1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * uvc_video.c -- USB Video Class driver - Video handling
4 *
5 * Copyright (C) 2005-2010
6 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/highmem.h>
11 #include <linux/kernel.h>
12 #include <linux/list.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/usb.h>
16 #include <linux/usb/hcd.h>
17 #include <linux/videodev2.h>
18 #include <linux/vmalloc.h>
19 #include <linux/wait.h>
20 #include <linux/atomic.h>
21 #include <linux/unaligned.h>
22
23 #include <media/jpeg.h>
24 #include <media/v4l2-common.h>
25
26 #include "uvcvideo.h"
27
28 /* ------------------------------------------------------------------------
29 * UVC Controls
30 */
31
__uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size,int timeout)32 static int __uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
33 u8 intfnum, u8 cs, void *data, u16 size,
34 int timeout)
35 {
36 u8 type = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
37 unsigned int pipe;
38
39 pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
40 : usb_sndctrlpipe(dev->udev, 0);
41 type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
42
43 return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
44 unit << 8 | intfnum, data, size, timeout);
45 }
46
uvc_query_name(u8 query)47 static const char *uvc_query_name(u8 query)
48 {
49 switch (query) {
50 case UVC_SET_CUR:
51 return "SET_CUR";
52 case UVC_GET_CUR:
53 return "GET_CUR";
54 case UVC_GET_MIN:
55 return "GET_MIN";
56 case UVC_GET_MAX:
57 return "GET_MAX";
58 case UVC_GET_RES:
59 return "GET_RES";
60 case UVC_GET_LEN:
61 return "GET_LEN";
62 case UVC_GET_INFO:
63 return "GET_INFO";
64 case UVC_GET_DEF:
65 return "GET_DEF";
66 default:
67 return "<invalid>";
68 }
69 }
70
uvc_query_ctrl(struct uvc_device * dev,u8 query,u8 unit,u8 intfnum,u8 cs,void * data,u16 size)71 int uvc_query_ctrl(struct uvc_device *dev, u8 query, u8 unit,
72 u8 intfnum, u8 cs, void *data, u16 size)
73 {
74 int ret;
75 u8 error;
76 u8 tmp;
77
78 ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
79 UVC_CTRL_CONTROL_TIMEOUT);
80 if (likely(ret == size))
81 return 0;
82
83 /*
84 * Some devices return shorter USB control packets than expected if the
85 * returned value can fit in less bytes. Zero all the bytes that the
86 * device has not written.
87 *
88 * This quirk is applied to all controls, regardless of their data type.
89 * Most controls are little-endian integers, in which case the missing
90 * bytes become 0 MSBs. For other data types, a different heuristic
91 * could be implemented if a device is found needing it.
92 *
93 * We exclude UVC_GET_INFO from the quirk. UVC_GET_LEN does not need
94 * to be excluded because its size is always 1.
95 */
96 if (ret > 0 && query != UVC_GET_INFO) {
97 memset(data + ret, 0, size - ret);
98 dev_warn_once(&dev->udev->dev,
99 "UVC non compliance: %s control %u on unit %u returned %d bytes when we expected %u.\n",
100 uvc_query_name(query), cs, unit, ret, size);
101 return 0;
102 }
103
104 if (ret != -EPIPE) {
105 dev_err(&dev->udev->dev,
106 "Failed to query (%s) UVC control %u on unit %u: %d (exp. %u).\n",
107 uvc_query_name(query), cs, unit, ret, size);
108 return ret < 0 ? ret : -EPIPE;
109 }
110
111 /* Reuse data[0] to request the error code. */
112 tmp = *(u8 *)data;
113
114 ret = __uvc_query_ctrl(dev, UVC_GET_CUR, 0, intfnum,
115 UVC_VC_REQUEST_ERROR_CODE_CONTROL, data, 1,
116 UVC_CTRL_CONTROL_TIMEOUT);
117
118 error = *(u8 *)data;
119 *(u8 *)data = tmp;
120
121 if (ret != 1) {
122 dev_err_ratelimited(&dev->udev->dev,
123 "Failed to query (%s) UVC error code control %u on unit %u: %d (exp. 1).\n",
124 uvc_query_name(query), cs, unit, ret);
125 return ret < 0 ? ret : -EPIPE;
126 }
127
128 uvc_dbg(dev, CONTROL, "Control error %u\n", error);
129
130 switch (error) {
131 case 0:
132 /* Cannot happen - we received a STALL */
133 return -EPIPE;
134 case 1: /* Not ready */
135 return -EBUSY;
136 case 2: /* Wrong state */
137 return -EACCES;
138 case 3: /* Power */
139 return -EREMOTE;
140 case 4: /* Out of range */
141 return -ERANGE;
142 case 5: /* Invalid unit */
143 case 6: /* Invalid control */
144 case 7: /* Invalid Request */
145 /*
146 * The firmware has not properly implemented
147 * the control or there has been a HW error.
148 */
149 return -EIO;
150 case 8: /* Invalid value within range */
151 return -EINVAL;
152 default: /* reserved or unknown */
153 break;
154 }
155
156 return -EPIPE;
157 }
158
159 static const struct usb_device_id elgato_cam_link_4k = {
160 USB_DEVICE(0x0fd9, 0x0066)
161 };
162
uvc_fixup_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl)163 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
164 struct uvc_streaming_control *ctrl)
165 {
166 const struct uvc_format *format = NULL;
167 const struct uvc_frame *frame = NULL;
168 unsigned int i;
169
170 /*
171 * The response of the Elgato Cam Link 4K is incorrect: The second byte
172 * contains bFormatIndex (instead of being the second byte of bmHint).
173 * The first byte is always zero. The third byte is always 1.
174 *
175 * The UVC 1.5 class specification defines the first five bits in the
176 * bmHint bitfield. The remaining bits are reserved and should be zero.
177 * Therefore a valid bmHint will be less than 32.
178 *
179 * Latest Elgato Cam Link 4K firmware as of 2021-03-23 needs this fix.
180 * MCU: 20.02.19, FPGA: 67
181 */
182 if (usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k) &&
183 ctrl->bmHint > 255) {
184 u8 corrected_format_index = ctrl->bmHint >> 8;
185
186 uvc_dbg(stream->dev, VIDEO,
187 "Correct USB video probe response from {bmHint: 0x%04x, bFormatIndex: %u} to {bmHint: 0x%04x, bFormatIndex: %u}\n",
188 ctrl->bmHint, ctrl->bFormatIndex,
189 1, corrected_format_index);
190 ctrl->bmHint = 1;
191 ctrl->bFormatIndex = corrected_format_index;
192 }
193
194 for (i = 0; i < stream->nformats; ++i) {
195 if (stream->formats[i].index == ctrl->bFormatIndex) {
196 format = &stream->formats[i];
197 break;
198 }
199 }
200
201 if (format == NULL)
202 return;
203
204 for (i = 0; i < format->nframes; ++i) {
205 if (format->frames[i].bFrameIndex == ctrl->bFrameIndex) {
206 frame = &format->frames[i];
207 break;
208 }
209 }
210
211 if (frame == NULL)
212 return;
213
214 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
215 (ctrl->dwMaxVideoFrameSize == 0 &&
216 stream->dev->uvc_version < 0x0110))
217 ctrl->dwMaxVideoFrameSize =
218 frame->dwMaxVideoFrameBufferSize;
219
220 /*
221 * The "TOSHIBA Web Camera - 5M" Chicony device (04f2:b50b) seems to
222 * compute the bandwidth on 16 bits and erroneously sign-extend it to
223 * 32 bits, resulting in a huge bandwidth value. Detect and fix that
224 * condition by setting the 16 MSBs to 0 when they're all equal to 1.
225 */
226 if ((ctrl->dwMaxPayloadTransferSize & 0xffff0000) == 0xffff0000)
227 ctrl->dwMaxPayloadTransferSize &= ~0xffff0000;
228
229 if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
230 stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
231 stream->intf->num_altsetting > 1) {
232 u32 interval;
233 u32 bandwidth;
234
235 interval = (ctrl->dwFrameInterval > 100000)
236 ? ctrl->dwFrameInterval
237 : frame->dwFrameInterval[0];
238
239 /*
240 * Compute a bandwidth estimation by multiplying the frame
241 * size by the number of video frames per second, divide the
242 * result by the number of USB frames (or micro-frames for
243 * high- and super-speed devices) per second and add the UVC
244 * header size (assumed to be 12 bytes long).
245 */
246 bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
247 bandwidth *= 10000000 / interval + 1;
248 bandwidth /= 1000;
249 if (stream->dev->udev->speed >= USB_SPEED_HIGH)
250 bandwidth /= 8;
251 bandwidth += 12;
252
253 /*
254 * The bandwidth estimate is too low for many cameras. Don't use
255 * maximum packet sizes lower than 1024 bytes to try and work
256 * around the problem. According to measurements done on two
257 * different camera models, the value is high enough to get most
258 * resolutions working while not preventing two simultaneous
259 * VGA streams at 15 fps.
260 */
261 bandwidth = max_t(u32, bandwidth, 1024);
262
263 ctrl->dwMaxPayloadTransferSize = bandwidth;
264 }
265
266 if (stream->intf->num_altsetting > 1 &&
267 ctrl->dwMaxPayloadTransferSize > stream->maxpsize) {
268 dev_warn_ratelimited(&stream->intf->dev,
269 "UVC non compliance: the max payload transmission size (%u) exceeds the size of the ep max packet (%u). Using the max size.\n",
270 ctrl->dwMaxPayloadTransferSize,
271 stream->maxpsize);
272 ctrl->dwMaxPayloadTransferSize = stream->maxpsize;
273 }
274 }
275
uvc_video_ctrl_size(struct uvc_streaming * stream)276 static size_t uvc_video_ctrl_size(struct uvc_streaming *stream)
277 {
278 /*
279 * Return the size of the video probe and commit controls, which depends
280 * on the protocol version.
281 */
282 if (stream->dev->uvc_version < 0x0110)
283 return 26;
284 else if (stream->dev->uvc_version < 0x0150)
285 return 34;
286 else
287 return 48;
288 }
289
uvc_get_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe,u8 query)290 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
291 struct uvc_streaming_control *ctrl, int probe, u8 query)
292 {
293 u16 size = uvc_video_ctrl_size(stream);
294 u8 *data;
295 int ret;
296
297 if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
298 query == UVC_GET_DEF)
299 return -EIO;
300
301 data = kmalloc(size, GFP_KERNEL);
302 if (data == NULL)
303 return -ENOMEM;
304
305 ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
306 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
307 size, uvc_timeout_param);
308
309 if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
310 /*
311 * Some cameras, mostly based on Bison Electronics chipsets,
312 * answer a GET_MIN or GET_MAX request with the wCompQuality
313 * field only.
314 */
315 uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
316 "compliance - GET_MIN/MAX(PROBE) incorrectly "
317 "supported. Enabling workaround.\n");
318 memset(ctrl, 0, sizeof(*ctrl));
319 ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
320 ret = 0;
321 goto out;
322 } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
323 /*
324 * Many cameras don't support the GET_DEF request on their
325 * video probe control. Warn once and return, the caller will
326 * fall back to GET_CUR.
327 */
328 uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
329 "compliance - GET_DEF(PROBE) not supported. "
330 "Enabling workaround.\n");
331 ret = -EIO;
332 goto out;
333 } else if (ret != size) {
334 dev_err(&stream->intf->dev,
335 "Failed to query (%s) UVC %s control : %d (exp. %u).\n",
336 uvc_query_name(query), probe ? "probe" : "commit",
337 ret, size);
338 ret = (ret == -EPROTO) ? -EPROTO : -EIO;
339 goto out;
340 }
341
342 ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
343 ctrl->bFormatIndex = data[2];
344 ctrl->bFrameIndex = data[3];
345 ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
346 ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
347 ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
348 ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
349 ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
350 ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
351 ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
352 ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
353
354 if (size >= 34) {
355 ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
356 ctrl->bmFramingInfo = data[30];
357 ctrl->bPreferedVersion = data[31];
358 ctrl->bMinVersion = data[32];
359 ctrl->bMaxVersion = data[33];
360 } else {
361 ctrl->dwClockFrequency = stream->dev->clock_frequency;
362 ctrl->bmFramingInfo = 0;
363 ctrl->bPreferedVersion = 0;
364 ctrl->bMinVersion = 0;
365 ctrl->bMaxVersion = 0;
366 }
367
368 /*
369 * Some broken devices return null or wrong dwMaxVideoFrameSize and
370 * dwMaxPayloadTransferSize fields. Try to get the value from the
371 * format and frame descriptors.
372 */
373 uvc_fixup_video_ctrl(stream, ctrl);
374 ret = 0;
375
376 out:
377 kfree(data);
378 return ret;
379 }
380
uvc_set_video_ctrl(struct uvc_streaming * stream,struct uvc_streaming_control * ctrl,int probe)381 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
382 struct uvc_streaming_control *ctrl, int probe)
383 {
384 u16 size = uvc_video_ctrl_size(stream);
385 u8 *data;
386 int ret;
387
388 data = kzalloc(size, GFP_KERNEL);
389 if (data == NULL)
390 return -ENOMEM;
391
392 *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
393 data[2] = ctrl->bFormatIndex;
394 data[3] = ctrl->bFrameIndex;
395 *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
396 *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
397 *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
398 *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
399 *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
400 *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
401 put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
402 put_unaligned_le32(ctrl->dwMaxPayloadTransferSize, &data[22]);
403
404 if (size >= 34) {
405 put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
406 data[30] = ctrl->bmFramingInfo;
407 data[31] = ctrl->bPreferedVersion;
408 data[32] = ctrl->bMinVersion;
409 data[33] = ctrl->bMaxVersion;
410 }
411
412 ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
413 probe ? UVC_VS_PROBE_CONTROL : UVC_VS_COMMIT_CONTROL, data,
414 size, uvc_timeout_param);
415 if (ret != size) {
416 dev_err(&stream->intf->dev,
417 "Failed to set UVC %s control : %d (exp. %u).\n",
418 probe ? "probe" : "commit", ret, size);
419 ret = -EIO;
420 }
421
422 kfree(data);
423 return ret;
424 }
425
uvc_probe_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)426 int uvc_probe_video(struct uvc_streaming *stream,
427 struct uvc_streaming_control *probe)
428 {
429 struct uvc_streaming_control probe_min, probe_max;
430 unsigned int i;
431 int ret;
432
433 /*
434 * Perform probing. The device should adjust the requested values
435 * according to its capabilities. However, some devices, namely the
436 * first generation UVC Logitech webcams, don't implement the Video
437 * Probe control properly, and just return the needed bandwidth. For
438 * that reason, if the needed bandwidth exceeds the maximum available
439 * bandwidth, try to lower the quality.
440 */
441 ret = uvc_set_video_ctrl(stream, probe, 1);
442 if (ret < 0)
443 goto done;
444
445 /* Get the minimum and maximum values for compression settings. */
446 if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
447 ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
448 if (ret < 0)
449 goto done;
450 ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
451 if (ret < 0)
452 goto done;
453
454 probe->wCompQuality = probe_max.wCompQuality;
455 }
456
457 for (i = 0; i < 2; ++i) {
458 ret = uvc_set_video_ctrl(stream, probe, 1);
459 if (ret < 0)
460 goto done;
461 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
462 if (ret < 0)
463 goto done;
464
465 if (stream->intf->num_altsetting == 1)
466 break;
467
468 if (probe->dwMaxPayloadTransferSize <= stream->maxpsize)
469 break;
470
471 if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
472 ret = -ENOSPC;
473 goto done;
474 }
475
476 /* TODO: negotiate compression parameters */
477 probe->wKeyFrameRate = probe_min.wKeyFrameRate;
478 probe->wPFrameRate = probe_min.wPFrameRate;
479 probe->wCompQuality = probe_max.wCompQuality;
480 probe->wCompWindowSize = probe_min.wCompWindowSize;
481 }
482
483 done:
484 return ret;
485 }
486
uvc_commit_video(struct uvc_streaming * stream,struct uvc_streaming_control * probe)487 static int uvc_commit_video(struct uvc_streaming *stream,
488 struct uvc_streaming_control *probe)
489 {
490 return uvc_set_video_ctrl(stream, probe, 0);
491 }
492
493 /* -----------------------------------------------------------------------------
494 * Clocks and timestamps
495 */
496
uvc_video_get_time(void)497 static inline ktime_t uvc_video_get_time(void)
498 {
499 if (uvc_clock_param == CLOCK_MONOTONIC)
500 return ktime_get();
501 else
502 return ktime_get_real();
503 }
504
uvc_video_clock_add_sample(struct uvc_clock * clock,const struct uvc_clock_sample * sample)505 static void uvc_video_clock_add_sample(struct uvc_clock *clock,
506 const struct uvc_clock_sample *sample)
507 {
508 unsigned long flags;
509
510 /*
511 * If we write new data on the position where we had the last
512 * overflow, remove the overflow pointer. There is no SOF overflow
513 * in the whole circular buffer.
514 */
515 if (clock->head == clock->last_sof_overflow)
516 clock->last_sof_overflow = -1;
517
518 spin_lock_irqsave(&clock->lock, flags);
519
520 if (clock->count > 0 && clock->last_sof > sample->dev_sof) {
521 /*
522 * Remove data from the circular buffer that is older than the
523 * last SOF overflow. We only support one SOF overflow per
524 * circular buffer.
525 */
526 if (clock->last_sof_overflow != -1)
527 clock->count = (clock->head - clock->last_sof_overflow
528 + clock->size) % clock->size;
529 clock->last_sof_overflow = clock->head;
530 }
531
532 /* Add sample. */
533 clock->samples[clock->head] = *sample;
534 clock->head = (clock->head + 1) % clock->size;
535 clock->count = min(clock->count + 1, clock->size);
536
537 spin_unlock_irqrestore(&clock->lock, flags);
538 }
539
540 static void
uvc_video_clock_decode(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)541 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
542 const u8 *data, int len)
543 {
544 struct uvc_clock_sample sample;
545 unsigned int header_size;
546 bool has_pts = false;
547 bool has_scr = false;
548
549 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
550 case UVC_STREAM_PTS | UVC_STREAM_SCR:
551 header_size = 12;
552 has_pts = true;
553 has_scr = true;
554 break;
555 case UVC_STREAM_PTS:
556 header_size = 6;
557 has_pts = true;
558 break;
559 case UVC_STREAM_SCR:
560 header_size = 8;
561 has_scr = true;
562 break;
563 default:
564 header_size = 2;
565 break;
566 }
567
568 /* Check for invalid headers. */
569 if (len < header_size)
570 return;
571
572 /*
573 * Extract the timestamps:
574 *
575 * - store the frame PTS in the buffer structure
576 * - if the SCR field is present, retrieve the host SOF counter and
577 * kernel timestamps and store them with the SCR STC and SOF fields
578 * in the ring buffer
579 */
580 if (has_pts && buf != NULL)
581 buf->pts = get_unaligned_le32(&data[2]);
582
583 if (!has_scr)
584 return;
585
586 /*
587 * To limit the amount of data, drop SCRs with an SOF identical to the
588 * previous one. This filtering is also needed to support UVC 1.5, where
589 * all the data packets of the same frame contains the same SOF. In that
590 * case only the first one will match the host_sof.
591 */
592 sample.dev_sof = get_unaligned_le16(&data[header_size - 2]);
593 if (sample.dev_sof == stream->clock.last_sof)
594 return;
595
596 sample.dev_stc = get_unaligned_le32(&data[header_size - 6]);
597
598 /*
599 * STC (Source Time Clock) is the clock used by the camera. The UVC 1.5
600 * standard states that it "must be captured when the first video data
601 * of a video frame is put on the USB bus". This is generally understood
602 * as requiring devices to clear the payload header's SCR bit before
603 * the first packet containing video data.
604 *
605 * Most vendors follow that interpretation, but some (namely SunplusIT
606 * on some devices) always set the `UVC_STREAM_SCR` bit, fill the SCR
607 * field with 0's,and expect that the driver only processes the SCR if
608 * there is data in the packet.
609 *
610 * Ignore all the hardware timestamp information if we haven't received
611 * any data for this frame yet, the packet contains no data, and both
612 * STC and SOF are zero. This heuristics should be safe on compliant
613 * devices. This should be safe with compliant devices, as in the very
614 * unlikely case where a UVC 1.1 device would send timing information
615 * only before the first packet containing data, and both STC and SOF
616 * happen to be zero for a particular frame, we would only miss one
617 * clock sample from many and the clock recovery algorithm wouldn't
618 * suffer from this condition.
619 */
620 if (buf && buf->bytesused == 0 && len == header_size &&
621 sample.dev_stc == 0 && sample.dev_sof == 0)
622 return;
623
624 sample.host_sof = usb_get_current_frame_number(stream->dev->udev);
625
626 /*
627 * On some devices, like the Logitech C922, the device SOF does not run
628 * at a stable rate of 1kHz. For those devices use the host SOF instead.
629 * In the tests performed so far, this improves the timestamp precision.
630 * This is probably explained by a small packet handling jitter from the
631 * host, but the exact reason hasn't been fully determined.
632 */
633 if (stream->dev->quirks & UVC_QUIRK_INVALID_DEVICE_SOF)
634 sample.dev_sof = sample.host_sof;
635
636 sample.host_time = uvc_video_get_time();
637
638 /*
639 * The UVC specification allows device implementations that can't obtain
640 * the USB frame number to keep their own frame counters as long as they
641 * match the size and frequency of the frame number associated with USB
642 * SOF tokens. The SOF values sent by such devices differ from the USB
643 * SOF tokens by a fixed offset that needs to be estimated and accounted
644 * for to make timestamp recovery as accurate as possible.
645 *
646 * The offset is estimated the first time a device SOF value is received
647 * as the difference between the host and device SOF values. As the two
648 * SOF values can differ slightly due to transmission delays, consider
649 * that the offset is null if the difference is not higher than 10 ms
650 * (negative differences can not happen and are thus considered as an
651 * offset). The video commit control wDelay field should be used to
652 * compute a dynamic threshold instead of using a fixed 10 ms value, but
653 * devices don't report reliable wDelay values.
654 *
655 * See uvc_video_clock_host_sof() for an explanation regarding why only
656 * the 8 LSBs of the delta are kept.
657 */
658 if (stream->clock.sof_offset == (u16)-1) {
659 u16 delta_sof = (sample.host_sof - sample.dev_sof) & 255;
660 if (delta_sof >= 10)
661 stream->clock.sof_offset = delta_sof;
662 else
663 stream->clock.sof_offset = 0;
664 }
665
666 sample.dev_sof = (sample.dev_sof + stream->clock.sof_offset) & 2047;
667 uvc_video_clock_add_sample(&stream->clock, &sample);
668 stream->clock.last_sof = sample.dev_sof;
669 }
670
uvc_video_clock_reset(struct uvc_clock * clock)671 static void uvc_video_clock_reset(struct uvc_clock *clock)
672 {
673 clock->head = 0;
674 clock->count = 0;
675 clock->last_sof = -1;
676 clock->last_sof_overflow = -1;
677 clock->sof_offset = -1;
678 }
679
uvc_video_clock_init(struct uvc_clock * clock)680 static int uvc_video_clock_init(struct uvc_clock *clock)
681 {
682 spin_lock_init(&clock->lock);
683 clock->size = 32;
684
685 clock->samples = kmalloc_array(clock->size, sizeof(*clock->samples),
686 GFP_KERNEL);
687 if (clock->samples == NULL)
688 return -ENOMEM;
689
690 uvc_video_clock_reset(clock);
691
692 return 0;
693 }
694
uvc_video_clock_cleanup(struct uvc_clock * clock)695 static void uvc_video_clock_cleanup(struct uvc_clock *clock)
696 {
697 kfree(clock->samples);
698 clock->samples = NULL;
699 }
700
701 /*
702 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
703 *
704 * Host SOF counters reported by usb_get_current_frame_number() usually don't
705 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
706 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
707 * controller and its configuration.
708 *
709 * We thus need to recover the SOF value corresponding to the host frame number.
710 * As the device and host frame numbers are sampled in a short interval, the
711 * difference between their values should be equal to a small delta plus an
712 * integer multiple of 256 caused by the host frame number limited precision.
713 *
714 * To obtain the recovered host SOF value, compute the small delta by masking
715 * the high bits of the host frame counter and device SOF difference and add it
716 * to the device SOF value.
717 */
uvc_video_clock_host_sof(const struct uvc_clock_sample * sample)718 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
719 {
720 /* The delta value can be negative. */
721 s8 delta_sof;
722
723 delta_sof = (sample->host_sof - sample->dev_sof) & 255;
724
725 return (sample->dev_sof + delta_sof) & 2047;
726 }
727
728 /*
729 * uvc_video_clock_update - Update the buffer timestamp
730 *
731 * This function converts the buffer PTS timestamp to the host clock domain by
732 * going through the USB SOF clock domain and stores the result in the V4L2
733 * buffer timestamp field.
734 *
735 * The relationship between the device clock and the host clock isn't known.
736 * However, the device and the host share the common USB SOF clock which can be
737 * used to recover that relationship.
738 *
739 * The relationship between the device clock and the USB SOF clock is considered
740 * to be linear over the clock samples sliding window and is given by
741 *
742 * SOF = m * PTS + p
743 *
744 * Several methods to compute the slope (m) and intercept (p) can be used. As
745 * the clock drift should be small compared to the sliding window size, we
746 * assume that the line that goes through the points at both ends of the window
747 * is a good approximation. Naming those points P1 and P2, we get
748 *
749 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
750 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
751 *
752 * or
753 *
754 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
755 *
756 * to avoid losing precision in the division. Similarly, the host timestamp is
757 * computed with
758 *
759 * TS = ((TS2 - TS1) * SOF + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
760 *
761 * SOF values are coded on 11 bits by USB. We extend their precision with 16
762 * decimal bits, leading to a 11.16 coding.
763 *
764 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
765 * be normalized using the nominal device clock frequency reported through the
766 * UVC descriptors.
767 *
768 * Both the PTS/STC and SOF counters roll over, after a fixed but device
769 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
770 * sliding window size is smaller than the rollover period, differences computed
771 * on unsigned integers will produce the correct result. However, the p term in
772 * the linear relations will be miscomputed.
773 *
774 * To fix the issue, we subtract a constant from the PTS and STC values to bring
775 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
776 * the 32 bit range without any rollover.
777 *
778 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
779 * computed by (1) will never be smaller than 0. This offset is then compensated
780 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
781 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
782 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
783 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
784 * SOF value at the end of the sliding window.
785 *
786 * Finally we subtract a constant from the host timestamps to bring the first
787 * timestamp of the sliding window to 1s.
788 */
uvc_video_clock_update(struct uvc_streaming * stream,struct vb2_v4l2_buffer * vbuf,struct uvc_buffer * buf)789 void uvc_video_clock_update(struct uvc_streaming *stream,
790 struct vb2_v4l2_buffer *vbuf,
791 struct uvc_buffer *buf)
792 {
793 struct uvc_clock *clock = &stream->clock;
794 struct uvc_clock_sample *first;
795 struct uvc_clock_sample *last;
796 unsigned long flags;
797 u64 timestamp;
798 u32 delta_stc;
799 u32 y1;
800 u32 x1, x2;
801 u32 mean;
802 u32 sof;
803 u64 y, y2;
804
805 if (!uvc_hw_timestamps_param)
806 return;
807
808 /*
809 * We will get called from __vb2_queue_cancel() if there are buffers
810 * done but not dequeued by the user, but the sample array has already
811 * been released at that time. Just bail out in that case.
812 */
813 if (!clock->samples)
814 return;
815
816 spin_lock_irqsave(&clock->lock, flags);
817
818 if (clock->count < 2)
819 goto done;
820
821 first = &clock->samples[(clock->head - clock->count + clock->size) % clock->size];
822 last = &clock->samples[(clock->head - 1 + clock->size) % clock->size];
823
824 /* First step, PTS to SOF conversion. */
825 delta_stc = buf->pts - (1UL << 31);
826 x1 = first->dev_stc - delta_stc;
827 x2 = last->dev_stc - delta_stc;
828 if (x1 == x2)
829 goto done;
830
831 y1 = (first->dev_sof + 2048) << 16;
832 y2 = (last->dev_sof + 2048) << 16;
833 if (y2 < y1)
834 y2 += 2048 << 16;
835
836 /*
837 * Have at least 1/4 of a second of timestamps before we
838 * try to do any calculation. Otherwise we do not have enough
839 * precision. This value was determined by running Android CTS
840 * on different devices.
841 *
842 * dev_sof runs at 1KHz, and we have a fixed point precision of
843 * 16 bits.
844 */
845 if ((y2 - y1) < ((1000 / 4) << 16))
846 goto done;
847
848 y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
849 - (u64)y2 * (u64)x1;
850 y = div_u64(y, x2 - x1);
851
852 sof = y;
853
854 uvc_dbg(stream->dev, CLOCK,
855 "%s: PTS %u y %llu.%06llu SOF %u.%06llu (x1 %u x2 %u y1 %u y2 %llu SOF offset %u)\n",
856 stream->dev->name, buf->pts,
857 y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
858 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
859 x1, x2, y1, y2, clock->sof_offset);
860
861 /* Second step, SOF to host clock conversion. */
862 x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
863 x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
864 if (x2 < x1)
865 x2 += 2048 << 16;
866 if (x1 == x2)
867 goto done;
868
869 y1 = NSEC_PER_SEC;
870 y2 = ktime_to_ns(ktime_sub(last->host_time, first->host_time)) + y1;
871
872 /*
873 * Interpolated and host SOF timestamps can wrap around at slightly
874 * different times. Handle this by adding or removing 2048 to or from
875 * the computed SOF value to keep it close to the SOF samples mean
876 * value.
877 */
878 mean = (x1 + x2) / 2;
879 if (mean - (1024 << 16) > sof)
880 sof += 2048 << 16;
881 else if (sof > mean + (1024 << 16))
882 sof -= 2048 << 16;
883
884 y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
885 - (u64)y2 * (u64)x1;
886 y = div_u64(y, x2 - x1);
887
888 timestamp = ktime_to_ns(first->host_time) + y - y1;
889
890 uvc_dbg(stream->dev, CLOCK,
891 "%s: SOF %u.%06llu y %llu ts %llu buf ts %llu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %llu)\n",
892 stream->dev->name,
893 sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
894 y, timestamp, vbuf->vb2_buf.timestamp,
895 x1, first->host_sof, first->dev_sof,
896 x2, last->host_sof, last->dev_sof, y1, y2);
897
898 /* Update the V4L2 buffer. */
899 vbuf->vb2_buf.timestamp = timestamp;
900
901 done:
902 spin_unlock_irqrestore(&clock->lock, flags);
903 }
904
905 /* ------------------------------------------------------------------------
906 * Stream statistics
907 */
908
uvc_video_stats_decode(struct uvc_streaming * stream,const u8 * data,int len)909 static void uvc_video_stats_decode(struct uvc_streaming *stream,
910 const u8 *data, int len)
911 {
912 unsigned int header_size;
913 bool has_pts = false;
914 bool has_scr = false;
915 u16 scr_sof;
916 u32 scr_stc;
917 u32 pts;
918
919 if (stream->stats.stream.nb_frames == 0 &&
920 stream->stats.frame.nb_packets == 0)
921 stream->stats.stream.start_ts = ktime_get();
922
923 switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
924 case UVC_STREAM_PTS | UVC_STREAM_SCR:
925 header_size = 12;
926 has_pts = true;
927 has_scr = true;
928 break;
929 case UVC_STREAM_PTS:
930 header_size = 6;
931 has_pts = true;
932 break;
933 case UVC_STREAM_SCR:
934 header_size = 8;
935 has_scr = true;
936 break;
937 default:
938 header_size = 2;
939 break;
940 }
941
942 /* Check for invalid headers. */
943 if (len < header_size || data[0] < header_size) {
944 stream->stats.frame.nb_invalid++;
945 return;
946 }
947
948 /* Extract the timestamps. */
949 if (has_pts)
950 pts = get_unaligned_le32(&data[2]);
951
952 if (has_scr) {
953 scr_stc = get_unaligned_le32(&data[header_size - 6]);
954 scr_sof = get_unaligned_le16(&data[header_size - 2]);
955 }
956
957 /* Is PTS constant through the whole frame ? */
958 if (has_pts && stream->stats.frame.nb_pts) {
959 if (stream->stats.frame.pts != pts) {
960 stream->stats.frame.nb_pts_diffs++;
961 stream->stats.frame.last_pts_diff =
962 stream->stats.frame.nb_packets;
963 }
964 }
965
966 if (has_pts) {
967 stream->stats.frame.nb_pts++;
968 stream->stats.frame.pts = pts;
969 }
970
971 /*
972 * Do all frames have a PTS in their first non-empty packet, or before
973 * their first empty packet ?
974 */
975 if (stream->stats.frame.size == 0) {
976 if (len > header_size)
977 stream->stats.frame.has_initial_pts = has_pts;
978 if (len == header_size && has_pts)
979 stream->stats.frame.has_early_pts = true;
980 }
981
982 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
983 if (has_scr && stream->stats.frame.nb_scr) {
984 if (stream->stats.frame.scr_stc != scr_stc)
985 stream->stats.frame.nb_scr_diffs++;
986 }
987
988 if (has_scr) {
989 /* Expand the SOF counter to 32 bits and store its value. */
990 if (stream->stats.stream.nb_frames > 0 ||
991 stream->stats.frame.nb_scr > 0)
992 stream->stats.stream.scr_sof_count +=
993 (scr_sof - stream->stats.stream.scr_sof) % 2048;
994 stream->stats.stream.scr_sof = scr_sof;
995
996 stream->stats.frame.nb_scr++;
997 stream->stats.frame.scr_stc = scr_stc;
998 stream->stats.frame.scr_sof = scr_sof;
999
1000 if (scr_sof < stream->stats.stream.min_sof)
1001 stream->stats.stream.min_sof = scr_sof;
1002 if (scr_sof > stream->stats.stream.max_sof)
1003 stream->stats.stream.max_sof = scr_sof;
1004 }
1005
1006 /* Record the first non-empty packet number. */
1007 if (stream->stats.frame.size == 0 && len > header_size)
1008 stream->stats.frame.first_data = stream->stats.frame.nb_packets;
1009
1010 /* Update the frame size. */
1011 stream->stats.frame.size += len - header_size;
1012
1013 /* Update the packets counters. */
1014 stream->stats.frame.nb_packets++;
1015 if (len <= header_size)
1016 stream->stats.frame.nb_empty++;
1017
1018 if (data[1] & UVC_STREAM_ERR)
1019 stream->stats.frame.nb_errors++;
1020 }
1021
uvc_video_stats_update(struct uvc_streaming * stream)1022 static void uvc_video_stats_update(struct uvc_streaming *stream)
1023 {
1024 struct uvc_stats_frame *frame = &stream->stats.frame;
1025
1026 uvc_dbg(stream->dev, STATS,
1027 "frame %u stats: %u/%u/%u packets, %u/%u/%u pts (%searly %sinitial), %u/%u scr, last pts/stc/sof %u/%u/%u\n",
1028 stream->sequence, frame->first_data,
1029 frame->nb_packets - frame->nb_empty, frame->nb_packets,
1030 frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
1031 frame->has_early_pts ? "" : "!",
1032 frame->has_initial_pts ? "" : "!",
1033 frame->nb_scr_diffs, frame->nb_scr,
1034 frame->pts, frame->scr_stc, frame->scr_sof);
1035
1036 stream->stats.stream.nb_frames++;
1037 stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
1038 stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
1039 stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
1040 stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
1041
1042 if (frame->has_early_pts)
1043 stream->stats.stream.nb_pts_early++;
1044 if (frame->has_initial_pts)
1045 stream->stats.stream.nb_pts_initial++;
1046 if (frame->last_pts_diff <= frame->first_data)
1047 stream->stats.stream.nb_pts_constant++;
1048 if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
1049 stream->stats.stream.nb_scr_count_ok++;
1050 if (frame->nb_scr_diffs + 1 == frame->nb_scr)
1051 stream->stats.stream.nb_scr_diffs_ok++;
1052
1053 memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
1054 }
1055
uvc_video_stats_dump(struct uvc_streaming * stream,char * buf,size_t size)1056 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
1057 size_t size)
1058 {
1059 unsigned int scr_sof_freq;
1060 unsigned int duration;
1061 size_t count = 0;
1062
1063 /*
1064 * Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
1065 * frequency this will not overflow before more than 1h.
1066 */
1067 duration = ktime_ms_delta(stream->stats.stream.stop_ts,
1068 stream->stats.stream.start_ts);
1069 if (duration != 0)
1070 scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
1071 / duration;
1072 else
1073 scr_sof_freq = 0;
1074
1075 count += scnprintf(buf + count, size - count,
1076 "frames: %u\npackets: %u\nempty: %u\n"
1077 "errors: %u\ninvalid: %u\n",
1078 stream->stats.stream.nb_frames,
1079 stream->stats.stream.nb_packets,
1080 stream->stats.stream.nb_empty,
1081 stream->stats.stream.nb_errors,
1082 stream->stats.stream.nb_invalid);
1083 count += scnprintf(buf + count, size - count,
1084 "pts: %u early, %u initial, %u ok\n",
1085 stream->stats.stream.nb_pts_early,
1086 stream->stats.stream.nb_pts_initial,
1087 stream->stats.stream.nb_pts_constant);
1088 count += scnprintf(buf + count, size - count,
1089 "scr: %u count ok, %u diff ok\n",
1090 stream->stats.stream.nb_scr_count_ok,
1091 stream->stats.stream.nb_scr_diffs_ok);
1092 count += scnprintf(buf + count, size - count,
1093 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
1094 stream->stats.stream.min_sof,
1095 stream->stats.stream.max_sof,
1096 scr_sof_freq / 1000, scr_sof_freq % 1000);
1097
1098 return count;
1099 }
1100
uvc_video_stats_start(struct uvc_streaming * stream)1101 static void uvc_video_stats_start(struct uvc_streaming *stream)
1102 {
1103 memset(&stream->stats, 0, sizeof(stream->stats));
1104 stream->stats.stream.min_sof = 2048;
1105 }
1106
uvc_video_stats_stop(struct uvc_streaming * stream)1107 static void uvc_video_stats_stop(struct uvc_streaming *stream)
1108 {
1109 stream->stats.stream.stop_ts = ktime_get();
1110 }
1111
1112 /* ------------------------------------------------------------------------
1113 * Video codecs
1114 */
1115
1116 /*
1117 * Video payload decoding is handled by uvc_video_decode_start(),
1118 * uvc_video_decode_data() and uvc_video_decode_end().
1119 *
1120 * uvc_video_decode_start is called with URB data at the start of a bulk or
1121 * isochronous payload. It processes header data and returns the header size
1122 * in bytes if successful. If an error occurs, it returns a negative error
1123 * code. The following error codes have special meanings.
1124 *
1125 * - EAGAIN informs the caller that the current video buffer should be marked
1126 * as done, and that the function should be called again with the same data
1127 * and a new video buffer. This is used when end of frame conditions can be
1128 * reliably detected at the beginning of the next frame only.
1129 *
1130 * If an error other than -EAGAIN is returned, the caller will drop the current
1131 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
1132 * made until the next payload. -ENODATA can be used to drop the current
1133 * payload if no other error code is appropriate.
1134 *
1135 * uvc_video_decode_data is called for every URB with URB data. It copies the
1136 * data to the video buffer.
1137 *
1138 * uvc_video_decode_end is called with header data at the end of a bulk or
1139 * isochronous payload. It performs any additional header data processing and
1140 * returns 0 or a negative error code if an error occurred. As header data have
1141 * already been processed by uvc_video_decode_start, this functions isn't
1142 * required to perform sanity checks a second time.
1143 *
1144 * For isochronous transfers where a payload is always transferred in a single
1145 * URB, the three functions will be called in a row.
1146 *
1147 * To let the decoder process header data and update its internal state even
1148 * when no video buffer is available, uvc_video_decode_start must be prepared
1149 * to be called with a NULL buf parameter. uvc_video_decode_data and
1150 * uvc_video_decode_end will never be called with a NULL buffer.
1151 */
uvc_video_decode_start(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1152 static int uvc_video_decode_start(struct uvc_streaming *stream,
1153 struct uvc_buffer *buf, const u8 *data, int len)
1154 {
1155 u8 header_len;
1156 u8 fid;
1157
1158 /*
1159 * Sanity checks:
1160 * - packet must be at least 2 bytes long
1161 * - bHeaderLength value must be at least 2 bytes (see above)
1162 * - bHeaderLength value can't be larger than the packet size.
1163 */
1164 if (len < 2 || data[0] < 2 || data[0] > len) {
1165 stream->stats.frame.nb_invalid++;
1166 return -EINVAL;
1167 }
1168
1169 header_len = data[0];
1170 fid = data[1] & UVC_STREAM_FID;
1171
1172 /*
1173 * Increase the sequence number regardless of any buffer states, so
1174 * that discontinuous sequence numbers always indicate lost frames.
1175 */
1176 if (stream->last_fid != fid) {
1177 stream->sequence++;
1178 if (stream->sequence)
1179 uvc_video_stats_update(stream);
1180 }
1181
1182 uvc_video_clock_decode(stream, buf, data, len);
1183 uvc_video_stats_decode(stream, data, len);
1184
1185 /*
1186 * Store the payload FID bit and return immediately when the buffer is
1187 * NULL.
1188 */
1189 if (buf == NULL) {
1190 stream->last_fid = fid;
1191 return -ENODATA;
1192 }
1193
1194 /* Mark the buffer as bad if the error bit is set. */
1195 if (data[1] & UVC_STREAM_ERR) {
1196 uvc_dbg(stream->dev, FRAME,
1197 "Marking buffer as bad (error bit set)\n");
1198 buf->error = 1;
1199 }
1200
1201 /*
1202 * Synchronize to the input stream by waiting for the FID bit to be
1203 * toggled when the buffer state is not UVC_BUF_STATE_ACTIVE.
1204 * stream->last_fid is initialized to -1, so the first isochronous
1205 * frame will always be in sync.
1206 *
1207 * If the device doesn't toggle the FID bit, invert stream->last_fid
1208 * when the EOF bit is set to force synchronisation on the next packet.
1209 */
1210 if (buf->state != UVC_BUF_STATE_ACTIVE) {
1211 if (fid == stream->last_fid) {
1212 uvc_dbg(stream->dev, FRAME,
1213 "Dropping payload (out of sync)\n");
1214 if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1215 (data[1] & UVC_STREAM_EOF))
1216 stream->last_fid ^= UVC_STREAM_FID;
1217 return -ENODATA;
1218 }
1219
1220 buf->buf.field = V4L2_FIELD_NONE;
1221 buf->buf.sequence = stream->sequence;
1222 buf->buf.vb2_buf.timestamp = ktime_to_ns(uvc_video_get_time());
1223
1224 /* TODO: Handle PTS and SCR. */
1225 buf->state = UVC_BUF_STATE_ACTIVE;
1226 }
1227
1228 /*
1229 * Mark the buffer as done if we're at the beginning of a new frame.
1230 * End of frame detection is better implemented by checking the EOF
1231 * bit (FID bit toggling is delayed by one frame compared to the EOF
1232 * bit), but some devices don't set the bit at end of frame (and the
1233 * last payload can be lost anyway). We thus must check if the FID has
1234 * been toggled.
1235 *
1236 * stream->last_fid is initialized to -1, so the first isochronous
1237 * frame will never trigger an end of frame detection.
1238 *
1239 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1240 * as it doesn't make sense to return an empty buffer. This also
1241 * avoids detecting end of frame conditions at FID toggling if the
1242 * previous payload had the EOF bit set.
1243 */
1244 if (fid != stream->last_fid && buf->bytesused != 0) {
1245 uvc_dbg(stream->dev, FRAME,
1246 "Frame complete (FID bit toggled)\n");
1247 buf->state = UVC_BUF_STATE_READY;
1248 return -EAGAIN;
1249 }
1250
1251 /*
1252 * Some cameras, when running two parallel streams (one MJPEG alongside
1253 * another non-MJPEG stream), are known to lose the EOF packet for a frame.
1254 * We can detect the end of a frame by checking for a new SOI marker, as
1255 * the SOI always lies on the packet boundary between two frames for
1256 * these devices.
1257 */
1258 if (stream->dev->quirks & UVC_QUIRK_MJPEG_NO_EOF &&
1259 (stream->cur_format->fcc == V4L2_PIX_FMT_MJPEG ||
1260 stream->cur_format->fcc == V4L2_PIX_FMT_JPEG)) {
1261 const u8 *packet = data + header_len;
1262
1263 if (len >= header_len + 2 &&
1264 packet[0] == 0xff && packet[1] == JPEG_MARKER_SOI &&
1265 buf->bytesused != 0) {
1266 buf->state = UVC_BUF_STATE_READY;
1267 buf->error = 1;
1268 stream->last_fid ^= UVC_STREAM_FID;
1269 return -EAGAIN;
1270 }
1271 }
1272
1273 stream->last_fid = fid;
1274
1275 return header_len;
1276 }
1277
uvc_stream_dir(struct uvc_streaming * stream)1278 static inline enum dma_data_direction uvc_stream_dir(
1279 struct uvc_streaming *stream)
1280 {
1281 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1282 return DMA_FROM_DEVICE;
1283 else
1284 return DMA_TO_DEVICE;
1285 }
1286
1287 /*
1288 * uvc_video_decode_data_work: Asynchronous memcpy processing
1289 *
1290 * Copy URB data to video buffers in process context, releasing buffer
1291 * references and requeuing the URB when done.
1292 */
uvc_video_copy_data_work(struct work_struct * work)1293 static void uvc_video_copy_data_work(struct work_struct *work)
1294 {
1295 struct uvc_urb *uvc_urb = container_of(work, struct uvc_urb, work);
1296 unsigned int i;
1297 int ret;
1298
1299 for (i = 0; i < uvc_urb->async_operations; i++) {
1300 struct uvc_copy_op *op = &uvc_urb->copy_operations[i];
1301
1302 memcpy(op->dst, op->src, op->len);
1303
1304 /* Release reference taken on this buffer. */
1305 uvc_queue_buffer_release(op->buf);
1306 }
1307
1308 ret = usb_submit_urb(uvc_urb->urb, GFP_KERNEL);
1309 if (ret < 0)
1310 dev_err(&uvc_urb->stream->intf->dev,
1311 "Failed to resubmit video URB (%d).\n", ret);
1312 }
1313
uvc_video_decode_data(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,const u8 * data,int len)1314 static void uvc_video_decode_data(struct uvc_urb *uvc_urb,
1315 struct uvc_buffer *buf, const u8 *data, int len)
1316 {
1317 unsigned int active_op = uvc_urb->async_operations;
1318 struct uvc_copy_op *op = &uvc_urb->copy_operations[active_op];
1319 unsigned int maxlen;
1320
1321 if (len <= 0)
1322 return;
1323
1324 maxlen = buf->length - buf->bytesused;
1325
1326 /* Take a buffer reference for async work. */
1327 kref_get(&buf->ref);
1328
1329 op->buf = buf;
1330 op->src = data;
1331 op->dst = buf->mem + buf->bytesused;
1332 op->len = min_t(unsigned int, len, maxlen);
1333
1334 buf->bytesused += op->len;
1335
1336 /* Complete the current frame if the buffer size was exceeded. */
1337 if (len > maxlen) {
1338 uvc_dbg(uvc_urb->stream->dev, FRAME,
1339 "Frame complete (overflow)\n");
1340 buf->error = 1;
1341 buf->state = UVC_BUF_STATE_READY;
1342 }
1343
1344 uvc_urb->async_operations++;
1345 }
1346
uvc_video_decode_end(struct uvc_streaming * stream,struct uvc_buffer * buf,const u8 * data,int len)1347 static void uvc_video_decode_end(struct uvc_streaming *stream,
1348 struct uvc_buffer *buf, const u8 *data, int len)
1349 {
1350 /* Mark the buffer as done if the EOF marker is set. */
1351 if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1352 uvc_dbg(stream->dev, FRAME, "Frame complete (EOF found)\n");
1353 if (data[0] == len)
1354 uvc_dbg(stream->dev, FRAME, "EOF in empty payload\n");
1355 buf->state = UVC_BUF_STATE_READY;
1356 if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1357 stream->last_fid ^= UVC_STREAM_FID;
1358 }
1359 }
1360
1361 /*
1362 * Video payload encoding is handled by uvc_video_encode_header() and
1363 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1364 *
1365 * uvc_video_encode_header is called at the start of a payload. It adds header
1366 * data to the transfer buffer and returns the header size. As the only known
1367 * UVC output device transfers a whole frame in a single payload, the EOF bit
1368 * is always set in the header.
1369 *
1370 * uvc_video_encode_data is called for every URB and copies the data from the
1371 * video buffer to the transfer buffer.
1372 */
uvc_video_encode_header(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1373 static int uvc_video_encode_header(struct uvc_streaming *stream,
1374 struct uvc_buffer *buf, u8 *data, int len)
1375 {
1376 data[0] = 2; /* Header length */
1377 data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1378 | (stream->last_fid & UVC_STREAM_FID);
1379 return 2;
1380 }
1381
uvc_video_encode_data(struct uvc_streaming * stream,struct uvc_buffer * buf,u8 * data,int len)1382 static int uvc_video_encode_data(struct uvc_streaming *stream,
1383 struct uvc_buffer *buf, u8 *data, int len)
1384 {
1385 struct uvc_video_queue *queue = &stream->queue;
1386 unsigned int nbytes;
1387 void *mem;
1388
1389 /* Copy video data to the URB buffer. */
1390 mem = buf->mem + queue->buf_used;
1391 nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1392 nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1393 nbytes);
1394 memcpy(data, mem, nbytes);
1395
1396 queue->buf_used += nbytes;
1397
1398 return nbytes;
1399 }
1400
1401 /* ------------------------------------------------------------------------
1402 * Metadata
1403 */
1404
1405 /*
1406 * Additionally to the payload headers we also want to provide the user with USB
1407 * Frame Numbers and system time values. The resulting buffer is thus composed
1408 * of blocks, containing a 64-bit timestamp in nanoseconds, a 16-bit USB Frame
1409 * Number, and a copy of the payload header.
1410 *
1411 * Ideally we want to capture all payload headers for each frame. However, their
1412 * number is unknown and unbound. We thus drop headers that contain no vendor
1413 * data and that either contain no SCR value or an SCR value identical to the
1414 * previous header.
1415 */
uvc_video_decode_meta(struct uvc_streaming * stream,struct uvc_buffer * meta_buf,const u8 * mem,unsigned int length)1416 static void uvc_video_decode_meta(struct uvc_streaming *stream,
1417 struct uvc_buffer *meta_buf,
1418 const u8 *mem, unsigned int length)
1419 {
1420 struct uvc_meta_buf *meta;
1421 size_t len_std = 2;
1422 bool has_pts, has_scr;
1423 unsigned long flags;
1424 unsigned int sof;
1425 ktime_t time;
1426 const u8 *scr;
1427
1428 if (!meta_buf || length == 2)
1429 return;
1430
1431 has_pts = mem[1] & UVC_STREAM_PTS;
1432 has_scr = mem[1] & UVC_STREAM_SCR;
1433
1434 if (has_pts) {
1435 len_std += 4;
1436 scr = mem + 6;
1437 } else {
1438 scr = mem + 2;
1439 }
1440
1441 if (has_scr)
1442 len_std += 6;
1443
1444 if (stream->meta.format == V4L2_META_FMT_UVC)
1445 length = len_std;
1446
1447 if (length == len_std && (!has_scr ||
1448 !memcmp(scr, stream->clock.last_scr, 6)))
1449 return;
1450
1451 if (meta_buf->length - meta_buf->bytesused <
1452 length + sizeof(meta->ns) + sizeof(meta->sof)) {
1453 meta_buf->error = 1;
1454 return;
1455 }
1456
1457 meta = (struct uvc_meta_buf *)((u8 *)meta_buf->mem + meta_buf->bytesused);
1458 local_irq_save(flags);
1459 time = uvc_video_get_time();
1460 sof = usb_get_current_frame_number(stream->dev->udev);
1461 local_irq_restore(flags);
1462 put_unaligned(ktime_to_ns(time), &meta->ns);
1463 put_unaligned(sof, &meta->sof);
1464
1465 if (has_scr)
1466 memcpy(stream->clock.last_scr, scr, 6);
1467
1468 meta->length = mem[0];
1469 meta->flags = mem[1];
1470 memcpy(meta->buf, &mem[2], length - 2);
1471 meta_buf->bytesused += length + sizeof(meta->ns) + sizeof(meta->sof);
1472
1473 uvc_dbg(stream->dev, FRAME,
1474 "%s(): t-sys %lluns, SOF %u, len %u, flags 0x%x, PTS %u, STC %u frame SOF %u\n",
1475 __func__, ktime_to_ns(time), meta->sof, meta->length,
1476 meta->flags,
1477 has_pts ? *(u32 *)meta->buf : 0,
1478 has_scr ? *(u32 *)scr : 0,
1479 has_scr ? *(u32 *)(scr + 4) & 0x7ff : 0);
1480 }
1481
1482 /* ------------------------------------------------------------------------
1483 * URB handling
1484 */
1485
1486 /*
1487 * Set error flag for incomplete buffer.
1488 */
uvc_video_validate_buffer(const struct uvc_streaming * stream,struct uvc_buffer * buf)1489 static void uvc_video_validate_buffer(const struct uvc_streaming *stream,
1490 struct uvc_buffer *buf)
1491 {
1492 if (stream->ctrl.dwMaxVideoFrameSize != buf->bytesused &&
1493 !(stream->cur_format->flags & UVC_FMT_FLAG_COMPRESSED))
1494 buf->error = 1;
1495 }
1496
1497 /*
1498 * Completion handler for video URBs.
1499 */
1500
uvc_video_next_buffers(struct uvc_streaming * stream,struct uvc_buffer ** video_buf,struct uvc_buffer ** meta_buf)1501 static void uvc_video_next_buffers(struct uvc_streaming *stream,
1502 struct uvc_buffer **video_buf, struct uvc_buffer **meta_buf)
1503 {
1504 uvc_video_validate_buffer(stream, *video_buf);
1505
1506 if (*meta_buf) {
1507 struct vb2_v4l2_buffer *vb2_meta = &(*meta_buf)->buf;
1508 const struct vb2_v4l2_buffer *vb2_video = &(*video_buf)->buf;
1509
1510 vb2_meta->sequence = vb2_video->sequence;
1511 vb2_meta->field = vb2_video->field;
1512 vb2_meta->vb2_buf.timestamp = vb2_video->vb2_buf.timestamp;
1513
1514 (*meta_buf)->state = UVC_BUF_STATE_READY;
1515 if (!(*meta_buf)->error)
1516 (*meta_buf)->error = (*video_buf)->error;
1517 *meta_buf = uvc_queue_next_buffer(&stream->meta.queue,
1518 *meta_buf);
1519 }
1520 *video_buf = uvc_queue_next_buffer(&stream->queue, *video_buf);
1521 }
1522
uvc_video_decode_isoc(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1523 static void uvc_video_decode_isoc(struct uvc_urb *uvc_urb,
1524 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1525 {
1526 struct urb *urb = uvc_urb->urb;
1527 struct uvc_streaming *stream = uvc_urb->stream;
1528 u8 *mem;
1529 int ret, i;
1530
1531 for (i = 0; i < urb->number_of_packets; ++i) {
1532 if (urb->iso_frame_desc[i].status < 0) {
1533 uvc_dbg(stream->dev, FRAME,
1534 "USB isochronous frame lost (%d)\n",
1535 urb->iso_frame_desc[i].status);
1536 /* Mark the buffer as faulty. */
1537 if (buf != NULL)
1538 buf->error = 1;
1539 continue;
1540 }
1541
1542 /* Decode the payload header. */
1543 mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1544 do {
1545 ret = uvc_video_decode_start(stream, buf, mem,
1546 urb->iso_frame_desc[i].actual_length);
1547 if (ret == -EAGAIN)
1548 uvc_video_next_buffers(stream, &buf, &meta_buf);
1549 } while (ret == -EAGAIN);
1550
1551 if (ret < 0)
1552 continue;
1553
1554 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1555
1556 /* Decode the payload data. */
1557 uvc_video_decode_data(uvc_urb, buf, mem + ret,
1558 urb->iso_frame_desc[i].actual_length - ret);
1559
1560 /* Process the header again. */
1561 uvc_video_decode_end(stream, buf, mem,
1562 urb->iso_frame_desc[i].actual_length);
1563
1564 if (buf->state == UVC_BUF_STATE_READY)
1565 uvc_video_next_buffers(stream, &buf, &meta_buf);
1566 }
1567 }
1568
uvc_video_decode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1569 static void uvc_video_decode_bulk(struct uvc_urb *uvc_urb,
1570 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1571 {
1572 struct urb *urb = uvc_urb->urb;
1573 struct uvc_streaming *stream = uvc_urb->stream;
1574 u8 *mem;
1575 int len, ret;
1576
1577 /*
1578 * Ignore ZLPs if they're not part of a frame, otherwise process them
1579 * to trigger the end of payload detection.
1580 */
1581 if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1582 return;
1583
1584 mem = urb->transfer_buffer;
1585 len = urb->actual_length;
1586 stream->bulk.payload_size += len;
1587
1588 /*
1589 * If the URB is the first of its payload, decode and save the
1590 * header.
1591 */
1592 if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1593 do {
1594 ret = uvc_video_decode_start(stream, buf, mem, len);
1595 if (ret == -EAGAIN)
1596 uvc_video_next_buffers(stream, &buf, &meta_buf);
1597 } while (ret == -EAGAIN);
1598
1599 /* If an error occurred skip the rest of the payload. */
1600 if (ret < 0 || buf == NULL) {
1601 stream->bulk.skip_payload = 1;
1602 } else {
1603 memcpy(stream->bulk.header, mem, ret);
1604 stream->bulk.header_size = ret;
1605
1606 uvc_video_decode_meta(stream, meta_buf, mem, ret);
1607
1608 mem += ret;
1609 len -= ret;
1610 }
1611 }
1612
1613 /*
1614 * The buffer queue might have been cancelled while a bulk transfer
1615 * was in progress, so we can reach here with buf equal to NULL. Make
1616 * sure buf is never dereferenced if NULL.
1617 */
1618
1619 /* Prepare video data for processing. */
1620 if (!stream->bulk.skip_payload && buf != NULL)
1621 uvc_video_decode_data(uvc_urb, buf, mem, len);
1622
1623 /*
1624 * Detect the payload end by a URB smaller than the maximum size (or
1625 * a payload size equal to the maximum) and process the header again.
1626 */
1627 if (urb->actual_length < urb->transfer_buffer_length ||
1628 stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1629 if (!stream->bulk.skip_payload && buf != NULL) {
1630 uvc_video_decode_end(stream, buf, stream->bulk.header,
1631 stream->bulk.payload_size);
1632 if (buf->state == UVC_BUF_STATE_READY)
1633 uvc_video_next_buffers(stream, &buf, &meta_buf);
1634 }
1635
1636 stream->bulk.header_size = 0;
1637 stream->bulk.skip_payload = 0;
1638 stream->bulk.payload_size = 0;
1639 }
1640 }
1641
uvc_video_encode_bulk(struct uvc_urb * uvc_urb,struct uvc_buffer * buf,struct uvc_buffer * meta_buf)1642 static void uvc_video_encode_bulk(struct uvc_urb *uvc_urb,
1643 struct uvc_buffer *buf, struct uvc_buffer *meta_buf)
1644 {
1645 struct urb *urb = uvc_urb->urb;
1646 struct uvc_streaming *stream = uvc_urb->stream;
1647
1648 u8 *mem = urb->transfer_buffer;
1649 int len = stream->urb_size, ret;
1650
1651 if (buf == NULL) {
1652 urb->transfer_buffer_length = 0;
1653 return;
1654 }
1655
1656 /* If the URB is the first of its payload, add the header. */
1657 if (stream->bulk.header_size == 0) {
1658 ret = uvc_video_encode_header(stream, buf, mem, len);
1659 stream->bulk.header_size = ret;
1660 stream->bulk.payload_size += ret;
1661 mem += ret;
1662 len -= ret;
1663 }
1664
1665 /* Process video data. */
1666 ret = uvc_video_encode_data(stream, buf, mem, len);
1667
1668 stream->bulk.payload_size += ret;
1669 len -= ret;
1670
1671 if (buf->bytesused == stream->queue.buf_used ||
1672 stream->bulk.payload_size == stream->bulk.max_payload_size) {
1673 if (buf->bytesused == stream->queue.buf_used) {
1674 stream->queue.buf_used = 0;
1675 buf->state = UVC_BUF_STATE_READY;
1676 buf->buf.sequence = ++stream->sequence;
1677 uvc_queue_next_buffer(&stream->queue, buf);
1678 stream->last_fid ^= UVC_STREAM_FID;
1679 }
1680
1681 stream->bulk.header_size = 0;
1682 stream->bulk.payload_size = 0;
1683 }
1684
1685 urb->transfer_buffer_length = stream->urb_size - len;
1686 }
1687
uvc_video_complete(struct urb * urb)1688 static void uvc_video_complete(struct urb *urb)
1689 {
1690 struct uvc_urb *uvc_urb = urb->context;
1691 struct uvc_streaming *stream = uvc_urb->stream;
1692 struct uvc_video_queue *queue = &stream->queue;
1693 struct uvc_video_queue *qmeta = &stream->meta.queue;
1694 struct vb2_queue *vb2_qmeta = stream->meta.vdev.queue;
1695 struct uvc_buffer *buf = NULL;
1696 struct uvc_buffer *buf_meta = NULL;
1697 unsigned long flags;
1698 int ret;
1699
1700 switch (urb->status) {
1701 case 0:
1702 break;
1703
1704 default:
1705 dev_warn(&stream->intf->dev,
1706 "Non-zero status (%d) in video completion handler.\n",
1707 urb->status);
1708 fallthrough;
1709 case -ENOENT: /* usb_poison_urb() called. */
1710 if (stream->frozen)
1711 return;
1712 fallthrough;
1713 case -ECONNRESET: /* usb_unlink_urb() called. */
1714 case -ESHUTDOWN: /* The endpoint is being disabled. */
1715 uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1716 if (vb2_qmeta)
1717 uvc_queue_cancel(qmeta, urb->status == -ESHUTDOWN);
1718 return;
1719 }
1720
1721 buf = uvc_queue_get_current_buffer(queue);
1722
1723 if (vb2_qmeta) {
1724 spin_lock_irqsave(&qmeta->irqlock, flags);
1725 if (!list_empty(&qmeta->irqqueue))
1726 buf_meta = list_first_entry(&qmeta->irqqueue,
1727 struct uvc_buffer, queue);
1728 spin_unlock_irqrestore(&qmeta->irqlock, flags);
1729 }
1730
1731 /* Re-initialise the URB async work. */
1732 uvc_urb->async_operations = 0;
1733
1734 /*
1735 * Process the URB headers, and optionally queue expensive memcpy tasks
1736 * to be deferred to a work queue.
1737 */
1738 stream->decode(uvc_urb, buf, buf_meta);
1739
1740 /* If no async work is needed, resubmit the URB immediately. */
1741 if (!uvc_urb->async_operations) {
1742 ret = usb_submit_urb(uvc_urb->urb, GFP_ATOMIC);
1743 if (ret < 0)
1744 dev_err(&stream->intf->dev,
1745 "Failed to resubmit video URB (%d).\n", ret);
1746 return;
1747 }
1748
1749 queue_work(stream->async_wq, &uvc_urb->work);
1750 }
1751
1752 /*
1753 * Free transfer buffers.
1754 */
uvc_free_urb_buffers(struct uvc_streaming * stream)1755 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1756 {
1757 struct usb_device *udev = stream->dev->udev;
1758 struct uvc_urb *uvc_urb;
1759
1760 for_each_uvc_urb(uvc_urb, stream) {
1761 if (!uvc_urb->buffer)
1762 continue;
1763
1764 usb_free_noncoherent(udev, stream->urb_size, uvc_urb->buffer,
1765 uvc_stream_dir(stream), uvc_urb->sgt);
1766 uvc_urb->buffer = NULL;
1767 uvc_urb->sgt = NULL;
1768 }
1769
1770 stream->urb_size = 0;
1771 }
1772
uvc_alloc_urb_buffer(struct uvc_streaming * stream,struct uvc_urb * uvc_urb,gfp_t gfp_flags)1773 static bool uvc_alloc_urb_buffer(struct uvc_streaming *stream,
1774 struct uvc_urb *uvc_urb, gfp_t gfp_flags)
1775 {
1776 struct usb_device *udev = stream->dev->udev;
1777
1778 uvc_urb->buffer = usb_alloc_noncoherent(udev, stream->urb_size,
1779 gfp_flags, &uvc_urb->dma,
1780 uvc_stream_dir(stream),
1781 &uvc_urb->sgt);
1782 return !!uvc_urb->buffer;
1783 }
1784
1785 /*
1786 * Allocate transfer buffers. This function can be called with buffers
1787 * already allocated when resuming from suspend, in which case it will
1788 * return without touching the buffers.
1789 *
1790 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1791 * system is too low on memory try successively smaller numbers of packets
1792 * until allocation succeeds.
1793 *
1794 * Return the number of allocated packets on success or 0 when out of memory.
1795 */
uvc_alloc_urb_buffers(struct uvc_streaming * stream,unsigned int size,unsigned int psize,gfp_t gfp_flags)1796 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1797 unsigned int size, unsigned int psize, gfp_t gfp_flags)
1798 {
1799 unsigned int npackets;
1800 unsigned int i;
1801
1802 /* Buffers are already allocated, bail out. */
1803 if (stream->urb_size)
1804 return stream->urb_size / psize;
1805
1806 /*
1807 * Compute the number of packets. Bulk endpoints might transfer UVC
1808 * payloads across multiple URBs.
1809 */
1810 npackets = DIV_ROUND_UP(size, psize);
1811 if (npackets > UVC_MAX_PACKETS)
1812 npackets = UVC_MAX_PACKETS;
1813
1814 /* Retry allocations until one succeed. */
1815 for (; npackets > 1; npackets /= 2) {
1816 stream->urb_size = psize * npackets;
1817
1818 for (i = 0; i < UVC_URBS; ++i) {
1819 struct uvc_urb *uvc_urb = &stream->uvc_urb[i];
1820
1821 if (!uvc_alloc_urb_buffer(stream, uvc_urb, gfp_flags)) {
1822 uvc_free_urb_buffers(stream);
1823 break;
1824 }
1825
1826 uvc_urb->stream = stream;
1827 }
1828
1829 if (i == UVC_URBS) {
1830 uvc_dbg(stream->dev, VIDEO,
1831 "Allocated %u URB buffers of %ux%u bytes each\n",
1832 UVC_URBS, npackets, psize);
1833 return npackets;
1834 }
1835 }
1836
1837 uvc_dbg(stream->dev, VIDEO,
1838 "Failed to allocate URB buffers (%u bytes per packet)\n",
1839 psize);
1840 return 0;
1841 }
1842
1843 /*
1844 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1845 */
uvc_video_stop_transfer(struct uvc_streaming * stream,int free_buffers)1846 static void uvc_video_stop_transfer(struct uvc_streaming *stream,
1847 int free_buffers)
1848 {
1849 struct uvc_urb *uvc_urb;
1850
1851 uvc_video_stats_stop(stream);
1852
1853 /*
1854 * We must poison the URBs rather than kill them to ensure that even
1855 * after the completion handler returns, any asynchronous workqueues
1856 * will be prevented from resubmitting the URBs.
1857 */
1858 for_each_uvc_urb(uvc_urb, stream)
1859 usb_poison_urb(uvc_urb->urb);
1860
1861 flush_workqueue(stream->async_wq);
1862
1863 for_each_uvc_urb(uvc_urb, stream) {
1864 usb_free_urb(uvc_urb->urb);
1865 uvc_urb->urb = NULL;
1866 }
1867
1868 if (free_buffers)
1869 uvc_free_urb_buffers(stream);
1870 }
1871
1872 /*
1873 * Compute the maximum number of bytes per interval for an endpoint.
1874 */
uvc_endpoint_max_bpi(struct usb_device * dev,struct usb_host_endpoint * ep)1875 u16 uvc_endpoint_max_bpi(struct usb_device *dev, struct usb_host_endpoint *ep)
1876 {
1877 u16 psize;
1878
1879 switch (dev->speed) {
1880 case USB_SPEED_SUPER:
1881 case USB_SPEED_SUPER_PLUS:
1882 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1883 default:
1884 psize = usb_endpoint_maxp(&ep->desc);
1885 psize *= usb_endpoint_maxp_mult(&ep->desc);
1886 return psize;
1887 }
1888 }
1889
1890 /*
1891 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1892 * is given by the endpoint.
1893 */
uvc_init_video_isoc(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1894 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1895 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1896 {
1897 struct urb *urb;
1898 struct uvc_urb *uvc_urb;
1899 unsigned int npackets, i;
1900 u16 psize;
1901 u32 size;
1902
1903 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1904 size = stream->ctrl.dwMaxVideoFrameSize;
1905
1906 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1907 if (npackets == 0)
1908 return -ENOMEM;
1909
1910 size = npackets * psize;
1911
1912 for_each_uvc_urb(uvc_urb, stream) {
1913 urb = usb_alloc_urb(npackets, gfp_flags);
1914 if (urb == NULL) {
1915 uvc_video_stop_transfer(stream, 1);
1916 return -ENOMEM;
1917 }
1918
1919 urb->dev = stream->dev->udev;
1920 urb->context = uvc_urb;
1921 urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1922 ep->desc.bEndpointAddress);
1923 urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1924 urb->transfer_dma = uvc_urb->dma;
1925 urb->interval = ep->desc.bInterval;
1926 urb->transfer_buffer = uvc_urb->buffer;
1927 urb->complete = uvc_video_complete;
1928 urb->number_of_packets = npackets;
1929 urb->transfer_buffer_length = size;
1930 urb->sgt = uvc_urb->sgt;
1931
1932 for (i = 0; i < npackets; ++i) {
1933 urb->iso_frame_desc[i].offset = i * psize;
1934 urb->iso_frame_desc[i].length = psize;
1935 }
1936
1937 uvc_urb->urb = urb;
1938 }
1939
1940 return 0;
1941 }
1942
1943 /*
1944 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1945 * given by the endpoint.
1946 */
uvc_init_video_bulk(struct uvc_streaming * stream,struct usb_host_endpoint * ep,gfp_t gfp_flags)1947 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1948 struct usb_host_endpoint *ep, gfp_t gfp_flags)
1949 {
1950 struct urb *urb;
1951 struct uvc_urb *uvc_urb;
1952 unsigned int npackets, pipe;
1953 u16 psize;
1954 u32 size;
1955
1956 psize = usb_endpoint_maxp(&ep->desc);
1957 size = stream->ctrl.dwMaxPayloadTransferSize;
1958 stream->bulk.max_payload_size = size;
1959
1960 npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1961 if (npackets == 0)
1962 return -ENOMEM;
1963
1964 size = npackets * psize;
1965
1966 if (usb_endpoint_dir_in(&ep->desc))
1967 pipe = usb_rcvbulkpipe(stream->dev->udev,
1968 ep->desc.bEndpointAddress);
1969 else
1970 pipe = usb_sndbulkpipe(stream->dev->udev,
1971 ep->desc.bEndpointAddress);
1972
1973 if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1974 size = 0;
1975
1976 for_each_uvc_urb(uvc_urb, stream) {
1977 urb = usb_alloc_urb(0, gfp_flags);
1978 if (urb == NULL) {
1979 uvc_video_stop_transfer(stream, 1);
1980 return -ENOMEM;
1981 }
1982
1983 usb_fill_bulk_urb(urb, stream->dev->udev, pipe, uvc_urb->buffer,
1984 size, uvc_video_complete, uvc_urb);
1985 urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1986 urb->transfer_dma = uvc_urb->dma;
1987 urb->sgt = uvc_urb->sgt;
1988
1989 uvc_urb->urb = urb;
1990 }
1991
1992 return 0;
1993 }
1994
1995 /*
1996 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1997 */
uvc_video_start_transfer(struct uvc_streaming * stream,gfp_t gfp_flags)1998 static int uvc_video_start_transfer(struct uvc_streaming *stream,
1999 gfp_t gfp_flags)
2000 {
2001 struct usb_interface *intf = stream->intf;
2002 struct usb_host_endpoint *ep;
2003 struct uvc_urb *uvc_urb;
2004 unsigned int i;
2005 int ret;
2006
2007 stream->sequence = -1;
2008 stream->last_fid = -1;
2009 stream->bulk.header_size = 0;
2010 stream->bulk.skip_payload = 0;
2011 stream->bulk.payload_size = 0;
2012
2013 uvc_video_stats_start(stream);
2014
2015 if (intf->num_altsetting > 1) {
2016 struct usb_host_endpoint *best_ep = NULL;
2017 unsigned int best_psize = UINT_MAX;
2018 unsigned int bandwidth;
2019 unsigned int altsetting;
2020 int intfnum = stream->intfnum;
2021
2022 /* Isochronous endpoint, select the alternate setting. */
2023 bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
2024
2025 if (bandwidth == 0) {
2026 uvc_dbg(stream->dev, VIDEO,
2027 "Device requested null bandwidth, defaulting to lowest\n");
2028 bandwidth = 1;
2029 } else {
2030 uvc_dbg(stream->dev, VIDEO,
2031 "Device requested %u B/frame bandwidth\n",
2032 bandwidth);
2033 }
2034
2035 for (i = 0; i < intf->num_altsetting; ++i) {
2036 struct usb_host_interface *alts;
2037 unsigned int psize;
2038
2039 alts = &intf->altsetting[i];
2040 ep = uvc_find_endpoint(alts,
2041 stream->header.bEndpointAddress);
2042 if (ep == NULL)
2043 continue;
2044
2045 /* Check if the bandwidth is high enough. */
2046 psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
2047 if (psize >= bandwidth && psize < best_psize) {
2048 altsetting = alts->desc.bAlternateSetting;
2049 best_psize = psize;
2050 best_ep = ep;
2051 }
2052 }
2053
2054 if (best_ep == NULL) {
2055 uvc_dbg(stream->dev, VIDEO,
2056 "No fast enough alt setting for requested bandwidth\n");
2057 return -EIO;
2058 }
2059
2060 uvc_dbg(stream->dev, VIDEO,
2061 "Selecting alternate setting %u (%u B/frame bandwidth)\n",
2062 altsetting, best_psize);
2063
2064 /*
2065 * Some devices, namely the Logitech C910 and B910, are unable
2066 * to recover from a USB autosuspend, unless the alternate
2067 * setting of the streaming interface is toggled.
2068 */
2069 if (stream->dev->quirks & UVC_QUIRK_WAKE_AUTOSUSPEND) {
2070 usb_set_interface(stream->dev->udev, intfnum,
2071 altsetting);
2072 usb_set_interface(stream->dev->udev, intfnum, 0);
2073 }
2074
2075 ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
2076 if (ret < 0)
2077 return ret;
2078
2079 ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
2080 } else {
2081 /* Bulk endpoint, proceed to URB initialization. */
2082 ep = uvc_find_endpoint(&intf->altsetting[0],
2083 stream->header.bEndpointAddress);
2084 if (ep == NULL)
2085 return -EIO;
2086
2087 /* Reject broken descriptors. */
2088 if (usb_endpoint_maxp(&ep->desc) == 0)
2089 return -EIO;
2090
2091 ret = uvc_init_video_bulk(stream, ep, gfp_flags);
2092 }
2093
2094 if (ret < 0)
2095 return ret;
2096
2097 /* Submit the URBs. */
2098 for_each_uvc_urb(uvc_urb, stream) {
2099 ret = usb_submit_urb(uvc_urb->urb, gfp_flags);
2100 if (ret < 0) {
2101 dev_err(&stream->intf->dev,
2102 "Failed to submit URB %u (%d).\n",
2103 uvc_urb_index(uvc_urb), ret);
2104 uvc_video_stop_transfer(stream, 1);
2105 return ret;
2106 }
2107 }
2108
2109 /*
2110 * The Logitech C920 temporarily forgets that it should not be adjusting
2111 * Exposure Absolute during init so restore controls to stored values.
2112 */
2113 if (stream->dev->quirks & UVC_QUIRK_RESTORE_CTRLS_ON_INIT)
2114 uvc_ctrl_restore_values(stream->dev);
2115
2116 return 0;
2117 }
2118
2119 /* --------------------------------------------------------------------------
2120 * Suspend/resume
2121 */
2122
2123 /*
2124 * Stop streaming without disabling the video queue.
2125 *
2126 * To let userspace applications resume without trouble, we must not touch the
2127 * video buffers in any way. We mark the device as frozen to make sure the URB
2128 * completion handler won't try to cancel the queue when we kill the URBs.
2129 */
uvc_video_suspend(struct uvc_streaming * stream)2130 int uvc_video_suspend(struct uvc_streaming *stream)
2131 {
2132 if (!uvc_queue_streaming(&stream->queue))
2133 return 0;
2134
2135 stream->frozen = 1;
2136 uvc_video_stop_transfer(stream, 0);
2137 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2138 return 0;
2139 }
2140
2141 /*
2142 * Reconfigure the video interface and restart streaming if it was enabled
2143 * before suspend.
2144 *
2145 * If an error occurs, disable the video queue. This will wake all pending
2146 * buffers, making sure userspace applications are notified of the problem
2147 * instead of waiting forever.
2148 */
uvc_video_resume(struct uvc_streaming * stream,int reset)2149 int uvc_video_resume(struct uvc_streaming *stream, int reset)
2150 {
2151 int ret;
2152
2153 /*
2154 * If the bus has been reset on resume, set the alternate setting to 0.
2155 * This should be the default value, but some devices crash or otherwise
2156 * misbehave if they don't receive a SET_INTERFACE request before any
2157 * other video control request.
2158 */
2159 if (reset)
2160 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2161
2162 stream->frozen = 0;
2163
2164 uvc_video_clock_reset(&stream->clock);
2165
2166 if (!uvc_queue_streaming(&stream->queue))
2167 return 0;
2168
2169 ret = uvc_commit_video(stream, &stream->ctrl);
2170 if (ret < 0)
2171 return ret;
2172
2173 return uvc_video_start_transfer(stream, GFP_NOIO);
2174 }
2175
2176 /* ------------------------------------------------------------------------
2177 * Video device
2178 */
2179
2180 /*
2181 * Initialize the UVC video device by switching to alternate setting 0 and
2182 * retrieve the default format.
2183 *
2184 * Some cameras (namely the Fuji Finepix) set the format and frame
2185 * indexes to zero. The UVC standard doesn't clearly make this a spec
2186 * violation, so try to silently fix the values if possible.
2187 *
2188 * This function is called before registering the device with V4L.
2189 */
uvc_video_init(struct uvc_streaming * stream)2190 int uvc_video_init(struct uvc_streaming *stream)
2191 {
2192 struct uvc_streaming_control *probe = &stream->ctrl;
2193 const struct uvc_format *format = NULL;
2194 const struct uvc_frame *frame = NULL;
2195 struct uvc_urb *uvc_urb;
2196 unsigned int i;
2197 int ret;
2198
2199 if (stream->nformats == 0) {
2200 dev_info(&stream->intf->dev,
2201 "No supported video formats found.\n");
2202 return -EINVAL;
2203 }
2204
2205 atomic_set(&stream->active, 0);
2206
2207 /*
2208 * Alternate setting 0 should be the default, yet the XBox Live Vision
2209 * Cam (and possibly other devices) crash or otherwise misbehave if
2210 * they don't receive a SET_INTERFACE request before any other video
2211 * control request.
2212 */
2213 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2214
2215 /*
2216 * Set the streaming probe control with default streaming parameters
2217 * retrieved from the device. Webcams that don't support GET_DEF
2218 * requests on the probe control will just keep their current streaming
2219 * parameters.
2220 */
2221 if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
2222 uvc_set_video_ctrl(stream, probe, 1);
2223
2224 /*
2225 * Initialize the streaming parameters with the probe control current
2226 * value. This makes sure SET_CUR requests on the streaming commit
2227 * control will always use values retrieved from a successful GET_CUR
2228 * request on the probe control, as required by the UVC specification.
2229 */
2230 ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
2231
2232 /*
2233 * Elgato Cam Link 4k can be in a stalled state if the resolution of
2234 * the external source has changed while the firmware initializes.
2235 * Once in this state, the device is useless until it receives a
2236 * USB reset. It has even been observed that the stalled state will
2237 * continue even after unplugging the device.
2238 */
2239 if (ret == -EPROTO &&
2240 usb_match_one_id(stream->dev->intf, &elgato_cam_link_4k)) {
2241 dev_err(&stream->intf->dev, "Elgato Cam Link 4K firmware crash detected\n");
2242 dev_err(&stream->intf->dev, "Resetting the device, unplug and replug to recover\n");
2243 usb_reset_device(stream->dev->udev);
2244 }
2245
2246 if (ret < 0)
2247 return ret;
2248
2249 /*
2250 * Check if the default format descriptor exists. Use the first
2251 * available format otherwise.
2252 */
2253 for (i = stream->nformats; i > 0; --i) {
2254 format = &stream->formats[i-1];
2255 if (format->index == probe->bFormatIndex)
2256 break;
2257 }
2258
2259 if (format->nframes == 0) {
2260 dev_info(&stream->intf->dev,
2261 "No frame descriptor found for the default format.\n");
2262 return -EINVAL;
2263 }
2264
2265 /*
2266 * Zero bFrameIndex might be correct. Stream-based formats (including
2267 * MPEG-2 TS and DV) do not support frames but have a dummy frame
2268 * descriptor with bFrameIndex set to zero. If the default frame
2269 * descriptor is not found, use the first available frame.
2270 */
2271 for (i = format->nframes; i > 0; --i) {
2272 frame = &format->frames[i-1];
2273 if (frame->bFrameIndex == probe->bFrameIndex)
2274 break;
2275 }
2276
2277 probe->bFormatIndex = format->index;
2278 probe->bFrameIndex = frame->bFrameIndex;
2279
2280 stream->def_format = format;
2281 stream->cur_format = format;
2282 stream->cur_frame = frame;
2283
2284 /* Select the video decoding function */
2285 if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
2286 if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
2287 stream->decode = uvc_video_decode_isight;
2288 else if (stream->intf->num_altsetting > 1)
2289 stream->decode = uvc_video_decode_isoc;
2290 else
2291 stream->decode = uvc_video_decode_bulk;
2292 } else {
2293 if (stream->intf->num_altsetting == 1)
2294 stream->decode = uvc_video_encode_bulk;
2295 else {
2296 dev_info(&stream->intf->dev,
2297 "Isochronous endpoints are not supported for video output devices.\n");
2298 return -EINVAL;
2299 }
2300 }
2301
2302 /* Prepare asynchronous work items. */
2303 for_each_uvc_urb(uvc_urb, stream)
2304 INIT_WORK(&uvc_urb->work, uvc_video_copy_data_work);
2305
2306 return 0;
2307 }
2308
uvc_video_start_streaming(struct uvc_streaming * stream)2309 int uvc_video_start_streaming(struct uvc_streaming *stream)
2310 {
2311 int ret;
2312
2313 ret = uvc_video_clock_init(&stream->clock);
2314 if (ret < 0)
2315 return ret;
2316
2317 /* Commit the streaming parameters. */
2318 ret = uvc_commit_video(stream, &stream->ctrl);
2319 if (ret < 0)
2320 goto error_commit;
2321
2322 ret = uvc_video_start_transfer(stream, GFP_KERNEL);
2323 if (ret < 0)
2324 goto error_video;
2325
2326 return 0;
2327
2328 error_video:
2329 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2330 error_commit:
2331 uvc_video_clock_cleanup(&stream->clock);
2332
2333 return ret;
2334 }
2335
uvc_video_stop_streaming(struct uvc_streaming * stream)2336 void uvc_video_stop_streaming(struct uvc_streaming *stream)
2337 {
2338 uvc_video_stop_transfer(stream, 1);
2339
2340 if (stream->intf->num_altsetting > 1) {
2341 usb_set_interface(stream->dev->udev, stream->intfnum, 0);
2342 } else {
2343 /*
2344 * UVC doesn't specify how to inform a bulk-based device
2345 * when the video stream is stopped. Windows sends a
2346 * CLEAR_FEATURE(HALT) request to the video streaming
2347 * bulk endpoint, mimic the same behaviour.
2348 */
2349 unsigned int epnum = stream->header.bEndpointAddress
2350 & USB_ENDPOINT_NUMBER_MASK;
2351 unsigned int dir = stream->header.bEndpointAddress
2352 & USB_ENDPOINT_DIR_MASK;
2353 unsigned int pipe;
2354
2355 pipe = usb_sndbulkpipe(stream->dev->udev, epnum) | dir;
2356 usb_clear_halt(stream->dev->udev, pipe);
2357 }
2358
2359 uvc_video_clock_cleanup(&stream->clock);
2360 }
2361