1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 KMS
8 *
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
12 */
13
14 #include <linux/clk.h>
15 #include <linux/sort.h>
16
17 #include <drm/drm_atomic.h>
18 #include <drm/drm_atomic_helper.h>
19 #include <drm/drm_crtc.h>
20 #include <drm/drm_fourcc.h>
21 #include <drm/drm_gem_framebuffer_helper.h>
22 #include <drm/drm_probe_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "vc4_drv.h"
26 #include "vc4_regs.h"
27
28 struct vc4_ctm_state {
29 struct drm_private_state base;
30 struct drm_color_ctm *ctm;
31 int fifo;
32 };
33
34 #define to_vc4_ctm_state(_state) \
35 container_of_const(_state, struct vc4_ctm_state, base)
36
37 struct vc4_load_tracker_state {
38 struct drm_private_state base;
39 u64 hvs_load;
40 u64 membus_load;
41 };
42
43 #define to_vc4_load_tracker_state(_state) \
44 container_of_const(_state, struct vc4_load_tracker_state, base)
45
vc4_get_ctm_state(struct drm_atomic_state * state,struct drm_private_obj * manager)46 static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
47 struct drm_private_obj *manager)
48 {
49 struct drm_device *dev = state->dev;
50 struct vc4_dev *vc4 = to_vc4_dev(dev);
51 struct drm_private_state *priv_state;
52 int ret;
53
54 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
55 if (ret)
56 return ERR_PTR(ret);
57
58 priv_state = drm_atomic_get_private_obj_state(state, manager);
59 if (IS_ERR(priv_state))
60 return ERR_CAST(priv_state);
61
62 return to_vc4_ctm_state(priv_state);
63 }
64
65 static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj * obj)66 vc4_ctm_duplicate_state(struct drm_private_obj *obj)
67 {
68 struct vc4_ctm_state *state;
69
70 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
71 if (!state)
72 return NULL;
73
74 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
75
76 return &state->base;
77 }
78
vc4_ctm_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)79 static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
80 struct drm_private_state *state)
81 {
82 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
83
84 kfree(ctm_state);
85 }
86
87 static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
88 .atomic_duplicate_state = vc4_ctm_duplicate_state,
89 .atomic_destroy_state = vc4_ctm_destroy_state,
90 };
91
vc4_ctm_obj_fini(struct drm_device * dev,void * unused)92 static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
93 {
94 struct vc4_dev *vc4 = to_vc4_dev(dev);
95
96 drm_atomic_private_obj_fini(&vc4->ctm_manager);
97 }
98
vc4_ctm_obj_init(struct vc4_dev * vc4)99 static int vc4_ctm_obj_init(struct vc4_dev *vc4)
100 {
101 struct vc4_ctm_state *ctm_state;
102
103 drm_modeset_lock_init(&vc4->ctm_state_lock);
104
105 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
106 if (!ctm_state)
107 return -ENOMEM;
108
109 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
110 &vc4_ctm_state_funcs);
111
112 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
113 }
114
115 /* Converts a DRM S31.32 value to the HW S0.9 format. */
vc4_ctm_s31_32_to_s0_9(u64 in)116 static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
117 {
118 u16 r;
119
120 /* Sign bit. */
121 r = in & BIT_ULL(63) ? BIT(9) : 0;
122
123 if ((in & GENMASK_ULL(62, 32)) > 0) {
124 /* We have zero integer bits so we can only saturate here. */
125 r |= GENMASK(8, 0);
126 } else {
127 /* Otherwise take the 9 most important fractional bits. */
128 r |= (in >> 23) & GENMASK(8, 0);
129 }
130
131 return r;
132 }
133
134 static void
vc4_ctm_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)135 vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
136 {
137 struct vc4_hvs *hvs = vc4->hvs;
138 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
139 struct drm_color_ctm *ctm = ctm_state->ctm;
140
141 WARN_ON_ONCE(vc4->gen > VC4_GEN_5);
142
143 if (ctm_state->fifo) {
144 HVS_WRITE(SCALER_OLEDCOEF2,
145 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
146 SCALER_OLEDCOEF2_R_TO_R) |
147 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
148 SCALER_OLEDCOEF2_R_TO_G) |
149 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
150 SCALER_OLEDCOEF2_R_TO_B));
151 HVS_WRITE(SCALER_OLEDCOEF1,
152 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
153 SCALER_OLEDCOEF1_G_TO_R) |
154 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
155 SCALER_OLEDCOEF1_G_TO_G) |
156 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
157 SCALER_OLEDCOEF1_G_TO_B));
158 HVS_WRITE(SCALER_OLEDCOEF0,
159 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
160 SCALER_OLEDCOEF0_B_TO_R) |
161 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
162 SCALER_OLEDCOEF0_B_TO_G) |
163 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
164 SCALER_OLEDCOEF0_B_TO_B));
165 }
166
167 HVS_WRITE(SCALER_OLEDOFFS,
168 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
169 }
170
171 struct vc4_hvs_state *
vc4_hvs_get_new_global_state(const struct drm_atomic_state * state)172 vc4_hvs_get_new_global_state(const struct drm_atomic_state *state)
173 {
174 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
175 struct drm_private_state *priv_state;
176
177 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
178 if (!priv_state)
179 return ERR_PTR(-EINVAL);
180
181 return to_vc4_hvs_state(priv_state);
182 }
183
184 struct vc4_hvs_state *
vc4_hvs_get_old_global_state(const struct drm_atomic_state * state)185 vc4_hvs_get_old_global_state(const struct drm_atomic_state *state)
186 {
187 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
188 struct drm_private_state *priv_state;
189
190 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
191 if (!priv_state)
192 return ERR_PTR(-EINVAL);
193
194 return to_vc4_hvs_state(priv_state);
195 }
196
197 struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state * state)198 vc4_hvs_get_global_state(struct drm_atomic_state *state)
199 {
200 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
201 struct drm_private_state *priv_state;
202
203 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
204 if (IS_ERR(priv_state))
205 return ERR_CAST(priv_state);
206
207 return to_vc4_hvs_state(priv_state);
208 }
209
vc4_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)210 static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
211 struct drm_atomic_state *state)
212 {
213 struct vc4_hvs *hvs = vc4->hvs;
214 struct drm_crtc_state *crtc_state;
215 struct drm_crtc *crtc;
216 unsigned int i;
217
218 WARN_ON_ONCE(vc4->gen != VC4_GEN_4);
219
220 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
221 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
222 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
223 u32 dispctrl;
224 u32 dsp3_mux;
225
226 if (!crtc_state->active)
227 continue;
228
229 if (vc4_state->assigned_channel != 2)
230 continue;
231
232 /*
233 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
234 * FIFO X'.
235 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
236 *
237 * DSP3 is connected to FIFO2 unless the transposer is
238 * enabled. In this case, FIFO 2 is directly accessed by the
239 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
240 * route.
241 */
242 if (vc4_crtc->feeds_txp)
243 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
244 else
245 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
246
247 dispctrl = HVS_READ(SCALER_DISPCTRL) &
248 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
249 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
250 }
251 }
252
vc5_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)253 static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
254 struct drm_atomic_state *state)
255 {
256 struct vc4_hvs *hvs = vc4->hvs;
257 struct drm_crtc_state *crtc_state;
258 struct drm_crtc *crtc;
259 unsigned char mux;
260 unsigned int i;
261 u32 reg;
262
263 WARN_ON_ONCE(vc4->gen != VC4_GEN_5);
264
265 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
266 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
267 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
268 unsigned int channel = vc4_state->assigned_channel;
269
270 if (!vc4_state->update_muxing)
271 continue;
272
273 switch (vc4_crtc->data->hvs_output) {
274 case 2:
275 drm_WARN_ON(&vc4->base,
276 VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
277 SCALER_DISPCTRL_DSP3_MUX) == channel);
278
279 mux = (channel == 2) ? 0 : 1;
280 reg = HVS_READ(SCALER_DISPECTRL);
281 HVS_WRITE(SCALER_DISPECTRL,
282 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
283 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
284 break;
285
286 case 3:
287 if (channel == VC4_HVS_CHANNEL_DISABLED)
288 mux = 3;
289 else
290 mux = channel;
291
292 reg = HVS_READ(SCALER_DISPCTRL);
293 HVS_WRITE(SCALER_DISPCTRL,
294 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
295 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
296 break;
297
298 case 4:
299 if (channel == VC4_HVS_CHANNEL_DISABLED)
300 mux = 3;
301 else
302 mux = channel;
303
304 reg = HVS_READ(SCALER_DISPEOLN);
305 HVS_WRITE(SCALER_DISPEOLN,
306 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
307 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
308
309 break;
310
311 case 5:
312 if (channel == VC4_HVS_CHANNEL_DISABLED)
313 mux = 3;
314 else
315 mux = channel;
316
317 reg = HVS_READ(SCALER_DISPDITHER);
318 HVS_WRITE(SCALER_DISPDITHER,
319 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
320 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
321 break;
322
323 default:
324 break;
325 }
326 }
327 }
328
vc6_hvs_pv_muxing_commit(struct vc4_dev * vc4,struct drm_atomic_state * state)329 static void vc6_hvs_pv_muxing_commit(struct vc4_dev *vc4,
330 struct drm_atomic_state *state)
331 {
332 struct vc4_hvs *hvs = vc4->hvs;
333 struct drm_crtc_state *crtc_state;
334 struct drm_crtc *crtc;
335 unsigned int i;
336
337 WARN_ON_ONCE(vc4->gen != VC4_GEN_6_C && vc4->gen != VC4_GEN_6_D);
338
339 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
340 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
341 struct vc4_encoder *vc4_encoder;
342 struct drm_encoder *encoder;
343 unsigned char mux;
344 u32 reg;
345
346 if (!vc4_state->update_muxing)
347 continue;
348
349 if (vc4_state->assigned_channel != 1)
350 continue;
351
352 encoder = vc4_get_crtc_encoder(crtc, crtc_state);
353 vc4_encoder = to_vc4_encoder(encoder);
354 switch (vc4_encoder->type) {
355 case VC4_ENCODER_TYPE_HDMI1:
356 mux = 0;
357 break;
358
359 case VC4_ENCODER_TYPE_TXP1:
360 mux = 2;
361 break;
362
363 default:
364 drm_err(&vc4->base, "Unhandled encoder type for PV muxing %d",
365 vc4_encoder->type);
366 mux = 0;
367 break;
368 }
369
370 reg = HVS_READ(SCALER6_CONTROL);
371 HVS_WRITE(SCALER6_CONTROL,
372 (reg & ~SCALER6_CONTROL_DSP1_TARGET_MASK) |
373 VC4_SET_FIELD(mux, SCALER6_CONTROL_DSP1_TARGET));
374 }
375 }
376
vc4_atomic_commit_tail(struct drm_atomic_state * state)377 static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
378 {
379 struct drm_device *dev = state->dev;
380 struct vc4_dev *vc4 = to_vc4_dev(dev);
381 struct vc4_hvs *hvs = vc4->hvs;
382 struct vc4_hvs_state *new_hvs_state;
383 struct vc4_hvs_state *old_hvs_state;
384 unsigned int channel;
385
386 old_hvs_state = vc4_hvs_get_old_global_state(state);
387 if (WARN_ON(IS_ERR(old_hvs_state)))
388 return;
389
390 new_hvs_state = vc4_hvs_get_new_global_state(state);
391 if (WARN_ON(IS_ERR(new_hvs_state)))
392 return;
393
394 if (vc4->gen < VC4_GEN_6_C) {
395 struct drm_crtc_state *new_crtc_state;
396 struct drm_crtc *crtc;
397 int i;
398
399 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
400 struct vc4_crtc_state *vc4_crtc_state;
401
402 if (!new_crtc_state->commit)
403 continue;
404
405 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
406 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
407 }
408 }
409
410 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
411 struct drm_crtc_commit *commit;
412 int ret;
413
414 if (!old_hvs_state->fifo_state[channel].in_use)
415 continue;
416
417 commit = old_hvs_state->fifo_state[channel].pending_commit;
418 if (!commit)
419 continue;
420
421 ret = drm_crtc_commit_wait(commit);
422 if (ret)
423 drm_err(dev, "Timed out waiting for commit\n");
424
425 drm_crtc_commit_put(commit);
426 old_hvs_state->fifo_state[channel].pending_commit = NULL;
427 }
428
429 if (vc4->gen == VC4_GEN_5) {
430 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
431 new_hvs_state->core_clock_rate);
432 unsigned long core_rate = clamp_t(unsigned long, state_rate,
433 500000000, hvs->max_core_rate);
434
435 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
436
437 /*
438 * Do a temporary request on the core clock during the
439 * modeset.
440 */
441 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
442 WARN_ON(clk_set_min_rate(hvs->disp_clk, core_rate));
443 }
444
445 drm_atomic_helper_commit_modeset_disables(dev, state);
446
447 if (vc4->gen <= VC4_GEN_5)
448 vc4_ctm_commit(vc4, state);
449
450 switch (vc4->gen) {
451 case VC4_GEN_4:
452 vc4_hvs_pv_muxing_commit(vc4, state);
453 break;
454
455 case VC4_GEN_5:
456 vc5_hvs_pv_muxing_commit(vc4, state);
457 break;
458
459 case VC4_GEN_6_C:
460 case VC4_GEN_6_D:
461 vc6_hvs_pv_muxing_commit(vc4, state);
462 break;
463
464 default:
465 drm_err(dev, "Unknown VC4 generation: %d", vc4->gen);
466 break;
467 }
468
469 drm_atomic_helper_commit_planes(dev, state,
470 DRM_PLANE_COMMIT_ACTIVE_ONLY);
471
472 drm_atomic_helper_commit_modeset_enables(dev, state);
473
474 drm_atomic_helper_fake_vblank(state);
475
476 drm_atomic_helper_commit_hw_done(state);
477
478 drm_atomic_helper_wait_for_flip_done(dev, state);
479
480 drm_atomic_helper_cleanup_planes(dev, state);
481
482 if (vc4->gen == VC4_GEN_5) {
483 unsigned long core_rate = min_t(unsigned long,
484 hvs->max_core_rate,
485 new_hvs_state->core_clock_rate);
486
487 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
488
489 /*
490 * Request a clock rate based on the current HVS
491 * requirements.
492 */
493 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
494 WARN_ON(clk_set_min_rate(hvs->disp_clk, core_rate));
495
496 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
497 clk_get_rate(hvs->core_clk));
498 }
499 }
500
vc4_atomic_commit_setup(struct drm_atomic_state * state)501 static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
502 {
503 struct drm_crtc_state *crtc_state;
504 struct vc4_hvs_state *hvs_state;
505 struct drm_crtc *crtc;
506 unsigned int i;
507
508 hvs_state = vc4_hvs_get_new_global_state(state);
509 if (WARN_ON(IS_ERR(hvs_state)))
510 return PTR_ERR(hvs_state);
511
512 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
513 struct vc4_crtc_state *vc4_crtc_state =
514 to_vc4_crtc_state(crtc_state);
515 unsigned int channel =
516 vc4_crtc_state->assigned_channel;
517
518 if (channel == VC4_HVS_CHANNEL_DISABLED)
519 continue;
520
521 if (!hvs_state->fifo_state[channel].in_use)
522 continue;
523
524 hvs_state->fifo_state[channel].pending_commit =
525 drm_crtc_commit_get(crtc_state->commit);
526 }
527
528 return 0;
529 }
530
vc4_fb_create(struct drm_device * dev,struct drm_file * file_priv,const struct drm_format_info * info,const struct drm_mode_fb_cmd2 * mode_cmd)531 static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
532 struct drm_file *file_priv,
533 const struct drm_format_info *info,
534 const struct drm_mode_fb_cmd2 *mode_cmd)
535 {
536 struct vc4_dev *vc4 = to_vc4_dev(dev);
537 struct drm_mode_fb_cmd2 mode_cmd_local;
538
539 if (WARN_ON_ONCE(vc4->gen > VC4_GEN_4))
540 return ERR_PTR(-ENODEV);
541
542 /* If the user didn't specify a modifier, use the
543 * vc4_set_tiling_ioctl() state for the BO.
544 */
545 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
546 struct drm_gem_object *gem_obj;
547 struct vc4_bo *bo;
548
549 gem_obj = drm_gem_object_lookup(file_priv,
550 mode_cmd->handles[0]);
551 if (!gem_obj) {
552 DRM_DEBUG("Failed to look up GEM BO %d\n",
553 mode_cmd->handles[0]);
554 return ERR_PTR(-ENOENT);
555 }
556 bo = to_vc4_bo(gem_obj);
557
558 mode_cmd_local = *mode_cmd;
559
560 if (bo->t_format) {
561 mode_cmd_local.modifier[0] =
562 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
563 } else {
564 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
565 }
566
567 drm_gem_object_put(gem_obj);
568
569 mode_cmd = &mode_cmd_local;
570 }
571
572 return drm_gem_fb_create(dev, file_priv, info, mode_cmd);
573 }
574
575 /* Our CTM has some peculiar limitations: we can only enable it for one CRTC
576 * at a time and the HW only supports S0.9 scalars. To account for the latter,
577 * we don't allow userland to set a CTM that we have no hope of approximating.
578 */
579 static int
vc4_ctm_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)580 vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
581 {
582 struct vc4_dev *vc4 = to_vc4_dev(dev);
583 struct vc4_ctm_state *ctm_state = NULL;
584 struct drm_crtc *crtc;
585 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
586 struct drm_color_ctm *ctm;
587 int i;
588
589 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
590 /* CTM is being disabled. */
591 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
592 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
593 if (IS_ERR(ctm_state))
594 return PTR_ERR(ctm_state);
595 ctm_state->fifo = 0;
596 }
597 }
598
599 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
600 if (new_crtc_state->ctm == old_crtc_state->ctm)
601 continue;
602
603 if (!ctm_state) {
604 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
605 if (IS_ERR(ctm_state))
606 return PTR_ERR(ctm_state);
607 }
608
609 /* CTM is being enabled or the matrix changed. */
610 if (new_crtc_state->ctm) {
611 struct vc4_crtc_state *vc4_crtc_state =
612 to_vc4_crtc_state(new_crtc_state);
613
614 /* fifo is 1-based since 0 disables CTM. */
615 int fifo = vc4_crtc_state->assigned_channel + 1;
616
617 /* Check userland isn't trying to turn on CTM for more
618 * than one CRTC at a time.
619 */
620 if (ctm_state->fifo && ctm_state->fifo != fifo) {
621 DRM_DEBUG_DRIVER("Too many CTM configured\n");
622 return -EINVAL;
623 }
624
625 /* Check we can approximate the specified CTM.
626 * We disallow scalars |c| > 1.0 since the HW has
627 * no integer bits.
628 */
629 ctm = new_crtc_state->ctm->data;
630 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
631 u64 val = ctm->matrix[i];
632
633 val &= ~BIT_ULL(63);
634 if (val > BIT_ULL(32))
635 return -EINVAL;
636 }
637
638 ctm_state->fifo = fifo;
639 ctm_state->ctm = ctm;
640 }
641 }
642
643 return 0;
644 }
645
vc4_load_tracker_atomic_check(struct drm_atomic_state * state)646 static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
647 {
648 struct drm_plane_state *old_plane_state, *new_plane_state;
649 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
650 struct vc4_load_tracker_state *load_state;
651 struct drm_private_state *priv_state;
652 struct drm_plane *plane;
653 int i;
654
655 priv_state = drm_atomic_get_private_obj_state(state,
656 &vc4->load_tracker);
657 if (IS_ERR(priv_state))
658 return PTR_ERR(priv_state);
659
660 load_state = to_vc4_load_tracker_state(priv_state);
661 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
662 new_plane_state, i) {
663 struct vc4_plane_state *vc4_plane_state;
664
665 if (old_plane_state->fb && old_plane_state->crtc) {
666 vc4_plane_state = to_vc4_plane_state(old_plane_state);
667 load_state->membus_load -= vc4_plane_state->membus_load;
668 load_state->hvs_load -= vc4_plane_state->hvs_load;
669 }
670
671 if (new_plane_state->fb && new_plane_state->crtc) {
672 vc4_plane_state = to_vc4_plane_state(new_plane_state);
673 load_state->membus_load += vc4_plane_state->membus_load;
674 load_state->hvs_load += vc4_plane_state->hvs_load;
675 }
676 }
677
678 /* Don't check the load when the tracker is disabled. */
679 if (!vc4->load_tracker_enabled)
680 return 0;
681
682 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
683 * the system work when other blocks are accessing the memory.
684 */
685 if (load_state->membus_load > SZ_1G + SZ_512M)
686 return -ENOSPC;
687
688 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
689 * consider the maximum number of cycles is 240M.
690 */
691 if (load_state->hvs_load > 240000000ULL)
692 return -ENOSPC;
693
694 return 0;
695 }
696
697 static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj * obj)698 vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
699 {
700 struct vc4_load_tracker_state *state;
701
702 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
703 if (!state)
704 return NULL;
705
706 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
707
708 return &state->base;
709 }
710
vc4_load_tracker_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)711 static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
712 struct drm_private_state *state)
713 {
714 struct vc4_load_tracker_state *load_state;
715
716 load_state = to_vc4_load_tracker_state(state);
717 kfree(load_state);
718 }
719
720 static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
721 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
722 .atomic_destroy_state = vc4_load_tracker_destroy_state,
723 };
724
vc4_load_tracker_obj_fini(struct drm_device * dev,void * unused)725 static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
726 {
727 struct vc4_dev *vc4 = to_vc4_dev(dev);
728
729 drm_atomic_private_obj_fini(&vc4->load_tracker);
730 }
731
vc4_load_tracker_obj_init(struct vc4_dev * vc4)732 static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
733 {
734 struct vc4_load_tracker_state *load_state;
735
736 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
737 if (!load_state)
738 return -ENOMEM;
739
740 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
741 &load_state->base,
742 &vc4_load_tracker_state_funcs);
743
744 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
745 }
746
747 static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj * obj)748 vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
749 {
750 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
751 struct vc4_hvs_state *state;
752 unsigned int i;
753
754 state = kzalloc(sizeof(*state), GFP_KERNEL);
755 if (!state)
756 return NULL;
757
758 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
759
760 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
761 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
762 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
763 }
764
765 state->core_clock_rate = old_state->core_clock_rate;
766
767 return &state->base;
768 }
769
vc4_hvs_channels_destroy_state(struct drm_private_obj * obj,struct drm_private_state * state)770 static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
771 struct drm_private_state *state)
772 {
773 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
774 unsigned int i;
775
776 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
777 if (!hvs_state->fifo_state[i].pending_commit)
778 continue;
779
780 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
781 }
782
783 kfree(hvs_state);
784 }
785
vc4_hvs_channels_print_state(struct drm_printer * p,const struct drm_private_state * state)786 static void vc4_hvs_channels_print_state(struct drm_printer *p,
787 const struct drm_private_state *state)
788 {
789 const struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
790 unsigned int i;
791
792 drm_printf(p, "HVS State\n");
793 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
794
795 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
796 drm_printf(p, "\tChannel %d\n", i);
797 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
798 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
799 }
800 }
801
802 static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
803 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
804 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
805 .atomic_print_state = vc4_hvs_channels_print_state,
806 };
807
vc4_hvs_channels_obj_fini(struct drm_device * dev,void * unused)808 static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
809 {
810 struct vc4_dev *vc4 = to_vc4_dev(dev);
811
812 drm_atomic_private_obj_fini(&vc4->hvs_channels);
813 }
814
vc4_hvs_channels_obj_init(struct vc4_dev * vc4)815 static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
816 {
817 struct vc4_hvs_state *state;
818
819 state = kzalloc(sizeof(*state), GFP_KERNEL);
820 if (!state)
821 return -ENOMEM;
822
823 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
824 &state->base,
825 &vc4_hvs_state_funcs);
826
827 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
828 }
829
cmp_vc4_crtc_hvs_output(const void * a,const void * b)830 static int cmp_vc4_crtc_hvs_output(const void *a, const void *b)
831 {
832 const struct vc4_crtc *crtc_a =
833 to_vc4_crtc(*(const struct drm_crtc **)a);
834 const struct vc4_crtc_data *data_a =
835 vc4_crtc_to_vc4_crtc_data(crtc_a);
836 const struct vc4_crtc *crtc_b =
837 to_vc4_crtc(*(const struct drm_crtc **)b);
838 const struct vc4_crtc_data *data_b =
839 vc4_crtc_to_vc4_crtc_data(crtc_b);
840
841 return data_a->hvs_output - data_b->hvs_output;
842 }
843
844 /*
845 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
846 * the TXP (and therefore all the CRTCs found on that platform).
847 *
848 * The naive (and our initial) implementation would just iterate over
849 * all the active CRTCs, try to find a suitable FIFO, and then remove it
850 * from the pool of available FIFOs. However, there are a few corner
851 * cases that need to be considered:
852 *
853 * - When running in a dual-display setup (so with two CRTCs involved),
854 * we can update the state of a single CRTC (for example by changing
855 * its mode using xrandr under X11) without affecting the other. In
856 * this case, the other CRTC wouldn't be in the state at all, so we
857 * need to consider all the running CRTCs in the DRM device to assign
858 * a FIFO, not just the one in the state.
859 *
860 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
861 * enabled CRTCs to pull their CRTC state into the global state, since
862 * a page flip would start considering their vblank to complete. Since
863 * we don't have a guarantee that they are actually active, that
864 * vblank might never happen, and shouldn't even be considered if we
865 * want to do a page flip on a single CRTC. That can be tested by
866 * doing a modetest -v first on HDMI1 and then on HDMI0.
867 *
868 * - Since we need the pixelvalve to be disabled and enabled back when
869 * the FIFO is changed, we should keep the FIFO assigned for as long
870 * as the CRTC is enabled, only considering it free again once that
871 * CRTC has been disabled. This can be tested by booting X11 on a
872 * single display, and changing the resolution down and then back up.
873 */
vc4_pv_muxing_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)874 static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
875 struct drm_atomic_state *state)
876 {
877 struct vc4_hvs_state *hvs_new_state;
878 struct drm_crtc **sorted_crtcs;
879 struct drm_crtc *crtc;
880 unsigned int unassigned_channels = 0;
881 unsigned int i;
882 int ret;
883
884 hvs_new_state = vc4_hvs_get_global_state(state);
885 if (IS_ERR(hvs_new_state))
886 return PTR_ERR(hvs_new_state);
887
888 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
889 if (!hvs_new_state->fifo_state[i].in_use)
890 unassigned_channels |= BIT(i);
891
892 /*
893 * The problem we have to solve here is that we have up to 7
894 * encoders, connected to up to 6 CRTCs.
895 *
896 * Those CRTCs, depending on the instance, can be routed to 1, 2
897 * or 3 HVS FIFOs, and we need to set the muxing between FIFOs and
898 * outputs in the HVS accordingly.
899 *
900 * It would be pretty hard to come up with an algorithm that
901 * would generically solve this. However, the current routing
902 * trees we support allow us to simplify a bit the problem.
903 *
904 * Indeed, with the current supported layouts, if we try to
905 * assign in the ascending crtc index order the FIFOs, we can't
906 * fall into the situation where an earlier CRTC that had
907 * multiple routes is assigned one that was the only option for
908 * a later CRTC.
909 *
910 * If the layout changes and doesn't give us that in the future,
911 * we will need to have something smarter, but it works so far.
912 */
913 sorted_crtcs = kmalloc_array(dev->num_crtcs, sizeof(*sorted_crtcs), GFP_KERNEL);
914 if (!sorted_crtcs)
915 return -ENOMEM;
916
917 i = 0;
918 drm_for_each_crtc(crtc, dev)
919 sorted_crtcs[i++] = crtc;
920
921 sort(sorted_crtcs, i, sizeof(*sorted_crtcs), cmp_vc4_crtc_hvs_output, NULL);
922
923 for (i = 0; i < dev->num_crtcs; i++) {
924 struct vc4_crtc_state *old_vc4_crtc_state, *new_vc4_crtc_state;
925 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
926 struct vc4_crtc *vc4_crtc;
927 unsigned int matching_channels;
928 unsigned int channel;
929
930 crtc = sorted_crtcs[i];
931 if (!crtc)
932 continue;
933 vc4_crtc = to_vc4_crtc(crtc);
934
935 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
936 if (!old_crtc_state)
937 continue;
938 old_vc4_crtc_state = to_vc4_crtc_state(old_crtc_state);
939
940 new_crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
941 if (!new_crtc_state)
942 continue;
943 new_vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
944
945 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
946
947 /* Nothing to do here, let's skip it */
948 if (old_crtc_state->enable == new_crtc_state->enable) {
949 if (new_crtc_state->enable)
950 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
951 crtc->name, new_vc4_crtc_state->assigned_channel);
952 else
953 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
954
955 continue;
956 }
957
958 /* Muxing will need to be modified, mark it as such */
959 new_vc4_crtc_state->update_muxing = true;
960
961 /* If we're disabling our CRTC, we put back our channel */
962 if (!new_crtc_state->enable) {
963 channel = old_vc4_crtc_state->assigned_channel;
964
965 drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
966 crtc->name, channel);
967
968 hvs_new_state->fifo_state[channel].in_use = false;
969 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
970 continue;
971 }
972
973 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
974 if (!matching_channels) {
975 ret = -EINVAL;
976 goto err_free_crtc_array;
977 }
978
979 channel = ffs(matching_channels) - 1;
980
981 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
982 new_vc4_crtc_state->assigned_channel = channel;
983 unassigned_channels &= ~BIT(channel);
984 hvs_new_state->fifo_state[channel].in_use = true;
985 }
986
987 kfree(sorted_crtcs);
988 return 0;
989
990 err_free_crtc_array:
991 kfree(sorted_crtcs);
992 return ret;
993 }
994
995 static int
vc4_core_clock_atomic_check(struct drm_atomic_state * state)996 vc4_core_clock_atomic_check(struct drm_atomic_state *state)
997 {
998 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
999 struct drm_private_state *priv_state;
1000 struct vc4_hvs_state *hvs_new_state;
1001 struct vc4_load_tracker_state *load_state;
1002 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1003 struct drm_crtc *crtc;
1004 unsigned int num_outputs;
1005 unsigned long pixel_rate;
1006 unsigned long cob_rate;
1007 unsigned int i;
1008
1009 priv_state = drm_atomic_get_private_obj_state(state,
1010 &vc4->load_tracker);
1011 if (IS_ERR(priv_state))
1012 return PTR_ERR(priv_state);
1013
1014 load_state = to_vc4_load_tracker_state(priv_state);
1015
1016 hvs_new_state = vc4_hvs_get_global_state(state);
1017 if (IS_ERR(hvs_new_state))
1018 return PTR_ERR(hvs_new_state);
1019
1020 for_each_oldnew_crtc_in_state(state, crtc,
1021 old_crtc_state,
1022 new_crtc_state,
1023 i) {
1024 if (old_crtc_state->active) {
1025 struct vc4_crtc_state *old_vc4_state =
1026 to_vc4_crtc_state(old_crtc_state);
1027 unsigned int channel = old_vc4_state->assigned_channel;
1028
1029 hvs_new_state->fifo_state[channel].fifo_load = 0;
1030 }
1031
1032 if (new_crtc_state->active) {
1033 struct vc4_crtc_state *new_vc4_state =
1034 to_vc4_crtc_state(new_crtc_state);
1035 unsigned int channel = new_vc4_state->assigned_channel;
1036
1037 hvs_new_state->fifo_state[channel].fifo_load =
1038 new_vc4_state->hvs_load;
1039 }
1040 }
1041
1042 cob_rate = 0;
1043 num_outputs = 0;
1044 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
1045 if (!hvs_new_state->fifo_state[i].in_use)
1046 continue;
1047
1048 num_outputs++;
1049 cob_rate = max_t(unsigned long,
1050 hvs_new_state->fifo_state[i].fifo_load,
1051 cob_rate);
1052 }
1053
1054 pixel_rate = load_state->hvs_load;
1055 if (num_outputs > 1) {
1056 pixel_rate = (pixel_rate * 40) / 100;
1057 } else {
1058 pixel_rate = (pixel_rate * 60) / 100;
1059 }
1060
1061 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
1062
1063 return 0;
1064 }
1065
1066
1067 static int
vc4_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)1068 vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
1069 {
1070 int ret;
1071
1072 ret = vc4_pv_muxing_atomic_check(dev, state);
1073 if (ret)
1074 return ret;
1075
1076 ret = vc4_ctm_atomic_check(dev, state);
1077 if (ret < 0)
1078 return ret;
1079
1080 ret = drm_atomic_helper_check(dev, state);
1081 if (ret)
1082 return ret;
1083
1084 ret = vc4_load_tracker_atomic_check(state);
1085 if (ret)
1086 return ret;
1087
1088 return vc4_core_clock_atomic_check(state);
1089 }
1090
1091 static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
1092 .atomic_commit_setup = vc4_atomic_commit_setup,
1093 .atomic_commit_tail = vc4_atomic_commit_tail,
1094 };
1095
1096 static const struct drm_mode_config_funcs vc4_mode_funcs = {
1097 .atomic_check = vc4_atomic_check,
1098 .atomic_commit = drm_atomic_helper_commit,
1099 .fb_create = vc4_fb_create,
1100 };
1101
1102 static const struct drm_mode_config_funcs vc5_mode_funcs = {
1103 .atomic_check = vc4_atomic_check,
1104 .atomic_commit = drm_atomic_helper_commit,
1105 .fb_create = drm_gem_fb_create,
1106 };
1107
vc4_kms_load(struct drm_device * dev)1108 int vc4_kms_load(struct drm_device *dev)
1109 {
1110 struct vc4_dev *vc4 = to_vc4_dev(dev);
1111 int ret;
1112
1113 /*
1114 * The limits enforced by the load tracker aren't relevant for
1115 * the BCM2711, but the load tracker computations are used for
1116 * the core clock rate calculation.
1117 */
1118 if (vc4->gen == VC4_GEN_4) {
1119 /* Start with the load tracker enabled. Can be
1120 * disabled through the debugfs load_tracker file.
1121 */
1122 vc4->load_tracker_enabled = true;
1123 }
1124
1125 /* Set support for vblank irq fast disable, before drm_vblank_init() */
1126 dev->vblank_disable_immediate = true;
1127
1128 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1129 if (ret < 0) {
1130 dev_err(dev->dev, "failed to initialize vblank\n");
1131 return ret;
1132 }
1133
1134 if (vc4->gen >= VC4_GEN_6_C) {
1135 dev->mode_config.max_width = 8192;
1136 dev->mode_config.max_height = 8192;
1137 } else if (vc4->gen >= VC4_GEN_5) {
1138 dev->mode_config.max_width = 7680;
1139 dev->mode_config.max_height = 7680;
1140 } else {
1141 dev->mode_config.max_width = 2048;
1142 dev->mode_config.max_height = 2048;
1143 }
1144
1145 dev->mode_config.funcs = (vc4->gen > VC4_GEN_4) ? &vc5_mode_funcs : &vc4_mode_funcs;
1146 dev->mode_config.helper_private = &vc4_mode_config_helpers;
1147 dev->mode_config.preferred_depth = 24;
1148 dev->mode_config.async_page_flip = true;
1149 dev->mode_config.normalize_zpos = true;
1150
1151 ret = vc4_ctm_obj_init(vc4);
1152 if (ret)
1153 return ret;
1154
1155 ret = vc4_load_tracker_obj_init(vc4);
1156 if (ret)
1157 return ret;
1158
1159 ret = vc4_hvs_channels_obj_init(vc4);
1160 if (ret)
1161 return ret;
1162
1163 drm_mode_config_reset(dev);
1164
1165 drm_kms_helper_poll_init(dev);
1166
1167 return 0;
1168 }
1169