xref: /linux/include/linux/minmax.h (revision 1260ed77798502de9c98020040d2995008de10cc) !
1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_MINMAX_H
3  #define _LINUX_MINMAX_H
4  
5  #include <linux/build_bug.h>
6  #include <linux/compiler.h>
7  #include <linux/const.h>
8  #include <linux/types.h>
9  
10  /*
11   * min()/max()/clamp() macros must accomplish several things:
12   *
13   * - Avoid multiple evaluations of the arguments (so side-effects like
14   *   "x++" happen only once) when non-constant.
15   * - Perform signed v unsigned type-checking (to generate compile
16   *   errors instead of nasty runtime surprises).
17   * - Unsigned char/short are always promoted to signed int and can be
18   *   compared against signed or unsigned arguments.
19   * - Unsigned arguments can be compared against non-negative signed constants.
20   * - Comparison of a signed argument against an unsigned constant fails
21   *   even if the constant is below __INT_MAX__ and could be cast to int.
22   */
23  #define __typecheck(x, y) \
24  	(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
25  
26  /*
27   * __sign_use for integer expressions:
28   *   bit #0 set if ok for unsigned comparisons
29   *   bit #1 set if ok for signed comparisons
30   *
31   * In particular, statically non-negative signed integer expressions
32   * are ok for both.
33   *
34   * NOTE! Unsigned types smaller than 'int' are implicitly converted to 'int'
35   * in expressions, and are accepted for signed conversions for now.
36   * This is debatable.
37   *
38   * Note that 'x' is the original expression, and 'ux' is the unique variable
39   * that contains the value.
40   *
41   * We use 'ux' for pure type checking, and 'x' for when we need to look at the
42   * value (but without evaluating it for side effects!
43   * Careful to only ever evaluate it with sizeof() or __builtin_constant_p() etc).
44   *
45   * Pointers end up being checked by the normal C type rules at the actual
46   * comparison, and these expressions only need to be careful to not cause
47   * warnings for pointer use.
48   */
49  #define __sign_use(ux) (is_signed_type(typeof(ux)) ? \
50  	(2 + __is_nonneg(ux)) : (1 + 2 * (sizeof(ux) < 4)))
51  
52  /*
53   * Check whether a signed value is always non-negative.
54   *
55   * A cast is needed to avoid any warnings from values that aren't signed
56   * integer types (in which case the result doesn't matter).
57   *
58   * On 64-bit any integer or pointer type can safely be cast to 'long long'.
59   * But on 32-bit we need to avoid warnings about casting pointers to integers
60   * of different sizes without truncating 64-bit values so 'long' or 'long long'
61   * must be used depending on the size of the value.
62   *
63   * This does not work for 128-bit signed integers since the cast would truncate
64   * them, but we do not use s128 types in the kernel (we do use 'u128',
65   * but they are handled by the !is_signed_type() case).
66   */
67  #if __SIZEOF_POINTER__ == __SIZEOF_LONG_LONG__
68  #define __is_nonneg(ux) statically_true((long long)(ux) >= 0)
69  #else
70  #define __is_nonneg(ux) statically_true( \
71  	(typeof(__builtin_choose_expr(sizeof(ux) > 4, 1LL, 1L)))(ux) >= 0)
72  #endif
73  
74  #define __types_ok(ux, uy) \
75  	(__sign_use(ux) & __sign_use(uy))
76  
77  #define __types_ok3(ux, uy, uz) \
78  	(__sign_use(ux) & __sign_use(uy) & __sign_use(uz))
79  
80  #define __cmp_op_min <
81  #define __cmp_op_max >
82  
83  #define __cmp(op, x, y)	((x) __cmp_op_##op (y) ? (x) : (y))
84  
85  #define __cmp_once_unique(op, type, x, y, ux, uy) \
86  	({ type ux = (x); type uy = (y); __cmp(op, ux, uy); })
87  
88  #define __cmp_once(op, type, x, y) \
89  	__cmp_once_unique(op, type, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
90  
91  #define __careful_cmp_once(op, x, y, ux, uy) ({		\
92  	__auto_type ux = (x); __auto_type uy = (y);	\
93  	BUILD_BUG_ON_MSG(!__types_ok(ux, uy),		\
94  		#op"("#x", "#y") signedness error");	\
95  	__cmp(op, ux, uy); })
96  
97  #define __careful_cmp(op, x, y) \
98  	__careful_cmp_once(op, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
99  
100  /**
101   * min - return minimum of two values of the same or compatible types
102   * @x: first value
103   * @y: second value
104   */
105  #define min(x, y)	__careful_cmp(min, x, y)
106  
107  /**
108   * max - return maximum of two values of the same or compatible types
109   * @x: first value
110   * @y: second value
111   */
112  #define max(x, y)	__careful_cmp(max, x, y)
113  
114  /**
115   * umin - return minimum of two non-negative values
116   *   Signed types are zero extended to match a larger unsigned type.
117   * @x: first value
118   * @y: second value
119   */
120  #define umin(x, y)	\
121  	__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
122  
123  /**
124   * umax - return maximum of two non-negative values
125   * @x: first value
126   * @y: second value
127   */
128  #define umax(x, y)	\
129  	__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
130  
131  #define __careful_op3(op, x, y, z, ux, uy, uz) ({			\
132  	__auto_type ux = (x); __auto_type uy = (y);__auto_type uz = (z);\
133  	BUILD_BUG_ON_MSG(!__types_ok3(ux, uy, uz),			\
134  		#op"3("#x", "#y", "#z") signedness error");		\
135  	__cmp(op, ux, __cmp(op, uy, uz)); })
136  
137  /**
138   * min3 - return minimum of three values
139   * @x: first value
140   * @y: second value
141   * @z: third value
142   */
143  #define min3(x, y, z) \
144  	__careful_op3(min, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
145  
146  /**
147   * max3 - return maximum of three values
148   * @x: first value
149   * @y: second value
150   * @z: third value
151   */
152  #define max3(x, y, z) \
153  	__careful_op3(max, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
154  
155  /**
156   * min_t - return minimum of two values, using the specified type
157   * @type: data type to use
158   * @x: first value
159   * @y: second value
160   */
161  #define min_t(type, x, y) __cmp_once(min, type, x, y)
162  
163  /**
164   * max_t - return maximum of two values, using the specified type
165   * @type: data type to use
166   * @x: first value
167   * @y: second value
168   */
169  #define max_t(type, x, y) __cmp_once(max, type, x, y)
170  
171  /**
172   * min_not_zero - return the minimum that is _not_ zero, unless both are zero
173   * @x: value1
174   * @y: value2
175   */
176  #define min_not_zero(x, y) ({			\
177  	typeof(x) __x = (x);			\
178  	typeof(y) __y = (y);			\
179  	__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
180  
181  #define __clamp(val, lo, hi)	\
182  	((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
183  
184  #define __clamp_once(type, val, lo, hi, uval, ulo, uhi) ({			\
185  	type uval = (val);							\
186  	type ulo = (lo);							\
187  	type uhi = (hi);							\
188  	BUILD_BUG_ON_MSG(statically_true(ulo > uhi),				\
189  		"clamp() low limit " #lo " greater than high limit " #hi);	\
190  	BUILD_BUG_ON_MSG(!__types_ok3(uval, ulo, uhi),				\
191  		"clamp("#val", "#lo", "#hi") signedness error");		\
192  	__clamp(uval, ulo, uhi); })
193  
194  #define __careful_clamp(type, val, lo, hi) \
195  	__clamp_once(type, val, lo, hi, __UNIQUE_ID(v_), __UNIQUE_ID(l_), __UNIQUE_ID(h_))
196  
197  /**
198   * clamp - return a value clamped to a given range with typechecking
199   * @val: current value
200   * @lo: lowest allowable value
201   * @hi: highest allowable value
202   *
203   * This macro checks @val/@lo/@hi to make sure they have compatible
204   * signedness.
205   */
206  #define clamp(val, lo, hi) __careful_clamp(__auto_type, val, lo, hi)
207  
208  /**
209   * clamp_t - return a value clamped to a given range using a given type
210   * @type: the type of variable to use
211   * @val: current value
212   * @lo: minimum allowable value
213   * @hi: maximum allowable value
214   *
215   * This macro does no typechecking and uses temporary variables of type
216   * @type to make all the comparisons.
217   */
218  #define clamp_t(type, val, lo, hi) __careful_clamp(type, val, lo, hi)
219  
220  /**
221   * clamp_val - return a value clamped to a given range using val's type
222   * @val: current value
223   * @lo: minimum allowable value
224   * @hi: maximum allowable value
225   *
226   * This macro does no typechecking and uses temporary variables of whatever
227   * type the input argument @val is.  This is useful when @val is an unsigned
228   * type and @lo and @hi are literals that will otherwise be assigned a signed
229   * integer type.
230   */
231  #define clamp_val(val, lo, hi) __careful_clamp(typeof(val), val, lo, hi)
232  
233  /*
234   * Do not check the array parameter using __must_be_array().
235   * In the following legit use-case where the "array" passed is a simple pointer,
236   * __must_be_array() will return a failure.
237   * --- 8< ---
238   * int *buff
239   * ...
240   * min = min_array(buff, nb_items);
241   * --- 8< ---
242   *
243   * The first typeof(&(array)[0]) is needed in order to support arrays of both
244   * 'int *buff' and 'int buff[N]' types.
245   *
246   * The array can be an array of const items.
247   * typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
248   * to discard the const qualifier for the __element variable.
249   */
250  #define __minmax_array(op, array, len) ({				\
251  	typeof(&(array)[0]) __array = (array);				\
252  	typeof(len) __len = (len);					\
253  	__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
254  	while (__len--)							\
255  		__element = op(__element, __array[__len]);		\
256  	__element; })
257  
258  /**
259   * min_array - return minimum of values present in an array
260   * @array: array
261   * @len: array length
262   *
263   * Note that @len must not be zero (empty array).
264   */
265  #define min_array(array, len) __minmax_array(min, array, len)
266  
267  /**
268   * max_array - return maximum of values present in an array
269   * @array: array
270   * @len: array length
271   *
272   * Note that @len must not be zero (empty array).
273   */
274  #define max_array(array, len) __minmax_array(max, array, len)
275  
in_range64(u64 val,u64 start,u64 len)276  static inline bool in_range64(u64 val, u64 start, u64 len)
277  {
278  	return (val - start) < len;
279  }
280  
in_range32(u32 val,u32 start,u32 len)281  static inline bool in_range32(u32 val, u32 start, u32 len)
282  {
283  	return (val - start) < len;
284  }
285  
286  /**
287   * in_range - Determine if a value lies within a range.
288   * @val: Value to test.
289   * @start: First value in range.
290   * @len: Number of values in range.
291   *
292   * This is more efficient than "if (start <= val && val < (start + len))".
293   * It also gives a different answer if @start + @len overflows the size of
294   * the type by a sufficient amount to encompass @val.  Decide for yourself
295   * which behaviour you want, or prove that start + len never overflow.
296   * Do not blindly replace one form with the other.
297   */
298  #define in_range(val, start, len)					\
299  	((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ?	\
300  		in_range32(val, start, len) : in_range64(val, start, len))
301  
302  /**
303   * swap - swap values of @a and @b
304   * @a: first value
305   * @b: second value
306   */
307  #define swap(a, b) \
308  	do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
309  
310  /*
311   * Use these carefully: no type checking, and uses the arguments
312   * multiple times. Use for obvious constants only.
313   */
314  #define MIN(a, b) __cmp(min, a, b)
315  #define MAX(a, b) __cmp(max, a, b)
316  #define MIN_T(type, a, b) __cmp(min, (type)(a), (type)(b))
317  #define MAX_T(type, a, b) __cmp(max, (type)(a), (type)(b))
318  
319  #endif	/* _LINUX_MINMAX_H */
320