1 /*
2 * Virtio MEM device
3 *
4 * Copyright (C) 2020 Red Hat, Inc.
5 *
6 * Authors:
7 * David Hildenbrand <david@redhat.com>
8 *
9 * This work is licensed under the terms of the GNU GPL, version 2.
10 * See the COPYING file in the top-level directory.
11 */
12
13 #include "qemu/osdep.h"
14 #include "qemu/iov.h"
15 #include "qemu/cutils.h"
16 #include "qemu/error-report.h"
17 #include "qemu/units.h"
18 #include "system/numa.h"
19 #include "system/system.h"
20 #include "system/reset.h"
21 #include "system/runstate.h"
22 #include "hw/virtio/virtio.h"
23 #include "hw/virtio/virtio-bus.h"
24 #include "hw/virtio/virtio-mem.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "system/ram_addr.h"
28 #include "migration/misc.h"
29 #include "hw/boards.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/acpi/acpi.h"
32 #include "trace.h"
33
34 static const VMStateDescription vmstate_virtio_mem_device_early;
35
36 /*
37 * We only had legacy x86 guests that did not support
38 * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests.
39 */
40 #if defined(TARGET_X86_64) || defined(TARGET_I386)
41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS
42 #endif
43
44 /*
45 * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking
46 * bitmap small.
47 */
48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB))
49
virtio_mem_default_thp_size(void)50 static uint32_t virtio_mem_default_thp_size(void)
51 {
52 uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE;
53
54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__)
55 default_thp_size = 2 * MiB;
56 #elif defined(__aarch64__)
57 if (qemu_real_host_page_size() == 4 * KiB) {
58 default_thp_size = 2 * MiB;
59 } else if (qemu_real_host_page_size() == 16 * KiB) {
60 default_thp_size = 32 * MiB;
61 } else if (qemu_real_host_page_size() == 64 * KiB) {
62 default_thp_size = 512 * MiB;
63 }
64 #elif defined(__s390x__)
65 default_thp_size = 1 * MiB;
66 #endif
67
68 return default_thp_size;
69 }
70
71 /*
72 * The minimum memslot size depends on this setting ("sane default"), the
73 * device block size, and the memory backend page size. The last (or single)
74 * memslot might be smaller than this constant.
75 */
76 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB)
77
78 /*
79 * We want to have a reasonable default block size such that
80 * 1. We avoid splitting THPs when unplugging memory, which degrades
81 * performance.
82 * 2. We avoid placing THPs for plugged blocks that also cover unplugged
83 * blocks.
84 *
85 * The actual THP size might differ between Linux kernels, so we try to probe
86 * it. In the future (if we ever run into issues regarding 2.), we might want
87 * to disable THP in case we fail to properly probe the THP size, or if the
88 * block size is configured smaller than the THP size.
89 */
90 static uint32_t thp_size;
91
92 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size"
93 #define HPAGE_PATH "/sys/kernel/mm/transparent_hugepage/"
virtio_mem_thp_size(void)94 static uint32_t virtio_mem_thp_size(void)
95 {
96 gchar *content = NULL;
97 const char *endptr;
98 uint64_t tmp;
99
100 if (thp_size) {
101 return thp_size;
102 }
103
104 /* No THP -> no restrictions. */
105 if (!g_file_test(HPAGE_PATH, G_FILE_TEST_EXISTS)) {
106 thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE;
107 return thp_size;
108 }
109
110 /*
111 * Try to probe the actual THP size, fallback to (sane but eventually
112 * incorrect) default sizes.
113 */
114 if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) &&
115 !qemu_strtou64(content, &endptr, 0, &tmp) &&
116 (!endptr || *endptr == '\n')) {
117 /* Sanity-check the value and fallback to something reasonable. */
118 if (!tmp || !is_power_of_2(tmp)) {
119 warn_report("Read unsupported THP size: %" PRIx64, tmp);
120 } else {
121 thp_size = tmp;
122 }
123 }
124
125 if (!thp_size) {
126 thp_size = virtio_mem_default_thp_size();
127 warn_report("Could not detect THP size, falling back to %" PRIx64
128 " MiB.", thp_size / MiB);
129 }
130
131 g_free(content);
132 return thp_size;
133 }
134
virtio_mem_default_block_size(RAMBlock * rb)135 static uint64_t virtio_mem_default_block_size(RAMBlock *rb)
136 {
137 const uint64_t page_size = qemu_ram_pagesize(rb);
138
139 /* We can have hugetlbfs with a page size smaller than the THP size. */
140 if (page_size == qemu_real_host_page_size()) {
141 return MAX(page_size, virtio_mem_thp_size());
142 }
143 return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE);
144 }
145
146 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
virtio_mem_has_shared_zeropage(RAMBlock * rb)147 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb)
148 {
149 /*
150 * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE
151 * anonymous RAM. In any other case, reading unplugged *can* populate a
152 * fresh page, consuming actual memory.
153 */
154 return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 &&
155 qemu_ram_pagesize(rb) == qemu_real_host_page_size();
156 }
157 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
158
159 /*
160 * Size the usable region bigger than the requested size if possible. Esp.
161 * Linux guests will only add (aligned) memory blocks in case they fully
162 * fit into the usable region, but plug+online only a subset of the pages.
163 * The memory block size corresponds mostly to the section size.
164 *
165 * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and
166 * a section size of 512MB on arm64 (as long as the start address is properly
167 * aligned, similar to ordinary DIMMs).
168 *
169 * We can change this at any time and maybe even make it configurable if
170 * necessary (as the section size can change). But it's more likely that the
171 * section size will rather get smaller and not bigger over time.
172 */
173 #if defined(TARGET_X86_64) || defined(TARGET_I386) || defined(TARGET_S390X)
174 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB))
175 #elif defined(TARGET_ARM)
176 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB))
177 #else
178 #error VIRTIO_MEM_USABLE_EXTENT not defined
179 #endif
180
virtio_mem_is_busy(void)181 static bool virtio_mem_is_busy(void)
182 {
183 /*
184 * Postcopy cannot handle concurrent discards and we don't want to migrate
185 * pages on-demand with stale content when plugging new blocks.
186 *
187 * For precopy, we don't want unplugged blocks in our migration stream, and
188 * when plugging new blocks, the page content might differ between source
189 * and destination (observable by the guest when not initializing pages
190 * after plugging them) until we're running on the destination (as we didn't
191 * migrate these blocks when they were unplugged).
192 */
193 return migration_in_incoming_postcopy() || migration_is_running();
194 }
195
196 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg,
197 uint64_t offset, uint64_t size);
198
virtio_mem_for_each_unplugged_range(VirtIOMEM * vmem,void * arg,virtio_mem_range_cb cb)199 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg,
200 virtio_mem_range_cb cb)
201 {
202 unsigned long first_zero_bit, last_zero_bit;
203 uint64_t offset, size;
204 int ret = 0;
205
206 first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size);
207 while (first_zero_bit < vmem->bitmap_size) {
208 offset = first_zero_bit * vmem->block_size;
209 last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
210 first_zero_bit + 1) - 1;
211 size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size;
212
213 ret = cb(vmem, arg, offset, size);
214 if (ret) {
215 break;
216 }
217 first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
218 last_zero_bit + 2);
219 }
220 return ret;
221 }
222
virtio_mem_for_each_plugged_range(VirtIOMEM * vmem,void * arg,virtio_mem_range_cb cb)223 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg,
224 virtio_mem_range_cb cb)
225 {
226 unsigned long first_bit, last_bit;
227 uint64_t offset, size;
228 int ret = 0;
229
230 first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size);
231 while (first_bit < vmem->bitmap_size) {
232 offset = first_bit * vmem->block_size;
233 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
234 first_bit + 1) - 1;
235 size = (last_bit - first_bit + 1) * vmem->block_size;
236
237 ret = cb(vmem, arg, offset, size);
238 if (ret) {
239 break;
240 }
241 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
242 last_bit + 2);
243 }
244 return ret;
245 }
246
247 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg);
248
virtio_mem_for_each_plugged_section(const VirtIOMEM * vmem,MemoryRegionSection * s,void * arg,virtio_mem_section_cb cb)249 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem,
250 MemoryRegionSection *s,
251 void *arg,
252 virtio_mem_section_cb cb)
253 {
254 unsigned long first_bit, last_bit;
255 uint64_t offset, size;
256 int ret = 0;
257
258 first_bit = s->offset_within_region / vmem->block_size;
259 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit);
260 while (first_bit < vmem->bitmap_size) {
261 MemoryRegionSection tmp = *s;
262
263 offset = first_bit * vmem->block_size;
264 last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
265 first_bit + 1) - 1;
266 size = (last_bit - first_bit + 1) * vmem->block_size;
267
268 if (!memory_region_section_intersect_range(&tmp, offset, size)) {
269 break;
270 }
271 ret = cb(&tmp, arg);
272 if (ret) {
273 break;
274 }
275 first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
276 last_bit + 2);
277 }
278 return ret;
279 }
280
virtio_mem_for_each_unplugged_section(const VirtIOMEM * vmem,MemoryRegionSection * s,void * arg,virtio_mem_section_cb cb)281 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem,
282 MemoryRegionSection *s,
283 void *arg,
284 virtio_mem_section_cb cb)
285 {
286 unsigned long first_bit, last_bit;
287 uint64_t offset, size;
288 int ret = 0;
289
290 first_bit = s->offset_within_region / vmem->block_size;
291 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit);
292 while (first_bit < vmem->bitmap_size) {
293 MemoryRegionSection tmp = *s;
294
295 offset = first_bit * vmem->block_size;
296 last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
297 first_bit + 1) - 1;
298 size = (last_bit - first_bit + 1) * vmem->block_size;
299
300 if (!memory_region_section_intersect_range(&tmp, offset, size)) {
301 break;
302 }
303 ret = cb(&tmp, arg);
304 if (ret) {
305 break;
306 }
307 first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
308 last_bit + 2);
309 }
310 return ret;
311 }
312
virtio_mem_notify_populate_cb(MemoryRegionSection * s,void * arg)313 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg)
314 {
315 RamDiscardListener *rdl = arg;
316
317 return rdl->notify_populate(rdl, s);
318 }
319
virtio_mem_notify_discard_cb(MemoryRegionSection * s,void * arg)320 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg)
321 {
322 RamDiscardListener *rdl = arg;
323
324 rdl->notify_discard(rdl, s);
325 return 0;
326 }
327
virtio_mem_notify_unplug(VirtIOMEM * vmem,uint64_t offset,uint64_t size)328 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset,
329 uint64_t size)
330 {
331 RamDiscardListener *rdl;
332
333 QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
334 MemoryRegionSection tmp = *rdl->section;
335
336 if (!memory_region_section_intersect_range(&tmp, offset, size)) {
337 continue;
338 }
339 rdl->notify_discard(rdl, &tmp);
340 }
341 }
342
virtio_mem_notify_plug(VirtIOMEM * vmem,uint64_t offset,uint64_t size)343 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset,
344 uint64_t size)
345 {
346 RamDiscardListener *rdl, *rdl2;
347 int ret = 0;
348
349 QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
350 MemoryRegionSection tmp = *rdl->section;
351
352 if (!memory_region_section_intersect_range(&tmp, offset, size)) {
353 continue;
354 }
355 ret = rdl->notify_populate(rdl, &tmp);
356 if (ret) {
357 break;
358 }
359 }
360
361 if (ret) {
362 /* Notify all already-notified listeners. */
363 QLIST_FOREACH(rdl2, &vmem->rdl_list, next) {
364 MemoryRegionSection tmp = *rdl2->section;
365
366 if (rdl2 == rdl) {
367 break;
368 }
369 if (!memory_region_section_intersect_range(&tmp, offset, size)) {
370 continue;
371 }
372 rdl2->notify_discard(rdl2, &tmp);
373 }
374 }
375 return ret;
376 }
377
virtio_mem_notify_unplug_all(VirtIOMEM * vmem)378 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem)
379 {
380 RamDiscardListener *rdl;
381
382 if (!vmem->size) {
383 return;
384 }
385
386 QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
387 if (rdl->double_discard_supported) {
388 rdl->notify_discard(rdl, rdl->section);
389 } else {
390 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
391 virtio_mem_notify_discard_cb);
392 }
393 }
394 }
395
virtio_mem_is_range_plugged(const VirtIOMEM * vmem,uint64_t start_gpa,uint64_t size)396 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem,
397 uint64_t start_gpa, uint64_t size)
398 {
399 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size;
400 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1;
401 unsigned long found_bit;
402
403 /* We fake a shorter bitmap to avoid searching too far. */
404 found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit);
405 return found_bit > last_bit;
406 }
407
virtio_mem_is_range_unplugged(const VirtIOMEM * vmem,uint64_t start_gpa,uint64_t size)408 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem,
409 uint64_t start_gpa, uint64_t size)
410 {
411 const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size;
412 const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1;
413 unsigned long found_bit;
414
415 /* We fake a shorter bitmap to avoid searching too far. */
416 found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit);
417 return found_bit > last_bit;
418 }
419
virtio_mem_set_range_plugged(VirtIOMEM * vmem,uint64_t start_gpa,uint64_t size)420 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa,
421 uint64_t size)
422 {
423 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size;
424 const unsigned long nbits = size / vmem->block_size;
425
426 bitmap_set(vmem->bitmap, bit, nbits);
427 }
428
virtio_mem_set_range_unplugged(VirtIOMEM * vmem,uint64_t start_gpa,uint64_t size)429 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa,
430 uint64_t size)
431 {
432 const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size;
433 const unsigned long nbits = size / vmem->block_size;
434
435 bitmap_clear(vmem->bitmap, bit, nbits);
436 }
437
virtio_mem_send_response(VirtIOMEM * vmem,VirtQueueElement * elem,struct virtio_mem_resp * resp)438 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem,
439 struct virtio_mem_resp *resp)
440 {
441 VirtIODevice *vdev = VIRTIO_DEVICE(vmem);
442 VirtQueue *vq = vmem->vq;
443
444 trace_virtio_mem_send_response(le16_to_cpu(resp->type));
445 iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp));
446
447 virtqueue_push(vq, elem, sizeof(*resp));
448 virtio_notify(vdev, vq);
449 }
450
virtio_mem_send_response_simple(VirtIOMEM * vmem,VirtQueueElement * elem,uint16_t type)451 static void virtio_mem_send_response_simple(VirtIOMEM *vmem,
452 VirtQueueElement *elem,
453 uint16_t type)
454 {
455 struct virtio_mem_resp resp = {
456 .type = cpu_to_le16(type),
457 };
458
459 virtio_mem_send_response(vmem, elem, &resp);
460 }
461
virtio_mem_valid_range(const VirtIOMEM * vmem,uint64_t gpa,uint64_t size)462 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa,
463 uint64_t size)
464 {
465 if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) {
466 return false;
467 }
468 if (gpa + size < gpa || !size) {
469 return false;
470 }
471 if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) {
472 return false;
473 }
474 if (gpa + size > vmem->addr + vmem->usable_region_size) {
475 return false;
476 }
477 return true;
478 }
479
virtio_mem_activate_memslot(VirtIOMEM * vmem,unsigned int idx)480 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx)
481 {
482 const uint64_t memslot_offset = idx * vmem->memslot_size;
483
484 assert(vmem->memslots);
485
486 /*
487 * Instead of enabling/disabling memslots, we add/remove them. This should
488 * make address space updates faster, because we don't have to loop over
489 * many disabled subregions.
490 */
491 if (memory_region_is_mapped(&vmem->memslots[idx])) {
492 return;
493 }
494 memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]);
495 }
496
virtio_mem_deactivate_memslot(VirtIOMEM * vmem,unsigned int idx)497 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx)
498 {
499 assert(vmem->memslots);
500
501 if (!memory_region_is_mapped(&vmem->memslots[idx])) {
502 return;
503 }
504 memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]);
505 }
506
virtio_mem_activate_memslots_to_plug(VirtIOMEM * vmem,uint64_t offset,uint64_t size)507 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem,
508 uint64_t offset, uint64_t size)
509 {
510 const unsigned int start_idx = offset / vmem->memslot_size;
511 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) /
512 vmem->memslot_size;
513 unsigned int idx;
514
515 assert(vmem->dynamic_memslots);
516
517 /* Activate all involved memslots in a single transaction. */
518 memory_region_transaction_begin();
519 for (idx = start_idx; idx < end_idx; idx++) {
520 virtio_mem_activate_memslot(vmem, idx);
521 }
522 memory_region_transaction_commit();
523 }
524
virtio_mem_deactivate_unplugged_memslots(VirtIOMEM * vmem,uint64_t offset,uint64_t size)525 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem,
526 uint64_t offset,
527 uint64_t size)
528 {
529 const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
530 const unsigned int start_idx = offset / vmem->memslot_size;
531 const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) /
532 vmem->memslot_size;
533 unsigned int idx;
534
535 assert(vmem->dynamic_memslots);
536
537 /* Deactivate all memslots with unplugged blocks in a single transaction. */
538 memory_region_transaction_begin();
539 for (idx = start_idx; idx < end_idx; idx++) {
540 const uint64_t memslot_offset = idx * vmem->memslot_size;
541 uint64_t memslot_size = vmem->memslot_size;
542
543 /* The size of the last memslot might be smaller. */
544 if (idx == vmem->nb_memslots - 1) {
545 memslot_size = region_size - memslot_offset;
546 }
547
548 /*
549 * Partially covered memslots might still have some blocks plugged and
550 * have to remain active if that's the case.
551 */
552 if (offset > memslot_offset ||
553 offset + size < memslot_offset + memslot_size) {
554 const uint64_t gpa = vmem->addr + memslot_offset;
555
556 if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) {
557 continue;
558 }
559 }
560
561 virtio_mem_deactivate_memslot(vmem, idx);
562 }
563 memory_region_transaction_commit();
564 }
565
virtio_mem_set_block_state(VirtIOMEM * vmem,uint64_t start_gpa,uint64_t size,bool plug)566 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa,
567 uint64_t size, bool plug)
568 {
569 const uint64_t offset = start_gpa - vmem->addr;
570 RAMBlock *rb = vmem->memdev->mr.ram_block;
571 int ret = 0;
572
573 if (virtio_mem_is_busy()) {
574 return -EBUSY;
575 }
576
577 if (!plug) {
578 if (ram_block_discard_range(rb, offset, size)) {
579 return -EBUSY;
580 }
581 virtio_mem_notify_unplug(vmem, offset, size);
582 virtio_mem_set_range_unplugged(vmem, start_gpa, size);
583 /* Deactivate completely unplugged memslots after updating the state. */
584 if (vmem->dynamic_memslots) {
585 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size);
586 }
587 return 0;
588 }
589
590 if (vmem->prealloc) {
591 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset;
592 int fd = memory_region_get_fd(&vmem->memdev->mr);
593 Error *local_err = NULL;
594
595 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) {
596 static bool warned;
597
598 /*
599 * Warn only once, we don't want to fill the log with these
600 * warnings.
601 */
602 if (!warned) {
603 warn_report_err(local_err);
604 warned = true;
605 } else {
606 error_free(local_err);
607 }
608 ret = -EBUSY;
609 }
610 }
611
612 if (!ret) {
613 /*
614 * Activate before notifying and rollback in case of any errors.
615 *
616 * When activating a yet inactive memslot, memory notifiers will get
617 * notified about the added memory region and can register with the
618 * RamDiscardManager; this will traverse all plugged blocks and skip the
619 * blocks we are plugging here. The following notification will inform
620 * registered listeners about the blocks we're plugging.
621 */
622 if (vmem->dynamic_memslots) {
623 virtio_mem_activate_memslots_to_plug(vmem, offset, size);
624 }
625 ret = virtio_mem_notify_plug(vmem, offset, size);
626 if (ret && vmem->dynamic_memslots) {
627 virtio_mem_deactivate_unplugged_memslots(vmem, offset, size);
628 }
629 }
630 if (ret) {
631 /* Could be preallocation or a notifier populated memory. */
632 ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size);
633 return -EBUSY;
634 }
635
636 virtio_mem_set_range_plugged(vmem, start_gpa, size);
637 return 0;
638 }
639
virtio_mem_state_change_request(VirtIOMEM * vmem,uint64_t gpa,uint16_t nb_blocks,bool plug)640 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa,
641 uint16_t nb_blocks, bool plug)
642 {
643 const uint64_t size = nb_blocks * vmem->block_size;
644 int ret;
645
646 if (!virtio_mem_valid_range(vmem, gpa, size)) {
647 return VIRTIO_MEM_RESP_ERROR;
648 }
649
650 if (plug && (vmem->size + size > vmem->requested_size)) {
651 return VIRTIO_MEM_RESP_NACK;
652 }
653
654 /* test if really all blocks are in the opposite state */
655 if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) ||
656 (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) {
657 return VIRTIO_MEM_RESP_ERROR;
658 }
659
660 ret = virtio_mem_set_block_state(vmem, gpa, size, plug);
661 if (ret) {
662 return VIRTIO_MEM_RESP_BUSY;
663 }
664 if (plug) {
665 vmem->size += size;
666 } else {
667 vmem->size -= size;
668 }
669 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size);
670 return VIRTIO_MEM_RESP_ACK;
671 }
672
virtio_mem_plug_request(VirtIOMEM * vmem,VirtQueueElement * elem,struct virtio_mem_req * req)673 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem,
674 struct virtio_mem_req *req)
675 {
676 const uint64_t gpa = le64_to_cpu(req->u.plug.addr);
677 const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks);
678 uint16_t type;
679
680 trace_virtio_mem_plug_request(gpa, nb_blocks);
681 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true);
682 virtio_mem_send_response_simple(vmem, elem, type);
683 }
684
virtio_mem_unplug_request(VirtIOMEM * vmem,VirtQueueElement * elem,struct virtio_mem_req * req)685 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem,
686 struct virtio_mem_req *req)
687 {
688 const uint64_t gpa = le64_to_cpu(req->u.unplug.addr);
689 const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks);
690 uint16_t type;
691
692 trace_virtio_mem_unplug_request(gpa, nb_blocks);
693 type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false);
694 virtio_mem_send_response_simple(vmem, elem, type);
695 }
696
virtio_mem_resize_usable_region(VirtIOMEM * vmem,uint64_t requested_size,bool can_shrink)697 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem,
698 uint64_t requested_size,
699 bool can_shrink)
700 {
701 uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr),
702 requested_size + VIRTIO_MEM_USABLE_EXTENT);
703
704 /* The usable region size always has to be multiples of the block size. */
705 newsize = QEMU_ALIGN_UP(newsize, vmem->block_size);
706
707 if (!requested_size) {
708 newsize = 0;
709 }
710
711 if (newsize < vmem->usable_region_size && !can_shrink) {
712 return;
713 }
714
715 trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize);
716 vmem->usable_region_size = newsize;
717 }
718
virtio_mem_unplug_all(VirtIOMEM * vmem)719 static int virtio_mem_unplug_all(VirtIOMEM *vmem)
720 {
721 const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
722 RAMBlock *rb = vmem->memdev->mr.ram_block;
723
724 if (vmem->size) {
725 if (virtio_mem_is_busy()) {
726 return -EBUSY;
727 }
728 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) {
729 return -EBUSY;
730 }
731 virtio_mem_notify_unplug_all(vmem);
732
733 bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size);
734 vmem->size = 0;
735 notifier_list_notify(&vmem->size_change_notifiers, &vmem->size);
736
737 /* Deactivate all memslots after updating the state. */
738 if (vmem->dynamic_memslots) {
739 virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size);
740 }
741 }
742
743 trace_virtio_mem_unplugged_all();
744 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true);
745 return 0;
746 }
747
virtio_mem_unplug_all_request(VirtIOMEM * vmem,VirtQueueElement * elem)748 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem,
749 VirtQueueElement *elem)
750 {
751 trace_virtio_mem_unplug_all_request();
752 if (virtio_mem_unplug_all(vmem)) {
753 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY);
754 } else {
755 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK);
756 }
757 }
758
virtio_mem_state_request(VirtIOMEM * vmem,VirtQueueElement * elem,struct virtio_mem_req * req)759 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem,
760 struct virtio_mem_req *req)
761 {
762 const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks);
763 const uint64_t gpa = le64_to_cpu(req->u.state.addr);
764 const uint64_t size = nb_blocks * vmem->block_size;
765 struct virtio_mem_resp resp = {
766 .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK),
767 };
768
769 trace_virtio_mem_state_request(gpa, nb_blocks);
770 if (!virtio_mem_valid_range(vmem, gpa, size)) {
771 virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR);
772 return;
773 }
774
775 if (virtio_mem_is_range_plugged(vmem, gpa, size)) {
776 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED);
777 } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) {
778 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED);
779 } else {
780 resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED);
781 }
782 trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state));
783 virtio_mem_send_response(vmem, elem, &resp);
784 }
785
virtio_mem_handle_request(VirtIODevice * vdev,VirtQueue * vq)786 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq)
787 {
788 const int len = sizeof(struct virtio_mem_req);
789 VirtIOMEM *vmem = VIRTIO_MEM(vdev);
790 VirtQueueElement *elem;
791 struct virtio_mem_req req;
792 uint16_t type;
793
794 while (true) {
795 elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
796 if (!elem) {
797 return;
798 }
799
800 if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) {
801 virtio_error(vdev, "virtio-mem protocol violation: invalid request"
802 " size: %d", len);
803 virtqueue_detach_element(vq, elem, 0);
804 g_free(elem);
805 return;
806 }
807
808 if (iov_size(elem->in_sg, elem->in_num) <
809 sizeof(struct virtio_mem_resp)) {
810 virtio_error(vdev, "virtio-mem protocol violation: not enough space"
811 " for response: %zu",
812 iov_size(elem->in_sg, elem->in_num));
813 virtqueue_detach_element(vq, elem, 0);
814 g_free(elem);
815 return;
816 }
817
818 type = le16_to_cpu(req.type);
819 switch (type) {
820 case VIRTIO_MEM_REQ_PLUG:
821 virtio_mem_plug_request(vmem, elem, &req);
822 break;
823 case VIRTIO_MEM_REQ_UNPLUG:
824 virtio_mem_unplug_request(vmem, elem, &req);
825 break;
826 case VIRTIO_MEM_REQ_UNPLUG_ALL:
827 virtio_mem_unplug_all_request(vmem, elem);
828 break;
829 case VIRTIO_MEM_REQ_STATE:
830 virtio_mem_state_request(vmem, elem, &req);
831 break;
832 default:
833 virtio_error(vdev, "virtio-mem protocol violation: unknown request"
834 " type: %d", type);
835 virtqueue_detach_element(vq, elem, 0);
836 g_free(elem);
837 return;
838 }
839
840 g_free(elem);
841 }
842 }
843
virtio_mem_get_config(VirtIODevice * vdev,uint8_t * config_data)844 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data)
845 {
846 VirtIOMEM *vmem = VIRTIO_MEM(vdev);
847 struct virtio_mem_config *config = (void *) config_data;
848
849 config->block_size = cpu_to_le64(vmem->block_size);
850 config->node_id = cpu_to_le16(vmem->node);
851 config->requested_size = cpu_to_le64(vmem->requested_size);
852 config->plugged_size = cpu_to_le64(vmem->size);
853 config->addr = cpu_to_le64(vmem->addr);
854 config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr));
855 config->usable_region_size = cpu_to_le64(vmem->usable_region_size);
856 }
857
virtio_mem_get_features(VirtIODevice * vdev,uint64_t features,Error ** errp)858 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features,
859 Error **errp)
860 {
861 MachineState *ms = MACHINE(qdev_get_machine());
862 VirtIOMEM *vmem = VIRTIO_MEM(vdev);
863
864 if (ms->numa_state && acpi_builtin()) {
865 virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM);
866 }
867 assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO);
868 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) {
869 virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE);
870 }
871 if (qemu_wakeup_suspend_enabled()) {
872 virtio_add_feature(&features, VIRTIO_MEM_F_PERSISTENT_SUSPEND);
873 }
874 return features;
875 }
876
virtio_mem_validate_features(VirtIODevice * vdev)877 static int virtio_mem_validate_features(VirtIODevice *vdev)
878 {
879 if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) &&
880 !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) {
881 return -EFAULT;
882 }
883 return 0;
884 }
885
virtio_mem_prepare_mr(VirtIOMEM * vmem)886 static void virtio_mem_prepare_mr(VirtIOMEM *vmem)
887 {
888 const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
889
890 assert(!vmem->mr && vmem->dynamic_memslots);
891 vmem->mr = g_new0(MemoryRegion, 1);
892 memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem",
893 region_size);
894 vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr);
895 }
896
virtio_mem_prepare_memslots(VirtIOMEM * vmem)897 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem)
898 {
899 const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
900 unsigned int idx;
901
902 g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots);
903 vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots);
904
905 /* Initialize our memslots, but don't map them yet. */
906 for (idx = 0; idx < vmem->nb_memslots; idx++) {
907 const uint64_t memslot_offset = idx * vmem->memslot_size;
908 uint64_t memslot_size = vmem->memslot_size;
909 char name[20];
910
911 /* The size of the last memslot might be smaller. */
912 if (idx == vmem->nb_memslots - 1) {
913 memslot_size = region_size - memslot_offset;
914 }
915
916 snprintf(name, sizeof(name), "memslot-%u", idx);
917 memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name,
918 &vmem->memdev->mr, memslot_offset,
919 memslot_size);
920 /*
921 * We want to be able to atomically and efficiently activate/deactivate
922 * individual memslots without affecting adjacent memslots in memory
923 * notifiers.
924 */
925 memory_region_set_unmergeable(&vmem->memslots[idx], true);
926 }
927 }
928
virtio_mem_device_realize(DeviceState * dev,Error ** errp)929 static void virtio_mem_device_realize(DeviceState *dev, Error **errp)
930 {
931 MachineState *ms = MACHINE(qdev_get_machine());
932 int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0;
933 VirtIODevice *vdev = VIRTIO_DEVICE(dev);
934 VirtIOMEM *vmem = VIRTIO_MEM(dev);
935 uint64_t page_size;
936 RAMBlock *rb;
937 Object *obj;
938 int ret;
939
940 if (!vmem->memdev) {
941 error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP);
942 return;
943 } else if (host_memory_backend_is_mapped(vmem->memdev)) {
944 error_setg(errp, "'%s' property specifies a busy memdev: %s",
945 VIRTIO_MEM_MEMDEV_PROP,
946 object_get_canonical_path_component(OBJECT(vmem->memdev)));
947 return;
948 } else if (!memory_region_is_ram(&vmem->memdev->mr) ||
949 memory_region_is_rom(&vmem->memdev->mr) ||
950 !vmem->memdev->mr.ram_block) {
951 error_setg(errp, "'%s' property specifies an unsupported memdev",
952 VIRTIO_MEM_MEMDEV_PROP);
953 return;
954 } else if (vmem->memdev->prealloc) {
955 error_setg(errp, "'%s' property specifies a memdev with preallocation"
956 " enabled: %s. Instead, specify 'prealloc=on' for the"
957 " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP,
958 object_get_canonical_path_component(OBJECT(vmem->memdev)));
959 return;
960 }
961
962 if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) ||
963 (!nb_numa_nodes && vmem->node)) {
964 error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds"
965 "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP,
966 vmem->node, nb_numa_nodes ? nb_numa_nodes : 1);
967 return;
968 }
969
970 if (should_mlock(mlock_state)) {
971 error_setg(errp, "Incompatible with mlock");
972 return;
973 }
974
975 rb = vmem->memdev->mr.ram_block;
976 page_size = qemu_ram_pagesize(rb);
977
978 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
979 switch (vmem->unplugged_inaccessible) {
980 case ON_OFF_AUTO_AUTO:
981 if (virtio_mem_has_shared_zeropage(rb)) {
982 vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF;
983 } else {
984 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON;
985 }
986 break;
987 case ON_OFF_AUTO_OFF:
988 if (!virtio_mem_has_shared_zeropage(rb)) {
989 warn_report("'%s' property set to 'off' with a memdev that does"
990 " not support the shared zeropage.",
991 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP);
992 }
993 break;
994 default:
995 break;
996 }
997 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
998 vmem->unplugged_inaccessible = ON_OFF_AUTO_ON;
999 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
1000
1001 if (vmem->dynamic_memslots &&
1002 vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) {
1003 error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'",
1004 VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP,
1005 VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP);
1006 return;
1007 }
1008
1009 /*
1010 * If the block size wasn't configured by the user, use a sane default. This
1011 * allows using hugetlbfs backends of any page size without manual
1012 * intervention.
1013 */
1014 if (!vmem->block_size) {
1015 vmem->block_size = virtio_mem_default_block_size(rb);
1016 }
1017
1018 if (vmem->block_size < page_size) {
1019 error_setg(errp, "'%s' property has to be at least the page size (0x%"
1020 PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size);
1021 return;
1022 } else if (vmem->block_size < virtio_mem_default_block_size(rb)) {
1023 warn_report("'%s' property is smaller than the default block size (%"
1024 PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP,
1025 virtio_mem_default_block_size(rb) / MiB);
1026 }
1027 if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) {
1028 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64
1029 ")", VIRTIO_MEM_REQUESTED_SIZE_PROP,
1030 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size);
1031 return;
1032 } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) {
1033 error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64
1034 ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP,
1035 vmem->block_size);
1036 return;
1037 } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr),
1038 vmem->block_size)) {
1039 error_setg(errp, "'%s' property memdev size has to be multiples of"
1040 "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP,
1041 VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size);
1042 return;
1043 }
1044
1045 if (ram_block_coordinated_discard_require(true)) {
1046 error_setg(errp, "Discarding RAM is disabled");
1047 return;
1048 }
1049
1050 /*
1051 * Set ourselves as RamDiscardManager before the plug handler maps the
1052 * memory region and exposes it via an address space.
1053 */
1054 if (memory_region_set_ram_discard_manager(&vmem->memdev->mr,
1055 RAM_DISCARD_MANAGER(vmem))) {
1056 error_setg(errp, "Failed to set RamDiscardManager");
1057 ram_block_coordinated_discard_require(false);
1058 return;
1059 }
1060
1061 /*
1062 * We don't know at this point whether shared RAM is migrated using
1063 * QEMU or migrated using the file content. "x-ignore-shared" will be
1064 * configured after realizing the device. So in case we have an
1065 * incoming migration, simply always skip the discard step.
1066 *
1067 * Otherwise, make sure that we start with a clean slate: either the
1068 * memory backend might get reused or the shared file might still have
1069 * memory allocated.
1070 */
1071 if (!runstate_check(RUN_STATE_INMIGRATE)) {
1072 ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb));
1073 if (ret) {
1074 error_setg_errno(errp, -ret, "Unexpected error discarding RAM");
1075 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL);
1076 ram_block_coordinated_discard_require(false);
1077 return;
1078 }
1079 }
1080
1081 virtio_mem_resize_usable_region(vmem, vmem->requested_size, true);
1082
1083 vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) /
1084 vmem->block_size;
1085 vmem->bitmap = bitmap_new(vmem->bitmap_size);
1086
1087 virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config));
1088 vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request);
1089
1090 /*
1091 * With "dynamic-memslots=off" (old behavior) we always map the whole
1092 * RAM memory region directly.
1093 */
1094 if (vmem->dynamic_memslots) {
1095 if (!vmem->mr) {
1096 virtio_mem_prepare_mr(vmem);
1097 }
1098 if (vmem->nb_memslots <= 1) {
1099 vmem->nb_memslots = 1;
1100 vmem->memslot_size = memory_region_size(&vmem->memdev->mr);
1101 }
1102 if (!vmem->memslots) {
1103 virtio_mem_prepare_memslots(vmem);
1104 }
1105 } else {
1106 assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots);
1107 }
1108
1109 host_memory_backend_set_mapped(vmem->memdev, true);
1110 vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem));
1111 if (vmem->early_migration) {
1112 vmstate_register_any(VMSTATE_IF(vmem),
1113 &vmstate_virtio_mem_device_early, vmem);
1114 }
1115
1116 /*
1117 * We only want to unplug all memory to start with a clean slate when
1118 * it is safe for the guest -- during system resets that call
1119 * qemu_devices_reset().
1120 *
1121 * We'll filter out selected qemu_devices_reset() calls used for other
1122 * purposes, like resetting all devices during wakeup from suspend on
1123 * x86 based on the reset type passed to qemu_devices_reset().
1124 *
1125 * Unplugging all memory during simple device resets can result in the VM
1126 * unexpectedly losing RAM, corrupting VM state.
1127 *
1128 * Simple device resets (or resets triggered by getting a parent device
1129 * reset) must not change the state of plugged memory blocks. Therefore,
1130 * we need a dedicated reset object that only gets called during
1131 * qemu_devices_reset().
1132 */
1133 obj = object_new(TYPE_VIRTIO_MEM_SYSTEM_RESET);
1134 vmem->system_reset = VIRTIO_MEM_SYSTEM_RESET(obj);
1135 vmem->system_reset->vmem = vmem;
1136 qemu_register_resettable(obj);
1137 }
1138
virtio_mem_device_unrealize(DeviceState * dev)1139 static void virtio_mem_device_unrealize(DeviceState *dev)
1140 {
1141 VirtIODevice *vdev = VIRTIO_DEVICE(dev);
1142 VirtIOMEM *vmem = VIRTIO_MEM(dev);
1143
1144 qemu_unregister_resettable(OBJECT(vmem->system_reset));
1145 object_unref(OBJECT(vmem->system_reset));
1146
1147 if (vmem->early_migration) {
1148 vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early,
1149 vmem);
1150 }
1151 vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem));
1152 host_memory_backend_set_mapped(vmem->memdev, false);
1153 virtio_del_queue(vdev, 0);
1154 virtio_cleanup(vdev);
1155 g_free(vmem->bitmap);
1156 /*
1157 * The unplug handler unmapped the memory region, it cannot be
1158 * found via an address space anymore. Unset ourselves.
1159 */
1160 memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL);
1161 ram_block_coordinated_discard_require(false);
1162 }
1163
virtio_mem_discard_range_cb(VirtIOMEM * vmem,void * arg,uint64_t offset,uint64_t size)1164 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg,
1165 uint64_t offset, uint64_t size)
1166 {
1167 RAMBlock *rb = vmem->memdev->mr.ram_block;
1168
1169 return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0;
1170 }
1171
virtio_mem_restore_unplugged(VirtIOMEM * vmem)1172 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem)
1173 {
1174 /* Make sure all memory is really discarded after migration. */
1175 return virtio_mem_for_each_unplugged_range(vmem, NULL,
1176 virtio_mem_discard_range_cb);
1177 }
1178
virtio_mem_activate_memslot_range_cb(VirtIOMEM * vmem,void * arg,uint64_t offset,uint64_t size)1179 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg,
1180 uint64_t offset, uint64_t size)
1181 {
1182 virtio_mem_activate_memslots_to_plug(vmem, offset, size);
1183 return 0;
1184 }
1185
virtio_mem_post_load_bitmap(VirtIOMEM * vmem)1186 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem)
1187 {
1188 RamDiscardListener *rdl;
1189 int ret;
1190
1191 /*
1192 * We restored the bitmap and updated the requested size; activate all
1193 * memslots (so listeners register) before notifying about plugged blocks.
1194 */
1195 if (vmem->dynamic_memslots) {
1196 /*
1197 * We don't expect any active memslots at this point to deactivate: no
1198 * memory was plugged on the migration destination.
1199 */
1200 virtio_mem_for_each_plugged_range(vmem, NULL,
1201 virtio_mem_activate_memslot_range_cb);
1202 }
1203
1204 /*
1205 * We started out with all memory discarded and our memory region is mapped
1206 * into an address space. Replay, now that we updated the bitmap.
1207 */
1208 QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
1209 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1210 virtio_mem_notify_populate_cb);
1211 if (ret) {
1212 return ret;
1213 }
1214 }
1215 return 0;
1216 }
1217
virtio_mem_post_load(void * opaque,int version_id)1218 static int virtio_mem_post_load(void *opaque, int version_id)
1219 {
1220 VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1221 int ret;
1222
1223 if (!vmem->early_migration) {
1224 ret = virtio_mem_post_load_bitmap(vmem);
1225 if (ret) {
1226 return ret;
1227 }
1228 }
1229
1230 /*
1231 * If shared RAM is migrated using the file content and not using QEMU,
1232 * don't mess with preallocation and postcopy.
1233 */
1234 if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) {
1235 return 0;
1236 }
1237
1238 if (vmem->prealloc && !vmem->early_migration) {
1239 warn_report("Proper preallocation with migration requires a newer QEMU machine");
1240 }
1241
1242 if (migration_in_incoming_postcopy()) {
1243 return 0;
1244 }
1245
1246 return virtio_mem_restore_unplugged(vmem);
1247 }
1248
virtio_mem_prealloc_range_cb(VirtIOMEM * vmem,void * arg,uint64_t offset,uint64_t size)1249 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg,
1250 uint64_t offset, uint64_t size)
1251 {
1252 void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset;
1253 int fd = memory_region_get_fd(&vmem->memdev->mr);
1254 Error *local_err = NULL;
1255
1256 if (!qemu_prealloc_mem(fd, area, size, 1, NULL, false, &local_err)) {
1257 error_report_err(local_err);
1258 return -ENOMEM;
1259 }
1260 return 0;
1261 }
1262
virtio_mem_post_load_early(void * opaque,int version_id)1263 static int virtio_mem_post_load_early(void *opaque, int version_id)
1264 {
1265 VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1266 RAMBlock *rb = vmem->memdev->mr.ram_block;
1267 int ret;
1268
1269 if (!vmem->prealloc) {
1270 goto post_load_bitmap;
1271 }
1272
1273 /*
1274 * If shared RAM is migrated using the file content and not using QEMU,
1275 * don't mess with preallocation and postcopy.
1276 */
1277 if (migrate_ram_is_ignored(rb)) {
1278 goto post_load_bitmap;
1279 }
1280
1281 /*
1282 * We restored the bitmap and verified that the basic properties
1283 * match on source and destination, so we can go ahead and preallocate
1284 * memory for all plugged memory blocks, before actual RAM migration starts
1285 * touching this memory.
1286 */
1287 ret = virtio_mem_for_each_plugged_range(vmem, NULL,
1288 virtio_mem_prealloc_range_cb);
1289 if (ret) {
1290 return ret;
1291 }
1292
1293 /*
1294 * This is tricky: postcopy wants to start with a clean slate. On
1295 * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily
1296 * preallocated) RAM such that postcopy will work as expected later.
1297 *
1298 * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual
1299 * RAM migration. So let's discard all memory again. This looks like an
1300 * expensive NOP, but actually serves a purpose: we made sure that we
1301 * were able to allocate all required backend memory once. We cannot
1302 * guarantee that the backend memory we will free will remain free
1303 * until we need it during postcopy, but at least we can catch the
1304 * obvious setup issues this way.
1305 */
1306 if (migration_incoming_postcopy_advised()) {
1307 if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) {
1308 return -EBUSY;
1309 }
1310 }
1311
1312 post_load_bitmap:
1313 /* Finally, update any other state to be consistent with the new bitmap. */
1314 return virtio_mem_post_load_bitmap(vmem);
1315 }
1316
1317 typedef struct VirtIOMEMMigSanityChecks {
1318 VirtIOMEM *parent;
1319 uint64_t addr;
1320 uint64_t region_size;
1321 uint64_t block_size;
1322 uint32_t node;
1323 } VirtIOMEMMigSanityChecks;
1324
virtio_mem_mig_sanity_checks_pre_save(void * opaque)1325 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque)
1326 {
1327 VirtIOMEMMigSanityChecks *tmp = opaque;
1328 VirtIOMEM *vmem = tmp->parent;
1329
1330 tmp->addr = vmem->addr;
1331 tmp->region_size = memory_region_size(&vmem->memdev->mr);
1332 tmp->block_size = vmem->block_size;
1333 tmp->node = vmem->node;
1334 return 0;
1335 }
1336
virtio_mem_mig_sanity_checks_post_load(void * opaque,int version_id)1337 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id)
1338 {
1339 VirtIOMEMMigSanityChecks *tmp = opaque;
1340 VirtIOMEM *vmem = tmp->parent;
1341 const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr);
1342
1343 if (tmp->addr != vmem->addr) {
1344 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64,
1345 VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr);
1346 return -EINVAL;
1347 }
1348 /*
1349 * Note: Preparation for resizable memory regions. The maximum size
1350 * of the memory region must not change during migration.
1351 */
1352 if (tmp->region_size != new_region_size) {
1353 error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%"
1354 PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size,
1355 new_region_size);
1356 return -EINVAL;
1357 }
1358 if (tmp->block_size != vmem->block_size) {
1359 error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64,
1360 VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size,
1361 vmem->block_size);
1362 return -EINVAL;
1363 }
1364 if (tmp->node != vmem->node) {
1365 error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32,
1366 VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node);
1367 return -EINVAL;
1368 }
1369 return 0;
1370 }
1371
1372 static const VMStateDescription vmstate_virtio_mem_sanity_checks = {
1373 .name = "virtio-mem-device/sanity-checks",
1374 .pre_save = virtio_mem_mig_sanity_checks_pre_save,
1375 .post_load = virtio_mem_mig_sanity_checks_post_load,
1376 .fields = (const VMStateField[]) {
1377 VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks),
1378 VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks),
1379 VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks),
1380 VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks),
1381 VMSTATE_END_OF_LIST(),
1382 },
1383 };
1384
virtio_mem_vmstate_field_exists(void * opaque,int version_id)1385 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id)
1386 {
1387 const VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1388
1389 /* With early migration, these fields were already migrated. */
1390 return !vmem->early_migration;
1391 }
1392
1393 static const VMStateDescription vmstate_virtio_mem_device = {
1394 .name = "virtio-mem-device",
1395 .minimum_version_id = 1,
1396 .version_id = 1,
1397 .priority = MIG_PRI_VIRTIO_MEM,
1398 .post_load = virtio_mem_post_load,
1399 .fields = (const VMStateField[]) {
1400 VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists,
1401 VirtIOMEMMigSanityChecks,
1402 vmstate_virtio_mem_sanity_checks),
1403 VMSTATE_UINT64(usable_region_size, VirtIOMEM),
1404 VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists),
1405 VMSTATE_UINT64(requested_size, VirtIOMEM),
1406 VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists,
1407 0, bitmap_size),
1408 VMSTATE_END_OF_LIST()
1409 },
1410 };
1411
1412 /*
1413 * Transfer properties that are immutable while migration is active early,
1414 * such that we have have this information around before migrating any RAM
1415 * content.
1416 *
1417 * Note that virtio_mem_is_busy() makes sure these properties can no longer
1418 * change on the migration source until migration completed.
1419 *
1420 * With QEMU compat machines, we transmit these properties later, via
1421 * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists().
1422 */
1423 static const VMStateDescription vmstate_virtio_mem_device_early = {
1424 .name = "virtio-mem-device-early",
1425 .minimum_version_id = 1,
1426 .version_id = 1,
1427 .early_setup = true,
1428 .post_load = virtio_mem_post_load_early,
1429 .fields = (const VMStateField[]) {
1430 VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks,
1431 vmstate_virtio_mem_sanity_checks),
1432 VMSTATE_UINT64(size, VirtIOMEM),
1433 VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size),
1434 VMSTATE_END_OF_LIST()
1435 },
1436 };
1437
1438 static const VMStateDescription vmstate_virtio_mem = {
1439 .name = "virtio-mem",
1440 .minimum_version_id = 1,
1441 .version_id = 1,
1442 .fields = (const VMStateField[]) {
1443 VMSTATE_VIRTIO_DEVICE,
1444 VMSTATE_END_OF_LIST()
1445 },
1446 };
1447
virtio_mem_fill_device_info(const VirtIOMEM * vmem,VirtioMEMDeviceInfo * vi)1448 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem,
1449 VirtioMEMDeviceInfo *vi)
1450 {
1451 vi->memaddr = vmem->addr;
1452 vi->node = vmem->node;
1453 vi->requested_size = vmem->requested_size;
1454 vi->size = vmem->size;
1455 vi->max_size = memory_region_size(&vmem->memdev->mr);
1456 vi->block_size = vmem->block_size;
1457 vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev));
1458 }
1459
virtio_mem_get_memory_region(VirtIOMEM * vmem,Error ** errp)1460 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp)
1461 {
1462 if (!vmem->memdev) {
1463 error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP);
1464 return NULL;
1465 } else if (vmem->dynamic_memslots) {
1466 if (!vmem->mr) {
1467 virtio_mem_prepare_mr(vmem);
1468 }
1469 return vmem->mr;
1470 }
1471
1472 return &vmem->memdev->mr;
1473 }
1474
virtio_mem_decide_memslots(VirtIOMEM * vmem,unsigned int limit)1475 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit)
1476 {
1477 uint64_t region_size, memslot_size, min_memslot_size;
1478 unsigned int memslots;
1479 RAMBlock *rb;
1480
1481 if (!vmem->dynamic_memslots) {
1482 return;
1483 }
1484
1485 /* We're called exactly once, before realizing the device. */
1486 assert(!vmem->nb_memslots);
1487
1488 /* If realizing the device will fail, just assume a single memslot. */
1489 if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) {
1490 vmem->nb_memslots = 1;
1491 return;
1492 }
1493
1494 rb = vmem->memdev->mr.ram_block;
1495 region_size = memory_region_size(&vmem->memdev->mr);
1496
1497 /*
1498 * Determine the default block size now, to determine the minimum memslot
1499 * size. We want the minimum slot size to be at least the device block size.
1500 */
1501 if (!vmem->block_size) {
1502 vmem->block_size = virtio_mem_default_block_size(rb);
1503 }
1504 /* If realizing the device will fail, just assume a single memslot. */
1505 if (vmem->block_size < qemu_ram_pagesize(rb) ||
1506 !QEMU_IS_ALIGNED(region_size, vmem->block_size)) {
1507 vmem->nb_memslots = 1;
1508 return;
1509 }
1510
1511 /*
1512 * All memslots except the last one have a reasonable minimum size, and
1513 * and all memslot sizes are aligned to the device block size.
1514 */
1515 memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size);
1516 min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE);
1517 memslot_size = MAX(memslot_size, min_memslot_size);
1518
1519 memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size;
1520 if (memslots != 1) {
1521 vmem->memslot_size = memslot_size;
1522 }
1523 vmem->nb_memslots = memslots;
1524 }
1525
virtio_mem_get_memslots(VirtIOMEM * vmem)1526 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem)
1527 {
1528 if (!vmem->dynamic_memslots) {
1529 /* Exactly one static RAM memory region. */
1530 return 1;
1531 }
1532
1533 /* We're called after instructed to make a decision. */
1534 g_assert(vmem->nb_memslots);
1535 return vmem->nb_memslots;
1536 }
1537
virtio_mem_add_size_change_notifier(VirtIOMEM * vmem,Notifier * notifier)1538 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem,
1539 Notifier *notifier)
1540 {
1541 notifier_list_add(&vmem->size_change_notifiers, notifier);
1542 }
1543
virtio_mem_remove_size_change_notifier(VirtIOMEM * vmem,Notifier * notifier)1544 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem,
1545 Notifier *notifier)
1546 {
1547 notifier_remove(notifier);
1548 }
1549
virtio_mem_get_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1550 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name,
1551 void *opaque, Error **errp)
1552 {
1553 const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1554 uint64_t value = vmem->size;
1555
1556 visit_type_size(v, name, &value, errp);
1557 }
1558
virtio_mem_get_requested_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1559 static void virtio_mem_get_requested_size(Object *obj, Visitor *v,
1560 const char *name, void *opaque,
1561 Error **errp)
1562 {
1563 const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1564 uint64_t value = vmem->requested_size;
1565
1566 visit_type_size(v, name, &value, errp);
1567 }
1568
virtio_mem_set_requested_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1569 static void virtio_mem_set_requested_size(Object *obj, Visitor *v,
1570 const char *name, void *opaque,
1571 Error **errp)
1572 {
1573 VirtIOMEM *vmem = VIRTIO_MEM(obj);
1574 uint64_t value;
1575
1576 if (!visit_type_size(v, name, &value, errp)) {
1577 return;
1578 }
1579
1580 /*
1581 * The block size and memory backend are not fixed until the device was
1582 * realized. realize() will verify these properties then.
1583 */
1584 if (DEVICE(obj)->realized) {
1585 if (!QEMU_IS_ALIGNED(value, vmem->block_size)) {
1586 error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64
1587 ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP,
1588 vmem->block_size);
1589 return;
1590 } else if (value > memory_region_size(&vmem->memdev->mr)) {
1591 error_setg(errp, "'%s' cannot exceed the memory backend size"
1592 "(0x%" PRIx64 ")", name,
1593 memory_region_size(&vmem->memdev->mr));
1594 return;
1595 }
1596
1597 if (value != vmem->requested_size) {
1598 virtio_mem_resize_usable_region(vmem, value, false);
1599 vmem->requested_size = value;
1600 }
1601 /*
1602 * Trigger a config update so the guest gets notified. We trigger
1603 * even if the size didn't change (especially helpful for debugging).
1604 */
1605 virtio_notify_config(VIRTIO_DEVICE(vmem));
1606 } else {
1607 vmem->requested_size = value;
1608 }
1609 }
1610
virtio_mem_get_block_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1611 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name,
1612 void *opaque, Error **errp)
1613 {
1614 const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1615 uint64_t value = vmem->block_size;
1616
1617 /*
1618 * If not configured by the user (and we're not realized yet), use the
1619 * default block size we would use with the current memory backend.
1620 */
1621 if (!value) {
1622 if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) {
1623 value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block);
1624 } else {
1625 value = virtio_mem_thp_size();
1626 }
1627 }
1628
1629 visit_type_size(v, name, &value, errp);
1630 }
1631
virtio_mem_set_block_size(Object * obj,Visitor * v,const char * name,void * opaque,Error ** errp)1632 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name,
1633 void *opaque, Error **errp)
1634 {
1635 VirtIOMEM *vmem = VIRTIO_MEM(obj);
1636 uint64_t value;
1637
1638 if (DEVICE(obj)->realized) {
1639 error_setg(errp, "'%s' cannot be changed", name);
1640 return;
1641 }
1642
1643 if (!visit_type_size(v, name, &value, errp)) {
1644 return;
1645 }
1646
1647 if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) {
1648 error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name,
1649 VIRTIO_MEM_MIN_BLOCK_SIZE);
1650 return;
1651 } else if (!is_power_of_2(value)) {
1652 error_setg(errp, "'%s' property has to be a power of two", name);
1653 return;
1654 }
1655 vmem->block_size = value;
1656 }
1657
virtio_mem_instance_init(Object * obj)1658 static void virtio_mem_instance_init(Object *obj)
1659 {
1660 VirtIOMEM *vmem = VIRTIO_MEM(obj);
1661
1662 notifier_list_init(&vmem->size_change_notifiers);
1663 QLIST_INIT(&vmem->rdl_list);
1664
1665 object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size,
1666 NULL, NULL, NULL);
1667 object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size",
1668 virtio_mem_get_requested_size,
1669 virtio_mem_set_requested_size, NULL, NULL);
1670 object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size",
1671 virtio_mem_get_block_size, virtio_mem_set_block_size,
1672 NULL, NULL);
1673 }
1674
virtio_mem_instance_finalize(Object * obj)1675 static void virtio_mem_instance_finalize(Object *obj)
1676 {
1677 VirtIOMEM *vmem = VIRTIO_MEM(obj);
1678
1679 /*
1680 * Note: the core already dropped the references on all memory regions
1681 * (it's passed as the owner to memory_region_init_*()) and finalized
1682 * these objects. We can simply free the memory.
1683 */
1684 g_free(vmem->memslots);
1685 vmem->memslots = NULL;
1686 g_free(vmem->mr);
1687 vmem->mr = NULL;
1688 }
1689
1690 static const Property virtio_mem_properties[] = {
1691 DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0),
1692 DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0),
1693 DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false),
1694 DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev,
1695 TYPE_MEMORY_BACKEND, HostMemoryBackend *),
1696 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
1697 DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM,
1698 unplugged_inaccessible, ON_OFF_AUTO_ON),
1699 #endif
1700 DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM,
1701 early_migration, true),
1702 DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM,
1703 dynamic_memslots, false),
1704 };
1705
virtio_mem_rdm_get_min_granularity(const RamDiscardManager * rdm,const MemoryRegion * mr)1706 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm,
1707 const MemoryRegion *mr)
1708 {
1709 const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1710
1711 g_assert(mr == &vmem->memdev->mr);
1712 return vmem->block_size;
1713 }
1714
virtio_mem_rdm_is_populated(const RamDiscardManager * rdm,const MemoryRegionSection * s)1715 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm,
1716 const MemoryRegionSection *s)
1717 {
1718 const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1719 uint64_t start_gpa = vmem->addr + s->offset_within_region;
1720 uint64_t end_gpa = start_gpa + int128_get64(s->size);
1721
1722 g_assert(s->mr == &vmem->memdev->mr);
1723
1724 start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size);
1725 end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size);
1726
1727 if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) {
1728 return false;
1729 }
1730
1731 return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa);
1732 }
1733
1734 struct VirtIOMEMReplayData {
1735 ReplayRamDiscardState fn;
1736 void *opaque;
1737 };
1738
virtio_mem_rdm_replay_populated_cb(MemoryRegionSection * s,void * arg)1739 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg)
1740 {
1741 struct VirtIOMEMReplayData *data = arg;
1742
1743 return data->fn(s, data->opaque);
1744 }
1745
virtio_mem_rdm_replay_populated(const RamDiscardManager * rdm,MemoryRegionSection * s,ReplayRamDiscardState replay_fn,void * opaque)1746 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm,
1747 MemoryRegionSection *s,
1748 ReplayRamDiscardState replay_fn,
1749 void *opaque)
1750 {
1751 const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1752 struct VirtIOMEMReplayData data = {
1753 .fn = replay_fn,
1754 .opaque = opaque,
1755 };
1756
1757 g_assert(s->mr == &vmem->memdev->mr);
1758 return virtio_mem_for_each_plugged_section(vmem, s, &data,
1759 virtio_mem_rdm_replay_populated_cb);
1760 }
1761
virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection * s,void * arg)1762 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s,
1763 void *arg)
1764 {
1765 struct VirtIOMEMReplayData *data = arg;
1766
1767 return data->fn(s, data->opaque);
1768 }
1769
virtio_mem_rdm_replay_discarded(const RamDiscardManager * rdm,MemoryRegionSection * s,ReplayRamDiscardState replay_fn,void * opaque)1770 static int virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm,
1771 MemoryRegionSection *s,
1772 ReplayRamDiscardState replay_fn,
1773 void *opaque)
1774 {
1775 const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1776 struct VirtIOMEMReplayData data = {
1777 .fn = replay_fn,
1778 .opaque = opaque,
1779 };
1780
1781 g_assert(s->mr == &vmem->memdev->mr);
1782 return virtio_mem_for_each_unplugged_section(vmem, s, &data,
1783 virtio_mem_rdm_replay_discarded_cb);
1784 }
1785
virtio_mem_rdm_register_listener(RamDiscardManager * rdm,RamDiscardListener * rdl,MemoryRegionSection * s)1786 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm,
1787 RamDiscardListener *rdl,
1788 MemoryRegionSection *s)
1789 {
1790 VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1791 int ret;
1792
1793 g_assert(s->mr == &vmem->memdev->mr);
1794 rdl->section = memory_region_section_new_copy(s);
1795
1796 QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next);
1797 ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1798 virtio_mem_notify_populate_cb);
1799 if (ret) {
1800 error_report("%s: Replaying plugged ranges failed: %s", __func__,
1801 strerror(-ret));
1802 }
1803 }
1804
virtio_mem_rdm_unregister_listener(RamDiscardManager * rdm,RamDiscardListener * rdl)1805 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm,
1806 RamDiscardListener *rdl)
1807 {
1808 VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1809
1810 g_assert(rdl->section->mr == &vmem->memdev->mr);
1811 if (vmem->size) {
1812 if (rdl->double_discard_supported) {
1813 rdl->notify_discard(rdl, rdl->section);
1814 } else {
1815 virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1816 virtio_mem_notify_discard_cb);
1817 }
1818 }
1819
1820 memory_region_section_free_copy(rdl->section);
1821 rdl->section = NULL;
1822 QLIST_REMOVE(rdl, next);
1823 }
1824
virtio_mem_unplug_request_check(VirtIOMEM * vmem,Error ** errp)1825 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp)
1826 {
1827 if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) {
1828 /*
1829 * We could allow it with a usable region size of 0, but let's just
1830 * not care about that legacy setting.
1831 */
1832 error_setg(errp, "virtio-mem device cannot get unplugged while"
1833 " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'");
1834 return;
1835 }
1836
1837 if (vmem->size) {
1838 error_setg(errp, "virtio-mem device cannot get unplugged while some"
1839 " of its memory is still plugged");
1840 return;
1841 }
1842 if (vmem->requested_size) {
1843 error_setg(errp, "virtio-mem device cannot get unplugged while"
1844 " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'");
1845 return;
1846 }
1847 }
1848
virtio_mem_class_init(ObjectClass * klass,const void * data)1849 static void virtio_mem_class_init(ObjectClass *klass, const void *data)
1850 {
1851 DeviceClass *dc = DEVICE_CLASS(klass);
1852 VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
1853 VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass);
1854 RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass);
1855
1856 device_class_set_props(dc, virtio_mem_properties);
1857 dc->vmsd = &vmstate_virtio_mem;
1858
1859 set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1860 vdc->realize = virtio_mem_device_realize;
1861 vdc->unrealize = virtio_mem_device_unrealize;
1862 vdc->get_config = virtio_mem_get_config;
1863 vdc->get_features = virtio_mem_get_features;
1864 vdc->validate_features = virtio_mem_validate_features;
1865 vdc->vmsd = &vmstate_virtio_mem_device;
1866
1867 vmc->fill_device_info = virtio_mem_fill_device_info;
1868 vmc->get_memory_region = virtio_mem_get_memory_region;
1869 vmc->decide_memslots = virtio_mem_decide_memslots;
1870 vmc->get_memslots = virtio_mem_get_memslots;
1871 vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier;
1872 vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier;
1873 vmc->unplug_request_check = virtio_mem_unplug_request_check;
1874
1875 rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity;
1876 rdmc->is_populated = virtio_mem_rdm_is_populated;
1877 rdmc->replay_populated = virtio_mem_rdm_replay_populated;
1878 rdmc->replay_discarded = virtio_mem_rdm_replay_discarded;
1879 rdmc->register_listener = virtio_mem_rdm_register_listener;
1880 rdmc->unregister_listener = virtio_mem_rdm_unregister_listener;
1881 }
1882
1883 static const TypeInfo virtio_mem_info = {
1884 .name = TYPE_VIRTIO_MEM,
1885 .parent = TYPE_VIRTIO_DEVICE,
1886 .instance_size = sizeof(VirtIOMEM),
1887 .instance_init = virtio_mem_instance_init,
1888 .instance_finalize = virtio_mem_instance_finalize,
1889 .class_init = virtio_mem_class_init,
1890 .class_size = sizeof(VirtIOMEMClass),
1891 .interfaces = (const InterfaceInfo[]) {
1892 { TYPE_RAM_DISCARD_MANAGER },
1893 { }
1894 },
1895 };
1896
virtio_register_types(void)1897 static void virtio_register_types(void)
1898 {
1899 type_register_static(&virtio_mem_info);
1900 }
1901
1902 type_init(virtio_register_types)
1903
1904 OBJECT_DEFINE_SIMPLE_TYPE_WITH_INTERFACES(VirtioMemSystemReset, virtio_mem_system_reset, VIRTIO_MEM_SYSTEM_RESET, OBJECT, { TYPE_RESETTABLE_INTERFACE }, { })
1905
virtio_mem_system_reset_init(Object * obj)1906 static void virtio_mem_system_reset_init(Object *obj)
1907 {
1908 }
1909
virtio_mem_system_reset_finalize(Object * obj)1910 static void virtio_mem_system_reset_finalize(Object *obj)
1911 {
1912 }
1913
virtio_mem_system_reset_get_state(Object * obj)1914 static ResettableState *virtio_mem_system_reset_get_state(Object *obj)
1915 {
1916 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj);
1917
1918 return &vmem_reset->reset_state;
1919 }
1920
virtio_mem_system_reset_hold(Object * obj,ResetType type)1921 static void virtio_mem_system_reset_hold(Object *obj, ResetType type)
1922 {
1923 VirtioMemSystemReset *vmem_reset = VIRTIO_MEM_SYSTEM_RESET(obj);
1924 VirtIOMEM *vmem = vmem_reset->vmem;
1925
1926 /*
1927 * When waking up from standby/suspend-to-ram, do not unplug any memory.
1928 */
1929 if (type == RESET_TYPE_WAKEUP) {
1930 return;
1931 }
1932
1933 /*
1934 * During usual resets, we will unplug all memory and shrink the usable
1935 * region size. This is, however, not possible in all scenarios. Then,
1936 * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL).
1937 */
1938 virtio_mem_unplug_all(vmem);
1939 }
1940
virtio_mem_system_reset_class_init(ObjectClass * klass,const void * data)1941 static void virtio_mem_system_reset_class_init(ObjectClass *klass,
1942 const void *data)
1943 {
1944 ResettableClass *rc = RESETTABLE_CLASS(klass);
1945
1946 rc->get_state = virtio_mem_system_reset_get_state;
1947 rc->phases.hold = virtio_mem_system_reset_hold;
1948 }
1949