1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3 * Copyright (C) 2006 Rusty Russell IBM Corporation
4 *
5 * Author: Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Inspiration, some code, and most witty comments come from
8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9 *
10 * Generic code for virtio server in host kernel.
11 */
12
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/miscdevice.h>
18 #include <linux/mutex.h>
19 #include <linux/poll.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/kthread.h>
25 #include <linux/cgroup.h>
26 #include <linux/module.h>
27 #include <linux/sort.h>
28 #include <linux/sched/mm.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/vhost_task.h>
31 #include <linux/interval_tree_generic.h>
32 #include <linux/nospec.h>
33 #include <linux/kcov.h>
34
35 #include "vhost.h"
36
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 "Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 "Maximum number of iotlb entries. (default: 2048)");
45 static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK;
46
47 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
48 module_param(fork_from_owner_default, bool, 0444);
49 MODULE_PARM_DESC(fork_from_owner_default,
50 "Set task mode as the default(default: Y)");
51 #endif
52
53 enum {
54 VHOST_MEMORY_F_LOG = 0x1,
55 };
56
57 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
58 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
59
60 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
vhost_disable_cross_endian(struct vhost_virtqueue * vq)61 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
62 {
63 vq->user_be = !virtio_legacy_is_little_endian();
64 }
65
vhost_enable_cross_endian_big(struct vhost_virtqueue * vq)66 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
67 {
68 vq->user_be = true;
69 }
70
vhost_enable_cross_endian_little(struct vhost_virtqueue * vq)71 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
72 {
73 vq->user_be = false;
74 }
75
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)76 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
77 {
78 struct vhost_vring_state s;
79
80 if (vq->private_data)
81 return -EBUSY;
82
83 if (copy_from_user(&s, argp, sizeof(s)))
84 return -EFAULT;
85
86 if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
87 s.num != VHOST_VRING_BIG_ENDIAN)
88 return -EINVAL;
89
90 if (s.num == VHOST_VRING_BIG_ENDIAN)
91 vhost_enable_cross_endian_big(vq);
92 else
93 vhost_enable_cross_endian_little(vq);
94
95 return 0;
96 }
97
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)98 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
99 int __user *argp)
100 {
101 struct vhost_vring_state s = {
102 .index = idx,
103 .num = vq->user_be
104 };
105
106 if (copy_to_user(argp, &s, sizeof(s)))
107 return -EFAULT;
108
109 return 0;
110 }
111
vhost_init_is_le(struct vhost_virtqueue * vq)112 static void vhost_init_is_le(struct vhost_virtqueue *vq)
113 {
114 /* Note for legacy virtio: user_be is initialized at reset time
115 * according to the host endianness. If userspace does not set an
116 * explicit endianness, the default behavior is native endian, as
117 * expected by legacy virtio.
118 */
119 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
120 }
121 #else
vhost_disable_cross_endian(struct vhost_virtqueue * vq)122 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
123 {
124 }
125
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)126 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
127 {
128 return -ENOIOCTLCMD;
129 }
130
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)131 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
132 int __user *argp)
133 {
134 return -ENOIOCTLCMD;
135 }
136
vhost_init_is_le(struct vhost_virtqueue * vq)137 static void vhost_init_is_le(struct vhost_virtqueue *vq)
138 {
139 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
140 || virtio_legacy_is_little_endian();
141 }
142 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
143
vhost_reset_is_le(struct vhost_virtqueue * vq)144 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
145 {
146 vhost_init_is_le(vq);
147 }
148
149 struct vhost_flush_struct {
150 struct vhost_work work;
151 struct completion wait_event;
152 };
153
vhost_flush_work(struct vhost_work * work)154 static void vhost_flush_work(struct vhost_work *work)
155 {
156 struct vhost_flush_struct *s;
157
158 s = container_of(work, struct vhost_flush_struct, work);
159 complete(&s->wait_event);
160 }
161
vhost_poll_func(struct file * file,wait_queue_head_t * wqh,poll_table * pt)162 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
163 poll_table *pt)
164 {
165 struct vhost_poll *poll;
166
167 poll = container_of(pt, struct vhost_poll, table);
168 poll->wqh = wqh;
169 add_wait_queue(wqh, &poll->wait);
170 }
171
vhost_poll_wakeup(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)172 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
173 void *key)
174 {
175 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
176 struct vhost_work *work = &poll->work;
177
178 if (!(key_to_poll(key) & poll->mask))
179 return 0;
180
181 if (!poll->dev->use_worker)
182 work->fn(work);
183 else
184 vhost_poll_queue(poll);
185
186 return 0;
187 }
188
vhost_work_init(struct vhost_work * work,vhost_work_fn_t fn)189 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
190 {
191 clear_bit(VHOST_WORK_QUEUED, &work->flags);
192 work->fn = fn;
193 }
194 EXPORT_SYMBOL_GPL(vhost_work_init);
195
196 /* Init poll structure */
vhost_poll_init(struct vhost_poll * poll,vhost_work_fn_t fn,__poll_t mask,struct vhost_dev * dev,struct vhost_virtqueue * vq)197 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
198 __poll_t mask, struct vhost_dev *dev,
199 struct vhost_virtqueue *vq)
200 {
201 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
202 init_poll_funcptr(&poll->table, vhost_poll_func);
203 poll->mask = mask;
204 poll->dev = dev;
205 poll->wqh = NULL;
206 poll->vq = vq;
207
208 vhost_work_init(&poll->work, fn);
209 }
210 EXPORT_SYMBOL_GPL(vhost_poll_init);
211
212 /* Start polling a file. We add ourselves to file's wait queue. The caller must
213 * keep a reference to a file until after vhost_poll_stop is called. */
vhost_poll_start(struct vhost_poll * poll,struct file * file)214 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
215 {
216 __poll_t mask;
217
218 if (poll->wqh)
219 return 0;
220
221 mask = vfs_poll(file, &poll->table);
222 if (mask)
223 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
224 if (mask & EPOLLERR) {
225 vhost_poll_stop(poll);
226 return -EINVAL;
227 }
228
229 return 0;
230 }
231 EXPORT_SYMBOL_GPL(vhost_poll_start);
232
233 /* Stop polling a file. After this function returns, it becomes safe to drop the
234 * file reference. You must also flush afterwards. */
vhost_poll_stop(struct vhost_poll * poll)235 void vhost_poll_stop(struct vhost_poll *poll)
236 {
237 if (poll->wqh) {
238 remove_wait_queue(poll->wqh, &poll->wait);
239 poll->wqh = NULL;
240 }
241 }
242 EXPORT_SYMBOL_GPL(vhost_poll_stop);
243
vhost_worker_queue(struct vhost_worker * worker,struct vhost_work * work)244 static void vhost_worker_queue(struct vhost_worker *worker,
245 struct vhost_work *work)
246 {
247 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
248 /* We can only add the work to the list after we're
249 * sure it was not in the list.
250 * test_and_set_bit() implies a memory barrier.
251 */
252 llist_add(&work->node, &worker->work_list);
253 worker->ops->wakeup(worker);
254 }
255 }
256
vhost_vq_work_queue(struct vhost_virtqueue * vq,struct vhost_work * work)257 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work)
258 {
259 struct vhost_worker *worker;
260 bool queued = false;
261
262 rcu_read_lock();
263 worker = rcu_dereference(vq->worker);
264 if (worker) {
265 queued = true;
266 vhost_worker_queue(worker, work);
267 }
268 rcu_read_unlock();
269
270 return queued;
271 }
272 EXPORT_SYMBOL_GPL(vhost_vq_work_queue);
273
274 /**
275 * __vhost_worker_flush - flush a worker
276 * @worker: worker to flush
277 *
278 * The worker's flush_mutex must be held.
279 */
__vhost_worker_flush(struct vhost_worker * worker)280 static void __vhost_worker_flush(struct vhost_worker *worker)
281 {
282 struct vhost_flush_struct flush;
283
284 if (!worker->attachment_cnt || worker->killed)
285 return;
286
287 init_completion(&flush.wait_event);
288 vhost_work_init(&flush.work, vhost_flush_work);
289
290 vhost_worker_queue(worker, &flush.work);
291 /*
292 * Drop mutex in case our worker is killed and it needs to take the
293 * mutex to force cleanup.
294 */
295 mutex_unlock(&worker->mutex);
296 wait_for_completion(&flush.wait_event);
297 mutex_lock(&worker->mutex);
298 }
299
vhost_worker_flush(struct vhost_worker * worker)300 static void vhost_worker_flush(struct vhost_worker *worker)
301 {
302 mutex_lock(&worker->mutex);
303 __vhost_worker_flush(worker);
304 mutex_unlock(&worker->mutex);
305 }
306
vhost_dev_flush(struct vhost_dev * dev)307 void vhost_dev_flush(struct vhost_dev *dev)
308 {
309 struct vhost_worker *worker;
310 unsigned long i;
311
312 xa_for_each(&dev->worker_xa, i, worker)
313 vhost_worker_flush(worker);
314 }
315 EXPORT_SYMBOL_GPL(vhost_dev_flush);
316
317 /* A lockless hint for busy polling code to exit the loop */
vhost_vq_has_work(struct vhost_virtqueue * vq)318 bool vhost_vq_has_work(struct vhost_virtqueue *vq)
319 {
320 struct vhost_worker *worker;
321 bool has_work = false;
322
323 rcu_read_lock();
324 worker = rcu_dereference(vq->worker);
325 if (worker && !llist_empty(&worker->work_list))
326 has_work = true;
327 rcu_read_unlock();
328
329 return has_work;
330 }
331 EXPORT_SYMBOL_GPL(vhost_vq_has_work);
332
vhost_poll_queue(struct vhost_poll * poll)333 void vhost_poll_queue(struct vhost_poll *poll)
334 {
335 vhost_vq_work_queue(poll->vq, &poll->work);
336 }
337 EXPORT_SYMBOL_GPL(vhost_poll_queue);
338
__vhost_vq_meta_reset(struct vhost_virtqueue * vq)339 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
340 {
341 int j;
342
343 for (j = 0; j < VHOST_NUM_ADDRS; j++)
344 vq->meta_iotlb[j] = NULL;
345 }
346
vhost_vq_meta_reset(struct vhost_dev * d)347 static void vhost_vq_meta_reset(struct vhost_dev *d)
348 {
349 int i;
350
351 for (i = 0; i < d->nvqs; ++i)
352 __vhost_vq_meta_reset(d->vqs[i]);
353 }
354
vhost_vring_call_reset(struct vhost_vring_call * call_ctx)355 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx)
356 {
357 call_ctx->ctx = NULL;
358 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer));
359 }
360
vhost_vq_is_setup(struct vhost_virtqueue * vq)361 bool vhost_vq_is_setup(struct vhost_virtqueue *vq)
362 {
363 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq);
364 }
365 EXPORT_SYMBOL_GPL(vhost_vq_is_setup);
366
vhost_vq_reset(struct vhost_dev * dev,struct vhost_virtqueue * vq)367 static void vhost_vq_reset(struct vhost_dev *dev,
368 struct vhost_virtqueue *vq)
369 {
370 vq->num = 1;
371 vq->desc = NULL;
372 vq->avail = NULL;
373 vq->used = NULL;
374 vq->last_avail_idx = 0;
375 vq->next_avail_head = 0;
376 vq->avail_idx = 0;
377 vq->last_used_idx = 0;
378 vq->signalled_used = 0;
379 vq->signalled_used_valid = false;
380 vq->used_flags = 0;
381 vq->log_used = false;
382 vq->log_addr = -1ull;
383 vq->private_data = NULL;
384 virtio_features_zero(vq->acked_features_array);
385 vq->acked_backend_features = 0;
386 vq->log_base = NULL;
387 vq->error_ctx = NULL;
388 vq->kick = NULL;
389 vq->log_ctx = NULL;
390 vhost_disable_cross_endian(vq);
391 vhost_reset_is_le(vq);
392 vq->busyloop_timeout = 0;
393 vq->umem = NULL;
394 vq->iotlb = NULL;
395 rcu_assign_pointer(vq->worker, NULL);
396 vhost_vring_call_reset(&vq->call_ctx);
397 __vhost_vq_meta_reset(vq);
398 }
399
vhost_run_work_kthread_list(void * data)400 static int vhost_run_work_kthread_list(void *data)
401 {
402 struct vhost_worker *worker = data;
403 struct vhost_work *work, *work_next;
404 struct vhost_dev *dev = worker->dev;
405 struct llist_node *node;
406
407 kthread_use_mm(dev->mm);
408
409 for (;;) {
410 /* mb paired w/ kthread_stop */
411 set_current_state(TASK_INTERRUPTIBLE);
412
413 if (kthread_should_stop()) {
414 __set_current_state(TASK_RUNNING);
415 break;
416 }
417 node = llist_del_all(&worker->work_list);
418 if (!node)
419 schedule();
420
421 node = llist_reverse_order(node);
422 /* make sure flag is seen after deletion */
423 smp_wmb();
424 llist_for_each_entry_safe(work, work_next, node, node) {
425 clear_bit(VHOST_WORK_QUEUED, &work->flags);
426 __set_current_state(TASK_RUNNING);
427 kcov_remote_start_common(worker->kcov_handle);
428 work->fn(work);
429 kcov_remote_stop();
430 cond_resched();
431 }
432 }
433 kthread_unuse_mm(dev->mm);
434
435 return 0;
436 }
437
vhost_run_work_list(void * data)438 static bool vhost_run_work_list(void *data)
439 {
440 struct vhost_worker *worker = data;
441 struct vhost_work *work, *work_next;
442 struct llist_node *node;
443
444 node = llist_del_all(&worker->work_list);
445 if (node) {
446 __set_current_state(TASK_RUNNING);
447
448 node = llist_reverse_order(node);
449 /* make sure flag is seen after deletion */
450 smp_wmb();
451 llist_for_each_entry_safe(work, work_next, node, node) {
452 clear_bit(VHOST_WORK_QUEUED, &work->flags);
453 kcov_remote_start_common(worker->kcov_handle);
454 work->fn(work);
455 kcov_remote_stop();
456 cond_resched();
457 }
458 }
459
460 return !!node;
461 }
462
vhost_worker_killed(void * data)463 static void vhost_worker_killed(void *data)
464 {
465 struct vhost_worker *worker = data;
466 struct vhost_dev *dev = worker->dev;
467 struct vhost_virtqueue *vq;
468 int i, attach_cnt = 0;
469
470 mutex_lock(&worker->mutex);
471 worker->killed = true;
472
473 for (i = 0; i < dev->nvqs; i++) {
474 vq = dev->vqs[i];
475
476 mutex_lock(&vq->mutex);
477 if (worker ==
478 rcu_dereference_check(vq->worker,
479 lockdep_is_held(&vq->mutex))) {
480 rcu_assign_pointer(vq->worker, NULL);
481 attach_cnt++;
482 }
483 mutex_unlock(&vq->mutex);
484 }
485
486 worker->attachment_cnt -= attach_cnt;
487 if (attach_cnt)
488 synchronize_rcu();
489 /*
490 * Finish vhost_worker_flush calls and any other works that snuck in
491 * before the synchronize_rcu.
492 */
493 vhost_run_work_list(worker);
494 mutex_unlock(&worker->mutex);
495 }
496
vhost_vq_free_iovecs(struct vhost_virtqueue * vq)497 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
498 {
499 kfree(vq->indirect);
500 vq->indirect = NULL;
501 kfree(vq->log);
502 vq->log = NULL;
503 kfree(vq->heads);
504 vq->heads = NULL;
505 kfree(vq->nheads);
506 vq->nheads = NULL;
507 }
508
509 /* Helper to allocate iovec buffers for all vqs. */
vhost_dev_alloc_iovecs(struct vhost_dev * dev)510 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
511 {
512 struct vhost_virtqueue *vq;
513 int i;
514
515 for (i = 0; i < dev->nvqs; ++i) {
516 vq = dev->vqs[i];
517 vq->indirect = kmalloc_array(UIO_MAXIOV,
518 sizeof(*vq->indirect),
519 GFP_KERNEL);
520 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
521 GFP_KERNEL);
522 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
523 GFP_KERNEL);
524 vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads),
525 GFP_KERNEL);
526 if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads)
527 goto err_nomem;
528 }
529 return 0;
530
531 err_nomem:
532 for (; i >= 0; --i)
533 vhost_vq_free_iovecs(dev->vqs[i]);
534 return -ENOMEM;
535 }
536
vhost_dev_free_iovecs(struct vhost_dev * dev)537 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
538 {
539 int i;
540
541 for (i = 0; i < dev->nvqs; ++i)
542 vhost_vq_free_iovecs(dev->vqs[i]);
543 }
544
vhost_exceeds_weight(struct vhost_virtqueue * vq,int pkts,int total_len)545 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
546 int pkts, int total_len)
547 {
548 struct vhost_dev *dev = vq->dev;
549
550 if ((dev->byte_weight && total_len >= dev->byte_weight) ||
551 pkts >= dev->weight) {
552 vhost_poll_queue(&vq->poll);
553 return true;
554 }
555
556 return false;
557 }
558 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
559
vhost_get_avail_size(struct vhost_virtqueue * vq,unsigned int num)560 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq,
561 unsigned int num)
562 {
563 size_t event __maybe_unused =
564 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
565
566 return size_add(struct_size(vq->avail, ring, num), event);
567 }
568
vhost_get_used_size(struct vhost_virtqueue * vq,unsigned int num)569 static size_t vhost_get_used_size(struct vhost_virtqueue *vq,
570 unsigned int num)
571 {
572 size_t event __maybe_unused =
573 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
574
575 return size_add(struct_size(vq->used, ring, num), event);
576 }
577
vhost_get_desc_size(struct vhost_virtqueue * vq,unsigned int num)578 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq,
579 unsigned int num)
580 {
581 return sizeof(*vq->desc) * num;
582 }
583
vhost_dev_init(struct vhost_dev * dev,struct vhost_virtqueue ** vqs,int nvqs,int iov_limit,int weight,int byte_weight,bool use_worker,int (* msg_handler)(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg))584 void vhost_dev_init(struct vhost_dev *dev,
585 struct vhost_virtqueue **vqs, int nvqs,
586 int iov_limit, int weight, int byte_weight,
587 bool use_worker,
588 int (*msg_handler)(struct vhost_dev *dev, u32 asid,
589 struct vhost_iotlb_msg *msg))
590 {
591 struct vhost_virtqueue *vq;
592 int i;
593
594 dev->vqs = vqs;
595 dev->nvqs = nvqs;
596 mutex_init(&dev->mutex);
597 dev->log_ctx = NULL;
598 dev->umem = NULL;
599 dev->iotlb = NULL;
600 dev->mm = NULL;
601 dev->iov_limit = iov_limit;
602 dev->weight = weight;
603 dev->byte_weight = byte_weight;
604 dev->use_worker = use_worker;
605 dev->msg_handler = msg_handler;
606 dev->fork_owner = fork_from_owner_default;
607 init_waitqueue_head(&dev->wait);
608 INIT_LIST_HEAD(&dev->read_list);
609 INIT_LIST_HEAD(&dev->pending_list);
610 spin_lock_init(&dev->iotlb_lock);
611 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC);
612
613 for (i = 0; i < dev->nvqs; ++i) {
614 vq = dev->vqs[i];
615 vq->log = NULL;
616 vq->indirect = NULL;
617 vq->heads = NULL;
618 vq->nheads = NULL;
619 vq->dev = dev;
620 mutex_init(&vq->mutex);
621 vhost_vq_reset(dev, vq);
622 if (vq->handle_kick)
623 vhost_poll_init(&vq->poll, vq->handle_kick,
624 EPOLLIN, dev, vq);
625 }
626 }
627 EXPORT_SYMBOL_GPL(vhost_dev_init);
628
629 /* Caller should have device mutex */
vhost_dev_check_owner(struct vhost_dev * dev)630 long vhost_dev_check_owner(struct vhost_dev *dev)
631 {
632 /* Are you the owner? If not, I don't think you mean to do that */
633 return dev->mm == current->mm ? 0 : -EPERM;
634 }
635 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
636
637 struct vhost_attach_cgroups_struct {
638 struct vhost_work work;
639 struct task_struct *owner;
640 int ret;
641 };
642
vhost_attach_cgroups_work(struct vhost_work * work)643 static void vhost_attach_cgroups_work(struct vhost_work *work)
644 {
645 struct vhost_attach_cgroups_struct *s;
646
647 s = container_of(work, struct vhost_attach_cgroups_struct, work);
648 s->ret = cgroup_attach_task_all(s->owner, current);
649 }
650
vhost_attach_task_to_cgroups(struct vhost_worker * worker)651 static int vhost_attach_task_to_cgroups(struct vhost_worker *worker)
652 {
653 struct vhost_attach_cgroups_struct attach;
654 int saved_cnt;
655
656 attach.owner = current;
657
658 vhost_work_init(&attach.work, vhost_attach_cgroups_work);
659 vhost_worker_queue(worker, &attach.work);
660
661 mutex_lock(&worker->mutex);
662
663 /*
664 * Bypass attachment_cnt check in __vhost_worker_flush:
665 * Temporarily change it to INT_MAX to bypass the check
666 */
667 saved_cnt = worker->attachment_cnt;
668 worker->attachment_cnt = INT_MAX;
669 __vhost_worker_flush(worker);
670 worker->attachment_cnt = saved_cnt;
671
672 mutex_unlock(&worker->mutex);
673
674 return attach.ret;
675 }
676
677 /* Caller should have device mutex */
vhost_dev_has_owner(struct vhost_dev * dev)678 bool vhost_dev_has_owner(struct vhost_dev *dev)
679 {
680 return dev->mm;
681 }
682 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
683
vhost_attach_mm(struct vhost_dev * dev)684 static void vhost_attach_mm(struct vhost_dev *dev)
685 {
686 /* No owner, become one */
687 if (dev->use_worker) {
688 dev->mm = get_task_mm(current);
689 } else {
690 /* vDPA device does not use worker thread, so there's
691 * no need to hold the address space for mm. This helps
692 * to avoid deadlock in the case of mmap() which may
693 * hold the refcnt of the file and depends on release
694 * method to remove vma.
695 */
696 dev->mm = current->mm;
697 mmgrab(dev->mm);
698 }
699 }
700
vhost_detach_mm(struct vhost_dev * dev)701 static void vhost_detach_mm(struct vhost_dev *dev)
702 {
703 if (!dev->mm)
704 return;
705
706 if (dev->use_worker)
707 mmput(dev->mm);
708 else
709 mmdrop(dev->mm);
710
711 dev->mm = NULL;
712 }
713
vhost_worker_destroy(struct vhost_dev * dev,struct vhost_worker * worker)714 static void vhost_worker_destroy(struct vhost_dev *dev,
715 struct vhost_worker *worker)
716 {
717 if (!worker)
718 return;
719
720 WARN_ON(!llist_empty(&worker->work_list));
721 xa_erase(&dev->worker_xa, worker->id);
722 worker->ops->stop(worker);
723 kfree(worker);
724 }
725
vhost_workers_free(struct vhost_dev * dev)726 static void vhost_workers_free(struct vhost_dev *dev)
727 {
728 struct vhost_worker *worker;
729 unsigned long i;
730
731 if (!dev->use_worker)
732 return;
733
734 for (i = 0; i < dev->nvqs; i++)
735 rcu_assign_pointer(dev->vqs[i]->worker, NULL);
736 /*
737 * Free the default worker we created and cleanup workers userspace
738 * created but couldn't clean up (it forgot or crashed).
739 */
740 xa_for_each(&dev->worker_xa, i, worker)
741 vhost_worker_destroy(dev, worker);
742 xa_destroy(&dev->worker_xa);
743 }
744
vhost_task_wakeup(struct vhost_worker * worker)745 static void vhost_task_wakeup(struct vhost_worker *worker)
746 {
747 return vhost_task_wake(worker->vtsk);
748 }
749
vhost_kthread_wakeup(struct vhost_worker * worker)750 static void vhost_kthread_wakeup(struct vhost_worker *worker)
751 {
752 wake_up_process(worker->kthread_task);
753 }
754
vhost_task_do_stop(struct vhost_worker * worker)755 static void vhost_task_do_stop(struct vhost_worker *worker)
756 {
757 return vhost_task_stop(worker->vtsk);
758 }
759
vhost_kthread_do_stop(struct vhost_worker * worker)760 static void vhost_kthread_do_stop(struct vhost_worker *worker)
761 {
762 kthread_stop(worker->kthread_task);
763 }
764
vhost_task_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)765 static int vhost_task_worker_create(struct vhost_worker *worker,
766 struct vhost_dev *dev, const char *name)
767 {
768 struct vhost_task *vtsk;
769 u32 id;
770 int ret;
771
772 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed,
773 worker, name);
774 if (IS_ERR(vtsk))
775 return PTR_ERR(vtsk);
776
777 worker->vtsk = vtsk;
778 vhost_task_start(vtsk);
779 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
780 if (ret < 0) {
781 vhost_task_do_stop(worker);
782 return ret;
783 }
784 worker->id = id;
785 return 0;
786 }
787
vhost_kthread_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)788 static int vhost_kthread_worker_create(struct vhost_worker *worker,
789 struct vhost_dev *dev, const char *name)
790 {
791 struct task_struct *task;
792 u32 id;
793 int ret;
794
795 task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name);
796 if (IS_ERR(task))
797 return PTR_ERR(task);
798
799 worker->kthread_task = task;
800 wake_up_process(task);
801 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
802 if (ret < 0)
803 goto stop_worker;
804
805 ret = vhost_attach_task_to_cgroups(worker);
806 if (ret)
807 goto stop_worker;
808
809 worker->id = id;
810 return 0;
811
812 stop_worker:
813 vhost_kthread_do_stop(worker);
814 return ret;
815 }
816
817 static const struct vhost_worker_ops kthread_ops = {
818 .create = vhost_kthread_worker_create,
819 .stop = vhost_kthread_do_stop,
820 .wakeup = vhost_kthread_wakeup,
821 };
822
823 static const struct vhost_worker_ops vhost_task_ops = {
824 .create = vhost_task_worker_create,
825 .stop = vhost_task_do_stop,
826 .wakeup = vhost_task_wakeup,
827 };
828
vhost_worker_create(struct vhost_dev * dev)829 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev)
830 {
831 struct vhost_worker *worker;
832 char name[TASK_COMM_LEN];
833 int ret;
834 const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops :
835 &kthread_ops;
836
837 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT);
838 if (!worker)
839 return NULL;
840
841 worker->dev = dev;
842 worker->ops = ops;
843 snprintf(name, sizeof(name), "vhost-%d", current->pid);
844
845 mutex_init(&worker->mutex);
846 init_llist_head(&worker->work_list);
847 worker->kcov_handle = kcov_common_handle();
848 ret = ops->create(worker, dev, name);
849 if (ret < 0)
850 goto free_worker;
851
852 return worker;
853
854 free_worker:
855 kfree(worker);
856 return NULL;
857 }
858
859 /* Caller must have device mutex */
__vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_worker * worker)860 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq,
861 struct vhost_worker *worker)
862 {
863 struct vhost_worker *old_worker;
864
865 mutex_lock(&worker->mutex);
866 if (worker->killed) {
867 mutex_unlock(&worker->mutex);
868 return;
869 }
870
871 mutex_lock(&vq->mutex);
872
873 old_worker = rcu_dereference_check(vq->worker,
874 lockdep_is_held(&vq->mutex));
875 rcu_assign_pointer(vq->worker, worker);
876 worker->attachment_cnt++;
877
878 if (!old_worker) {
879 mutex_unlock(&vq->mutex);
880 mutex_unlock(&worker->mutex);
881 return;
882 }
883 mutex_unlock(&vq->mutex);
884 mutex_unlock(&worker->mutex);
885
886 /*
887 * Take the worker mutex to make sure we see the work queued from
888 * device wide flushes which doesn't use RCU for execution.
889 */
890 mutex_lock(&old_worker->mutex);
891 if (old_worker->killed) {
892 mutex_unlock(&old_worker->mutex);
893 return;
894 }
895
896 /*
897 * We don't want to call synchronize_rcu for every vq during setup
898 * because it will slow down VM startup. If we haven't done
899 * VHOST_SET_VRING_KICK and not done the driver specific
900 * SET_ENDPOINT/RUNNING then we can skip the sync since there will
901 * not be any works queued for scsi and net.
902 */
903 mutex_lock(&vq->mutex);
904 if (!vhost_vq_get_backend(vq) && !vq->kick) {
905 mutex_unlock(&vq->mutex);
906
907 old_worker->attachment_cnt--;
908 mutex_unlock(&old_worker->mutex);
909 /*
910 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID.
911 * Warn if it adds support for multiple workers but forgets to
912 * handle the early queueing case.
913 */
914 WARN_ON(!old_worker->attachment_cnt &&
915 !llist_empty(&old_worker->work_list));
916 return;
917 }
918 mutex_unlock(&vq->mutex);
919
920 /* Make sure new vq queue/flush/poll calls see the new worker */
921 synchronize_rcu();
922 /* Make sure whatever was queued gets run */
923 __vhost_worker_flush(old_worker);
924 old_worker->attachment_cnt--;
925 mutex_unlock(&old_worker->mutex);
926 }
927
928 /* Caller must have device mutex */
vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_vring_worker * info)929 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq,
930 struct vhost_vring_worker *info)
931 {
932 unsigned long index = info->worker_id;
933 struct vhost_dev *dev = vq->dev;
934 struct vhost_worker *worker;
935
936 if (!dev->use_worker)
937 return -EINVAL;
938
939 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
940 if (!worker || worker->id != info->worker_id)
941 return -ENODEV;
942
943 __vhost_vq_attach_worker(vq, worker);
944 return 0;
945 }
946
947 /* Caller must have device mutex */
vhost_new_worker(struct vhost_dev * dev,struct vhost_worker_state * info)948 static int vhost_new_worker(struct vhost_dev *dev,
949 struct vhost_worker_state *info)
950 {
951 struct vhost_worker *worker;
952
953 worker = vhost_worker_create(dev);
954 if (!worker)
955 return -ENOMEM;
956
957 info->worker_id = worker->id;
958 return 0;
959 }
960
961 /* Caller must have device mutex */
vhost_free_worker(struct vhost_dev * dev,struct vhost_worker_state * info)962 static int vhost_free_worker(struct vhost_dev *dev,
963 struct vhost_worker_state *info)
964 {
965 unsigned long index = info->worker_id;
966 struct vhost_worker *worker;
967
968 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
969 if (!worker || worker->id != info->worker_id)
970 return -ENODEV;
971
972 mutex_lock(&worker->mutex);
973 if (worker->attachment_cnt || worker->killed) {
974 mutex_unlock(&worker->mutex);
975 return -EBUSY;
976 }
977 /*
978 * A flush might have raced and snuck in before attachment_cnt was set
979 * to zero. Make sure flushes are flushed from the queue before
980 * freeing.
981 */
982 __vhost_worker_flush(worker);
983 mutex_unlock(&worker->mutex);
984
985 vhost_worker_destroy(dev, worker);
986 return 0;
987 }
988
vhost_get_vq_from_user(struct vhost_dev * dev,void __user * argp,struct vhost_virtqueue ** vq,u32 * id)989 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp,
990 struct vhost_virtqueue **vq, u32 *id)
991 {
992 u32 __user *idxp = argp;
993 u32 idx;
994 long r;
995
996 r = get_user(idx, idxp);
997 if (r < 0)
998 return r;
999
1000 if (idx >= dev->nvqs)
1001 return -ENOBUFS;
1002
1003 idx = array_index_nospec(idx, dev->nvqs);
1004
1005 *vq = dev->vqs[idx];
1006 *id = idx;
1007 return 0;
1008 }
1009
1010 /* Caller must have device mutex */
vhost_worker_ioctl(struct vhost_dev * dev,unsigned int ioctl,void __user * argp)1011 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl,
1012 void __user *argp)
1013 {
1014 struct vhost_vring_worker ring_worker;
1015 struct vhost_worker_state state;
1016 struct vhost_worker *worker;
1017 struct vhost_virtqueue *vq;
1018 long ret;
1019 u32 idx;
1020
1021 if (!dev->use_worker)
1022 return -EINVAL;
1023
1024 if (!vhost_dev_has_owner(dev))
1025 return -EINVAL;
1026
1027 ret = vhost_dev_check_owner(dev);
1028 if (ret)
1029 return ret;
1030
1031 switch (ioctl) {
1032 /* dev worker ioctls */
1033 case VHOST_NEW_WORKER:
1034 /*
1035 * vhost_tasks will account for worker threads under the parent's
1036 * NPROC value but kthreads do not. To avoid userspace overflowing
1037 * the system with worker threads fork_owner must be true.
1038 */
1039 if (!dev->fork_owner)
1040 return -EFAULT;
1041
1042 ret = vhost_new_worker(dev, &state);
1043 if (!ret && copy_to_user(argp, &state, sizeof(state)))
1044 ret = -EFAULT;
1045 return ret;
1046 case VHOST_FREE_WORKER:
1047 if (copy_from_user(&state, argp, sizeof(state)))
1048 return -EFAULT;
1049 return vhost_free_worker(dev, &state);
1050 /* vring worker ioctls */
1051 case VHOST_ATTACH_VRING_WORKER:
1052 case VHOST_GET_VRING_WORKER:
1053 break;
1054 default:
1055 return -ENOIOCTLCMD;
1056 }
1057
1058 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx);
1059 if (ret)
1060 return ret;
1061
1062 switch (ioctl) {
1063 case VHOST_ATTACH_VRING_WORKER:
1064 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) {
1065 ret = -EFAULT;
1066 break;
1067 }
1068
1069 ret = vhost_vq_attach_worker(vq, &ring_worker);
1070 break;
1071 case VHOST_GET_VRING_WORKER:
1072 worker = rcu_dereference_check(vq->worker,
1073 lockdep_is_held(&dev->mutex));
1074 if (!worker) {
1075 ret = -EINVAL;
1076 break;
1077 }
1078
1079 ring_worker.index = idx;
1080 ring_worker.worker_id = worker->id;
1081
1082 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker)))
1083 ret = -EFAULT;
1084 break;
1085 default:
1086 ret = -ENOIOCTLCMD;
1087 break;
1088 }
1089
1090 return ret;
1091 }
1092 EXPORT_SYMBOL_GPL(vhost_worker_ioctl);
1093
1094 /* Caller should have device mutex */
vhost_dev_set_owner(struct vhost_dev * dev)1095 long vhost_dev_set_owner(struct vhost_dev *dev)
1096 {
1097 struct vhost_worker *worker;
1098 int err, i;
1099
1100 /* Is there an owner already? */
1101 if (vhost_dev_has_owner(dev)) {
1102 err = -EBUSY;
1103 goto err_mm;
1104 }
1105
1106 vhost_attach_mm(dev);
1107
1108 err = vhost_dev_alloc_iovecs(dev);
1109 if (err)
1110 goto err_iovecs;
1111
1112 if (dev->use_worker) {
1113 /*
1114 * This should be done last, because vsock can queue work
1115 * before VHOST_SET_OWNER so it simplifies the failure path
1116 * below since we don't have to worry about vsock queueing
1117 * while we free the worker.
1118 */
1119 worker = vhost_worker_create(dev);
1120 if (!worker) {
1121 err = -ENOMEM;
1122 goto err_worker;
1123 }
1124
1125 for (i = 0; i < dev->nvqs; i++)
1126 __vhost_vq_attach_worker(dev->vqs[i], worker);
1127 }
1128
1129 return 0;
1130
1131 err_worker:
1132 vhost_dev_free_iovecs(dev);
1133 err_iovecs:
1134 vhost_detach_mm(dev);
1135 err_mm:
1136 return err;
1137 }
1138 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
1139
iotlb_alloc(void)1140 static struct vhost_iotlb *iotlb_alloc(void)
1141 {
1142 return vhost_iotlb_alloc(max_iotlb_entries,
1143 VHOST_IOTLB_FLAG_RETIRE);
1144 }
1145
vhost_dev_reset_owner_prepare(void)1146 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void)
1147 {
1148 return iotlb_alloc();
1149 }
1150 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
1151
1152 /* Caller should have device mutex */
vhost_dev_reset_owner(struct vhost_dev * dev,struct vhost_iotlb * umem)1153 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem)
1154 {
1155 int i;
1156
1157 vhost_dev_cleanup(dev);
1158
1159 dev->fork_owner = fork_from_owner_default;
1160 dev->umem = umem;
1161 /* We don't need VQ locks below since vhost_dev_cleanup makes sure
1162 * VQs aren't running.
1163 */
1164 for (i = 0; i < dev->nvqs; ++i)
1165 dev->vqs[i]->umem = umem;
1166 }
1167 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
1168
vhost_dev_stop(struct vhost_dev * dev)1169 void vhost_dev_stop(struct vhost_dev *dev)
1170 {
1171 int i;
1172
1173 for (i = 0; i < dev->nvqs; ++i) {
1174 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick)
1175 vhost_poll_stop(&dev->vqs[i]->poll);
1176 }
1177
1178 vhost_dev_flush(dev);
1179 }
1180 EXPORT_SYMBOL_GPL(vhost_dev_stop);
1181
vhost_clear_msg(struct vhost_dev * dev)1182 void vhost_clear_msg(struct vhost_dev *dev)
1183 {
1184 struct vhost_msg_node *node, *n;
1185
1186 spin_lock(&dev->iotlb_lock);
1187
1188 list_for_each_entry_safe(node, n, &dev->read_list, node) {
1189 list_del(&node->node);
1190 kfree(node);
1191 }
1192
1193 list_for_each_entry_safe(node, n, &dev->pending_list, node) {
1194 list_del(&node->node);
1195 kfree(node);
1196 }
1197
1198 spin_unlock(&dev->iotlb_lock);
1199 }
1200 EXPORT_SYMBOL_GPL(vhost_clear_msg);
1201
vhost_dev_cleanup(struct vhost_dev * dev)1202 void vhost_dev_cleanup(struct vhost_dev *dev)
1203 {
1204 int i;
1205
1206 for (i = 0; i < dev->nvqs; ++i) {
1207 if (dev->vqs[i]->error_ctx)
1208 eventfd_ctx_put(dev->vqs[i]->error_ctx);
1209 if (dev->vqs[i]->kick)
1210 fput(dev->vqs[i]->kick);
1211 if (dev->vqs[i]->call_ctx.ctx)
1212 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx);
1213 vhost_vq_reset(dev, dev->vqs[i]);
1214 }
1215 vhost_dev_free_iovecs(dev);
1216 if (dev->log_ctx)
1217 eventfd_ctx_put(dev->log_ctx);
1218 dev->log_ctx = NULL;
1219 /* No one will access memory at this point */
1220 vhost_iotlb_free(dev->umem);
1221 dev->umem = NULL;
1222 vhost_iotlb_free(dev->iotlb);
1223 dev->iotlb = NULL;
1224 vhost_clear_msg(dev);
1225 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
1226 vhost_workers_free(dev);
1227 vhost_detach_mm(dev);
1228 }
1229 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
1230
log_access_ok(void __user * log_base,u64 addr,unsigned long sz)1231 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
1232 {
1233 u64 a = addr / VHOST_PAGE_SIZE / 8;
1234
1235 /* Make sure 64 bit math will not overflow. */
1236 if (a > ULONG_MAX - (unsigned long)log_base ||
1237 a + (unsigned long)log_base > ULONG_MAX)
1238 return false;
1239
1240 return access_ok(log_base + a,
1241 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
1242 }
1243
1244 /* Make sure 64 bit math will not overflow. */
vhost_overflow(u64 uaddr,u64 size)1245 static bool vhost_overflow(u64 uaddr, u64 size)
1246 {
1247 if (uaddr > ULONG_MAX || size > ULONG_MAX)
1248 return true;
1249
1250 if (!size)
1251 return false;
1252
1253 return uaddr > ULONG_MAX - size + 1;
1254 }
1255
1256 /* Caller should have vq mutex and device mutex. */
vq_memory_access_ok(void __user * log_base,struct vhost_iotlb * umem,int log_all)1257 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem,
1258 int log_all)
1259 {
1260 struct vhost_iotlb_map *map;
1261
1262 if (!umem)
1263 return false;
1264
1265 list_for_each_entry(map, &umem->list, link) {
1266 unsigned long a = map->addr;
1267
1268 if (vhost_overflow(map->addr, map->size))
1269 return false;
1270
1271
1272 if (!access_ok((void __user *)a, map->size))
1273 return false;
1274 else if (log_all && !log_access_ok(log_base,
1275 map->start,
1276 map->size))
1277 return false;
1278 }
1279 return true;
1280 }
1281
vhost_vq_meta_fetch(struct vhost_virtqueue * vq,u64 addr,unsigned int size,int type)1282 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
1283 u64 addr, unsigned int size,
1284 int type)
1285 {
1286 const struct vhost_iotlb_map *map = vq->meta_iotlb[type];
1287
1288 if (!map)
1289 return NULL;
1290
1291 return (void __user *)(uintptr_t)(map->addr + addr - map->start);
1292 }
1293
1294 /* Can we switch to this memory table? */
1295 /* Caller should have device mutex but not vq mutex */
memory_access_ok(struct vhost_dev * d,struct vhost_iotlb * umem,int log_all)1296 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem,
1297 int log_all)
1298 {
1299 int i;
1300
1301 for (i = 0; i < d->nvqs; ++i) {
1302 bool ok;
1303 bool log;
1304
1305 mutex_lock(&d->vqs[i]->mutex);
1306 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
1307 /* If ring is inactive, will check when it's enabled. */
1308 if (d->vqs[i]->private_data)
1309 ok = vq_memory_access_ok(d->vqs[i]->log_base,
1310 umem, log);
1311 else
1312 ok = true;
1313 mutex_unlock(&d->vqs[i]->mutex);
1314 if (!ok)
1315 return false;
1316 }
1317 return true;
1318 }
1319
1320 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1321 struct iovec iov[], int iov_size, int access);
1322
vhost_copy_to_user(struct vhost_virtqueue * vq,void __user * to,const void * from,unsigned size)1323 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
1324 const void *from, unsigned size)
1325 {
1326 int ret;
1327
1328 if (!vq->iotlb)
1329 return __copy_to_user(to, from, size);
1330 else {
1331 /* This function should be called after iotlb
1332 * prefetch, which means we're sure that all vq
1333 * could be access through iotlb. So -EAGAIN should
1334 * not happen in this case.
1335 */
1336 struct iov_iter t;
1337 void __user *uaddr = vhost_vq_meta_fetch(vq,
1338 (u64)(uintptr_t)to, size,
1339 VHOST_ADDR_USED);
1340
1341 if (uaddr)
1342 return __copy_to_user(uaddr, from, size);
1343
1344 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
1345 ARRAY_SIZE(vq->iotlb_iov),
1346 VHOST_ACCESS_WO);
1347 if (ret < 0)
1348 goto out;
1349 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size);
1350 ret = copy_to_iter(from, size, &t);
1351 if (ret == size)
1352 ret = 0;
1353 }
1354 out:
1355 return ret;
1356 }
1357
vhost_copy_from_user(struct vhost_virtqueue * vq,void * to,void __user * from,unsigned size)1358 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
1359 void __user *from, unsigned size)
1360 {
1361 int ret;
1362
1363 if (!vq->iotlb)
1364 return __copy_from_user(to, from, size);
1365 else {
1366 /* This function should be called after iotlb
1367 * prefetch, which means we're sure that vq
1368 * could be access through iotlb. So -EAGAIN should
1369 * not happen in this case.
1370 */
1371 void __user *uaddr = vhost_vq_meta_fetch(vq,
1372 (u64)(uintptr_t)from, size,
1373 VHOST_ADDR_DESC);
1374 struct iov_iter f;
1375
1376 if (uaddr)
1377 return __copy_from_user(to, uaddr, size);
1378
1379 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
1380 ARRAY_SIZE(vq->iotlb_iov),
1381 VHOST_ACCESS_RO);
1382 if (ret < 0) {
1383 vq_err(vq, "IOTLB translation failure: uaddr "
1384 "%p size 0x%llx\n", from,
1385 (unsigned long long) size);
1386 goto out;
1387 }
1388 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size);
1389 ret = copy_from_iter(to, size, &f);
1390 if (ret == size)
1391 ret = 0;
1392 }
1393
1394 out:
1395 return ret;
1396 }
1397
__vhost_get_user_slow(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1398 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
1399 void __user *addr, unsigned int size,
1400 int type)
1401 {
1402 int ret;
1403
1404 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
1405 ARRAY_SIZE(vq->iotlb_iov),
1406 VHOST_ACCESS_RO);
1407 if (ret < 0) {
1408 vq_err(vq, "IOTLB translation failure: uaddr "
1409 "%p size 0x%llx\n", addr,
1410 (unsigned long long) size);
1411 return NULL;
1412 }
1413
1414 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
1415 vq_err(vq, "Non atomic userspace memory access: uaddr "
1416 "%p size 0x%llx\n", addr,
1417 (unsigned long long) size);
1418 return NULL;
1419 }
1420
1421 return vq->iotlb_iov[0].iov_base;
1422 }
1423
1424 /* This function should be called after iotlb
1425 * prefetch, which means we're sure that vq
1426 * could be access through iotlb. So -EAGAIN should
1427 * not happen in this case.
1428 */
__vhost_get_user(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1429 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
1430 void __user *addr, unsigned int size,
1431 int type)
1432 {
1433 void __user *uaddr = vhost_vq_meta_fetch(vq,
1434 (u64)(uintptr_t)addr, size, type);
1435 if (uaddr)
1436 return uaddr;
1437
1438 return __vhost_get_user_slow(vq, addr, size, type);
1439 }
1440
1441 #define vhost_put_user(vq, x, ptr) \
1442 ({ \
1443 int ret; \
1444 if (!vq->iotlb) { \
1445 ret = __put_user(x, ptr); \
1446 } else { \
1447 __typeof__(ptr) to = \
1448 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1449 sizeof(*ptr), VHOST_ADDR_USED); \
1450 if (to != NULL) \
1451 ret = __put_user(x, to); \
1452 else \
1453 ret = -EFAULT; \
1454 } \
1455 ret; \
1456 })
1457
vhost_put_avail_event(struct vhost_virtqueue * vq)1458 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq)
1459 {
1460 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1461 vhost_avail_event(vq));
1462 }
1463
vhost_put_used(struct vhost_virtqueue * vq,struct vring_used_elem * head,int idx,int count)1464 static inline int vhost_put_used(struct vhost_virtqueue *vq,
1465 struct vring_used_elem *head, int idx,
1466 int count)
1467 {
1468 return vhost_copy_to_user(vq, vq->used->ring + idx, head,
1469 count * sizeof(*head));
1470 }
1471
vhost_put_used_flags(struct vhost_virtqueue * vq)1472 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq)
1473
1474 {
1475 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1476 &vq->used->flags);
1477 }
1478
vhost_put_used_idx(struct vhost_virtqueue * vq)1479 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq)
1480
1481 {
1482 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
1483 &vq->used->idx);
1484 }
1485
1486 #define vhost_get_user(vq, x, ptr, type) \
1487 ({ \
1488 int ret; \
1489 if (!vq->iotlb) { \
1490 ret = __get_user(x, ptr); \
1491 } else { \
1492 __typeof__(ptr) from = \
1493 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1494 sizeof(*ptr), \
1495 type); \
1496 if (from != NULL) \
1497 ret = __get_user(x, from); \
1498 else \
1499 ret = -EFAULT; \
1500 } \
1501 ret; \
1502 })
1503
1504 #define vhost_get_avail(vq, x, ptr) \
1505 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
1506
1507 #define vhost_get_used(vq, x, ptr) \
1508 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
1509
vhost_dev_lock_vqs(struct vhost_dev * d)1510 static void vhost_dev_lock_vqs(struct vhost_dev *d)
1511 {
1512 int i = 0;
1513 for (i = 0; i < d->nvqs; ++i)
1514 mutex_lock_nested(&d->vqs[i]->mutex, i);
1515 }
1516
vhost_dev_unlock_vqs(struct vhost_dev * d)1517 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
1518 {
1519 int i = 0;
1520 for (i = 0; i < d->nvqs; ++i)
1521 mutex_unlock(&d->vqs[i]->mutex);
1522 }
1523
vhost_get_avail_idx(struct vhost_virtqueue * vq)1524 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq)
1525 {
1526 __virtio16 idx;
1527 int r;
1528
1529 r = vhost_get_avail(vq, idx, &vq->avail->idx);
1530 if (unlikely(r < 0)) {
1531 vq_err(vq, "Failed to access available index at %p (%d)\n",
1532 &vq->avail->idx, r);
1533 return r;
1534 }
1535
1536 /* Check it isn't doing very strange thing with available indexes */
1537 vq->avail_idx = vhost16_to_cpu(vq, idx);
1538 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) {
1539 vq_err(vq, "Invalid available index change from %u to %u",
1540 vq->last_avail_idx, vq->avail_idx);
1541 return -EINVAL;
1542 }
1543
1544 /* We're done if there is nothing new */
1545 if (vq->avail_idx == vq->last_avail_idx)
1546 return 0;
1547
1548 /*
1549 * We updated vq->avail_idx so we need a memory barrier between
1550 * the index read above and the caller reading avail ring entries.
1551 */
1552 smp_rmb();
1553 return 1;
1554 }
1555
vhost_get_avail_head(struct vhost_virtqueue * vq,__virtio16 * head,int idx)1556 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq,
1557 __virtio16 *head, int idx)
1558 {
1559 return vhost_get_avail(vq, *head,
1560 &vq->avail->ring[idx & (vq->num - 1)]);
1561 }
1562
vhost_get_avail_flags(struct vhost_virtqueue * vq,__virtio16 * flags)1563 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq,
1564 __virtio16 *flags)
1565 {
1566 return vhost_get_avail(vq, *flags, &vq->avail->flags);
1567 }
1568
vhost_get_used_event(struct vhost_virtqueue * vq,__virtio16 * event)1569 static inline int vhost_get_used_event(struct vhost_virtqueue *vq,
1570 __virtio16 *event)
1571 {
1572 return vhost_get_avail(vq, *event, vhost_used_event(vq));
1573 }
1574
vhost_get_used_idx(struct vhost_virtqueue * vq,__virtio16 * idx)1575 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq,
1576 __virtio16 *idx)
1577 {
1578 return vhost_get_used(vq, *idx, &vq->used->idx);
1579 }
1580
vhost_get_desc(struct vhost_virtqueue * vq,struct vring_desc * desc,int idx)1581 static inline int vhost_get_desc(struct vhost_virtqueue *vq,
1582 struct vring_desc *desc, int idx)
1583 {
1584 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc));
1585 }
1586
vhost_iotlb_notify_vq(struct vhost_dev * d,struct vhost_iotlb_msg * msg)1587 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
1588 struct vhost_iotlb_msg *msg)
1589 {
1590 struct vhost_msg_node *node, *n;
1591
1592 spin_lock(&d->iotlb_lock);
1593
1594 list_for_each_entry_safe(node, n, &d->pending_list, node) {
1595 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
1596 if (msg->iova <= vq_msg->iova &&
1597 msg->iova + msg->size - 1 >= vq_msg->iova &&
1598 vq_msg->type == VHOST_IOTLB_MISS) {
1599 vhost_poll_queue(&node->vq->poll);
1600 list_del(&node->node);
1601 kfree(node);
1602 }
1603 }
1604
1605 spin_unlock(&d->iotlb_lock);
1606 }
1607
umem_access_ok(u64 uaddr,u64 size,int access)1608 static bool umem_access_ok(u64 uaddr, u64 size, int access)
1609 {
1610 unsigned long a = uaddr;
1611
1612 /* Make sure 64 bit math will not overflow. */
1613 if (vhost_overflow(uaddr, size))
1614 return false;
1615
1616 if ((access & VHOST_ACCESS_RO) &&
1617 !access_ok((void __user *)a, size))
1618 return false;
1619 if ((access & VHOST_ACCESS_WO) &&
1620 !access_ok((void __user *)a, size))
1621 return false;
1622 return true;
1623 }
1624
vhost_process_iotlb_msg(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg)1625 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid,
1626 struct vhost_iotlb_msg *msg)
1627 {
1628 int ret = 0;
1629
1630 if (asid != 0)
1631 return -EINVAL;
1632
1633 mutex_lock(&dev->mutex);
1634 vhost_dev_lock_vqs(dev);
1635 switch (msg->type) {
1636 case VHOST_IOTLB_UPDATE:
1637 if (!dev->iotlb) {
1638 ret = -EFAULT;
1639 break;
1640 }
1641 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1642 ret = -EFAULT;
1643 break;
1644 }
1645 vhost_vq_meta_reset(dev);
1646 if (vhost_iotlb_add_range(dev->iotlb, msg->iova,
1647 msg->iova + msg->size - 1,
1648 msg->uaddr, msg->perm)) {
1649 ret = -ENOMEM;
1650 break;
1651 }
1652 vhost_iotlb_notify_vq(dev, msg);
1653 break;
1654 case VHOST_IOTLB_INVALIDATE:
1655 if (!dev->iotlb) {
1656 ret = -EFAULT;
1657 break;
1658 }
1659 vhost_vq_meta_reset(dev);
1660 vhost_iotlb_del_range(dev->iotlb, msg->iova,
1661 msg->iova + msg->size - 1);
1662 break;
1663 default:
1664 ret = -EINVAL;
1665 break;
1666 }
1667
1668 vhost_dev_unlock_vqs(dev);
1669 mutex_unlock(&dev->mutex);
1670
1671 return ret;
1672 }
vhost_chr_write_iter(struct vhost_dev * dev,struct iov_iter * from)1673 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1674 struct iov_iter *from)
1675 {
1676 struct vhost_iotlb_msg msg;
1677 size_t offset;
1678 int type, ret;
1679 u32 asid = 0;
1680
1681 ret = copy_from_iter(&type, sizeof(type), from);
1682 if (ret != sizeof(type)) {
1683 ret = -EINVAL;
1684 goto done;
1685 }
1686
1687 switch (type) {
1688 case VHOST_IOTLB_MSG:
1689 /* There maybe a hole after type for V1 message type,
1690 * so skip it here.
1691 */
1692 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1693 break;
1694 case VHOST_IOTLB_MSG_V2:
1695 if (vhost_backend_has_feature(dev->vqs[0],
1696 VHOST_BACKEND_F_IOTLB_ASID)) {
1697 ret = copy_from_iter(&asid, sizeof(asid), from);
1698 if (ret != sizeof(asid)) {
1699 ret = -EINVAL;
1700 goto done;
1701 }
1702 offset = 0;
1703 } else
1704 offset = sizeof(__u32);
1705 break;
1706 default:
1707 ret = -EINVAL;
1708 goto done;
1709 }
1710
1711 iov_iter_advance(from, offset);
1712 ret = copy_from_iter(&msg, sizeof(msg), from);
1713 if (ret != sizeof(msg)) {
1714 ret = -EINVAL;
1715 goto done;
1716 }
1717
1718 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) {
1719 ret = -EINVAL;
1720 goto done;
1721 }
1722
1723 if (dev->msg_handler)
1724 ret = dev->msg_handler(dev, asid, &msg);
1725 else
1726 ret = vhost_process_iotlb_msg(dev, asid, &msg);
1727 if (ret) {
1728 ret = -EFAULT;
1729 goto done;
1730 }
1731
1732 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1733 sizeof(struct vhost_msg_v2);
1734 done:
1735 return ret;
1736 }
1737 EXPORT_SYMBOL(vhost_chr_write_iter);
1738
vhost_chr_poll(struct file * file,struct vhost_dev * dev,poll_table * wait)1739 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1740 poll_table *wait)
1741 {
1742 __poll_t mask = 0;
1743
1744 poll_wait(file, &dev->wait, wait);
1745
1746 if (!list_empty(&dev->read_list))
1747 mask |= EPOLLIN | EPOLLRDNORM;
1748
1749 return mask;
1750 }
1751 EXPORT_SYMBOL(vhost_chr_poll);
1752
vhost_chr_read_iter(struct vhost_dev * dev,struct iov_iter * to,int noblock)1753 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1754 int noblock)
1755 {
1756 DEFINE_WAIT(wait);
1757 struct vhost_msg_node *node;
1758 ssize_t ret = 0;
1759 unsigned size = sizeof(struct vhost_msg);
1760
1761 if (iov_iter_count(to) < size)
1762 return 0;
1763
1764 while (1) {
1765 if (!noblock)
1766 prepare_to_wait(&dev->wait, &wait,
1767 TASK_INTERRUPTIBLE);
1768
1769 node = vhost_dequeue_msg(dev, &dev->read_list);
1770 if (node)
1771 break;
1772 if (noblock) {
1773 ret = -EAGAIN;
1774 break;
1775 }
1776 if (signal_pending(current)) {
1777 ret = -ERESTARTSYS;
1778 break;
1779 }
1780 if (!dev->iotlb) {
1781 ret = -EBADFD;
1782 break;
1783 }
1784
1785 schedule();
1786 }
1787
1788 if (!noblock)
1789 finish_wait(&dev->wait, &wait);
1790
1791 if (node) {
1792 struct vhost_iotlb_msg *msg;
1793 void *start = &node->msg;
1794
1795 switch (node->msg.type) {
1796 case VHOST_IOTLB_MSG:
1797 size = sizeof(node->msg);
1798 msg = &node->msg.iotlb;
1799 break;
1800 case VHOST_IOTLB_MSG_V2:
1801 size = sizeof(node->msg_v2);
1802 msg = &node->msg_v2.iotlb;
1803 break;
1804 default:
1805 BUG();
1806 break;
1807 }
1808
1809 ret = copy_to_iter(start, size, to);
1810 if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1811 kfree(node);
1812 return ret;
1813 }
1814 vhost_enqueue_msg(dev, &dev->pending_list, node);
1815 }
1816
1817 return ret;
1818 }
1819 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1820
vhost_iotlb_miss(struct vhost_virtqueue * vq,u64 iova,int access)1821 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1822 {
1823 struct vhost_dev *dev = vq->dev;
1824 struct vhost_msg_node *node;
1825 struct vhost_iotlb_msg *msg;
1826 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1827
1828 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1829 if (!node)
1830 return -ENOMEM;
1831
1832 if (v2) {
1833 node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1834 msg = &node->msg_v2.iotlb;
1835 } else {
1836 msg = &node->msg.iotlb;
1837 }
1838
1839 msg->type = VHOST_IOTLB_MISS;
1840 msg->iova = iova;
1841 msg->perm = access;
1842
1843 vhost_enqueue_msg(dev, &dev->read_list, node);
1844
1845 return 0;
1846 }
1847
vq_access_ok(struct vhost_virtqueue * vq,unsigned int num,vring_desc_t __user * desc,vring_avail_t __user * avail,vring_used_t __user * used)1848 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1849 vring_desc_t __user *desc,
1850 vring_avail_t __user *avail,
1851 vring_used_t __user *used)
1852
1853 {
1854 /* If an IOTLB device is present, the vring addresses are
1855 * GIOVAs. Access validation occurs at prefetch time. */
1856 if (vq->iotlb)
1857 return true;
1858
1859 return access_ok(desc, vhost_get_desc_size(vq, num)) &&
1860 access_ok(avail, vhost_get_avail_size(vq, num)) &&
1861 access_ok(used, vhost_get_used_size(vq, num));
1862 }
1863
vhost_vq_meta_update(struct vhost_virtqueue * vq,const struct vhost_iotlb_map * map,int type)1864 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1865 const struct vhost_iotlb_map *map,
1866 int type)
1867 {
1868 int access = (type == VHOST_ADDR_USED) ?
1869 VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1870
1871 if (likely(map->perm & access))
1872 vq->meta_iotlb[type] = map;
1873 }
1874
iotlb_access_ok(struct vhost_virtqueue * vq,int access,u64 addr,u64 len,int type)1875 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1876 int access, u64 addr, u64 len, int type)
1877 {
1878 const struct vhost_iotlb_map *map;
1879 struct vhost_iotlb *umem = vq->iotlb;
1880 u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1881
1882 if (vhost_vq_meta_fetch(vq, addr, len, type))
1883 return true;
1884
1885 while (len > s) {
1886 map = vhost_iotlb_itree_first(umem, addr, last);
1887 if (map == NULL || map->start > addr) {
1888 vhost_iotlb_miss(vq, addr, access);
1889 return false;
1890 } else if (!(map->perm & access)) {
1891 /* Report the possible access violation by
1892 * request another translation from userspace.
1893 */
1894 return false;
1895 }
1896
1897 size = map->size - addr + map->start;
1898
1899 if (orig_addr == addr && size >= len)
1900 vhost_vq_meta_update(vq, map, type);
1901
1902 s += size;
1903 addr += size;
1904 }
1905
1906 return true;
1907 }
1908
vq_meta_prefetch(struct vhost_virtqueue * vq)1909 int vq_meta_prefetch(struct vhost_virtqueue *vq)
1910 {
1911 unsigned int num = vq->num;
1912
1913 if (!vq->iotlb)
1914 return 1;
1915
1916 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc,
1917 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) &&
1918 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail,
1919 vhost_get_avail_size(vq, num),
1920 VHOST_ADDR_AVAIL) &&
1921 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used,
1922 vhost_get_used_size(vq, num), VHOST_ADDR_USED);
1923 }
1924 EXPORT_SYMBOL_GPL(vq_meta_prefetch);
1925
1926 /* Can we log writes? */
1927 /* Caller should have device mutex but not vq mutex */
vhost_log_access_ok(struct vhost_dev * dev)1928 bool vhost_log_access_ok(struct vhost_dev *dev)
1929 {
1930 return memory_access_ok(dev, dev->umem, 1);
1931 }
1932 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1933
vq_log_used_access_ok(struct vhost_virtqueue * vq,void __user * log_base,bool log_used,u64 log_addr)1934 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq,
1935 void __user *log_base,
1936 bool log_used,
1937 u64 log_addr)
1938 {
1939 /* If an IOTLB device is present, log_addr is a GIOVA that
1940 * will never be logged by log_used(). */
1941 if (vq->iotlb)
1942 return true;
1943
1944 return !log_used || log_access_ok(log_base, log_addr,
1945 vhost_get_used_size(vq, vq->num));
1946 }
1947
1948 /* Verify access for write logging. */
1949 /* Caller should have vq mutex and device mutex */
vq_log_access_ok(struct vhost_virtqueue * vq,void __user * log_base)1950 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1951 void __user *log_base)
1952 {
1953 return vq_memory_access_ok(log_base, vq->umem,
1954 vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1955 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr);
1956 }
1957
1958 /* Can we start vq? */
1959 /* Caller should have vq mutex and device mutex */
vhost_vq_access_ok(struct vhost_virtqueue * vq)1960 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1961 {
1962 if (!vq_log_access_ok(vq, vq->log_base))
1963 return false;
1964
1965 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1966 }
1967 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1968
vhost_set_memory(struct vhost_dev * d,struct vhost_memory __user * m)1969 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1970 {
1971 struct vhost_memory mem, *newmem;
1972 struct vhost_memory_region *region;
1973 struct vhost_iotlb *newumem, *oldumem;
1974 unsigned long size = offsetof(struct vhost_memory, regions);
1975 int i;
1976
1977 if (copy_from_user(&mem, m, size))
1978 return -EFAULT;
1979 if (mem.padding)
1980 return -EOPNOTSUPP;
1981 if (mem.nregions > max_mem_regions)
1982 return -E2BIG;
1983 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1984 GFP_KERNEL);
1985 if (!newmem)
1986 return -ENOMEM;
1987
1988 memcpy(newmem, &mem, size);
1989 if (copy_from_user(newmem->regions, m->regions,
1990 flex_array_size(newmem, regions, mem.nregions))) {
1991 kvfree(newmem);
1992 return -EFAULT;
1993 }
1994
1995 newumem = iotlb_alloc();
1996 if (!newumem) {
1997 kvfree(newmem);
1998 return -ENOMEM;
1999 }
2000
2001 for (region = newmem->regions;
2002 region < newmem->regions + mem.nregions;
2003 region++) {
2004 if (vhost_iotlb_add_range(newumem,
2005 region->guest_phys_addr,
2006 region->guest_phys_addr +
2007 region->memory_size - 1,
2008 region->userspace_addr,
2009 VHOST_MAP_RW))
2010 goto err;
2011 }
2012
2013 if (!memory_access_ok(d, newumem, 0))
2014 goto err;
2015
2016 oldumem = d->umem;
2017 d->umem = newumem;
2018
2019 /* All memory accesses are done under some VQ mutex. */
2020 for (i = 0; i < d->nvqs; ++i) {
2021 mutex_lock(&d->vqs[i]->mutex);
2022 d->vqs[i]->umem = newumem;
2023 mutex_unlock(&d->vqs[i]->mutex);
2024 }
2025
2026 kvfree(newmem);
2027 vhost_iotlb_free(oldumem);
2028 return 0;
2029
2030 err:
2031 vhost_iotlb_free(newumem);
2032 kvfree(newmem);
2033 return -EFAULT;
2034 }
2035
vhost_vring_set_num(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2036 static long vhost_vring_set_num(struct vhost_dev *d,
2037 struct vhost_virtqueue *vq,
2038 void __user *argp)
2039 {
2040 struct vhost_vring_state s;
2041
2042 /* Resizing ring with an active backend?
2043 * You don't want to do that. */
2044 if (vq->private_data)
2045 return -EBUSY;
2046
2047 if (copy_from_user(&s, argp, sizeof s))
2048 return -EFAULT;
2049
2050 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1)))
2051 return -EINVAL;
2052 vq->num = s.num;
2053
2054 return 0;
2055 }
2056
vhost_vring_set_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2057 static long vhost_vring_set_addr(struct vhost_dev *d,
2058 struct vhost_virtqueue *vq,
2059 void __user *argp)
2060 {
2061 struct vhost_vring_addr a;
2062
2063 if (copy_from_user(&a, argp, sizeof a))
2064 return -EFAULT;
2065 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG))
2066 return -EOPNOTSUPP;
2067
2068 /* For 32bit, verify that the top 32bits of the user
2069 data are set to zero. */
2070 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
2071 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
2072 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr)
2073 return -EFAULT;
2074
2075 /* Make sure it's safe to cast pointers to vring types. */
2076 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
2077 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
2078 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
2079 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
2080 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1)))
2081 return -EINVAL;
2082
2083 /* We only verify access here if backend is configured.
2084 * If it is not, we don't as size might not have been setup.
2085 * We will verify when backend is configured. */
2086 if (vq->private_data) {
2087 if (!vq_access_ok(vq, vq->num,
2088 (void __user *)(unsigned long)a.desc_user_addr,
2089 (void __user *)(unsigned long)a.avail_user_addr,
2090 (void __user *)(unsigned long)a.used_user_addr))
2091 return -EINVAL;
2092
2093 /* Also validate log access for used ring if enabled. */
2094 if (!vq_log_used_access_ok(vq, vq->log_base,
2095 a.flags & (0x1 << VHOST_VRING_F_LOG),
2096 a.log_guest_addr))
2097 return -EINVAL;
2098 }
2099
2100 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
2101 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
2102 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
2103 vq->log_addr = a.log_guest_addr;
2104 vq->used = (void __user *)(unsigned long)a.used_user_addr;
2105
2106 return 0;
2107 }
2108
vhost_vring_set_num_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,unsigned int ioctl,void __user * argp)2109 static long vhost_vring_set_num_addr(struct vhost_dev *d,
2110 struct vhost_virtqueue *vq,
2111 unsigned int ioctl,
2112 void __user *argp)
2113 {
2114 long r;
2115
2116 mutex_lock(&vq->mutex);
2117
2118 switch (ioctl) {
2119 case VHOST_SET_VRING_NUM:
2120 r = vhost_vring_set_num(d, vq, argp);
2121 break;
2122 case VHOST_SET_VRING_ADDR:
2123 r = vhost_vring_set_addr(d, vq, argp);
2124 break;
2125 default:
2126 BUG();
2127 }
2128
2129 mutex_unlock(&vq->mutex);
2130
2131 return r;
2132 }
vhost_vring_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2133 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2134 {
2135 struct file *eventfp, *filep = NULL;
2136 bool pollstart = false, pollstop = false;
2137 struct eventfd_ctx *ctx = NULL;
2138 struct vhost_virtqueue *vq;
2139 struct vhost_vring_state s;
2140 struct vhost_vring_file f;
2141 u32 idx;
2142 long r;
2143
2144 r = vhost_get_vq_from_user(d, argp, &vq, &idx);
2145 if (r < 0)
2146 return r;
2147
2148 if (ioctl == VHOST_SET_VRING_NUM ||
2149 ioctl == VHOST_SET_VRING_ADDR) {
2150 return vhost_vring_set_num_addr(d, vq, ioctl, argp);
2151 }
2152
2153 mutex_lock(&vq->mutex);
2154
2155 switch (ioctl) {
2156 case VHOST_SET_VRING_BASE:
2157 /* Moving base with an active backend?
2158 * You don't want to do that. */
2159 if (vq->private_data) {
2160 r = -EBUSY;
2161 break;
2162 }
2163 if (copy_from_user(&s, argp, sizeof s)) {
2164 r = -EFAULT;
2165 break;
2166 }
2167 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) {
2168 vq->next_avail_head = vq->last_avail_idx =
2169 s.num & 0xffff;
2170 vq->last_used_idx = (s.num >> 16) & 0xffff;
2171 } else {
2172 if (s.num > 0xffff) {
2173 r = -EINVAL;
2174 break;
2175 }
2176 vq->next_avail_head = vq->last_avail_idx = s.num;
2177 }
2178 /* Forget the cached index value. */
2179 vq->avail_idx = vq->last_avail_idx;
2180 break;
2181 case VHOST_GET_VRING_BASE:
2182 s.index = idx;
2183 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED))
2184 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16);
2185 else
2186 s.num = vq->last_avail_idx;
2187 if (copy_to_user(argp, &s, sizeof s))
2188 r = -EFAULT;
2189 break;
2190 case VHOST_SET_VRING_KICK:
2191 if (copy_from_user(&f, argp, sizeof f)) {
2192 r = -EFAULT;
2193 break;
2194 }
2195 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd);
2196 if (IS_ERR(eventfp)) {
2197 r = PTR_ERR(eventfp);
2198 break;
2199 }
2200 if (eventfp != vq->kick) {
2201 pollstop = (filep = vq->kick) != NULL;
2202 pollstart = (vq->kick = eventfp) != NULL;
2203 } else
2204 filep = eventfp;
2205 break;
2206 case VHOST_SET_VRING_CALL:
2207 if (copy_from_user(&f, argp, sizeof f)) {
2208 r = -EFAULT;
2209 break;
2210 }
2211 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2212 if (IS_ERR(ctx)) {
2213 r = PTR_ERR(ctx);
2214 break;
2215 }
2216
2217 swap(ctx, vq->call_ctx.ctx);
2218 break;
2219 case VHOST_SET_VRING_ERR:
2220 if (copy_from_user(&f, argp, sizeof f)) {
2221 r = -EFAULT;
2222 break;
2223 }
2224 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2225 if (IS_ERR(ctx)) {
2226 r = PTR_ERR(ctx);
2227 break;
2228 }
2229 swap(ctx, vq->error_ctx);
2230 break;
2231 case VHOST_SET_VRING_ENDIAN:
2232 r = vhost_set_vring_endian(vq, argp);
2233 break;
2234 case VHOST_GET_VRING_ENDIAN:
2235 r = vhost_get_vring_endian(vq, idx, argp);
2236 break;
2237 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
2238 if (copy_from_user(&s, argp, sizeof(s))) {
2239 r = -EFAULT;
2240 break;
2241 }
2242 vq->busyloop_timeout = s.num;
2243 break;
2244 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
2245 s.index = idx;
2246 s.num = vq->busyloop_timeout;
2247 if (copy_to_user(argp, &s, sizeof(s)))
2248 r = -EFAULT;
2249 break;
2250 default:
2251 r = -ENOIOCTLCMD;
2252 }
2253
2254 if (pollstop && vq->handle_kick)
2255 vhost_poll_stop(&vq->poll);
2256
2257 if (!IS_ERR_OR_NULL(ctx))
2258 eventfd_ctx_put(ctx);
2259 if (filep)
2260 fput(filep);
2261
2262 if (pollstart && vq->handle_kick)
2263 r = vhost_poll_start(&vq->poll, vq->kick);
2264
2265 mutex_unlock(&vq->mutex);
2266
2267 if (pollstop && vq->handle_kick)
2268 vhost_dev_flush(vq->poll.dev);
2269 return r;
2270 }
2271 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
2272
vhost_init_device_iotlb(struct vhost_dev * d)2273 int vhost_init_device_iotlb(struct vhost_dev *d)
2274 {
2275 struct vhost_iotlb *niotlb, *oiotlb;
2276 int i;
2277
2278 niotlb = iotlb_alloc();
2279 if (!niotlb)
2280 return -ENOMEM;
2281
2282 oiotlb = d->iotlb;
2283 d->iotlb = niotlb;
2284
2285 for (i = 0; i < d->nvqs; ++i) {
2286 struct vhost_virtqueue *vq = d->vqs[i];
2287
2288 mutex_lock(&vq->mutex);
2289 vq->iotlb = niotlb;
2290 __vhost_vq_meta_reset(vq);
2291 mutex_unlock(&vq->mutex);
2292 }
2293
2294 vhost_iotlb_free(oiotlb);
2295
2296 return 0;
2297 }
2298 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
2299
2300 /* Caller must have device mutex */
vhost_dev_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2301 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2302 {
2303 struct eventfd_ctx *ctx;
2304 u64 p;
2305 long r;
2306 int i, fd;
2307
2308 /* If you are not the owner, you can become one */
2309 if (ioctl == VHOST_SET_OWNER) {
2310 r = vhost_dev_set_owner(d);
2311 goto done;
2312 }
2313
2314 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
2315 if (ioctl == VHOST_SET_FORK_FROM_OWNER) {
2316 /* Only allow modification before owner is set */
2317 if (vhost_dev_has_owner(d)) {
2318 r = -EBUSY;
2319 goto done;
2320 }
2321 u8 fork_owner_val;
2322
2323 if (get_user(fork_owner_val, (u8 __user *)argp)) {
2324 r = -EFAULT;
2325 goto done;
2326 }
2327 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2328 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2329 r = -EINVAL;
2330 goto done;
2331 }
2332 d->fork_owner = !!fork_owner_val;
2333 r = 0;
2334 goto done;
2335 }
2336 if (ioctl == VHOST_GET_FORK_FROM_OWNER) {
2337 u8 fork_owner_val = d->fork_owner;
2338
2339 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2340 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2341 r = -EINVAL;
2342 goto done;
2343 }
2344 if (put_user(fork_owner_val, (u8 __user *)argp)) {
2345 r = -EFAULT;
2346 goto done;
2347 }
2348 r = 0;
2349 goto done;
2350 }
2351 #endif
2352
2353 /* You must be the owner to do anything else */
2354 r = vhost_dev_check_owner(d);
2355 if (r)
2356 goto done;
2357
2358 switch (ioctl) {
2359 case VHOST_SET_MEM_TABLE:
2360 r = vhost_set_memory(d, argp);
2361 break;
2362 case VHOST_SET_LOG_BASE:
2363 if (copy_from_user(&p, argp, sizeof p)) {
2364 r = -EFAULT;
2365 break;
2366 }
2367 if ((u64)(unsigned long)p != p) {
2368 r = -EFAULT;
2369 break;
2370 }
2371 for (i = 0; i < d->nvqs; ++i) {
2372 struct vhost_virtqueue *vq;
2373 void __user *base = (void __user *)(unsigned long)p;
2374 vq = d->vqs[i];
2375 mutex_lock(&vq->mutex);
2376 /* If ring is inactive, will check when it's enabled. */
2377 if (vq->private_data && !vq_log_access_ok(vq, base))
2378 r = -EFAULT;
2379 else
2380 vq->log_base = base;
2381 mutex_unlock(&vq->mutex);
2382 }
2383 break;
2384 case VHOST_SET_LOG_FD:
2385 r = get_user(fd, (int __user *)argp);
2386 if (r < 0)
2387 break;
2388 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd);
2389 if (IS_ERR(ctx)) {
2390 r = PTR_ERR(ctx);
2391 break;
2392 }
2393 swap(ctx, d->log_ctx);
2394 for (i = 0; i < d->nvqs; ++i) {
2395 mutex_lock(&d->vqs[i]->mutex);
2396 d->vqs[i]->log_ctx = d->log_ctx;
2397 mutex_unlock(&d->vqs[i]->mutex);
2398 }
2399 if (ctx)
2400 eventfd_ctx_put(ctx);
2401 break;
2402 default:
2403 r = -ENOIOCTLCMD;
2404 break;
2405 }
2406 done:
2407 return r;
2408 }
2409 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
2410
2411 /* TODO: This is really inefficient. We need something like get_user()
2412 * (instruction directly accesses the data, with an exception table entry
2413 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst.
2414 */
set_bit_to_user(int nr,void __user * addr)2415 static int set_bit_to_user(int nr, void __user *addr)
2416 {
2417 unsigned long log = (unsigned long)addr;
2418 struct page *page;
2419 void *base;
2420 int bit = nr + (log % PAGE_SIZE) * 8;
2421 int r;
2422
2423 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page);
2424 if (r < 0)
2425 return r;
2426 BUG_ON(r != 1);
2427 base = kmap_atomic(page);
2428 set_bit(bit, base);
2429 kunmap_atomic(base);
2430 unpin_user_pages_dirty_lock(&page, 1, true);
2431 return 0;
2432 }
2433
log_write(void __user * log_base,u64 write_address,u64 write_length)2434 static int log_write(void __user *log_base,
2435 u64 write_address, u64 write_length)
2436 {
2437 u64 write_page = write_address / VHOST_PAGE_SIZE;
2438 int r;
2439
2440 if (!write_length)
2441 return 0;
2442 write_length += write_address % VHOST_PAGE_SIZE;
2443 for (;;) {
2444 u64 base = (u64)(unsigned long)log_base;
2445 u64 log = base + write_page / 8;
2446 int bit = write_page % 8;
2447 if ((u64)(unsigned long)log != log)
2448 return -EFAULT;
2449 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
2450 if (r < 0)
2451 return r;
2452 if (write_length <= VHOST_PAGE_SIZE)
2453 break;
2454 write_length -= VHOST_PAGE_SIZE;
2455 write_page += 1;
2456 }
2457 return r;
2458 }
2459
log_write_hva(struct vhost_virtqueue * vq,u64 hva,u64 len)2460 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
2461 {
2462 struct vhost_iotlb *umem = vq->umem;
2463 struct vhost_iotlb_map *u;
2464 u64 start, end, l, min;
2465 int r;
2466 bool hit = false;
2467
2468 while (len) {
2469 min = len;
2470 /* More than one GPAs can be mapped into a single HVA. So
2471 * iterate all possible umems here to be safe.
2472 */
2473 list_for_each_entry(u, &umem->list, link) {
2474 if (u->addr > hva - 1 + len ||
2475 u->addr - 1 + u->size < hva)
2476 continue;
2477 start = max(u->addr, hva);
2478 end = min(u->addr - 1 + u->size, hva - 1 + len);
2479 l = end - start + 1;
2480 r = log_write(vq->log_base,
2481 u->start + start - u->addr,
2482 l);
2483 if (r < 0)
2484 return r;
2485 hit = true;
2486 min = min(l, min);
2487 }
2488
2489 if (!hit)
2490 return -EFAULT;
2491
2492 len -= min;
2493 hva += min;
2494 }
2495
2496 return 0;
2497 }
2498
log_used(struct vhost_virtqueue * vq,u64 used_offset,u64 len)2499 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
2500 {
2501 struct iovec *iov = vq->log_iov;
2502 int i, ret;
2503
2504 if (!vq->iotlb)
2505 return log_write(vq->log_base, vq->log_addr + used_offset, len);
2506
2507 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
2508 len, iov, 64, VHOST_ACCESS_WO);
2509 if (ret < 0)
2510 return ret;
2511
2512 for (i = 0; i < ret; i++) {
2513 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2514 iov[i].iov_len);
2515 if (ret)
2516 return ret;
2517 }
2518
2519 return 0;
2520 }
2521
2522 /*
2523 * vhost_log_write() - Log in dirty page bitmap
2524 * @vq: vhost virtqueue.
2525 * @log: Array of dirty memory in GPA.
2526 * @log_num: Size of vhost_log arrary.
2527 * @len: The total length of memory buffer to log in the dirty bitmap.
2528 * Some drivers may only partially use pages shared via the last
2529 * vring descriptor (i.e. vhost-net RX buffer).
2530 * Use (len == U64_MAX) to indicate the driver would log all
2531 * pages of vring descriptors.
2532 * @iov: Array of dirty memory in HVA.
2533 * @count: Size of iovec array.
2534 */
vhost_log_write(struct vhost_virtqueue * vq,struct vhost_log * log,unsigned int log_num,u64 len,struct iovec * iov,int count)2535 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
2536 unsigned int log_num, u64 len, struct iovec *iov, int count)
2537 {
2538 int i, r;
2539
2540 /* Make sure data written is seen before log. */
2541 smp_wmb();
2542
2543 if (vq->iotlb) {
2544 for (i = 0; i < count; i++) {
2545 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2546 iov[i].iov_len);
2547 if (r < 0)
2548 return r;
2549 }
2550 return 0;
2551 }
2552
2553 for (i = 0; i < log_num; ++i) {
2554 u64 l = min(log[i].len, len);
2555 r = log_write(vq->log_base, log[i].addr, l);
2556 if (r < 0)
2557 return r;
2558
2559 if (len != U64_MAX)
2560 len -= l;
2561 }
2562
2563 if (vq->log_ctx)
2564 eventfd_signal(vq->log_ctx);
2565
2566 return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(vhost_log_write);
2569
vhost_update_used_flags(struct vhost_virtqueue * vq)2570 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
2571 {
2572 void __user *used;
2573 if (vhost_put_used_flags(vq))
2574 return -EFAULT;
2575 if (unlikely(vq->log_used)) {
2576 /* Make sure the flag is seen before log. */
2577 smp_wmb();
2578 /* Log used flag write. */
2579 used = &vq->used->flags;
2580 log_used(vq, (used - (void __user *)vq->used),
2581 sizeof vq->used->flags);
2582 if (vq->log_ctx)
2583 eventfd_signal(vq->log_ctx);
2584 }
2585 return 0;
2586 }
2587
vhost_update_avail_event(struct vhost_virtqueue * vq)2588 static int vhost_update_avail_event(struct vhost_virtqueue *vq)
2589 {
2590 if (vhost_put_avail_event(vq))
2591 return -EFAULT;
2592 if (unlikely(vq->log_used)) {
2593 void __user *used;
2594 /* Make sure the event is seen before log. */
2595 smp_wmb();
2596 /* Log avail event write */
2597 used = vhost_avail_event(vq);
2598 log_used(vq, (used - (void __user *)vq->used),
2599 sizeof *vhost_avail_event(vq));
2600 if (vq->log_ctx)
2601 eventfd_signal(vq->log_ctx);
2602 }
2603 return 0;
2604 }
2605
vhost_vq_init_access(struct vhost_virtqueue * vq)2606 int vhost_vq_init_access(struct vhost_virtqueue *vq)
2607 {
2608 __virtio16 last_used_idx;
2609 int r;
2610 bool is_le = vq->is_le;
2611
2612 if (!vq->private_data)
2613 return 0;
2614
2615 vhost_init_is_le(vq);
2616
2617 r = vhost_update_used_flags(vq);
2618 if (r)
2619 goto err;
2620 vq->signalled_used_valid = false;
2621 if (!vq->iotlb &&
2622 !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
2623 r = -EFAULT;
2624 goto err;
2625 }
2626 r = vhost_get_used_idx(vq, &last_used_idx);
2627 if (r) {
2628 vq_err(vq, "Can't access used idx at %p\n",
2629 &vq->used->idx);
2630 goto err;
2631 }
2632 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
2633 return 0;
2634
2635 err:
2636 vq->is_le = is_le;
2637 return r;
2638 }
2639 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
2640
translate_desc(struct vhost_virtqueue * vq,u64 addr,u32 len,struct iovec iov[],int iov_size,int access)2641 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
2642 struct iovec iov[], int iov_size, int access)
2643 {
2644 const struct vhost_iotlb_map *map;
2645 struct vhost_dev *dev = vq->dev;
2646 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem;
2647 struct iovec *_iov;
2648 u64 s = 0, last = addr + len - 1;
2649 int ret = 0;
2650
2651 while ((u64)len > s) {
2652 u64 size;
2653 if (unlikely(ret >= iov_size)) {
2654 ret = -ENOBUFS;
2655 break;
2656 }
2657
2658 map = vhost_iotlb_itree_first(umem, addr, last);
2659 if (map == NULL || map->start > addr) {
2660 if (umem != dev->iotlb) {
2661 ret = -EFAULT;
2662 break;
2663 }
2664 ret = -EAGAIN;
2665 break;
2666 } else if (!(map->perm & access)) {
2667 ret = -EPERM;
2668 break;
2669 }
2670
2671 _iov = iov + ret;
2672 size = map->size - addr + map->start;
2673 _iov->iov_len = min((u64)len - s, size);
2674 _iov->iov_base = (void __user *)(unsigned long)
2675 (map->addr + addr - map->start);
2676 s += size;
2677 addr += size;
2678 ++ret;
2679 }
2680
2681 if (ret == -EAGAIN)
2682 vhost_iotlb_miss(vq, addr, access);
2683 return ret;
2684 }
2685
2686 /* Each buffer in the virtqueues is actually a chain of descriptors. This
2687 * function returns the next descriptor in the chain,
2688 * or -1U if we're at the end. */
next_desc(struct vhost_virtqueue * vq,struct vring_desc * desc)2689 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
2690 {
2691 unsigned int next;
2692
2693 /* If this descriptor says it doesn't chain, we're done. */
2694 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
2695 return -1U;
2696
2697 /* Check they're not leading us off end of descriptors. */
2698 next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
2699 return next;
2700 }
2701
get_indirect(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num,struct vring_desc * indirect)2702 static int get_indirect(struct vhost_virtqueue *vq,
2703 struct iovec iov[], unsigned int iov_size,
2704 unsigned int *out_num, unsigned int *in_num,
2705 struct vhost_log *log, unsigned int *log_num,
2706 struct vring_desc *indirect)
2707 {
2708 struct vring_desc desc;
2709 unsigned int i = 0, count, found = 0;
2710 u32 len = vhost32_to_cpu(vq, indirect->len);
2711 struct iov_iter from;
2712 int ret, access;
2713
2714 /* Sanity check */
2715 if (unlikely(len % sizeof desc)) {
2716 vq_err(vq, "Invalid length in indirect descriptor: "
2717 "len 0x%llx not multiple of 0x%zx\n",
2718 (unsigned long long)len,
2719 sizeof desc);
2720 return -EINVAL;
2721 }
2722
2723 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2724 UIO_MAXIOV, VHOST_ACCESS_RO);
2725 if (unlikely(ret < 0)) {
2726 if (ret != -EAGAIN)
2727 vq_err(vq, "Translation failure %d in indirect.\n", ret);
2728 return ret;
2729 }
2730 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len);
2731 count = len / sizeof desc;
2732 /* Buffers are chained via a 16 bit next field, so
2733 * we can have at most 2^16 of these. */
2734 if (unlikely(count > USHRT_MAX + 1)) {
2735 vq_err(vq, "Indirect buffer length too big: %d\n",
2736 indirect->len);
2737 return -E2BIG;
2738 }
2739
2740 do {
2741 unsigned iov_count = *in_num + *out_num;
2742 if (unlikely(++found > count)) {
2743 vq_err(vq, "Loop detected: last one at %u "
2744 "indirect size %u\n",
2745 i, count);
2746 return -EINVAL;
2747 }
2748 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2749 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2750 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2751 return -EINVAL;
2752 }
2753 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2754 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2755 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2756 return -EINVAL;
2757 }
2758
2759 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2760 access = VHOST_ACCESS_WO;
2761 else
2762 access = VHOST_ACCESS_RO;
2763
2764 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2765 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2766 iov_size - iov_count, access);
2767 if (unlikely(ret < 0)) {
2768 if (ret != -EAGAIN)
2769 vq_err(vq, "Translation failure %d indirect idx %d\n",
2770 ret, i);
2771 return ret;
2772 }
2773 /* If this is an input descriptor, increment that count. */
2774 if (access == VHOST_ACCESS_WO) {
2775 *in_num += ret;
2776 if (unlikely(log && ret)) {
2777 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2778 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2779 ++*log_num;
2780 }
2781 } else {
2782 /* If it's an output descriptor, they're all supposed
2783 * to come before any input descriptors. */
2784 if (unlikely(*in_num)) {
2785 vq_err(vq, "Indirect descriptor "
2786 "has out after in: idx %d\n", i);
2787 return -EINVAL;
2788 }
2789 *out_num += ret;
2790 }
2791 } while ((i = next_desc(vq, &desc)) != -1);
2792 return 0;
2793 }
2794
2795 /* This looks in the virtqueue and for the first available buffer, and converts
2796 * it to an iovec for convenient access. Since descriptors consist of some
2797 * number of output then some number of input descriptors, it's actually two
2798 * iovecs, but we pack them into one and note how many of each there were.
2799 *
2800 * This function returns the descriptor number found, or vq->num (which is
2801 * never a valid descriptor number) if none was found. A negative code is
2802 * returned on error. */
vhost_get_vq_desc(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num)2803 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2804 struct iovec iov[], unsigned int iov_size,
2805 unsigned int *out_num, unsigned int *in_num,
2806 struct vhost_log *log, unsigned int *log_num)
2807 {
2808 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
2809 struct vring_desc desc;
2810 unsigned int i, head, found = 0;
2811 u16 last_avail_idx = vq->last_avail_idx;
2812 __virtio16 ring_head;
2813 int ret, access, c = 0;
2814
2815 if (vq->avail_idx == vq->last_avail_idx) {
2816 ret = vhost_get_avail_idx(vq);
2817 if (unlikely(ret < 0))
2818 return ret;
2819
2820 if (!ret)
2821 return vq->num;
2822 }
2823
2824 if (in_order)
2825 head = vq->next_avail_head & (vq->num - 1);
2826 else {
2827 /* Grab the next descriptor number they're
2828 * advertising, and increment the index we've seen. */
2829 if (unlikely(vhost_get_avail_head(vq, &ring_head,
2830 last_avail_idx))) {
2831 vq_err(vq, "Failed to read head: idx %d address %p\n",
2832 last_avail_idx,
2833 &vq->avail->ring[last_avail_idx % vq->num]);
2834 return -EFAULT;
2835 }
2836 head = vhost16_to_cpu(vq, ring_head);
2837 }
2838
2839 /* If their number is silly, that's an error. */
2840 if (unlikely(head >= vq->num)) {
2841 vq_err(vq, "Guest says index %u > %u is available",
2842 head, vq->num);
2843 return -EINVAL;
2844 }
2845
2846 /* When we start there are none of either input nor output. */
2847 *out_num = *in_num = 0;
2848 if (unlikely(log))
2849 *log_num = 0;
2850
2851 i = head;
2852 do {
2853 unsigned iov_count = *in_num + *out_num;
2854 if (unlikely(i >= vq->num)) {
2855 vq_err(vq, "Desc index is %u > %u, head = %u",
2856 i, vq->num, head);
2857 return -EINVAL;
2858 }
2859 if (unlikely(++found > vq->num)) {
2860 vq_err(vq, "Loop detected: last one at %u "
2861 "vq size %u head %u\n",
2862 i, vq->num, head);
2863 return -EINVAL;
2864 }
2865 ret = vhost_get_desc(vq, &desc, i);
2866 if (unlikely(ret)) {
2867 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2868 i, vq->desc + i);
2869 return -EFAULT;
2870 }
2871 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2872 ret = get_indirect(vq, iov, iov_size,
2873 out_num, in_num,
2874 log, log_num, &desc);
2875 if (unlikely(ret < 0)) {
2876 if (ret != -EAGAIN)
2877 vq_err(vq, "Failure detected "
2878 "in indirect descriptor at idx %d\n", i);
2879 return ret;
2880 }
2881 ++c;
2882 continue;
2883 }
2884
2885 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2886 access = VHOST_ACCESS_WO;
2887 else
2888 access = VHOST_ACCESS_RO;
2889 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2890 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2891 iov_size - iov_count, access);
2892 if (unlikely(ret < 0)) {
2893 if (ret != -EAGAIN)
2894 vq_err(vq, "Translation failure %d descriptor idx %d\n",
2895 ret, i);
2896 return ret;
2897 }
2898 if (access == VHOST_ACCESS_WO) {
2899 /* If this is an input descriptor,
2900 * increment that count. */
2901 *in_num += ret;
2902 if (unlikely(log && ret)) {
2903 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2904 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2905 ++*log_num;
2906 }
2907 } else {
2908 /* If it's an output descriptor, they're all supposed
2909 * to come before any input descriptors. */
2910 if (unlikely(*in_num)) {
2911 vq_err(vq, "Descriptor has out after in: "
2912 "idx %d\n", i);
2913 return -EINVAL;
2914 }
2915 *out_num += ret;
2916 }
2917 ++c;
2918 } while ((i = next_desc(vq, &desc)) != -1);
2919
2920 /* On success, increment avail index. */
2921 vq->last_avail_idx++;
2922 vq->next_avail_head += c;
2923
2924 /* Assume notifications from guest are disabled at this point,
2925 * if they aren't we would need to update avail_event index. */
2926 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2927 return head;
2928 }
2929 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2930
2931 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
vhost_discard_vq_desc(struct vhost_virtqueue * vq,int n)2932 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2933 {
2934 vq->last_avail_idx -= n;
2935 }
2936 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2937
2938 /* After we've used one of their buffers, we tell them about it. We'll then
2939 * want to notify the guest, using eventfd. */
vhost_add_used(struct vhost_virtqueue * vq,unsigned int head,int len)2940 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2941 {
2942 struct vring_used_elem heads = {
2943 cpu_to_vhost32(vq, head),
2944 cpu_to_vhost32(vq, len)
2945 };
2946 u16 nheads = 1;
2947
2948 return vhost_add_used_n(vq, &heads, &nheads, 1);
2949 }
2950 EXPORT_SYMBOL_GPL(vhost_add_used);
2951
__vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)2952 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2953 struct vring_used_elem *heads,
2954 unsigned count)
2955 {
2956 vring_used_elem_t __user *used;
2957 u16 old, new;
2958 int start;
2959
2960 start = vq->last_used_idx & (vq->num - 1);
2961 used = vq->used->ring + start;
2962 if (vhost_put_used(vq, heads, start, count)) {
2963 vq_err(vq, "Failed to write used");
2964 return -EFAULT;
2965 }
2966 if (unlikely(vq->log_used)) {
2967 /* Make sure data is seen before log. */
2968 smp_wmb();
2969 /* Log used ring entry write. */
2970 log_used(vq, ((void __user *)used - (void __user *)vq->used),
2971 count * sizeof *used);
2972 }
2973 old = vq->last_used_idx;
2974 new = (vq->last_used_idx += count);
2975 /* If the driver never bothers to signal in a very long while,
2976 * used index might wrap around. If that happens, invalidate
2977 * signalled_used index we stored. TODO: make sure driver
2978 * signals at least once in 2^16 and remove this. */
2979 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2980 vq->signalled_used_valid = false;
2981 return 0;
2982 }
2983
vhost_add_used_n_ooo(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)2984 static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq,
2985 struct vring_used_elem *heads,
2986 unsigned count)
2987 {
2988 int start, n, r;
2989
2990 start = vq->last_used_idx & (vq->num - 1);
2991 n = vq->num - start;
2992 if (n < count) {
2993 r = __vhost_add_used_n(vq, heads, n);
2994 if (r < 0)
2995 return r;
2996 heads += n;
2997 count -= n;
2998 }
2999 return __vhost_add_used_n(vq, heads, count);
3000 }
3001
vhost_add_used_n_in_order(struct vhost_virtqueue * vq,struct vring_used_elem * heads,const u16 * nheads,unsigned count)3002 static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq,
3003 struct vring_used_elem *heads,
3004 const u16 *nheads,
3005 unsigned count)
3006 {
3007 vring_used_elem_t __user *used;
3008 u16 old, new = vq->last_used_idx;
3009 int start, i;
3010
3011 if (!nheads)
3012 return -EINVAL;
3013
3014 start = vq->last_used_idx & (vq->num - 1);
3015 used = vq->used->ring + start;
3016
3017 for (i = 0; i < count; i++) {
3018 if (vhost_put_used(vq, &heads[i], start, 1)) {
3019 vq_err(vq, "Failed to write used");
3020 return -EFAULT;
3021 }
3022 start += nheads[i];
3023 new += nheads[i];
3024 if (start >= vq->num)
3025 start -= vq->num;
3026 }
3027
3028 if (unlikely(vq->log_used)) {
3029 /* Make sure data is seen before log. */
3030 smp_wmb();
3031 /* Log used ring entry write. */
3032 log_used(vq, ((void __user *)used - (void __user *)vq->used),
3033 (vq->num - start) * sizeof *used);
3034 if (start + count > vq->num)
3035 log_used(vq, 0,
3036 (start + count - vq->num) * sizeof *used);
3037 }
3038
3039 old = vq->last_used_idx;
3040 vq->last_used_idx = new;
3041 /* If the driver never bothers to signal in a very long while,
3042 * used index might wrap around. If that happens, invalidate
3043 * signalled_used index we stored. TODO: make sure driver
3044 * signals at least once in 2^16 and remove this. */
3045 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
3046 vq->signalled_used_valid = false;
3047 return 0;
3048 }
3049
3050 /* After we've used one of their buffers, we tell them about it. We'll then
3051 * want to notify the guest, using eventfd. */
vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3052 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
3053 u16 *nheads, unsigned count)
3054 {
3055 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
3056 int r;
3057
3058 if (!in_order || !nheads)
3059 r = vhost_add_used_n_ooo(vq, heads, count);
3060 else
3061 r = vhost_add_used_n_in_order(vq, heads, nheads, count);
3062
3063 if (r < 0)
3064 return r;
3065
3066 /* Make sure buffer is written before we update index. */
3067 smp_wmb();
3068 if (vhost_put_used_idx(vq)) {
3069 vq_err(vq, "Failed to increment used idx");
3070 return -EFAULT;
3071 }
3072 if (unlikely(vq->log_used)) {
3073 /* Make sure used idx is seen before log. */
3074 smp_wmb();
3075 /* Log used index update. */
3076 log_used(vq, offsetof(struct vring_used, idx),
3077 sizeof vq->used->idx);
3078 if (vq->log_ctx)
3079 eventfd_signal(vq->log_ctx);
3080 }
3081 return r;
3082 }
3083 EXPORT_SYMBOL_GPL(vhost_add_used_n);
3084
vhost_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3085 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3086 {
3087 __u16 old, new;
3088 __virtio16 event;
3089 bool v;
3090 /* Flush out used index updates. This is paired
3091 * with the barrier that the Guest executes when enabling
3092 * interrupts. */
3093 smp_mb();
3094
3095 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
3096 unlikely(vq->avail_idx == vq->last_avail_idx))
3097 return true;
3098
3099 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3100 __virtio16 flags;
3101 if (vhost_get_avail_flags(vq, &flags)) {
3102 vq_err(vq, "Failed to get flags");
3103 return true;
3104 }
3105 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
3106 }
3107 old = vq->signalled_used;
3108 v = vq->signalled_used_valid;
3109 new = vq->signalled_used = vq->last_used_idx;
3110 vq->signalled_used_valid = true;
3111
3112 if (unlikely(!v))
3113 return true;
3114
3115 if (vhost_get_used_event(vq, &event)) {
3116 vq_err(vq, "Failed to get used event idx");
3117 return true;
3118 }
3119 return vring_need_event(vhost16_to_cpu(vq, event), new, old);
3120 }
3121
3122 /* This actually signals the guest, using eventfd. */
vhost_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq)3123 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3124 {
3125 /* Signal the Guest tell them we used something up. */
3126 if (vq->call_ctx.ctx && vhost_notify(dev, vq))
3127 eventfd_signal(vq->call_ctx.ctx);
3128 }
3129 EXPORT_SYMBOL_GPL(vhost_signal);
3130
3131 /* And here's the combo meal deal. Supersize me! */
vhost_add_used_and_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq,unsigned int head,int len)3132 void vhost_add_used_and_signal(struct vhost_dev *dev,
3133 struct vhost_virtqueue *vq,
3134 unsigned int head, int len)
3135 {
3136 vhost_add_used(vq, head, len);
3137 vhost_signal(dev, vq);
3138 }
3139 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
3140
3141 /* multi-buffer version of vhost_add_used_and_signal */
vhost_add_used_and_signal_n(struct vhost_dev * dev,struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3142 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
3143 struct vhost_virtqueue *vq,
3144 struct vring_used_elem *heads,
3145 u16 *nheads,
3146 unsigned count)
3147 {
3148 vhost_add_used_n(vq, heads, nheads, count);
3149 vhost_signal(dev, vq);
3150 }
3151 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
3152
3153 /* return true if we're sure that available ring is empty */
vhost_vq_avail_empty(struct vhost_dev * dev,struct vhost_virtqueue * vq)3154 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3155 {
3156 int r;
3157
3158 if (vq->avail_idx != vq->last_avail_idx)
3159 return false;
3160
3161 r = vhost_get_avail_idx(vq);
3162
3163 /* Note: we treat error as non-empty here */
3164 return r == 0;
3165 }
3166 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
3167
3168 /* OK, now we need to know about added descriptors. */
vhost_enable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3169 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3170 {
3171 int r;
3172
3173 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
3174 return false;
3175 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
3176 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3177 r = vhost_update_used_flags(vq);
3178 if (r) {
3179 vq_err(vq, "Failed to enable notification at %p: %d\n",
3180 &vq->used->flags, r);
3181 return false;
3182 }
3183 } else {
3184 r = vhost_update_avail_event(vq);
3185 if (r) {
3186 vq_err(vq, "Failed to update avail event index at %p: %d\n",
3187 vhost_avail_event(vq), r);
3188 return false;
3189 }
3190 }
3191 /* They could have slipped one in as we were doing that: make
3192 * sure it's written, then check again. */
3193 smp_mb();
3194
3195 r = vhost_get_avail_idx(vq);
3196 /* Note: we treat error as empty here */
3197 if (unlikely(r < 0))
3198 return false;
3199
3200 return r;
3201 }
3202 EXPORT_SYMBOL_GPL(vhost_enable_notify);
3203
3204 /* We don't need to be notified again. */
vhost_disable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3205 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3206 {
3207 int r;
3208
3209 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
3210 return;
3211 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
3212 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3213 r = vhost_update_used_flags(vq);
3214 if (r)
3215 vq_err(vq, "Failed to disable notification at %p: %d\n",
3216 &vq->used->flags, r);
3217 }
3218 }
3219 EXPORT_SYMBOL_GPL(vhost_disable_notify);
3220
3221 /* Create a new message. */
vhost_new_msg(struct vhost_virtqueue * vq,int type)3222 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
3223 {
3224 /* Make sure all padding within the structure is initialized. */
3225 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL);
3226 if (!node)
3227 return NULL;
3228
3229 node->vq = vq;
3230 node->msg.type = type;
3231 return node;
3232 }
3233 EXPORT_SYMBOL_GPL(vhost_new_msg);
3234
vhost_enqueue_msg(struct vhost_dev * dev,struct list_head * head,struct vhost_msg_node * node)3235 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
3236 struct vhost_msg_node *node)
3237 {
3238 spin_lock(&dev->iotlb_lock);
3239 list_add_tail(&node->node, head);
3240 spin_unlock(&dev->iotlb_lock);
3241
3242 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
3243 }
3244 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
3245
vhost_dequeue_msg(struct vhost_dev * dev,struct list_head * head)3246 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
3247 struct list_head *head)
3248 {
3249 struct vhost_msg_node *node = NULL;
3250
3251 spin_lock(&dev->iotlb_lock);
3252 if (!list_empty(head)) {
3253 node = list_first_entry(head, struct vhost_msg_node,
3254 node);
3255 list_del(&node->node);
3256 }
3257 spin_unlock(&dev->iotlb_lock);
3258
3259 return node;
3260 }
3261 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
3262
vhost_set_backend_features(struct vhost_dev * dev,u64 features)3263 void vhost_set_backend_features(struct vhost_dev *dev, u64 features)
3264 {
3265 struct vhost_virtqueue *vq;
3266 int i;
3267
3268 mutex_lock(&dev->mutex);
3269 for (i = 0; i < dev->nvqs; ++i) {
3270 vq = dev->vqs[i];
3271 mutex_lock(&vq->mutex);
3272 vq->acked_backend_features = features;
3273 mutex_unlock(&vq->mutex);
3274 }
3275 mutex_unlock(&dev->mutex);
3276 }
3277 EXPORT_SYMBOL_GPL(vhost_set_backend_features);
3278
vhost_init(void)3279 static int __init vhost_init(void)
3280 {
3281 return 0;
3282 }
3283
vhost_exit(void)3284 static void __exit vhost_exit(void)
3285 {
3286 }
3287
3288 module_init(vhost_init);
3289 module_exit(vhost_exit);
3290
3291 MODULE_VERSION("0.0.1");
3292 MODULE_LICENSE("GPL v2");
3293 MODULE_AUTHOR("Michael S. Tsirkin");
3294 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
3295