the same page full of
1250  * zeroes, and text pages of executables and shared libraries have
1251  * only one copy in memory, at most, normally.
1252  *
1253  * For the non-reserved pages, page_count(page) denotes a reference count.
1254  *   page_count() == 0 means the page is free. page->lru is then used for
1255  *   freelist management in the buddy allocator.
1256  *   page_count() > 0  means the page has been allocated.
1257  *
1258  * Pages are allocated by the slab allocator in order to provide memory
1259  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1260  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1261  * unless a particular usage is carefully commented. (the responsibility of
1262  * freeing the kmalloc memory is the caller's, of course).
1263  *
1264  * A page may be used by anyone else who does a __get_free_page().
1265  * In this case, page_count still tracks the references, and should only
1266  * be used through the normal accessor functions. The top bits of page->flags
1267  * and page->virtual store page management information, but all other fields
1268  * are unused and could be used privately, carefully. The management of this
1269  * page is the responsibility of the one who allocated it, and those who have
1270  * subsequently been given references to it.
1271  *
1272  * The other pages (we may call them "pagecache pages") are completely
1273  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1274  * The following discussion applies only to them.
1275  *
1276  * A pagecache page contains an opaque `private' member, which belongs to the
1277  * page's address_space. Usually, this is the address of a circular list of
1278  * the page's disk buffers. PG_private must be set to tell the VM to call
1279  * into the filesystem to release these pages.
1280  *
1281  * A folio may belong to an inode's memory mapping. In this case,
1282  * folio->mapping points to the inode, and folio->index is the file
1283  * offset of the folio, in units of PAGE_SIZE.
1284  *
1285  * If pagecache pages are not associated with an inode, they are said to be
1286  * anonymous pages. These may become associated with the swapcache, and in that
1287  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1288  *
1289  * In either case (swapcache or inode backed), the pagecache itself holds one
1290  * reference to the page. Setting PG_private should also increment the
1291  * refcount. The each user mapping also has a reference to the page.
1292  *
1293  * The pagecache pages are stored in a per-mapping radix tree, which is
1294  * rooted at mapping->i_pages, and indexed by offset.
1295  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1296  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1297  *
1298  * All pagecache pages may be subject to I/O:
1299  * - inode pages may need to be read from disk,
1300  * - inode pages which have been modified and are MAP_SHARED may need
1301  *   to be written back to the inode on disk,
1302  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1303  *   modified may need to be swapped out to swap space and (later) to be read
1304  *   back into memory.
1305  */
1306 
1307 /* 127: arbitrary random number, small enough to assemble well */
1308 #define folio_ref_zero_or_close_to_overflow(folio) \
1309 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1310 
1311 /**
1312  * folio_get - Increment the reference count on a folio.
1313  * @folio: The folio.
1314  *
1315  * Context: May be called in any context, as long as you know that
1316  * you have a refcount on the folio.  If you do not already have one,
1317  * folio_try_get() may be the right interface for you to use.
1318  */
folio_get(struct folio * folio)1319 static inline void folio_get(struct folio *folio)
1320 {
1321 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1322 	folio_ref_inc(folio);
1323 }
1324 
get_page(struct page * page)1325 static inline void get_page(struct page *page)
1326 {
1327 	struct folio *folio = page_folio(page);
1328 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1329 		return;
1330 	if (WARN_ON_ONCE(folio_test_large_kmalloc(folio)))
1331 		return;
1332 	folio_get(folio);
1333 }
1334 
try_get_page(struct page * page)1335 static inline __must_check bool try_get_page(struct page *page)
1336 {
1337 	page = compound_head(page);
1338 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1339 		return false;
1340 	page_ref_inc(page);
1341 	return true;
1342 }
1343 
1344 /**
1345  * folio_put - Decrement the reference count on a folio.
1346  * @folio: The folio.
1347  *
1348  * If the folio's reference count reaches zero, the memory will be
1349  * released back to the page allocator and may be used by another
1350  * allocation immediately.  Do not access the memory or the struct folio
1351  * after calling folio_put() unless you can be sure that it wasn't the
1352  * last reference.
1353  *
1354  * Context: May be called in process or interrupt context, but not in NMI
1355  * context.  May be called while holding a spinlock.
1356  */
folio_put(struct folio * folio)1357 static inline void folio_put(struct folio *folio)
1358 {
1359 	if (folio_put_testzero(folio))
1360 		__folio_put(folio);
1361 }
1362 
1363 /**
1364  * folio_put_refs - Reduce the reference count on a folio.
1365  * @folio: The folio.
1366  * @refs: The amount to subtract from the folio's reference count.
1367  *
1368  * If the folio's reference count reaches zero, the memory will be
1369  * released back to the page allocator and may be used by another
1370  * allocation immediately.  Do not access the memory or the struct folio
1371  * after calling folio_put_refs() unless you can be sure that these weren't
1372  * the last references.
1373  *
1374  * Context: May be called in process or interrupt context, but not in NMI
1375  * context.  May be called while holding a spinlock.
1376  */
folio_put_refs(struct folio * folio,int refs)1377 static inline void folio_put_refs(struct folio *folio, int refs)
1378 {
1379 	if (folio_ref_sub_and_test(folio, refs))
1380 		__folio_put(folio);
1381 }
1382 
1383 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1384 
1385 /*
1386  * union release_pages_arg - an array of pages or folios
1387  *
1388  * release_pages() releases a simple array of multiple pages, and
1389  * accepts various different forms of said page array: either
1390  * a regular old boring array of pages, an array of folios, or
1391  * an array of encoded page pointers.
1392  *
1393  * The transparent union syntax for this kind of "any of these
1394  * argument types" is all kinds of ugly, so look away.
1395  */
1396 typedef union {
1397 	struct page **pages;
1398 	struct folio **folios;
1399 	struct encoded_page **encoded_pages;
1400 } release_pages_arg __attribute__ ((__transparent_union__));
1401 
1402 void release_pages(release_pages_arg, int nr);
1403 
1404 /**
1405  * folios_put - Decrement the reference count on an array of folios.
1406  * @folios: The folios.
1407  *
1408  * Like folio_put(), but for a batch of folios.  This is more efficient
1409  * than writing the loop yourself as it will optimise the locks which need
1410  * to be taken if the folios are freed.  The folios batch is returned
1411  * empty and ready to be reused for another batch; there is no need to
1412  * reinitialise it.
1413  *
1414  * Context: May be called in process or interrupt context, but not in NMI
1415  * context.  May be called while holding a spinlock.
1416  */
folios_put(struct folio_batch * folios)1417 static inline void folios_put(struct folio_batch *folios)
1418 {
1419 	folios_put_refs(folios, NULL);
1420 }
1421 
put_page(struct page * page)1422 static inline void put_page(struct page *page)
1423 {
1424 	struct folio *folio = page_folio(page);
1425 
1426 	if (folio_test_slab(folio) || folio_test_large_kmalloc(folio))
1427 		return;
1428 
1429 	folio_put(folio);
1430 }
1431 
1432 /*
1433  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1434  * the page's refcount so that two separate items are tracked: the original page
1435  * reference count, and also a new count of how many pin_user_pages() calls were
1436  * made against the page. ("gup-pinned" is another term for the latter).
1437  *
1438  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1439  * distinct from normal pages. As such, the unpin_user_page() call (and its
1440  * variants) must be used in order to release gup-pinned pages.
1441  *
1442  * Choice of value:
1443  *
1444  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1445  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1446  * simpler, due to the fact that adding an even power of two to the page
1447  * refcount has the effect of using only the upper N bits, for the code that
1448  * counts up using the bias value. This means that the lower bits are left for
1449  * the exclusive use of the original code that increments and decrements by one
1450  * (or at least, by much smaller values than the bias value).
1451  *
1452  * Of course, once the lower bits overflow into the upper bits (and this is
1453  * OK, because subtraction recovers the original values), then visual inspection
1454  * no longer suffices to directly view the separate counts. However, for normal
1455  * applications that don't have huge page reference counts, this won't be an
1456  * issue.
1457  *
1458  * Locking: the lockless algorithm described in folio_try_get_rcu()
1459  * provides safe operation for get_user_pages(), folio_mkclean() and
1460  * other calls that race to set up page table entries.
1461  */
1462 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1463 
1464 void unpin_user_page(struct page *page);
1465 void unpin_folio(struct folio *folio);
1466 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1467 				 bool make_dirty);
1468 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1469 				      bool make_dirty);
1470 void unpin_user_pages(struct page **pages, unsigned long npages);
1471 void unpin_user_folio(struct folio *folio, unsigned long npages);
1472 void unpin_folios(struct folio **folios, unsigned long nfolios);
1473 
is_cow_mapping(vm_flags_t flags)1474 static inline bool is_cow_mapping(vm_flags_t flags)
1475 {
1476 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1477 }
1478 
1479 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1480 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1481 {
1482 	/*
1483 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1484 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1485 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1486 	 * underlying memory if ptrace is active, so this is only possible if
1487 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1488 	 * write permissions later.
1489 	 */
1490 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1491 }
1492 #endif
1493 
1494 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1495 #define SECTION_IN_PAGE_FLAGS
1496 #endif
1497 
1498 /*
1499  * The identification function is mainly used by the buddy allocator for
1500  * determining if two pages could be buddies. We are not really identifying
1501  * the zone since we could be using the section number id if we do not have
1502  * node id available in page flags.
1503  * We only guarantee that it will return the same value for two combinable
1504  * pages in a zone.
1505  */
page_zone_id(struct page * page)1506 static inline int page_zone_id(struct page *page)
1507 {
1508 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1509 }
1510 
1511 #ifdef NODE_NOT_IN_PAGE_FLAGS
1512 int page_to_nid(const struct page *page);
1513 #else
page_to_nid(const struct page * page)1514 static inline int page_to_nid(const struct page *page)
1515 {
1516 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1517 }
1518 #endif
1519 
folio_nid(const struct folio * folio)1520 static inline int folio_nid(const struct folio *folio)
1521 {
1522 	return page_to_nid(&folio->page);
1523 }
1524 
1525 #ifdef CONFIG_NUMA_BALANCING
1526 /* page access time bits needs to hold at least 4 seconds */
1527 #define PAGE_ACCESS_TIME_MIN_BITS	12
1528 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1529 #define PAGE_ACCESS_TIME_BUCKETS				\
1530 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1531 #else
1532 #define PAGE_ACCESS_TIME_BUCKETS	0
1533 #endif
1534 
1535 #define PAGE_ACCESS_TIME_MASK				\
1536 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1537 
cpu_pid_to_cpupid(int cpu,int pid)1538 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1539 {
1540 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1541 }
1542 
cpupid_to_pid(int cpupid)1543 static inline int cpupid_to_pid(int cpupid)
1544 {
1545 	return cpupid & LAST__PID_MASK;
1546 }
1547 
cpupid_to_cpu(int cpupid)1548 static inline int cpupid_to_cpu(int cpupid)
1549 {
1550 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1551 }
1552 
cpupid_to_nid(int cpupid)1553 static inline int cpupid_to_nid(int cpupid)
1554 {
1555 	return cpu_to_node(cpupid_to_cpu(cpupid));
1556 }
1557 
cpupid_pid_unset(int cpupid)1558 static inline bool cpupid_pid_unset(int cpupid)
1559 {
1560 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1561 }
1562 
cpupid_cpu_unset(int cpupid)1563 static inline bool cpupid_cpu_unset(int cpupid)
1564 {
1565 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1566 }
1567 
__cpupid_match_pid(pid_t task_pid,int cpupid)1568 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1569 {
1570 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1571 }
1572 
1573 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1574 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1575 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1576 {
1577 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1578 }
1579 
folio_last_cpupid(struct folio * folio)1580 static inline int folio_last_cpupid(struct folio *folio)
1581 {
1582 	return folio->_last_cpupid;
1583 }
page_cpupid_reset_last(struct page * page)1584 static inline void page_cpupid_reset_last(struct page *page)
1585 {
1586 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1587 }
1588 #else
folio_last_cpupid(struct folio * folio)1589 static inline int folio_last_cpupid(struct folio *folio)
1590 {
1591 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1592 }
1593 
1594 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1595 
page_cpupid_reset_last(struct page * page)1596 static inline void page_cpupid_reset_last(struct page *page)
1597 {
1598 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1599 }
1600 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1601 
folio_xchg_access_time(struct folio * folio,int time)1602 static inline int folio_xchg_access_time(struct folio *folio, int time)
1603 {
1604 	int last_time;
1605 
1606 	last_time = folio_xchg_last_cpupid(folio,
1607 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1608 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1609 }
1610 
vma_set_access_pid_bit(struct vm_area_struct * vma)1611 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1612 {
1613 	unsigned int pid_bit;
1614 
1615 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1616 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1617 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1618 	}
1619 }
1620 
1621 bool folio_use_access_time(struct folio *folio);
1622 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1623 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1624 {
1625 	return folio_nid(folio); /* XXX */
1626 }
1627 
folio_xchg_access_time(struct folio * folio,int time)1628 static inline int folio_xchg_access_time(struct folio *folio, int time)
1629 {
1630 	return 0;
1631 }
1632 
folio_last_cpupid(struct folio * folio)1633 static inline int folio_last_cpupid(struct folio *folio)
1634 {
1635 	return folio_nid(folio); /* XXX */
1636 }
1637 
cpupid_to_nid(int cpupid)1638 static inline int cpupid_to_nid(int cpupid)
1639 {
1640 	return -1;
1641 }
1642 
cpupid_to_pid(int cpupid)1643 static inline int cpupid_to_pid(int cpupid)
1644 {
1645 	return -1;
1646 }
1647 
cpupid_to_cpu(int cpupid)1648 static inline int cpupid_to_cpu(int cpupid)
1649 {
1650 	return -1;
1651 }
1652 
cpu_pid_to_cpupid(int nid,int pid)1653 static inline int cpu_pid_to_cpupid(int nid, int pid)
1654 {
1655 	return -1;
1656 }
1657 
cpupid_pid_unset(int cpupid)1658 static inline bool cpupid_pid_unset(int cpupid)
1659 {
1660 	return true;
1661 }
1662 
page_cpupid_reset_last(struct page * page)1663 static inline void page_cpupid_reset_last(struct page *page)
1664 {
1665 }
1666 
cpupid_match_pid(struct task_struct * task,int cpupid)1667 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1668 {
1669 	return false;
1670 }
1671 
vma_set_access_pid_bit(struct vm_area_struct * vma)1672 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1673 {
1674 }
folio_use_access_time(struct folio * folio)1675 static inline bool folio_use_access_time(struct folio *folio)
1676 {
1677 	return false;
1678 }
1679 #endif /* CONFIG_NUMA_BALANCING */
1680 
1681 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1682 
1683 /*
1684  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1685  * setting tags for all pages to native kernel tag value 0xff, as the default
1686  * value 0x00 maps to 0xff.
1687  */
1688 
page_kasan_tag(const struct page * page)1689 static inline u8 page_kasan_tag(const struct page *page)
1690 {
1691 	u8 tag = KASAN_TAG_KERNEL;
1692 
1693 	if (kasan_enabled()) {
1694 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1695 		tag ^= 0xff;
1696 	}
1697 
1698 	return tag;
1699 }
1700 
page_kasan_tag_set(struct page * page,u8 tag)1701 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1702 {
1703 	unsigned long old_flags, flags;
1704 
1705 	if (!kasan_enabled())
1706 		return;
1707 
1708 	tag ^= 0xff;
1709 	old_flags = READ_ONCE(page->flags);
1710 	do {
1711 		flags = old_flags;
1712 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1713 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1714 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1715 }
1716 
page_kasan_tag_reset(struct page * page)1717 static inline void page_kasan_tag_reset(struct page *page)
1718 {
1719 	if (kasan_enabled())
1720 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1721 }
1722 
1723 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1724 
page_kasan_tag(const struct page * page)1725 static inline u8 page_kasan_tag(const struct page *page)
1726 {
1727 	return 0xff;
1728 }
1729 
page_kasan_tag_set(struct page * page,u8 tag)1730 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1731 static inline void page_kasan_tag_reset(struct page *page) { }
1732 
1733 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1734 
page_zone(const struct page * page)1735 static inline struct zone *page_zone(const struct page *page)
1736 {
1737 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1738 }
1739 
page_pgdat(const struct page * page)1740 static inline pg_data_t *page_pgdat(const struct page *page)
1741 {
1742 	return NODE_DATA(page_to_nid(page));
1743 }
1744 
folio_zone(const struct folio * folio)1745 static inline struct zone *folio_zone(const struct folio *folio)
1746 {
1747 	return page_zone(&folio->page);
1748 }
1749 
folio_pgdat(const struct folio * folio)1750 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1751 {
1752 	return page_pgdat(&folio->page);
1753 }
1754 
1755 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1756 static inline void set_page_section(struct page *page, unsigned long section)
1757 {
1758 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1759 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1760 }
1761 
page_to_section(const struct page * page)1762 static inline unsigned long page_to_section(const struct page *page)
1763 {
1764 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1765 }
1766 #endif
1767 
1768 /**
1769  * folio_pfn - Return the Page Frame Number of a folio.
1770  * @folio: The folio.
1771  *
1772  * A folio may contain multiple pages.  The pages have consecutive
1773  * Page Frame Numbers.
1774  *
1775  * Return: The Page Frame Number of the first page in the folio.
1776  */
folio_pfn(const struct folio * folio)1777 static inline unsigned long folio_pfn(const struct folio *folio)
1778 {
1779 	return page_to_pfn(&folio->page);
1780 }
1781 
pfn_folio(unsigned long pfn)1782 static inline struct folio *pfn_folio(unsigned long pfn)
1783 {
1784 	return page_folio(pfn_to_page(pfn));
1785 }
1786 
1787 #ifdef CONFIG_MMU
mk_pte(struct page * page,pgprot_t pgprot)1788 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1789 {
1790 	return pfn_pte(page_to_pfn(page), pgprot);
1791 }
1792 
1793 /**
1794  * folio_mk_pte - Create a PTE for this folio
1795  * @folio: The folio to create a PTE for
1796  * @pgprot: The page protection bits to use
1797  *
1798  * Create a page table entry for the first page of this folio.
1799  * This is suitable for passing to set_ptes().
1800  *
1801  * Return: A page table entry suitable for mapping this folio.
1802  */
folio_mk_pte(struct folio * folio,pgprot_t pgprot)1803 static inline pte_t folio_mk_pte(struct folio *folio, pgprot_t pgprot)
1804 {
1805 	return pfn_pte(folio_pfn(folio), pgprot);
1806 }
1807 
1808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1809 /**
1810  * folio_mk_pmd - Create a PMD for this folio
1811  * @folio: The folio to create a PMD for
1812  * @pgprot: The page protection bits to use
1813  *
1814  * Create a page table entry for the first page of this folio.
1815  * This is suitable for passing to set_pmd_at().
1816  *
1817  * Return: A page table entry suitable for mapping this folio.
1818  */
folio_mk_pmd(struct folio * folio,pgprot_t pgprot)1819 static inline pmd_t folio_mk_pmd(struct folio *folio, pgprot_t pgprot)
1820 {
1821 	return pmd_mkhuge(pfn_pmd(folio_pfn(folio), pgprot));
1822 }
1823 
1824 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1825 /**
1826  * folio_mk_pud - Create a PUD for this folio
1827  * @folio: The folio to create a PUD for
1828  * @pgprot: The page protection bits to use
1829  *
1830  * Create a page table entry for the first page of this folio.
1831  * This is suitable for passing to set_pud_at().
1832  *
1833  * Return: A page table entry suitable for mapping this folio.
1834  */
folio_mk_pud(struct folio * folio,pgprot_t pgprot)1835 static inline pud_t folio_mk_pud(struct folio *folio, pgprot_t pgprot)
1836 {
1837 	return pud_mkhuge(pfn_pud(folio_pfn(folio), pgprot));
1838 }
1839 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1841 #endif /* CONFIG_MMU */
1842 
folio_has_pincount(const struct folio * folio)1843 static inline bool folio_has_pincount(const struct folio *folio)
1844 {
1845 	if (IS_ENABLED(CONFIG_64BIT))
1846 		return folio_test_large(folio);
1847 	return folio_order(folio) > 1;
1848 }
1849 
1850 /**
1851  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1852  * @folio: The folio.
1853  *
1854  * This function checks if a folio has been pinned via a call to
1855  * a function in the pin_user_pages() family.
1856  *
1857  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1858  * because it means "definitely not pinned for DMA", but true means "probably
1859  * pinned for DMA, but possibly a false positive due to having at least
1860  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1861  *
1862  * False positives are OK, because: a) it's unlikely for a folio to
1863  * get that many refcounts, and b) all the callers of this routine are
1864  * expected to be able to deal gracefully with a false positive.
1865  *
1866  * For most large folios, the result will be exactly correct. That's because
1867  * we have more tracking data available: the _pincount field is used
1868  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1869  *
1870  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1871  *
1872  * Return: True, if it is likely that the folio has been "dma-pinned".
1873  * False, if the folio is definitely not dma-pinned.
1874  */
folio_maybe_dma_pinned(struct folio * folio)1875 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1876 {
1877 	if (folio_has_pincount(folio))
1878 		return atomic_read(&folio->_pincount) > 0;
1879 
1880 	/*
1881 	 * folio_ref_count() is signed. If that refcount overflows, then
1882 	 * folio_ref_count() returns a negative value, and callers will avoid
1883 	 * further incrementing the refcount.
1884 	 *
1885 	 * Here, for that overflow case, use the sign bit to count a little
1886 	 * bit higher via unsigned math, and thus still get an accurate result.
1887 	 */
1888 	return ((unsigned int)folio_ref_count(folio)) >=
1889 		GUP_PIN_COUNTING_BIAS;
1890 }
1891 
1892 /*
1893  * This should most likely only be called during fork() to see whether we
1894  * should break the cow immediately for an anon page on the src mm.
1895  *
1896  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1897  */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)1898 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1899 					  struct folio *folio)
1900 {
1901 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1902 
1903 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1904 		return false;
1905 
1906 	return folio_maybe_dma_pinned(folio);
1907 }
1908 
1909 /**
1910  * is_zero_page - Query if a page is a zero page
1911  * @page: The page to query
1912  *
1913  * This returns true if @page is one of the permanent zero pages.
1914  */
is_zero_page(const struct page * page)1915 static inline bool is_zero_page(const struct page *page)
1916 {
1917 	return is_zero_pfn(page_to_pfn(page));
1918 }
1919 
1920 /**
1921  * is_zero_folio - Query if a folio is a zero page
1922  * @folio: The folio to query
1923  *
1924  * This returns true if @folio is one of the permanent zero pages.
1925  */
is_zero_folio(const struct folio * folio)1926 static inline bool is_zero_folio(const struct folio *folio)
1927 {
1928 	return is_zero_page(&folio->page);
1929 }
1930 
1931 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1932 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)1933 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1934 {
1935 #ifdef CONFIG_CMA
1936 	int mt = folio_migratetype(folio);
1937 
1938 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1939 		return false;
1940 #endif
1941 	/* The zero page can be "pinned" but gets special handling. */
1942 	if (is_zero_folio(folio))
1943 		return true;
1944 
1945 	/* Coherent device memory must always allow eviction. */
1946 	if (folio_is_device_coherent(folio))
1947 		return false;
1948 
1949 	/*
1950 	 * Filesystems can only tolerate transient delays to truncate and
1951 	 * hole-punch operations
1952 	 */
1953 	if (folio_is_fsdax(folio))
1954 		return false;
1955 
1956 	/* Otherwise, non-movable zone folios can be pinned. */
1957 	return !folio_is_zone_movable(folio);
1958 
1959 }
1960 #else
folio_is_longterm_pinnable(struct folio * folio)1961 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1962 {
1963 	return true;
1964 }
1965 #endif
1966 
set_page_zone(struct page * page,enum zone_type zone)1967 static inline void set_page_zone(struct page *page, enum zone_type zone)
1968 {
1969 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1970 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1971 }
1972 
set_page_node(struct page * page,unsigned long node)1973 static inline void set_page_node(struct page *page, unsigned long node)
1974 {
1975 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1976 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1977 }
1978 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1979 static inline void set_page_links(struct page *page, enum zone_type zone,
1980 	unsigned long node, unsigned long pfn)
1981 {
1982 	set_page_zone(page, zone);
1983 	set_page_node(page, node);
1984 #ifdef SECTION_IN_PAGE_FLAGS
1985 	set_page_section(page, pfn_to_section_nr(pfn));
1986 #endif
1987 }
1988 
1989 /**
1990  * folio_nr_pages - The number of pages in the folio.
1991  * @folio: The folio.
1992  *
1993  * Return: A positive power of two.
1994  */
folio_nr_pages(const struct folio * folio)1995 static inline long folio_nr_pages(const struct folio *folio)
1996 {
1997 	if (!folio_test_large(folio))
1998 		return 1;
1999 	return folio_large_nr_pages(folio);
2000 }
2001 
2002 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2004 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2005 #else
2006 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2007 #endif
2008 
2009 /*
2010  * compound_nr() returns the number of pages in this potentially compound
2011  * page.  compound_nr() can be called on a tail page, and is defined to
2012  * return 1 in that case.
2013  */
compound_nr(struct page * page)2014 static inline long compound_nr(struct page *page)
2015 {
2016 	struct folio *folio = (struct folio *)page;
2017 
2018 	if (!test_bit(PG_head, &folio->flags))
2019 		return 1;
2020 	return folio_large_nr_pages(folio);
2021 }
2022 
2023 /**
2024  * folio_next - Move to the next physical folio.
2025  * @folio: The folio we're currently operating on.
2026  *
2027  * If you have physically contiguous memory which may span more than
2028  * one folio (eg a &struct bio_vec), use this function to move from one
2029  * folio to the next.  Do not use it if the memory is only virtually
2030  * contiguous as the folios are almost certainly not adjacent to each
2031  * other.  This is the folio equivalent to writing ``page++``.
2032  *
2033  * Context: We assume that the folios are refcounted and/or locked at a
2034  * higher level and do not adjust the reference counts.
2035  * Return: The next struct folio.
2036  */
folio_next(struct folio * folio)2037 static inline struct folio *folio_next(struct folio *folio)
2038 {
2039 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040 }
2041 
2042 /**
2043  * folio_shift - The size of the memory described by this folio.
2044  * @folio: The folio.
2045  *
2046  * A folio represents a number of bytes which is a power-of-two in size.
2047  * This function tells you which power-of-two the folio is.  See also
2048  * folio_size() and folio_order().
2049  *
2050  * Context: The caller should have a reference on the folio to prevent
2051  * it from being split.  It is not necessary for the folio to be locked.
2052  * Return: The base-2 logarithm of the size of this folio.
2053  */
folio_shift(const struct folio * folio)2054 static inline unsigned int folio_shift(const struct folio *folio)
2055 {
2056 	return PAGE_SHIFT + folio_order(folio);
2057 }
2058 
2059 /**
2060  * folio_size - The number of bytes in a folio.
2061  * @folio: The folio.
2062  *
2063  * Context: The caller should have a reference on the folio to prevent
2064  * it from being split.  It is not necessary for the folio to be locked.
2065  * Return: The number of bytes in this folio.
2066  */
folio_size(const struct folio * folio)2067 static inline size_t folio_size(const struct folio *folio)
2068 {
2069 	return PAGE_SIZE << folio_order(folio);
2070 }
2071 
2072 /**
2073  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2074  *			       tables of more than one MM
2075  * @folio: The folio.
2076  *
2077  * This function checks if the folio maybe currently mapped into more than one
2078  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2079  * MM ("mapped exclusively").
2080  *
2081  * For KSM folios, this function also returns "mapped shared" when a folio is
2082  * mapped multiple times into the same MM, because the individual page mappings
2083  * are independent.
2084  *
2085  * For small anonymous folios and anonymous hugetlb folios, the return
2086  * value will be exactly correct: non-KSM folios can only be mapped at most once
2087  * into an MM, and they cannot be partially mapped. KSM folios are
2088  * considered shared even if mapped multiple times into the same MM.
2089  *
2090  * For other folios, the result can be fuzzy:
2091  *    #. For partially-mappable large folios (THP), the return value can wrongly
2092  *       indicate "mapped shared" (false positive) if a folio was mapped by
2093  *       more than two MMs at one point in time.
2094  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2095  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2096  *       cover the same file range.
2097  *
2098  * Further, this function only considers current page table mappings that
2099  * are tracked using the folio mapcount(s).
2100  *
2101  * This function does not consider:
2102  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2103  *       pagecache, temporary unmapping for migration).
2104  *    #. If the folio is mapped differently (VM_PFNMAP).
2105  *    #. If hugetlb page table sharing applies. Callers might want to check
2106  *       hugetlb_pmd_shared().
2107  *
2108  * Return: Whether the folio is estimated to be mapped into more than one MM.
2109  */
folio_maybe_mapped_shared(struct folio * folio)2110 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2111 {
2112 	int mapcount = folio_mapcount(folio);
2113 
2114 	/* Only partially-mappable folios require more care. */
2115 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2116 		return mapcount > 1;
2117 
2118 	/*
2119 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2120 	 * simply assume "mapped shared", nobody should really care
2121 	 * about this for arbitrary kernel allocations.
2122 	 */
2123 	if (!IS_ENABLED(CONFIG_MM_ID))
2124 		return true;
2125 
2126 	/*
2127 	 * A single mapping implies "mapped exclusively", even if the
2128 	 * folio flag says something different: it's easier to handle this
2129 	 * case here instead of on the RMAP hot path.
2130 	 */
2131 	if (mapcount <= 1)
2132 		return false;
2133 	return test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids);
2134 }
2135 
2136 /**
2137  * folio_expected_ref_count - calculate the expected folio refcount
2138  * @folio: the folio
2139  *
2140  * Calculate the expected folio refcount, taking references from the pagecache,
2141  * swapcache, PG_private and page table mappings into account. Useful in
2142  * combination with folio_ref_count() to detect unexpected references (e.g.,
2143  * GUP or other temporary references).
2144  *
2145  * Does currently not consider references from the LRU cache. If the folio
2146  * was isolated from the LRU (which is the case during migration or split),
2147  * the LRU cache does not apply.
2148  *
2149  * Calling this function on an unmapped folio -- !folio_mapped() -- that is
2150  * locked will return a stable result.
2151  *
2152  * Calling this function on a mapped folio will not result in a stable result,
2153  * because nothing stops additional page table mappings from coming (e.g.,
2154  * fork()) or going (e.g., munmap()).
2155  *
2156  * Calling this function without the folio lock will also not result in a
2157  * stable result: for example, the folio might get dropped from the swapcache
2158  * concurrently.
2159  *
2160  * However, even when called without the folio lock or on a mapped folio,
2161  * this function can be used to detect unexpected references early (for example,
2162  * if it makes sense to even lock the folio and unmap it).
2163  *
2164  * The caller must add any reference (e.g., from folio_try_get()) it might be
2165  * holding itself to the result.
2166  *
2167  * Returns the expected folio refcount.
2168  */
folio_expected_ref_count(const struct folio * folio)2169 static inline int folio_expected_ref_count(const struct folio *folio)
2170 {
2171 	const int order = folio_order(folio);
2172 	int ref_count = 0;
2173 
2174 	if (WARN_ON_ONCE(page_has_type(&folio->page) && !folio_test_hugetlb(folio)))
2175 		return 0;
2176 
2177 	if (folio_test_anon(folio)) {
2178 		/* One reference per page from the swapcache. */
2179 		ref_count += folio_test_swapcache(folio) << order;
2180 	} else {
2181 		/* One reference per page from the pagecache. */
2182 		ref_count += !!folio->mapping << order;
2183 		/* One reference from PG_private. */
2184 		ref_count += folio_test_private(folio);
2185 	}
2186 
2187 	/* One reference per page table mapping. */
2188 	return ref_count + folio_mapcount(folio);
2189 }
2190 
2191 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2192 static inline int arch_make_folio_accessible(struct folio *folio)
2193 {
2194 	return 0;
2195 }
2196 #endif
2197 
2198 /*
2199  * Some inline functions in vmstat.h depend on page_zone()
2200  */
2201 #include <linux/vmstat.h>
2202 
2203 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2204 #define HASHED_PAGE_VIRTUAL
2205 #endif
2206 
2207 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2208 static inline void *page_address(const struct page *page)
2209 {
2210 	return page->virtual;
2211 }
set_page_address(struct page * page,void * address)2212 static inline void set_page_address(struct page *page, void *address)
2213 {
2214 	page->virtual = address;
2215 }
2216 #define page_address_init()  do { } while(0)
2217 #endif
2218 
2219 #if defined(HASHED_PAGE_VIRTUAL)
2220 void *page_address(const struct page *page);
2221 void set_page_address(struct page *page, void *virtual);
2222 void page_address_init(void);
2223 #endif
2224 
lowmem_page_address(const struct page * page)2225 static __always_inline void *lowmem_page_address(const struct page *page)
2226 {
2227 	return page_to_virt(page);
2228 }
2229 
2230 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2231 #define page_address(page) lowmem_page_address(page)
2232 #define set_page_address(page, address)  do { } while(0)
2233 #define page_address_init()  do { } while(0)
2234 #endif
2235 
folio_address(const struct folio * folio)2236 static inline void *folio_address(const struct folio *folio)
2237 {
2238 	return page_address(&folio->page);
2239 }
2240 
2241 /*
2242  * Return true only if the page has been allocated with
2243  * ALLOC_NO_WATERMARKS and the low watermark was not
2244  * met implying that the system is under some pressure.
2245  */
page_is_pfmemalloc(const struct page * page)2246 static inline bool page_is_pfmemalloc(const struct page *page)
2247 {
2248 	/*
2249 	 * lru.next has bit 1 set if the page is allocated from the
2250 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2251 	 * they do not need to preserve that information.
2252 	 */
2253 	return (uintptr_t)page->lru.next & BIT(1);
2254 }
2255 
2256 /*
2257  * Return true only if the folio has been allocated with
2258  * ALLOC_NO_WATERMARKS and the low watermark was not
2259  * met implying that the system is under some pressure.
2260  */
folio_is_pfmemalloc(const struct folio * folio)2261 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2262 {
2263 	/*
2264 	 * lru.next has bit 1 set if the page is allocated from the
2265 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2266 	 * they do not need to preserve that information.
2267 	 */
2268 	return (uintptr_t)folio->lru.next & BIT(1);
2269 }
2270 
2271 /*
2272  * Only to be called by the page allocator on a freshly allocated
2273  * page.
2274  */
set_page_pfmemalloc(struct page * page)2275 static inline void set_page_pfmemalloc(struct page *page)
2276 {
2277 	page->lru.next = (void *)BIT(1);
2278 }
2279 
clear_page_pfmemalloc(struct page * page)2280 static inline void clear_page_pfmemalloc(struct page *page)
2281 {
2282 	page->lru.next = NULL;
2283 }
2284 
2285 /*
2286  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2287  */
2288 extern void pagefault_out_of_memory(void);
2289 
2290 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2291 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2292 
2293 /*
2294  * Parameter block passed down to zap_pte_range in exceptional cases.
2295  */
2296 struct zap_details {
2297 	struct folio *single_folio;	/* Locked folio to be unmapped */
2298 	bool even_cows;			/* Zap COWed private pages too? */
2299 	bool reclaim_pt;		/* Need reclaim page tables? */
2300 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2301 };
2302 
2303 /*
2304  * Whether to drop the pte markers, for example, the uffd-wp information for
2305  * file-backed memory.  This should only be specified when we will completely
2306  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2307  * default, the flag is not set.
2308  */
2309 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2310 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2311 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2312 
2313 #ifdef CONFIG_SCHED_MM_CID
2314 void sched_mm_cid_before_execve(struct task_struct *t);
2315 void sched_mm_cid_after_execve(struct task_struct *t);
2316 void sched_mm_cid_fork(struct task_struct *t);
2317 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2318 static inline int task_mm_cid(struct task_struct *t)
2319 {
2320 	return t->mm_cid;
2321 }
2322 #else
sched_mm_cid_before_execve(struct task_struct * t)2323 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2324 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2325 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2326 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2327 static inline int task_mm_cid(struct task_struct *t)
2328 {
2329 	/*
2330 	 * Use the processor id as a fall-back when the mm cid feature is
2331 	 * disabled. This provides functional per-cpu data structure accesses
2332 	 * in user-space, althrough it won't provide the memory usage benefits.
2333 	 */
2334 	return raw_smp_processor_id();
2335 }
2336 #endif
2337 
2338 #ifdef CONFIG_MMU
2339 extern bool can_do_mlock(void);
2340 #else
can_do_mlock(void)2341 static inline bool can_do_mlock(void) { return false; }
2342 #endif
2343 extern int user_shm_lock(size_t, struct ucounts *);
2344 extern void user_shm_unlock(size_t, struct ucounts *);
2345 
2346 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2347 			     pte_t pte);
2348 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2349 			     pte_t pte);
2350 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2351 				  unsigned long addr, pmd_t pmd);
2352 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2353 				pmd_t pmd);
2354 
2355 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2356 		  unsigned long size);
2357 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2358 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2359 static inline void zap_vma_pages(struct vm_area_struct *vma)
2360 {
2361 	zap_page_range_single(vma, vma->vm_start,
2362 			      vma->vm_end - vma->vm_start, NULL);
2363 }
2364 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2365 		struct vm_area_struct *start_vma, unsigned long start,
2366 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2367 
2368 struct mmu_notifier_range;
2369 
2370 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2371 		unsigned long end, unsigned long floor, unsigned long ceiling);
2372 int
2373 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2374 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2375 			void *buf, int len, int write);
2376 
2377 struct follow_pfnmap_args {
2378 	/**
2379 	 * Inputs:
2380 	 * @vma: Pointer to @vm_area_struct struct
2381 	 * @address: the virtual address to walk
2382 	 */
2383 	struct vm_area_struct *vma;
2384 	unsigned long address;
2385 	/**
2386 	 * Internals:
2387 	 *
2388 	 * The caller shouldn't touch any of these.
2389 	 */
2390 	spinlock_t *lock;
2391 	pte_t *ptep;
2392 	/**
2393 	 * Outputs:
2394 	 *
2395 	 * @pfn: the PFN of the address
2396 	 * @addr_mask: address mask covering pfn
2397 	 * @pgprot: the pgprot_t of the mapping
2398 	 * @writable: whether the mapping is writable
2399 	 * @special: whether the mapping is a special mapping (real PFN maps)
2400 	 */
2401 	unsigned long pfn;
2402 	unsigned long addr_mask;
2403 	pgprot_t pgprot;
2404 	bool writable;
2405 	bool special;
2406 };
2407 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2408 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2409 
2410 extern void truncate_pagecache(struct inode *inode, loff_t new);
2411 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2412 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2413 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2414 int generic_error_remove_folio(struct address_space *mapping,
2415 		struct folio *folio);
2416 
2417 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2418 		unsigned long address, struct pt_regs *regs);
2419 
2420 #ifdef CONFIG_MMU
2421 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2422 				  unsigned long address, unsigned int flags,
2423 				  struct pt_regs *regs);
2424 extern int fixup_user_fault(struct mm_struct *mm,
2425 			    unsigned long address, unsigned int fault_flags,
2426 			    bool *unlocked);
2427 void unmap_mapping_pages(struct address_space *mapping,
2428 		pgoff_t start, pgoff_t nr, bool even_cows);
2429 void unmap_mapping_range(struct address_space *mapping,
2430 		loff_t const holebegin, loff_t const holelen, int even_cows);
2431 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2432 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2433 					 unsigned long address, unsigned int flags,
2434 					 struct pt_regs *regs)
2435 {
2436 	/* should never happen if there's no MMU */
2437 	BUG();
2438 	return VM_FAULT_SIGBUS;
2439 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2440 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2441 		unsigned int fault_flags, bool *unlocked)
2442 {
2443 	/* should never happen if there's no MMU */
2444 	BUG();
2445 	return -EFAULT;
2446 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2447 static inline void unmap_mapping_pages(struct address_space *mapping,
2448 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2449 static inline void unmap_mapping_range(struct address_space *mapping,
2450 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2451 #endif
2452 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2453 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2454 		loff_t const holebegin, loff_t const holelen)
2455 {
2456 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2457 }
2458 
2459 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2460 						unsigned long addr);
2461 
2462 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2463 		void *buf, int len, unsigned int gup_flags);
2464 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2465 		void *buf, int len, unsigned int gup_flags);
2466 
2467 #ifdef CONFIG_BPF_SYSCALL
2468 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2469 			      void *buf, int len, unsigned int gup_flags);
2470 #endif
2471 
2472 long get_user_pages_remote(struct mm_struct *mm,
2473 			   unsigned long start, unsigned long nr_pages,
2474 			   unsigned int gup_flags, struct page **pages,
2475 			   int *locked);
2476 long pin_user_pages_remote(struct mm_struct *mm,
2477 			   unsigned long start, unsigned long nr_pages,
2478 			   unsigned int gup_flags, struct page **pages,
2479 			   int *locked);
2480 
2481 /*
2482  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2483  */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2484 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2485 						    unsigned long addr,
2486 						    int gup_flags,
2487 						    struct vm_area_struct **vmap)
2488 {
2489 	struct page *page;
2490 	struct vm_area_struct *vma;
2491 	int got;
2492 
2493 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2494 		return ERR_PTR(-EINVAL);
2495 
2496 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2497 
2498 	if (got < 0)
2499 		return ERR_PTR(got);
2500 
2501 	vma = vma_lookup(mm, addr);
2502 	if (WARN_ON_ONCE(!vma)) {
2503 		put_page(page);
2504 		return ERR_PTR(-EINVAL);
2505 	}
2506 
2507 	*vmap = vma;
2508 	return page;
2509 }
2510 
2511 long get_user_pages(unsigned long start, unsigned long nr_pages,
2512 		    unsigned int gup_flags, struct page **pages);
2513 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2514 		    unsigned int gup_flags, struct page **pages);
2515 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2516 		    struct page **pages, unsigned int gup_flags);
2517 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2518 		    struct page **pages, unsigned int gup_flags);
2519 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2520 		      struct folio **folios, unsigned int max_folios,
2521 		      pgoff_t *offset);
2522 int folio_add_pins(struct folio *folio, unsigned int pins);
2523 
2524 int get_user_pages_fast(unsigned long start, int nr_pages,
2525 			unsigned int gup_flags, struct page **pages);
2526 int pin_user_pages_fast(unsigned long start, int nr_pages,
2527 			unsigned int gup_flags, struct page **pages);
2528 void folio_add_pin(struct folio *folio);
2529 
2530 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2531 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2532 			struct task_struct *task, bool bypass_rlim);
2533 
2534 struct kvec;
2535 struct page *get_dump_page(unsigned long addr, int *locked);
2536 
2537 bool folio_mark_dirty(struct folio *folio);
2538 bool folio_mark_dirty_lock(struct folio *folio);
2539 bool set_page_dirty(struct page *page);
2540 int set_page_dirty_lock(struct page *page);
2541 
2542 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2543 
2544 /*
2545  * Flags used by change_protection().  For now we make it a bitmap so
2546  * that we can pass in multiple flags just like parameters.  However
2547  * for now all the callers are only use one of the flags at the same
2548  * time.
2549  */
2550 /*
2551  * Whether we should manually check if we can map individual PTEs writable,
2552  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2553  * PTEs automatically in a writable mapping.
2554  */
2555 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2556 /* Whether this protection change is for NUMA hints */
2557 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2558 /* Whether this change is for write protecting */
2559 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2560 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2561 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2562 					    MM_CP_UFFD_WP_RESOLVE)
2563 
2564 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2565 			     pte_t pte);
2566 extern long change_protection(struct mmu_gather *tlb,
2567 			      struct vm_area_struct *vma, unsigned long start,
2568 			      unsigned long end, unsigned long cp_flags);
2569 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2570 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2571 	  unsigned long start, unsigned long end, vm_flags_t newflags);
2572 
2573 /*
2574  * doesn't attempt to fault and will return short.
2575  */
2576 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2577 			     unsigned int gup_flags, struct page **pages);
2578 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2579 static inline bool get_user_page_fast_only(unsigned long addr,
2580 			unsigned int gup_flags, struct page **pagep)
2581 {
2582 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2583 }
2584 /*
2585  * per-process(per-mm_struct) statistics.
2586  */
get_mm_counter(struct mm_struct * mm,int member)2587 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2588 {
2589 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2590 }
2591 
get_mm_counter_sum(struct mm_struct * mm,int member)2592 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2593 {
2594 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2595 }
2596 
2597 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2598 
add_mm_counter(struct mm_struct * mm,int member,long value)2599 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2600 {
2601 	percpu_counter_add(&mm->rss_stat[member], value);
2602 
2603 	mm_trace_rss_stat(mm, member);
2604 }
2605 
inc_mm_counter(struct mm_struct * mm,int member)2606 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2607 {
2608 	percpu_counter_inc(&mm->rss_stat[member]);
2609 
2610 	mm_trace_rss_stat(mm, member);
2611 }
2612 
dec_mm_counter(struct mm_struct * mm,int member)2613 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2614 {
2615 	percpu_counter_dec(&mm->rss_stat[member]);
2616 
2617 	mm_trace_rss_stat(mm, member);
2618 }
2619 
2620 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2621 static inline int mm_counter_file(struct folio *folio)
2622 {
2623 	if (folio_test_swapbacked(folio))
2624 		return MM_SHMEMPAGES;
2625 	return MM_FILEPAGES;
2626 }
2627 
mm_counter(struct folio * folio)2628 static inline int mm_counter(struct folio *folio)
2629 {
2630 	if (folio_test_anon(folio))
2631 		return MM_ANONPAGES;
2632 	return mm_counter_file(folio);
2633 }
2634 
get_mm_rss(struct mm_struct * mm)2635 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2636 {
2637 	return get_mm_counter(mm, MM_FILEPAGES) +
2638 		get_mm_counter(mm, MM_ANONPAGES) +
2639 		get_mm_counter(mm, MM_SHMEMPAGES);
2640 }
2641 
get_mm_hiwater_rss(struct mm_struct * mm)2642 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2643 {
2644 	return max(mm->hiwater_rss, get_mm_rss(mm));
2645 }
2646 
get_mm_hiwater_vm(struct mm_struct * mm)2647 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2648 {
2649 	return max(mm->hiwater_vm, mm->total_vm);
2650 }
2651 
update_hiwater_rss(struct mm_struct * mm)2652 static inline void update_hiwater_rss(struct mm_struct *mm)
2653 {
2654 	unsigned long _rss = get_mm_rss(mm);
2655 
2656 	if (data_race(mm->hiwater_rss) < _rss)
2657 		(mm)->hiwater_rss = _rss;
2658 }
2659 
update_hiwater_vm(struct mm_struct * mm)2660 static inline void update_hiwater_vm(struct mm_struct *mm)
2661 {
2662 	if (mm->hiwater_vm < mm->total_vm)
2663 		mm->hiwater_vm = mm->total_vm;
2664 }
2665 
reset_mm_hiwater_rss(struct mm_struct * mm)2666 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2667 {
2668 	mm->hiwater_rss = get_mm_rss(mm);
2669 }
2670 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2671 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2672 					 struct mm_struct *mm)
2673 {
2674 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2675 
2676 	if (*maxrss < hiwater_rss)
2677 		*maxrss = hiwater_rss;
2678 }
2679 
2680 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2681 static inline int pte_special(pte_t pte)
2682 {
2683 	return 0;
2684 }
2685 
pte_mkspecial(pte_t pte)2686 static inline pte_t pte_mkspecial(pte_t pte)
2687 {
2688 	return pte;
2689 }
2690 #endif
2691 
2692 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2693 static inline bool pmd_special(pmd_t pmd)
2694 {
2695 	return false;
2696 }
2697 
pmd_mkspecial(pmd_t pmd)2698 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2699 {
2700 	return pmd;
2701 }
2702 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2703 
2704 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2705 static inline bool pud_special(pud_t pud)
2706 {
2707 	return false;
2708 }
2709 
pud_mkspecial(pud_t pud)2710 static inline pud_t pud_mkspecial(pud_t pud)
2711 {
2712 	return pud;
2713 }
2714 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2715 
2716 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2717 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2718 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2719 				    spinlock_t **ptl)
2720 {
2721 	pte_t *ptep;
2722 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2723 	return ptep;
2724 }
2725 
2726 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2727 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2728 						unsigned long address)
2729 {
2730 	return 0;
2731 }
2732 #else
2733 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2734 #endif
2735 
2736 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2737 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2738 						unsigned long address)
2739 {
2740 	return 0;
2741 }
mm_inc_nr_puds(struct mm_struct * mm)2742 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2743 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2744 
2745 #else
2746 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2747 
mm_inc_nr_puds(struct mm_struct * mm)2748 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2749 {
2750 	if (mm_pud_folded(mm))
2751 		return;
2752 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2753 }
2754 
mm_dec_nr_puds(struct mm_struct * mm)2755 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2756 {
2757 	if (mm_pud_folded(mm))
2758 		return;
2759 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2760 }
2761 #endif
2762 
2763 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2764 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2765 						unsigned long address)
2766 {
2767 	return 0;
2768 }
2769 
mm_inc_nr_pmds(struct mm_struct * mm)2770 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2771 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2772 
2773 #else
2774 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2775 
mm_inc_nr_pmds(struct mm_struct * mm)2776 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2777 {
2778 	if (mm_pmd_folded(mm))
2779 		return;
2780 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2781 }
2782 
mm_dec_nr_pmds(struct mm_struct * mm)2783 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2784 {
2785 	if (mm_pmd_folded(mm))
2786 		return;
2787 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2788 }
2789 #endif
2790 
2791 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2792 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2793 {
2794 	atomic_long_set(&mm->pgtables_bytes, 0);
2795 }
2796 
mm_pgtables_bytes(const struct mm_struct * mm)2797 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2798 {
2799 	return atomic_long_read(&mm->pgtables_bytes);
2800 }
2801 
mm_inc_nr_ptes(struct mm_struct * mm)2802 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2803 {
2804 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2805 }
2806 
mm_dec_nr_ptes(struct mm_struct * mm)2807 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2808 {
2809 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2810 }
2811 #else
2812 
mm_pgtables_bytes_init(struct mm_struct * mm)2813 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2814 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815 {
2816 	return 0;
2817 }
2818 
mm_inc_nr_ptes(struct mm_struct * mm)2819 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2820 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2821 #endif
2822 
2823 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2824 int __pte_alloc_kernel(pmd_t *pmd);
2825 
2826 #if defined(CONFIG_MMU)
2827 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2828 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2829 		unsigned long address)
2830 {
2831 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2832 		NULL : p4d_offset(pgd, address);
2833 }
2834 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2835 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2836 		unsigned long address)
2837 {
2838 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2839 		NULL : pud_offset(p4d, address);
2840 }
2841 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2842 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2843 {
2844 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2845 		NULL: pmd_offset(pud, address);
2846 }
2847 #endif /* CONFIG_MMU */
2848 
virt_to_ptdesc(const void * x)2849 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2850 {
2851 	return page_ptdesc(virt_to_page(x));
2852 }
2853 
ptdesc_to_virt(const struct ptdesc * pt)2854 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2855 {
2856 	return page_to_virt(ptdesc_page(pt));
2857 }
2858 
ptdesc_address(const struct ptdesc * pt)2859 static inline void *ptdesc_address(const struct ptdesc *pt)
2860 {
2861 	return folio_address(ptdesc_folio(pt));
2862 }
2863 
pagetable_is_reserved(struct ptdesc * pt)2864 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2865 {
2866 	return folio_test_reserved(ptdesc_folio(pt));
2867 }
2868 
2869 /**
2870  * pagetable_alloc - Allocate pagetables
2871  * @gfp:    GFP flags
2872  * @order:  desired pagetable order
2873  *
2874  * pagetable_alloc allocates memory for page tables as well as a page table
2875  * descriptor to describe that memory.
2876  *
2877  * Return: The ptdesc describing the allocated page tables.
2878  */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)2879 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2880 {
2881 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2882 
2883 	return page_ptdesc(page);
2884 }
2885 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2886 
2887 /**
2888  * pagetable_free - Free pagetables
2889  * @pt:	The page table descriptor
2890  *
2891  * pagetable_free frees the memory of all page tables described by a page
2892  * table descriptor and the memory for the descriptor itself.
2893  */
pagetable_free(struct ptdesc * pt)2894 static inline void pagetable_free(struct ptdesc *pt)
2895 {
2896 	struct page *page = ptdesc_page(pt);
2897 
2898 	__free_pages(page, compound_order(page));
2899 }
2900 
2901 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2902 #if ALLOC_SPLIT_PTLOCKS
2903 void __init ptlock_cache_init(void);
2904 bool ptlock_alloc(struct ptdesc *ptdesc);
2905 void ptlock_free(struct ptdesc *ptdesc);
2906 
ptlock_ptr(struct ptdesc * ptdesc)2907 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2908 {
2909 	return ptdesc->ptl;
2910 }
2911 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2912 static inline void ptlock_cache_init(void)
2913 {
2914 }
2915 
ptlock_alloc(struct ptdesc * ptdesc)2916 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2917 {
2918 	return true;
2919 }
2920 
ptlock_free(struct ptdesc * ptdesc)2921 static inline void ptlock_free(struct ptdesc *ptdesc)
2922 {
2923 }
2924 
ptlock_ptr(struct ptdesc * ptdesc)2925 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2926 {
2927 	return &ptdesc->ptl;
2928 }
2929 #endif /* ALLOC_SPLIT_PTLOCKS */
2930 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2931 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2932 {
2933 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2934 }
2935 
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2936 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2937 {
2938 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2939 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2940 	return ptlock_ptr(virt_to_ptdesc(pte));
2941 }
2942 
ptlock_init(struct ptdesc * ptdesc)2943 static inline bool ptlock_init(struct ptdesc *ptdesc)
2944 {
2945 	/*
2946 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2947 	 * with 0. Make sure nobody took it in use in between.
2948 	 *
2949 	 * It can happen if arch try to use slab for page table allocation:
2950 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2951 	 */
2952 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2953 	if (!ptlock_alloc(ptdesc))
2954 		return false;
2955 	spin_lock_init(ptlock_ptr(ptdesc));
2956 	return true;
2957 }
2958 
2959 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2960 /*
2961  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2962  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2963 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2964 {
2965 	return &mm->page_table_lock;
2966 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)2967 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2968 {
2969 	return &mm->page_table_lock;
2970 }
ptlock_cache_init(void)2971 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2972 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2973 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2974 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2975 
__pagetable_ctor(struct ptdesc * ptdesc)2976 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
2977 {
2978 	struct folio *folio = ptdesc_folio(ptdesc);
2979 
2980 	__folio_set_pgtable(folio);
2981 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2982 }
2983 
pagetable_dtor(struct ptdesc * ptdesc)2984 static inline void pagetable_dtor(struct ptdesc *ptdesc)
2985 {
2986 	struct folio *folio = ptdesc_folio(ptdesc);
2987 
2988 	ptlock_free(ptdesc);
2989 	__folio_clear_pgtable(folio);
2990 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2991 }
2992 
pagetable_dtor_free(struct ptdesc * ptdesc)2993 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
2994 {
2995 	pagetable_dtor(ptdesc);
2996 	pagetable_free(ptdesc);
2997 }
2998 
pagetable_pte_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)2999 static inline bool pagetable_pte_ctor(struct mm_struct *mm,
3000 				      struct ptdesc *ptdesc)
3001 {
3002 	if (mm != &init_mm && !ptlock_init(ptdesc))
3003 		return false;
3004 	__pagetable_ctor(ptdesc);
3005 	return true;
3006 }
3007 
3008 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3009 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3010 			pmd_t *pmdvalp)
3011 {
3012 	pte_t *pte;
3013 
3014 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3015 	return pte;
3016 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3017 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3018 {
3019 	return __pte_offset_map(pmd, addr, NULL);
3020 }
3021 
3022 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3023 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3024 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3025 			unsigned long addr, spinlock_t **ptlp)
3026 {
3027 	pte_t *pte;
3028 
3029 	__cond_lock(RCU, __cond_lock(*ptlp,
3030 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3031 	return pte;
3032 }
3033 
3034 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3035 				unsigned long addr, spinlock_t **ptlp);
3036 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3037 				unsigned long addr, pmd_t *pmdvalp,
3038 				spinlock_t **ptlp);
3039 
3040 #define pte_unmap_unlock(pte, ptl)	do {		\
3041 	spin_unlock(ptl);				\
3042 	pte_unmap(pte);					\
3043 } while (0)
3044 
3045 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3046 
3047 #define pte_alloc_map(mm, pmd, address)			\
3048 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3049 
3050 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3051 	(pte_alloc(mm, pmd) ?			\
3052 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3053 
3054 #define pte_alloc_kernel(pmd, address)			\
3055 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3056 		NULL: pte_offset_kernel(pmd, address))
3057 
3058 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3059 
pmd_pgtable_page(pmd_t * pmd)3060 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3061 {
3062 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3063 	return virt_to_page((void *)((unsigned long) pmd & mask));
3064 }
3065 
pmd_ptdesc(pmd_t * pmd)3066 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3067 {
3068 	return page_ptdesc(pmd_pgtable_page(pmd));
3069 }
3070 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3071 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3072 {
3073 	return ptlock_ptr(pmd_ptdesc(pmd));
3074 }
3075 
pmd_ptlock_init(struct ptdesc * ptdesc)3076 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3077 {
3078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3079 	ptdesc->pmd_huge_pte = NULL;
3080 #endif
3081 	return ptlock_init(ptdesc);
3082 }
3083 
3084 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3085 
3086 #else
3087 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3088 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3089 {
3090 	return &mm->page_table_lock;
3091 }
3092 
pmd_ptlock_init(struct ptdesc * ptdesc)3093 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3094 
3095 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3096 
3097 #endif
3098 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3099 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3100 {
3101 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3102 	spin_lock(ptl);
3103 	return ptl;
3104 }
3105 
pagetable_pmd_ctor(struct mm_struct * mm,struct ptdesc * ptdesc)3106 static inline bool pagetable_pmd_ctor(struct mm_struct *mm,
3107 				      struct ptdesc *ptdesc)
3108 {
3109 	if (mm != &init_mm && !pmd_ptlock_init(ptdesc))
3110 		return false;
3111 	ptdesc_pmd_pts_init(ptdesc);
3112 	__pagetable_ctor(ptdesc);
3113 	return true;
3114 }
3115 
3116 /*
3117  * No scalability reason to split PUD locks yet, but follow the same pattern
3118  * as the PMD locks to make it easier if we decide to.  The VM should not be
3119  * considered ready to switch to split PUD locks yet; there may be places
3120  * which need to be converted from page_table_lock.
3121  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3122 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3123 {
3124 	return &mm->page_table_lock;
3125 }
3126 
pud_lock(struct mm_struct * mm,pud_t * pud)3127 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3128 {
3129 	spinlock_t *ptl = pud_lockptr(mm, pud);
3130 
3131 	spin_lock(ptl);
3132 	return ptl;
3133 }
3134 
pagetable_pud_ctor(struct ptdesc * ptdesc)3135 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3136 {
3137 	__pagetable_ctor(ptdesc);
3138 }
3139 
pagetable_p4d_ctor(struct ptdesc * ptdesc)3140 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3141 {
3142 	__pagetable_ctor(ptdesc);
3143 }
3144 
pagetable_pgd_ctor(struct ptdesc * ptdesc)3145 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3146 {
3147 	__pagetable_ctor(ptdesc);
3148 }
3149 
3150 extern void __init pagecache_init(void);
3151 extern void free_initmem(void);
3152 
3153 /*
3154  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3155  * into the buddy system. The freed pages will be poisoned with pattern
3156  * "poison" if it's within range [0, UCHAR_MAX].
3157  * Return pages freed into the buddy system.
3158  */
3159 extern unsigned long free_reserved_area(void *start, void *end,
3160 					int poison, const char *s);
3161 
3162 extern void adjust_managed_page_count(struct page *page, long count);
3163 
3164 extern void reserve_bootmem_region(phys_addr_t start,
3165 				   phys_addr_t end, int nid);
3166 
3167 /* Free the reserved page into the buddy system, so it gets managed. */
3168 void free_reserved_page(struct page *page);
3169 
mark_page_reserved(struct page * page)3170 static inline void mark_page_reserved(struct page *page)
3171 {
3172 	SetPageReserved(page);
3173 	adjust_managed_page_count(page, -1);
3174 }
3175 
free_reserved_ptdesc(struct ptdesc * pt)3176 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3177 {
3178 	free_reserved_page(ptdesc_page(pt));
3179 }
3180 
3181 /*
3182  * Default method to free all the __init memory into the buddy system.
3183  * The freed pages will be poisoned with pattern "poison" if it's within
3184  * range [0, UCHAR_MAX].
3185  * Return pages freed into the buddy system.
3186  */
free_initmem_default(int poison)3187 static inline unsigned long free_initmem_default(int poison)
3188 {
3189 	extern char __init_begin[], __init_end[];
3190 
3191 	return free_reserved_area(&__init_begin, &__init_end,
3192 				  poison, "unused kernel image (initmem)");
3193 }
3194 
get_num_physpages(void)3195 static inline unsigned long get_num_physpages(void)
3196 {
3197 	int nid;
3198 	unsigned long phys_pages = 0;
3199 
3200 	for_each_online_node(nid)
3201 		phys_pages += node_present_pages(nid);
3202 
3203 	return phys_pages;
3204 }
3205 
3206 /*
3207  * Using memblock node mappings, an architecture may initialise its
3208  * zones, allocate the backing mem_map and account for memory holes in an
3209  * architecture independent manner.
3210  *
3211  * An architecture is expected to register range of page frames backed by
3212  * physical memory with memblock_add[_node]() before calling
3213  * free_area_init() passing in the PFN each zone ends at. At a basic
3214  * usage, an architecture is expected to do something like
3215  *
3216  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3217  * 							 max_highmem_pfn};
3218  * for_each_valid_physical_page_range()
3219  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3220  * free_area_init(max_zone_pfns);
3221  */
3222 void free_area_init(unsigned long *max_zone_pfn);
3223 unsigned long node_map_pfn_alignment(void);
3224 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3225 						unsigned long end_pfn);
3226 extern void get_pfn_range_for_nid(unsigned int nid,
3227 			unsigned long *start_pfn, unsigned long *end_pfn);
3228 
3229 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3230 static inline int early_pfn_to_nid(unsigned long pfn)
3231 {
3232 	return 0;
3233 }
3234 #else
3235 /* please see mm/page_alloc.c */
3236 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3237 #endif
3238 
3239 extern void mem_init(void);
3240 extern void __init mmap_init(void);
3241 
3242 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3243 static inline void show_mem(void)
3244 {
3245 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3246 }
3247 extern long si_mem_available(void);
3248 extern void si_meminfo(struct sysinfo * val);
3249 extern void si_meminfo_node(struct sysinfo *val, int nid);
3250 
3251 extern __printf(3, 4)
3252 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3253 
3254 extern void setup_per_cpu_pageset(void);
3255 
3256 /* nommu.c */
3257 extern atomic_long_t mmap_pages_allocated;
3258 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3259 
3260 /* interval_tree.c */
3261 void vma_interval_tree_insert(struct vm_area_struct *node,
3262 			      struct rb_root_cached *root);
3263 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3264 				    struct vm_area_struct *prev,
3265 				    struct rb_root_cached *root);
3266 void vma_interval_tree_remove(struct vm_area_struct *node,
3267 			      struct rb_root_cached *root);
3268 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3269 				unsigned long start, unsigned long last);
3270 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3271 				unsigned long start, unsigned long last);
3272 
3273 #define vma_interval_tree_foreach(vma, root, start, last)		\
3274 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3275 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3276 
3277 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3278 				   struct rb_root_cached *root);
3279 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3280 				   struct rb_root_cached *root);
3281 struct anon_vma_chain *
3282 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3283 				  unsigned long start, unsigned long last);
3284 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3285 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3286 #ifdef CONFIG_DEBUG_VM_RB
3287 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3288 #endif
3289 
3290 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3291 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3292 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3293 
3294 /* mmap.c */
3295 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3296 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3297 extern void exit_mmap(struct mm_struct *);
3298 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3299 				 unsigned long addr, bool write);
3300 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3301 static inline int check_data_rlimit(unsigned long rlim,
3302 				    unsigned long new,
3303 				    unsigned long start,
3304 				    unsigned long end_data,
3305 				    unsigned long start_data)
3306 {
3307 	if (rlim < RLIM_INFINITY) {
3308 		if (((new - start) + (end_data - start_data)) > rlim)
3309 			return -ENOSPC;
3310 	}
3311 
3312 	return 0;
3313 }
3314 
3315 extern int mm_take_all_locks(struct mm_struct *mm);
3316 extern void mm_drop_all_locks(struct mm_struct *mm);
3317 
3318 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3319 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3320 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3321 extern struct file *get_task_exe_file(struct task_struct *task);
3322 
3323 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3324 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3325 
3326 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3327 				   const struct vm_special_mapping *sm);
3328 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3329 				   unsigned long addr, unsigned long len,
3330 				   vm_flags_t vm_flags,
3331 				   const struct vm_special_mapping *spec);
3332 
3333 unsigned long randomize_stack_top(unsigned long stack_top);
3334 unsigned long randomize_page(unsigned long start, unsigned long range);
3335 
3336 unsigned long
3337 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3338 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3339 
3340 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3341 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3342 		  unsigned long pgoff, unsigned long flags)
3343 {
3344 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3345 }
3346 
3347 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3348 	unsigned long len, unsigned long prot, unsigned long flags,
3349 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3350 	struct list_head *uf);
3351 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3352 			 unsigned long start, size_t len, struct list_head *uf,
3353 			 bool unlock);
3354 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3355 		    struct mm_struct *mm, unsigned long start,
3356 		    unsigned long end, struct list_head *uf, bool unlock);
3357 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3358 		     struct list_head *uf);
3359 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3360 
3361 #ifdef CONFIG_MMU
3362 extern int __mm_populate(unsigned long addr, unsigned long len,
3363 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3364 static inline void mm_populate(unsigned long addr, unsigned long len)
3365 {
3366 	/* Ignore errors */
3367 	(void) __mm_populate(addr, len, 1);
3368 }
3369 #else
mm_populate(unsigned long addr,unsigned long len)3370 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3371 #endif
3372 
3373 /* This takes the mm semaphore itself */
3374 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3375 extern int vm_munmap(unsigned long, size_t);
3376 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3377         unsigned long, unsigned long,
3378         unsigned long, unsigned long);
3379 
3380 struct vm_unmapped_area_info {
3381 #define VM_UNMAPPED_AREA_TOPDOWN 1
3382 	unsigned long flags;
3383 	unsigned long length;
3384 	unsigned long low_limit;
3385 	unsigned long high_limit;
3386 	unsigned long align_mask;
3387 	unsigned long align_offset;
3388 	unsigned long start_gap;
3389 };
3390 
3391 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3392 
3393 /* truncate.c */
3394 extern void truncate_inode_pages(struct address_space *, loff_t);
3395 extern void truncate_inode_pages_range(struct address_space *,
3396 				       loff_t lstart, loff_t lend);
3397 extern void truncate_inode_pages_final(struct address_space *);
3398 
3399 /* generic vm_area_ops exported for stackable file systems */
3400 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3401 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3402 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3403 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3404 
3405 extern unsigned long stack_guard_gap;
3406 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3407 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3408 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3409 
3410 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3411 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3412 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3413 					     struct vm_area_struct **pprev);
3414 
3415 /*
3416  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3417  * NULL if none.  Assume start_addr < end_addr.
3418  */
3419 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3420 			unsigned long start_addr, unsigned long end_addr);
3421 
3422 /**
3423  * vma_lookup() - Find a VMA at a specific address
3424  * @mm: The process address space.
3425  * @addr: The user address.
3426  *
3427  * Return: The vm_area_struct at the given address, %NULL otherwise.
3428  */
3429 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3430 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3431 {
3432 	return mtree_load(&mm->mm_mt, addr);
3433 }
3434 
stack_guard_start_gap(struct vm_area_struct * vma)3435 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3436 {
3437 	if (vma->vm_flags & VM_GROWSDOWN)
3438 		return stack_guard_gap;
3439 
3440 	/* See reasoning around the VM_SHADOW_STACK definition */
3441 	if (vma->vm_flags & VM_SHADOW_STACK)
3442 		return PAGE_SIZE;
3443 
3444 	return 0;
3445 }
3446 
vm_start_gap(struct vm_area_struct * vma)3447 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3448 {
3449 	unsigned long gap = stack_guard_start_gap(vma);
3450 	unsigned long vm_start = vma->vm_start;
3451 
3452 	vm_start -= gap;
3453 	if (vm_start > vma->vm_start)
3454 		vm_start = 0;
3455 	return vm_start;
3456 }
3457 
vm_end_gap(struct vm_area_struct * vma)3458 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3459 {
3460 	unsigned long vm_end = vma->vm_end;
3461 
3462 	if (vma->vm_flags & VM_GROWSUP) {
3463 		vm_end += stack_guard_gap;
3464 		if (vm_end < vma->vm_end)
3465 			vm_end = -PAGE_SIZE;
3466 	}
3467 	return vm_end;
3468 }
3469 
vma_pages(struct vm_area_struct * vma)3470 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3471 {
3472 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3473 }
3474 
3475 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3476 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3477 				unsigned long vm_start, unsigned long vm_end)
3478 {
3479 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3480 
3481 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3482 		vma = NULL;
3483 
3484 	return vma;
3485 }
3486 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3487 static inline bool range_in_vma(struct vm_area_struct *vma,
3488 				unsigned long start, unsigned long end)
3489 {
3490 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3491 }
3492 
3493 #ifdef CONFIG_MMU
3494 pgprot_t vm_get_page_prot(vm_flags_t vm_flags);
3495 void vma_set_page_prot(struct vm_area_struct *vma);
3496 #else
vm_get_page_prot(vm_flags_t vm_flags)3497 static inline pgprot_t vm_get_page_prot(vm_flags_t vm_flags)
3498 {
3499 	return __pgprot(0);
3500 }
vma_set_page_prot(struct vm_area_struct * vma)3501 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3502 {
3503 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3504 }
3505 #endif
3506 
3507 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3508 
3509 #ifdef CONFIG_NUMA_BALANCING
3510 unsigned long change_prot_numa(struct vm_area_struct *vma,
3511 			unsigned long start, unsigned long end);
3512 #endif
3513 
3514 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3515 		unsigned long addr);
3516 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3517 			unsigned long pfn, unsigned long size, pgprot_t);
3518 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3519 		unsigned long pfn, unsigned long size, pgprot_t prot);
3520 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3521 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3522 			struct page **pages, unsigned long *num);
3523 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3524 				unsigned long num);
3525 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3526 				unsigned long num);
3527 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3528 			bool write);
3529 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3530 			unsigned long pfn);
3531 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3532 			unsigned long pfn, pgprot_t pgprot);
3533 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3534 			unsigned long pfn);
3535 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3536 		unsigned long addr, unsigned long pfn);
3537 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3538 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3539 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3540 				unsigned long addr, struct page *page)
3541 {
3542 	int err = vm_insert_page(vma, addr, page);
3543 
3544 	if (err == -ENOMEM)
3545 		return VM_FAULT_OOM;
3546 	if (err < 0 && err != -EBUSY)
3547 		return VM_FAULT_SIGBUS;
3548 
3549 	return VM_FAULT_NOPAGE;
3550 }
3551 
3552 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3553 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3554 				     unsigned long addr, unsigned long pfn,
3555 				     unsigned long size, pgprot_t prot)
3556 {
3557 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3558 }
3559 #endif
3560 
vmf_error(int err)3561 static inline vm_fault_t vmf_error(int err)
3562 {
3563 	if (err == -ENOMEM)
3564 		return VM_FAULT_OOM;
3565 	else if (err == -EHWPOISON)
3566 		return VM_FAULT_HWPOISON;
3567 	return VM_FAULT_SIGBUS;
3568 }
3569 
3570 /*
3571  * Convert errno to return value for ->page_mkwrite() calls.
3572  *
3573  * This should eventually be merged with vmf_error() above, but will need a
3574  * careful audit of all vmf_error() callers.
3575  */
vmf_fs_error(int err)3576 static inline vm_fault_t vmf_fs_error(int err)
3577 {
3578 	if (err == 0)
3579 		return VM_FAULT_LOCKED;
3580 	if (err == -EFAULT || err == -EAGAIN)
3581 		return VM_FAULT_NOPAGE;
3582 	if (err == -ENOMEM)
3583 		return VM_FAULT_OOM;
3584 	/* -ENOSPC, -EDQUOT, -EIO ... */
3585 	return VM_FAULT_SIGBUS;
3586 }
3587 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3588 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3589 {
3590 	if (vm_fault & VM_FAULT_OOM)
3591 		return -ENOMEM;
3592 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3593 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3594 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3595 		return -EFAULT;
3596 	return 0;
3597 }
3598 
3599 /*
3600  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3601  * a (NUMA hinting) fault is required.
3602  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3603 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3604 					   unsigned int flags)
3605 {
3606 	/*
3607 	 * If callers don't want to honor NUMA hinting faults, no need to
3608 	 * determine if we would actually have to trigger a NUMA hinting fault.
3609 	 */
3610 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3611 		return true;
3612 
3613 	/*
3614 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3615 	 *
3616 	 * Requiring a fault here even for inaccessible VMAs would mean that
3617 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3618 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3619 	 */
3620 	return !vma_is_accessible(vma);
3621 }
3622 
3623 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3624 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3625 			       unsigned long size, pte_fn_t fn, void *data);
3626 extern int apply_to_existing_page_range(struct mm_struct *mm,
3627 				   unsigned long address, unsigned long size,
3628 				   pte_fn_t fn, void *data);
3629 
3630 #ifdef CONFIG_PAGE_POISONING
3631 extern void __kernel_poison_pages(struct page *page, int numpages);
3632 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3633 extern bool _page_poisoning_enabled_early;
3634 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3635 static inline bool page_poisoning_enabled(void)
3636 {
3637 	return _page_poisoning_enabled_early;
3638 }
3639 /*
3640  * For use in fast paths after init_mem_debugging() has run, or when a
3641  * false negative result is not harmful when called too early.
3642  */
page_poisoning_enabled_static(void)3643 static inline bool page_poisoning_enabled_static(void)
3644 {
3645 	return static_branch_unlikely(&_page_poisoning_enabled);
3646 }
kernel_poison_pages(struct page * page,int numpages)3647 static inline void kernel_poison_pages(struct page *page, int numpages)
3648 {
3649 	if (page_poisoning_enabled_static())
3650 		__kernel_poison_pages(page, numpages);
3651 }
kernel_unpoison_pages(struct page * page,int numpages)3652 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3653 {
3654 	if (page_poisoning_enabled_static())
3655 		__kernel_unpoison_pages(page, numpages);
3656 }
3657 #else
page_poisoning_enabled(void)3658 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3659 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3660 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3661 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3662 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3663 #endif
3664 
3665 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3666 static inline bool want_init_on_alloc(gfp_t flags)
3667 {
3668 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3669 				&init_on_alloc))
3670 		return true;
3671 	return flags & __GFP_ZERO;
3672 }
3673 
3674 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3675 static inline bool want_init_on_free(void)
3676 {
3677 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3678 				   &init_on_free);
3679 }
3680 
3681 extern bool _debug_pagealloc_enabled_early;
3682 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3683 
debug_pagealloc_enabled(void)3684 static inline bool debug_pagealloc_enabled(void)
3685 {
3686 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3687 		_debug_pagealloc_enabled_early;
3688 }
3689 
3690 /*
3691  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3692  * or when a false negative result is not harmful when called too early.
3693  */
debug_pagealloc_enabled_static(void)3694 static inline bool debug_pagealloc_enabled_static(void)
3695 {
3696 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3697 		return false;
3698 
3699 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3700 }
3701 
3702 /*
3703  * To support DEBUG_PAGEALLOC architecture must ensure that
3704  * __kernel_map_pages() never fails
3705  */
3706 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3707 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3708 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3709 {
3710 	if (debug_pagealloc_enabled_static())
3711 		__kernel_map_pages(page, numpages, 1);
3712 }
3713 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3714 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3715 {
3716 	if (debug_pagealloc_enabled_static())
3717 		__kernel_map_pages(page, numpages, 0);
3718 }
3719 
3720 extern unsigned int _debug_guardpage_minorder;
3721 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3722 
debug_guardpage_minorder(void)3723 static inline unsigned int debug_guardpage_minorder(void)
3724 {
3725 	return _debug_guardpage_minorder;
3726 }
3727 
debug_guardpage_enabled(void)3728 static inline bool debug_guardpage_enabled(void)
3729 {
3730 	return static_branch_unlikely(&_debug_guardpage_enabled);
3731 }
3732 
page_is_guard(struct page * page)3733 static inline bool page_is_guard(struct page *page)
3734 {
3735 	if (!debug_guardpage_enabled())
3736 		return false;
3737 
3738 	return PageGuard(page);
3739 }
3740 
3741 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3742 static inline bool set_page_guard(struct zone *zone, struct page *page,
3743 				  unsigned int order)
3744 {
3745 	if (!debug_guardpage_enabled())
3746 		return false;
3747 	return __set_page_guard(zone, page, order);
3748 }
3749 
3750 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3751 static inline void clear_page_guard(struct zone *zone, struct page *page,
3752 				    unsigned int order)
3753 {
3754 	if (!debug_guardpage_enabled())
3755 		return;
3756 	__clear_page_guard(zone, page, order);
3757 }
3758 
3759 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3760 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3761 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3762 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3763 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3764 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3765 static inline bool set_page_guard(struct zone *zone, struct page *page,
3766 			unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3767 static inline void clear_page_guard(struct zone *zone, struct page *page,
3768 				unsigned int order) {}
3769 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3770 
3771 #ifdef __HAVE_ARCH_GATE_AREA
3772 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3773 extern int in_gate_area_no_mm(unsigned long addr);
3774 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3775 #else
get_gate_vma(struct mm_struct * mm)3776 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3777 {
3778 	return NULL;
3779 }
in_gate_area_no_mm(unsigned long addr)3780 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3781 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3782 {
3783 	return 0;
3784 }
3785 #endif	/* __HAVE_ARCH_GATE_AREA */
3786 
3787 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3788 
3789 void drop_slab(void);
3790 
3791 #ifndef CONFIG_MMU
3792 #define randomize_va_space 0
3793 #else
3794 extern int randomize_va_space;
3795 #endif
3796 
3797 const char * arch_vma_name(struct vm_area_struct *vma);
3798 #ifdef CONFIG_MMU
3799 void print_vma_addr(char *prefix, unsigned long rip);
3800 #else
print_vma_addr(char * prefix,unsigned long rip)3801 static inline void print_vma_addr(char *prefix, unsigned long rip)
3802 {
3803 }
3804 #endif
3805 
3806 void *sparse_buffer_alloc(unsigned long size);
3807 unsigned long section_map_size(void);
3808 struct page * __populate_section_memmap(unsigned long pfn,
3809 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3810 		struct dev_pagemap *pgmap);
3811 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3812 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3813 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3814 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3815 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3816 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3817 			    unsigned long flags);
3818 void *vmemmap_alloc_block(unsigned long size, int node);
3819 struct vmem_altmap;
3820 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3821 			      struct vmem_altmap *altmap);
3822 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3823 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3824 		     unsigned long addr, unsigned long next);
3825 int vmemmap_check_pmd(pmd_t *pmd, int node,
3826 		      unsigned long addr, unsigned long next);
3827 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3828 			       int node, struct vmem_altmap *altmap);
3829 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3830 			       int node, struct vmem_altmap *altmap);
3831 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3832 		struct vmem_altmap *altmap);
3833 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3834 			 unsigned long headsize);
3835 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3836 		     unsigned long headsize);
3837 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3838 			  unsigned long headsize);
3839 void vmemmap_populate_print_last(void);
3840 #ifdef CONFIG_MEMORY_HOTPLUG
3841 void vmemmap_free(unsigned long start, unsigned long end,
3842 		struct vmem_altmap *altmap);
3843 #endif
3844 
3845 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3846 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3847 {
3848 	/* number of pfns from base where pfn_to_page() is valid */
3849 	if (altmap)
3850 		return altmap->reserve + altmap->free;
3851 	return 0;
3852 }
3853 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3854 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3855 				    unsigned long nr_pfns)
3856 {
3857 	altmap->alloc -= nr_pfns;
3858 }
3859 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3860 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3861 {
3862 	return 0;
3863 }
3864 
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3865 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3866 				    unsigned long nr_pfns)
3867 {
3868 }
3869 #endif
3870 
3871 #define VMEMMAP_RESERVE_NR	2
3872 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3873 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3874 					  struct dev_pagemap *pgmap)
3875 {
3876 	unsigned long nr_pages;
3877 	unsigned long nr_vmemmap_pages;
3878 
3879 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3880 		return false;
3881 
3882 	nr_pages = pgmap_vmemmap_nr(pgmap);
3883 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3884 	/*
3885 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3886 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3887 	 */
3888 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3889 }
3890 /*
3891  * If we don't have an architecture override, use the generic rule
3892  */
3893 #ifndef vmemmap_can_optimize
3894 #define vmemmap_can_optimize __vmemmap_can_optimize
3895 #endif
3896 
3897 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3898 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3899 					   struct dev_pagemap *pgmap)
3900 {
3901 	return false;
3902 }
3903 #endif
3904 
3905 enum mf_flags {
3906 	MF_COUNT_INCREASED = 1 << 0,
3907 	MF_ACTION_REQUIRED = 1 << 1,
3908 	MF_MUST_KILL = 1 << 2,
3909 	MF_SOFT_OFFLINE = 1 << 3,
3910 	MF_UNPOISON = 1 << 4,
3911 	MF_SW_SIMULATED = 1 << 5,
3912 	MF_NO_RETRY = 1 << 6,
3913 	MF_MEM_PRE_REMOVE = 1 << 7,
3914 };
3915 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3916 		      unsigned long count, int mf_flags);
3917 extern int memory_failure(unsigned long pfn, int flags);
3918 extern int unpoison_memory(unsigned long pfn);
3919 extern atomic_long_t num_poisoned_pages __read_mostly;
3920 extern int soft_offline_page(unsigned long pfn, int flags);
3921 #ifdef CONFIG_MEMORY_FAILURE
3922 /*
3923  * Sysfs entries for memory failure handling statistics.
3924  */
3925 extern const struct attribute_group memory_failure_attr_group;
3926 extern void memory_failure_queue(unsigned long pfn, int flags);
3927 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3928 					bool *migratable_cleared);
3929 void num_poisoned_pages_inc(unsigned long pfn);
3930 void num_poisoned_pages_sub(unsigned long pfn, long i);
3931 #else
memory_failure_queue(unsigned long pfn,int flags)3932 static inline void memory_failure_queue(unsigned long pfn, int flags)
3933 {
3934 }
3935 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3936 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3937 					bool *migratable_cleared)
3938 {
3939 	return 0;
3940 }
3941 
num_poisoned_pages_inc(unsigned long pfn)3942 static inline void num_poisoned_pages_inc(unsigned long pfn)
3943 {
3944 }
3945 
num_poisoned_pages_sub(unsigned long pfn,long i)3946 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3947 {
3948 }
3949 #endif
3950 
3951 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3952 extern void memblk_nr_poison_inc(unsigned long pfn);
3953 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3954 #else
memblk_nr_poison_inc(unsigned long pfn)3955 static inline void memblk_nr_poison_inc(unsigned long pfn)
3956 {
3957 }
3958 
memblk_nr_poison_sub(unsigned long pfn,long i)3959 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3960 {
3961 }
3962 #endif
3963 
3964 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3965 static inline int arch_memory_failure(unsigned long pfn, int flags)
3966 {
3967 	return -ENXIO;
3968 }
3969 #endif
3970 
3971 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3972 static inline bool arch_is_platform_page(u64 paddr)
3973 {
3974 	return false;
3975 }
3976 #endif
3977 
3978 /*
3979  * Error handlers for various types of pages.
3980  */
3981 enum mf_result {
3982 	MF_IGNORED,	/* Error: cannot be handled */
3983 	MF_FAILED,	/* Error: handling failed */
3984 	MF_DELAYED,	/* Will be handled later */
3985 	MF_RECOVERED,	/* Successfully recovered */
3986 };
3987 
3988 enum mf_action_page_type {
3989 	MF_MSG_KERNEL,
3990 	MF_MSG_KERNEL_HIGH_ORDER,
3991 	MF_MSG_DIFFERENT_COMPOUND,
3992 	MF_MSG_HUGE,
3993 	MF_MSG_FREE_HUGE,
3994 	MF_MSG_GET_HWPOISON,
3995 	MF_MSG_UNMAP_FAILED,
3996 	MF_MSG_DIRTY_SWAPCACHE,
3997 	MF_MSG_CLEAN_SWAPCACHE,
3998 	MF_MSG_DIRTY_MLOCKED_LRU,
3999 	MF_MSG_CLEAN_MLOCKED_LRU,
4000 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4001 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4002 	MF_MSG_DIRTY_LRU,
4003 	MF_MSG_CLEAN_LRU,
4004 	MF_MSG_TRUNCATED_LRU,
4005 	MF_MSG_BUDDY,
4006 	MF_MSG_DAX,
4007 	MF_MSG_UNSPLIT_THP,
4008 	MF_MSG_ALREADY_POISONED,
4009 	MF_MSG_UNKNOWN,
4010 };
4011 
4012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4013 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4014 int copy_user_large_folio(struct folio *dst, struct folio *src,
4015 			  unsigned long addr_hint,
4016 			  struct vm_area_struct *vma);
4017 long copy_folio_from_user(struct folio *dst_folio,
4018 			   const void __user *usr_src,
4019 			   bool allow_pagefault);
4020 
4021 /**
4022  * vma_is_special_huge - Are transhuge page-table entries considered special?
4023  * @vma: Pointer to the struct vm_area_struct to consider
4024  *
4025  * Whether transhuge page-table entries are considered "special" following
4026  * the definition in vm_normal_page().
4027  *
4028  * Return: true if transhuge page-table entries should be considered special,
4029  * false otherwise.
4030  */
vma_is_special_huge(const struct vm_area_struct * vma)4031 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4032 {
4033 	return vma_is_dax(vma) || (vma->vm_file &&
4034 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4035 }
4036 
4037 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4038 
4039 #if MAX_NUMNODES > 1
4040 void __init setup_nr_node_ids(void);
4041 #else
setup_nr_node_ids(void)4042 static inline void setup_nr_node_ids(void) {}
4043 #endif
4044 
4045 extern int memcmp_pages(struct page *page1, struct page *page2);
4046 
pages_identical(struct page * page1,struct page * page2)4047 static inline int pages_identical(struct page *page1, struct page *page2)
4048 {
4049 	return !memcmp_pages(page1, page2);
4050 }
4051 
4052 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4053 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4054 						pgoff_t first_index, pgoff_t nr,
4055 						pgoff_t bitmap_pgoff,
4056 						unsigned long *bitmap,
4057 						pgoff_t *start,
4058 						pgoff_t *end);
4059 
4060 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4061 				      pgoff_t first_index, pgoff_t nr);
4062 #endif
4063 
4064 #ifdef CONFIG_ANON_VMA_NAME
4065 int set_anon_vma_name(unsigned long addr, unsigned long size,
4066 		      const char __user *uname);
4067 #else
4068 static inline
set_anon_vma_name(unsigned long addr,unsigned long size,const char __user * uname)4069 int set_anon_vma_name(unsigned long addr, unsigned long size,
4070 		      const char __user *uname)
4071 {
4072 	return -EINVAL;
4073 }
4074 #endif
4075 
4076 #ifdef CONFIG_UNACCEPTED_MEMORY
4077 
4078 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4079 void accept_memory(phys_addr_t start, unsigned long size);
4080 
4081 #else
4082 
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4083 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4084 						    unsigned long size)
4085 {
4086 	return false;
4087 }
4088 
accept_memory(phys_addr_t start,unsigned long size)4089 static inline void accept_memory(phys_addr_t start, unsigned long size)
4090 {
4091 }
4092 
4093 #endif
4094 
pfn_is_unaccepted_memory(unsigned long pfn)4095 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4096 {
4097 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4098 }
4099 
4100 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4101 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4102 
4103 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4104 int reserve_mem_release_by_name(const char *name);
4105 
4106 #ifdef CONFIG_64BIT
4107 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4108 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4109 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4110 {
4111 	/* noop on 32 bit */
4112 	return 0;
4113 }
4114 #endif
4115 
4116 /*
4117  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4118  * be zeroed or not.
4119  */
user_alloc_needs_zeroing(void)4120 static inline bool user_alloc_needs_zeroing(void)
4121 {
4122 	/*
4123 	 * for user folios, arch with cache aliasing requires cache flush and
4124 	 * arc changes folio->flags to make icache coherent with dcache, so
4125 	 * always return false to make caller use
4126 	 * clear_user_page()/clear_user_highpage().
4127 	 */
4128 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4129 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4130 				   &init_on_alloc);
4131 }
4132 
4133 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4134 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4135 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4136 
4137 
4138 /*
4139  * mseal of userspace process's system mappings.
4140  */
4141 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4142 #define VM_SEALED_SYSMAP	VM_SEALED
4143 #else
4144 #define VM_SEALED_SYSMAP	VM_NONE
4145 #endif
4146 
4147 /*
4148  * DMA mapping IDs for page_pool
4149  *
4150  * When DMA-mapping a page, page_pool allocates an ID (from an xarray) and
4151  * stashes it in the upper bits of page->pp_magic. We always want to be able to
4152  * unambiguously identify page pool pages (using page_pool_page_is_pp()). Non-PP
4153  * pages can have arbitrary kernel pointers stored in the same field as pp_magic
4154  * (since it overlaps with page->lru.next), so we must ensure that we cannot
4155  * mistake a valid kernel pointer with any of the values we write into this
4156  * field.
4157  *
4158  * On architectures that set POISON_POINTER_DELTA, this is already ensured,
4159  * since this value becomes part of PP_SIGNATURE; meaning we can just use the
4160  * space between the PP_SIGNATURE value (without POISON_POINTER_DELTA), and the
4161  * lowest bits of POISON_POINTER_DELTA. On arches where POISON_POINTER_DELTA is
4162  * 0, we make sure that we leave the two topmost bits empty, as that guarantees
4163  * we won't mistake a valid kernel pointer for a value we set, regardless of the
4164  * VMSPLIT setting.
4165  *
4166  * Altogether, this means that the number of bits available is constrained by
4167  * the size of an unsigned long (at the upper end, subtracting two bits per the
4168  * above), and the definition of PP_SIGNATURE (with or without
4169  * POISON_POINTER_DELTA).
4170  */
4171 #define PP_DMA_INDEX_SHIFT (1 + __fls(PP_SIGNATURE - POISON_POINTER_DELTA))
4172 #if POISON_POINTER_DELTA > 0
4173 /* PP_SIGNATURE includes POISON_POINTER_DELTA, so limit the size of the DMA
4174  * index to not overlap with that if set
4175  */
4176 #define PP_DMA_INDEX_BITS MIN(32, __ffs(POISON_POINTER_DELTA) - PP_DMA_INDEX_SHIFT)
4177 #else
4178 /* Always leave out the topmost two; see above. */
4179 #define PP_DMA_INDEX_BITS MIN(32, BITS_PER_LONG - PP_DMA_INDEX_SHIFT - 2)
4180 #endif
4181 
4182 #define PP_DMA_INDEX_MASK GENMASK(PP_DMA_INDEX_BITS + PP_DMA_INDEX_SHIFT - 1, \
4183 				  PP_DMA_INDEX_SHIFT)
4184 
4185 /* Mask used for checking in page_pool_page_is_pp() below. page->pp_magic is
4186  * OR'ed with PP_SIGNATURE after the allocation in order to preserve bit 0 for
4187  * the head page of compound page and bit 1 for pfmemalloc page, as well as the
4188  * bits used for the DMA index. page_is_pfmemalloc() is checked in
4189  * __page_pool_put_page() to avoid recycling the pfmemalloc page.
4190  */
4191 #define PP_MAGIC_MASK ~(PP_DMA_INDEX_MASK | 0x3UL)
4192 
4193 #ifdef CONFIG_PAGE_POOL
page_pool_page_is_pp(const struct page * page)4194 static inline bool page_pool_page_is_pp(const struct page *page)
4195 {
4196 	return (page->pp_magic & PP_MAGIC_MASK) == PP_SIGNATURE;
4197 }
4198 #else
page_pool_page_is_pp(const struct page * page)4199 static inline bool page_pool_page_is_pp(const struct page *page)
4200 {
4201 	return false;
4202 }
4203 #endif
4204 
4205 #define PAGE_SNAPSHOT_FAITHFUL (1 << 0)
4206 #define PAGE_SNAPSHOT_PG_BUDDY (1 << 1)
4207 #define PAGE_SNAPSHOT_PG_IDLE  (1 << 2)
4208 
4209 struct page_snapshot {
4210 	struct folio folio_snapshot;
4211 	struct page page_snapshot;
4212 	unsigned long pfn;
4213 	unsigned long idx;
4214 	unsigned long flags;
4215 };
4216 
snapshot_page_is_faithful(const struct page_snapshot * ps)4217 static inline bool snapshot_page_is_faithful(const struct page_snapshot *ps)
4218 {
4219 	return ps->flags & PAGE_SNAPSHOT_FAITHFUL;
4220 }
4221 
4222 void snapshot_page(struct page_snapshot *ps, const struct page *page);
4223 
4224 #endif /* _LINUX_MM_H */
4225