1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8 #ifndef _CRYPTO_HASH_H
9 #define _CRYPTO_HASH_H
10
11 #include <linux/atomic.h>
12 #include <linux/crypto.h>
13 #include <linux/slab.h>
14 #include <linux/string.h>
15
16 /* Set this bit for virtual address instead of SG list. */
17 #define CRYPTO_AHASH_REQ_VIRT 0x00000001
18
19 struct crypto_ahash;
20
21 /**
22 * DOC: Message Digest Algorithm Definitions
23 *
24 * These data structures define modular message digest algorithm
25 * implementations, managed via crypto_register_ahash(),
26 * crypto_register_shash(), crypto_unregister_ahash() and
27 * crypto_unregister_shash().
28 */
29
30 /*
31 * struct hash_alg_common - define properties of message digest
32 * @digestsize: Size of the result of the transformation. A buffer of this size
33 * must be available to the @final and @finup calls, so they can
34 * store the resulting hash into it. For various predefined sizes,
35 * search include/crypto/ using
36 * git grep _DIGEST_SIZE include/crypto.
37 * @statesize: Size of the block for partial state of the transformation. A
38 * buffer of this size must be passed to the @export function as it
39 * will save the partial state of the transformation into it. On the
40 * other side, the @import function will load the state from a
41 * buffer of this size as well.
42 * @base: Start of data structure of cipher algorithm. The common data
43 * structure of crypto_alg contains information common to all ciphers.
44 * The hash_alg_common data structure now adds the hash-specific
45 * information.
46 */
47 #define HASH_ALG_COMMON { \
48 unsigned int digestsize; \
49 unsigned int statesize; \
50 \
51 struct crypto_alg base; \
52 }
53 struct hash_alg_common HASH_ALG_COMMON;
54
55 struct ahash_request {
56 struct crypto_async_request base;
57
58 unsigned int nbytes;
59 union {
60 struct scatterlist *src;
61 const u8 *svirt;
62 };
63 u8 *result;
64
65 void *__ctx[] CRYPTO_MINALIGN_ATTR;
66 };
67
68 /**
69 * struct ahash_alg - asynchronous message digest definition
70 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
71 * state of the HASH transformation at the beginning. This shall fill in
72 * the internal structures used during the entire duration of the whole
73 * transformation. No data processing happens at this point. Driver code
74 * implementation must not use req->result.
75 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
76 * function actually pushes blocks of data from upper layers into the
77 * driver, which then passes those to the hardware as seen fit. This
78 * function must not finalize the HASH transformation by calculating the
79 * final message digest as this only adds more data into the
80 * transformation. This function shall not modify the transformation
81 * context, as this function may be called in parallel with the same
82 * transformation object. Data processing can happen synchronously
83 * [SHASH] or asynchronously [AHASH] at this point. Driver must not use
84 * req->result.
85 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
86 * transformation and retrieves the resulting hash from the driver and
87 * pushes it back to upper layers. No data processing happens at this
88 * point unless hardware requires it to finish the transformation
89 * (then the data buffered by the device driver is processed).
90 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
91 * combination of @update and @final calls issued in sequence. As some
92 * hardware cannot do @update and @final separately, this callback was
93 * added to allow such hardware to be used at least by IPsec. Data
94 * processing can happen synchronously [SHASH] or asynchronously [AHASH]
95 * at this point.
96 * @digest: Combination of @init and @update and @final. This function
97 * effectively behaves as the entire chain of operations, @init,
98 * @update and @final issued in sequence. Just like @finup, this was
99 * added for hardware which cannot do even the @finup, but can only do
100 * the whole transformation in one run. Data processing can happen
101 * synchronously [SHASH] or asynchronously [AHASH] at this point.
102 * @setkey: Set optional key used by the hashing algorithm. Intended to push
103 * optional key used by the hashing algorithm from upper layers into
104 * the driver. This function can store the key in the transformation
105 * context or can outright program it into the hardware. In the former
106 * case, one must be careful to program the key into the hardware at
107 * appropriate time and one must be careful that .setkey() can be
108 * called multiple times during the existence of the transformation
109 * object. Not all hashing algorithms do implement this function as it
110 * is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
111 * implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
112 * this function. This function must be called before any other of the
113 * @init, @update, @final, @finup, @digest is called. No data
114 * processing happens at this point.
115 * @export: Export partial state of the transformation. This function dumps the
116 * entire state of the ongoing transformation into a provided block of
117 * data so it can be @import 'ed back later on. This is useful in case
118 * you want to save partial result of the transformation after
119 * processing certain amount of data and reload this partial result
120 * multiple times later on for multiple re-use. No data processing
121 * happens at this point. Driver must not use req->result.
122 * @import: Import partial state of the transformation. This function loads the
123 * entire state of the ongoing transformation from a provided block of
124 * data so the transformation can continue from this point onward. No
125 * data processing happens at this point. Driver must not use
126 * req->result.
127 * @init_tfm: Initialize the cryptographic transformation object.
128 * This function is called only once at the instantiation
129 * time, right after the transformation context was
130 * allocated. In case the cryptographic hardware has
131 * some special requirements which need to be handled
132 * by software, this function shall check for the precise
133 * requirement of the transformation and put any software
134 * fallbacks in place.
135 * @exit_tfm: Deinitialize the cryptographic transformation object.
136 * This is a counterpart to @init_tfm, used to remove
137 * various changes set in @init_tfm.
138 * @clone_tfm: Copy transform into new object, may allocate memory.
139 * @reqsize: Size of the request context.
140 * @halg: see struct hash_alg_common
141 */
142 struct ahash_alg {
143 int (*init)(struct ahash_request *req);
144 int (*update)(struct ahash_request *req);
145 int (*final)(struct ahash_request *req);
146 int (*finup)(struct ahash_request *req);
147 int (*digest)(struct ahash_request *req);
148 int (*export)(struct ahash_request *req, void *out);
149 int (*import)(struct ahash_request *req, const void *in);
150 int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
151 unsigned int keylen);
152 int (*init_tfm)(struct crypto_ahash *tfm);
153 void (*exit_tfm)(struct crypto_ahash *tfm);
154 int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
155
156 unsigned int reqsize;
157
158 struct hash_alg_common halg;
159 };
160
161 struct shash_desc {
162 struct crypto_shash *tfm;
163 void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
164 };
165
166 #define HASH_MAX_DIGESTSIZE 64
167
168 /*
169 * Worst case is hmac(sha3-224-generic). Its context is a nested 'shash_desc'
170 * containing a 'struct sha3_state'.
171 */
172 #define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 360)
173
174 #define SHASH_DESC_ON_STACK(shash, ctx) \
175 char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
176 __aligned(__alignof__(struct shash_desc)); \
177 struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
178
179 /**
180 * struct shash_alg - synchronous message digest definition
181 * @init: see struct ahash_alg
182 * @update: see struct ahash_alg
183 * @final: see struct ahash_alg
184 * @finup: see struct ahash_alg
185 * @digest: see struct ahash_alg
186 * @export: see struct ahash_alg
187 * @import: see struct ahash_alg
188 * @setkey: see struct ahash_alg
189 * @init_tfm: Initialize the cryptographic transformation object.
190 * This function is called only once at the instantiation
191 * time, right after the transformation context was
192 * allocated. In case the cryptographic hardware has
193 * some special requirements which need to be handled
194 * by software, this function shall check for the precise
195 * requirement of the transformation and put any software
196 * fallbacks in place.
197 * @exit_tfm: Deinitialize the cryptographic transformation object.
198 * This is a counterpart to @init_tfm, used to remove
199 * various changes set in @init_tfm.
200 * @clone_tfm: Copy transform into new object, may allocate memory.
201 * @descsize: Size of the operational state for the message digest. This state
202 * size is the memory size that needs to be allocated for
203 * shash_desc.__ctx
204 * @halg: see struct hash_alg_common
205 * @HASH_ALG_COMMON: see struct hash_alg_common
206 */
207 struct shash_alg {
208 int (*init)(struct shash_desc *desc);
209 int (*update)(struct shash_desc *desc, const u8 *data,
210 unsigned int len);
211 int (*final)(struct shash_desc *desc, u8 *out);
212 int (*finup)(struct shash_desc *desc, const u8 *data,
213 unsigned int len, u8 *out);
214 int (*digest)(struct shash_desc *desc, const u8 *data,
215 unsigned int len, u8 *out);
216 int (*export)(struct shash_desc *desc, void *out);
217 int (*import)(struct shash_desc *desc, const void *in);
218 int (*setkey)(struct crypto_shash *tfm, const u8 *key,
219 unsigned int keylen);
220 int (*init_tfm)(struct crypto_shash *tfm);
221 void (*exit_tfm)(struct crypto_shash *tfm);
222 int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
223
224 unsigned int descsize;
225
226 union {
227 struct HASH_ALG_COMMON;
228 struct hash_alg_common halg;
229 };
230 };
231 #undef HASH_ALG_COMMON
232
233 struct crypto_ahash {
234 bool using_shash; /* Underlying algorithm is shash, not ahash */
235 unsigned int statesize;
236 unsigned int reqsize;
237 struct crypto_tfm base;
238 };
239
240 struct crypto_shash {
241 unsigned int descsize;
242 struct crypto_tfm base;
243 };
244
245 /**
246 * DOC: Asynchronous Message Digest API
247 *
248 * The asynchronous message digest API is used with the ciphers of type
249 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
250 *
251 * The asynchronous cipher operation discussion provided for the
252 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
253 */
254
__crypto_ahash_cast(struct crypto_tfm * tfm)255 static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
256 {
257 return container_of(tfm, struct crypto_ahash, base);
258 }
259
260 /**
261 * crypto_alloc_ahash() - allocate ahash cipher handle
262 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
263 * ahash cipher
264 * @type: specifies the type of the cipher
265 * @mask: specifies the mask for the cipher
266 *
267 * Allocate a cipher handle for an ahash. The returned struct
268 * crypto_ahash is the cipher handle that is required for any subsequent
269 * API invocation for that ahash.
270 *
271 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
272 * of an error, PTR_ERR() returns the error code.
273 */
274 struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
275 u32 mask);
276
277 struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
278
crypto_ahash_tfm(struct crypto_ahash * tfm)279 static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
280 {
281 return &tfm->base;
282 }
283
284 /**
285 * crypto_free_ahash() - zeroize and free the ahash handle
286 * @tfm: cipher handle to be freed
287 *
288 * If @tfm is a NULL or error pointer, this function does nothing.
289 */
crypto_free_ahash(struct crypto_ahash * tfm)290 static inline void crypto_free_ahash(struct crypto_ahash *tfm)
291 {
292 crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
293 }
294
295 /**
296 * crypto_has_ahash() - Search for the availability of an ahash.
297 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
298 * ahash
299 * @type: specifies the type of the ahash
300 * @mask: specifies the mask for the ahash
301 *
302 * Return: true when the ahash is known to the kernel crypto API; false
303 * otherwise
304 */
305 int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
306
crypto_ahash_alg_name(struct crypto_ahash * tfm)307 static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
308 {
309 return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
310 }
311
crypto_ahash_driver_name(struct crypto_ahash * tfm)312 static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
313 {
314 return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
315 }
316
317 /**
318 * crypto_ahash_blocksize() - obtain block size for cipher
319 * @tfm: cipher handle
320 *
321 * The block size for the message digest cipher referenced with the cipher
322 * handle is returned.
323 *
324 * Return: block size of cipher
325 */
crypto_ahash_blocksize(struct crypto_ahash * tfm)326 static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
327 {
328 return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
329 }
330
__crypto_hash_alg_common(struct crypto_alg * alg)331 static inline struct hash_alg_common *__crypto_hash_alg_common(
332 struct crypto_alg *alg)
333 {
334 return container_of(alg, struct hash_alg_common, base);
335 }
336
crypto_hash_alg_common(struct crypto_ahash * tfm)337 static inline struct hash_alg_common *crypto_hash_alg_common(
338 struct crypto_ahash *tfm)
339 {
340 return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
341 }
342
343 /**
344 * crypto_ahash_digestsize() - obtain message digest size
345 * @tfm: cipher handle
346 *
347 * The size for the message digest created by the message digest cipher
348 * referenced with the cipher handle is returned.
349 *
350 *
351 * Return: message digest size of cipher
352 */
crypto_ahash_digestsize(struct crypto_ahash * tfm)353 static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
354 {
355 return crypto_hash_alg_common(tfm)->digestsize;
356 }
357
358 /**
359 * crypto_ahash_statesize() - obtain size of the ahash state
360 * @tfm: cipher handle
361 *
362 * Return the size of the ahash state. With the crypto_ahash_export()
363 * function, the caller can export the state into a buffer whose size is
364 * defined with this function.
365 *
366 * Return: size of the ahash state
367 */
crypto_ahash_statesize(struct crypto_ahash * tfm)368 static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
369 {
370 return tfm->statesize;
371 }
372
crypto_ahash_get_flags(struct crypto_ahash * tfm)373 static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
374 {
375 return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
376 }
377
crypto_ahash_set_flags(struct crypto_ahash * tfm,u32 flags)378 static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
379 {
380 crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
381 }
382
crypto_ahash_clear_flags(struct crypto_ahash * tfm,u32 flags)383 static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
384 {
385 crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
386 }
387
388 /**
389 * crypto_ahash_reqtfm() - obtain cipher handle from request
390 * @req: asynchronous request handle that contains the reference to the ahash
391 * cipher handle
392 *
393 * Return the ahash cipher handle that is registered with the asynchronous
394 * request handle ahash_request.
395 *
396 * Return: ahash cipher handle
397 */
crypto_ahash_reqtfm(struct ahash_request * req)398 static inline struct crypto_ahash *crypto_ahash_reqtfm(
399 struct ahash_request *req)
400 {
401 return __crypto_ahash_cast(req->base.tfm);
402 }
403
404 /**
405 * crypto_ahash_reqsize() - obtain size of the request data structure
406 * @tfm: cipher handle
407 *
408 * Return: size of the request data
409 */
crypto_ahash_reqsize(struct crypto_ahash * tfm)410 static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
411 {
412 return tfm->reqsize;
413 }
414
ahash_request_ctx(struct ahash_request * req)415 static inline void *ahash_request_ctx(struct ahash_request *req)
416 {
417 return req->__ctx;
418 }
419
420 /**
421 * crypto_ahash_setkey - set key for cipher handle
422 * @tfm: cipher handle
423 * @key: buffer holding the key
424 * @keylen: length of the key in bytes
425 *
426 * The caller provided key is set for the ahash cipher. The cipher
427 * handle must point to a keyed hash in order for this function to succeed.
428 *
429 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
430 */
431 int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
432 unsigned int keylen);
433
434 /**
435 * crypto_ahash_finup() - update and finalize message digest
436 * @req: reference to the ahash_request handle that holds all information
437 * needed to perform the cipher operation
438 *
439 * This function is a "short-hand" for the function calls of
440 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
441 * meaning as discussed for those separate functions.
442 *
443 * Return: see crypto_ahash_final()
444 */
445 int crypto_ahash_finup(struct ahash_request *req);
446
447 /**
448 * crypto_ahash_final() - calculate message digest
449 * @req: reference to the ahash_request handle that holds all information
450 * needed to perform the cipher operation
451 *
452 * Finalize the message digest operation and create the message digest
453 * based on all data added to the cipher handle. The message digest is placed
454 * into the output buffer registered with the ahash_request handle.
455 *
456 * Return:
457 * 0 if the message digest was successfully calculated;
458 * -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
459 * -EBUSY if queue is full and request should be resubmitted later;
460 * other < 0 if an error occurred
461 */
462 int crypto_ahash_final(struct ahash_request *req);
463
464 /**
465 * crypto_ahash_digest() - calculate message digest for a buffer
466 * @req: reference to the ahash_request handle that holds all information
467 * needed to perform the cipher operation
468 *
469 * This function is a "short-hand" for the function calls of crypto_ahash_init,
470 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
471 * meaning as discussed for those separate three functions.
472 *
473 * Return: see crypto_ahash_final()
474 */
475 int crypto_ahash_digest(struct ahash_request *req);
476
477 /**
478 * crypto_ahash_export() - extract current message digest state
479 * @req: reference to the ahash_request handle whose state is exported
480 * @out: output buffer of sufficient size that can hold the hash state
481 *
482 * This function exports the hash state of the ahash_request handle into the
483 * caller-allocated output buffer out which must have sufficient size (e.g. by
484 * calling crypto_ahash_statesize()).
485 *
486 * Return: 0 if the export was successful; < 0 if an error occurred
487 */
488 int crypto_ahash_export(struct ahash_request *req, void *out);
489
490 /**
491 * crypto_ahash_import() - import message digest state
492 * @req: reference to ahash_request handle the state is imported into
493 * @in: buffer holding the state
494 *
495 * This function imports the hash state into the ahash_request handle from the
496 * input buffer. That buffer should have been generated with the
497 * crypto_ahash_export function.
498 *
499 * Return: 0 if the import was successful; < 0 if an error occurred
500 */
501 int crypto_ahash_import(struct ahash_request *req, const void *in);
502
503 /**
504 * crypto_ahash_init() - (re)initialize message digest handle
505 * @req: ahash_request handle that already is initialized with all necessary
506 * data using the ahash_request_* API functions
507 *
508 * The call (re-)initializes the message digest referenced by the ahash_request
509 * handle. Any potentially existing state created by previous operations is
510 * discarded.
511 *
512 * Return: see crypto_ahash_final()
513 */
514 int crypto_ahash_init(struct ahash_request *req);
515
516 /**
517 * crypto_ahash_update() - add data to message digest for processing
518 * @req: ahash_request handle that was previously initialized with the
519 * crypto_ahash_init call.
520 *
521 * Updates the message digest state of the &ahash_request handle. The input data
522 * is pointed to by the scatter/gather list registered in the &ahash_request
523 * handle
524 *
525 * Return: see crypto_ahash_final()
526 */
527 int crypto_ahash_update(struct ahash_request *req);
528
529 /**
530 * DOC: Asynchronous Hash Request Handle
531 *
532 * The &ahash_request data structure contains all pointers to data
533 * required for the asynchronous cipher operation. This includes the cipher
534 * handle (which can be used by multiple &ahash_request instances), pointer
535 * to plaintext and the message digest output buffer, asynchronous callback
536 * function, etc. It acts as a handle to the ahash_request_* API calls in a
537 * similar way as ahash handle to the crypto_ahash_* API calls.
538 */
539
540 /**
541 * ahash_request_set_tfm() - update cipher handle reference in request
542 * @req: request handle to be modified
543 * @tfm: cipher handle that shall be added to the request handle
544 *
545 * Allow the caller to replace the existing ahash handle in the request
546 * data structure with a different one.
547 */
ahash_request_set_tfm(struct ahash_request * req,struct crypto_ahash * tfm)548 static inline void ahash_request_set_tfm(struct ahash_request *req,
549 struct crypto_ahash *tfm)
550 {
551 req->base.tfm = crypto_ahash_tfm(tfm);
552 }
553
554 /**
555 * ahash_request_alloc() - allocate request data structure
556 * @tfm: cipher handle to be registered with the request
557 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
558 *
559 * Allocate the request data structure that must be used with the ahash
560 * message digest API calls. During
561 * the allocation, the provided ahash handle
562 * is registered in the request data structure.
563 *
564 * Return: allocated request handle in case of success, or NULL if out of memory
565 */
ahash_request_alloc_noprof(struct crypto_ahash * tfm,gfp_t gfp)566 static inline struct ahash_request *ahash_request_alloc_noprof(
567 struct crypto_ahash *tfm, gfp_t gfp)
568 {
569 struct ahash_request *req;
570
571 req = kmalloc_noprof(sizeof(struct ahash_request) +
572 crypto_ahash_reqsize(tfm), gfp);
573
574 if (likely(req))
575 ahash_request_set_tfm(req, tfm);
576
577 return req;
578 }
579 #define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
580
581 /**
582 * ahash_request_free() - zeroize and free the request data structure
583 * @req: request data structure cipher handle to be freed
584 */
ahash_request_free(struct ahash_request * req)585 static inline void ahash_request_free(struct ahash_request *req)
586 {
587 kfree_sensitive(req);
588 }
589
ahash_request_cast(struct crypto_async_request * req)590 static inline struct ahash_request *ahash_request_cast(
591 struct crypto_async_request *req)
592 {
593 return container_of(req, struct ahash_request, base);
594 }
595
596 /**
597 * ahash_request_set_callback() - set asynchronous callback function
598 * @req: request handle
599 * @flags: specify zero or an ORing of the flags
600 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
601 * increase the wait queue beyond the initial maximum size;
602 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
603 * @compl: callback function pointer to be registered with the request handle
604 * @data: The data pointer refers to memory that is not used by the kernel
605 * crypto API, but provided to the callback function for it to use. Here,
606 * the caller can provide a reference to memory the callback function can
607 * operate on. As the callback function is invoked asynchronously to the
608 * related functionality, it may need to access data structures of the
609 * related functionality which can be referenced using this pointer. The
610 * callback function can access the memory via the "data" field in the
611 * &crypto_async_request data structure provided to the callback function.
612 *
613 * This function allows setting the callback function that is triggered once
614 * the cipher operation completes.
615 *
616 * The callback function is registered with the &ahash_request handle and
617 * must comply with the following template::
618 *
619 * void callback_function(struct crypto_async_request *req, int error)
620 */
ahash_request_set_callback(struct ahash_request * req,u32 flags,crypto_completion_t compl,void * data)621 static inline void ahash_request_set_callback(struct ahash_request *req,
622 u32 flags,
623 crypto_completion_t compl,
624 void *data)
625 {
626 u32 keep = CRYPTO_AHASH_REQ_VIRT;
627
628 req->base.complete = compl;
629 req->base.data = data;
630 flags &= ~keep;
631 req->base.flags &= keep;
632 req->base.flags |= flags;
633 crypto_reqchain_init(&req->base);
634 }
635
636 /**
637 * ahash_request_set_crypt() - set data buffers
638 * @req: ahash_request handle to be updated
639 * @src: source scatter/gather list
640 * @result: buffer that is filled with the message digest -- the caller must
641 * ensure that the buffer has sufficient space by, for example, calling
642 * crypto_ahash_digestsize()
643 * @nbytes: number of bytes to process from the source scatter/gather list
644 *
645 * By using this call, the caller references the source scatter/gather list.
646 * The source scatter/gather list points to the data the message digest is to
647 * be calculated for.
648 */
ahash_request_set_crypt(struct ahash_request * req,struct scatterlist * src,u8 * result,unsigned int nbytes)649 static inline void ahash_request_set_crypt(struct ahash_request *req,
650 struct scatterlist *src, u8 *result,
651 unsigned int nbytes)
652 {
653 req->src = src;
654 req->nbytes = nbytes;
655 req->result = result;
656 req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT;
657 }
658
659 /**
660 * ahash_request_set_virt() - set virtual address data buffers
661 * @req: ahash_request handle to be updated
662 * @src: source virtual address
663 * @result: buffer that is filled with the message digest -- the caller must
664 * ensure that the buffer has sufficient space by, for example, calling
665 * crypto_ahash_digestsize()
666 * @nbytes: number of bytes to process from the source virtual address
667 *
668 * By using this call, the caller references the source virtual address.
669 * The source virtual address points to the data the message digest is to
670 * be calculated for.
671 */
ahash_request_set_virt(struct ahash_request * req,const u8 * src,u8 * result,unsigned int nbytes)672 static inline void ahash_request_set_virt(struct ahash_request *req,
673 const u8 *src, u8 *result,
674 unsigned int nbytes)
675 {
676 req->svirt = src;
677 req->nbytes = nbytes;
678 req->result = result;
679 req->base.flags |= CRYPTO_AHASH_REQ_VIRT;
680 }
681
ahash_request_chain(struct ahash_request * req,struct ahash_request * head)682 static inline void ahash_request_chain(struct ahash_request *req,
683 struct ahash_request *head)
684 {
685 crypto_request_chain(&req->base, &head->base);
686 }
687
688 /**
689 * DOC: Synchronous Message Digest API
690 *
691 * The synchronous message digest API is used with the ciphers of type
692 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
693 *
694 * The message digest API is able to maintain state information for the
695 * caller.
696 *
697 * The synchronous message digest API can store user-related context in its
698 * shash_desc request data structure.
699 */
700
701 /**
702 * crypto_alloc_shash() - allocate message digest handle
703 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
704 * message digest cipher
705 * @type: specifies the type of the cipher
706 * @mask: specifies the mask for the cipher
707 *
708 * Allocate a cipher handle for a message digest. The returned &struct
709 * crypto_shash is the cipher handle that is required for any subsequent
710 * API invocation for that message digest.
711 *
712 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
713 * of an error, PTR_ERR() returns the error code.
714 */
715 struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
716 u32 mask);
717
718 struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
719
720 int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
721
crypto_shash_tfm(struct crypto_shash * tfm)722 static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
723 {
724 return &tfm->base;
725 }
726
727 /**
728 * crypto_free_shash() - zeroize and free the message digest handle
729 * @tfm: cipher handle to be freed
730 *
731 * If @tfm is a NULL or error pointer, this function does nothing.
732 */
crypto_free_shash(struct crypto_shash * tfm)733 static inline void crypto_free_shash(struct crypto_shash *tfm)
734 {
735 crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
736 }
737
crypto_shash_alg_name(struct crypto_shash * tfm)738 static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
739 {
740 return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
741 }
742
crypto_shash_driver_name(struct crypto_shash * tfm)743 static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
744 {
745 return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
746 }
747
748 /**
749 * crypto_shash_blocksize() - obtain block size for cipher
750 * @tfm: cipher handle
751 *
752 * The block size for the message digest cipher referenced with the cipher
753 * handle is returned.
754 *
755 * Return: block size of cipher
756 */
crypto_shash_blocksize(struct crypto_shash * tfm)757 static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
758 {
759 return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
760 }
761
__crypto_shash_alg(struct crypto_alg * alg)762 static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
763 {
764 return container_of(alg, struct shash_alg, base);
765 }
766
crypto_shash_alg(struct crypto_shash * tfm)767 static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
768 {
769 return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
770 }
771
772 /**
773 * crypto_shash_digestsize() - obtain message digest size
774 * @tfm: cipher handle
775 *
776 * The size for the message digest created by the message digest cipher
777 * referenced with the cipher handle is returned.
778 *
779 * Return: digest size of cipher
780 */
crypto_shash_digestsize(struct crypto_shash * tfm)781 static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
782 {
783 return crypto_shash_alg(tfm)->digestsize;
784 }
785
crypto_shash_statesize(struct crypto_shash * tfm)786 static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
787 {
788 return crypto_shash_alg(tfm)->statesize;
789 }
790
crypto_shash_get_flags(struct crypto_shash * tfm)791 static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
792 {
793 return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
794 }
795
crypto_shash_set_flags(struct crypto_shash * tfm,u32 flags)796 static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
797 {
798 crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
799 }
800
crypto_shash_clear_flags(struct crypto_shash * tfm,u32 flags)801 static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
802 {
803 crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
804 }
805
806 /**
807 * crypto_shash_descsize() - obtain the operational state size
808 * @tfm: cipher handle
809 *
810 * The size of the operational state the cipher needs during operation is
811 * returned for the hash referenced with the cipher handle. This size is
812 * required to calculate the memory requirements to allow the caller allocating
813 * sufficient memory for operational state.
814 *
815 * The operational state is defined with struct shash_desc where the size of
816 * that data structure is to be calculated as
817 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
818 *
819 * Return: size of the operational state
820 */
crypto_shash_descsize(struct crypto_shash * tfm)821 static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
822 {
823 return tfm->descsize;
824 }
825
shash_desc_ctx(struct shash_desc * desc)826 static inline void *shash_desc_ctx(struct shash_desc *desc)
827 {
828 return desc->__ctx;
829 }
830
831 /**
832 * crypto_shash_setkey() - set key for message digest
833 * @tfm: cipher handle
834 * @key: buffer holding the key
835 * @keylen: length of the key in bytes
836 *
837 * The caller provided key is set for the keyed message digest cipher. The
838 * cipher handle must point to a keyed message digest cipher in order for this
839 * function to succeed.
840 *
841 * Context: Any context.
842 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
843 */
844 int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
845 unsigned int keylen);
846
847 /**
848 * crypto_shash_digest() - calculate message digest for buffer
849 * @desc: see crypto_shash_final()
850 * @data: see crypto_shash_update()
851 * @len: see crypto_shash_update()
852 * @out: see crypto_shash_final()
853 *
854 * This function is a "short-hand" for the function calls of crypto_shash_init,
855 * crypto_shash_update and crypto_shash_final. The parameters have the same
856 * meaning as discussed for those separate three functions.
857 *
858 * Context: Any context.
859 * Return: 0 if the message digest creation was successful; < 0 if an error
860 * occurred
861 */
862 int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
863 unsigned int len, u8 *out);
864
865 /**
866 * crypto_shash_tfm_digest() - calculate message digest for buffer
867 * @tfm: hash transformation object
868 * @data: see crypto_shash_update()
869 * @len: see crypto_shash_update()
870 * @out: see crypto_shash_final()
871 *
872 * This is a simplified version of crypto_shash_digest() for users who don't
873 * want to allocate their own hash descriptor (shash_desc). Instead,
874 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
875 * directly, and it allocates a hash descriptor on the stack internally.
876 * Note that this stack allocation may be fairly large.
877 *
878 * Context: Any context.
879 * Return: 0 on success; < 0 if an error occurred.
880 */
881 int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
882 unsigned int len, u8 *out);
883
884 /**
885 * crypto_shash_export() - extract operational state for message digest
886 * @desc: reference to the operational state handle whose state is exported
887 * @out: output buffer of sufficient size that can hold the hash state
888 *
889 * This function exports the hash state of the operational state handle into the
890 * caller-allocated output buffer out which must have sufficient size (e.g. by
891 * calling crypto_shash_descsize).
892 *
893 * Context: Any context.
894 * Return: 0 if the export creation was successful; < 0 if an error occurred
895 */
896 int crypto_shash_export(struct shash_desc *desc, void *out);
897
898 /**
899 * crypto_shash_import() - import operational state
900 * @desc: reference to the operational state handle the state imported into
901 * @in: buffer holding the state
902 *
903 * This function imports the hash state into the operational state handle from
904 * the input buffer. That buffer should have been generated with the
905 * crypto_ahash_export function.
906 *
907 * Context: Any context.
908 * Return: 0 if the import was successful; < 0 if an error occurred
909 */
910 int crypto_shash_import(struct shash_desc *desc, const void *in);
911
912 /**
913 * crypto_shash_init() - (re)initialize message digest
914 * @desc: operational state handle that is already filled
915 *
916 * The call (re-)initializes the message digest referenced by the
917 * operational state handle. Any potentially existing state created by
918 * previous operations is discarded.
919 *
920 * Context: Any context.
921 * Return: 0 if the message digest initialization was successful; < 0 if an
922 * error occurred
923 */
crypto_shash_init(struct shash_desc * desc)924 static inline int crypto_shash_init(struct shash_desc *desc)
925 {
926 struct crypto_shash *tfm = desc->tfm;
927
928 if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
929 return -ENOKEY;
930
931 return crypto_shash_alg(tfm)->init(desc);
932 }
933
934 /**
935 * crypto_shash_update() - add data to message digest for processing
936 * @desc: operational state handle that is already initialized
937 * @data: input data to be added to the message digest
938 * @len: length of the input data
939 *
940 * Updates the message digest state of the operational state handle.
941 *
942 * Context: Any context.
943 * Return: 0 if the message digest update was successful; < 0 if an error
944 * occurred
945 */
946 int crypto_shash_update(struct shash_desc *desc, const u8 *data,
947 unsigned int len);
948
949 /**
950 * crypto_shash_final() - calculate message digest
951 * @desc: operational state handle that is already filled with data
952 * @out: output buffer filled with the message digest
953 *
954 * Finalize the message digest operation and create the message digest
955 * based on all data added to the cipher handle. The message digest is placed
956 * into the output buffer. The caller must ensure that the output buffer is
957 * large enough by using crypto_shash_digestsize.
958 *
959 * Context: Any context.
960 * Return: 0 if the message digest creation was successful; < 0 if an error
961 * occurred
962 */
963 int crypto_shash_final(struct shash_desc *desc, u8 *out);
964
965 /**
966 * crypto_shash_finup() - calculate message digest of buffer
967 * @desc: see crypto_shash_final()
968 * @data: see crypto_shash_update()
969 * @len: see crypto_shash_update()
970 * @out: see crypto_shash_final()
971 *
972 * This function is a "short-hand" for the function calls of
973 * crypto_shash_update and crypto_shash_final. The parameters have the same
974 * meaning as discussed for those separate functions.
975 *
976 * Context: Any context.
977 * Return: 0 if the message digest creation was successful; < 0 if an error
978 * occurred
979 */
980 int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
981 unsigned int len, u8 *out);
982
shash_desc_zero(struct shash_desc * desc)983 static inline void shash_desc_zero(struct shash_desc *desc)
984 {
985 memzero_explicit(desc,
986 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
987 }
988
ahash_request_err(struct ahash_request * req)989 static inline int ahash_request_err(struct ahash_request *req)
990 {
991 return req->base.err;
992 }
993
ahash_is_async(struct crypto_ahash * tfm)994 static inline bool ahash_is_async(struct crypto_ahash *tfm)
995 {
996 return crypto_tfm_is_async(&tfm->base);
997 }
998
999 #endif /* _CRYPTO_HASH_H */
1000