1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 
35 #include "perf_event.h"
36 
37 #if 0
38 #undef wrmsrl
39 #define wrmsrl(msr, val) 					\
40 do {								\
41 	trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 			(unsigned long)(val));			\
43 	native_write_msr((msr), (u32)((u64)(val)), 		\
44 			(u32)((u64)(val) >> 32));		\
45 } while (0)
46 #endif
47 
48 struct x86_pmu x86_pmu __read_mostly;
49 
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 	.enabled = 1,
52 };
53 
54 u64 __read_mostly hw_cache_event_ids
55 				[PERF_COUNT_HW_CACHE_MAX]
56 				[PERF_COUNT_HW_CACHE_OP_MAX]
57 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 				[PERF_COUNT_HW_CACHE_MAX]
60 				[PERF_COUNT_HW_CACHE_OP_MAX]
61 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
62 
63 /*
64  * Propagate event elapsed time into the generic event.
65  * Can only be executed on the CPU where the event is active.
66  * Returns the delta events processed.
67  */
x86_perf_event_update(struct perf_event * event)68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 	struct hw_perf_event *hwc = &event->hw;
71 	int shift = 64 - x86_pmu.cntval_bits;
72 	u64 prev_raw_count, new_raw_count;
73 	int idx = hwc->idx;
74 	s64 delta;
75 
76 	if (idx == X86_PMC_IDX_FIXED_BTS)
77 		return 0;
78 
79 	/*
80 	 * Careful: an NMI might modify the previous event value.
81 	 *
82 	 * Our tactic to handle this is to first atomically read and
83 	 * exchange a new raw count - then add that new-prev delta
84 	 * count to the generic event atomically:
85 	 */
86 again:
87 	prev_raw_count = local64_read(&hwc->prev_count);
88 	rdmsrl(hwc->event_base, new_raw_count);
89 
90 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 					new_raw_count) != prev_raw_count)
92 		goto again;
93 
94 	/*
95 	 * Now we have the new raw value and have updated the prev
96 	 * timestamp already. We can now calculate the elapsed delta
97 	 * (event-)time and add that to the generic event.
98 	 *
99 	 * Careful, not all hw sign-extends above the physical width
100 	 * of the count.
101 	 */
102 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 	delta >>= shift;
104 
105 	local64_add(delta, &event->count);
106 	local64_sub(delta, &hwc->period_left);
107 
108 	return new_raw_count;
109 }
110 
111 /*
112  * Find and validate any extra registers to set up.
113  */
x86_pmu_extra_regs(u64 config,struct perf_event * event)114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 	struct hw_perf_event_extra *reg;
117 	struct extra_reg *er;
118 
119 	reg = &event->hw.extra_reg;
120 
121 	if (!x86_pmu.extra_regs)
122 		return 0;
123 
124 	for (er = x86_pmu.extra_regs; er->msr; er++) {
125 		if (er->event != (config & er->config_mask))
126 			continue;
127 		if (event->attr.config1 & ~er->valid_mask)
128 			return -EINVAL;
129 
130 		reg->idx = er->idx;
131 		reg->config = event->attr.config1;
132 		reg->reg = er->msr;
133 		break;
134 	}
135 	return 0;
136 }
137 
138 static atomic_t active_events;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140 
141 #ifdef CONFIG_X86_LOCAL_APIC
142 
reserve_pmc_hardware(void)143 static bool reserve_pmc_hardware(void)
144 {
145 	int i;
146 
147 	for (i = 0; i < x86_pmu.num_counters; i++) {
148 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 			goto perfctr_fail;
150 	}
151 
152 	for (i = 0; i < x86_pmu.num_counters; i++) {
153 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 			goto eventsel_fail;
155 	}
156 
157 	return true;
158 
159 eventsel_fail:
160 	for (i--; i >= 0; i--)
161 		release_evntsel_nmi(x86_pmu_config_addr(i));
162 
163 	i = x86_pmu.num_counters;
164 
165 perfctr_fail:
166 	for (i--; i >= 0; i--)
167 		release_perfctr_nmi(x86_pmu_event_addr(i));
168 
169 	return false;
170 }
171 
release_pmc_hardware(void)172 static void release_pmc_hardware(void)
173 {
174 	int i;
175 
176 	for (i = 0; i < x86_pmu.num_counters; i++) {
177 		release_perfctr_nmi(x86_pmu_event_addr(i));
178 		release_evntsel_nmi(x86_pmu_config_addr(i));
179 	}
180 }
181 
182 #else
183 
reserve_pmc_hardware(void)184 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)185 static void release_pmc_hardware(void) {}
186 
187 #endif
188 
check_hw_exists(void)189 static bool check_hw_exists(void)
190 {
191 	u64 val, val_new = 0;
192 	int i, reg, ret = 0;
193 
194 	/*
195 	 * Check to see if the BIOS enabled any of the counters, if so
196 	 * complain and bail.
197 	 */
198 	for (i = 0; i < x86_pmu.num_counters; i++) {
199 		reg = x86_pmu_config_addr(i);
200 		ret = rdmsrl_safe(reg, &val);
201 		if (ret)
202 			goto msr_fail;
203 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
204 			goto bios_fail;
205 	}
206 
207 	if (x86_pmu.num_counters_fixed) {
208 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
209 		ret = rdmsrl_safe(reg, &val);
210 		if (ret)
211 			goto msr_fail;
212 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
213 			if (val & (0x03 << i*4))
214 				goto bios_fail;
215 		}
216 	}
217 
218 	/*
219 	 * Now write a value and read it back to see if it matches,
220 	 * this is needed to detect certain hardware emulators (qemu/kvm)
221 	 * that don't trap on the MSR access and always return 0s.
222 	 */
223 	val = 0xabcdUL;
224 	ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
225 	ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
226 	if (ret || val != val_new)
227 		goto msr_fail;
228 
229 	return true;
230 
231 bios_fail:
232 	/*
233 	 * We still allow the PMU driver to operate:
234 	 */
235 	printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 	printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
237 
238 	return true;
239 
240 msr_fail:
241 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
242 
243 	return false;
244 }
245 
hw_perf_event_destroy(struct perf_event * event)246 static void hw_perf_event_destroy(struct perf_event *event)
247 {
248 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
249 		release_pmc_hardware();
250 		release_ds_buffers();
251 		mutex_unlock(&pmc_reserve_mutex);
252 	}
253 }
254 
x86_pmu_initialized(void)255 static inline int x86_pmu_initialized(void)
256 {
257 	return x86_pmu.handle_irq != NULL;
258 }
259 
260 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)261 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
262 {
263 	struct perf_event_attr *attr = &event->attr;
264 	unsigned int cache_type, cache_op, cache_result;
265 	u64 config, val;
266 
267 	config = attr->config;
268 
269 	cache_type = (config >>  0) & 0xff;
270 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
271 		return -EINVAL;
272 
273 	cache_op = (config >>  8) & 0xff;
274 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
275 		return -EINVAL;
276 
277 	cache_result = (config >> 16) & 0xff;
278 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
279 		return -EINVAL;
280 
281 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
282 
283 	if (val == 0)
284 		return -ENOENT;
285 
286 	if (val == -1)
287 		return -EINVAL;
288 
289 	hwc->config |= val;
290 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
291 	return x86_pmu_extra_regs(val, event);
292 }
293 
x86_setup_perfctr(struct perf_event * event)294 int x86_setup_perfctr(struct perf_event *event)
295 {
296 	struct perf_event_attr *attr = &event->attr;
297 	struct hw_perf_event *hwc = &event->hw;
298 	u64 config;
299 
300 	if (!is_sampling_event(event)) {
301 		hwc->sample_period = x86_pmu.max_period;
302 		hwc->last_period = hwc->sample_period;
303 		local64_set(&hwc->period_left, hwc->sample_period);
304 	} else {
305 		/*
306 		 * If we have a PMU initialized but no APIC
307 		 * interrupts, we cannot sample hardware
308 		 * events (user-space has to fall back and
309 		 * sample via a hrtimer based software event):
310 		 */
311 		if (!x86_pmu.apic)
312 			return -EOPNOTSUPP;
313 	}
314 
315 	if (attr->type == PERF_TYPE_RAW)
316 		return x86_pmu_extra_regs(event->attr.config, event);
317 
318 	if (attr->type == PERF_TYPE_HW_CACHE)
319 		return set_ext_hw_attr(hwc, event);
320 
321 	if (attr->config >= x86_pmu.max_events)
322 		return -EINVAL;
323 
324 	/*
325 	 * The generic map:
326 	 */
327 	config = x86_pmu.event_map(attr->config);
328 
329 	if (config == 0)
330 		return -ENOENT;
331 
332 	if (config == -1LL)
333 		return -EINVAL;
334 
335 	/*
336 	 * Branch tracing:
337 	 */
338 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
339 	    !attr->freq && hwc->sample_period == 1) {
340 		/* BTS is not supported by this architecture. */
341 		if (!x86_pmu.bts_active)
342 			return -EOPNOTSUPP;
343 
344 		/* BTS is currently only allowed for user-mode. */
345 		if (!attr->exclude_kernel)
346 			return -EOPNOTSUPP;
347 	}
348 
349 	hwc->config |= config;
350 
351 	return 0;
352 }
353 
x86_pmu_hw_config(struct perf_event * event)354 int x86_pmu_hw_config(struct perf_event *event)
355 {
356 	if (event->attr.precise_ip) {
357 		int precise = 0;
358 
359 		/* Support for constant skid */
360 		if (x86_pmu.pebs_active) {
361 			precise++;
362 
363 			/* Support for IP fixup */
364 			if (x86_pmu.lbr_nr)
365 				precise++;
366 		}
367 
368 		if (event->attr.precise_ip > precise)
369 			return -EOPNOTSUPP;
370 	}
371 
372 	/*
373 	 * Generate PMC IRQs:
374 	 * (keep 'enabled' bit clear for now)
375 	 */
376 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
377 
378 	/*
379 	 * Count user and OS events unless requested not to
380 	 */
381 	if (!event->attr.exclude_user)
382 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
383 	if (!event->attr.exclude_kernel)
384 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
385 
386 	if (event->attr.type == PERF_TYPE_RAW)
387 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
388 
389 	return x86_setup_perfctr(event);
390 }
391 
392 /*
393  * Setup the hardware configuration for a given attr_type
394  */
__x86_pmu_event_init(struct perf_event * event)395 static int __x86_pmu_event_init(struct perf_event *event)
396 {
397 	int err;
398 
399 	if (!x86_pmu_initialized())
400 		return -ENODEV;
401 
402 	err = 0;
403 	if (!atomic_inc_not_zero(&active_events)) {
404 		mutex_lock(&pmc_reserve_mutex);
405 		if (atomic_read(&active_events) == 0) {
406 			if (!reserve_pmc_hardware())
407 				err = -EBUSY;
408 			else
409 				reserve_ds_buffers();
410 		}
411 		if (!err)
412 			atomic_inc(&active_events);
413 		mutex_unlock(&pmc_reserve_mutex);
414 	}
415 	if (err)
416 		return err;
417 
418 	event->destroy = hw_perf_event_destroy;
419 
420 	event->hw.idx = -1;
421 	event->hw.last_cpu = -1;
422 	event->hw.last_tag = ~0ULL;
423 
424 	/* mark unused */
425 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
426 
427 	return x86_pmu.hw_config(event);
428 }
429 
x86_pmu_disable_all(void)430 void x86_pmu_disable_all(void)
431 {
432 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
433 	int idx;
434 
435 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
436 		u64 val;
437 
438 		if (!test_bit(idx, cpuc->active_mask))
439 			continue;
440 		rdmsrl(x86_pmu_config_addr(idx), val);
441 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
442 			continue;
443 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
444 		wrmsrl(x86_pmu_config_addr(idx), val);
445 	}
446 }
447 
x86_pmu_disable(struct pmu * pmu)448 static void x86_pmu_disable(struct pmu *pmu)
449 {
450 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
451 
452 	if (!x86_pmu_initialized())
453 		return;
454 
455 	if (!cpuc->enabled)
456 		return;
457 
458 	cpuc->n_added = 0;
459 	cpuc->enabled = 0;
460 	barrier();
461 
462 	x86_pmu.disable_all();
463 }
464 
x86_pmu_enable_all(int added)465 void x86_pmu_enable_all(int added)
466 {
467 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
468 	int idx;
469 
470 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
471 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
472 
473 		if (!test_bit(idx, cpuc->active_mask))
474 			continue;
475 
476 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
477 	}
478 }
479 
480 static struct pmu pmu;
481 
is_x86_event(struct perf_event * event)482 static inline int is_x86_event(struct perf_event *event)
483 {
484 	return event->pmu == &pmu;
485 }
486 
487 /*
488  * Event scheduler state:
489  *
490  * Assign events iterating over all events and counters, beginning
491  * with events with least weights first. Keep the current iterator
492  * state in struct sched_state.
493  */
494 struct sched_state {
495 	int	weight;
496 	int	event;		/* event index */
497 	int	counter;	/* counter index */
498 	int	unassigned;	/* number of events to be assigned left */
499 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
500 };
501 
502 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
503 #define	SCHED_STATES_MAX	2
504 
505 struct perf_sched {
506 	int			max_weight;
507 	int			max_events;
508 	struct event_constraint	**constraints;
509 	struct sched_state	state;
510 	int			saved_states;
511 	struct sched_state	saved[SCHED_STATES_MAX];
512 };
513 
514 /*
515  * Initialize interator that runs through all events and counters.
516  */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** c,int num,int wmin,int wmax)517 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c,
518 			    int num, int wmin, int wmax)
519 {
520 	int idx;
521 
522 	memset(sched, 0, sizeof(*sched));
523 	sched->max_events	= num;
524 	sched->max_weight	= wmax;
525 	sched->constraints	= c;
526 
527 	for (idx = 0; idx < num; idx++) {
528 		if (c[idx]->weight == wmin)
529 			break;
530 	}
531 
532 	sched->state.event	= idx;		/* start with min weight */
533 	sched->state.weight	= wmin;
534 	sched->state.unassigned	= num;
535 }
536 
perf_sched_save_state(struct perf_sched * sched)537 static void perf_sched_save_state(struct perf_sched *sched)
538 {
539 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
540 		return;
541 
542 	sched->saved[sched->saved_states] = sched->state;
543 	sched->saved_states++;
544 }
545 
perf_sched_restore_state(struct perf_sched * sched)546 static bool perf_sched_restore_state(struct perf_sched *sched)
547 {
548 	if (!sched->saved_states)
549 		return false;
550 
551 	sched->saved_states--;
552 	sched->state = sched->saved[sched->saved_states];
553 
554 	/* continue with next counter: */
555 	clear_bit(sched->state.counter++, sched->state.used);
556 
557 	return true;
558 }
559 
560 /*
561  * Select a counter for the current event to schedule. Return true on
562  * success.
563  */
__perf_sched_find_counter(struct perf_sched * sched)564 static bool __perf_sched_find_counter(struct perf_sched *sched)
565 {
566 	struct event_constraint *c;
567 	int idx;
568 
569 	if (!sched->state.unassigned)
570 		return false;
571 
572 	if (sched->state.event >= sched->max_events)
573 		return false;
574 
575 	c = sched->constraints[sched->state.event];
576 
577 	/* Prefer fixed purpose counters */
578 	if (x86_pmu.num_counters_fixed) {
579 		idx = X86_PMC_IDX_FIXED;
580 		for_each_set_bit_cont(idx, c->idxmsk, X86_PMC_IDX_MAX) {
581 			if (!__test_and_set_bit(idx, sched->state.used))
582 				goto done;
583 		}
584 	}
585 	/* Grab the first unused counter starting with idx */
586 	idx = sched->state.counter;
587 	for_each_set_bit_cont(idx, c->idxmsk, X86_PMC_IDX_FIXED) {
588 		if (!__test_and_set_bit(idx, sched->state.used))
589 			goto done;
590 	}
591 
592 	return false;
593 
594 done:
595 	sched->state.counter = idx;
596 
597 	if (c->overlap)
598 		perf_sched_save_state(sched);
599 
600 	return true;
601 }
602 
perf_sched_find_counter(struct perf_sched * sched)603 static bool perf_sched_find_counter(struct perf_sched *sched)
604 {
605 	while (!__perf_sched_find_counter(sched)) {
606 		if (!perf_sched_restore_state(sched))
607 			return false;
608 	}
609 
610 	return true;
611 }
612 
613 /*
614  * Go through all unassigned events and find the next one to schedule.
615  * Take events with the least weight first. Return true on success.
616  */
perf_sched_next_event(struct perf_sched * sched)617 static bool perf_sched_next_event(struct perf_sched *sched)
618 {
619 	struct event_constraint *c;
620 
621 	if (!sched->state.unassigned || !--sched->state.unassigned)
622 		return false;
623 
624 	do {
625 		/* next event */
626 		sched->state.event++;
627 		if (sched->state.event >= sched->max_events) {
628 			/* next weight */
629 			sched->state.event = 0;
630 			sched->state.weight++;
631 			if (sched->state.weight > sched->max_weight)
632 				return false;
633 		}
634 		c = sched->constraints[sched->state.event];
635 	} while (c->weight != sched->state.weight);
636 
637 	sched->state.counter = 0;	/* start with first counter */
638 
639 	return true;
640 }
641 
642 /*
643  * Assign a counter for each event.
644  */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int * assign)645 static int perf_assign_events(struct event_constraint **constraints, int n,
646 			      int wmin, int wmax, int *assign)
647 {
648 	struct perf_sched sched;
649 
650 	perf_sched_init(&sched, constraints, n, wmin, wmax);
651 
652 	do {
653 		if (!perf_sched_find_counter(&sched))
654 			break;	/* failed */
655 		if (assign)
656 			assign[sched.state.event] = sched.state.counter;
657 	} while (perf_sched_next_event(&sched));
658 
659 	return sched.state.unassigned;
660 }
661 
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)662 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
663 {
664 	struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
665 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
666 	int i, wmin, wmax, num = 0;
667 	struct hw_perf_event *hwc;
668 
669 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
670 
671 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
672 		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
673 		constraints[i] = c;
674 		wmin = min(wmin, c->weight);
675 		wmax = max(wmax, c->weight);
676 	}
677 
678 	/*
679 	 * fastpath, try to reuse previous register
680 	 */
681 	for (i = 0; i < n; i++) {
682 		hwc = &cpuc->event_list[i]->hw;
683 		c = constraints[i];
684 
685 		/* never assigned */
686 		if (hwc->idx == -1)
687 			break;
688 
689 		/* constraint still honored */
690 		if (!test_bit(hwc->idx, c->idxmsk))
691 			break;
692 
693 		/* not already used */
694 		if (test_bit(hwc->idx, used_mask))
695 			break;
696 
697 		__set_bit(hwc->idx, used_mask);
698 		if (assign)
699 			assign[i] = hwc->idx;
700 	}
701 
702 	/* slow path */
703 	if (i != n)
704 		num = perf_assign_events(constraints, n, wmin, wmax, assign);
705 
706 	/*
707 	 * scheduling failed or is just a simulation,
708 	 * free resources if necessary
709 	 */
710 	if (!assign || num) {
711 		for (i = 0; i < n; i++) {
712 			if (x86_pmu.put_event_constraints)
713 				x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
714 		}
715 	}
716 	return num ? -EINVAL : 0;
717 }
718 
719 /*
720  * dogrp: true if must collect siblings events (group)
721  * returns total number of events and error code
722  */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)723 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
724 {
725 	struct perf_event *event;
726 	int n, max_count;
727 
728 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
729 
730 	/* current number of events already accepted */
731 	n = cpuc->n_events;
732 
733 	if (is_x86_event(leader)) {
734 		if (n >= max_count)
735 			return -EINVAL;
736 		cpuc->event_list[n] = leader;
737 		n++;
738 	}
739 	if (!dogrp)
740 		return n;
741 
742 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
743 		if (!is_x86_event(event) ||
744 		    event->state <= PERF_EVENT_STATE_OFF)
745 			continue;
746 
747 		if (n >= max_count)
748 			return -EINVAL;
749 
750 		cpuc->event_list[n] = event;
751 		n++;
752 	}
753 	return n;
754 }
755 
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)756 static inline void x86_assign_hw_event(struct perf_event *event,
757 				struct cpu_hw_events *cpuc, int i)
758 {
759 	struct hw_perf_event *hwc = &event->hw;
760 
761 	hwc->idx = cpuc->assign[i];
762 	hwc->last_cpu = smp_processor_id();
763 	hwc->last_tag = ++cpuc->tags[i];
764 
765 	if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
766 		hwc->config_base = 0;
767 		hwc->event_base	= 0;
768 	} else if (hwc->idx >= X86_PMC_IDX_FIXED) {
769 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
770 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
771 	} else {
772 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
773 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
774 	}
775 }
776 
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)777 static inline int match_prev_assignment(struct hw_perf_event *hwc,
778 					struct cpu_hw_events *cpuc,
779 					int i)
780 {
781 	return hwc->idx == cpuc->assign[i] &&
782 		hwc->last_cpu == smp_processor_id() &&
783 		hwc->last_tag == cpuc->tags[i];
784 }
785 
786 static void x86_pmu_start(struct perf_event *event, int flags);
787 
x86_pmu_enable(struct pmu * pmu)788 static void x86_pmu_enable(struct pmu *pmu)
789 {
790 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
791 	struct perf_event *event;
792 	struct hw_perf_event *hwc;
793 	int i, added = cpuc->n_added;
794 
795 	if (!x86_pmu_initialized())
796 		return;
797 
798 	if (cpuc->enabled)
799 		return;
800 
801 	if (cpuc->n_added) {
802 		int n_running = cpuc->n_events - cpuc->n_added;
803 		/*
804 		 * apply assignment obtained either from
805 		 * hw_perf_group_sched_in() or x86_pmu_enable()
806 		 *
807 		 * step1: save events moving to new counters
808 		 * step2: reprogram moved events into new counters
809 		 */
810 		for (i = 0; i < n_running; i++) {
811 			event = cpuc->event_list[i];
812 			hwc = &event->hw;
813 
814 			/*
815 			 * we can avoid reprogramming counter if:
816 			 * - assigned same counter as last time
817 			 * - running on same CPU as last time
818 			 * - no other event has used the counter since
819 			 */
820 			if (hwc->idx == -1 ||
821 			    match_prev_assignment(hwc, cpuc, i))
822 				continue;
823 
824 			/*
825 			 * Ensure we don't accidentally enable a stopped
826 			 * counter simply because we rescheduled.
827 			 */
828 			if (hwc->state & PERF_HES_STOPPED)
829 				hwc->state |= PERF_HES_ARCH;
830 
831 			x86_pmu_stop(event, PERF_EF_UPDATE);
832 		}
833 
834 		for (i = 0; i < cpuc->n_events; i++) {
835 			event = cpuc->event_list[i];
836 			hwc = &event->hw;
837 
838 			if (!match_prev_assignment(hwc, cpuc, i))
839 				x86_assign_hw_event(event, cpuc, i);
840 			else if (i < n_running)
841 				continue;
842 
843 			if (hwc->state & PERF_HES_ARCH)
844 				continue;
845 
846 			x86_pmu_start(event, PERF_EF_RELOAD);
847 		}
848 		cpuc->n_added = 0;
849 		perf_events_lapic_init();
850 	}
851 
852 	cpuc->enabled = 1;
853 	barrier();
854 
855 	x86_pmu.enable_all(added);
856 }
857 
858 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
859 
860 /*
861  * Set the next IRQ period, based on the hwc->period_left value.
862  * To be called with the event disabled in hw:
863  */
x86_perf_event_set_period(struct perf_event * event)864 int x86_perf_event_set_period(struct perf_event *event)
865 {
866 	struct hw_perf_event *hwc = &event->hw;
867 	s64 left = local64_read(&hwc->period_left);
868 	s64 period = hwc->sample_period;
869 	int ret = 0, idx = hwc->idx;
870 
871 	if (idx == X86_PMC_IDX_FIXED_BTS)
872 		return 0;
873 
874 	/*
875 	 * If we are way outside a reasonable range then just skip forward:
876 	 */
877 	if (unlikely(left <= -period)) {
878 		left = period;
879 		local64_set(&hwc->period_left, left);
880 		hwc->last_period = period;
881 		ret = 1;
882 	}
883 
884 	if (unlikely(left <= 0)) {
885 		left += period;
886 		local64_set(&hwc->period_left, left);
887 		hwc->last_period = period;
888 		ret = 1;
889 	}
890 	/*
891 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
892 	 */
893 	if (unlikely(left < 2))
894 		left = 2;
895 
896 	if (left > x86_pmu.max_period)
897 		left = x86_pmu.max_period;
898 
899 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
900 
901 	/*
902 	 * The hw event starts counting from this event offset,
903 	 * mark it to be able to extra future deltas:
904 	 */
905 	local64_set(&hwc->prev_count, (u64)-left);
906 
907 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
908 
909 	/*
910 	 * Due to erratum on certan cpu we need
911 	 * a second write to be sure the register
912 	 * is updated properly
913 	 */
914 	if (x86_pmu.perfctr_second_write) {
915 		wrmsrl(hwc->event_base,
916 			(u64)(-left) & x86_pmu.cntval_mask);
917 	}
918 
919 	perf_event_update_userpage(event);
920 
921 	return ret;
922 }
923 
x86_pmu_enable_event(struct perf_event * event)924 void x86_pmu_enable_event(struct perf_event *event)
925 {
926 	if (__this_cpu_read(cpu_hw_events.enabled))
927 		__x86_pmu_enable_event(&event->hw,
928 				       ARCH_PERFMON_EVENTSEL_ENABLE);
929 }
930 
931 /*
932  * Add a single event to the PMU.
933  *
934  * The event is added to the group of enabled events
935  * but only if it can be scehduled with existing events.
936  */
x86_pmu_add(struct perf_event * event,int flags)937 static int x86_pmu_add(struct perf_event *event, int flags)
938 {
939 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
940 	struct hw_perf_event *hwc;
941 	int assign[X86_PMC_IDX_MAX];
942 	int n, n0, ret;
943 
944 	hwc = &event->hw;
945 
946 	perf_pmu_disable(event->pmu);
947 	n0 = cpuc->n_events;
948 	ret = n = collect_events(cpuc, event, false);
949 	if (ret < 0)
950 		goto out;
951 
952 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
953 	if (!(flags & PERF_EF_START))
954 		hwc->state |= PERF_HES_ARCH;
955 
956 	/*
957 	 * If group events scheduling transaction was started,
958 	 * skip the schedulability test here, it will be performed
959 	 * at commit time (->commit_txn) as a whole
960 	 */
961 	if (cpuc->group_flag & PERF_EVENT_TXN)
962 		goto done_collect;
963 
964 	ret = x86_pmu.schedule_events(cpuc, n, assign);
965 	if (ret)
966 		goto out;
967 	/*
968 	 * copy new assignment, now we know it is possible
969 	 * will be used by hw_perf_enable()
970 	 */
971 	memcpy(cpuc->assign, assign, n*sizeof(int));
972 
973 done_collect:
974 	cpuc->n_events = n;
975 	cpuc->n_added += n - n0;
976 	cpuc->n_txn += n - n0;
977 
978 	ret = 0;
979 out:
980 	perf_pmu_enable(event->pmu);
981 	return ret;
982 }
983 
x86_pmu_start(struct perf_event * event,int flags)984 static void x86_pmu_start(struct perf_event *event, int flags)
985 {
986 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
987 	int idx = event->hw.idx;
988 
989 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
990 		return;
991 
992 	if (WARN_ON_ONCE(idx == -1))
993 		return;
994 
995 	if (flags & PERF_EF_RELOAD) {
996 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
997 		x86_perf_event_set_period(event);
998 	}
999 
1000 	event->hw.state = 0;
1001 
1002 	cpuc->events[idx] = event;
1003 	__set_bit(idx, cpuc->active_mask);
1004 	__set_bit(idx, cpuc->running);
1005 	x86_pmu.enable(event);
1006 	perf_event_update_userpage(event);
1007 }
1008 
perf_event_print_debug(void)1009 void perf_event_print_debug(void)
1010 {
1011 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1012 	u64 pebs;
1013 	struct cpu_hw_events *cpuc;
1014 	unsigned long flags;
1015 	int cpu, idx;
1016 
1017 	if (!x86_pmu.num_counters)
1018 		return;
1019 
1020 	local_irq_save(flags);
1021 
1022 	cpu = smp_processor_id();
1023 	cpuc = &per_cpu(cpu_hw_events, cpu);
1024 
1025 	if (x86_pmu.version >= 2) {
1026 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1027 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1028 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1029 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1030 		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1031 
1032 		pr_info("\n");
1033 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1034 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1035 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1036 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1037 		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1038 	}
1039 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1040 
1041 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1042 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1043 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1044 
1045 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1046 
1047 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1048 			cpu, idx, pmc_ctrl);
1049 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1050 			cpu, idx, pmc_count);
1051 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1052 			cpu, idx, prev_left);
1053 	}
1054 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1055 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1056 
1057 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1058 			cpu, idx, pmc_count);
1059 	}
1060 	local_irq_restore(flags);
1061 }
1062 
x86_pmu_stop(struct perf_event * event,int flags)1063 void x86_pmu_stop(struct perf_event *event, int flags)
1064 {
1065 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1066 	struct hw_perf_event *hwc = &event->hw;
1067 
1068 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1069 		x86_pmu.disable(event);
1070 		cpuc->events[hwc->idx] = NULL;
1071 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1072 		hwc->state |= PERF_HES_STOPPED;
1073 	}
1074 
1075 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1076 		/*
1077 		 * Drain the remaining delta count out of a event
1078 		 * that we are disabling:
1079 		 */
1080 		x86_perf_event_update(event);
1081 		hwc->state |= PERF_HES_UPTODATE;
1082 	}
1083 }
1084 
x86_pmu_del(struct perf_event * event,int flags)1085 static void x86_pmu_del(struct perf_event *event, int flags)
1086 {
1087 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1088 	int i;
1089 
1090 	/*
1091 	 * If we're called during a txn, we don't need to do anything.
1092 	 * The events never got scheduled and ->cancel_txn will truncate
1093 	 * the event_list.
1094 	 */
1095 	if (cpuc->group_flag & PERF_EVENT_TXN)
1096 		return;
1097 
1098 	x86_pmu_stop(event, PERF_EF_UPDATE);
1099 
1100 	for (i = 0; i < cpuc->n_events; i++) {
1101 		if (event == cpuc->event_list[i]) {
1102 
1103 			if (x86_pmu.put_event_constraints)
1104 				x86_pmu.put_event_constraints(cpuc, event);
1105 
1106 			while (++i < cpuc->n_events)
1107 				cpuc->event_list[i-1] = cpuc->event_list[i];
1108 
1109 			--cpuc->n_events;
1110 			break;
1111 		}
1112 	}
1113 	perf_event_update_userpage(event);
1114 }
1115 
x86_pmu_handle_irq(struct pt_regs * regs)1116 int x86_pmu_handle_irq(struct pt_regs *regs)
1117 {
1118 	struct perf_sample_data data;
1119 	struct cpu_hw_events *cpuc;
1120 	struct perf_event *event;
1121 	int idx, handled = 0;
1122 	u64 val;
1123 
1124 	perf_sample_data_init(&data, 0);
1125 
1126 	cpuc = &__get_cpu_var(cpu_hw_events);
1127 
1128 	/*
1129 	 * Some chipsets need to unmask the LVTPC in a particular spot
1130 	 * inside the nmi handler.  As a result, the unmasking was pushed
1131 	 * into all the nmi handlers.
1132 	 *
1133 	 * This generic handler doesn't seem to have any issues where the
1134 	 * unmasking occurs so it was left at the top.
1135 	 */
1136 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1137 
1138 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1139 		if (!test_bit(idx, cpuc->active_mask)) {
1140 			/*
1141 			 * Though we deactivated the counter some cpus
1142 			 * might still deliver spurious interrupts still
1143 			 * in flight. Catch them:
1144 			 */
1145 			if (__test_and_clear_bit(idx, cpuc->running))
1146 				handled++;
1147 			continue;
1148 		}
1149 
1150 		event = cpuc->events[idx];
1151 
1152 		val = x86_perf_event_update(event);
1153 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1154 			continue;
1155 
1156 		/*
1157 		 * event overflow
1158 		 */
1159 		handled++;
1160 		data.period	= event->hw.last_period;
1161 
1162 		if (!x86_perf_event_set_period(event))
1163 			continue;
1164 
1165 		if (perf_event_overflow(event, &data, regs))
1166 			x86_pmu_stop(event, 0);
1167 	}
1168 
1169 	if (handled)
1170 		inc_irq_stat(apic_perf_irqs);
1171 
1172 	return handled;
1173 }
1174 
perf_events_lapic_init(void)1175 void perf_events_lapic_init(void)
1176 {
1177 	if (!x86_pmu.apic || !x86_pmu_initialized())
1178 		return;
1179 
1180 	/*
1181 	 * Always use NMI for PMU
1182 	 */
1183 	apic_write(APIC_LVTPC, APIC_DM_NMI);
1184 }
1185 
1186 static int __kprobes
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1187 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1188 {
1189 	if (!atomic_read(&active_events))
1190 		return NMI_DONE;
1191 
1192 	return x86_pmu.handle_irq(regs);
1193 }
1194 
1195 struct event_constraint emptyconstraint;
1196 struct event_constraint unconstrained;
1197 
1198 static int __cpuinit
x86_pmu_notifier(struct notifier_block * self,unsigned long action,void * hcpu)1199 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1200 {
1201 	unsigned int cpu = (long)hcpu;
1202 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1203 	int ret = NOTIFY_OK;
1204 
1205 	switch (action & ~CPU_TASKS_FROZEN) {
1206 	case CPU_UP_PREPARE:
1207 		cpuc->kfree_on_online = NULL;
1208 		if (x86_pmu.cpu_prepare)
1209 			ret = x86_pmu.cpu_prepare(cpu);
1210 		break;
1211 
1212 	case CPU_STARTING:
1213 		if (x86_pmu.cpu_starting)
1214 			x86_pmu.cpu_starting(cpu);
1215 		break;
1216 
1217 	case CPU_ONLINE:
1218 		kfree(cpuc->kfree_on_online);
1219 		break;
1220 
1221 	case CPU_DYING:
1222 		if (x86_pmu.cpu_dying)
1223 			x86_pmu.cpu_dying(cpu);
1224 		break;
1225 
1226 	case CPU_UP_CANCELED:
1227 	case CPU_DEAD:
1228 		if (x86_pmu.cpu_dead)
1229 			x86_pmu.cpu_dead(cpu);
1230 		break;
1231 
1232 	default:
1233 		break;
1234 	}
1235 
1236 	return ret;
1237 }
1238 
pmu_check_apic(void)1239 static void __init pmu_check_apic(void)
1240 {
1241 	if (cpu_has_apic)
1242 		return;
1243 
1244 	x86_pmu.apic = 0;
1245 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1246 	pr_info("no hardware sampling interrupt available.\n");
1247 }
1248 
init_hw_perf_events(void)1249 static int __init init_hw_perf_events(void)
1250 {
1251 	struct x86_pmu_quirk *quirk;
1252 	struct event_constraint *c;
1253 	int err;
1254 
1255 	pr_info("Performance Events: ");
1256 
1257 	switch (boot_cpu_data.x86_vendor) {
1258 	case X86_VENDOR_INTEL:
1259 		err = intel_pmu_init();
1260 		break;
1261 	case X86_VENDOR_AMD:
1262 		err = amd_pmu_init();
1263 		break;
1264 	default:
1265 		return 0;
1266 	}
1267 	if (err != 0) {
1268 		pr_cont("no PMU driver, software events only.\n");
1269 		return 0;
1270 	}
1271 
1272 	pmu_check_apic();
1273 
1274 	/* sanity check that the hardware exists or is emulated */
1275 	if (!check_hw_exists())
1276 		return 0;
1277 
1278 	pr_cont("%s PMU driver.\n", x86_pmu.name);
1279 
1280 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1281 		quirk->func();
1282 
1283 	if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1284 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1285 		     x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1286 		x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1287 	}
1288 	x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1289 
1290 	if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1291 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1292 		     x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1293 		x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1294 	}
1295 
1296 	x86_pmu.intel_ctrl |=
1297 		((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1298 
1299 	perf_events_lapic_init();
1300 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1301 
1302 	unconstrained = (struct event_constraint)
1303 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1304 				   0, x86_pmu.num_counters, 0);
1305 
1306 	if (x86_pmu.event_constraints) {
1307 		/*
1308 		 * event on fixed counter2 (REF_CYCLES) only works on this
1309 		 * counter, so do not extend mask to generic counters
1310 		 */
1311 		for_each_event_constraint(c, x86_pmu.event_constraints) {
1312 			if (c->cmask != X86_RAW_EVENT_MASK
1313 			    || c->idxmsk64 == X86_PMC_MSK_FIXED_REF_CYCLES) {
1314 				continue;
1315 			}
1316 
1317 			c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1318 			c->weight += x86_pmu.num_counters;
1319 		}
1320 	}
1321 
1322 	pr_info("... version:                %d\n",     x86_pmu.version);
1323 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1324 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1325 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1326 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1327 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1328 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1329 
1330 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1331 	perf_cpu_notifier(x86_pmu_notifier);
1332 
1333 	return 0;
1334 }
1335 early_initcall(init_hw_perf_events);
1336 
x86_pmu_read(struct perf_event * event)1337 static inline void x86_pmu_read(struct perf_event *event)
1338 {
1339 	x86_perf_event_update(event);
1340 }
1341 
1342 /*
1343  * Start group events scheduling transaction
1344  * Set the flag to make pmu::enable() not perform the
1345  * schedulability test, it will be performed at commit time
1346  */
x86_pmu_start_txn(struct pmu * pmu)1347 static void x86_pmu_start_txn(struct pmu *pmu)
1348 {
1349 	perf_pmu_disable(pmu);
1350 	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1351 	__this_cpu_write(cpu_hw_events.n_txn, 0);
1352 }
1353 
1354 /*
1355  * Stop group events scheduling transaction
1356  * Clear the flag and pmu::enable() will perform the
1357  * schedulability test.
1358  */
x86_pmu_cancel_txn(struct pmu * pmu)1359 static void x86_pmu_cancel_txn(struct pmu *pmu)
1360 {
1361 	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1362 	/*
1363 	 * Truncate the collected events.
1364 	 */
1365 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1366 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1367 	perf_pmu_enable(pmu);
1368 }
1369 
1370 /*
1371  * Commit group events scheduling transaction
1372  * Perform the group schedulability test as a whole
1373  * Return 0 if success
1374  */
x86_pmu_commit_txn(struct pmu * pmu)1375 static int x86_pmu_commit_txn(struct pmu *pmu)
1376 {
1377 	struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1378 	int assign[X86_PMC_IDX_MAX];
1379 	int n, ret;
1380 
1381 	n = cpuc->n_events;
1382 
1383 	if (!x86_pmu_initialized())
1384 		return -EAGAIN;
1385 
1386 	ret = x86_pmu.schedule_events(cpuc, n, assign);
1387 	if (ret)
1388 		return ret;
1389 
1390 	/*
1391 	 * copy new assignment, now we know it is possible
1392 	 * will be used by hw_perf_enable()
1393 	 */
1394 	memcpy(cpuc->assign, assign, n*sizeof(int));
1395 
1396 	cpuc->group_flag &= ~PERF_EVENT_TXN;
1397 	perf_pmu_enable(pmu);
1398 	return 0;
1399 }
1400 /*
1401  * a fake_cpuc is used to validate event groups. Due to
1402  * the extra reg logic, we need to also allocate a fake
1403  * per_core and per_cpu structure. Otherwise, group events
1404  * using extra reg may conflict without the kernel being
1405  * able to catch this when the last event gets added to
1406  * the group.
1407  */
free_fake_cpuc(struct cpu_hw_events * cpuc)1408 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1409 {
1410 	kfree(cpuc->shared_regs);
1411 	kfree(cpuc);
1412 }
1413 
allocate_fake_cpuc(void)1414 static struct cpu_hw_events *allocate_fake_cpuc(void)
1415 {
1416 	struct cpu_hw_events *cpuc;
1417 	int cpu = raw_smp_processor_id();
1418 
1419 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1420 	if (!cpuc)
1421 		return ERR_PTR(-ENOMEM);
1422 
1423 	/* only needed, if we have extra_regs */
1424 	if (x86_pmu.extra_regs) {
1425 		cpuc->shared_regs = allocate_shared_regs(cpu);
1426 		if (!cpuc->shared_regs)
1427 			goto error;
1428 	}
1429 	return cpuc;
1430 error:
1431 	free_fake_cpuc(cpuc);
1432 	return ERR_PTR(-ENOMEM);
1433 }
1434 
1435 /*
1436  * validate that we can schedule this event
1437  */
validate_event(struct perf_event * event)1438 static int validate_event(struct perf_event *event)
1439 {
1440 	struct cpu_hw_events *fake_cpuc;
1441 	struct event_constraint *c;
1442 	int ret = 0;
1443 
1444 	fake_cpuc = allocate_fake_cpuc();
1445 	if (IS_ERR(fake_cpuc))
1446 		return PTR_ERR(fake_cpuc);
1447 
1448 	c = x86_pmu.get_event_constraints(fake_cpuc, event);
1449 
1450 	if (!c || !c->weight)
1451 		ret = -EINVAL;
1452 
1453 	if (x86_pmu.put_event_constraints)
1454 		x86_pmu.put_event_constraints(fake_cpuc, event);
1455 
1456 	free_fake_cpuc(fake_cpuc);
1457 
1458 	return ret;
1459 }
1460 
1461 /*
1462  * validate a single event group
1463  *
1464  * validation include:
1465  *	- check events are compatible which each other
1466  *	- events do not compete for the same counter
1467  *	- number of events <= number of counters
1468  *
1469  * validation ensures the group can be loaded onto the
1470  * PMU if it was the only group available.
1471  */
validate_group(struct perf_event * event)1472 static int validate_group(struct perf_event *event)
1473 {
1474 	struct perf_event *leader = event->group_leader;
1475 	struct cpu_hw_events *fake_cpuc;
1476 	int ret = -EINVAL, n;
1477 
1478 	fake_cpuc = allocate_fake_cpuc();
1479 	if (IS_ERR(fake_cpuc))
1480 		return PTR_ERR(fake_cpuc);
1481 	/*
1482 	 * the event is not yet connected with its
1483 	 * siblings therefore we must first collect
1484 	 * existing siblings, then add the new event
1485 	 * before we can simulate the scheduling
1486 	 */
1487 	n = collect_events(fake_cpuc, leader, true);
1488 	if (n < 0)
1489 		goto out;
1490 
1491 	fake_cpuc->n_events = n;
1492 	n = collect_events(fake_cpuc, event, false);
1493 	if (n < 0)
1494 		goto out;
1495 
1496 	fake_cpuc->n_events = n;
1497 
1498 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1499 
1500 out:
1501 	free_fake_cpuc(fake_cpuc);
1502 	return ret;
1503 }
1504 
x86_pmu_event_init(struct perf_event * event)1505 static int x86_pmu_event_init(struct perf_event *event)
1506 {
1507 	struct pmu *tmp;
1508 	int err;
1509 
1510 	switch (event->attr.type) {
1511 	case PERF_TYPE_RAW:
1512 	case PERF_TYPE_HARDWARE:
1513 	case PERF_TYPE_HW_CACHE:
1514 		break;
1515 
1516 	default:
1517 		return -ENOENT;
1518 	}
1519 
1520 	err = __x86_pmu_event_init(event);
1521 	if (!err) {
1522 		/*
1523 		 * we temporarily connect event to its pmu
1524 		 * such that validate_group() can classify
1525 		 * it as an x86 event using is_x86_event()
1526 		 */
1527 		tmp = event->pmu;
1528 		event->pmu = &pmu;
1529 
1530 		if (event->group_leader != event)
1531 			err = validate_group(event);
1532 		else
1533 			err = validate_event(event);
1534 
1535 		event->pmu = tmp;
1536 	}
1537 	if (err) {
1538 		if (event->destroy)
1539 			event->destroy(event);
1540 	}
1541 
1542 	return err;
1543 }
1544 
1545 static struct pmu pmu = {
1546 	.pmu_enable	= x86_pmu_enable,
1547 	.pmu_disable	= x86_pmu_disable,
1548 
1549 	.event_init	= x86_pmu_event_init,
1550 
1551 	.add		= x86_pmu_add,
1552 	.del		= x86_pmu_del,
1553 	.start		= x86_pmu_start,
1554 	.stop		= x86_pmu_stop,
1555 	.read		= x86_pmu_read,
1556 
1557 	.start_txn	= x86_pmu_start_txn,
1558 	.cancel_txn	= x86_pmu_cancel_txn,
1559 	.commit_txn	= x86_pmu_commit_txn,
1560 };
1561 
1562 /*
1563  * callchain support
1564  */
1565 
backtrace_stack(void * data,char * name)1566 static int backtrace_stack(void *data, char *name)
1567 {
1568 	return 0;
1569 }
1570 
backtrace_address(void * data,unsigned long addr,int reliable)1571 static void backtrace_address(void *data, unsigned long addr, int reliable)
1572 {
1573 	struct perf_callchain_entry *entry = data;
1574 
1575 	perf_callchain_store(entry, addr);
1576 }
1577 
1578 static const struct stacktrace_ops backtrace_ops = {
1579 	.stack			= backtrace_stack,
1580 	.address		= backtrace_address,
1581 	.walk_stack		= print_context_stack_bp,
1582 };
1583 
1584 void
perf_callchain_kernel(struct perf_callchain_entry * entry,struct pt_regs * regs)1585 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1586 {
1587 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1588 		/* TODO: We don't support guest os callchain now */
1589 		return;
1590 	}
1591 
1592 	perf_callchain_store(entry, regs->ip);
1593 
1594 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1595 }
1596 
1597 #ifdef CONFIG_COMPAT
1598 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1599 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1600 {
1601 	/* 32-bit process in 64-bit kernel. */
1602 	struct stack_frame_ia32 frame;
1603 	const void __user *fp;
1604 
1605 	if (!test_thread_flag(TIF_IA32))
1606 		return 0;
1607 
1608 	fp = compat_ptr(regs->bp);
1609 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
1610 		unsigned long bytes;
1611 		frame.next_frame     = 0;
1612 		frame.return_address = 0;
1613 
1614 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1615 		if (bytes != sizeof(frame))
1616 			break;
1617 
1618 		if (fp < compat_ptr(regs->sp))
1619 			break;
1620 
1621 		perf_callchain_store(entry, frame.return_address);
1622 		fp = compat_ptr(frame.next_frame);
1623 	}
1624 	return 1;
1625 }
1626 #else
1627 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry * entry)1628 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1629 {
1630     return 0;
1631 }
1632 #endif
1633 
1634 void
perf_callchain_user(struct perf_callchain_entry * entry,struct pt_regs * regs)1635 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1636 {
1637 	struct stack_frame frame;
1638 	const void __user *fp;
1639 
1640 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1641 		/* TODO: We don't support guest os callchain now */
1642 		return;
1643 	}
1644 
1645 	fp = (void __user *)regs->bp;
1646 
1647 	perf_callchain_store(entry, regs->ip);
1648 
1649 	if (!current->mm)
1650 		return;
1651 
1652 	if (perf_callchain_user32(regs, entry))
1653 		return;
1654 
1655 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
1656 		unsigned long bytes;
1657 		frame.next_frame	     = NULL;
1658 		frame.return_address = 0;
1659 
1660 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1661 		if (bytes != sizeof(frame))
1662 			break;
1663 
1664 		if ((unsigned long)fp < regs->sp)
1665 			break;
1666 
1667 		perf_callchain_store(entry, frame.return_address);
1668 		fp = frame.next_frame;
1669 	}
1670 }
1671 
perf_instruction_pointer(struct pt_regs * regs)1672 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1673 {
1674 	unsigned long ip;
1675 
1676 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1677 		ip = perf_guest_cbs->get_guest_ip();
1678 	else
1679 		ip = instruction_pointer(regs);
1680 
1681 	return ip;
1682 }
1683 
perf_misc_flags(struct pt_regs * regs)1684 unsigned long perf_misc_flags(struct pt_regs *regs)
1685 {
1686 	int misc = 0;
1687 
1688 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1689 		if (perf_guest_cbs->is_user_mode())
1690 			misc |= PERF_RECORD_MISC_GUEST_USER;
1691 		else
1692 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1693 	} else {
1694 		if (user_mode(regs))
1695 			misc |= PERF_RECORD_MISC_USER;
1696 		else
1697 			misc |= PERF_RECORD_MISC_KERNEL;
1698 	}
1699 
1700 	if (regs->flags & PERF_EFLAGS_EXACT)
1701 		misc |= PERF_RECORD_MISC_EXACT_IP;
1702 
1703 	return misc;
1704 }
1705 
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)1706 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
1707 {
1708 	cap->version		= x86_pmu.version;
1709 	cap->num_counters_gp	= x86_pmu.num_counters;
1710 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
1711 	cap->bit_width_gp	= x86_pmu.cntval_bits;
1712 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
1713 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
1714 	cap->events_mask_len	= x86_pmu.events_mask_len;
1715 }
1716 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
1717