1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Hash: Hash algorithms under the crypto API
4  *
5  * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6  */
7 
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10 
11 #include <linux/atomic.h>
12 #include <linux/crypto.h>
13 #include <linux/slab.h>
14 #include <linux/string.h>
15 
16 /* Set this bit for virtual address instead of SG list. */
17 #define CRYPTO_AHASH_REQ_VIRT	0x00000001
18 
19 struct crypto_ahash;
20 
21 /**
22  * DOC: Message Digest Algorithm Definitions
23  *
24  * These data structures define modular message digest algorithm
25  * implementations, managed via crypto_register_ahash(),
26  * crypto_register_shash(), crypto_unregister_ahash() and
27  * crypto_unregister_shash().
28  */
29 
30 /*
31  * struct hash_alg_common - define properties of message digest
32  * @digestsize: Size of the result of the transformation. A buffer of this size
33  *	        must be available to the @final and @finup calls, so they can
34  *	        store the resulting hash into it. For various predefined sizes,
35  *	        search include/crypto/ using
36  *	        git grep _DIGEST_SIZE include/crypto.
37  * @statesize: Size of the block for partial state of the transformation. A
38  *	       buffer of this size must be passed to the @export function as it
39  *	       will save the partial state of the transformation into it. On the
40  *	       other side, the @import function will load the state from a
41  *	       buffer of this size as well.
42  * @base: Start of data structure of cipher algorithm. The common data
43  *	  structure of crypto_alg contains information common to all ciphers.
44  *	  The hash_alg_common data structure now adds the hash-specific
45  *	  information.
46  */
47 #define HASH_ALG_COMMON {		\
48 	unsigned int digestsize;	\
49 	unsigned int statesize;		\
50 					\
51 	struct crypto_alg base;		\
52 }
53 struct hash_alg_common HASH_ALG_COMMON;
54 
55 struct ahash_request {
56 	struct crypto_async_request base;
57 
58 	unsigned int nbytes;
59 	union {
60 		struct scatterlist *src;
61 		const u8 *svirt;
62 	};
63 	u8 *result;
64 
65 	void *__ctx[] CRYPTO_MINALIGN_ATTR;
66 };
67 
68 /**
69  * struct ahash_alg - asynchronous message digest definition
70  * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
71  *	  state of the HASH transformation at the beginning. This shall fill in
72  *	  the internal structures used during the entire duration of the whole
73  *	  transformation. No data processing happens at this point. Driver code
74  *	  implementation must not use req->result.
75  * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
76  *	   function actually pushes blocks of data from upper layers into the
77  *	   driver, which then passes those to the hardware as seen fit. This
78  *	   function must not finalize the HASH transformation by calculating the
79  *	   final message digest as this only adds more data into the
80  *	   transformation. This function shall not modify the transformation
81  *	   context, as this function may be called in parallel with the same
82  *	   transformation object. Data processing can happen synchronously
83  *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
84  *	   req->result.
85  * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
86  *	   transformation and retrieves the resulting hash from the driver and
87  *	   pushes it back to upper layers. No data processing happens at this
88  *	   point unless hardware requires it to finish the transformation
89  *	   (then the data buffered by the device driver is processed).
90  * @finup: **[optional]** Combination of @update and @final. This function is effectively a
91  *	   combination of @update and @final calls issued in sequence. As some
92  *	   hardware cannot do @update and @final separately, this callback was
93  *	   added to allow such hardware to be used at least by IPsec. Data
94  *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
95  *	   at this point.
96  * @digest: Combination of @init and @update and @final. This function
97  *	    effectively behaves as the entire chain of operations, @init,
98  *	    @update and @final issued in sequence. Just like @finup, this was
99  *	    added for hardware which cannot do even the @finup, but can only do
100  *	    the whole transformation in one run. Data processing can happen
101  *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
102  * @setkey: Set optional key used by the hashing algorithm. Intended to push
103  *	    optional key used by the hashing algorithm from upper layers into
104  *	    the driver. This function can store the key in the transformation
105  *	    context or can outright program it into the hardware. In the former
106  *	    case, one must be careful to program the key into the hardware at
107  *	    appropriate time and one must be careful that .setkey() can be
108  *	    called multiple times during the existence of the transformation
109  *	    object. Not  all hashing algorithms do implement this function as it
110  *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111  *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112  *	    this function. This function must be called before any other of the
113  *	    @init, @update, @final, @finup, @digest is called. No data
114  *	    processing happens at this point.
115  * @export: Export partial state of the transformation. This function dumps the
116  *	    entire state of the ongoing transformation into a provided block of
117  *	    data so it can be @import 'ed back later on. This is useful in case
118  *	    you want to save partial result of the transformation after
119  *	    processing certain amount of data and reload this partial result
120  *	    multiple times later on for multiple re-use. No data processing
121  *	    happens at this point. Driver must not use req->result.
122  * @import: Import partial state of the transformation. This function loads the
123  *	    entire state of the ongoing transformation from a provided block of
124  *	    data so the transformation can continue from this point onward. No
125  *	    data processing happens at this point. Driver must not use
126  *	    req->result.
127  * @init_tfm: Initialize the cryptographic transformation object.
128  *	      This function is called only once at the instantiation
129  *	      time, right after the transformation context was
130  *	      allocated. In case the cryptographic hardware has
131  *	      some special requirements which need to be handled
132  *	      by software, this function shall check for the precise
133  *	      requirement of the transformation and put any software
134  *	      fallbacks in place.
135  * @exit_tfm: Deinitialize the cryptographic transformation object.
136  *	      This is a counterpart to @init_tfm, used to remove
137  *	      various changes set in @init_tfm.
138  * @clone_tfm: Copy transform into new object, may allocate memory.
139  * @reqsize: Size of the request context.
140  * @halg: see struct hash_alg_common
141  */
142 struct ahash_alg {
143 	int (*init)(struct ahash_request *req);
144 	int (*update)(struct ahash_request *req);
145 	int (*final)(struct ahash_request *req);
146 	int (*finup)(struct ahash_request *req);
147 	int (*digest)(struct ahash_request *req);
148 	int (*export)(struct ahash_request *req, void *out);
149 	int (*import)(struct ahash_request *req, const void *in);
150 	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
151 		      unsigned int keylen);
152 	int (*init_tfm)(struct crypto_ahash *tfm);
153 	void (*exit_tfm)(struct crypto_ahash *tfm);
154 	int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
155 
156 	unsigned int reqsize;
157 
158 	struct hash_alg_common halg;
159 };
160 
161 struct shash_desc {
162 	struct crypto_shash *tfm;
163 	void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
164 };
165 
166 #define HASH_MAX_DIGESTSIZE	 64
167 
168 /*
169  * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
170  * containing a 'struct sha3_state'.
171  */
172 #define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
173 
174 #define SHASH_DESC_ON_STACK(shash, ctx)					     \
175 	char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
176 		__aligned(__alignof__(struct shash_desc));		     \
177 	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
178 
179 /**
180  * struct shash_alg - synchronous message digest definition
181  * @init: see struct ahash_alg
182  * @update: see struct ahash_alg
183  * @final: see struct ahash_alg
184  * @finup: see struct ahash_alg
185  * @digest: see struct ahash_alg
186  * @export: see struct ahash_alg
187  * @import: see struct ahash_alg
188  * @setkey: see struct ahash_alg
189  * @init_tfm: Initialize the cryptographic transformation object.
190  *	      This function is called only once at the instantiation
191  *	      time, right after the transformation context was
192  *	      allocated. In case the cryptographic hardware has
193  *	      some special requirements which need to be handled
194  *	      by software, this function shall check for the precise
195  *	      requirement of the transformation and put any software
196  *	      fallbacks in place.
197  * @exit_tfm: Deinitialize the cryptographic transformation object.
198  *	      This is a counterpart to @init_tfm, used to remove
199  *	      various changes set in @init_tfm.
200  * @clone_tfm: Copy transform into new object, may allocate memory.
201  * @descsize: Size of the operational state for the message digest. This state
202  * 	      size is the memory size that needs to be allocated for
203  *	      shash_desc.__ctx
204  * @halg: see struct hash_alg_common
205  * @HASH_ALG_COMMON: see struct hash_alg_common
206  */
207 struct shash_alg {
208 	int (*init)(struct shash_desc *desc);
209 	int (*update)(struct shash_desc *desc, const u8 *data,
210 		      unsigned int len);
211 	int (*final)(struct shash_desc *desc, u8 *out);
212 	int (*finup)(struct shash_desc *desc, const u8 *data,
213 		     unsigned int len, u8 *out);
214 	int (*digest)(struct shash_desc *desc, const u8 *data,
215 		      unsigned int len, u8 *out);
216 	int (*export)(struct shash_desc *desc, void *out);
217 	int (*import)(struct shash_desc *desc, const void *in);
218 	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
219 		      unsigned int keylen);
220 	int (*init_tfm)(struct crypto_shash *tfm);
221 	void (*exit_tfm)(struct crypto_shash *tfm);
222 	int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
223 
224 	unsigned int descsize;
225 
226 	union {
227 		struct HASH_ALG_COMMON;
228 		struct hash_alg_common halg;
229 	};
230 };
231 #undef HASH_ALG_COMMON
232 
233 struct crypto_ahash {
234 	bool using_shash; /* Underlying algorithm is shash, not ahash */
235 	unsigned int statesize;
236 	unsigned int reqsize;
237 	struct crypto_tfm base;
238 };
239 
240 struct crypto_shash {
241 	unsigned int descsize;
242 	struct crypto_tfm base;
243 };
244 
245 /**
246  * DOC: Asynchronous Message Digest API
247  *
248  * The asynchronous message digest API is used with the ciphers of type
249  * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
250  *
251  * The asynchronous cipher operation discussion provided for the
252  * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
253  */
254 
__crypto_ahash_cast(struct crypto_tfm * tfm)255 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
256 {
257 	return container_of(tfm, struct crypto_ahash, base);
258 }
259 
260 /**
261  * crypto_alloc_ahash() - allocate ahash cipher handle
262  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
263  *	      ahash cipher
264  * @type: specifies the type of the cipher
265  * @mask: specifies the mask for the cipher
266  *
267  * Allocate a cipher handle for an ahash. The returned struct
268  * crypto_ahash is the cipher handle that is required for any subsequent
269  * API invocation for that ahash.
270  *
271  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
272  *	   of an error, PTR_ERR() returns the error code.
273  */
274 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
275 					u32 mask);
276 
277 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
278 
crypto_ahash_tfm(struct crypto_ahash * tfm)279 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
280 {
281 	return &tfm->base;
282 }
283 
284 /**
285  * crypto_free_ahash() - zeroize and free the ahash handle
286  * @tfm: cipher handle to be freed
287  *
288  * If @tfm is a NULL or error pointer, this function does nothing.
289  */
crypto_free_ahash(struct crypto_ahash * tfm)290 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
291 {
292 	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
293 }
294 
295 /**
296  * crypto_has_ahash() - Search for the availability of an ahash.
297  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
298  *	      ahash
299  * @type: specifies the type of the ahash
300  * @mask: specifies the mask for the ahash
301  *
302  * Return: true when the ahash is known to the kernel crypto API; false
303  *	   otherwise
304  */
305 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
306 
crypto_ahash_alg_name(struct crypto_ahash * tfm)307 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
308 {
309 	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
310 }
311 
crypto_ahash_driver_name(struct crypto_ahash * tfm)312 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
313 {
314 	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
315 }
316 
317 /**
318  * crypto_ahash_blocksize() - obtain block size for cipher
319  * @tfm: cipher handle
320  *
321  * The block size for the message digest cipher referenced with the cipher
322  * handle is returned.
323  *
324  * Return: block size of cipher
325  */
crypto_ahash_blocksize(struct crypto_ahash * tfm)326 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
327 {
328 	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
329 }
330 
__crypto_hash_alg_common(struct crypto_alg * alg)331 static inline struct hash_alg_common *__crypto_hash_alg_common(
332 	struct crypto_alg *alg)
333 {
334 	return container_of(alg, struct hash_alg_common, base);
335 }
336 
crypto_hash_alg_common(struct crypto_ahash * tfm)337 static inline struct hash_alg_common *crypto_hash_alg_common(
338 	struct crypto_ahash *tfm)
339 {
340 	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
341 }
342 
343 /**
344  * crypto_ahash_digestsize() - obtain message digest size
345  * @tfm: cipher handle
346  *
347  * The size for the message digest created by the message digest cipher
348  * referenced with the cipher handle is returned.
349  *
350  *
351  * Return: message digest size of cipher
352  */
crypto_ahash_digestsize(struct crypto_ahash * tfm)353 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
354 {
355 	return crypto_hash_alg_common(tfm)->digestsize;
356 }
357 
358 /**
359  * crypto_ahash_statesize() - obtain size of the ahash state
360  * @tfm: cipher handle
361  *
362  * Return the size of the ahash state. With the crypto_ahash_export()
363  * function, the caller can export the state into a buffer whose size is
364  * defined with this function.
365  *
366  * Return: size of the ahash state
367  */
crypto_ahash_statesize(struct crypto_ahash * tfm)368 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
369 {
370 	return tfm->statesize;
371 }
372 
crypto_ahash_get_flags(struct crypto_ahash * tfm)373 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
374 {
375 	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
376 }
377 
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)378 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
379 {
380 	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
381 }
382 
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)383 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
384 {
385 	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
386 }
387 
388 /**
389  * crypto_ahash_reqtfm() - obtain cipher handle from request
390  * @req: asynchronous request handle that contains the reference to the ahash
391  *	 cipher handle
392  *
393  * Return the ahash cipher handle that is registered with the asynchronous
394  * request handle ahash_request.
395  *
396  * Return: ahash cipher handle
397  */
crypto_ahash_reqtfm(struct ahash_request * req)398 static inline struct crypto_ahash *crypto_ahash_reqtfm(
399 	struct ahash_request *req)
400 {
401 	return __crypto_ahash_cast(req->base.tfm);
402 }
403 
404 /**
405  * crypto_ahash_reqsize() - obtain size of the request data structure
406  * @tfm: cipher handle
407  *
408  * Return: size of the request data
409  */
crypto_ahash_reqsize(struct crypto_ahash * tfm)410 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
411 {
412 	return tfm->reqsize;
413 }
414 
ahash_request_ctx(struct ahash_request * req)415 static inline void *ahash_request_ctx(struct ahash_request *req)
416 {
417 	return req->__ctx;
418 }
419 
420 /**
421  * crypto_ahash_setkey - set key for cipher handle
422  * @tfm: cipher handle
423  * @key: buffer holding the key
424  * @keylen: length of the key in bytes
425  *
426  * The caller provided key is set for the ahash cipher. The cipher
427  * handle must point to a keyed hash in order for this function to succeed.
428  *
429  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
430  */
431 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
432 			unsigned int keylen);
433 
434 /**
435  * crypto_ahash_finup() - update and finalize message digest
436  * @req: reference to the ahash_request handle that holds all information
437  *	 needed to perform the cipher operation
438  *
439  * This function is a "short-hand" for the function calls of
440  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
441  * meaning as discussed for those separate functions.
442  *
443  * Return: see crypto_ahash_final()
444  */
445 int crypto_ahash_finup(struct ahash_request *req);
446 
447 /**
448  * crypto_ahash_final() - calculate message digest
449  * @req: reference to the ahash_request handle that holds all information
450  *	 needed to perform the cipher operation
451  *
452  * Finalize the message digest operation and create the message digest
453  * based on all data added to the cipher handle. The message digest is placed
454  * into the output buffer registered with the ahash_request handle.
455  *
456  * Return:
457  * 0		if the message digest was successfully calculated;
458  * -EINPROGRESS	if data is fed into hardware (DMA) or queued for later;
459  * -EBUSY	if queue is full and request should be resubmitted later;
460  * other < 0	if an error occurred
461  */
462 int crypto_ahash_final(struct ahash_request *req);
463 
464 /**
465  * crypto_ahash_digest() - calculate message digest for a buffer
466  * @req: reference to the ahash_request handle that holds all information
467  *	 needed to perform the cipher operation
468  *
469  * This function is a "short-hand" for the function calls of crypto_ahash_init,
470  * crypto_ahash_update and crypto_ahash_final. The parameters have the same
471  * meaning as discussed for those separate three functions.
472  *
473  * Return: see crypto_ahash_final()
474  */
475 int crypto_ahash_digest(struct ahash_request *req);
476 
477 /**
478  * crypto_ahash_export() - extract current message digest state
479  * @req: reference to the ahash_request handle whose state is exported
480  * @out: output buffer of sufficient size that can hold the hash state
481  *
482  * This function exports the hash state of the ahash_request handle into the
483  * caller-allocated output buffer out which must have sufficient size (e.g. by
484  * calling crypto_ahash_statesize()).
485  *
486  * Return: 0 if the export was successful; < 0 if an error occurred
487  */
488 int crypto_ahash_export(struct ahash_request *req, void *out);
489 
490 /**
491  * crypto_ahash_import() - import message digest state
492  * @req: reference to ahash_request handle the state is imported into
493  * @in: buffer holding the state
494  *
495  * This function imports the hash state into the ahash_request handle from the
496  * input buffer. That buffer should have been generated with the
497  * crypto_ahash_export function.
498  *
499  * Return: 0 if the import was successful; < 0 if an error occurred
500  */
501 int crypto_ahash_import(struct ahash_request *req, const void *in);
502 
503 /**
504  * crypto_ahash_init() - (re)initialize message digest handle
505  * @req: ahash_request handle that already is initialized with all necessary
506  *	 data using the ahash_request_* API functions
507  *
508  * The call (re-)initializes the message digest referenced by the ahash_request
509  * handle. Any potentially existing state created by previous operations is
510  * discarded.
511  *
512  * Return: see crypto_ahash_final()
513  */
514 int crypto_ahash_init(struct ahash_request *req);
515 
516 /**
517  * crypto_ahash_update() - add data to message digest for processing
518  * @req: ahash_request handle that was previously initialized with the
519  *	 crypto_ahash_init call.
520  *
521  * Updates the message digest state of the &ahash_request handle. The input data
522  * is pointed to by the scatter/gather list registered in the &ahash_request
523  * handle
524  *
525  * Return: see crypto_ahash_final()
526  */
527 int crypto_ahash_update(struct ahash_request *req);
528 
529 /**
530  * DOC: Asynchronous Hash Request Handle
531  *
532  * The &ahash_request data structure contains all pointers to data
533  * required for the asynchronous cipher operation. This includes the cipher
534  * handle (which can be used by multiple &ahash_request instances), pointer
535  * to plaintext and the message digest output buffer, asynchronous callback
536  * function, etc. It acts as a handle to the ahash_request_* API calls in a
537  * similar way as ahash handle to the crypto_ahash_* API calls.
538  */
539 
540 /**
541  * ahash_request_set_tfm() - update cipher handle reference in request
542  * @req: request handle to be modified
543  * @tfm: cipher handle that shall be added to the request handle
544  *
545  * Allow the caller to replace the existing ahash handle in the request
546  * data structure with a different one.
547  */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)548 static inline void ahash_request_set_tfm(struct ahash_request *req,
549 					 struct crypto_ahash *tfm)
550 {
551 	req->base.tfm = crypto_ahash_tfm(tfm);
552 }
553 
554 /**
555  * ahash_request_alloc() - allocate request data structure
556  * @tfm: cipher handle to be registered with the request
557  * @gfp: memory allocation flag that is handed to kmalloc by the API call.
558  *
559  * Allocate the request data structure that must be used with the ahash
560  * message digest API calls. During
561  * the allocation, the provided ahash handle
562  * is registered in the request data structure.
563  *
564  * Return: allocated request handle in case of success, or NULL if out of memory
565  */
ahash_request_alloc_noprof(struct crypto_ahash * tfm,gfp_t gfp)566 static inline struct ahash_request *ahash_request_alloc_noprof(
567 	struct crypto_ahash *tfm, gfp_t gfp)
568 {
569 	struct ahash_request *req;
570 
571 	req = kmalloc_noprof(sizeof(struct ahash_request) +
572 			     crypto_ahash_reqsize(tfm), gfp);
573 
574 	if (likely(req))
575 		ahash_request_set_tfm(req, tfm);
576 
577 	return req;
578 }
579 #define ahash_request_alloc(...)	alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
580 
581 /**
582  * ahash_request_free() - zeroize and free the request data structure
583  * @req: request data structure cipher handle to be freed
584  */
ahash_request_free(struct ahash_request * req)585 static inline void ahash_request_free(struct ahash_request *req)
586 {
587 	kfree_sensitive(req);
588 }
589 
ahash_request_cast(struct crypto_async_request * req)590 static inline struct ahash_request *ahash_request_cast(
591 	struct crypto_async_request *req)
592 {
593 	return container_of(req, struct ahash_request, base);
594 }
595 
596 /**
597  * ahash_request_set_callback() - set asynchronous callback function
598  * @req: request handle
599  * @flags: specify zero or an ORing of the flags
600  *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
601  *	   increase the wait queue beyond the initial maximum size;
602  *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
603  * @compl: callback function pointer to be registered with the request handle
604  * @data: The data pointer refers to memory that is not used by the kernel
605  *	  crypto API, but provided to the callback function for it to use. Here,
606  *	  the caller can provide a reference to memory the callback function can
607  *	  operate on. As the callback function is invoked asynchronously to the
608  *	  related functionality, it may need to access data structures of the
609  *	  related functionality which can be referenced using this pointer. The
610  *	  callback function can access the memory via the "data" field in the
611  *	  &crypto_async_request data structure provided to the callback function.
612  *
613  * This function allows setting the callback function that is triggered once
614  * the cipher operation completes.
615  *
616  * The callback function is registered with the &ahash_request handle and
617  * must comply with the following template::
618  *
619  *	void callback_function(struct crypto_async_request *req, int error)
620  */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)621 static inline void ahash_request_set_callback(struct ahash_request *req,
622 					      u32 flags,
623 					      crypto_completion_t compl,
624 					      void *data)
625 {
626 	u32 keep = CRYPTO_AHASH_REQ_VIRT;
627 
628 	req->base.complete = compl;
629 	req->base.data = data;
630 	flags &= ~keep;
631 	req->base.flags &= keep;
632 	req->base.flags |= flags;
633 	crypto_reqchain_init(&req->base);
634 }
635 
636 /**
637  * ahash_request_set_crypt() - set data buffers
638  * @req: ahash_request handle to be updated
639  * @src: source scatter/gather list
640  * @result: buffer that is filled with the message digest -- the caller must
641  *	    ensure that the buffer has sufficient space by, for example, calling
642  *	    crypto_ahash_digestsize()
643  * @nbytes: number of bytes to process from the source scatter/gather list
644  *
645  * By using this call, the caller references the source scatter/gather list.
646  * The source scatter/gather list points to the data the message digest is to
647  * be calculated for.
648  */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)649 static inline void ahash_request_set_crypt(struct ahash_request *req,
650 					   struct scatterlist *src, u8 *result,
651 					   unsigned int nbytes)
652 {
653 	req->src = src;
654 	req->nbytes = nbytes;
655 	req->result = result;
656 	req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT;
657 }
658 
659 /**
660  * ahash_request_set_virt() - set virtual address data buffers
661  * @req: ahash_request handle to be updated
662  * @src: source virtual address
663  * @result: buffer that is filled with the message digest -- the caller must
664  *	    ensure that the buffer has sufficient space by, for example, calling
665  *	    crypto_ahash_digestsize()
666  * @nbytes: number of bytes to process from the source virtual address
667  *
668  * By using this call, the caller references the source virtual address.
669  * The source virtual address points to the data the message digest is to
670  * be calculated for.
671  */
ahash_request_set_virt(struct ahash_request * req,const u8 * src,u8 * result,unsigned int nbytes)672 static inline void ahash_request_set_virt(struct ahash_request *req,
673 					  const u8 *src, u8 *result,
674 					  unsigned int nbytes)
675 {
676 	req->svirt = src;
677 	req->nbytes = nbytes;
678 	req->result = result;
679 	req->base.flags |= CRYPTO_AHASH_REQ_VIRT;
680 }
681 
ahash_request_chain(struct ahash_request * req,struct ahash_request * head)682 static inline void ahash_request_chain(struct ahash_request *req,
683 				       struct ahash_request *head)
684 {
685 	crypto_request_chain(&req->base, &head->base);
686 }
687 
688 /**
689  * DOC: Synchronous Message Digest API
690  *
691  * The synchronous message digest API is used with the ciphers of type
692  * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
693  *
694  * The message digest API is able to maintain state information for the
695  * caller.
696  *
697  * The synchronous message digest API can store user-related context in its
698  * shash_desc request data structure.
699  */
700 
701 /**
702  * crypto_alloc_shash() - allocate message digest handle
703  * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
704  *	      message digest cipher
705  * @type: specifies the type of the cipher
706  * @mask: specifies the mask for the cipher
707  *
708  * Allocate a cipher handle for a message digest. The returned &struct
709  * crypto_shash is the cipher handle that is required for any subsequent
710  * API invocation for that message digest.
711  *
712  * Return: allocated cipher handle in case of success; IS_ERR() is true in case
713  *	   of an error, PTR_ERR() returns the error code.
714  */
715 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
716 					u32 mask);
717 
718 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
719 
720 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
721 
crypto_shash_tfm(struct crypto_shash * tfm)722 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
723 {
724 	return &tfm->base;
725 }
726 
727 /**
728  * crypto_free_shash() - zeroize and free the message digest handle
729  * @tfm: cipher handle to be freed
730  *
731  * If @tfm is a NULL or error pointer, this function does nothing.
732  */
crypto_free_shash(struct crypto_shash * tfm)733 static inline void crypto_free_shash(struct crypto_shash *tfm)
734 {
735 	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
736 }
737 
crypto_shash_alg_name(struct crypto_shash * tfm)738 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
739 {
740 	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
741 }
742 
crypto_shash_driver_name(struct crypto_shash * tfm)743 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
744 {
745 	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
746 }
747 
748 /**
749  * crypto_shash_blocksize() - obtain block size for cipher
750  * @tfm: cipher handle
751  *
752  * The block size for the message digest cipher referenced with the cipher
753  * handle is returned.
754  *
755  * Return: block size of cipher
756  */
crypto_shash_blocksize(struct crypto_shash * tfm)757 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
758 {
759 	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
760 }
761 
__crypto_shash_alg(struct crypto_alg * alg)762 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
763 {
764 	return container_of(alg, struct shash_alg, base);
765 }
766 
crypto_shash_alg(struct crypto_shash * tfm)767 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
768 {
769 	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
770 }
771 
772 /**
773  * crypto_shash_digestsize() - obtain message digest size
774  * @tfm: cipher handle
775  *
776  * The size for the message digest created by the message digest cipher
777  * referenced with the cipher handle is returned.
778  *
779  * Return: digest size of cipher
780  */
crypto_shash_digestsize(struct crypto_shash * tfm)781 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
782 {
783 	return crypto_shash_alg(tfm)->digestsize;
784 }
785 
crypto_shash_statesize(struct crypto_shash * tfm)786 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
787 {
788 	return crypto_shash_alg(tfm)->statesize;
789 }
790 
crypto_shash_get_flags(struct crypto_shash * tfm)791 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
792 {
793 	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
794 }
795 
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)796 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
797 {
798 	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
799 }
800 
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)801 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
802 {
803 	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
804 }
805 
806 /**
807  * crypto_shash_descsize() - obtain the operational state size
808  * @tfm: cipher handle
809  *
810  * The size of the operational state the cipher needs during operation is
811  * returned for the hash referenced with the cipher handle. This size is
812  * required to calculate the memory requirements to allow the caller allocating
813  * sufficient memory for operational state.
814  *
815  * The operational state is defined with struct shash_desc where the size of
816  * that data structure is to be calculated as
817  * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
818  *
819  * Return: size of the operational state
820  */
crypto_shash_descsize(struct crypto_shash * tfm)821 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
822 {
823 	return tfm->descsize;
824 }
825 
shash_desc_ctx(struct shash_desc * desc)826 static inline void *shash_desc_ctx(struct shash_desc *desc)
827 {
828 	return desc->__ctx;
829 }
830 
831 /**
832  * crypto_shash_setkey() - set key for message digest
833  * @tfm: cipher handle
834  * @key: buffer holding the key
835  * @keylen: length of the key in bytes
836  *
837  * The caller provided key is set for the keyed message digest cipher. The
838  * cipher handle must point to a keyed message digest cipher in order for this
839  * function to succeed.
840  *
841  * Context: Any context.
842  * Return: 0 if the setting of the key was successful; < 0 if an error occurred
843  */
844 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
845 			unsigned int keylen);
846 
847 /**
848  * crypto_shash_digest() - calculate message digest for buffer
849  * @desc: see crypto_shash_final()
850  * @data: see crypto_shash_update()
851  * @len: see crypto_shash_update()
852  * @out: see crypto_shash_final()
853  *
854  * This function is a "short-hand" for the function calls of crypto_shash_init,
855  * crypto_shash_update and crypto_shash_final. The parameters have the same
856  * meaning as discussed for those separate three functions.
857  *
858  * Context: Any context.
859  * Return: 0 if the message digest creation was successful; < 0 if an error
860  *	   occurred
861  */
862 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
863 			unsigned int len, u8 *out);
864 
865 /**
866  * crypto_shash_tfm_digest() - calculate message digest for buffer
867  * @tfm: hash transformation object
868  * @data: see crypto_shash_update()
869  * @len: see crypto_shash_update()
870  * @out: see crypto_shash_final()
871  *
872  * This is a simplified version of crypto_shash_digest() for users who don't
873  * want to allocate their own hash descriptor (shash_desc).  Instead,
874  * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
875  * directly, and it allocates a hash descriptor on the stack internally.
876  * Note that this stack allocation may be fairly large.
877  *
878  * Context: Any context.
879  * Return: 0 on success; < 0 if an error occurred.
880  */
881 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
882 			    unsigned int len, u8 *out);
883 
884 /**
885  * crypto_shash_export() - extract operational state for message digest
886  * @desc: reference to the operational state handle whose state is exported
887  * @out: output buffer of sufficient size that can hold the hash state
888  *
889  * This function exports the hash state of the operational state handle into the
890  * caller-allocated output buffer out which must have sufficient size (e.g. by
891  * calling crypto_shash_descsize).
892  *
893  * Context: Any context.
894  * Return: 0 if the export creation was successful; < 0 if an error occurred
895  */
896 int crypto_shash_export(struct shash_desc *desc, void *out);
897 
898 /**
899  * crypto_shash_import() - import operational state
900  * @desc: reference to the operational state handle the state imported into
901  * @in: buffer holding the state
902  *
903  * This function imports the hash state into the operational state handle from
904  * the input buffer. That buffer should have been generated with the
905  * crypto_ahash_export function.
906  *
907  * Context: Any context.
908  * Return: 0 if the import was successful; < 0 if an error occurred
909  */
910 int crypto_shash_import(struct shash_desc *desc, const void *in);
911 
912 /**
913  * crypto_shash_init() - (re)initialize message digest
914  * @desc: operational state handle that is already filled
915  *
916  * The call (re-)initializes the message digest referenced by the
917  * operational state handle. Any potentially existing state created by
918  * previous operations is discarded.
919  *
920  * Context: Any context.
921  * Return: 0 if the message digest initialization was successful; < 0 if an
922  *	   error occurred
923  */
crypto_shash_init(struct shash_desc * desc)924 static inline int crypto_shash_init(struct shash_desc *desc)
925 {
926 	struct crypto_shash *tfm = desc->tfm;
927 
928 	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
929 		return -ENOKEY;
930 
931 	return crypto_shash_alg(tfm)->init(desc);
932 }
933 
934 /**
935  * crypto_shash_update() - add data to message digest for processing
936  * @desc: operational state handle that is already initialized
937  * @data: input data to be added to the message digest
938  * @len: length of the input data
939  *
940  * Updates the message digest state of the operational state handle.
941  *
942  * Context: Any context.
943  * Return: 0 if the message digest update was successful; < 0 if an error
944  *	   occurred
945  */
946 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
947 			unsigned int len);
948 
949 /**
950  * crypto_shash_final() - calculate message digest
951  * @desc: operational state handle that is already filled with data
952  * @out: output buffer filled with the message digest
953  *
954  * Finalize the message digest operation and create the message digest
955  * based on all data added to the cipher handle. The message digest is placed
956  * into the output buffer. The caller must ensure that the output buffer is
957  * large enough by using crypto_shash_digestsize.
958  *
959  * Context: Any context.
960  * Return: 0 if the message digest creation was successful; < 0 if an error
961  *	   occurred
962  */
963 int crypto_shash_final(struct shash_desc *desc, u8 *out);
964 
965 /**
966  * crypto_shash_finup() - calculate message digest of buffer
967  * @desc: see crypto_shash_final()
968  * @data: see crypto_shash_update()
969  * @len: see crypto_shash_update()
970  * @out: see crypto_shash_final()
971  *
972  * This function is a "short-hand" for the function calls of
973  * crypto_shash_update and crypto_shash_final. The parameters have the same
974  * meaning as discussed for those separate functions.
975  *
976  * Context: Any context.
977  * Return: 0 if the message digest creation was successful; < 0 if an error
978  *	   occurred
979  */
980 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
981 		       unsigned int len, u8 *out);
982 
shash_desc_zero(struct shash_desc * desc)983 static inline void shash_desc_zero(struct shash_desc *desc)
984 {
985 	memzero_explicit(desc,
986 			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
987 }
988 
ahash_request_err(struct ahash_request * req)989 static inline int ahash_request_err(struct ahash_request *req)
990 {
991 	return req->base.err;
992 }
993 
ahash_is_async(struct crypto_ahash * tfm)994 static inline bool ahash_is_async(struct crypto_ahash *tfm)
995 {
996 	return crypto_tfm_is_async(&tfm->base);
997 }
998 
999 #endif	/* _CRYPTO_HASH_H */
1000