xref: /kvm-unit-tests/x86/svm_tests.c (revision 98eb2a39f7602d655b06ed6d845ed2895e7b4a9f) !
1 #include "svm.h"
2 #include "libcflat.h"
3 #include "processor.h"
4 #include "desc.h"
5 #include "msr.h"
6 #include "vm.h"
7 #include "smp.h"
8 #include "alloc_page.h"
9 #include "isr.h"
10 #include "apic.h"
11 #include "delay.h"
12 #include "util.h"
13 #include "x86/usermode.h"
14 #include "vmalloc.h"
15 
16 #define SVM_EXIT_MAX_DR_INTERCEPT 0x3f
17 
18 #define LATENCY_RUNS 1000000
19 
20 u64 tsc_start;
21 u64 tsc_end;
22 
23 u64 vmrun_sum, vmexit_sum;
24 u64 vmsave_sum, vmload_sum;
25 u64 stgi_sum, clgi_sum;
26 u64 latvmrun_max;
27 u64 latvmrun_min;
28 u64 latvmexit_max;
29 u64 latvmexit_min;
30 u64 latvmload_max;
31 u64 latvmload_min;
32 u64 latvmsave_max;
33 u64 latvmsave_min;
34 u64 latstgi_max;
35 u64 latstgi_min;
36 u64 latclgi_max;
37 u64 latclgi_min;
38 u64 runs;
39 
null_test(struct svm_test * test)40 static void null_test(struct svm_test *test)
41 {
42 }
43 
null_check(struct svm_test * test)44 static bool null_check(struct svm_test *test)
45 {
46 	return vmcb->control.exit_code == SVM_EXIT_VMMCALL;
47 }
48 
prepare_no_vmrun_int(struct svm_test * test)49 static void prepare_no_vmrun_int(struct svm_test *test)
50 {
51 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMRUN);
52 }
53 
check_no_vmrun_int(struct svm_test * test)54 static bool check_no_vmrun_int(struct svm_test *test)
55 {
56 	return vmcb->control.exit_code == SVM_EXIT_ERR;
57 }
58 
test_vmrun(struct svm_test * test)59 static void test_vmrun(struct svm_test *test)
60 {
61 	asm volatile ("vmrun %0" : : "a"(virt_to_phys(vmcb)));
62 }
63 
check_vmrun(struct svm_test * test)64 static bool check_vmrun(struct svm_test *test)
65 {
66 	return vmcb->control.exit_code == SVM_EXIT_VMRUN;
67 }
68 
prepare_rsm_intercept(struct svm_test * test)69 static void prepare_rsm_intercept(struct svm_test *test)
70 {
71 	default_prepare(test);
72 	vmcb->control.intercept |= 1 << INTERCEPT_RSM;
73 	vmcb->control.intercept_exceptions |= (1ULL << UD_VECTOR);
74 }
75 
test_rsm_intercept(struct svm_test * test)76 static void test_rsm_intercept(struct svm_test *test)
77 {
78 	asm volatile ("rsm" : : : "memory");
79 }
80 
check_rsm_intercept(struct svm_test * test)81 static bool check_rsm_intercept(struct svm_test *test)
82 {
83 	return get_test_stage(test) == 2;
84 }
85 
finished_rsm_intercept(struct svm_test * test)86 static bool finished_rsm_intercept(struct svm_test *test)
87 {
88 	switch (get_test_stage(test)) {
89 	case 0:
90 		if (vmcb->control.exit_code != SVM_EXIT_RSM) {
91 			report_fail("VMEXIT not due to rsm. Exit reason 0x%x",
92 				    vmcb->control.exit_code);
93 			return true;
94 		}
95 		vmcb->control.intercept &= ~(1 << INTERCEPT_RSM);
96 		inc_test_stage(test);
97 		break;
98 
99 	case 1:
100 		if (vmcb->control.exit_code != SVM_EXIT_EXCP_BASE + UD_VECTOR) {
101 			report_fail("VMEXIT not due to #UD. Exit reason 0x%x",
102 				    vmcb->control.exit_code);
103 			return true;
104 		}
105 		vmcb->save.rip += 2;
106 		inc_test_stage(test);
107 		break;
108 
109 	default:
110 		return true;
111 	}
112 	return get_test_stage(test) == 2;
113 }
114 
prepare_cr3_intercept(struct svm_test * test)115 static void prepare_cr3_intercept(struct svm_test *test)
116 {
117 	default_prepare(test);
118 	vmcb->control.intercept_cr_read |= 1 << 3;
119 }
120 
test_cr3_intercept(struct svm_test * test)121 static void test_cr3_intercept(struct svm_test *test)
122 {
123 	asm volatile ("mov %%cr3, %0" : "=r"(test->scratch) : : "memory");
124 }
125 
check_cr3_intercept(struct svm_test * test)126 static bool check_cr3_intercept(struct svm_test *test)
127 {
128 	return vmcb->control.exit_code == SVM_EXIT_READ_CR3;
129 }
130 
check_cr3_nointercept(struct svm_test * test)131 static bool check_cr3_nointercept(struct svm_test *test)
132 {
133 	return null_check(test) && test->scratch == read_cr3();
134 }
135 
corrupt_cr3_intercept_bypass(void * _test)136 static void corrupt_cr3_intercept_bypass(void *_test)
137 {
138 	struct svm_test *test = _test;
139 	extern volatile u32 mmio_insn;
140 
141 	while (!__sync_bool_compare_and_swap(&test->scratch, 1, 2))
142 		pause();
143 	pause();
144 	pause();
145 	pause();
146 	mmio_insn = 0x90d8200f;  // mov %cr3, %rax; nop
147 }
148 
prepare_cr3_intercept_bypass(struct svm_test * test)149 static void prepare_cr3_intercept_bypass(struct svm_test *test)
150 {
151 	default_prepare(test);
152 	vmcb->control.intercept_cr_read |= 1 << 3;
153 	on_cpu_async(1, corrupt_cr3_intercept_bypass, test);
154 }
155 
test_cr3_intercept_bypass(struct svm_test * test)156 static void test_cr3_intercept_bypass(struct svm_test *test)
157 {
158 	ulong a = 0xa0000;
159 
160 	test->scratch = 1;
161 	while (test->scratch != 2)
162 		barrier();
163 
164 	asm volatile ("mmio_insn: mov %0, (%0); nop"
165 		      : "+a"(a) : : "memory");
166 	test->scratch = a;
167 }
168 
prepare_dr_intercept(struct svm_test * test)169 static void prepare_dr_intercept(struct svm_test *test)
170 {
171 	default_prepare(test);
172 	vmcb->control.intercept_dr_read = 0xff;
173 	vmcb->control.intercept_dr_write = 0xff;
174 }
175 
test_dr_intercept(struct svm_test * test)176 static void test_dr_intercept(struct svm_test *test)
177 {
178 	unsigned int i, failcnt = 0;
179 
180 	/* Loop testing debug register reads */
181 	for (i = 0; i < 8; i++) {
182 
183 		switch (i) {
184 		case 0:
185 			asm volatile ("mov %%dr0, %0" : "=r"(test->scratch) : : "memory");
186 			break;
187 		case 1:
188 			asm volatile ("mov %%dr1, %0" : "=r"(test->scratch) : : "memory");
189 			break;
190 		case 2:
191 			asm volatile ("mov %%dr2, %0" : "=r"(test->scratch) : : "memory");
192 			break;
193 		case 3:
194 			asm volatile ("mov %%dr3, %0" : "=r"(test->scratch) : : "memory");
195 			break;
196 		case 4:
197 			asm volatile ("mov %%dr4, %0" : "=r"(test->scratch) : : "memory");
198 			break;
199 		case 5:
200 			asm volatile ("mov %%dr5, %0" : "=r"(test->scratch) : : "memory");
201 			break;
202 		case 6:
203 			asm volatile ("mov %%dr6, %0" : "=r"(test->scratch) : : "memory");
204 			break;
205 		case 7:
206 			asm volatile ("mov %%dr7, %0" : "=r"(test->scratch) : : "memory");
207 			break;
208 		}
209 
210 		if (test->scratch != i) {
211 			report_fail("dr%u read intercept", i);
212 			failcnt++;
213 		}
214 	}
215 
216 	/* Loop testing debug register writes */
217 	for (i = 0; i < 8; i++) {
218 
219 		switch (i) {
220 		case 0:
221 			asm volatile ("mov %0, %%dr0" : : "r"(test->scratch) : "memory");
222 			break;
223 		case 1:
224 			asm volatile ("mov %0, %%dr1" : : "r"(test->scratch) : "memory");
225 			break;
226 		case 2:
227 			asm volatile ("mov %0, %%dr2" : : "r"(test->scratch) : "memory");
228 			break;
229 		case 3:
230 			asm volatile ("mov %0, %%dr3" : : "r"(test->scratch) : "memory");
231 			break;
232 		case 4:
233 			asm volatile ("mov %0, %%dr4" : : "r"(test->scratch) : "memory");
234 			break;
235 		case 5:
236 			asm volatile ("mov %0, %%dr5" : : "r"(test->scratch) : "memory");
237 			break;
238 		case 6:
239 			asm volatile ("mov %0, %%dr6" : : "r"(test->scratch) : "memory");
240 			break;
241 		case 7:
242 			asm volatile ("mov %0, %%dr7" : : "r"(test->scratch) : "memory");
243 			break;
244 		}
245 
246 		if (test->scratch != i) {
247 			report_fail("dr%u write intercept", i);
248 			failcnt++;
249 		}
250 	}
251 
252 	test->scratch = failcnt;
253 }
254 
dr_intercept_finished(struct svm_test * test)255 static bool dr_intercept_finished(struct svm_test *test)
256 {
257 	ulong n = (vmcb->control.exit_code - SVM_EXIT_READ_DR0);
258 
259 	/* Only expect DR intercepts */
260 	if (n > (SVM_EXIT_MAX_DR_INTERCEPT - SVM_EXIT_READ_DR0))
261 		return true;
262 
263 	/*
264 	 * Compute debug register number.
265 	 * Per Appendix C "SVM Intercept Exit Codes" of AMD64 Architecture
266 	 * Programmer's Manual Volume 2 - System Programming:
267 	 * http://support.amd.com/TechDocs/24593.pdf
268 	 * there are 16 VMEXIT codes each for DR read and write.
269 	 */
270 	test->scratch = (n % 16);
271 
272 	/* Jump over MOV instruction */
273 	vmcb->save.rip += 3;
274 
275 	return false;
276 }
277 
check_dr_intercept(struct svm_test * test)278 static bool check_dr_intercept(struct svm_test *test)
279 {
280 	return !test->scratch;
281 }
282 
next_rip_supported(void)283 static bool next_rip_supported(void)
284 {
285 	return this_cpu_has(X86_FEATURE_NRIPS);
286 }
287 
prepare_next_rip(struct svm_test * test)288 static void prepare_next_rip(struct svm_test *test)
289 {
290 	vmcb->control.intercept |= (1ULL << INTERCEPT_RDTSC);
291 }
292 
293 
test_next_rip(struct svm_test * test)294 static void test_next_rip(struct svm_test *test)
295 {
296 	asm volatile ("rdtsc\n\t"
297 		      ".globl exp_next_rip\n\t"
298 		      "exp_next_rip:\n\t" ::: "eax", "edx");
299 }
300 
check_next_rip(struct svm_test * test)301 static bool check_next_rip(struct svm_test *test)
302 {
303 	extern char exp_next_rip;
304 	unsigned long address = (unsigned long)&exp_next_rip;
305 
306 	return address == vmcb->control.next_rip;
307 }
308 
309 extern u8 *msr_bitmap;
310 
prepare_msr_intercept(struct svm_test * test)311 static void prepare_msr_intercept(struct svm_test *test)
312 {
313 	default_prepare(test);
314 	vmcb->control.intercept |= (1ULL << INTERCEPT_MSR_PROT);
315 	vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR);
316 	memset(msr_bitmap, 0xff, MSR_BITMAP_SIZE);
317 }
318 
test_msr_intercept(struct svm_test * test)319 static void test_msr_intercept(struct svm_test *test)
320 {
321 	unsigned long msr_value = 0xef8056791234abcd; /* Arbitrary value */
322 	unsigned long msr_index;
323 
324 	for (msr_index = 0; msr_index <= 0xc0011fff; msr_index++) {
325 		if (msr_index == 0xC0010131 /* MSR_SEV_STATUS */) {
326 			/*
327 			 * Per section 15.34.10 "SEV_STATUS MSR" of AMD64 Architecture
328 			 * Programmer's Manual volume 2 - System Programming:
329 			 * http://support.amd.com/TechDocs/24593.pdf
330 			 * SEV_STATUS MSR (C001_0131) is a non-interceptable MSR.
331 			 */
332 			continue;
333 		}
334 
335 		/* Skips gaps between supported MSR ranges */
336 		if (msr_index == 0x2000)
337 			msr_index = 0xc0000000;
338 		else if (msr_index == 0xc0002000)
339 			msr_index = 0xc0010000;
340 
341 		test->scratch = -1;
342 
343 		rdmsr(msr_index);
344 
345 		/* Check that a read intercept occurred for MSR at msr_index */
346 		if (test->scratch != msr_index)
347 			report_fail("MSR 0x%lx read intercept", msr_index);
348 
349 		/*
350 		 * Poor man approach to generate a value that
351 		 * seems arbitrary each time around the loop.
352 		 */
353 		msr_value += (msr_value << 1);
354 
355 		wrmsr(msr_index, msr_value);
356 
357 		/* Check that a write intercept occurred for MSR with msr_value */
358 		if (test->scratch != msr_value)
359 			report_fail("MSR 0x%lx write intercept", msr_index);
360 	}
361 
362 	test->scratch = -2;
363 }
364 
msr_intercept_finished(struct svm_test * test)365 static bool msr_intercept_finished(struct svm_test *test)
366 {
367 	u32 exit_code = vmcb->control.exit_code;
368 	u64 exit_info_1;
369 	u8 *opcode;
370 
371 	if (exit_code == SVM_EXIT_MSR) {
372 		exit_info_1 = vmcb->control.exit_info_1;
373 	} else {
374 		/*
375 		 * If #GP exception occurs instead, check that it was
376 		 * for RDMSR/WRMSR and set exit_info_1 accordingly.
377 		 */
378 
379 		if (exit_code != (SVM_EXIT_EXCP_BASE + GP_VECTOR))
380 			return true;
381 
382 		opcode = (u8 *)vmcb->save.rip;
383 		if (opcode[0] != 0x0f)
384 			return true;
385 
386 		switch (opcode[1]) {
387 		case 0x30: /* WRMSR */
388 			exit_info_1 = 1;
389 			break;
390 		case 0x32: /* RDMSR */
391 			exit_info_1 = 0;
392 			break;
393 		default:
394 			return true;
395 		}
396 
397 		/*
398 		 * Warn that #GP exception occurred instead.
399 		 * RCX holds the MSR index.
400 		 */
401 		printf("%s 0x%lx #GP exception\n",
402 		       exit_info_1 ? "WRMSR" : "RDMSR", get_regs().rcx);
403 	}
404 
405 	/* Jump over RDMSR/WRMSR instruction */
406 	vmcb->save.rip += 2;
407 
408 	/*
409 	 * Test whether the intercept was for RDMSR/WRMSR.
410 	 * For RDMSR, test->scratch is set to the MSR index;
411 	 *      RCX holds the MSR index.
412 	 * For WRMSR, test->scratch is set to the MSR value;
413 	 *      RDX holds the upper 32 bits of the MSR value,
414 	 *      while RAX hold its lower 32 bits.
415 	 */
416 	if (exit_info_1)
417 		test->scratch =
418 			((get_regs().rdx << 32) | (vmcb->save.rax & 0xffffffff));
419 	else
420 		test->scratch = get_regs().rcx;
421 
422 	return false;
423 }
424 
check_msr_intercept(struct svm_test * test)425 static bool check_msr_intercept(struct svm_test *test)
426 {
427 	memset(msr_bitmap, 0, MSR_BITMAP_SIZE);
428 	return (test->scratch == -2);
429 }
430 
prepare_mode_switch(struct svm_test * test)431 static void prepare_mode_switch(struct svm_test *test)
432 {
433 	vmcb->control.intercept_exceptions |= (1ULL << GP_VECTOR)
434 		|  (1ULL << UD_VECTOR)
435 		|  (1ULL << DF_VECTOR)
436 		|  (1ULL << PF_VECTOR);
437 	test->scratch = 0;
438 }
439 
test_mode_switch(struct svm_test * test)440 static void test_mode_switch(struct svm_test *test)
441 {
442 	asm volatile("	cli\n"
443 		     "	ljmp *1f\n" /* jump to 32-bit code segment */
444 		     "1:\n"
445 		     "	.long 2f\n"
446 		     "	.long " xstr(KERNEL_CS32) "\n"
447 		     ".code32\n"
448 		     "2:\n"
449 		     "	movl %%cr0, %%eax\n"
450 		     "	btcl  $31, %%eax\n" /* clear PG */
451 		     "	movl %%eax, %%cr0\n"
452 		     "	movl $0xc0000080, %%ecx\n" /* EFER */
453 		     "	rdmsr\n"
454 		     "	btcl $8, %%eax\n" /* clear LME */
455 		     "	wrmsr\n"
456 		     "	movl %%cr4, %%eax\n"
457 		     "	btcl $5, %%eax\n" /* clear PAE */
458 		     "	movl %%eax, %%cr4\n"
459 		     "	movw %[ds16], %%ax\n"
460 		     "	movw %%ax, %%ds\n"
461 		     "	ljmpl %[cs16], $3f\n" /* jump to 16 bit protected-mode */
462 		     ".code16\n"
463 		     "3:\n"
464 		     "	movl %%cr0, %%eax\n"
465 		     "	btcl $0, %%eax\n" /* clear PE  */
466 		     "	movl %%eax, %%cr0\n"
467 		     "	ljmpl $0, $4f\n"   /* jump to real-mode */
468 		     "4:\n"
469 		     "	vmmcall\n"
470 		     "	movl %%cr0, %%eax\n"
471 		     "	btsl $0, %%eax\n" /* set PE  */
472 		     "	movl %%eax, %%cr0\n"
473 		     "	ljmpl %[cs32], $5f\n" /* back to protected mode */
474 		     ".code32\n"
475 		     "5:\n"
476 		     "	movl %%cr4, %%eax\n"
477 		     "	btsl $5, %%eax\n" /* set PAE */
478 		     "	movl %%eax, %%cr4\n"
479 		     "	movl $0xc0000080, %%ecx\n" /* EFER */
480 		     "	rdmsr\n"
481 		     "	btsl $8, %%eax\n" /* set LME */
482 		     "	wrmsr\n"
483 		     "	movl %%cr0, %%eax\n"
484 		     "	btsl  $31, %%eax\n" /* set PG */
485 		     "	movl %%eax, %%cr0\n"
486 		     "	ljmpl %[cs64], $6f\n"    /* back to long mode */
487 		     ".code64\n\t"
488 		     "6:\n"
489 		     "	vmmcall\n"
490 		     :: [cs16] "i"(KERNEL_CS16), [ds16] "i"(KERNEL_DS16),
491 		      [cs32] "i"(KERNEL_CS32), [cs64] "i"(KERNEL_CS64)
492 		     : "rax", "rbx", "rcx", "rdx", "memory");
493 }
494 
mode_switch_finished(struct svm_test * test)495 static bool mode_switch_finished(struct svm_test *test)
496 {
497 	u64 cr0, cr4, efer;
498 
499 	cr0  = vmcb->save.cr0;
500 	cr4  = vmcb->save.cr4;
501 	efer = vmcb->save.efer;
502 
503 	/* Only expect VMMCALL intercepts */
504 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL)
505 		return true;
506 
507 	/* Jump over VMMCALL instruction */
508 	vmcb->save.rip += 3;
509 
510 	/* Do sanity checks */
511 	switch (test->scratch) {
512 	case 0:
513 		/* Test should be in real mode now - check for this */
514 		if ((cr0  & 0x80000001) || /* CR0.PG, CR0.PE */
515 		    (cr4  & 0x00000020) || /* CR4.PAE */
516 		    (efer & 0x00000500))   /* EFER.LMA, EFER.LME */
517 			return true;
518 		break;
519 	case 2:
520 		/* Test should be back in long-mode now - check for this */
521 		if (((cr0  & 0x80000001) != 0x80000001) || /* CR0.PG, CR0.PE */
522 		    ((cr4  & 0x00000020) != 0x00000020) || /* CR4.PAE */
523 		    ((efer & 0x00000500) != 0x00000500))   /* EFER.LMA, EFER.LME */
524 			return true;
525 		break;
526 	}
527 
528 	/* one step forward */
529 	test->scratch += 1;
530 
531 	return test->scratch == 2;
532 }
533 
check_mode_switch(struct svm_test * test)534 static bool check_mode_switch(struct svm_test *test)
535 {
536 	return test->scratch == 2;
537 }
538 
539 extern u8 *io_bitmap;
540 
prepare_ioio(struct svm_test * test)541 static void prepare_ioio(struct svm_test *test)
542 {
543 	vmcb->control.intercept |= (1ULL << INTERCEPT_IOIO_PROT);
544 	test->scratch = 0;
545 	memset(io_bitmap, 0, 8192);
546 	io_bitmap[8192] = 0xFF;
547 }
548 
test_ioio(struct svm_test * test)549 static void test_ioio(struct svm_test *test)
550 {
551 	// stage 0, test IO pass
552 	inb(0x5000);
553 	outb(0x0, 0x5000);
554 	if (get_test_stage(test) != 0)
555 		goto fail;
556 
557 	// test IO width, in/out
558 	io_bitmap[0] = 0xFF;
559 	inc_test_stage(test);
560 	inb(0x0);
561 	if (get_test_stage(test) != 2)
562 		goto fail;
563 
564 	outw(0x0, 0x0);
565 	if (get_test_stage(test) != 3)
566 		goto fail;
567 
568 	inl(0x0);
569 	if (get_test_stage(test) != 4)
570 		goto fail;
571 
572 	// test low/high IO port
573 	io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
574 	inb(0x5000);
575 	if (get_test_stage(test) != 5)
576 		goto fail;
577 
578 	io_bitmap[0x9000 / 8] = (1 << (0x9000 % 8));
579 	inw(0x9000);
580 	if (get_test_stage(test) != 6)
581 		goto fail;
582 
583 	// test partial pass
584 	io_bitmap[0x5000 / 8] = (1 << (0x5000 % 8));
585 	inl(0x4FFF);
586 	if (get_test_stage(test) != 7)
587 		goto fail;
588 
589 	// test across pages
590 	inc_test_stage(test);
591 	inl(0x7FFF);
592 	if (get_test_stage(test) != 8)
593 		goto fail;
594 
595 	inc_test_stage(test);
596 	io_bitmap[0x8000 / 8] = 1 << (0x8000 % 8);
597 	inl(0x7FFF);
598 	if (get_test_stage(test) != 10)
599 		goto fail;
600 
601 	io_bitmap[0] = 0;
602 	inl(0xFFFF);
603 	if (get_test_stage(test) != 11)
604 		goto fail;
605 
606 	io_bitmap[0] = 0xFF;
607 	io_bitmap[8192] = 0;
608 	inl(0xFFFF);
609 	inc_test_stage(test);
610 	if (get_test_stage(test) != 12)
611 		goto fail;
612 
613 	return;
614 
615 fail:
616 	report_fail("stage %d", get_test_stage(test));
617 	test->scratch = -1;
618 }
619 
ioio_finished(struct svm_test * test)620 static bool ioio_finished(struct svm_test *test)
621 {
622 	unsigned port, size;
623 
624 	/* Only expect IOIO intercepts */
625 	if (vmcb->control.exit_code == SVM_EXIT_VMMCALL)
626 		return true;
627 
628 	if (vmcb->control.exit_code != SVM_EXIT_IOIO)
629 		return true;
630 
631 	/* one step forward */
632 	test->scratch += 1;
633 
634 	port = vmcb->control.exit_info_1 >> 16;
635 	size = (vmcb->control.exit_info_1 >> SVM_IOIO_SIZE_SHIFT) & 7;
636 
637 	while (size--) {
638 		io_bitmap[port / 8] &= ~(1 << (port & 7));
639 		port++;
640 	}
641 
642 	return false;
643 }
644 
check_ioio(struct svm_test * test)645 static bool check_ioio(struct svm_test *test)
646 {
647 	memset(io_bitmap, 0, 8193);
648 	return test->scratch != -1;
649 }
650 
prepare_asid_zero(struct svm_test * test)651 static void prepare_asid_zero(struct svm_test *test)
652 {
653 	vmcb->control.asid = 0;
654 }
655 
test_asid_zero(struct svm_test * test)656 static void test_asid_zero(struct svm_test *test)
657 {
658 	asm volatile ("vmmcall\n\t");
659 }
660 
check_asid_zero(struct svm_test * test)661 static bool check_asid_zero(struct svm_test *test)
662 {
663 	return vmcb->control.exit_code == SVM_EXIT_ERR;
664 }
665 
sel_cr0_bug_prepare(struct svm_test * test)666 static void sel_cr0_bug_prepare(struct svm_test *test)
667 {
668 	vmcb->control.intercept |= (1ULL << INTERCEPT_SELECTIVE_CR0);
669 }
670 
sel_cr0_bug_finished(struct svm_test * test)671 static bool sel_cr0_bug_finished(struct svm_test *test)
672 {
673 	return true;
674 }
675 
sel_cr0_bug_test(struct svm_test * test)676 static void sel_cr0_bug_test(struct svm_test *test)
677 {
678 	unsigned long cr0;
679 
680 	/* read cr0, clear CD, and write back */
681 	cr0  = read_cr0();
682 	cr0 |= (1UL << 30);
683 	write_cr0(cr0);
684 
685 	/*
686 	 * If we are here the test failed, not sure what to do now because we
687 	 * are not in guest-mode anymore so we can't trigger an intercept.
688 	 * Trigger a tripple-fault for now.
689 	 */
690 	report_fail("sel_cr0 test. Can not recover from this - exiting");
691 	exit(report_summary());
692 }
693 
sel_cr0_bug_check(struct svm_test * test)694 static bool sel_cr0_bug_check(struct svm_test *test)
695 {
696 	return vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE;
697 }
698 
699 #define TSC_ADJUST_VALUE    (1ll << 32)
700 #define TSC_OFFSET_VALUE    (~0ull << 48)
701 static bool ok;
702 
tsc_adjust_supported(void)703 static bool tsc_adjust_supported(void)
704 {
705 	return this_cpu_has(X86_FEATURE_TSC_ADJUST);
706 }
707 
tsc_adjust_prepare(struct svm_test * test)708 static void tsc_adjust_prepare(struct svm_test *test)
709 {
710 	default_prepare(test);
711 	vmcb->control.tsc_offset = TSC_OFFSET_VALUE;
712 
713 	wrmsr(MSR_IA32_TSC_ADJUST, -TSC_ADJUST_VALUE);
714 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
715 	ok = adjust == -TSC_ADJUST_VALUE;
716 }
717 
tsc_adjust_test(struct svm_test * test)718 static void tsc_adjust_test(struct svm_test *test)
719 {
720 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
721 	ok &= adjust == -TSC_ADJUST_VALUE;
722 
723 	uint64_t l1_tsc = rdtsc() - TSC_OFFSET_VALUE;
724 	wrmsr(MSR_IA32_TSC, l1_tsc - TSC_ADJUST_VALUE);
725 
726 	adjust = rdmsr(MSR_IA32_TSC_ADJUST);
727 	ok &= adjust <= -2 * TSC_ADJUST_VALUE;
728 
729 	uint64_t l1_tsc_end = rdtsc() - TSC_OFFSET_VALUE;
730 	ok &= (l1_tsc_end + TSC_ADJUST_VALUE - l1_tsc) < TSC_ADJUST_VALUE;
731 
732 	uint64_t l1_tsc_msr = rdmsr(MSR_IA32_TSC) - TSC_OFFSET_VALUE;
733 	ok &= (l1_tsc_msr + TSC_ADJUST_VALUE - l1_tsc) < TSC_ADJUST_VALUE;
734 }
735 
tsc_adjust_check(struct svm_test * test)736 static bool tsc_adjust_check(struct svm_test *test)
737 {
738 	int64_t adjust = rdmsr(MSR_IA32_TSC_ADJUST);
739 
740 	wrmsr(MSR_IA32_TSC_ADJUST, 0);
741 	return ok && adjust <= -2 * TSC_ADJUST_VALUE;
742 }
743 
744 
745 static u64 guest_tsc_delay_value;
746 /* number of bits to shift tsc right for stable result */
747 #define TSC_SHIFT 24
748 #define TSC_SCALE_ITERATIONS 10
749 
svm_tsc_scale_guest(struct svm_test * test)750 static void svm_tsc_scale_guest(struct svm_test *test)
751 {
752 	u64 start_tsc = rdtsc();
753 
754 	while (rdtsc() - start_tsc < guest_tsc_delay_value)
755 		cpu_relax();
756 }
757 
svm_tsc_scale_run_testcase(u64 duration,double tsc_scale,u64 tsc_offset)758 static void svm_tsc_scale_run_testcase(u64 duration,
759 				       double tsc_scale, u64 tsc_offset)
760 {
761 	u64 start_tsc, actual_duration;
762 
763 	guest_tsc_delay_value = (duration << TSC_SHIFT) * tsc_scale;
764 
765 	test_set_guest(svm_tsc_scale_guest);
766 	vmcb->control.tsc_offset = tsc_offset;
767 	wrmsr(MSR_AMD64_TSC_RATIO, (u64)(tsc_scale * (1ULL << 32)));
768 
769 	start_tsc = rdtsc();
770 
771 	if (svm_vmrun() != SVM_EXIT_VMMCALL)
772 		report_fail("unexpected vm exit code 0x%x", vmcb->control.exit_code);
773 
774 	actual_duration = (rdtsc() - start_tsc) >> TSC_SHIFT;
775 
776 	report(duration == actual_duration, "tsc delay (expected: %lu, actual: %lu)",
777 	       duration, actual_duration);
778 }
779 
svm_tsc_scale_test(void)780 static void svm_tsc_scale_test(void)
781 {
782 	int i;
783 
784 	if (!tsc_scale_supported()) {
785 		report_skip("TSC scale not supported in the guest");
786 		return;
787 	}
788 
789 	report(rdmsr(MSR_AMD64_TSC_RATIO) == TSC_RATIO_DEFAULT,
790 	       "initial TSC scale ratio");
791 
792 	for (i = 0 ; i < TSC_SCALE_ITERATIONS; i++) {
793 
794 		double tsc_scale = (double)(rdrand() % 100 + 1) / 10;
795 		int duration = rdrand() % 50 + 1;
796 		u64 tsc_offset = rdrand();
797 
798 		report_info("duration=%d, tsc_scale=%d, tsc_offset=%ld",
799 			    duration, (int)(tsc_scale * 100), tsc_offset);
800 
801 		svm_tsc_scale_run_testcase(duration, tsc_scale, tsc_offset);
802 	}
803 
804 	svm_tsc_scale_run_testcase(50, 255, rdrand());
805 	svm_tsc_scale_run_testcase(50, 0.0001, rdrand());
806 }
807 
latency_prepare(struct svm_test * test)808 static void latency_prepare(struct svm_test *test)
809 {
810 	default_prepare(test);
811 	runs = LATENCY_RUNS;
812 	latvmrun_min = latvmexit_min = -1ULL;
813 	latvmrun_max = latvmexit_max = 0;
814 	vmrun_sum = vmexit_sum = 0;
815 	tsc_start = rdtsc();
816 }
817 
latency_test(struct svm_test * test)818 static void latency_test(struct svm_test *test)
819 {
820 	u64 cycles;
821 
822 start:
823 	tsc_end = rdtsc();
824 
825 	cycles = tsc_end - tsc_start;
826 
827 	if (cycles > latvmrun_max)
828 		latvmrun_max = cycles;
829 
830 	if (cycles < latvmrun_min)
831 		latvmrun_min = cycles;
832 
833 	vmrun_sum += cycles;
834 
835 	tsc_start = rdtsc();
836 
837 	asm volatile ("vmmcall" : : : "memory");
838 	goto start;
839 }
840 
latency_finished(struct svm_test * test)841 static bool latency_finished(struct svm_test *test)
842 {
843 	u64 cycles;
844 
845 	tsc_end = rdtsc();
846 
847 	cycles = tsc_end - tsc_start;
848 
849 	if (cycles > latvmexit_max)
850 		latvmexit_max = cycles;
851 
852 	if (cycles < latvmexit_min)
853 		latvmexit_min = cycles;
854 
855 	vmexit_sum += cycles;
856 
857 	vmcb->save.rip += 3;
858 
859 	runs -= 1;
860 
861 	tsc_end = rdtsc();
862 
863 	return runs == 0;
864 }
865 
latency_finished_clean(struct svm_test * test)866 static bool latency_finished_clean(struct svm_test *test)
867 {
868 	vmcb->control.clean = VMCB_CLEAN_ALL;
869 	return latency_finished(test);
870 }
871 
latency_check(struct svm_test * test)872 static bool latency_check(struct svm_test *test)
873 {
874 	printf("    Latency VMRUN : max: %ld min: %ld avg: %ld\n", latvmrun_max,
875 	       latvmrun_min, vmrun_sum / LATENCY_RUNS);
876 	printf("    Latency VMEXIT: max: %ld min: %ld avg: %ld\n", latvmexit_max,
877 	       latvmexit_min, vmexit_sum / LATENCY_RUNS);
878 	return true;
879 }
880 
lat_svm_insn_prepare(struct svm_test * test)881 static void lat_svm_insn_prepare(struct svm_test *test)
882 {
883 	default_prepare(test);
884 	runs = LATENCY_RUNS;
885 	latvmload_min = latvmsave_min = latstgi_min = latclgi_min = -1ULL;
886 	latvmload_max = latvmsave_max = latstgi_max = latclgi_max = 0;
887 	vmload_sum = vmsave_sum = stgi_sum = clgi_sum;
888 }
889 
lat_svm_insn_finished(struct svm_test * test)890 static bool lat_svm_insn_finished(struct svm_test *test)
891 {
892 	u64 vmcb_phys = virt_to_phys(vmcb);
893 	u64 cycles;
894 
895 	for ( ; runs != 0; runs--) {
896 		tsc_start = rdtsc();
897 		asm volatile("vmload %0\n\t" : : "a"(vmcb_phys) : "memory");
898 		cycles = rdtsc() - tsc_start;
899 		if (cycles > latvmload_max)
900 			latvmload_max = cycles;
901 		if (cycles < latvmload_min)
902 			latvmload_min = cycles;
903 		vmload_sum += cycles;
904 
905 		tsc_start = rdtsc();
906 		asm volatile("vmsave %0\n\t" : : "a"(vmcb_phys) : "memory");
907 		cycles = rdtsc() - tsc_start;
908 		if (cycles > latvmsave_max)
909 			latvmsave_max = cycles;
910 		if (cycles < latvmsave_min)
911 			latvmsave_min = cycles;
912 		vmsave_sum += cycles;
913 
914 		tsc_start = rdtsc();
915 		asm volatile("stgi\n\t");
916 		cycles = rdtsc() - tsc_start;
917 		if (cycles > latstgi_max)
918 			latstgi_max = cycles;
919 		if (cycles < latstgi_min)
920 			latstgi_min = cycles;
921 		stgi_sum += cycles;
922 
923 		tsc_start = rdtsc();
924 		asm volatile("clgi\n\t");
925 		cycles = rdtsc() - tsc_start;
926 		if (cycles > latclgi_max)
927 			latclgi_max = cycles;
928 		if (cycles < latclgi_min)
929 			latclgi_min = cycles;
930 		clgi_sum += cycles;
931 	}
932 
933 	tsc_end = rdtsc();
934 
935 	return true;
936 }
937 
lat_svm_insn_check(struct svm_test * test)938 static bool lat_svm_insn_check(struct svm_test *test)
939 {
940 	printf("    Latency VMLOAD: max: %ld min: %ld avg: %ld\n", latvmload_max,
941 	       latvmload_min, vmload_sum / LATENCY_RUNS);
942 	printf("    Latency VMSAVE: max: %ld min: %ld avg: %ld\n", latvmsave_max,
943 	       latvmsave_min, vmsave_sum / LATENCY_RUNS);
944 	printf("    Latency STGI:   max: %ld min: %ld avg: %ld\n", latstgi_max,
945 	       latstgi_min, stgi_sum / LATENCY_RUNS);
946 	printf("    Latency CLGI:   max: %ld min: %ld avg: %ld\n", latclgi_max,
947 	       latclgi_min, clgi_sum / LATENCY_RUNS);
948 	return true;
949 }
950 
951 /*
952  * Report failures from SVM guest code, and on failure, set the stage to -1 and
953  * do VMMCALL to terminate the test (host side must treat -1 as "finished").
954  * TODO: fix the tests that don't play nice with a straight report, e.g. the
955  * V_TPR test fails if report() is invoked.
956  */
957 #define report_svm_guest(cond, test, fmt, args...)	\
958 do {							\
959 	if (!(cond)) {					\
960 		report_fail(fmt, ##args);		\
961 		set_test_stage(test, -1);		\
962 		vmmcall();				\
963 	}						\
964 } while (0)
965 
966 bool pending_event_ipi_fired;
967 bool pending_event_guest_run;
968 
pending_event_ipi_isr(isr_regs_t * regs)969 static void pending_event_ipi_isr(isr_regs_t *regs)
970 {
971 	pending_event_ipi_fired = true;
972 	eoi();
973 }
974 
pending_event_prepare(struct svm_test * test)975 static void pending_event_prepare(struct svm_test *test)
976 {
977 	int ipi_vector = 0xf1;
978 
979 	default_prepare(test);
980 
981 	pending_event_ipi_fired = false;
982 
983 	handle_irq(ipi_vector, pending_event_ipi_isr);
984 
985 	pending_event_guest_run = false;
986 
987 	vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
988 	vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
989 
990 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
991 		       APIC_DM_FIXED | ipi_vector, 0);
992 
993 	set_test_stage(test, 0);
994 }
995 
pending_event_test(struct svm_test * test)996 static void pending_event_test(struct svm_test *test)
997 {
998 	pending_event_guest_run = true;
999 }
1000 
pending_event_finished(struct svm_test * test)1001 static bool pending_event_finished(struct svm_test *test)
1002 {
1003 	switch (get_test_stage(test)) {
1004 	case 0:
1005 		if (vmcb->control.exit_code != SVM_EXIT_INTR) {
1006 			report_fail("VMEXIT not due to pending interrupt. Exit reason 0x%x",
1007 				    vmcb->control.exit_code);
1008 			return true;
1009 		}
1010 
1011 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_INTR);
1012 		vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1013 
1014 		if (pending_event_guest_run) {
1015 			report_fail("Guest ran before host received IPI\n");
1016 			return true;
1017 		}
1018 
1019 		sti_nop_cli();
1020 
1021 		if (!pending_event_ipi_fired) {
1022 			report_fail("Pending interrupt not dispatched after IRQ enabled\n");
1023 			return true;
1024 		}
1025 		break;
1026 
1027 	case 1:
1028 		if (!pending_event_guest_run) {
1029 			report_fail("Guest did not resume when no interrupt\n");
1030 			return true;
1031 		}
1032 		break;
1033 	}
1034 
1035 	inc_test_stage(test);
1036 
1037 	return get_test_stage(test) == 2;
1038 }
1039 
pending_event_check(struct svm_test * test)1040 static bool pending_event_check(struct svm_test *test)
1041 {
1042 	return get_test_stage(test) == 2;
1043 }
1044 
pending_event_cli_prepare(struct svm_test * test)1045 static void pending_event_cli_prepare(struct svm_test *test)
1046 {
1047 	default_prepare(test);
1048 
1049 	pending_event_ipi_fired = false;
1050 
1051 	handle_irq(0xf1, pending_event_ipi_isr);
1052 
1053 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
1054 		       APIC_DM_FIXED | 0xf1, 0);
1055 
1056 	set_test_stage(test, 0);
1057 }
1058 
pending_event_cli_prepare_gif_clear(struct svm_test * test)1059 static void pending_event_cli_prepare_gif_clear(struct svm_test *test)
1060 {
1061 	asm("cli");
1062 }
1063 
pending_event_cli_test(struct svm_test * test)1064 static void pending_event_cli_test(struct svm_test *test)
1065 {
1066 	report_svm_guest(!pending_event_ipi_fired, test,
1067 			 "IRQ should NOT be delivered while IRQs disabled");
1068 
1069 	/* VINTR_MASKING is zero.  This should cause the IPI to fire.  */
1070 	sti_nop_cli();
1071 
1072 	report_svm_guest(pending_event_ipi_fired, test,
1073 			 "IRQ should be delivered after enabling IRQs");
1074 	vmmcall();
1075 
1076 	/*
1077 	 * Now VINTR_MASKING=1, but no interrupt is pending so
1078 	 * the VINTR interception should be clear in VMCB02.  Check
1079 	 * that L0 did not leave a stale VINTR in the VMCB.
1080 	 */
1081 	sti_nop_cli();
1082 }
1083 
pending_event_cli_finished(struct svm_test * test)1084 static bool pending_event_cli_finished(struct svm_test *test)
1085 {
1086 	report_svm_guest(vmcb->control.exit_code == SVM_EXIT_VMMCALL, test,
1087 			 "Wanted VMMCALL VM-Exit, got exit reason 0x%x",
1088 			 vmcb->control.exit_code);
1089 
1090 	switch (get_test_stage(test)) {
1091 	case 0:
1092 		vmcb->save.rip += 3;
1093 
1094 		pending_event_ipi_fired = false;
1095 
1096 		vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
1097 
1098 		/* Now entering again with VINTR_MASKING=1.  */
1099 		apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL |
1100 			       APIC_DM_FIXED | 0xf1, 0);
1101 
1102 		break;
1103 
1104 	case 1:
1105 		if (pending_event_ipi_fired == true) {
1106 			report_fail("Interrupt triggered by guest");
1107 			return true;
1108 		}
1109 
1110 		sti_nop_cli();
1111 
1112 		if (pending_event_ipi_fired != true) {
1113 			report_fail("Interrupt not triggered by host");
1114 			return true;
1115 		}
1116 
1117 		break;
1118 
1119 	default:
1120 		return true;
1121 	}
1122 
1123 	inc_test_stage(test);
1124 
1125 	return get_test_stage(test) == 2;
1126 }
1127 
pending_event_cli_check(struct svm_test * test)1128 static bool pending_event_cli_check(struct svm_test *test)
1129 {
1130 	return get_test_stage(test) == 2;
1131 }
1132 
1133 #define TIMER_VECTOR    222
1134 
1135 static volatile bool timer_fired;
1136 
timer_isr(isr_regs_t * regs)1137 static void timer_isr(isr_regs_t *regs)
1138 {
1139 	timer_fired = true;
1140 	apic_write(APIC_EOI, 0);
1141 }
1142 
interrupt_prepare(struct svm_test * test)1143 static void interrupt_prepare(struct svm_test *test)
1144 {
1145 	default_prepare(test);
1146 	handle_irq(TIMER_VECTOR, timer_isr);
1147 	timer_fired = false;
1148 	set_test_stage(test, 0);
1149 }
1150 
interrupt_test(struct svm_test * test)1151 static void interrupt_test(struct svm_test *test)
1152 {
1153 	long long start, loops;
1154 
1155 	apic_setup_timer(TIMER_VECTOR, APIC_LVT_TIMER_PERIODIC);
1156 	sti();
1157 	apic_start_timer(1000);
1158 
1159 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1160 		asm volatile ("nop");
1161 
1162 	report_svm_guest(timer_fired, test,
1163 			 "direct interrupt while running guest");
1164 
1165 	apic_stop_timer();
1166 	cli();
1167 	vmmcall();
1168 
1169 	timer_fired = false;
1170 	apic_start_timer(1000);
1171 	for (loops = 0; loops < 10000000 && !timer_fired; loops++)
1172 		asm volatile ("nop");
1173 
1174 	report_svm_guest(timer_fired, test,
1175 			 "intercepted interrupt while running guest");
1176 
1177 	sti();
1178 	apic_stop_timer();
1179 	cli();
1180 
1181 	timer_fired = false;
1182 	start = rdtsc();
1183 	apic_start_timer(1000000);
1184 	safe_halt();
1185 
1186 	report_svm_guest(timer_fired, test, "direct interrupt + hlt");
1187 	report(rdtsc() - start > 10000, "IRQ arrived after expected delay");
1188 
1189 	apic_stop_timer();
1190 	cli();
1191 	vmmcall();
1192 
1193 	timer_fired = false;
1194 	start = rdtsc();
1195 	apic_start_timer(1000000);
1196 	asm volatile ("hlt");
1197 
1198 	report_svm_guest(timer_fired, test, "intercepted interrupt + hlt");
1199 	report(rdtsc() - start > 10000, "IRQ arrived after expected delay");
1200 
1201 	apic_cleanup_timer();
1202 }
1203 
interrupt_finished(struct svm_test * test)1204 static bool interrupt_finished(struct svm_test *test)
1205 {
1206 	switch (get_test_stage(test)) {
1207 	case 0:
1208 	case 2:
1209 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1210 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1211 				    vmcb->control.exit_code);
1212 			return true;
1213 		}
1214 		vmcb->save.rip += 3;
1215 
1216 		vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
1217 		vmcb->control.int_ctl |= V_INTR_MASKING_MASK;
1218 		break;
1219 
1220 	case 1:
1221 	case 3:
1222 		if (vmcb->control.exit_code != SVM_EXIT_INTR) {
1223 			report_fail("VMEXIT not due to intr intercept. Exit reason 0x%x",
1224 				    vmcb->control.exit_code);
1225 			return true;
1226 		}
1227 
1228 		sti_nop_cli();
1229 
1230 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_INTR);
1231 		vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1232 		break;
1233 
1234 	case 4:
1235 		break;
1236 
1237 	default:
1238 		return true;
1239 	}
1240 
1241 	inc_test_stage(test);
1242 
1243 	return get_test_stage(test) == 5;
1244 }
1245 
interrupt_check(struct svm_test * test)1246 static bool interrupt_check(struct svm_test *test)
1247 {
1248 	return get_test_stage(test) == 5;
1249 }
1250 
1251 static volatile bool nmi_fired;
1252 
nmi_handler(struct ex_regs * regs)1253 static void nmi_handler(struct ex_regs *regs)
1254 {
1255 	nmi_fired = true;
1256 }
1257 
nmi_prepare(struct svm_test * test)1258 static void nmi_prepare(struct svm_test *test)
1259 {
1260 	default_prepare(test);
1261 	nmi_fired = false;
1262 	handle_exception(NMI_VECTOR, nmi_handler);
1263 	set_test_stage(test, 0);
1264 }
1265 
nmi_test(struct svm_test * test)1266 static void nmi_test(struct svm_test *test)
1267 {
1268 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0);
1269 
1270 	report_svm_guest(nmi_fired, test, "direct NMI while running guest");
1271 
1272 	vmmcall();
1273 
1274 	nmi_fired = false;
1275 
1276 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, 0);
1277 
1278 	report_svm_guest(nmi_fired, test, "intercepted pending NMI delivered to guest");
1279 }
1280 
nmi_finished(struct svm_test * test)1281 static bool nmi_finished(struct svm_test *test)
1282 {
1283 	switch (get_test_stage(test)) {
1284 	case 0:
1285 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1286 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1287 				    vmcb->control.exit_code);
1288 			return true;
1289 		}
1290 		vmcb->save.rip += 3;
1291 
1292 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1293 		break;
1294 
1295 	case 1:
1296 		if (vmcb->control.exit_code != SVM_EXIT_NMI) {
1297 			report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1298 				    vmcb->control.exit_code);
1299 			return true;
1300 		}
1301 
1302 		report_pass("NMI intercept while running guest");
1303 		break;
1304 
1305 	case 2:
1306 		break;
1307 
1308 	default:
1309 		return true;
1310 	}
1311 
1312 	inc_test_stage(test);
1313 
1314 	return get_test_stage(test) == 3;
1315 }
1316 
nmi_check(struct svm_test * test)1317 static bool nmi_check(struct svm_test *test)
1318 {
1319 	return get_test_stage(test) == 3;
1320 }
1321 
1322 #define NMI_DELAY 100000000ULL
1323 
nmi_message_thread(void * _test)1324 static void nmi_message_thread(void *_test)
1325 {
1326 	struct svm_test *test = _test;
1327 
1328 	while (get_test_stage(test) != 1)
1329 		pause();
1330 
1331 	delay(NMI_DELAY);
1332 
1333 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1334 
1335 	while (get_test_stage(test) != 2)
1336 		pause();
1337 
1338 	delay(NMI_DELAY);
1339 
1340 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_NMI | APIC_INT_ASSERT, id_map[0]);
1341 }
1342 
nmi_hlt_test(struct svm_test * test)1343 static void nmi_hlt_test(struct svm_test *test)
1344 {
1345 	long long start;
1346 
1347 	on_cpu_async(1, nmi_message_thread, test);
1348 
1349 	start = rdtsc();
1350 
1351 	set_test_stage(test, 1);
1352 
1353 	asm volatile ("hlt");
1354 
1355 	report_svm_guest(nmi_fired, test, "direct NMI + hlt");
1356 	report(rdtsc() - start > NMI_DELAY, "direct NMI after expected delay");
1357 
1358 	nmi_fired = false;
1359 
1360 	vmmcall();
1361 
1362 	start = rdtsc();
1363 
1364 	set_test_stage(test, 2);
1365 
1366 	asm volatile ("hlt");
1367 
1368 	report_svm_guest(nmi_fired, test, "intercepted NMI + hlt");
1369 	report(rdtsc() - start > NMI_DELAY, "intercepted NMI after expected delay");
1370 
1371 	set_test_stage(test, 3);
1372 }
1373 
nmi_hlt_finished(struct svm_test * test)1374 static bool nmi_hlt_finished(struct svm_test *test)
1375 {
1376 	switch (get_test_stage(test)) {
1377 	case 1:
1378 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1379 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1380 				    vmcb->control.exit_code);
1381 			return true;
1382 		}
1383 		vmcb->save.rip += 3;
1384 
1385 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1386 		break;
1387 
1388 	case 2:
1389 		if (vmcb->control.exit_code != SVM_EXIT_NMI) {
1390 			report_fail("VMEXIT not due to NMI intercept. Exit reason 0x%x",
1391 				    vmcb->control.exit_code);
1392 			return true;
1393 		}
1394 
1395 		report_pass("NMI intercept while running guest");
1396 		break;
1397 
1398 	case 3:
1399 		break;
1400 
1401 	default:
1402 		return true;
1403 	}
1404 
1405 	return get_test_stage(test) == 3;
1406 }
1407 
nmi_hlt_check(struct svm_test * test)1408 static bool nmi_hlt_check(struct svm_test *test)
1409 {
1410 	return get_test_stage(test) == 3;
1411 }
1412 
vnmi_prepare(struct svm_test * test)1413 static void vnmi_prepare(struct svm_test *test)
1414 {
1415 	nmi_prepare(test);
1416 
1417 	/*
1418 	 * Disable NMI interception to start.  Enabling vNMI without
1419 	 * intercepting "real" NMIs should result in an ERR VM-Exit.
1420 	 */
1421 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_NMI);
1422 	vmcb->control.int_ctl = V_NMI_ENABLE_MASK;
1423 	vmcb->control.int_vector = NMI_VECTOR;
1424 }
1425 
vnmi_test(struct svm_test * test)1426 static void vnmi_test(struct svm_test *test)
1427 {
1428 	report_svm_guest(!nmi_fired, test, "No vNMI before injection");
1429 	vmmcall();
1430 
1431 	report_svm_guest(nmi_fired, test, "vNMI delivered after injection");
1432 	vmmcall();
1433 }
1434 
vnmi_finished(struct svm_test * test)1435 static bool vnmi_finished(struct svm_test *test)
1436 {
1437 	switch (get_test_stage(test)) {
1438 	case 0:
1439 		if (vmcb->control.exit_code != SVM_EXIT_ERR) {
1440 			report_fail("Wanted ERR VM-Exit, got 0x%x",
1441 				    vmcb->control.exit_code);
1442 			return true;
1443 		}
1444 		report(!nmi_fired, "vNMI enabled but NMI_INTERCEPT unset!");
1445 		vmcb->control.intercept |= (1ULL << INTERCEPT_NMI);
1446 		vmcb->save.rip += 3;
1447 		break;
1448 
1449 	case 1:
1450 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1451 			report_fail("Wanted VMMCALL VM-Exit, got 0x%x",
1452 				    vmcb->control.exit_code);
1453 			return true;
1454 		}
1455 		report(!nmi_fired, "vNMI with vector 2 not injected");
1456 		vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
1457 		vmcb->save.rip += 3;
1458 		break;
1459 
1460 	case 2:
1461 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1462 			report_fail("Wanted VMMCALL VM-Exit, got 0x%x",
1463 				    vmcb->control.exit_code);
1464 			return true;
1465 		}
1466 		if (vmcb->control.int_ctl & V_NMI_BLOCKING_MASK) {
1467 			report_fail("V_NMI_BLOCKING_MASK not cleared on VMEXIT");
1468 			return true;
1469 		}
1470 		report_pass("VNMI serviced");
1471 		vmcb->save.rip += 3;
1472 		break;
1473 
1474 	default:
1475 		return true;
1476 	}
1477 
1478 	inc_test_stage(test);
1479 
1480 	return get_test_stage(test) == 3;
1481 }
1482 
vnmi_check(struct svm_test * test)1483 static bool vnmi_check(struct svm_test *test)
1484 {
1485 	return get_test_stage(test) == 3;
1486 }
1487 
1488 static volatile int count_exc = 0;
1489 
my_isr(struct ex_regs * r)1490 static void my_isr(struct ex_regs *r)
1491 {
1492 	count_exc++;
1493 }
1494 
exc_inject_prepare(struct svm_test * test)1495 static void exc_inject_prepare(struct svm_test *test)
1496 {
1497 	default_prepare(test);
1498 	handle_exception(DE_VECTOR, my_isr);
1499 	handle_exception(NMI_VECTOR, my_isr);
1500 }
1501 
1502 
exc_inject_test(struct svm_test * test)1503 static void exc_inject_test(struct svm_test *test)
1504 {
1505 	asm volatile ("vmmcall\n\tvmmcall\n\t");
1506 }
1507 
exc_inject_finished(struct svm_test * test)1508 static bool exc_inject_finished(struct svm_test *test)
1509 {
1510 	switch (get_test_stage(test)) {
1511 	case 0:
1512 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1513 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1514 				    vmcb->control.exit_code);
1515 			return true;
1516 		}
1517 		vmcb->save.rip += 3;
1518 		vmcb->control.event_inj = NMI_VECTOR | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID;
1519 		break;
1520 
1521 	case 1:
1522 		if (vmcb->control.exit_code != SVM_EXIT_ERR) {
1523 			report_fail("VMEXIT not due to error. Exit reason 0x%x",
1524 				    vmcb->control.exit_code);
1525 			return true;
1526 		}
1527 		report(count_exc == 0, "exception with vector 2 not injected");
1528 		vmcb->control.event_inj = DE_VECTOR | SVM_EVTINJ_TYPE_EXEPT | SVM_EVTINJ_VALID;
1529 		break;
1530 
1531 	case 2:
1532 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1533 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1534 				    vmcb->control.exit_code);
1535 			return true;
1536 		}
1537 		vmcb->save.rip += 3;
1538 		report(count_exc == 1, "divide overflow exception injected");
1539 		report(!(vmcb->control.event_inj & SVM_EVTINJ_VALID), "eventinj.VALID cleared");
1540 		break;
1541 
1542 	default:
1543 		return true;
1544 	}
1545 
1546 	inc_test_stage(test);
1547 
1548 	return get_test_stage(test) == 3;
1549 }
1550 
exc_inject_check(struct svm_test * test)1551 static bool exc_inject_check(struct svm_test *test)
1552 {
1553 	return count_exc == 1 && get_test_stage(test) == 3;
1554 }
1555 
1556 static volatile bool virq_fired;
1557 static volatile unsigned long virq_rip;
1558 
virq_isr(isr_regs_t * regs)1559 static void virq_isr(isr_regs_t *regs)
1560 {
1561 	virq_fired = true;
1562 	virq_rip = regs->rip;
1563 }
1564 
virq_inject_prepare(struct svm_test * test)1565 static void virq_inject_prepare(struct svm_test *test)
1566 {
1567 	handle_irq(0xf1, virq_isr);
1568 	default_prepare(test);
1569 	vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1570 		(0x0f << V_INTR_PRIO_SHIFT); // Set to the highest priority
1571 	vmcb->control.int_vector = 0xf1;
1572 	virq_fired = false;
1573 	virq_rip = -1;
1574 	set_test_stage(test, 0);
1575 }
1576 
virq_inject_test(struct svm_test * test)1577 static void virq_inject_test(struct svm_test *test)
1578 {
1579 	report_svm_guest(!virq_fired, test, "virtual IRQ blocked after L2 cli");
1580 
1581 	sti_nop_cli();
1582 
1583 	report_svm_guest(virq_fired, test, "virtual IRQ fired after L2 sti");
1584 
1585 	vmmcall();
1586 
1587 	report_svm_guest(!virq_fired, test, "intercepted VINTR blocked after L2 cli");
1588 
1589 	sti_nop_cli();
1590 
1591 	report_svm_guest(virq_fired, test, "intercepted VINTR fired after L2 sti");
1592 
1593 	vmmcall();
1594 
1595 	sti_nop_cli();
1596 
1597 	report_svm_guest(!virq_fired, test,
1598 			  "virtual IRQ blocked V_IRQ_PRIO less than V_TPR");
1599 
1600 	vmmcall();
1601 	vmmcall();
1602 }
1603 
virq_inject_finished(struct svm_test * test)1604 static bool virq_inject_finished(struct svm_test *test)
1605 {
1606 	vmcb->save.rip += 3;
1607 
1608 	switch (get_test_stage(test)) {
1609 	case 0:
1610 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1611 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1612 				    vmcb->control.exit_code);
1613 			return true;
1614 		}
1615 		if (vmcb->control.int_ctl & V_IRQ_MASK) {
1616 			report_fail("V_IRQ not cleared on VMEXIT after firing");
1617 			return true;
1618 		}
1619 		virq_fired = false;
1620 		vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1621 		vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1622 			(0x0f << V_INTR_PRIO_SHIFT);
1623 		break;
1624 
1625 	case 1:
1626 		if (vmcb->control.exit_code != SVM_EXIT_VINTR) {
1627 			report_fail("VMEXIT not due to vintr. Exit reason 0x%x",
1628 				    vmcb->control.exit_code);
1629 			return true;
1630 		}
1631 		if (virq_fired) {
1632 			report_fail("V_IRQ fired before SVM_EXIT_VINTR");
1633 			return true;
1634 		}
1635 		vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1636 		break;
1637 
1638 	case 2:
1639 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1640 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1641 				    vmcb->control.exit_code);
1642 			return true;
1643 		}
1644 		virq_fired = false;
1645 		// Set irq to lower priority
1646 		vmcb->control.int_ctl = V_INTR_MASKING_MASK | V_IRQ_MASK |
1647 			(0x08 << V_INTR_PRIO_SHIFT);
1648 		// Raise guest TPR
1649 		vmcb->control.int_ctl |= 0x0a & V_TPR_MASK;
1650 		break;
1651 
1652 	case 3:
1653 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1654 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1655 				    vmcb->control.exit_code);
1656 			return true;
1657 		}
1658 		vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1659 		break;
1660 
1661 	case 4:
1662 		// INTERCEPT_VINTR should be ignored because V_INTR_PRIO < V_TPR
1663 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1664 			report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1665 				    vmcb->control.exit_code);
1666 			return true;
1667 		}
1668 		break;
1669 
1670 	default:
1671 		return true;
1672 	}
1673 
1674 	inc_test_stage(test);
1675 
1676 	return get_test_stage(test) == 5;
1677 }
1678 
virq_inject_check(struct svm_test * test)1679 static bool virq_inject_check(struct svm_test *test)
1680 {
1681 	return get_test_stage(test) == 5;
1682 }
1683 
virq_inject_within_shadow_prepare(struct svm_test * test)1684 static void virq_inject_within_shadow_prepare(struct svm_test *test)
1685 {
1686 	virq_inject_prepare(test);
1687 	vmcb->control.int_state = SVM_INTERRUPT_SHADOW_MASK;
1688 	vmcb->save.rflags |= X86_EFLAGS_IF;
1689 }
1690 
1691 extern void virq_inject_within_shadow_test(struct svm_test *test);
1692 asm("virq_inject_within_shadow_test: nop; nop; vmmcall");
1693 
virq_inject_within_shadow_prepare_gif_clear(struct svm_test * test)1694 static void virq_inject_within_shadow_prepare_gif_clear(struct svm_test *test)
1695 {
1696 	vmcb->save.rip = (unsigned long) test->guest_func;
1697 }
1698 
virq_inject_within_shadow_finished(struct svm_test * test)1699 static bool virq_inject_within_shadow_finished(struct svm_test *test)
1700 {
1701 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL)
1702 		report_fail("VMEXIT not due to vmmcall. Exit reason 0x%x",
1703 			    vmcb->control.exit_code);
1704 	if (!virq_fired)
1705 		report_fail("V_IRQ did not fire");
1706 	else if (virq_rip != (unsigned long) virq_inject_within_shadow_test + 1)
1707 		report_fail("Unexpected RIP for interrupt handler");
1708 	else if (vmcb->control.int_ctl & V_IRQ_MASK)
1709 		report_fail("V_IRQ not cleared on VMEXIT after firing");
1710 	else if (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
1711 		report_fail("Interrupt shadow not cleared");
1712 	else
1713 		inc_test_stage(test);
1714 
1715 	return true;
1716 }
1717 
virq_inject_within_shadow_check(struct svm_test * test)1718 static bool virq_inject_within_shadow_check(struct svm_test *test)
1719 {
1720 	return get_test_stage(test) == 1;
1721 }
1722 
1723 /*
1724  * Detect nested guest RIP corruption as explained in kernel commit
1725  * b6162e82aef19fee9c32cb3fe9ac30d9116a8c73
1726  *
1727  * In the assembly loop below 'ins' is executed while IO instructions
1728  * are not intercepted; the instruction is emulated by L0.
1729  *
1730  * At the same time we are getting interrupts from the local APIC timer,
1731  * and we do intercept them in L1
1732  *
1733  * If the interrupt happens on the insb instruction, L0 will VMexit, emulate
1734  * the insb instruction and then it will inject the interrupt to L1 through
1735  * a nested VMexit.  Due to a bug, it would leave pre-emulation values of RIP,
1736  * RAX and RSP in the VMCB.
1737  *
1738  * In our intercept handler we detect the bug by checking that RIP is that of
1739  * the insb instruction, but its memory operand has already been written.
1740  * This means that insb was already executed.
1741  */
1742 
1743 static volatile int isr_cnt = 0;
1744 static volatile uint8_t io_port_var = 0xAA;
1745 extern const char insb_instruction_label[];
1746 
reg_corruption_isr(isr_regs_t * regs)1747 static void reg_corruption_isr(isr_regs_t *regs)
1748 {
1749 	isr_cnt++;
1750 	apic_write(APIC_EOI, 0);
1751 }
1752 
reg_corruption_prepare(struct svm_test * test)1753 static void reg_corruption_prepare(struct svm_test *test)
1754 {
1755 	default_prepare(test);
1756 	set_test_stage(test, 0);
1757 
1758 	vmcb->control.int_ctl = V_INTR_MASKING_MASK;
1759 	vmcb->control.intercept |= (1ULL << INTERCEPT_INTR);
1760 
1761 	handle_irq(TIMER_VECTOR, reg_corruption_isr);
1762 
1763 	/* set local APIC to inject external interrupts */
1764 	apic_setup_timer(TIMER_VECTOR, APIC_LVT_TIMER_PERIODIC);
1765 	apic_start_timer(1000);
1766 }
1767 
reg_corruption_test(struct svm_test * test)1768 static void reg_corruption_test(struct svm_test *test)
1769 {
1770 	/* this is endless loop, which is interrupted by the timer interrupt */
1771 	asm volatile (
1772 		      "1:\n\t"
1773 		      "movw $0x4d0, %%dx\n\t" // IO port
1774 		      "lea %[io_port_var], %%rdi\n\t"
1775 		      "movb $0xAA, %[io_port_var]\n\t"
1776 		      "insb_instruction_label:\n\t"
1777 		      "insb\n\t"
1778 		      "jmp 1b\n\t"
1779 
1780 		      : [io_port_var] "=m" (io_port_var)
1781 		      : /* no inputs*/
1782 		      : "rdx", "rdi"
1783 		      );
1784 }
1785 
reg_corruption_finished(struct svm_test * test)1786 static bool reg_corruption_finished(struct svm_test *test)
1787 {
1788 	if (isr_cnt == 10000) {
1789 		report_pass("No RIP corruption detected after %d timer interrupts",
1790 			    isr_cnt);
1791 		set_test_stage(test, 1);
1792 		goto cleanup;
1793 	}
1794 
1795 	if (vmcb->control.exit_code == SVM_EXIT_INTR) {
1796 
1797 		void* guest_rip = (void*)vmcb->save.rip;
1798 
1799 		sti_nop_cli();
1800 
1801 		if (guest_rip == insb_instruction_label && io_port_var != 0xAA) {
1802 			report_fail("RIP corruption detected after %d timer interrupts",
1803 				    isr_cnt);
1804 			goto cleanup;
1805 		}
1806 
1807 	}
1808 	return false;
1809 cleanup:
1810 	apic_cleanup_timer();
1811 	return true;
1812 
1813 }
1814 
reg_corruption_check(struct svm_test * test)1815 static bool reg_corruption_check(struct svm_test *test)
1816 {
1817 	return get_test_stage(test) == 1;
1818 }
1819 
get_tss_entry(void * data)1820 static void get_tss_entry(void *data)
1821 {
1822 	*((gdt_entry_t **)data) = get_tss_descr();
1823 }
1824 
1825 static int orig_cpu_count;
1826 
init_startup_prepare(struct svm_test * test)1827 static void init_startup_prepare(struct svm_test *test)
1828 {
1829 	gdt_entry_t *tss_entry;
1830 	int i;
1831 
1832 	on_cpu(1, get_tss_entry, &tss_entry);
1833 
1834 	orig_cpu_count = atomic_read(&cpu_online_count);
1835 
1836 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT,
1837 		       id_map[1]);
1838 
1839 	delay(100000000ULL);
1840 
1841 	atomic_dec(&cpu_online_count);
1842 
1843 	tss_entry->type &= ~DESC_BUSY;
1844 
1845 	apic_icr_write(APIC_DEST_PHYSICAL | APIC_DM_STARTUP, id_map[1]);
1846 
1847 	for (i = 0; i < 5 && atomic_read(&cpu_online_count) < orig_cpu_count; i++)
1848 		delay(100000000ULL);
1849 }
1850 
init_startup_finished(struct svm_test * test)1851 static bool init_startup_finished(struct svm_test *test)
1852 {
1853 	return true;
1854 }
1855 
init_startup_check(struct svm_test * test)1856 static bool init_startup_check(struct svm_test *test)
1857 {
1858 	return atomic_read(&cpu_online_count) == orig_cpu_count;
1859 }
1860 
1861 static volatile bool init_intercept;
1862 
init_intercept_prepare(struct svm_test * test)1863 static void init_intercept_prepare(struct svm_test *test)
1864 {
1865 	init_intercept = false;
1866 	vmcb->control.intercept |= (1ULL << INTERCEPT_INIT);
1867 }
1868 
init_intercept_test(struct svm_test * test)1869 static void init_intercept_test(struct svm_test *test)
1870 {
1871 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_INIT | APIC_INT_ASSERT, 0);
1872 }
1873 
init_intercept_finished(struct svm_test * test)1874 static bool init_intercept_finished(struct svm_test *test)
1875 {
1876 	vmcb->save.rip += 3;
1877 
1878 	if (vmcb->control.exit_code != SVM_EXIT_INIT) {
1879 		report_fail("VMEXIT not due to init intercept. Exit reason 0x%x",
1880 			    vmcb->control.exit_code);
1881 
1882 		return true;
1883 	}
1884 
1885 	init_intercept = true;
1886 
1887 	report_pass("INIT to vcpu intercepted");
1888 
1889 	return true;
1890 }
1891 
init_intercept_check(struct svm_test * test)1892 static bool init_intercept_check(struct svm_test *test)
1893 {
1894 	return init_intercept;
1895 }
1896 
1897 /*
1898  * Setting host EFLAGS.TF causes a #DB trap after the VMRUN completes on the
1899  * host side (i.e., after the #VMEXIT from the guest).
1900  *
1901  * Setting host EFLAGS.RF suppresses any potential instruction breakpoint
1902  * match on the VMRUN and completion of the VMRUN instruction clears the
1903  * host EFLAGS.RF bit.
1904  *
1905  * [AMD APM]
1906  */
1907 static volatile u8 host_rflags_guest_main_flag = 0;
1908 static volatile u8 host_rflags_db_handler_flag = 0;
1909 static volatile bool host_rflags_ss_on_vmrun = false;
1910 static volatile bool host_rflags_vmrun_reached = false;
1911 static volatile bool host_rflags_set_tf = false;
1912 static volatile bool host_rflags_set_rf = false;
1913 static u64 rip_detected;
1914 
1915 extern u64 *vmrun_rip;
1916 
host_rflags_db_handler(struct ex_regs * r)1917 static void host_rflags_db_handler(struct ex_regs *r)
1918 {
1919 	if (host_rflags_ss_on_vmrun) {
1920 		if (host_rflags_vmrun_reached) {
1921 			if (!host_rflags_set_rf) {
1922 				r->rflags &= ~X86_EFLAGS_TF;
1923 				rip_detected = r->rip;
1924 			} else {
1925 				r->rflags |= X86_EFLAGS_RF;
1926 				++host_rflags_db_handler_flag;
1927 			}
1928 		} else {
1929 			if (r->rip == (u64)&vmrun_rip) {
1930 				host_rflags_vmrun_reached = true;
1931 
1932 				if (host_rflags_set_rf) {
1933 					host_rflags_guest_main_flag = 0;
1934 					rip_detected = r->rip;
1935 					r->rflags &= ~X86_EFLAGS_TF;
1936 
1937 					/* Trigger #DB via debug registers */
1938 					write_dr0((void *)&vmrun_rip);
1939 					write_dr7(0x403);
1940 				}
1941 			}
1942 		}
1943 	} else {
1944 		r->rflags &= ~X86_EFLAGS_TF;
1945 	}
1946 }
1947 
host_rflags_prepare(struct svm_test * test)1948 static void host_rflags_prepare(struct svm_test *test)
1949 {
1950 	default_prepare(test);
1951 	handle_exception(DB_VECTOR, host_rflags_db_handler);
1952 	set_test_stage(test, 0);
1953 }
1954 
host_rflags_prepare_gif_clear(struct svm_test * test)1955 static void host_rflags_prepare_gif_clear(struct svm_test *test)
1956 {
1957 	if (host_rflags_set_tf)
1958 		write_rflags(read_rflags() | X86_EFLAGS_TF);
1959 }
1960 
host_rflags_test(struct svm_test * test)1961 static void host_rflags_test(struct svm_test *test)
1962 {
1963 	while (1) {
1964 		if (get_test_stage(test) > 0) {
1965 			if ((host_rflags_set_tf && !host_rflags_ss_on_vmrun && !host_rflags_db_handler_flag) ||
1966 			    (host_rflags_set_rf && host_rflags_db_handler_flag == 1))
1967 				host_rflags_guest_main_flag = 1;
1968 		}
1969 
1970 		if (get_test_stage(test) == 4)
1971 			break;
1972 		vmmcall();
1973 	}
1974 }
1975 
host_rflags_finished(struct svm_test * test)1976 static bool host_rflags_finished(struct svm_test *test)
1977 {
1978 	switch (get_test_stage(test)) {
1979 	case 0:
1980 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
1981 			report_fail("Unexpected VMEXIT. Exit reason 0x%x",
1982 				    vmcb->control.exit_code);
1983 			return true;
1984 		}
1985 		vmcb->save.rip += 3;
1986 		/*
1987 		 * Setting host EFLAGS.TF not immediately before VMRUN, causes
1988 		 * #DB trap before first guest instruction is executed
1989 		 */
1990 		host_rflags_set_tf = true;
1991 		break;
1992 	case 1:
1993 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
1994 		    host_rflags_guest_main_flag != 1) {
1995 			report_fail("Unexpected VMEXIT or #DB handler"
1996 				    " invoked before guest main. Exit reason 0x%x",
1997 				    vmcb->control.exit_code);
1998 			return true;
1999 		}
2000 		vmcb->save.rip += 3;
2001 		/*
2002 		 * Setting host EFLAGS.TF immediately before VMRUN, causes #DB
2003 		 * trap after VMRUN completes on the host side (i.e., after
2004 		 * VMEXIT from guest).
2005 		 */
2006 		host_rflags_ss_on_vmrun = true;
2007 		break;
2008 	case 2:
2009 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
2010 		    rip_detected != (u64)&vmrun_rip + 3) {
2011 			report_fail("Unexpected VMEXIT or RIP mismatch."
2012 				    " Exit reason 0x%x, RIP actual: %lx, RIP expected: "
2013 				    "%lx", vmcb->control.exit_code,
2014 				    (u64)&vmrun_rip + 3, rip_detected);
2015 			return true;
2016 		}
2017 		host_rflags_set_rf = true;
2018 		host_rflags_guest_main_flag = 0;
2019 		host_rflags_vmrun_reached = false;
2020 		vmcb->save.rip += 3;
2021 		break;
2022 	case 3:
2023 		if (vmcb->control.exit_code != SVM_EXIT_VMMCALL ||
2024 		    rip_detected != (u64)&vmrun_rip ||
2025 		    host_rflags_guest_main_flag != 1 ||
2026 		    host_rflags_db_handler_flag > 1 ||
2027 		    read_rflags() & X86_EFLAGS_RF) {
2028 			report_fail("Unexpected VMEXIT or RIP mismatch or "
2029 				    "EFLAGS.RF not cleared."
2030 				    " Exit reason 0x%x, RIP actual: %lx, RIP expected: "
2031 				    "%lx", vmcb->control.exit_code,
2032 				    (u64)&vmrun_rip, rip_detected);
2033 			return true;
2034 		}
2035 		host_rflags_set_tf = false;
2036 		host_rflags_set_rf = false;
2037 		vmcb->save.rip += 3;
2038 		break;
2039 	default:
2040 		return true;
2041 	}
2042 	inc_test_stage(test);
2043 	return get_test_stage(test) == 5;
2044 }
2045 
host_rflags_check(struct svm_test * test)2046 static bool host_rflags_check(struct svm_test *test)
2047 {
2048 	return get_test_stage(test) == 4;
2049 }
2050 
2051 #define TEST(name) { #name, .v2 = name }
2052 
2053 /*
2054  * v2 tests
2055  */
2056 
2057 /*
2058  * Ensure that kvm recalculates the L1 guest's CPUID.01H:ECX.OSXSAVE
2059  * after VM-exit from an L2 guest that sets CR4.OSXSAVE to a different
2060  * value than in L1.
2061  */
2062 
svm_cr4_osxsave_test_guest(struct svm_test * test)2063 static void svm_cr4_osxsave_test_guest(struct svm_test *test)
2064 {
2065 	write_cr4(read_cr4() & ~X86_CR4_OSXSAVE);
2066 }
2067 
svm_cr4_osxsave_test(void)2068 static void svm_cr4_osxsave_test(void)
2069 {
2070 	if (!this_cpu_has(X86_FEATURE_XSAVE)) {
2071 		report_skip("XSAVE not detected");
2072 		return;
2073 	}
2074 
2075 	if (!(read_cr4() & X86_CR4_OSXSAVE)) {
2076 		unsigned long cr4 = read_cr4() | X86_CR4_OSXSAVE;
2077 
2078 		write_cr4(cr4);
2079 		vmcb->save.cr4 = cr4;
2080 	}
2081 
2082 	report(this_cpu_has(X86_FEATURE_OSXSAVE), "CPUID.01H:ECX.XSAVE set before VMRUN");
2083 
2084 	test_set_guest(svm_cr4_osxsave_test_guest);
2085 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
2086 	       "svm_cr4_osxsave_test_guest finished with VMMCALL");
2087 
2088 	report(this_cpu_has(X86_FEATURE_OSXSAVE), "CPUID.01H:ECX.XSAVE set after VMRUN");
2089 }
2090 
basic_guest_main(struct svm_test * test)2091 static void basic_guest_main(struct svm_test *test)
2092 {
2093 }
2094 
2095 
2096 #define SVM_TEST_REG_RESERVED_BITS(start, end, inc, str_name, reg, val,	\
2097 				   resv_mask)				\
2098 {									\
2099 	u64 tmp, mask;							\
2100 	int i;								\
2101 									\
2102 	for (i = start; i <= end; i = i + inc) {			\
2103 		mask = 1ull << i;					\
2104 		if (!(mask & resv_mask))				\
2105 			continue;					\
2106 		tmp = val | mask;					\
2107 		reg = tmp;						\
2108 		report(svm_vmrun() == SVM_EXIT_ERR, "Test %s %d:%d: %lx", \
2109 		       str_name, end, start, tmp);			\
2110 	}								\
2111 }
2112 
2113 #define SVM_TEST_CR_RESERVED_BITS(start, end, inc, cr, val, resv_mask,	\
2114 				  exit_code, test_name)			\
2115 {									\
2116 	u64 tmp, mask;							\
2117 	u32 r;								\
2118 	int i;								\
2119 									\
2120 	for (i = start; i <= end; i = i + inc) {			\
2121 		mask = 1ull << i;					\
2122 		if (!(mask & resv_mask))				\
2123 			continue;					\
2124 		tmp = val | mask;					\
2125 		switch (cr) {						\
2126 		case 0:							\
2127 			vmcb->save.cr0 = tmp;				\
2128 			break;						\
2129 		case 3:							\
2130 			vmcb->save.cr3 = tmp;				\
2131 			break;						\
2132 		case 4:							\
2133 			vmcb->save.cr4 = tmp;				\
2134 		}							\
2135 		r = svm_vmrun();					\
2136 		report(r == exit_code, "Test CR%d %s%d:%d: %lx, wanted exit 0x%x, got 0x%x", \
2137 		       cr, test_name, end, start, tmp, exit_code, r);	\
2138 	}								\
2139 }
2140 
test_efer(void)2141 static void test_efer(void)
2142 {
2143 	/*
2144 	 * Un-setting EFER.SVME is illegal
2145 	 */
2146 	u64 efer_saved = vmcb->save.efer;
2147 	u64 efer = efer_saved;
2148 
2149 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "EFER.SVME: %lx", efer);
2150 	efer &= ~EFER_SVME;
2151 	vmcb->save.efer = efer;
2152 	report (svm_vmrun() == SVM_EXIT_ERR, "EFER.SVME: %lx", efer);
2153 	vmcb->save.efer = efer_saved;
2154 
2155 	/*
2156 	 * EFER MBZ bits: 63:16, 9
2157 	 */
2158 	efer_saved = vmcb->save.efer;
2159 
2160 	SVM_TEST_REG_RESERVED_BITS(8, 9, 1, "EFER", vmcb->save.efer,
2161 				   efer_saved, SVM_EFER_RESERVED_MASK);
2162 	SVM_TEST_REG_RESERVED_BITS(16, 63, 4, "EFER", vmcb->save.efer,
2163 				   efer_saved, SVM_EFER_RESERVED_MASK);
2164 
2165 	/*
2166 	 * EFER.LME and CR0.PG are both set and CR4.PAE is zero.
2167 	 */
2168 	u64 cr0_saved = vmcb->save.cr0;
2169 	u64 cr0;
2170 	u64 cr4_saved = vmcb->save.cr4;
2171 	u64 cr4;
2172 
2173 	efer = efer_saved | EFER_LME;
2174 	vmcb->save.efer = efer;
2175 	cr0 = cr0_saved | X86_CR0_PG | X86_CR0_PE;
2176 	vmcb->save.cr0 = cr0;
2177 	cr4 = cr4_saved & ~X86_CR4_PAE;
2178 	vmcb->save.cr4 = cr4;
2179 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2180 	       "CR0.PG=1 (%lx) and CR4.PAE=0 (%lx)", efer, cr0, cr4);
2181 
2182 	/*
2183 	 * EFER.LME and CR0.PG are both set and CR0.PE is zero.
2184 	 * CR4.PAE needs to be set as we otherwise cannot
2185 	 * determine if CR4.PAE=0 or CR0.PE=0 triggered the
2186 	 * SVM_EXIT_ERR.
2187 	 */
2188 	cr4 = cr4_saved | X86_CR4_PAE;
2189 	vmcb->save.cr4 = cr4;
2190 	cr0 &= ~X86_CR0_PE;
2191 	vmcb->save.cr0 = cr0;
2192 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2193 	       "CR0.PG=1 and CR0.PE=0 (%lx)", efer, cr0);
2194 
2195 	/*
2196 	 * EFER.LME, CR0.PG, CR4.PAE, CS.L, and CS.D are all non-zero.
2197 	 */
2198 	u32 cs_attrib_saved = vmcb->save.cs.attrib;
2199 	u32 cs_attrib;
2200 
2201 	cr0 |= X86_CR0_PE;
2202 	vmcb->save.cr0 = cr0;
2203 	cs_attrib = cs_attrib_saved | SVM_SELECTOR_L_MASK |
2204 		SVM_SELECTOR_DB_MASK;
2205 	vmcb->save.cs.attrib = cs_attrib;
2206 	report(svm_vmrun() == SVM_EXIT_ERR, "EFER.LME=1 (%lx), "
2207 	       "CR0.PG=1 (%lx), CR4.PAE=1 (%lx), CS.L=1 and CS.D=1 (%x)",
2208 	       efer, cr0, cr4, cs_attrib);
2209 
2210 	vmcb->save.cr0 = cr0_saved;
2211 	vmcb->save.cr4 = cr4_saved;
2212 	vmcb->save.efer = efer_saved;
2213 	vmcb->save.cs.attrib = cs_attrib_saved;
2214 }
2215 
test_cr0(void)2216 static void test_cr0(void)
2217 {
2218 	/*
2219 	 * Un-setting CR0.CD and setting CR0.NW is illegal combination
2220 	 */
2221 	u64 cr0_saved = vmcb->save.cr0;
2222 	u64 cr0 = cr0_saved;
2223 
2224 	cr0 |= X86_CR0_CD;
2225 	cr0 &= ~X86_CR0_NW;
2226 	vmcb->save.cr0 = cr0;
2227 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=1,NW=0: %lx",
2228 		cr0);
2229 	cr0 |= X86_CR0_NW;
2230 	vmcb->save.cr0 = cr0;
2231 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=1,NW=1: %lx",
2232 		cr0);
2233 	cr0 &= ~X86_CR0_NW;
2234 	cr0 &= ~X86_CR0_CD;
2235 	vmcb->save.cr0 = cr0;
2236 	report (svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR0 CD=0,NW=0: %lx",
2237 		cr0);
2238 	cr0 |= X86_CR0_NW;
2239 	vmcb->save.cr0 = cr0;
2240 	report (svm_vmrun() == SVM_EXIT_ERR, "Test CR0 CD=0,NW=1: %lx",
2241 		cr0);
2242 	vmcb->save.cr0 = cr0_saved;
2243 
2244 	/*
2245 	 * CR0[63:32] are not zero
2246 	 */
2247 	cr0 = cr0_saved;
2248 
2249 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "CR0", vmcb->save.cr0, cr0_saved,
2250 				   SVM_CR0_RESERVED_MASK);
2251 	vmcb->save.cr0 = cr0_saved;
2252 }
2253 
test_cr3(void)2254 static void test_cr3(void)
2255 {
2256 	/*
2257 	 * CR3 MBZ bits based on different modes:
2258 	 *   [63:52] - long mode
2259 	 */
2260 	u64 cr3_saved = vmcb->save.cr3;
2261 
2262 	SVM_TEST_CR_RESERVED_BITS(0, 63, 1, 3, cr3_saved,
2263 				  SVM_CR3_LONG_MBZ_MASK, SVM_EXIT_ERR, "");
2264 
2265 	vmcb->save.cr3 = cr3_saved & ~SVM_CR3_LONG_MBZ_MASK;
2266 	report(svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR3 63:0: %lx",
2267 	       vmcb->save.cr3);
2268 
2269 	/*
2270 	 * CR3 non-MBZ reserved bits based on different modes:
2271 	 *   [11:5] [2:0] - long mode (PCIDE=0)
2272 	 *          [2:0] - PAE legacy mode
2273 	 */
2274 	u64 cr4_saved = vmcb->save.cr4;
2275 	u64 *pdpe = npt_get_pml4e();
2276 
2277 	/*
2278 	 * Long mode
2279 	 */
2280 	if (this_cpu_has(X86_FEATURE_PCID)) {
2281 		vmcb->save.cr4 = cr4_saved | X86_CR4_PCIDE;
2282 		SVM_TEST_CR_RESERVED_BITS(0, 11, 1, 3, cr3_saved,
2283 					  SVM_CR3_LONG_RESERVED_MASK, SVM_EXIT_VMMCALL, "(PCIDE=1) ");
2284 
2285 		vmcb->save.cr3 = cr3_saved & ~SVM_CR3_LONG_RESERVED_MASK;
2286 		report(svm_vmrun() == SVM_EXIT_VMMCALL, "Test CR3 63:0: %lx",
2287 		       vmcb->save.cr3);
2288 	}
2289 
2290 	vmcb->save.cr4 = cr4_saved & ~X86_CR4_PCIDE;
2291 
2292 	if (!npt_supported())
2293 		goto skip_npt_only;
2294 
2295 	/* Clear P (Present) bit in NPT in order to trigger #NPF */
2296 	pdpe[0] &= ~1ULL;
2297 
2298 	SVM_TEST_CR_RESERVED_BITS(0, 11, 1, 3, cr3_saved,
2299 				  SVM_CR3_LONG_RESERVED_MASK, SVM_EXIT_NPF, "(PCIDE=0) ");
2300 
2301 	pdpe[0] |= 1ULL;
2302 	vmcb->save.cr3 = cr3_saved;
2303 
2304 	/*
2305 	 * PAE legacy
2306 	 */
2307 	pdpe[0] &= ~1ULL;
2308 	vmcb->save.cr4 = cr4_saved | X86_CR4_PAE;
2309 	SVM_TEST_CR_RESERVED_BITS(0, 2, 1, 3, cr3_saved,
2310 				  SVM_CR3_PAE_LEGACY_RESERVED_MASK, SVM_EXIT_NPF, "(PAE) ");
2311 
2312 	pdpe[0] |= 1ULL;
2313 
2314 skip_npt_only:
2315 	vmcb->save.cr3 = cr3_saved;
2316 	vmcb->save.cr4 = cr4_saved;
2317 }
2318 
2319 /* Test CR4 MBZ bits based on legacy or long modes */
test_cr4(void)2320 static void test_cr4(void)
2321 {
2322 	u64 cr4_saved = vmcb->save.cr4;
2323 	u64 efer_saved = vmcb->save.efer;
2324 	u64 efer = efer_saved;
2325 
2326 	efer &= ~EFER_LME;
2327 	vmcb->save.efer = efer;
2328 	SVM_TEST_CR_RESERVED_BITS(12, 31, 1, 4, cr4_saved,
2329 				  SVM_CR4_LEGACY_RESERVED_MASK, SVM_EXIT_ERR, "");
2330 
2331 	efer |= EFER_LME;
2332 	vmcb->save.efer = efer;
2333 	SVM_TEST_CR_RESERVED_BITS(12, 31, 1, 4, cr4_saved,
2334 				  SVM_CR4_RESERVED_MASK, SVM_EXIT_ERR, "");
2335 	SVM_TEST_CR_RESERVED_BITS(32, 63, 4, 4, cr4_saved,
2336 				  SVM_CR4_RESERVED_MASK, SVM_EXIT_ERR, "");
2337 
2338 	vmcb->save.cr4 = cr4_saved;
2339 	vmcb->save.efer = efer_saved;
2340 }
2341 
test_dr(void)2342 static void test_dr(void)
2343 {
2344 	/*
2345 	 * DR6[63:32] and DR7[63:32] are MBZ
2346 	 */
2347 	u64 dr_saved = vmcb->save.dr6;
2348 
2349 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "DR6", vmcb->save.dr6, dr_saved,
2350 				   SVM_DR6_RESERVED_MASK);
2351 	vmcb->save.dr6 = dr_saved;
2352 
2353 	dr_saved = vmcb->save.dr7;
2354 	SVM_TEST_REG_RESERVED_BITS(32, 63, 4, "DR7", vmcb->save.dr7, dr_saved,
2355 				   SVM_DR7_RESERVED_MASK);
2356 
2357 	vmcb->save.dr7 = dr_saved;
2358 }
2359 
2360 /* TODO: verify if high 32-bits are sign- or zero-extended on bare metal */
2361 #define	TEST_BITMAP_ADDR(save_intercept, type, addr, exit_code,		\
2362 			 msg) {						\
2363 		vmcb->control.intercept = saved_intercept | 1ULL << type; \
2364 		if (type == INTERCEPT_MSR_PROT)				\
2365 			vmcb->control.msrpm_base_pa = addr;		\
2366 		else							\
2367 			vmcb->control.iopm_base_pa = addr;		\
2368 		report(svm_vmrun() == exit_code,			\
2369 		       "Test %s address: %lx", msg, addr);		\
2370 	}
2371 
2372 /*
2373  * If the MSR or IOIO intercept table extends to a physical address that
2374  * is greater than or equal to the maximum supported physical address, the
2375  * guest state is illegal.
2376  *
2377  * The VMRUN instruction ignores the lower 12 bits of the address specified
2378  * in the VMCB.
2379  *
2380  * MSRPM spans 2 contiguous 4KB pages while IOPM spans 2 contiguous 4KB
2381  * pages + 1 byte.
2382  *
2383  * [APM vol 2]
2384  *
2385  * Note: Unallocated MSRPM addresses conforming to consistency checks, generate
2386  * #NPF.
2387  */
test_msrpm_iopm_bitmap_addrs(void)2388 static void test_msrpm_iopm_bitmap_addrs(void)
2389 {
2390 	u64 saved_intercept = vmcb->control.intercept;
2391 	u64 addr_beyond_limit = 1ull << cpuid_maxphyaddr();
2392 	u64 addr = virt_to_phys(msr_bitmap) & (~((1ull << 12) - 1));
2393 
2394 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2395 			 addr_beyond_limit - 2 * PAGE_SIZE, SVM_EXIT_ERR,
2396 			 "MSRPM");
2397 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2398 			 addr_beyond_limit - 2 * PAGE_SIZE + 1, SVM_EXIT_ERR,
2399 			 "MSRPM");
2400 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT,
2401 			 addr_beyond_limit - PAGE_SIZE, SVM_EXIT_ERR,
2402 			 "MSRPM");
2403 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT, addr,
2404 			 SVM_EXIT_VMMCALL, "MSRPM");
2405 	addr |= (1ull << 12) - 1;
2406 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_MSR_PROT, addr,
2407 			 SVM_EXIT_VMMCALL, "MSRPM");
2408 
2409 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2410 			 addr_beyond_limit - 4 * PAGE_SIZE, SVM_EXIT_VMMCALL,
2411 			 "IOPM");
2412 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2413 			 addr_beyond_limit - 3 * PAGE_SIZE, SVM_EXIT_VMMCALL,
2414 			 "IOPM");
2415 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2416 			 addr_beyond_limit - 2 * PAGE_SIZE - 2, SVM_EXIT_VMMCALL,
2417 			 "IOPM");
2418 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2419 			 addr_beyond_limit - 2 * PAGE_SIZE, SVM_EXIT_ERR,
2420 			 "IOPM");
2421 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT,
2422 			 addr_beyond_limit - PAGE_SIZE, SVM_EXIT_ERR,
2423 			 "IOPM");
2424 	addr = virt_to_phys(io_bitmap) & (~((1ull << 11) - 1));
2425 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT, addr,
2426 			 SVM_EXIT_VMMCALL, "IOPM");
2427 	addr |= (1ull << 12) - 1;
2428 	TEST_BITMAP_ADDR(saved_intercept, INTERCEPT_IOIO_PROT, addr,
2429 			 SVM_EXIT_VMMCALL, "IOPM");
2430 
2431 	vmcb->control.intercept = saved_intercept;
2432 }
2433 
2434 /*
2435  * Unlike VMSAVE, VMRUN seems not to update the value of noncanonical
2436  * segment bases in the VMCB.  However, VMENTRY succeeds as documented.
2437  */
2438 #define TEST_CANONICAL_VMRUN(seg_base, msg)				\
2439 	saved_addr = seg_base;						\
2440 	seg_base = (seg_base & ((1ul << addr_limit) - 1)) | noncanonical_mask; \
2441 	return_value = svm_vmrun();					\
2442 	report(return_value == SVM_EXIT_VMMCALL,			\
2443 	       "Successful VMRUN with noncanonical %s.base", msg);	\
2444 	seg_base = saved_addr;
2445 
2446 
2447 #define TEST_CANONICAL_VMLOAD(seg_base, msg)				\
2448 	saved_addr = seg_base;						\
2449 	seg_base = (seg_base & ((1ul << addr_limit) - 1)) | noncanonical_mask; \
2450 	asm volatile ("vmload %0" : : "a"(vmcb_phys) : "memory");	\
2451 	asm volatile ("vmsave %0" : : "a"(vmcb_phys) : "memory");	\
2452 	report(is_canonical(seg_base),					\
2453 	       "Test %s.base for canonical form: %lx", msg, seg_base);	\
2454 	seg_base = saved_addr;
2455 
test_canonicalization(void)2456 static void test_canonicalization(void)
2457 {
2458 	u64 saved_addr;
2459 	u64 return_value;
2460 	u64 addr_limit;
2461 	u64 vmcb_phys = virt_to_phys(vmcb);
2462 
2463 	addr_limit = (this_cpu_has(X86_FEATURE_LA57)) ? 57 : 48;
2464 	u64 noncanonical_mask = NONCANONICAL & ~((1ul << addr_limit) - 1);
2465 
2466 	TEST_CANONICAL_VMLOAD(vmcb->save.fs.base, "FS");
2467 	TEST_CANONICAL_VMLOAD(vmcb->save.gs.base, "GS");
2468 	TEST_CANONICAL_VMLOAD(vmcb->save.ldtr.base, "LDTR");
2469 	TEST_CANONICAL_VMLOAD(vmcb->save.tr.base, "TR");
2470 	TEST_CANONICAL_VMLOAD(vmcb->save.kernel_gs_base, "KERNEL GS");
2471 	TEST_CANONICAL_VMRUN(vmcb->save.es.base, "ES");
2472 	TEST_CANONICAL_VMRUN(vmcb->save.cs.base, "CS");
2473 	TEST_CANONICAL_VMRUN(vmcb->save.ss.base, "SS");
2474 	TEST_CANONICAL_VMRUN(vmcb->save.ds.base, "DS");
2475 	TEST_CANONICAL_VMRUN(vmcb->save.gdtr.base, "GDTR");
2476 	TEST_CANONICAL_VMRUN(vmcb->save.idtr.base, "IDTR");
2477 }
2478 
2479 /*
2480  * When VMRUN loads a guest value of 1 in EFLAGS.TF, that value does not
2481  * cause a trace trap between the VMRUN and the first guest instruction, but
2482  * rather after completion of the first guest instruction.
2483  *
2484  * [APM vol 2]
2485  */
2486 u64 guest_rflags_test_trap_rip;
2487 
guest_rflags_test_db_handler(struct ex_regs * r)2488 static void guest_rflags_test_db_handler(struct ex_regs *r)
2489 {
2490 	guest_rflags_test_trap_rip = r->rip;
2491 	r->rflags &= ~X86_EFLAGS_TF;
2492 }
2493 
svm_guest_state_test(void)2494 static void svm_guest_state_test(void)
2495 {
2496 	test_set_guest(basic_guest_main);
2497 	test_efer();
2498 	test_cr0();
2499 	test_cr3();
2500 	test_cr4();
2501 	test_dr();
2502 	test_msrpm_iopm_bitmap_addrs();
2503 	test_canonicalization();
2504 }
2505 
2506 extern void guest_rflags_test_guest(struct svm_test *test);
2507 extern u64 *insn2;
2508 extern u64 *guest_end;
2509 
2510 asm("guest_rflags_test_guest:\n\t"
2511     "push %rbp\n\t"
2512     ".global insn2\n\t"
2513     "insn2:\n\t"
2514     "mov %rsp,%rbp\n\t"
2515     "vmmcall\n\t"
2516     "vmmcall\n\t"
2517     ".global guest_end\n\t"
2518     "guest_end:\n\t"
2519     "vmmcall\n\t"
2520     "pop %rbp\n\t"
2521     "ret");
2522 
svm_test_singlestep(void)2523 static void svm_test_singlestep(void)
2524 {
2525 	handle_exception(DB_VECTOR, guest_rflags_test_db_handler);
2526 
2527 	/*
2528 	 * Trap expected after completion of first guest instruction
2529 	 */
2530 	vmcb->save.rflags |= X86_EFLAGS_TF;
2531 	report (__svm_vmrun((u64)guest_rflags_test_guest) == SVM_EXIT_VMMCALL &&
2532 		guest_rflags_test_trap_rip == (u64)&insn2,
2533 		"Test EFLAGS.TF on VMRUN: trap expected  after completion of first guest instruction");
2534 	/*
2535 	 * No trap expected
2536 	 */
2537 	guest_rflags_test_trap_rip = 0;
2538 	vmcb->save.rip += 3;
2539 	vmcb->save.rflags |= X86_EFLAGS_TF;
2540 	report (__svm_vmrun(vmcb->save.rip) == SVM_EXIT_VMMCALL &&
2541 		guest_rflags_test_trap_rip == 0, "Test EFLAGS.TF on VMRUN: trap not expected");
2542 
2543 	/*
2544 	 * Let guest finish execution
2545 	 */
2546 	vmcb->save.rip += 3;
2547 	report (__svm_vmrun(vmcb->save.rip) == SVM_EXIT_VMMCALL &&
2548 		vmcb->save.rip == (u64)&guest_end, "Test EFLAGS.TF on VMRUN: guest execution completion");
2549 }
2550 
2551 static bool volatile svm_errata_reproduced = false;
2552 static unsigned long volatile physical = 0;
2553 
2554 
2555 /*
2556  *
2557  * Test the following errata:
2558  * If the VMRUN/VMSAVE/VMLOAD are attempted by the nested guest,
2559  * the CPU would first check the EAX against host reserved memory
2560  * regions (so far only SMM_ADDR/SMM_MASK are known to cause it),
2561  * and only then signal #VMexit
2562  *
2563  * Try to reproduce this by trying vmsave on each possible 4K aligned memory
2564  * address in the low 4G where the SMM area has to reside.
2565  */
2566 
gp_isr(struct ex_regs * r)2567 static void gp_isr(struct ex_regs *r)
2568 {
2569 	svm_errata_reproduced = true;
2570 	/* skip over the vmsave instruction*/
2571 	r->rip += 3;
2572 }
2573 
svm_vmrun_errata_test(void)2574 static void svm_vmrun_errata_test(void)
2575 {
2576 	unsigned long *last_page = NULL;
2577 
2578 	handle_exception(GP_VECTOR, gp_isr);
2579 
2580 	while (!svm_errata_reproduced) {
2581 
2582 		unsigned long *page = alloc_pages(1);
2583 
2584 		if (!page) {
2585 			report_pass("All guest memory tested, no bug found");
2586 			break;
2587 		}
2588 
2589 		physical = virt_to_phys(page);
2590 
2591 		asm volatile (
2592 			      "mov %[_physical], %%rax\n\t"
2593 			      "vmsave %%rax\n\t"
2594 
2595 			      : [_physical] "=m" (physical)
2596 			      : /* no inputs*/
2597 			      : "rax" /*clobbers*/
2598 			      );
2599 
2600 		if (svm_errata_reproduced) {
2601 			report_fail("Got #GP exception - svm errata reproduced at 0x%lx",
2602 				    physical);
2603 			break;
2604 		}
2605 
2606 		*page = (unsigned long)last_page;
2607 		last_page = page;
2608 	}
2609 
2610 	while (last_page) {
2611 		unsigned long *page = last_page;
2612 		last_page = (unsigned long *)*last_page;
2613 		free_pages_by_order(page, 1);
2614 	}
2615 }
2616 
vmload_vmsave_guest_main(struct svm_test * test)2617 static void vmload_vmsave_guest_main(struct svm_test *test)
2618 {
2619 	u64 vmcb_phys = virt_to_phys(vmcb);
2620 
2621 	asm volatile ("vmload %0" : : "a"(vmcb_phys));
2622 	asm volatile ("vmsave %0" : : "a"(vmcb_phys));
2623 }
2624 
svm_vmload_vmsave(void)2625 static void svm_vmload_vmsave(void)
2626 {
2627 	u32 intercept_saved = vmcb->control.intercept;
2628 
2629 	test_set_guest(vmload_vmsave_guest_main);
2630 
2631 	/*
2632 	 * Disabling intercept for VMLOAD and VMSAVE doesn't cause
2633 	 * respective #VMEXIT to host
2634 	 */
2635 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2636 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2637 	svm_vmrun();
2638 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2639 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2640 
2641 	/*
2642 	 * Enabling intercept for VMLOAD and VMSAVE causes respective
2643 	 * #VMEXIT to host
2644 	 */
2645 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMLOAD);
2646 	svm_vmrun();
2647 	report(vmcb->control.exit_code == SVM_EXIT_VMLOAD, "Test "
2648 	       "VMLOAD/VMSAVE intercept: Expected VMLOAD #VMEXIT");
2649 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2650 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMSAVE);
2651 	svm_vmrun();
2652 	report(vmcb->control.exit_code == SVM_EXIT_VMSAVE, "Test "
2653 	       "VMLOAD/VMSAVE intercept: Expected VMSAVE #VMEXIT");
2654 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2655 	svm_vmrun();
2656 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2657 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2658 
2659 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMLOAD);
2660 	svm_vmrun();
2661 	report(vmcb->control.exit_code == SVM_EXIT_VMLOAD, "Test "
2662 	       "VMLOAD/VMSAVE intercept: Expected VMLOAD #VMEXIT");
2663 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMLOAD);
2664 	svm_vmrun();
2665 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2666 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2667 
2668 	vmcb->control.intercept |= (1ULL << INTERCEPT_VMSAVE);
2669 	svm_vmrun();
2670 	report(vmcb->control.exit_code == SVM_EXIT_VMSAVE, "Test "
2671 	       "VMLOAD/VMSAVE intercept: Expected VMSAVE #VMEXIT");
2672 	vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMSAVE);
2673 	svm_vmrun();
2674 	report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "Test "
2675 	       "VMLOAD/VMSAVE intercept: Expected VMMCALL #VMEXIT");
2676 
2677 	vmcb->control.intercept = intercept_saved;
2678 }
2679 
prepare_vgif_enabled(struct svm_test * test)2680 static void prepare_vgif_enabled(struct svm_test *test)
2681 {
2682 	default_prepare(test);
2683 }
2684 
test_vgif(struct svm_test * test)2685 static void test_vgif(struct svm_test *test)
2686 {
2687 	asm volatile ("vmmcall\n\tstgi\n\tvmmcall\n\tclgi\n\tvmmcall\n\t");
2688 }
2689 
vgif_finished(struct svm_test * test)2690 static bool vgif_finished(struct svm_test *test)
2691 {
2692 	switch (get_test_stage(test))
2693 		{
2694 		case 0:
2695 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2696 				report_fail("VMEXIT not due to vmmcall.");
2697 				return true;
2698 			}
2699 			vmcb->control.int_ctl |= V_GIF_ENABLED_MASK;
2700 			vmcb->save.rip += 3;
2701 			inc_test_stage(test);
2702 			break;
2703 		case 1:
2704 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2705 				report_fail("VMEXIT not due to vmmcall.");
2706 				return true;
2707 			}
2708 			if (!(vmcb->control.int_ctl & V_GIF_MASK)) {
2709 				report_fail("Failed to set VGIF when executing STGI.");
2710 				vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2711 				return true;
2712 			}
2713 			report_pass("STGI set VGIF bit.");
2714 			vmcb->save.rip += 3;
2715 			inc_test_stage(test);
2716 			break;
2717 		case 2:
2718 			if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2719 				report_fail("VMEXIT not due to vmmcall.");
2720 				return true;
2721 			}
2722 			if (vmcb->control.int_ctl & V_GIF_MASK) {
2723 				report_fail("Failed to clear VGIF when executing CLGI.");
2724 				vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2725 				return true;
2726 			}
2727 			report_pass("CLGI cleared VGIF bit.");
2728 			vmcb->save.rip += 3;
2729 			inc_test_stage(test);
2730 			vmcb->control.int_ctl &= ~V_GIF_ENABLED_MASK;
2731 			break;
2732 		default:
2733 			return true;
2734 			break;
2735 		}
2736 
2737 	return get_test_stage(test) == 3;
2738 }
2739 
vgif_check(struct svm_test * test)2740 static bool vgif_check(struct svm_test *test)
2741 {
2742 	return get_test_stage(test) == 3;
2743 }
2744 
2745 
2746 static int pause_test_counter;
2747 static int wait_counter;
2748 
pause_filter_test_guest_main(struct svm_test * test)2749 static void pause_filter_test_guest_main(struct svm_test *test)
2750 {
2751 	int i;
2752 	for (i = 0 ; i < pause_test_counter ; i++)
2753 		pause();
2754 
2755 	if (!wait_counter)
2756 		return;
2757 
2758 	for (i = 0; i < wait_counter; i++)
2759 		;
2760 
2761 	for (i = 0 ; i < pause_test_counter ; i++)
2762 		pause();
2763 
2764 }
2765 
pause_filter_run_test(int pause_iterations,int filter_value,int wait_iterations,int threshold)2766 static void pause_filter_run_test(int pause_iterations, int filter_value, int wait_iterations, int threshold)
2767 {
2768 	test_set_guest(pause_filter_test_guest_main);
2769 
2770 	pause_test_counter = pause_iterations;
2771 	wait_counter = wait_iterations;
2772 
2773 	vmcb->control.pause_filter_count = filter_value;
2774 	vmcb->control.pause_filter_thresh = threshold;
2775 	svm_vmrun();
2776 
2777 	if (filter_value <= pause_iterations || wait_iterations < threshold)
2778 		report(vmcb->control.exit_code == SVM_EXIT_PAUSE, "expected PAUSE vmexit");
2779 	else
2780 		report(vmcb->control.exit_code == SVM_EXIT_VMMCALL, "no expected PAUSE vmexit");
2781 }
2782 
pause_filter_test(void)2783 static void pause_filter_test(void)
2784 {
2785 	if (!pause_filter_supported()) {
2786 		report_skip("PAUSE filter not supported in the guest");
2787 		return;
2788 	}
2789 
2790 	vmcb->control.intercept |= (1 << INTERCEPT_PAUSE);
2791 
2792 	// filter count more that pause count - no VMexit
2793 	pause_filter_run_test(10, 9, 0, 0);
2794 
2795 	// filter count smaller pause count - no VMexit
2796 	pause_filter_run_test(20, 21, 0, 0);
2797 
2798 
2799 	if (pause_threshold_supported()) {
2800 		// filter count smaller pause count - no VMexit +  large enough threshold
2801 		// so that filter counter resets
2802 		pause_filter_run_test(20, 21, 1000, 10);
2803 
2804 		// filter count smaller pause count - no VMexit +  small threshold
2805 		// so that filter doesn't reset
2806 		pause_filter_run_test(20, 21, 10, 1000);
2807 	} else {
2808 		report_skip("PAUSE threshold not supported in the guest");
2809 		return;
2810 	}
2811 }
2812 
2813 /* If CR0.TS and CR0.EM are cleared in L2, no #NM is generated. */
svm_no_nm_test(void)2814 static void svm_no_nm_test(void)
2815 {
2816 	write_cr0(read_cr0() & ~X86_CR0_TS);
2817 	test_set_guest((test_guest_func)fnop);
2818 
2819 	vmcb->save.cr0 = vmcb->save.cr0 & ~(X86_CR0_TS | X86_CR0_EM);
2820 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
2821 	       "fnop with CR0.TS and CR0.EM unset no #NM exception");
2822 }
2823 
amd_get_lbr_rip(u32 msr)2824 static u64 amd_get_lbr_rip(u32 msr)
2825 {
2826 	return rdmsr(msr) & ~AMD_LBR_RECORD_MISPREDICT;
2827 }
2828 
2829 #define HOST_CHECK_LBR(from_expected, to_expected)					\
2830 do {											\
2831 	TEST_EXPECT_EQ((u64)from_expected, amd_get_lbr_rip(MSR_IA32_LASTBRANCHFROMIP));	\
2832 	TEST_EXPECT_EQ((u64)to_expected, amd_get_lbr_rip(MSR_IA32_LASTBRANCHTOIP));	\
2833 } while (0)
2834 
2835 /*
2836  * FIXME: Do something other than generate an exception to communicate failure.
2837  * Debugging without expected vs. actual is an absolute nightmare.
2838  */
2839 #define GUEST_CHECK_LBR(from_expected, to_expected)				\
2840 do {										\
2841 	if ((u64)(from_expected) != amd_get_lbr_rip(MSR_IA32_LASTBRANCHFROMIP))	\
2842 		asm volatile("ud2");						\
2843 	if ((u64)(to_expected) != amd_get_lbr_rip(MSR_IA32_LASTBRANCHTOIP))	\
2844 		asm volatile("ud2");						\
2845 } while (0)
2846 
2847 #define REPORT_GUEST_LBR_ERROR(vmcb)						\
2848 	report(false, "LBR guest test failed.  Exit reason 0x%x, RIP = %lx, from = %lx, to = %lx, ex from = %lx, ex to = %lx", \
2849 		       vmcb->control.exit_code, vmcb->save.rip,			\
2850 		       vmcb->save.br_from, vmcb->save.br_to,			\
2851 		       vmcb->save.last_excp_from, vmcb->save.last_excp_to)
2852 
2853 #define DO_BRANCH(branch_name)				\
2854 	asm volatile (					\
2855 		      # branch_name "_from:"		\
2856 		      "jmp " # branch_name  "_to\n"	\
2857 		      "nop\n"				\
2858 		      "nop\n"				\
2859 		      # branch_name  "_to:"		\
2860 		      "nop\n"				\
2861 		       )
2862 
2863 
2864 extern u64 guest_branch0_from, guest_branch0_to;
2865 extern u64 guest_branch2_from, guest_branch2_to;
2866 
2867 extern u64 host_branch0_from, host_branch0_to;
2868 extern u64 host_branch2_from, host_branch2_to;
2869 extern u64 host_branch3_from, host_branch3_to;
2870 extern u64 host_branch4_from, host_branch4_to;
2871 
2872 u64 dbgctl;
2873 
svm_lbrv_test_guest1(void)2874 static void svm_lbrv_test_guest1(void)
2875 {
2876 	/*
2877 	 * This guest expects the LBR to be already enabled when it starts,
2878 	 * it does a branch, and then disables the LBR and then checks.
2879 	 */
2880 
2881 	DO_BRANCH(guest_branch0);
2882 
2883 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2884 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2885 
2886 	if (dbgctl != DEBUGCTLMSR_LBR)
2887 		asm volatile("ud2\n");
2888 	if (rdmsr(MSR_IA32_DEBUGCTLMSR) != 0)
2889 		asm volatile("ud2\n");
2890 
2891 	GUEST_CHECK_LBR(&guest_branch0_from, &guest_branch0_to);
2892 	asm volatile ("vmmcall\n");
2893 }
2894 
svm_lbrv_test_guest2(void)2895 static void svm_lbrv_test_guest2(void)
2896 {
2897 	/*
2898 	 * This guest expects the LBR to be disabled when it starts,
2899 	 * enables it, does a branch, disables it and then checks.
2900 	 */
2901 
2902 	DO_BRANCH(guest_branch1);
2903 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2904 
2905 	if (dbgctl != 0)
2906 		asm volatile("ud2\n");
2907 
2908 	GUEST_CHECK_LBR(&host_branch2_from, &host_branch2_to);
2909 
2910 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2911 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2912 	DO_BRANCH(guest_branch2);
2913 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2914 
2915 	if (dbgctl != DEBUGCTLMSR_LBR)
2916 		asm volatile("ud2\n");
2917 	GUEST_CHECK_LBR(&guest_branch2_from, &guest_branch2_to);
2918 
2919 	asm volatile ("vmmcall\n");
2920 }
2921 
svm_lbrv_test0(void)2922 static void svm_lbrv_test0(void)
2923 {
2924 	report(true, "Basic LBR test");
2925 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2926 	DO_BRANCH(host_branch0);
2927 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2928 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2929 
2930 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
2931 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2932 	TEST_EXPECT_EQ(dbgctl, 0);
2933 
2934 	HOST_CHECK_LBR(&host_branch0_from, &host_branch0_to);
2935 }
2936 
svm_lbrv_test1(void)2937 static void svm_lbrv_test1(void)
2938 {
2939 	report(true, "Test that without LBRV enabled, guest LBR state does 'leak' to the host(1)");
2940 
2941 	svm_setup_vmrun((u64)svm_lbrv_test_guest1);
2942 	vmcb->control.virt_ext = 0;
2943 
2944 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2945 	DO_BRANCH(host_branch1);
2946 	SVM_BARE_VMRUN;
2947 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2948 
2949 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2950 		REPORT_GUEST_LBR_ERROR(vmcb);
2951 		return;
2952 	}
2953 
2954 	TEST_EXPECT_EQ(dbgctl, 0);
2955 	HOST_CHECK_LBR(&guest_branch0_from, &guest_branch0_to);
2956 }
2957 
svm_lbrv_test2(void)2958 static void svm_lbrv_test2(void)
2959 {
2960 	report(true, "Test that without LBRV enabled, guest LBR state does 'leak' to the host(2)");
2961 
2962 	svm_setup_vmrun((u64)svm_lbrv_test_guest2);
2963 	vmcb->control.virt_ext = 0;
2964 
2965 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2966 	DO_BRANCH(host_branch2);
2967 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2968 	SVM_BARE_VMRUN;
2969 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2970 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2971 
2972 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
2973 		REPORT_GUEST_LBR_ERROR(vmcb);
2974 		return;
2975 	}
2976 
2977 	TEST_EXPECT_EQ(dbgctl, 0);
2978 	HOST_CHECK_LBR(&guest_branch2_from, &guest_branch2_to);
2979 }
2980 
svm_lbrv_nested_test1(void)2981 static void svm_lbrv_nested_test1(void)
2982 {
2983 	if (!lbrv_supported()) {
2984 		report_skip("LBRV not supported in the guest");
2985 		return;
2986 	}
2987 
2988 	report(true, "Test that with LBRV enabled, guest LBR state doesn't leak (1)");
2989 	svm_setup_vmrun((u64)svm_lbrv_test_guest1);
2990 	vmcb->control.virt_ext = LBR_CTL_ENABLE_MASK;
2991 	vmcb->save.dbgctl = DEBUGCTLMSR_LBR;
2992 
2993 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
2994 	DO_BRANCH(host_branch3);
2995 	SVM_BARE_VMRUN;
2996 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
2997 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
2998 
2999 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
3000 		REPORT_GUEST_LBR_ERROR(vmcb);
3001 		return;
3002 	}
3003 
3004 	if (vmcb->save.dbgctl != 0) {
3005 		report(false, "unexpected virtual guest MSR_IA32_DEBUGCTLMSR value 0x%lx", vmcb->save.dbgctl);
3006 		return;
3007 	}
3008 
3009 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
3010 	HOST_CHECK_LBR(&host_branch3_from, &host_branch3_to);
3011 }
3012 
svm_lbrv_nested_test2(void)3013 static void svm_lbrv_nested_test2(void)
3014 {
3015 	if (!lbrv_supported()) {
3016 		report_skip("LBRV not supported in the guest");
3017 		return;
3018 	}
3019 
3020 	report(true, "Test that with LBRV enabled, guest LBR state doesn't leak (2)");
3021 	svm_setup_vmrun((u64)svm_lbrv_test_guest2);
3022 	vmcb->control.virt_ext = LBR_CTL_ENABLE_MASK;
3023 
3024 	vmcb->save.dbgctl = 0;
3025 	vmcb->save.br_from = (u64)&host_branch2_from;
3026 	vmcb->save.br_to = (u64)&host_branch2_to;
3027 
3028 	wrmsr(MSR_IA32_DEBUGCTLMSR, DEBUGCTLMSR_LBR);
3029 	DO_BRANCH(host_branch4);
3030 	SVM_BARE_VMRUN;
3031 	dbgctl = rdmsr(MSR_IA32_DEBUGCTLMSR);
3032 	wrmsr(MSR_IA32_DEBUGCTLMSR, 0);
3033 
3034 	if (vmcb->control.exit_code != SVM_EXIT_VMMCALL) {
3035 		REPORT_GUEST_LBR_ERROR(vmcb);
3036 		return;
3037 	}
3038 
3039 	TEST_EXPECT_EQ(dbgctl, DEBUGCTLMSR_LBR);
3040 	HOST_CHECK_LBR(&host_branch4_from, &host_branch4_to);
3041 }
3042 
3043 
3044 // test that a nested guest which does enable INTR interception
3045 // but doesn't enable virtual interrupt masking works
3046 
3047 static volatile int dummy_isr_recevied;
dummy_isr(isr_regs_t * regs)3048 static void dummy_isr(isr_regs_t *regs)
3049 {
3050 	dummy_isr_recevied++;
3051 	eoi();
3052 }
3053 
3054 
3055 static volatile int nmi_recevied;
dummy_nmi_handler(struct ex_regs * regs)3056 static void dummy_nmi_handler(struct ex_regs *regs)
3057 {
3058 	nmi_recevied++;
3059 }
3060 
3061 
svm_intr_intercept_mix_run_guest(volatile int * counter,int expected_vmexit)3062 static void svm_intr_intercept_mix_run_guest(volatile int *counter, int expected_vmexit)
3063 {
3064 	if (counter)
3065 		*counter = 0;
3066 
3067 	sti();  // host IF value should not matter
3068 	clgi(); // vmrun will set back GI to 1
3069 
3070 	svm_vmrun();
3071 
3072 	if (counter)
3073 		report(!*counter, "No interrupt expected");
3074 
3075 	stgi();
3076 
3077 	if (counter)
3078 		report(*counter == 1, "Interrupt is expected");
3079 
3080 	report (vmcb->control.exit_code == expected_vmexit, "Test expected VM exit");
3081 	report(vmcb->save.rflags & X86_EFLAGS_IF, "Guest should have EFLAGS.IF set now");
3082 	cli();
3083 }
3084 
3085 
3086 // subtest: test that enabling EFLAGS.IF is enough to trigger an interrupt
svm_intr_intercept_mix_if_guest(struct svm_test * test)3087 static void svm_intr_intercept_mix_if_guest(struct svm_test *test)
3088 {
3089 	asm volatile("nop;nop;nop;nop");
3090 	report(!dummy_isr_recevied, "No interrupt expected");
3091 	sti_nop();
3092 	report(0, "must not reach here");
3093 }
3094 
svm_intr_intercept_mix_if(void)3095 static void svm_intr_intercept_mix_if(void)
3096 {
3097 	// make a physical interrupt to be pending
3098 	handle_irq(0x55, dummy_isr);
3099 
3100 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3101 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3102 	vmcb->save.rflags &= ~X86_EFLAGS_IF;
3103 
3104 	test_set_guest(svm_intr_intercept_mix_if_guest);
3105 	cli();
3106 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3107 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3108 }
3109 
3110 
3111 // subtest: test that a clever guest can trigger an interrupt by setting GIF
3112 // if GIF is not intercepted
svm_intr_intercept_mix_gif_guest(struct svm_test * test)3113 static void svm_intr_intercept_mix_gif_guest(struct svm_test *test)
3114 {
3115 
3116 	asm volatile("nop;nop;nop;nop");
3117 	report(!dummy_isr_recevied, "No interrupt expected");
3118 
3119 	// clear GIF and enable IF
3120 	// that should still not cause VM exit
3121 	clgi();
3122 	sti_nop();
3123 	report(!dummy_isr_recevied, "No interrupt expected");
3124 
3125 	stgi();
3126 	report(0, "must not reach here");
3127 }
3128 
svm_intr_intercept_mix_gif(void)3129 static void svm_intr_intercept_mix_gif(void)
3130 {
3131 	handle_irq(0x55, dummy_isr);
3132 
3133 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3134 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3135 	vmcb->save.rflags &= ~X86_EFLAGS_IF;
3136 
3137 	test_set_guest(svm_intr_intercept_mix_gif_guest);
3138 	cli();
3139 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3140 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3141 }
3142 
3143 // subtest: test that a clever guest can trigger an interrupt by setting GIF
3144 // if GIF is not intercepted and interrupt comes after guest
3145 // started running
svm_intr_intercept_mix_gif_guest2(struct svm_test * test)3146 static void svm_intr_intercept_mix_gif_guest2(struct svm_test *test)
3147 {
3148 	asm volatile("nop;nop;nop;nop");
3149 	report(!dummy_isr_recevied, "No interrupt expected");
3150 
3151 	clgi();
3152 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_FIXED | 0x55, 0);
3153 	report(!dummy_isr_recevied, "No interrupt expected");
3154 
3155 	stgi();
3156 	report(0, "must not reach here");
3157 }
3158 
svm_intr_intercept_mix_gif2(void)3159 static void svm_intr_intercept_mix_gif2(void)
3160 {
3161 	handle_irq(0x55, dummy_isr);
3162 
3163 	vmcb->control.intercept |= (1 << INTERCEPT_INTR);
3164 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3165 	vmcb->save.rflags |= X86_EFLAGS_IF;
3166 
3167 	test_set_guest(svm_intr_intercept_mix_gif_guest2);
3168 	svm_intr_intercept_mix_run_guest(&dummy_isr_recevied, SVM_EXIT_INTR);
3169 }
3170 
3171 
3172 // subtest: test that pending NMI will be handled when guest enables GIF
svm_intr_intercept_mix_nmi_guest(struct svm_test * test)3173 static void svm_intr_intercept_mix_nmi_guest(struct svm_test *test)
3174 {
3175 	asm volatile("nop;nop;nop;nop");
3176 	report(!nmi_recevied, "No NMI expected");
3177 	cli(); // should have no effect
3178 
3179 	clgi();
3180 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_NMI, 0);
3181 	sti_nop(); // should have no effect
3182 	report(!nmi_recevied, "No NMI expected");
3183 
3184 	stgi();
3185 	report(0, "must not reach here");
3186 }
3187 
svm_intr_intercept_mix_nmi(void)3188 static void svm_intr_intercept_mix_nmi(void)
3189 {
3190 	handle_exception(2, dummy_nmi_handler);
3191 
3192 	vmcb->control.intercept |= (1 << INTERCEPT_NMI);
3193 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3194 	vmcb->save.rflags |= X86_EFLAGS_IF;
3195 
3196 	test_set_guest(svm_intr_intercept_mix_nmi_guest);
3197 	svm_intr_intercept_mix_run_guest(&nmi_recevied, SVM_EXIT_NMI);
3198 }
3199 
3200 // test that pending SMI will be handled when guest enables GIF
3201 // TODO: can't really count #SMIs so just test that guest doesn't hang
3202 // and VMexits on SMI
svm_intr_intercept_mix_smi_guest(struct svm_test * test)3203 static void svm_intr_intercept_mix_smi_guest(struct svm_test *test)
3204 {
3205 	asm volatile("nop;nop;nop;nop");
3206 
3207 	clgi();
3208 	apic_icr_write(APIC_DEST_SELF | APIC_DEST_PHYSICAL | APIC_DM_SMI, 0);
3209 	sti_nop(); // should have no effect
3210 	stgi();
3211 	report(0, "must not reach here");
3212 }
3213 
svm_intr_intercept_mix_smi(void)3214 static void svm_intr_intercept_mix_smi(void)
3215 {
3216 	vmcb->control.intercept |= (1 << INTERCEPT_SMI);
3217 	vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
3218 	test_set_guest(svm_intr_intercept_mix_smi_guest);
3219 	svm_intr_intercept_mix_run_guest(NULL, SVM_EXIT_SMI);
3220 }
3221 
svm_l2_ac_test(void)3222 static void svm_l2_ac_test(void)
3223 {
3224 	bool hit_ac = false;
3225 
3226 	write_cr0(read_cr0() | X86_CR0_AM);
3227 	write_rflags(read_rflags() | X86_EFLAGS_AC);
3228 
3229 	run_in_user(generate_usermode_ac, AC_VECTOR, 0, 0, 0, 0, &hit_ac);
3230 	report(hit_ac, "Usermode #AC handled in L2");
3231 	vmmcall();
3232 }
3233 
3234 struct svm_exception_test {
3235 	u8 vector;
3236 	void (*guest_code)(void);
3237 };
3238 
3239 struct svm_exception_test svm_exception_tests[] = {
3240 	{ GP_VECTOR, generate_non_canonical_gp },
3241 	{ UD_VECTOR, generate_ud },
3242 	{ DE_VECTOR, generate_de },
3243 	{ DB_VECTOR, generate_single_step_db },
3244 	{ BP_VECTOR, generate_bp },
3245 	{ AC_VECTOR, svm_l2_ac_test },
3246 	{ OF_VECTOR, generate_of },
3247 	{ NM_VECTOR, generate_cr0_ts_nm },
3248 	{ NM_VECTOR, generate_cr0_em_nm },
3249 };
3250 
3251 static u8 svm_exception_test_vector;
3252 
svm_exception_handler(struct ex_regs * regs)3253 static void svm_exception_handler(struct ex_regs *regs)
3254 {
3255 	report(regs->vector == svm_exception_test_vector,
3256 		"Handling %s in L2's exception handler",
3257 		exception_mnemonic(svm_exception_test_vector));
3258 	vmmcall();
3259 }
3260 
handle_exception_in_l2(u8 vector)3261 static void handle_exception_in_l2(u8 vector)
3262 {
3263 	handler old_handler = handle_exception(vector, svm_exception_handler);
3264 	svm_exception_test_vector = vector;
3265 
3266 	report(svm_vmrun() == SVM_EXIT_VMMCALL,
3267 		"%s handled by L2", exception_mnemonic(vector));
3268 
3269 	handle_exception(vector, old_handler);
3270 }
3271 
handle_exception_in_l1(u32 vector)3272 static void handle_exception_in_l1(u32 vector)
3273 {
3274 	u32 old_ie = vmcb->control.intercept_exceptions;
3275 
3276 	vmcb->control.intercept_exceptions |= (1ULL << vector);
3277 
3278 	report(svm_vmrun() == (SVM_EXIT_EXCP_BASE + vector),
3279 		"%s handled by L1",  exception_mnemonic(vector));
3280 
3281 	vmcb->control.intercept_exceptions = old_ie;
3282 }
3283 
svm_exception_test(void)3284 static void svm_exception_test(void)
3285 {
3286 	struct svm_exception_test *t;
3287 	int i;
3288 
3289 	for (i = 0; i < ARRAY_SIZE(svm_exception_tests); i++) {
3290 		t = &svm_exception_tests[i];
3291 		test_set_guest((test_guest_func)t->guest_code);
3292 
3293 		handle_exception_in_l2(t->vector);
3294 		vmcb_ident(vmcb);
3295 
3296 		handle_exception_in_l1(t->vector);
3297 		vmcb_ident(vmcb);
3298 	}
3299 }
3300 
shutdown_intercept_test_guest(struct svm_test * test)3301 static void shutdown_intercept_test_guest(struct svm_test *test)
3302 {
3303 	asm volatile ("ud2");
3304 	report_fail("should not reach here\n");
3305 
3306 }
3307 
svm_shutdown_intercept_test(void)3308 static void svm_shutdown_intercept_test(void)
3309 {
3310 	test_set_guest(shutdown_intercept_test_guest);
3311 	vmcb->save.idtr.base = (u64)alloc_vpage();
3312 	vmcb->control.intercept |= (1ULL << INTERCEPT_SHUTDOWN);
3313 	svm_vmrun();
3314 	report(vmcb->control.exit_code == SVM_EXIT_SHUTDOWN, "shutdown test passed");
3315 }
3316 
3317 struct svm_test svm_tests[] = {
3318 	{ "null", default_supported, default_prepare,
3319 	  default_prepare_gif_clear, null_test,
3320 	  default_finished, null_check },
3321 	{ "vmrun", default_supported, default_prepare,
3322 	  default_prepare_gif_clear, test_vmrun,
3323 	  default_finished, check_vmrun },
3324 	{ "ioio", default_supported, prepare_ioio,
3325 	  default_prepare_gif_clear, test_ioio,
3326 	  ioio_finished, check_ioio },
3327 	{ "vmrun intercept check", default_supported, prepare_no_vmrun_int,
3328 	  default_prepare_gif_clear, null_test, default_finished,
3329 	  check_no_vmrun_int },
3330 	{ "rsm", default_supported,
3331 	  prepare_rsm_intercept, default_prepare_gif_clear,
3332 	  test_rsm_intercept, finished_rsm_intercept, check_rsm_intercept },
3333 	{ "cr3 read intercept", default_supported,
3334 	  prepare_cr3_intercept, default_prepare_gif_clear,
3335 	  test_cr3_intercept, default_finished, check_cr3_intercept },
3336 	{ "cr3 read nointercept", default_supported, default_prepare,
3337 	  default_prepare_gif_clear, test_cr3_intercept, default_finished,
3338 	  check_cr3_nointercept },
3339 	{ "cr3 read intercept emulate", smp_supported,
3340 	  prepare_cr3_intercept_bypass, default_prepare_gif_clear,
3341 	  test_cr3_intercept_bypass, default_finished, check_cr3_intercept },
3342 	{ "dr intercept check", default_supported, prepare_dr_intercept,
3343 	  default_prepare_gif_clear, test_dr_intercept, dr_intercept_finished,
3344 	  check_dr_intercept },
3345 	{ "next_rip", next_rip_supported, prepare_next_rip,
3346 	  default_prepare_gif_clear, test_next_rip,
3347 	  default_finished, check_next_rip },
3348 	{ "msr intercept check", default_supported, prepare_msr_intercept,
3349 	  default_prepare_gif_clear, test_msr_intercept,
3350 	  msr_intercept_finished, check_msr_intercept },
3351 	{ "mode_switch", default_supported, prepare_mode_switch,
3352 	  default_prepare_gif_clear, test_mode_switch,
3353 	  mode_switch_finished, check_mode_switch },
3354 	{ "asid_zero", default_supported, prepare_asid_zero,
3355 	  default_prepare_gif_clear, test_asid_zero,
3356 	  default_finished, check_asid_zero },
3357 	{ "sel_cr0_bug", default_supported, sel_cr0_bug_prepare,
3358 	  default_prepare_gif_clear, sel_cr0_bug_test,
3359 	  sel_cr0_bug_finished, sel_cr0_bug_check },
3360 	{ "tsc_adjust", tsc_adjust_supported, tsc_adjust_prepare,
3361 	  default_prepare_gif_clear, tsc_adjust_test,
3362 	  default_finished, tsc_adjust_check },
3363 	{ "latency_run_exit", default_supported, latency_prepare,
3364 	  default_prepare_gif_clear, latency_test,
3365 	  latency_finished, latency_check },
3366 	{ "latency_run_exit_clean", default_supported, latency_prepare,
3367 	  default_prepare_gif_clear, latency_test,
3368 	  latency_finished_clean, latency_check },
3369 	{ "latency_svm_insn", default_supported, lat_svm_insn_prepare,
3370 	  default_prepare_gif_clear, null_test,
3371 	  lat_svm_insn_finished, lat_svm_insn_check },
3372 	{ "exc_inject", default_supported, exc_inject_prepare,
3373 	  default_prepare_gif_clear, exc_inject_test,
3374 	  exc_inject_finished, exc_inject_check },
3375 	{ "pending_event", default_supported, pending_event_prepare,
3376 	  default_prepare_gif_clear,
3377 	  pending_event_test, pending_event_finished, pending_event_check },
3378 	{ "pending_event_cli", default_supported, pending_event_cli_prepare,
3379 	  pending_event_cli_prepare_gif_clear,
3380 	  pending_event_cli_test, pending_event_cli_finished,
3381 	  pending_event_cli_check },
3382 	{ "interrupt", default_supported, interrupt_prepare,
3383 	  default_prepare_gif_clear, interrupt_test,
3384 	  interrupt_finished, interrupt_check },
3385 	{ "nmi", default_supported, nmi_prepare,
3386 	  default_prepare_gif_clear, nmi_test,
3387 	  nmi_finished, nmi_check },
3388 	{ "nmi_hlt", smp_supported, nmi_prepare,
3389 	  default_prepare_gif_clear, nmi_hlt_test,
3390 	  nmi_hlt_finished, nmi_hlt_check },
3391         { "vnmi", vnmi_supported, vnmi_prepare,
3392           default_prepare_gif_clear, vnmi_test,
3393           vnmi_finished, vnmi_check },
3394 	{ "virq_inject", default_supported, virq_inject_prepare,
3395 	  default_prepare_gif_clear, virq_inject_test,
3396 	  virq_inject_finished, virq_inject_check },
3397 	{ "virq_inject_within_shadow", default_supported, virq_inject_within_shadow_prepare,
3398 	  virq_inject_within_shadow_prepare_gif_clear, virq_inject_within_shadow_test,
3399 	  virq_inject_within_shadow_finished, virq_inject_within_shadow_check },
3400 	{ "reg_corruption", default_supported, reg_corruption_prepare,
3401 	  default_prepare_gif_clear, reg_corruption_test,
3402 	  reg_corruption_finished, reg_corruption_check },
3403 	{ "svm_init_startup_test", smp_supported, init_startup_prepare,
3404 	  default_prepare_gif_clear, null_test,
3405 	  init_startup_finished, init_startup_check },
3406 	{ "svm_init_intercept_test", smp_supported, init_intercept_prepare,
3407 	  default_prepare_gif_clear, init_intercept_test,
3408 	  init_intercept_finished, init_intercept_check, .on_vcpu = 2 },
3409 	{ "host_rflags", default_supported, host_rflags_prepare,
3410 	  host_rflags_prepare_gif_clear, host_rflags_test,
3411 	  host_rflags_finished, host_rflags_check },
3412 	{ "vgif", vgif_supported, prepare_vgif_enabled,
3413 	  default_prepare_gif_clear, test_vgif, vgif_finished,
3414 	  vgif_check },
3415 	TEST(svm_cr4_osxsave_test),
3416 	TEST(svm_guest_state_test),
3417 	TEST(svm_vmrun_errata_test),
3418 	TEST(svm_vmload_vmsave),
3419 	TEST(svm_test_singlestep),
3420 	TEST(svm_no_nm_test),
3421 	TEST(svm_exception_test),
3422 	TEST(svm_lbrv_test0),
3423 	TEST(svm_lbrv_test1),
3424 	TEST(svm_lbrv_test2),
3425 	TEST(svm_lbrv_nested_test1),
3426 	TEST(svm_lbrv_nested_test2),
3427 	TEST(svm_intr_intercept_mix_if),
3428 	TEST(svm_intr_intercept_mix_gif),
3429 	TEST(svm_intr_intercept_mix_gif2),
3430 	TEST(svm_intr_intercept_mix_nmi),
3431 	TEST(svm_intr_intercept_mix_smi),
3432 	TEST(svm_tsc_scale_test),
3433 	TEST(pause_filter_test),
3434 	TEST(svm_shutdown_intercept_test),
3435 	{ NULL, NULL, NULL, NULL, NULL, NULL, NULL }
3436 };
3437 
main(int ac,char ** av)3438 int main(int ac, char **av)
3439 {
3440 	setup_vm();
3441 	return run_svm_tests(ac, av, svm_tests);
3442 }
3443