1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Released under the GPLv2 only.
4 */
5
6 #include <linux/module.h>
7 #include <linux/string.h>
8 #include <linux/bitops.h>
9 #include <linux/slab.h>
10 #include <linux/log2.h>
11 #include <linux/kmsan.h>
12 #include <linux/usb.h>
13 #include <linux/wait.h>
14 #include <linux/usb/hcd.h>
15 #include <linux/scatterlist.h>
16
17 #define to_urb(d) container_of(d, struct urb, kref)
18
19
urb_destroy(struct kref * kref)20 static void urb_destroy(struct kref *kref)
21 {
22 struct urb *urb = to_urb(kref);
23
24 if (urb->transfer_flags & URB_FREE_BUFFER)
25 kfree(urb->transfer_buffer);
26
27 kfree(urb);
28 }
29
30 /**
31 * usb_init_urb - initializes a urb so that it can be used by a USB driver
32 * @urb: pointer to the urb to initialize
33 *
34 * Initializes a urb so that the USB subsystem can use it properly.
35 *
36 * If a urb is created with a call to usb_alloc_urb() it is not
37 * necessary to call this function. Only use this if you allocate the
38 * space for a struct urb on your own. If you call this function, be
39 * careful when freeing the memory for your urb that it is no longer in
40 * use by the USB core.
41 *
42 * Only use this function if you _really_ understand what you are doing.
43 */
usb_init_urb(struct urb * urb)44 void usb_init_urb(struct urb *urb)
45 {
46 if (urb) {
47 memset(urb, 0, sizeof(*urb));
48 kref_init(&urb->kref);
49 INIT_LIST_HEAD(&urb->urb_list);
50 INIT_LIST_HEAD(&urb->anchor_list);
51 }
52 }
53 EXPORT_SYMBOL_GPL(usb_init_urb);
54
55 /**
56 * usb_alloc_urb - creates a new urb for a USB driver to use
57 * @iso_packets: number of iso packets for this urb
58 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
59 * valid options for this.
60 *
61 * Creates an urb for the USB driver to use, initializes a few internal
62 * structures, increments the usage counter, and returns a pointer to it.
63 *
64 * If the driver want to use this urb for interrupt, control, or bulk
65 * endpoints, pass '0' as the number of iso packets.
66 *
67 * The driver must call usb_free_urb() when it is finished with the urb.
68 *
69 * Return: A pointer to the new urb, or %NULL if no memory is available.
70 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)71 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
72 {
73 struct urb *urb;
74
75 urb = kmalloc(struct_size(urb, iso_frame_desc, iso_packets),
76 mem_flags);
77 if (!urb)
78 return NULL;
79 usb_init_urb(urb);
80 return urb;
81 }
82 EXPORT_SYMBOL_GPL(usb_alloc_urb);
83
84 /**
85 * usb_free_urb - frees the memory used by a urb when all users of it are finished
86 * @urb: pointer to the urb to free, may be NULL
87 *
88 * Must be called when a user of a urb is finished with it. When the last user
89 * of the urb calls this function, the memory of the urb is freed.
90 *
91 * Note: The transfer buffer associated with the urb is not freed unless the
92 * URB_FREE_BUFFER transfer flag is set.
93 */
usb_free_urb(struct urb * urb)94 void usb_free_urb(struct urb *urb)
95 {
96 if (urb)
97 kref_put(&urb->kref, urb_destroy);
98 }
99 EXPORT_SYMBOL_GPL(usb_free_urb);
100
101 /**
102 * usb_get_urb - increments the reference count of the urb
103 * @urb: pointer to the urb to modify, may be NULL
104 *
105 * This must be called whenever a urb is transferred from a device driver to a
106 * host controller driver. This allows proper reference counting to happen
107 * for urbs.
108 *
109 * Return: A pointer to the urb with the incremented reference counter.
110 */
usb_get_urb(struct urb * urb)111 struct urb *usb_get_urb(struct urb *urb)
112 {
113 if (urb)
114 kref_get(&urb->kref);
115 return urb;
116 }
117 EXPORT_SYMBOL_GPL(usb_get_urb);
118
119 /**
120 * usb_anchor_urb - anchors an URB while it is processed
121 * @urb: pointer to the urb to anchor
122 * @anchor: pointer to the anchor
123 *
124 * This can be called to have access to URBs which are to be executed
125 * without bothering to track them
126 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)127 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
128 {
129 unsigned long flags;
130
131 spin_lock_irqsave(&anchor->lock, flags);
132 usb_get_urb(urb);
133 list_add_tail(&urb->anchor_list, &anchor->urb_list);
134 urb->anchor = anchor;
135
136 if (unlikely(anchor->poisoned))
137 atomic_inc(&urb->reject);
138
139 spin_unlock_irqrestore(&anchor->lock, flags);
140 }
141 EXPORT_SYMBOL_GPL(usb_anchor_urb);
142
usb_anchor_check_wakeup(struct usb_anchor * anchor)143 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
144 {
145 return atomic_read(&anchor->suspend_wakeups) == 0 &&
146 list_empty(&anchor->urb_list);
147 }
148
149 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)150 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
151 {
152 urb->anchor = NULL;
153 list_del(&urb->anchor_list);
154 usb_put_urb(urb);
155 if (usb_anchor_check_wakeup(anchor))
156 wake_up(&anchor->wait);
157 }
158
159 /**
160 * usb_unanchor_urb - unanchors an URB
161 * @urb: pointer to the urb to anchor
162 *
163 * Call this to stop the system keeping track of this URB
164 */
usb_unanchor_urb(struct urb * urb)165 void usb_unanchor_urb(struct urb *urb)
166 {
167 unsigned long flags;
168 struct usb_anchor *anchor;
169
170 if (!urb)
171 return;
172
173 anchor = urb->anchor;
174 if (!anchor)
175 return;
176
177 spin_lock_irqsave(&anchor->lock, flags);
178 /*
179 * At this point, we could be competing with another thread which
180 * has the same intention. To protect the urb from being unanchored
181 * twice, only the winner of the race gets the job.
182 */
183 if (likely(anchor == urb->anchor))
184 __usb_unanchor_urb(urb, anchor);
185 spin_unlock_irqrestore(&anchor->lock, flags);
186 }
187 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
188
189 /*-------------------------------------------------------------------*/
190
191 static const int pipetypes[4] = {
192 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
193 };
194
195 /**
196 * usb_pipe_type_check - sanity check of a specific pipe for a usb device
197 * @dev: struct usb_device to be checked
198 * @pipe: pipe to check
199 *
200 * This performs a light-weight sanity check for the endpoint in the
201 * given usb device. It returns 0 if the pipe is valid for the specific usb
202 * device, otherwise a negative error code.
203 */
usb_pipe_type_check(struct usb_device * dev,unsigned int pipe)204 int usb_pipe_type_check(struct usb_device *dev, unsigned int pipe)
205 {
206 const struct usb_host_endpoint *ep;
207
208 ep = usb_pipe_endpoint(dev, pipe);
209 if (!ep)
210 return -EINVAL;
211 if (usb_pipetype(pipe) != pipetypes[usb_endpoint_type(&ep->desc)])
212 return -EINVAL;
213 return 0;
214 }
215 EXPORT_SYMBOL_GPL(usb_pipe_type_check);
216
217 /**
218 * usb_urb_ep_type_check - sanity check of endpoint in the given urb
219 * @urb: urb to be checked
220 *
221 * This performs a light-weight sanity check for the endpoint in the
222 * given urb. It returns 0 if the urb contains a valid endpoint, otherwise
223 * a negative error code.
224 */
usb_urb_ep_type_check(const struct urb * urb)225 int usb_urb_ep_type_check(const struct urb *urb)
226 {
227 return usb_pipe_type_check(urb->dev, urb->pipe);
228 }
229 EXPORT_SYMBOL_GPL(usb_urb_ep_type_check);
230
231 /**
232 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
233 * @urb: pointer to the urb describing the request
234 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
235 * of valid options for this.
236 *
237 * This submits a transfer request, and transfers control of the URB
238 * describing that request to the USB subsystem. Request completion will
239 * be indicated later, asynchronously, by calling the completion handler.
240 * The three types of completion are success, error, and unlink
241 * (a software-induced fault, also called "request cancellation").
242 *
243 * URBs may be submitted in interrupt context.
244 *
245 * The caller must have correctly initialized the URB before submitting
246 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
247 * available to ensure that most fields are correctly initialized, for
248 * the particular kind of transfer, although they will not initialize
249 * any transfer flags.
250 *
251 * If the submission is successful, the complete() callback from the URB
252 * will be called exactly once, when the USB core and Host Controller Driver
253 * (HCD) are finished with the URB. When the completion function is called,
254 * control of the URB is returned to the device driver which issued the
255 * request. The completion handler may then immediately free or reuse that
256 * URB.
257 *
258 * With few exceptions, USB device drivers should never access URB fields
259 * provided by usbcore or the HCD until its complete() is called.
260 * The exceptions relate to periodic transfer scheduling. For both
261 * interrupt and isochronous urbs, as part of successful URB submission
262 * urb->interval is modified to reflect the actual transfer period used
263 * (normally some power of two units). And for isochronous urbs,
264 * urb->start_frame is modified to reflect when the URB's transfers were
265 * scheduled to start.
266 *
267 * Not all isochronous transfer scheduling policies will work, but most
268 * host controller drivers should easily handle ISO queues going from now
269 * until 10-200 msec into the future. Drivers should try to keep at
270 * least one or two msec of data in the queue; many controllers require
271 * that new transfers start at least 1 msec in the future when they are
272 * added. If the driver is unable to keep up and the queue empties out,
273 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
274 * If the flag is set, or if the queue is idle, then the URB is always
275 * assigned to the first available (and not yet expired) slot in the
276 * endpoint's schedule. If the flag is not set and the queue is active
277 * then the URB is always assigned to the next slot in the schedule
278 * following the end of the endpoint's previous URB, even if that slot is
279 * in the past. When a packet is assigned in this way to a slot that has
280 * already expired, the packet is not transmitted and the corresponding
281 * usb_iso_packet_descriptor's status field will return -EXDEV. If this
282 * would happen to all the packets in the URB, submission fails with a
283 * -EXDEV error code.
284 *
285 * For control endpoints, the synchronous usb_control_msg() call is
286 * often used (in non-interrupt context) instead of this call.
287 * That is often used through convenience wrappers, for the requests
288 * that are standardized in the USB 2.0 specification. For bulk
289 * endpoints, a synchronous usb_bulk_msg() call is available.
290 *
291 * Return:
292 * 0 on successful submissions. A negative error number otherwise.
293 *
294 * Request Queuing:
295 *
296 * URBs may be submitted to endpoints before previous ones complete, to
297 * minimize the impact of interrupt latencies and system overhead on data
298 * throughput. With that queuing policy, an endpoint's queue would never
299 * be empty. This is required for continuous isochronous data streams,
300 * and may also be required for some kinds of interrupt transfers. Such
301 * queuing also maximizes bandwidth utilization by letting USB controllers
302 * start work on later requests before driver software has finished the
303 * completion processing for earlier (successful) requests.
304 *
305 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
306 * than one. This was previously a HCD-specific behavior, except for ISO
307 * transfers. Non-isochronous endpoint queues are inactive during cleanup
308 * after faults (transfer errors or cancellation).
309 *
310 * Reserved Bandwidth Transfers:
311 *
312 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
313 * using the interval specified in the urb. Submitting the first urb to
314 * the endpoint reserves the bandwidth necessary to make those transfers.
315 * If the USB subsystem can't allocate sufficient bandwidth to perform
316 * the periodic request, submitting such a periodic request should fail.
317 *
318 * For devices under xHCI, the bandwidth is reserved at configuration time, or
319 * when the alt setting is selected. If there is not enough bus bandwidth, the
320 * configuration/alt setting request will fail. Therefore, submissions to
321 * periodic endpoints on devices under xHCI should never fail due to bandwidth
322 * constraints.
323 *
324 * Device drivers must explicitly request that repetition, by ensuring that
325 * some URB is always on the endpoint's queue (except possibly for short
326 * periods during completion callbacks). When there is no longer an urb
327 * queued, the endpoint's bandwidth reservation is canceled. This means
328 * drivers can use their completion handlers to ensure they keep bandwidth
329 * they need, by reinitializing and resubmitting the just-completed urb
330 * until the driver longer needs that periodic bandwidth.
331 *
332 * Memory Flags:
333 *
334 * The general rules for how to decide which mem_flags to use
335 * are the same as for kmalloc. There are four
336 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
337 * GFP_ATOMIC.
338 *
339 * GFP_NOFS is not ever used, as it has not been implemented yet.
340 *
341 * GFP_ATOMIC is used when
342 * (a) you are inside a completion handler, an interrupt, bottom half,
343 * tasklet or timer, or
344 * (b) you are holding a spinlock or rwlock (does not apply to
345 * semaphores), or
346 * (c) current->state != TASK_RUNNING, this is the case only after
347 * you've changed it.
348 *
349 * GFP_NOIO is used in the block io path and error handling of storage
350 * devices.
351 *
352 * All other situations use GFP_KERNEL.
353 *
354 * Some more specific rules for mem_flags can be inferred, such as
355 * (1) start_xmit, timeout, and receive methods of network drivers must
356 * use GFP_ATOMIC (they are called with a spinlock held);
357 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
358 * called with a spinlock held);
359 * (3) If you use a kernel thread with a network driver you must use
360 * GFP_NOIO, unless (b) or (c) apply;
361 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
362 * apply or your are in a storage driver's block io path;
363 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
364 * (6) changing firmware on a running storage or net device uses
365 * GFP_NOIO, unless b) or c) apply
366 *
367 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)368 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
369 {
370 int xfertype, max;
371 struct usb_device *dev;
372 struct usb_host_endpoint *ep;
373 int is_out;
374 unsigned int allowed;
375
376 if (!urb || !urb->complete)
377 return -EINVAL;
378 if (urb->hcpriv) {
379 WARN_ONCE(1, "URB %p submitted while active\n", urb);
380 return -EBUSY;
381 }
382
383 dev = urb->dev;
384 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
385 return -ENODEV;
386
387 /* For now, get the endpoint from the pipe. Eventually drivers
388 * will be required to set urb->ep directly and we will eliminate
389 * urb->pipe.
390 */
391 ep = usb_pipe_endpoint(dev, urb->pipe);
392 if (!ep)
393 return -ENOENT;
394
395 urb->ep = ep;
396 urb->status = -EINPROGRESS;
397 urb->actual_length = 0;
398
399 /* Lots of sanity checks, so HCDs can rely on clean data
400 * and don't need to duplicate tests
401 */
402 xfertype = usb_endpoint_type(&ep->desc);
403 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
404 struct usb_ctrlrequest *setup =
405 (struct usb_ctrlrequest *) urb->setup_packet;
406
407 if (!setup)
408 return -ENOEXEC;
409 is_out = !(setup->bRequestType & USB_DIR_IN) ||
410 !setup->wLength;
411 dev_WARN_ONCE(&dev->dev, (usb_pipeout(urb->pipe) != is_out),
412 "BOGUS control dir, pipe %x doesn't match bRequestType %x\n",
413 urb->pipe, setup->bRequestType);
414 if (le16_to_cpu(setup->wLength) != urb->transfer_buffer_length) {
415 dev_dbg(&dev->dev, "BOGUS control len %d doesn't match transfer length %d\n",
416 le16_to_cpu(setup->wLength),
417 urb->transfer_buffer_length);
418 return -EBADR;
419 }
420 } else {
421 is_out = usb_endpoint_dir_out(&ep->desc);
422 }
423
424 /* Clear the internal flags and cache the direction for later use */
425 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
426 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
427 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
428 URB_DMA_SG_COMBINED);
429 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
430 kmsan_handle_urb(urb, is_out);
431
432 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
433 dev->state < USB_STATE_CONFIGURED)
434 return -ENODEV;
435
436 max = usb_endpoint_maxp(&ep->desc);
437 if (max <= 0) {
438 dev_dbg(&dev->dev,
439 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
440 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
441 __func__, max);
442 return -EMSGSIZE;
443 }
444
445 /* periodic transfers limit size per frame/uframe,
446 * but drivers only control those sizes for ISO.
447 * while we're checking, initialize return status.
448 */
449 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
450 int n, len;
451
452 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
453 * 3 packets each
454 */
455 if (dev->speed >= USB_SPEED_SUPER) {
456 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
457 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
458 max *= burst;
459 max *= mult;
460 }
461
462 if (dev->speed == USB_SPEED_SUPER_PLUS &&
463 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) {
464 struct usb_ssp_isoc_ep_comp_descriptor *isoc_ep_comp;
465
466 isoc_ep_comp = &ep->ssp_isoc_ep_comp;
467 max = le32_to_cpu(isoc_ep_comp->dwBytesPerInterval);
468 }
469
470 /* "high bandwidth" mode, 1-3 packets/uframe? */
471 if (dev->speed == USB_SPEED_HIGH)
472 max *= usb_endpoint_maxp_mult(&ep->desc);
473
474 if (urb->number_of_packets <= 0)
475 return -EINVAL;
476 for (n = 0; n < urb->number_of_packets; n++) {
477 len = urb->iso_frame_desc[n].length;
478 if (len < 0 || len > max)
479 return -EMSGSIZE;
480 urb->iso_frame_desc[n].status = -EXDEV;
481 urb->iso_frame_desc[n].actual_length = 0;
482 }
483 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint) {
484 struct scatterlist *sg;
485 int i;
486
487 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
488 if (sg->length % max)
489 return -EINVAL;
490 }
491
492 /* the I/O buffer must be mapped/unmapped, except when length=0 */
493 if (urb->transfer_buffer_length > INT_MAX)
494 return -EMSGSIZE;
495
496 /*
497 * stuff that drivers shouldn't do, but which shouldn't
498 * cause problems in HCDs if they get it wrong.
499 */
500
501 /* Check that the pipe's type matches the endpoint's type */
502 if (usb_pipe_type_check(urb->dev, urb->pipe))
503 dev_warn_once(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
504 usb_pipetype(urb->pipe), pipetypes[xfertype]);
505
506 /* Check against a simple/standard policy */
507 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
508 URB_FREE_BUFFER);
509 switch (xfertype) {
510 case USB_ENDPOINT_XFER_BULK:
511 case USB_ENDPOINT_XFER_INT:
512 if (is_out)
513 allowed |= URB_ZERO_PACKET;
514 fallthrough;
515 default: /* all non-iso endpoints */
516 if (!is_out)
517 allowed |= URB_SHORT_NOT_OK;
518 break;
519 case USB_ENDPOINT_XFER_ISOC:
520 allowed |= URB_ISO_ASAP;
521 break;
522 }
523 allowed &= urb->transfer_flags;
524
525 /* warn if submitter gave bogus flags */
526 if (allowed != urb->transfer_flags)
527 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
528 urb->transfer_flags, allowed);
529
530 /*
531 * Force periodic transfer intervals to be legal values that are
532 * a power of two (so HCDs don't need to).
533 *
534 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
535 * supports different values... this uses EHCI/UHCI defaults (and
536 * EHCI can use smaller non-default values).
537 */
538 switch (xfertype) {
539 case USB_ENDPOINT_XFER_ISOC:
540 case USB_ENDPOINT_XFER_INT:
541 /* too small? */
542 if (urb->interval <= 0)
543 return -EINVAL;
544
545 /* too big? */
546 switch (dev->speed) {
547 case USB_SPEED_SUPER_PLUS:
548 case USB_SPEED_SUPER: /* units are 125us */
549 /* Handle up to 2^(16-1) microframes */
550 if (urb->interval > (1 << 15))
551 return -EINVAL;
552 max = 1 << 15;
553 break;
554 case USB_SPEED_HIGH: /* units are microframes */
555 /* NOTE usb handles 2^15 */
556 if (urb->interval > (1024 * 8))
557 urb->interval = 1024 * 8;
558 max = 1024 * 8;
559 break;
560 case USB_SPEED_FULL: /* units are frames/msec */
561 case USB_SPEED_LOW:
562 if (xfertype == USB_ENDPOINT_XFER_INT) {
563 if (urb->interval > 255)
564 return -EINVAL;
565 /* NOTE ohci only handles up to 32 */
566 max = 128;
567 } else {
568 if (urb->interval > 1024)
569 urb->interval = 1024;
570 /* NOTE usb and ohci handle up to 2^15 */
571 max = 1024;
572 }
573 break;
574 default:
575 return -EINVAL;
576 }
577 /* Round down to a power of 2, no more than max */
578 urb->interval = min(max, 1 << ilog2(urb->interval));
579 }
580
581 return usb_hcd_submit_urb(urb, mem_flags);
582 }
583 EXPORT_SYMBOL_GPL(usb_submit_urb);
584
585 /*-------------------------------------------------------------------*/
586
587 /**
588 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
589 * @urb: pointer to urb describing a previously submitted request,
590 * may be NULL
591 *
592 * This routine cancels an in-progress request. URBs complete only once
593 * per submission, and may be canceled only once per submission.
594 * Successful cancellation means termination of @urb will be expedited
595 * and the completion handler will be called with a status code
596 * indicating that the request has been canceled (rather than any other
597 * code).
598 *
599 * Drivers should not call this routine or related routines, such as
600 * usb_kill_urb(), after their disconnect method has returned. The
601 * disconnect function should synchronize with a driver's I/O routines
602 * to insure that all URB-related activity has completed before it returns.
603 *
604 * This request is asynchronous, however the HCD might call the ->complete()
605 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
606 * must not hold any locks that may be taken by the completion function.
607 * Success is indicated by returning -EINPROGRESS, at which time the URB will
608 * probably not yet have been given back to the device driver. When it is
609 * eventually called, the completion function will see @urb->status ==
610 * -ECONNRESET.
611 * Failure is indicated by usb_unlink_urb() returning any other value.
612 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
613 * never submitted, or it was unlinked before, or the hardware is already
614 * finished with it), even if the completion handler has not yet run.
615 *
616 * The URB must not be deallocated while this routine is running. In
617 * particular, when a driver calls this routine, it must insure that the
618 * completion handler cannot deallocate the URB.
619 *
620 * Return: -EINPROGRESS on success. See description for other values on
621 * failure.
622 *
623 * Unlinking and Endpoint Queues:
624 *
625 * [The behaviors and guarantees described below do not apply to virtual
626 * root hubs but only to endpoint queues for physical USB devices.]
627 *
628 * Host Controller Drivers (HCDs) place all the URBs for a particular
629 * endpoint in a queue. Normally the queue advances as the controller
630 * hardware processes each request. But when an URB terminates with an
631 * error its queue generally stops (see below), at least until that URB's
632 * completion routine returns. It is guaranteed that a stopped queue
633 * will not restart until all its unlinked URBs have been fully retired,
634 * with their completion routines run, even if that's not until some time
635 * after the original completion handler returns. The same behavior and
636 * guarantee apply when an URB terminates because it was unlinked.
637 *
638 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
639 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
640 * and -EREMOTEIO. Control endpoint queues behave the same way except
641 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
642 * for isochronous endpoints are treated differently, because they must
643 * advance at fixed rates. Such queues do not stop when an URB
644 * encounters an error or is unlinked. An unlinked isochronous URB may
645 * leave a gap in the stream of packets; it is undefined whether such
646 * gaps can be filled in.
647 *
648 * Note that early termination of an URB because a short packet was
649 * received will generate a -EREMOTEIO error if and only if the
650 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
651 * drivers can build deep queues for large or complex bulk transfers
652 * and clean them up reliably after any sort of aborted transfer by
653 * unlinking all pending URBs at the first fault.
654 *
655 * When a control URB terminates with an error other than -EREMOTEIO, it
656 * is quite likely that the status stage of the transfer will not take
657 * place.
658 */
usb_unlink_urb(struct urb * urb)659 int usb_unlink_urb(struct urb *urb)
660 {
661 if (!urb)
662 return -EINVAL;
663 if (!urb->dev)
664 return -ENODEV;
665 if (!urb->ep)
666 return -EIDRM;
667 return usb_hcd_unlink_urb(urb, -ECONNRESET);
668 }
669 EXPORT_SYMBOL_GPL(usb_unlink_urb);
670
671 /**
672 * usb_kill_urb - cancel a transfer request and wait for it to finish
673 * @urb: pointer to URB describing a previously submitted request,
674 * may be NULL
675 *
676 * This routine cancels an in-progress request. It is guaranteed that
677 * upon return all completion handlers will have finished and the URB
678 * will be totally idle and available for reuse. These features make
679 * this an ideal way to stop I/O in a disconnect() callback or close()
680 * function. If the request has not already finished or been unlinked
681 * the completion handler will see urb->status == -ENOENT.
682 *
683 * While the routine is running, attempts to resubmit the URB will fail
684 * with error -EPERM. Thus even if the URB's completion handler always
685 * tries to resubmit, it will not succeed and the URB will become idle.
686 *
687 * The URB must not be deallocated while this routine is running. In
688 * particular, when a driver calls this routine, it must insure that the
689 * completion handler cannot deallocate the URB.
690 *
691 * This routine may not be used in an interrupt context (such as a bottom
692 * half or a completion handler), or when holding a spinlock, or in other
693 * situations where the caller can't schedule().
694 *
695 * This routine should not be called by a driver after its disconnect
696 * method has returned.
697 */
usb_kill_urb(struct urb * urb)698 void usb_kill_urb(struct urb *urb)
699 {
700 might_sleep();
701 if (!(urb && urb->dev && urb->ep))
702 return;
703 atomic_inc(&urb->reject);
704 /*
705 * Order the write of urb->reject above before the read
706 * of urb->use_count below. Pairs with the barriers in
707 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
708 */
709 smp_mb__after_atomic();
710
711 usb_hcd_unlink_urb(urb, -ENOENT);
712 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
713
714 atomic_dec(&urb->reject);
715 }
716 EXPORT_SYMBOL_GPL(usb_kill_urb);
717
718 /**
719 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
720 * @urb: pointer to URB describing a previously submitted request,
721 * may be NULL
722 *
723 * This routine cancels an in-progress request. It is guaranteed that
724 * upon return all completion handlers will have finished and the URB
725 * will be totally idle and cannot be reused. These features make
726 * this an ideal way to stop I/O in a disconnect() callback.
727 * If the request has not already finished or been unlinked
728 * the completion handler will see urb->status == -ENOENT.
729 *
730 * After and while the routine runs, attempts to resubmit the URB will fail
731 * with error -EPERM. Thus even if the URB's completion handler always
732 * tries to resubmit, it will not succeed and the URB will become idle.
733 *
734 * The URB must not be deallocated while this routine is running. In
735 * particular, when a driver calls this routine, it must insure that the
736 * completion handler cannot deallocate the URB.
737 *
738 * This routine may not be used in an interrupt context (such as a bottom
739 * half or a completion handler), or when holding a spinlock, or in other
740 * situations where the caller can't schedule().
741 *
742 * This routine should not be called by a driver after its disconnect
743 * method has returned.
744 */
usb_poison_urb(struct urb * urb)745 void usb_poison_urb(struct urb *urb)
746 {
747 might_sleep();
748 if (!urb)
749 return;
750 atomic_inc(&urb->reject);
751 /*
752 * Order the write of urb->reject above before the read
753 * of urb->use_count below. Pairs with the barriers in
754 * __usb_hcd_giveback_urb() and usb_hcd_submit_urb().
755 */
756 smp_mb__after_atomic();
757
758 if (!urb->dev || !urb->ep)
759 return;
760
761 usb_hcd_unlink_urb(urb, -ENOENT);
762 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
763 }
764 EXPORT_SYMBOL_GPL(usb_poison_urb);
765
usb_unpoison_urb(struct urb * urb)766 void usb_unpoison_urb(struct urb *urb)
767 {
768 if (!urb)
769 return;
770
771 atomic_dec(&urb->reject);
772 }
773 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
774
775 /**
776 * usb_block_urb - reliably prevent further use of an URB
777 * @urb: pointer to URB to be blocked, may be NULL
778 *
779 * After the routine has run, attempts to resubmit the URB will fail
780 * with error -EPERM. Thus even if the URB's completion handler always
781 * tries to resubmit, it will not succeed and the URB will become idle.
782 *
783 * The URB must not be deallocated while this routine is running. In
784 * particular, when a driver calls this routine, it must insure that the
785 * completion handler cannot deallocate the URB.
786 */
usb_block_urb(struct urb * urb)787 void usb_block_urb(struct urb *urb)
788 {
789 if (!urb)
790 return;
791
792 atomic_inc(&urb->reject);
793 }
794 EXPORT_SYMBOL_GPL(usb_block_urb);
795
796 /**
797 * usb_kill_anchored_urbs - kill all URBs associated with an anchor
798 * @anchor: anchor the requests are bound to
799 *
800 * This kills all outstanding URBs starting from the back of the queue,
801 * with guarantee that no completer callbacks will take place from the
802 * anchor after this function returns.
803 *
804 * This routine should not be called by a driver after its disconnect
805 * method has returned.
806 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)807 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
808 {
809 struct urb *victim;
810 int surely_empty;
811
812 do {
813 spin_lock_irq(&anchor->lock);
814 while (!list_empty(&anchor->urb_list)) {
815 victim = list_entry(anchor->urb_list.prev,
816 struct urb, anchor_list);
817 /* make sure the URB isn't freed before we kill it */
818 usb_get_urb(victim);
819 spin_unlock_irq(&anchor->lock);
820 /* this will unanchor the URB */
821 usb_kill_urb(victim);
822 usb_put_urb(victim);
823 spin_lock_irq(&anchor->lock);
824 }
825 surely_empty = usb_anchor_check_wakeup(anchor);
826
827 spin_unlock_irq(&anchor->lock);
828 cpu_relax();
829 } while (!surely_empty);
830 }
831 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
832
833
834 /**
835 * usb_poison_anchored_urbs - cease all traffic from an anchor
836 * @anchor: anchor the requests are bound to
837 *
838 * this allows all outstanding URBs to be poisoned starting
839 * from the back of the queue. Newly added URBs will also be
840 * poisoned
841 *
842 * This routine should not be called by a driver after its disconnect
843 * method has returned.
844 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)845 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
846 {
847 struct urb *victim;
848 int surely_empty;
849
850 do {
851 spin_lock_irq(&anchor->lock);
852 anchor->poisoned = 1;
853 while (!list_empty(&anchor->urb_list)) {
854 victim = list_entry(anchor->urb_list.prev,
855 struct urb, anchor_list);
856 /* make sure the URB isn't freed before we kill it */
857 usb_get_urb(victim);
858 spin_unlock_irq(&anchor->lock);
859 /* this will unanchor the URB */
860 usb_poison_urb(victim);
861 usb_put_urb(victim);
862 spin_lock_irq(&anchor->lock);
863 }
864 surely_empty = usb_anchor_check_wakeup(anchor);
865
866 spin_unlock_irq(&anchor->lock);
867 cpu_relax();
868 } while (!surely_empty);
869 }
870 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
871
872 /**
873 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
874 * @anchor: anchor the requests are bound to
875 *
876 * Reverses the effect of usb_poison_anchored_urbs
877 * the anchor can be used normally after it returns
878 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)879 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
880 {
881 unsigned long flags;
882 struct urb *lazarus;
883
884 spin_lock_irqsave(&anchor->lock, flags);
885 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
886 usb_unpoison_urb(lazarus);
887 }
888 anchor->poisoned = 0;
889 spin_unlock_irqrestore(&anchor->lock, flags);
890 }
891 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
892
893 /**
894 * usb_anchor_suspend_wakeups
895 * @anchor: the anchor you want to suspend wakeups on
896 *
897 * Call this to stop the last urb being unanchored from waking up any
898 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
899 * back path to delay waking up until after the completion handler has run.
900 */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)901 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
902 {
903 if (anchor)
904 atomic_inc(&anchor->suspend_wakeups);
905 }
906 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
907
908 /**
909 * usb_anchor_resume_wakeups
910 * @anchor: the anchor you want to resume wakeups on
911 *
912 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
913 * wake up any current waiters if the anchor is empty.
914 */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)915 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
916 {
917 if (!anchor)
918 return;
919
920 atomic_dec(&anchor->suspend_wakeups);
921 if (usb_anchor_check_wakeup(anchor))
922 wake_up(&anchor->wait);
923 }
924 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
925
926 /**
927 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
928 * @anchor: the anchor you want to become unused
929 * @timeout: how long you are willing to wait in milliseconds
930 *
931 * Call this is you want to be sure all an anchor's
932 * URBs have finished
933 *
934 * Return: Non-zero if the anchor became unused. Zero on timeout.
935 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)936 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
937 unsigned int timeout)
938 {
939 return wait_event_timeout(anchor->wait,
940 usb_anchor_check_wakeup(anchor),
941 msecs_to_jiffies(timeout));
942 }
943 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
944
945 /**
946 * usb_get_from_anchor - get an anchor's oldest urb
947 * @anchor: the anchor whose urb you want
948 *
949 * This will take the oldest urb from an anchor,
950 * unanchor and return it
951 *
952 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
953 * urbs associated with it.
954 */
usb_get_from_anchor(struct usb_anchor * anchor)955 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
956 {
957 struct urb *victim;
958 unsigned long flags;
959
960 spin_lock_irqsave(&anchor->lock, flags);
961 if (!list_empty(&anchor->urb_list)) {
962 victim = list_entry(anchor->urb_list.next, struct urb,
963 anchor_list);
964 usb_get_urb(victim);
965 __usb_unanchor_urb(victim, anchor);
966 } else {
967 victim = NULL;
968 }
969 spin_unlock_irqrestore(&anchor->lock, flags);
970
971 return victim;
972 }
973
974 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
975
976 /**
977 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
978 * @anchor: the anchor whose urbs you want to unanchor
979 *
980 * use this to get rid of all an anchor's urbs
981 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)982 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
983 {
984 struct urb *victim;
985 unsigned long flags;
986 int surely_empty;
987
988 do {
989 spin_lock_irqsave(&anchor->lock, flags);
990 while (!list_empty(&anchor->urb_list)) {
991 victim = list_entry(anchor->urb_list.prev,
992 struct urb, anchor_list);
993 __usb_unanchor_urb(victim, anchor);
994 }
995 surely_empty = usb_anchor_check_wakeup(anchor);
996
997 spin_unlock_irqrestore(&anchor->lock, flags);
998 cpu_relax();
999 } while (!surely_empty);
1000 }
1001
1002 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
1003
1004 /**
1005 * usb_anchor_empty - is an anchor empty
1006 * @anchor: the anchor you want to query
1007 *
1008 * Return: 1 if the anchor has no urbs associated with it.
1009 */
usb_anchor_empty(struct usb_anchor * anchor)1010 int usb_anchor_empty(struct usb_anchor *anchor)
1011 {
1012 return list_empty(&anchor->urb_list);
1013 }
1014
1015 EXPORT_SYMBOL_GPL(usb_anchor_empty);
1016
1017