1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/sched/clock.h>
26 #include <linux/iopoll.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_driver.h>
30 #include <scsi/scsi_eh.h>
31 #include "ufshcd-priv.h"
32 #include <ufs/ufs_quirks.h>
33 #include <ufs/unipro.h>
34 #include "ufs-sysfs.h"
35 #include "ufs-debugfs.h"
36 #include "ufs-fault-injection.h"
37 #include "ufs_bsg.h"
38 #include "ufshcd-crypto.h"
39 #include <linux/unaligned.h>
40 
41 #define CREATE_TRACE_POINTS
42 #include "ufs_trace.h"
43 
44 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
45 				 UTP_TASK_REQ_COMPL |\
46 				 UFSHCD_ERROR_MASK)
47 
48 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
49 				 UFSHCD_ERROR_MASK |\
50 				 MCQ_CQ_EVENT_STATUS)
51 
52 
53 /* UIC command timeout, unit: ms */
54 enum {
55 	UIC_CMD_TIMEOUT_DEFAULT	= 500,
56 	UIC_CMD_TIMEOUT_MAX	= 2000,
57 };
58 /* NOP OUT retries waiting for NOP IN response */
59 #define NOP_OUT_RETRIES    10
60 /* Timeout after 50 msecs if NOP OUT hangs without response */
61 #define NOP_OUT_TIMEOUT    50 /* msecs */
62 
63 /* Query request retries */
64 #define QUERY_REQ_RETRIES 3
65 /* Query request timeout */
66 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
67 
68 /* Advanced RPMB request timeout */
69 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
70 
71 /* Task management command timeout */
72 #define TM_CMD_TIMEOUT	100 /* msecs */
73 
74 /* maximum number of retries for a general UIC command  */
75 #define UFS_UIC_COMMAND_RETRIES 3
76 
77 /* maximum number of link-startup retries */
78 #define DME_LINKSTARTUP_RETRIES 3
79 
80 /* maximum number of reset retries before giving up */
81 #define MAX_HOST_RESET_RETRIES 5
82 
83 /* Maximum number of error handler retries before giving up */
84 #define MAX_ERR_HANDLER_RETRIES 5
85 
86 /* Expose the flag value from utp_upiu_query.value */
87 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
88 
89 /* Interrupt aggregation default timeout, unit: 40us */
90 #define INT_AGGR_DEF_TO	0x02
91 
92 /* default delay of autosuspend: 2000 ms */
93 #define RPM_AUTOSUSPEND_DELAY_MS 2000
94 
95 /* Default delay of RPM device flush delayed work */
96 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
97 
98 /* Default value of wait time before gating device ref clock */
99 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
100 
101 /* Polling time to wait for fDeviceInit */
102 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
103 
104 /* Default RTC update every 10 seconds */
105 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
106 
107 /* bMaxNumOfRTT is equal to two after device manufacturing */
108 #define DEFAULT_MAX_NUM_RTT 2
109 
110 /* UFSHC 4.0 compliant HC support this mode. */
111 static bool use_mcq_mode = true;
112 
is_mcq_supported(struct ufs_hba * hba)113 static bool is_mcq_supported(struct ufs_hba *hba)
114 {
115 	return hba->mcq_sup && use_mcq_mode;
116 }
117 
118 module_param(use_mcq_mode, bool, 0644);
119 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
120 
121 static unsigned int uic_cmd_timeout = UIC_CMD_TIMEOUT_DEFAULT;
122 
uic_cmd_timeout_set(const char * val,const struct kernel_param * kp)123 static int uic_cmd_timeout_set(const char *val, const struct kernel_param *kp)
124 {
125 	return param_set_uint_minmax(val, kp, UIC_CMD_TIMEOUT_DEFAULT,
126 				     UIC_CMD_TIMEOUT_MAX);
127 }
128 
129 static const struct kernel_param_ops uic_cmd_timeout_ops = {
130 	.set = uic_cmd_timeout_set,
131 	.get = param_get_uint,
132 };
133 
134 module_param_cb(uic_cmd_timeout, &uic_cmd_timeout_ops, &uic_cmd_timeout, 0644);
135 MODULE_PARM_DESC(uic_cmd_timeout,
136 		 "UFS UIC command timeout in milliseconds. Defaults to 500ms. Supported values range from 500ms to 2 seconds inclusively");
137 
138 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
139 	({                                                              \
140 		int _ret;                                               \
141 		if (_on)                                                \
142 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
143 		else                                                    \
144 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
145 		_ret;                                                   \
146 	})
147 
148 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
149 	size_t __len = (len);                                            \
150 	print_hex_dump(KERN_ERR, prefix_str,                             \
151 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
152 		       16, 4, buf, __len, false);                        \
153 } while (0)
154 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)155 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
156 		     const char *prefix)
157 {
158 	u32 *regs;
159 	size_t pos;
160 
161 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
162 		return -EINVAL;
163 
164 	regs = kzalloc(len, GFP_ATOMIC);
165 	if (!regs)
166 		return -ENOMEM;
167 
168 	for (pos = 0; pos < len; pos += 4) {
169 		if (offset == 0 &&
170 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
171 		    pos <= REG_UIC_ERROR_CODE_DME)
172 			continue;
173 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
174 	}
175 
176 	ufshcd_hex_dump(prefix, regs, len);
177 	kfree(regs);
178 
179 	return 0;
180 }
181 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
182 
183 enum {
184 	UFSHCD_MAX_CHANNEL	= 0,
185 	UFSHCD_MAX_ID		= 1,
186 };
187 
188 static const char *const ufshcd_state_name[] = {
189 	[UFSHCD_STATE_RESET]			= "reset",
190 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
191 	[UFSHCD_STATE_ERROR]			= "error",
192 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
193 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
194 };
195 
196 /* UFSHCD error handling flags */
197 enum {
198 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
199 };
200 
201 /* UFSHCD UIC layer error flags */
202 enum {
203 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
204 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
205 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
206 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
207 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
208 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
209 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
210 };
211 
212 #define ufshcd_set_eh_in_progress(h) \
213 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
214 #define ufshcd_eh_in_progress(h) \
215 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
216 #define ufshcd_clear_eh_in_progress(h) \
217 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
218 
219 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
220 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
221 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
222 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
223 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
224 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
225 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
226 	/*
227 	 * For DeepSleep, the link is first put in hibern8 and then off.
228 	 * Leaving the link in hibern8 is not supported.
229 	 */
230 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
231 };
232 
233 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)234 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
235 {
236 	return ufs_pm_lvl_states[lvl].dev_state;
237 }
238 
239 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)240 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
241 {
242 	return ufs_pm_lvl_states[lvl].link_state;
243 }
244 
245 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)246 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
247 					enum uic_link_state link_state)
248 {
249 	enum ufs_pm_level lvl;
250 
251 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
252 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
253 			(ufs_pm_lvl_states[lvl].link_state == link_state))
254 			return lvl;
255 	}
256 
257 	/* if no match found, return the level 0 */
258 	return UFS_PM_LVL_0;
259 }
260 
ufshcd_has_pending_tasks(struct ufs_hba * hba)261 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
262 {
263 	return hba->outstanding_tasks || hba->active_uic_cmd ||
264 	       hba->uic_async_done;
265 }
266 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)267 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
268 {
269 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
270 }
271 
272 static const struct ufs_dev_quirk ufs_fixups[] = {
273 	/* UFS cards deviations table */
274 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
275 	  .model = UFS_ANY_MODEL,
276 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
277 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
278 	  .model = UFS_ANY_MODEL,
279 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
280 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
281 		   UFS_DEVICE_QUIRK_PA_HIBER8TIME |
282 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
283 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
284 	  .model = UFS_ANY_MODEL,
285 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
286 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
287 	  .model = "hB8aL1" /*H28U62301AMR*/,
288 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
289 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
290 	  .model = UFS_ANY_MODEL,
291 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
292 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
293 	  .model = "THGLF2G9C8KBADG",
294 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
295 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
296 	  .model = "THGLF2G9D8KBADG",
297 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
298 	{}
299 };
300 
301 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
302 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
303 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
304 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
305 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
306 static void ufshcd_hba_exit(struct ufs_hba *hba);
307 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params);
308 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
309 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
310 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
311 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
312 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
313 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
314 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
315 			     bool scale_up);
316 static irqreturn_t ufshcd_intr(int irq, void *__hba);
317 static int ufshcd_change_power_mode(struct ufs_hba *hba,
318 			     struct ufs_pa_layer_attr *pwr_mode);
319 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
320 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
321 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
322 					 struct ufs_vreg *vreg);
323 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
324 						 bool enable);
325 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
326 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
327 
ufshcd_enable_irq(struct ufs_hba * hba)328 void ufshcd_enable_irq(struct ufs_hba *hba)
329 {
330 	if (!hba->is_irq_enabled) {
331 		enable_irq(hba->irq);
332 		hba->is_irq_enabled = true;
333 	}
334 }
335 EXPORT_SYMBOL_GPL(ufshcd_enable_irq);
336 
ufshcd_disable_irq(struct ufs_hba * hba)337 void ufshcd_disable_irq(struct ufs_hba *hba)
338 {
339 	if (hba->is_irq_enabled) {
340 		disable_irq(hba->irq);
341 		hba->is_irq_enabled = false;
342 	}
343 }
344 EXPORT_SYMBOL_GPL(ufshcd_disable_irq);
345 
ufshcd_configure_wb(struct ufs_hba * hba)346 static void ufshcd_configure_wb(struct ufs_hba *hba)
347 {
348 	if (!ufshcd_is_wb_allowed(hba))
349 		return;
350 
351 	ufshcd_wb_toggle(hba, true);
352 
353 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
354 
355 	if (ufshcd_is_wb_buf_flush_allowed(hba))
356 		ufshcd_wb_toggle_buf_flush(hba, true);
357 }
358 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)359 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
360 				      enum ufs_trace_str_t str_t)
361 {
362 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
363 	struct utp_upiu_header *header;
364 
365 	if (!trace_ufshcd_upiu_enabled())
366 		return;
367 
368 	if (str_t == UFS_CMD_SEND)
369 		header = &rq->header;
370 	else
371 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
372 
373 	trace_ufshcd_upiu(hba, str_t, header, &rq->sc.cdb,
374 			  UFS_TSF_CDB);
375 }
376 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)377 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
378 					enum ufs_trace_str_t str_t,
379 					struct utp_upiu_req *rq_rsp)
380 {
381 	if (!trace_ufshcd_upiu_enabled())
382 		return;
383 
384 	trace_ufshcd_upiu(hba, str_t, &rq_rsp->header,
385 			  &rq_rsp->qr, UFS_TSF_OSF);
386 }
387 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)388 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
389 				     enum ufs_trace_str_t str_t)
390 {
391 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
392 
393 	if (!trace_ufshcd_upiu_enabled())
394 		return;
395 
396 	if (str_t == UFS_TM_SEND)
397 		trace_ufshcd_upiu(hba, str_t,
398 				  &descp->upiu_req.req_header,
399 				  &descp->upiu_req.input_param1,
400 				  UFS_TSF_TM_INPUT);
401 	else
402 		trace_ufshcd_upiu(hba, str_t,
403 				  &descp->upiu_rsp.rsp_header,
404 				  &descp->upiu_rsp.output_param1,
405 				  UFS_TSF_TM_OUTPUT);
406 }
407 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)408 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
409 					 const struct uic_command *ucmd,
410 					 enum ufs_trace_str_t str_t)
411 {
412 	u32 cmd;
413 
414 	if (!trace_ufshcd_uic_command_enabled())
415 		return;
416 
417 	if (str_t == UFS_CMD_SEND)
418 		cmd = ucmd->command;
419 	else
420 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
421 
422 	trace_ufshcd_uic_command(hba, str_t, cmd,
423 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
424 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
425 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
426 }
427 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)428 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
429 				     enum ufs_trace_str_t str_t)
430 {
431 	u64 lba = 0;
432 	u8 opcode = 0, group_id = 0;
433 	u32 doorbell = 0;
434 	u32 intr;
435 	int hwq_id = -1;
436 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
437 	struct scsi_cmnd *cmd = lrbp->cmd;
438 	struct request *rq = scsi_cmd_to_rq(cmd);
439 	int transfer_len = -1;
440 
441 	if (!cmd)
442 		return;
443 
444 	/* trace UPIU also */
445 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
446 	if (!trace_ufshcd_command_enabled())
447 		return;
448 
449 	opcode = cmd->cmnd[0];
450 
451 	if (opcode == READ_10 || opcode == WRITE_10) {
452 		/*
453 		 * Currently we only fully trace read(10) and write(10) commands
454 		 */
455 		transfer_len =
456 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
457 		lba = scsi_get_lba(cmd);
458 		if (opcode == WRITE_10)
459 			group_id = lrbp->cmd->cmnd[6];
460 	} else if (opcode == UNMAP) {
461 		/*
462 		 * The number of Bytes to be unmapped beginning with the lba.
463 		 */
464 		transfer_len = blk_rq_bytes(rq);
465 		lba = scsi_get_lba(cmd);
466 	}
467 
468 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
469 
470 	if (hba->mcq_enabled) {
471 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
472 
473 		hwq_id = hwq->id;
474 	} else {
475 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
476 	}
477 	trace_ufshcd_command(cmd->device, hba, str_t, tag, doorbell, hwq_id,
478 			     transfer_len, intr, lba, opcode, group_id);
479 }
480 
ufshcd_print_clk_freqs(struct ufs_hba * hba)481 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
482 {
483 	struct ufs_clk_info *clki;
484 	struct list_head *head = &hba->clk_list_head;
485 
486 	if (list_empty(head))
487 		return;
488 
489 	list_for_each_entry(clki, head, list) {
490 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
491 				clki->max_freq)
492 			dev_err(hba->dev, "clk: %s, rate: %u\n",
493 					clki->name, clki->curr_freq);
494 	}
495 }
496 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)497 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
498 			     const char *err_name)
499 {
500 	int i;
501 	bool found = false;
502 	const struct ufs_event_hist *e;
503 
504 	if (id >= UFS_EVT_CNT)
505 		return;
506 
507 	e = &hba->ufs_stats.event[id];
508 
509 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
510 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
511 
512 		if (e->tstamp[p] == 0)
513 			continue;
514 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
515 			e->val[p], div_u64(e->tstamp[p], 1000));
516 		found = true;
517 	}
518 
519 	if (!found)
520 		dev_err(hba->dev, "No record of %s\n", err_name);
521 	else
522 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
523 }
524 
ufshcd_print_evt_hist(struct ufs_hba * hba)525 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
526 {
527 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
528 
529 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
530 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
531 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
532 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
533 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
534 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
535 			 "auto_hibern8_err");
536 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
537 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
538 			 "link_startup_fail");
539 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
540 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
541 			 "suspend_fail");
542 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
543 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
544 			 "wlun suspend_fail");
545 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
546 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
547 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
548 
549 	ufshcd_vops_dbg_register_dump(hba);
550 }
551 
552 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)553 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
554 {
555 	const struct ufshcd_lrb *lrbp;
556 	int prdt_length;
557 
558 	lrbp = &hba->lrb[tag];
559 
560 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
561 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
562 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
563 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
564 	dev_err(hba->dev,
565 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
566 		tag, (u64)lrbp->utrd_dma_addr);
567 
568 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
569 			sizeof(struct utp_transfer_req_desc));
570 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
571 		(u64)lrbp->ucd_req_dma_addr);
572 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
573 			sizeof(struct utp_upiu_req));
574 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
575 		(u64)lrbp->ucd_rsp_dma_addr);
576 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
577 			sizeof(struct utp_upiu_rsp));
578 
579 	prdt_length = le16_to_cpu(
580 		lrbp->utr_descriptor_ptr->prd_table_length);
581 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
582 		prdt_length /= ufshcd_sg_entry_size(hba);
583 
584 	dev_err(hba->dev,
585 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
586 		tag, prdt_length,
587 		(u64)lrbp->ucd_prdt_dma_addr);
588 
589 	if (pr_prdt)
590 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
591 			ufshcd_sg_entry_size(hba) * prdt_length);
592 }
593 
ufshcd_print_tr_iter(struct request * req,void * priv)594 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
595 {
596 	struct scsi_device *sdev = req->q->queuedata;
597 	struct Scsi_Host *shost = sdev->host;
598 	struct ufs_hba *hba = shost_priv(shost);
599 
600 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
601 
602 	return true;
603 }
604 
605 /**
606  * ufshcd_print_trs_all - print trs for all started requests.
607  * @hba: per-adapter instance.
608  * @pr_prdt: need to print prdt or not.
609  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)610 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
611 {
612 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
613 }
614 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)615 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
616 {
617 	int tag;
618 
619 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
620 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
621 
622 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
623 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
624 	}
625 }
626 
ufshcd_print_host_state(struct ufs_hba * hba)627 static void ufshcd_print_host_state(struct ufs_hba *hba)
628 {
629 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
630 
631 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
632 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
633 		scsi_host_busy(hba->host), hba->outstanding_tasks);
634 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
635 		hba->saved_err, hba->saved_uic_err);
636 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
637 		hba->curr_dev_pwr_mode, hba->uic_link_state);
638 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
639 		hba->pm_op_in_progress, hba->is_sys_suspended);
640 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
641 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
642 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
643 	dev_err(hba->dev,
644 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
645 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
646 		hba->ufs_stats.hibern8_exit_cnt);
647 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
648 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
649 		hba->ufs_stats.last_intr_status);
650 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
651 		hba->eh_flags, hba->req_abort_count);
652 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
653 		hba->ufs_version, hba->capabilities, hba->caps);
654 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
655 		hba->dev_quirks);
656 	if (sdev_ufs)
657 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
658 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
659 
660 	ufshcd_print_clk_freqs(hba);
661 }
662 
663 /**
664  * ufshcd_print_pwr_info - print power params as saved in hba
665  * power info
666  * @hba: per-adapter instance
667  */
ufshcd_print_pwr_info(struct ufs_hba * hba)668 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
669 {
670 	static const char * const names[] = {
671 		"INVALID MODE",
672 		"FAST MODE",
673 		"SLOW_MODE",
674 		"INVALID MODE",
675 		"FASTAUTO_MODE",
676 		"SLOWAUTO_MODE",
677 		"INVALID MODE",
678 	};
679 
680 	/*
681 	 * Using dev_dbg to avoid messages during runtime PM to avoid
682 	 * never-ending cycles of messages written back to storage by user space
683 	 * causing runtime resume, causing more messages and so on.
684 	 */
685 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
686 		 __func__,
687 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
688 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
689 		 names[hba->pwr_info.pwr_rx],
690 		 names[hba->pwr_info.pwr_tx],
691 		 hba->pwr_info.hs_rate);
692 }
693 
ufshcd_device_reset(struct ufs_hba * hba)694 static void ufshcd_device_reset(struct ufs_hba *hba)
695 {
696 	int err;
697 
698 	err = ufshcd_vops_device_reset(hba);
699 
700 	if (!err) {
701 		ufshcd_set_ufs_dev_active(hba);
702 		if (ufshcd_is_wb_allowed(hba)) {
703 			hba->dev_info.wb_enabled = false;
704 			hba->dev_info.wb_buf_flush_enabled = false;
705 		}
706 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
707 			hba->dev_info.rtc_time_baseline = 0;
708 	}
709 	if (err != -EOPNOTSUPP)
710 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
711 }
712 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)713 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
714 {
715 	if (!us)
716 		return;
717 
718 	if (us < 10)
719 		udelay(us);
720 	else
721 		usleep_range(us, us + tolerance);
722 }
723 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
724 
725 /**
726  * ufshcd_wait_for_register - wait for register value to change
727  * @hba: per-adapter interface
728  * @reg: mmio register offset
729  * @mask: mask to apply to the read register value
730  * @val: value to wait for
731  * @interval_us: polling interval in microseconds
732  * @timeout_ms: timeout in milliseconds
733  *
734  * Return: -ETIMEDOUT on error, zero on success.
735  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)736 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
737 				    u32 val, unsigned long interval_us,
738 				    unsigned long timeout_ms)
739 {
740 	u32 v;
741 
742 	val &= mask; /* ignore bits that we don't intend to wait on */
743 
744 	return read_poll_timeout(ufshcd_readl, v, (v & mask) == val,
745 				 interval_us, timeout_ms * 1000, false, hba, reg);
746 }
747 
748 /**
749  * ufshcd_get_intr_mask - Get the interrupt bit mask
750  * @hba: Pointer to adapter instance
751  *
752  * Return: interrupt bit mask per version
753  */
ufshcd_get_intr_mask(struct ufs_hba * hba)754 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
755 {
756 	if (hba->ufs_version <= ufshci_version(2, 0))
757 		return INTERRUPT_MASK_ALL_VER_11;
758 
759 	return INTERRUPT_MASK_ALL_VER_21;
760 }
761 
762 /**
763  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
764  * @hba: Pointer to adapter instance
765  *
766  * Return: UFSHCI version supported by the controller
767  */
ufshcd_get_ufs_version(struct ufs_hba * hba)768 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
769 {
770 	u32 ufshci_ver;
771 
772 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
773 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
774 	else
775 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
776 
777 	/*
778 	 * UFSHCI v1.x uses a different version scheme, in order
779 	 * to allow the use of comparisons with the ufshci_version
780 	 * function, we convert it to the same scheme as ufs 2.0+.
781 	 */
782 	if (ufshci_ver & 0x00010000)
783 		return ufshci_version(1, ufshci_ver & 0x00000100);
784 
785 	return ufshci_ver;
786 }
787 
788 /**
789  * ufshcd_is_device_present - Check if any device connected to
790  *			      the host controller
791  * @hba: pointer to adapter instance
792  *
793  * Return: true if device present, false if no device detected
794  */
ufshcd_is_device_present(struct ufs_hba * hba)795 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
796 {
797 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
798 }
799 
800 /**
801  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
802  * @lrbp: pointer to local command reference block
803  * @cqe: pointer to the completion queue entry
804  *
805  * This function is used to get the OCS field from UTRD
806  *
807  * Return: the OCS field in the UTRD.
808  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)809 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
810 				      struct cq_entry *cqe)
811 {
812 	if (cqe)
813 		return le32_to_cpu(cqe->status) & MASK_OCS;
814 
815 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
816 }
817 
818 /**
819  * ufshcd_utrl_clear() - Clear requests from the controller request list.
820  * @hba: per adapter instance
821  * @mask: mask with one bit set for each request to be cleared
822  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)823 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
824 {
825 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
826 		mask = ~mask;
827 	/*
828 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
829 	 * Register (UTRLCLR): This field is bit significant. Each bit
830 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
831 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
832 	 * by host software to indicate to the host controller that a transfer
833 	 * request slot is cleared. The host controller
834 	 * shall free up any resources associated to the request slot
835 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
836 	 * host software indicates no change to request slots by setting the
837 	 * associated bits in this field to ‘1’. Bits in this field shall only
838 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
839 	 */
840 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
841 }
842 
843 /**
844  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
845  * @hba: per adapter instance
846  * @pos: position of the bit to be cleared
847  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)848 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
849 {
850 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
851 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
852 	else
853 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
854 }
855 
856 /**
857  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
858  * @reg: Register value of host controller status
859  *
860  * Return: 0 on success; a positive value if failed.
861  */
ufshcd_get_lists_status(u32 reg)862 static inline int ufshcd_get_lists_status(u32 reg)
863 {
864 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
865 }
866 
867 /**
868  * ufshcd_get_uic_cmd_result - Get the UIC command result
869  * @hba: Pointer to adapter instance
870  *
871  * This function gets the result of UIC command completion
872  *
873  * Return: 0 on success; non-zero value on error.
874  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)875 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
876 {
877 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
878 	       MASK_UIC_COMMAND_RESULT;
879 }
880 
881 /**
882  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
883  * @hba: Pointer to adapter instance
884  *
885  * This function gets UIC command argument3
886  *
887  * Return: 0 on success; non-zero value on error.
888  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)889 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
890 {
891 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
892 }
893 
894 /**
895  * ufshcd_get_req_rsp - returns the TR response transaction type
896  * @ucd_rsp_ptr: pointer to response UPIU
897  *
898  * Return: UPIU type.
899  */
900 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)901 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
902 {
903 	return ucd_rsp_ptr->header.transaction_code;
904 }
905 
906 /**
907  * ufshcd_is_exception_event - Check if the device raised an exception event
908  * @ucd_rsp_ptr: pointer to response UPIU
909  *
910  * The function checks if the device raised an exception event indicated in
911  * the Device Information field of response UPIU.
912  *
913  * Return: true if exception is raised, false otherwise.
914  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)915 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
916 {
917 	return ucd_rsp_ptr->header.device_information & 1;
918 }
919 
920 /**
921  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
922  * @hba: per adapter instance
923  */
924 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)925 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
926 {
927 	ufshcd_writel(hba, INT_AGGR_ENABLE |
928 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
929 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
930 }
931 
932 /**
933  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
934  * @hba: per adapter instance
935  * @cnt: Interrupt aggregation counter threshold
936  * @tmout: Interrupt aggregation timeout value
937  */
938 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)939 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
940 {
941 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
942 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
943 		      INT_AGGR_TIMEOUT_VAL(tmout),
944 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
945 }
946 
947 /**
948  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
949  * @hba: per adapter instance
950  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)951 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
952 {
953 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
954 }
955 
956 /**
957  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
958  *			When run-stop registers are set to 1, it indicates the
959  *			host controller that it can process the requests
960  * @hba: per adapter instance
961  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)962 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
963 {
964 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
965 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
966 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
967 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
968 }
969 
970 /**
971  * ufshcd_hba_start - Start controller initialization sequence
972  * @hba: per adapter instance
973  */
ufshcd_hba_start(struct ufs_hba * hba)974 static inline void ufshcd_hba_start(struct ufs_hba *hba)
975 {
976 	u32 val = CONTROLLER_ENABLE;
977 
978 	if (ufshcd_crypto_enable(hba))
979 		val |= CRYPTO_GENERAL_ENABLE;
980 
981 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
982 }
983 
984 /**
985  * ufshcd_is_hba_active - Get controller state
986  * @hba: per adapter instance
987  *
988  * Return: true if and only if the controller is active.
989  */
ufshcd_is_hba_active(struct ufs_hba * hba)990 bool ufshcd_is_hba_active(struct ufs_hba *hba)
991 {
992 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
993 }
994 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
995 
996 /**
997  * ufshcd_pm_qos_init - initialize PM QoS request
998  * @hba: per adapter instance
999  */
ufshcd_pm_qos_init(struct ufs_hba * hba)1000 void ufshcd_pm_qos_init(struct ufs_hba *hba)
1001 {
1002 
1003 	if (hba->pm_qos_enabled)
1004 		return;
1005 
1006 	cpu_latency_qos_add_request(&hba->pm_qos_req, PM_QOS_DEFAULT_VALUE);
1007 
1008 	if (cpu_latency_qos_request_active(&hba->pm_qos_req))
1009 		hba->pm_qos_enabled = true;
1010 }
1011 
1012 /**
1013  * ufshcd_pm_qos_exit - remove request from PM QoS
1014  * @hba: per adapter instance
1015  */
ufshcd_pm_qos_exit(struct ufs_hba * hba)1016 void ufshcd_pm_qos_exit(struct ufs_hba *hba)
1017 {
1018 	if (!hba->pm_qos_enabled)
1019 		return;
1020 
1021 	cpu_latency_qos_remove_request(&hba->pm_qos_req);
1022 	hba->pm_qos_enabled = false;
1023 }
1024 
1025 /**
1026  * ufshcd_pm_qos_update - update PM QoS request
1027  * @hba: per adapter instance
1028  * @on: If True, vote for perf PM QoS mode otherwise power save mode
1029  */
ufshcd_pm_qos_update(struct ufs_hba * hba,bool on)1030 static void ufshcd_pm_qos_update(struct ufs_hba *hba, bool on)
1031 {
1032 	if (!hba->pm_qos_enabled)
1033 		return;
1034 
1035 	cpu_latency_qos_update_request(&hba->pm_qos_req, on ? 0 : PM_QOS_DEFAULT_VALUE);
1036 }
1037 
1038 /**
1039  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1040  * @hba: per adapter instance
1041  * @scale_up: If True, set max possible frequency othewise set low frequency
1042  *
1043  * Return: 0 if successful; < 0 upon failure.
1044  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1045 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1046 {
1047 	int ret = 0;
1048 	struct ufs_clk_info *clki;
1049 	struct list_head *head = &hba->clk_list_head;
1050 
1051 	if (list_empty(head))
1052 		goto out;
1053 
1054 	list_for_each_entry(clki, head, list) {
1055 		if (!IS_ERR_OR_NULL(clki->clk)) {
1056 			if (scale_up && clki->max_freq) {
1057 				if (clki->curr_freq == clki->max_freq)
1058 					continue;
1059 
1060 				ret = clk_set_rate(clki->clk, clki->max_freq);
1061 				if (ret) {
1062 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1063 						__func__, clki->name,
1064 						clki->max_freq, ret);
1065 					break;
1066 				}
1067 				trace_ufshcd_clk_scaling(hba,
1068 						"scaled up", clki->name,
1069 						clki->curr_freq,
1070 						clki->max_freq);
1071 
1072 				clki->curr_freq = clki->max_freq;
1073 
1074 			} else if (!scale_up && clki->min_freq) {
1075 				if (clki->curr_freq == clki->min_freq)
1076 					continue;
1077 
1078 				ret = clk_set_rate(clki->clk, clki->min_freq);
1079 				if (ret) {
1080 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1081 						__func__, clki->name,
1082 						clki->min_freq, ret);
1083 					break;
1084 				}
1085 				trace_ufshcd_clk_scaling(hba,
1086 						"scaled down", clki->name,
1087 						clki->curr_freq,
1088 						clki->min_freq);
1089 				clki->curr_freq = clki->min_freq;
1090 			}
1091 		}
1092 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1093 				clki->name, clk_get_rate(clki->clk));
1094 	}
1095 
1096 out:
1097 	return ret;
1098 }
1099 
ufshcd_opp_config_clks(struct device * dev,struct opp_table * opp_table,struct dev_pm_opp * opp,void * data,bool scaling_down)1100 int ufshcd_opp_config_clks(struct device *dev, struct opp_table *opp_table,
1101 			   struct dev_pm_opp *opp, void *data,
1102 			   bool scaling_down)
1103 {
1104 	struct ufs_hba *hba = dev_get_drvdata(dev);
1105 	struct list_head *head = &hba->clk_list_head;
1106 	struct ufs_clk_info *clki;
1107 	unsigned long freq;
1108 	u8 idx = 0;
1109 	int ret;
1110 
1111 	list_for_each_entry(clki, head, list) {
1112 		if (!IS_ERR_OR_NULL(clki->clk)) {
1113 			freq = dev_pm_opp_get_freq_indexed(opp, idx++);
1114 
1115 			/* Do not set rate for clocks having frequency as 0 */
1116 			if (!freq)
1117 				continue;
1118 
1119 			ret = clk_set_rate(clki->clk, freq);
1120 			if (ret) {
1121 				dev_err(dev, "%s: %s clk set rate(%ldHz) failed, %d\n",
1122 					__func__, clki->name, freq, ret);
1123 				return ret;
1124 			}
1125 
1126 			trace_ufshcd_clk_scaling(hba,
1127 				(scaling_down ? "scaled down" : "scaled up"),
1128 				clki->name, hba->clk_scaling.target_freq, freq);
1129 		}
1130 	}
1131 
1132 	return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(ufshcd_opp_config_clks);
1135 
ufshcd_opp_set_rate(struct ufs_hba * hba,unsigned long freq)1136 static int ufshcd_opp_set_rate(struct ufs_hba *hba, unsigned long freq)
1137 {
1138 	struct dev_pm_opp *opp;
1139 	int ret;
1140 
1141 	opp = dev_pm_opp_find_freq_floor_indexed(hba->dev,
1142 						 &freq, 0);
1143 	if (IS_ERR(opp))
1144 		return PTR_ERR(opp);
1145 
1146 	ret = dev_pm_opp_set_opp(hba->dev, opp);
1147 	dev_pm_opp_put(opp);
1148 
1149 	return ret;
1150 }
1151 
1152 /**
1153  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1154  * @hba: per adapter instance
1155  * @freq: frequency to scale
1156  * @scale_up: True if scaling up and false if scaling down
1157  *
1158  * Return: 0 if successful; < 0 upon failure.
1159  */
ufshcd_scale_clks(struct ufs_hba * hba,unsigned long freq,bool scale_up)1160 static int ufshcd_scale_clks(struct ufs_hba *hba, unsigned long freq,
1161 			     bool scale_up)
1162 {
1163 	int ret = 0;
1164 	ktime_t start = ktime_get();
1165 
1166 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, PRE_CHANGE);
1167 	if (ret)
1168 		goto out;
1169 
1170 	if (hba->use_pm_opp)
1171 		ret = ufshcd_opp_set_rate(hba, freq);
1172 	else
1173 		ret = ufshcd_set_clk_freq(hba, scale_up);
1174 	if (ret)
1175 		goto out;
1176 
1177 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, freq, POST_CHANGE);
1178 	if (ret) {
1179 		if (hba->use_pm_opp)
1180 			ufshcd_opp_set_rate(hba,
1181 					    hba->devfreq->previous_freq);
1182 		else
1183 			ufshcd_set_clk_freq(hba, !scale_up);
1184 		goto out;
1185 	}
1186 
1187 	ufshcd_pm_qos_update(hba, scale_up);
1188 
1189 out:
1190 	trace_ufshcd_profile_clk_scaling(hba,
1191 			(scale_up ? "up" : "down"),
1192 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1193 	return ret;
1194 }
1195 
1196 /**
1197  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1198  * @hba: per adapter instance
1199  * @freq: frequency to scale
1200  * @scale_up: True if scaling up and false if scaling down
1201  *
1202  * Return: true if scaling is required, false otherwise.
1203  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,unsigned long freq,bool scale_up)1204 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1205 					       unsigned long freq, bool scale_up)
1206 {
1207 	struct ufs_clk_info *clki;
1208 	struct list_head *head = &hba->clk_list_head;
1209 
1210 	if (list_empty(head))
1211 		return false;
1212 
1213 	if (hba->use_pm_opp)
1214 		return freq != hba->clk_scaling.target_freq;
1215 
1216 	list_for_each_entry(clki, head, list) {
1217 		if (!IS_ERR_OR_NULL(clki->clk)) {
1218 			if (scale_up && clki->max_freq) {
1219 				if (clki->curr_freq == clki->max_freq)
1220 					continue;
1221 				return true;
1222 			} else if (!scale_up && clki->min_freq) {
1223 				if (clki->curr_freq == clki->min_freq)
1224 					continue;
1225 				return true;
1226 			}
1227 		}
1228 	}
1229 
1230 	return false;
1231 }
1232 
1233 /*
1234  * Determine the number of pending commands by counting the bits in the SCSI
1235  * device budget maps. This approach has been selected because a bit is set in
1236  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1237  * flag. The host_self_blocked flag can be modified by calling
1238  * scsi_block_requests() or scsi_unblock_requests().
1239  */
ufshcd_pending_cmds(struct ufs_hba * hba)1240 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1241 {
1242 	const struct scsi_device *sdev;
1243 	unsigned long flags;
1244 	u32 pending = 0;
1245 
1246 	spin_lock_irqsave(hba->host->host_lock, flags);
1247 	__shost_for_each_device(sdev, hba->host)
1248 		pending += sbitmap_weight(&sdev->budget_map);
1249 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1250 
1251 	return pending;
1252 }
1253 
1254 /*
1255  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1256  * has expired.
1257  *
1258  * Return: 0 upon success; -EBUSY upon timeout.
1259  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1260 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1261 					u64 wait_timeout_us)
1262 {
1263 	int ret = 0;
1264 	u32 tm_doorbell;
1265 	u32 tr_pending;
1266 	bool timeout = false, do_last_check = false;
1267 	ktime_t start;
1268 
1269 	ufshcd_hold(hba);
1270 	/*
1271 	 * Wait for all the outstanding tasks/transfer requests.
1272 	 * Verify by checking the doorbell registers are clear.
1273 	 */
1274 	start = ktime_get();
1275 	do {
1276 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1277 			ret = -EBUSY;
1278 			goto out;
1279 		}
1280 
1281 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1282 		tr_pending = ufshcd_pending_cmds(hba);
1283 		if (!tm_doorbell && !tr_pending) {
1284 			timeout = false;
1285 			break;
1286 		} else if (do_last_check) {
1287 			break;
1288 		}
1289 
1290 		io_schedule_timeout(msecs_to_jiffies(20));
1291 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1292 		    wait_timeout_us) {
1293 			timeout = true;
1294 			/*
1295 			 * We might have scheduled out for long time so make
1296 			 * sure to check if doorbells are cleared by this time
1297 			 * or not.
1298 			 */
1299 			do_last_check = true;
1300 		}
1301 	} while (tm_doorbell || tr_pending);
1302 
1303 	if (timeout) {
1304 		dev_err(hba->dev,
1305 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1306 			__func__, tm_doorbell, tr_pending);
1307 		ret = -EBUSY;
1308 	}
1309 out:
1310 	ufshcd_release(hba);
1311 	return ret;
1312 }
1313 
1314 /**
1315  * ufshcd_scale_gear - scale up/down UFS gear
1316  * @hba: per adapter instance
1317  * @target_gear: target gear to scale to
1318  * @scale_up: True for scaling up gear and false for scaling down
1319  *
1320  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1321  * non-zero for any other errors.
1322  */
ufshcd_scale_gear(struct ufs_hba * hba,u32 target_gear,bool scale_up)1323 static int ufshcd_scale_gear(struct ufs_hba *hba, u32 target_gear, bool scale_up)
1324 {
1325 	int ret = 0;
1326 	struct ufs_pa_layer_attr new_pwr_info;
1327 
1328 	if (target_gear) {
1329 		new_pwr_info = hba->pwr_info;
1330 		new_pwr_info.gear_tx = target_gear;
1331 		new_pwr_info.gear_rx = target_gear;
1332 
1333 		goto config_pwr_mode;
1334 	}
1335 
1336 	/* Legacy gear scaling, in case vops_freq_to_gear_speed() is not implemented */
1337 	if (scale_up) {
1338 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1339 		       sizeof(struct ufs_pa_layer_attr));
1340 	} else {
1341 		memcpy(&new_pwr_info, &hba->pwr_info,
1342 		       sizeof(struct ufs_pa_layer_attr));
1343 
1344 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1345 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1346 			/* save the current power mode */
1347 			memcpy(&hba->clk_scaling.saved_pwr_info,
1348 				&hba->pwr_info,
1349 				sizeof(struct ufs_pa_layer_attr));
1350 
1351 			/* scale down gear */
1352 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1353 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1354 		}
1355 	}
1356 
1357 config_pwr_mode:
1358 	/* check if the power mode needs to be changed or not? */
1359 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1360 	if (ret)
1361 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1362 			__func__, ret,
1363 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1364 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1365 
1366 	return ret;
1367 }
1368 
1369 /*
1370  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1371  * has expired.
1372  *
1373  * Return: 0 upon success; -EBUSY upon timeout.
1374  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1375 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1376 {
1377 	int ret = 0;
1378 	/*
1379 	 * make sure that there are no outstanding requests when
1380 	 * clock scaling is in progress
1381 	 */
1382 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1383 	mutex_lock(&hba->wb_mutex);
1384 	down_write(&hba->clk_scaling_lock);
1385 
1386 	if (!hba->clk_scaling.is_allowed ||
1387 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1388 		ret = -EBUSY;
1389 		up_write(&hba->clk_scaling_lock);
1390 		mutex_unlock(&hba->wb_mutex);
1391 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1392 		goto out;
1393 	}
1394 
1395 	/* let's not get into low power until clock scaling is completed */
1396 	ufshcd_hold(hba);
1397 
1398 out:
1399 	return ret;
1400 }
1401 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err)1402 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err)
1403 {
1404 	up_write(&hba->clk_scaling_lock);
1405 
1406 	/* Enable Write Booster if current gear requires it else disable it */
1407 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1408 		ufshcd_wb_toggle(hba, hba->pwr_info.gear_rx >= hba->clk_scaling.wb_gear);
1409 
1410 	mutex_unlock(&hba->wb_mutex);
1411 
1412 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1413 	ufshcd_release(hba);
1414 }
1415 
1416 /**
1417  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1418  * @hba: per adapter instance
1419  * @freq: frequency to scale
1420  * @scale_up: True for scaling up and false for scalin down
1421  *
1422  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1423  * for any other errors.
1424  */
ufshcd_devfreq_scale(struct ufs_hba * hba,unsigned long freq,bool scale_up)1425 static int ufshcd_devfreq_scale(struct ufs_hba *hba, unsigned long freq,
1426 				bool scale_up)
1427 {
1428 	u32 old_gear = hba->pwr_info.gear_rx;
1429 	u32 new_gear = 0;
1430 	int ret = 0;
1431 
1432 	new_gear = ufshcd_vops_freq_to_gear_speed(hba, freq);
1433 
1434 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/* scale down the gear before scaling down clocks */
1439 	if (!scale_up) {
1440 		ret = ufshcd_scale_gear(hba, new_gear, false);
1441 		if (ret)
1442 			goto out_unprepare;
1443 	}
1444 
1445 	ret = ufshcd_scale_clks(hba, freq, scale_up);
1446 	if (ret) {
1447 		if (!scale_up)
1448 			ufshcd_scale_gear(hba, old_gear, true);
1449 		goto out_unprepare;
1450 	}
1451 
1452 	/* scale up the gear after scaling up clocks */
1453 	if (scale_up) {
1454 		ret = ufshcd_scale_gear(hba, new_gear, true);
1455 		if (ret) {
1456 			ufshcd_scale_clks(hba, hba->devfreq->previous_freq,
1457 					  false);
1458 			goto out_unprepare;
1459 		}
1460 	}
1461 
1462 out_unprepare:
1463 	ufshcd_clock_scaling_unprepare(hba, ret);
1464 	return ret;
1465 }
1466 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1467 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1468 {
1469 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1470 					   clk_scaling.suspend_work);
1471 
1472 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1473 	{
1474 		if (hba->clk_scaling.active_reqs ||
1475 		    hba->clk_scaling.is_suspended)
1476 			return;
1477 
1478 		hba->clk_scaling.is_suspended = true;
1479 		hba->clk_scaling.window_start_t = 0;
1480 	}
1481 
1482 	devfreq_suspend_device(hba->devfreq);
1483 }
1484 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1485 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1486 {
1487 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1488 					   clk_scaling.resume_work);
1489 
1490 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1491 	{
1492 		if (!hba->clk_scaling.is_suspended)
1493 			return;
1494 		hba->clk_scaling.is_suspended = false;
1495 	}
1496 
1497 	devfreq_resume_device(hba->devfreq);
1498 }
1499 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1500 static int ufshcd_devfreq_target(struct device *dev,
1501 				unsigned long *freq, u32 flags)
1502 {
1503 	int ret = 0;
1504 	struct ufs_hba *hba = dev_get_drvdata(dev);
1505 	ktime_t start;
1506 	bool scale_up = false, sched_clk_scaling_suspend_work = false;
1507 	struct list_head *clk_list = &hba->clk_list_head;
1508 	struct ufs_clk_info *clki;
1509 
1510 	if (!ufshcd_is_clkscaling_supported(hba))
1511 		return -EINVAL;
1512 
1513 	if (hba->use_pm_opp) {
1514 		struct dev_pm_opp *opp;
1515 
1516 		/* Get the recommended frequency from OPP framework */
1517 		opp = devfreq_recommended_opp(dev, freq, flags);
1518 		if (IS_ERR(opp))
1519 			return PTR_ERR(opp);
1520 
1521 		dev_pm_opp_put(opp);
1522 	} else {
1523 		/* Override with the closest supported frequency */
1524 		clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info,
1525 					list);
1526 		*freq =	(unsigned long) clk_round_rate(clki->clk, *freq);
1527 	}
1528 
1529 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1530 	{
1531 		if (ufshcd_eh_in_progress(hba))
1532 			return 0;
1533 
1534 		/* Skip scaling clock when clock scaling is suspended */
1535 		if (hba->clk_scaling.is_suspended) {
1536 			dev_warn(hba->dev, "clock scaling is suspended, skip");
1537 			return 0;
1538 		}
1539 
1540 		if (!hba->clk_scaling.active_reqs)
1541 			sched_clk_scaling_suspend_work = true;
1542 
1543 		if (list_empty(clk_list))
1544 			goto out;
1545 
1546 		/* Decide based on the target or rounded-off frequency and update */
1547 		if (hba->use_pm_opp)
1548 			scale_up = *freq > hba->clk_scaling.target_freq;
1549 		else
1550 			scale_up = *freq == clki->max_freq;
1551 
1552 		if (!hba->use_pm_opp && !scale_up)
1553 			*freq = clki->min_freq;
1554 
1555 		/* Update the frequency */
1556 		if (!ufshcd_is_devfreq_scaling_required(hba, *freq, scale_up)) {
1557 			ret = 0;
1558 			goto out; /* no state change required */
1559 		}
1560 	}
1561 
1562 	start = ktime_get();
1563 	ret = ufshcd_devfreq_scale(hba, *freq, scale_up);
1564 	if (!ret)
1565 		hba->clk_scaling.target_freq = *freq;
1566 
1567 	trace_ufshcd_profile_clk_scaling(hba,
1568 		(scale_up ? "up" : "down"),
1569 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1570 
1571 out:
1572 	if (sched_clk_scaling_suspend_work &&
1573 			(!scale_up || hba->clk_scaling.suspend_on_no_request))
1574 		queue_work(hba->clk_scaling.workq,
1575 			   &hba->clk_scaling.suspend_work);
1576 
1577 	return ret;
1578 }
1579 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1580 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1581 		struct devfreq_dev_status *stat)
1582 {
1583 	struct ufs_hba *hba = dev_get_drvdata(dev);
1584 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1585 	ktime_t curr_t;
1586 
1587 	if (!ufshcd_is_clkscaling_supported(hba))
1588 		return -EINVAL;
1589 
1590 	memset(stat, 0, sizeof(*stat));
1591 
1592 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
1593 
1594 	curr_t = ktime_get();
1595 	if (!scaling->window_start_t)
1596 		goto start_window;
1597 
1598 	/*
1599 	 * If current frequency is 0, then the ondemand governor considers
1600 	 * there's no initial frequency set. And it always requests to set
1601 	 * to max. frequency.
1602 	 */
1603 	if (hba->use_pm_opp) {
1604 		stat->current_frequency = hba->clk_scaling.target_freq;
1605 	} else {
1606 		struct list_head *clk_list = &hba->clk_list_head;
1607 		struct ufs_clk_info *clki;
1608 
1609 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1610 		stat->current_frequency = clki->curr_freq;
1611 	}
1612 
1613 	if (scaling->is_busy_started)
1614 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1615 				scaling->busy_start_t);
1616 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1617 	stat->busy_time = scaling->tot_busy_t;
1618 start_window:
1619 	scaling->window_start_t = curr_t;
1620 	scaling->tot_busy_t = 0;
1621 
1622 	if (scaling->active_reqs) {
1623 		scaling->busy_start_t = curr_t;
1624 		scaling->is_busy_started = true;
1625 	} else {
1626 		scaling->busy_start_t = 0;
1627 		scaling->is_busy_started = false;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
ufshcd_devfreq_init(struct ufs_hba * hba)1633 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1634 {
1635 	struct list_head *clk_list = &hba->clk_list_head;
1636 	struct ufs_clk_info *clki;
1637 	struct devfreq *devfreq;
1638 	int ret;
1639 
1640 	/* Skip devfreq if we don't have any clocks in the list */
1641 	if (list_empty(clk_list))
1642 		return 0;
1643 
1644 	if (!hba->use_pm_opp) {
1645 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1646 		dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1647 		dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1648 	}
1649 
1650 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1651 					 &hba->vps->ondemand_data);
1652 	devfreq = devfreq_add_device(hba->dev,
1653 			&hba->vps->devfreq_profile,
1654 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1655 			&hba->vps->ondemand_data);
1656 	if (IS_ERR(devfreq)) {
1657 		ret = PTR_ERR(devfreq);
1658 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1659 
1660 		if (!hba->use_pm_opp) {
1661 			dev_pm_opp_remove(hba->dev, clki->min_freq);
1662 			dev_pm_opp_remove(hba->dev, clki->max_freq);
1663 		}
1664 		return ret;
1665 	}
1666 
1667 	hba->devfreq = devfreq;
1668 
1669 	return 0;
1670 }
1671 
ufshcd_devfreq_remove(struct ufs_hba * hba)1672 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1673 {
1674 	struct list_head *clk_list = &hba->clk_list_head;
1675 
1676 	if (!hba->devfreq)
1677 		return;
1678 
1679 	devfreq_remove_device(hba->devfreq);
1680 	hba->devfreq = NULL;
1681 
1682 	if (!hba->use_pm_opp) {
1683 		struct ufs_clk_info *clki;
1684 
1685 		clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1686 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1687 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1688 	}
1689 }
1690 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1691 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1692 {
1693 	bool suspend = false;
1694 
1695 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1696 	cancel_work_sync(&hba->clk_scaling.resume_work);
1697 
1698 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1699 	{
1700 		if (!hba->clk_scaling.is_suspended) {
1701 			suspend = true;
1702 			hba->clk_scaling.is_suspended = true;
1703 			hba->clk_scaling.window_start_t = 0;
1704 		}
1705 	}
1706 
1707 	if (suspend)
1708 		devfreq_suspend_device(hba->devfreq);
1709 }
1710 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1711 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1712 {
1713 	bool resume = false;
1714 
1715 	scoped_guard(spinlock_irqsave, &hba->clk_scaling.lock)
1716 	{
1717 		if (hba->clk_scaling.is_suspended) {
1718 			resume = true;
1719 			hba->clk_scaling.is_suspended = false;
1720 		}
1721 	}
1722 
1723 	if (resume)
1724 		devfreq_resume_device(hba->devfreq);
1725 }
1726 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1727 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1728 		struct device_attribute *attr, char *buf)
1729 {
1730 	struct ufs_hba *hba = dev_get_drvdata(dev);
1731 
1732 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1733 }
1734 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1735 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1736 		struct device_attribute *attr, const char *buf, size_t count)
1737 {
1738 	struct ufs_hba *hba = dev_get_drvdata(dev);
1739 	struct ufs_clk_info *clki;
1740 	unsigned long freq;
1741 	u32 value;
1742 	int err = 0;
1743 
1744 	if (kstrtou32(buf, 0, &value))
1745 		return -EINVAL;
1746 
1747 	down(&hba->host_sem);
1748 	if (!ufshcd_is_user_access_allowed(hba)) {
1749 		err = -EBUSY;
1750 		goto out;
1751 	}
1752 
1753 	value = !!value;
1754 	if (value == hba->clk_scaling.is_enabled)
1755 		goto out;
1756 
1757 	ufshcd_rpm_get_sync(hba);
1758 	ufshcd_hold(hba);
1759 
1760 	hba->clk_scaling.is_enabled = value;
1761 
1762 	if (value) {
1763 		ufshcd_resume_clkscaling(hba);
1764 		goto out_rel;
1765 	}
1766 
1767 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1768 	freq = clki->max_freq;
1769 
1770 	ufshcd_suspend_clkscaling(hba);
1771 
1772 	if (!ufshcd_is_devfreq_scaling_required(hba, freq, true))
1773 		goto out_rel;
1774 
1775 	err = ufshcd_devfreq_scale(hba, freq, true);
1776 	if (err)
1777 		dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1778 				__func__, err);
1779 	else
1780 		hba->clk_scaling.target_freq = freq;
1781 
1782 out_rel:
1783 	ufshcd_release(hba);
1784 	ufshcd_rpm_put_sync(hba);
1785 out:
1786 	up(&hba->host_sem);
1787 	return err ? err : count;
1788 }
1789 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1790 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1791 {
1792 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1793 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1794 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1795 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1796 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1797 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1798 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1799 }
1800 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1801 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1802 {
1803 	if (hba->clk_scaling.enable_attr.attr.name)
1804 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1805 }
1806 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1807 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1808 {
1809 	if (!ufshcd_is_clkscaling_supported(hba))
1810 		return;
1811 
1812 	if (!hba->clk_scaling.min_gear)
1813 		hba->clk_scaling.min_gear = UFS_HS_G1;
1814 
1815 	if (!hba->clk_scaling.wb_gear)
1816 		/* Use intermediate gear speed HS_G3 as the default wb_gear */
1817 		hba->clk_scaling.wb_gear = UFS_HS_G3;
1818 
1819 	INIT_WORK(&hba->clk_scaling.suspend_work,
1820 		  ufshcd_clk_scaling_suspend_work);
1821 	INIT_WORK(&hba->clk_scaling.resume_work,
1822 		  ufshcd_clk_scaling_resume_work);
1823 
1824 	spin_lock_init(&hba->clk_scaling.lock);
1825 
1826 	hba->clk_scaling.workq = alloc_ordered_workqueue(
1827 		"ufs_clkscaling_%d", WQ_MEM_RECLAIM, hba->host->host_no);
1828 
1829 	hba->clk_scaling.is_initialized = true;
1830 }
1831 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1832 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1833 {
1834 	if (!hba->clk_scaling.is_initialized)
1835 		return;
1836 
1837 	ufshcd_remove_clk_scaling_sysfs(hba);
1838 	destroy_workqueue(hba->clk_scaling.workq);
1839 	ufshcd_devfreq_remove(hba);
1840 	hba->clk_scaling.is_initialized = false;
1841 }
1842 
ufshcd_ungate_work(struct work_struct * work)1843 static void ufshcd_ungate_work(struct work_struct *work)
1844 {
1845 	int ret;
1846 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1847 			clk_gating.ungate_work);
1848 
1849 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1850 
1851 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1852 		if (hba->clk_gating.state == CLKS_ON)
1853 			return;
1854 	}
1855 
1856 	ufshcd_hba_vreg_set_hpm(hba);
1857 	ufshcd_setup_clocks(hba, true);
1858 
1859 	ufshcd_enable_irq(hba);
1860 
1861 	/* Exit from hibern8 */
1862 	if (ufshcd_can_hibern8_during_gating(hba)) {
1863 		/* Prevent gating in this path */
1864 		hba->clk_gating.is_suspended = true;
1865 		if (ufshcd_is_link_hibern8(hba)) {
1866 			ret = ufshcd_uic_hibern8_exit(hba);
1867 			if (ret)
1868 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1869 					__func__, ret);
1870 			else
1871 				ufshcd_set_link_active(hba);
1872 		}
1873 		hba->clk_gating.is_suspended = false;
1874 	}
1875 }
1876 
1877 /**
1878  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1879  * Also, exit from hibern8 mode and set the link as active.
1880  * @hba: per adapter instance
1881  */
ufshcd_hold(struct ufs_hba * hba)1882 void ufshcd_hold(struct ufs_hba *hba)
1883 {
1884 	bool flush_result;
1885 	unsigned long flags;
1886 
1887 	if (!ufshcd_is_clkgating_allowed(hba) ||
1888 	    !hba->clk_gating.is_initialized)
1889 		return;
1890 	spin_lock_irqsave(&hba->clk_gating.lock, flags);
1891 	hba->clk_gating.active_reqs++;
1892 
1893 start:
1894 	switch (hba->clk_gating.state) {
1895 	case CLKS_ON:
1896 		/*
1897 		 * Wait for the ungate work to complete if in progress.
1898 		 * Though the clocks may be in ON state, the link could
1899 		 * still be in hibner8 state if hibern8 is allowed
1900 		 * during clock gating.
1901 		 * Make sure we exit hibern8 state also in addition to
1902 		 * clocks being ON.
1903 		 */
1904 		if (ufshcd_can_hibern8_during_gating(hba) &&
1905 		    ufshcd_is_link_hibern8(hba)) {
1906 			spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1907 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1908 			if (hba->clk_gating.is_suspended && !flush_result)
1909 				return;
1910 			spin_lock_irqsave(&hba->clk_gating.lock, flags);
1911 			goto start;
1912 		}
1913 		break;
1914 	case REQ_CLKS_OFF:
1915 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1916 			hba->clk_gating.state = CLKS_ON;
1917 			trace_ufshcd_clk_gating(hba,
1918 						hba->clk_gating.state);
1919 			break;
1920 		}
1921 		/*
1922 		 * If we are here, it means gating work is either done or
1923 		 * currently running. Hence, fall through to cancel gating
1924 		 * work and to enable clocks.
1925 		 */
1926 		fallthrough;
1927 	case CLKS_OFF:
1928 		hba->clk_gating.state = REQ_CLKS_ON;
1929 		trace_ufshcd_clk_gating(hba,
1930 					hba->clk_gating.state);
1931 		queue_work(hba->clk_gating.clk_gating_workq,
1932 			   &hba->clk_gating.ungate_work);
1933 		/*
1934 		 * fall through to check if we should wait for this
1935 		 * work to be done or not.
1936 		 */
1937 		fallthrough;
1938 	case REQ_CLKS_ON:
1939 		spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1940 		flush_work(&hba->clk_gating.ungate_work);
1941 		/* Make sure state is CLKS_ON before returning */
1942 		spin_lock_irqsave(&hba->clk_gating.lock, flags);
1943 		goto start;
1944 	default:
1945 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1946 				__func__, hba->clk_gating.state);
1947 		break;
1948 	}
1949 	spin_unlock_irqrestore(&hba->clk_gating.lock, flags);
1950 }
1951 EXPORT_SYMBOL_GPL(ufshcd_hold);
1952 
ufshcd_gate_work(struct work_struct * work)1953 static void ufshcd_gate_work(struct work_struct *work)
1954 {
1955 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1956 			clk_gating.gate_work.work);
1957 	int ret;
1958 
1959 	scoped_guard(spinlock_irqsave, &hba->clk_gating.lock) {
1960 		/*
1961 		 * In case you are here to cancel this work the gating state
1962 		 * would be marked as REQ_CLKS_ON. In this case save time by
1963 		 * skipping the gating work and exit after changing the clock
1964 		 * state to CLKS_ON.
1965 		 */
1966 		if (hba->clk_gating.is_suspended ||
1967 		    hba->clk_gating.state != REQ_CLKS_OFF) {
1968 			hba->clk_gating.state = CLKS_ON;
1969 			trace_ufshcd_clk_gating(hba,
1970 						hba->clk_gating.state);
1971 			return;
1972 		}
1973 
1974 		if (hba->clk_gating.active_reqs)
1975 			return;
1976 	}
1977 
1978 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
1979 		if (ufshcd_is_ufs_dev_busy(hba) ||
1980 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
1981 			return;
1982 	}
1983 
1984 	/* put the link into hibern8 mode before turning off clocks */
1985 	if (ufshcd_can_hibern8_during_gating(hba)) {
1986 		ret = ufshcd_uic_hibern8_enter(hba);
1987 		if (ret) {
1988 			hba->clk_gating.state = CLKS_ON;
1989 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1990 					__func__, ret);
1991 			trace_ufshcd_clk_gating(hba,
1992 						hba->clk_gating.state);
1993 			return;
1994 		}
1995 		ufshcd_set_link_hibern8(hba);
1996 	}
1997 
1998 	ufshcd_disable_irq(hba);
1999 
2000 	ufshcd_setup_clocks(hba, false);
2001 
2002 	/* Put the host controller in low power mode if possible */
2003 	ufshcd_hba_vreg_set_lpm(hba);
2004 	/*
2005 	 * In case you are here to cancel this work the gating state
2006 	 * would be marked as REQ_CLKS_ON. In this case keep the state
2007 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
2008 	 * and a request to turn them on is pending. By doing this way,
2009 	 * we keep the state machine in tact and this would ultimately
2010 	 * prevent from doing cancel work multiple times when there are
2011 	 * new requests arriving before the current cancel work is done.
2012 	 */
2013 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2014 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
2015 		hba->clk_gating.state = CLKS_OFF;
2016 		trace_ufshcd_clk_gating(hba,
2017 					hba->clk_gating.state);
2018 	}
2019 }
2020 
__ufshcd_release(struct ufs_hba * hba)2021 static void __ufshcd_release(struct ufs_hba *hba)
2022 {
2023 	lockdep_assert_held(&hba->clk_gating.lock);
2024 
2025 	if (!ufshcd_is_clkgating_allowed(hba))
2026 		return;
2027 
2028 	hba->clk_gating.active_reqs--;
2029 
2030 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
2031 	    !hba->clk_gating.is_initialized ||
2032 	    hba->clk_gating.state == CLKS_OFF)
2033 		return;
2034 
2035 	scoped_guard(spinlock_irqsave, hba->host->host_lock) {
2036 		if (ufshcd_has_pending_tasks(hba) ||
2037 		    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL)
2038 			return;
2039 	}
2040 
2041 	hba->clk_gating.state = REQ_CLKS_OFF;
2042 	trace_ufshcd_clk_gating(hba, hba->clk_gating.state);
2043 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
2044 			   &hba->clk_gating.gate_work,
2045 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
2046 }
2047 
ufshcd_release(struct ufs_hba * hba)2048 void ufshcd_release(struct ufs_hba *hba)
2049 {
2050 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2051 	__ufshcd_release(hba);
2052 }
2053 EXPORT_SYMBOL_GPL(ufshcd_release);
2054 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)2055 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
2056 		struct device_attribute *attr, char *buf)
2057 {
2058 	struct ufs_hba *hba = dev_get_drvdata(dev);
2059 
2060 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
2061 }
2062 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)2063 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
2064 {
2065 	struct ufs_hba *hba = dev_get_drvdata(dev);
2066 
2067 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2068 	hba->clk_gating.delay_ms = value;
2069 }
2070 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
2071 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2072 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
2073 		struct device_attribute *attr, const char *buf, size_t count)
2074 {
2075 	unsigned long value;
2076 
2077 	if (kstrtoul(buf, 0, &value))
2078 		return -EINVAL;
2079 
2080 	ufshcd_clkgate_delay_set(dev, value);
2081 	return count;
2082 }
2083 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)2084 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
2085 		struct device_attribute *attr, char *buf)
2086 {
2087 	struct ufs_hba *hba = dev_get_drvdata(dev);
2088 
2089 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
2090 }
2091 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2092 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
2093 		struct device_attribute *attr, const char *buf, size_t count)
2094 {
2095 	struct ufs_hba *hba = dev_get_drvdata(dev);
2096 	u32 value;
2097 
2098 	if (kstrtou32(buf, 0, &value))
2099 		return -EINVAL;
2100 
2101 	value = !!value;
2102 
2103 	guard(spinlock_irqsave)(&hba->clk_gating.lock);
2104 
2105 	if (value == hba->clk_gating.is_enabled)
2106 		return count;
2107 
2108 	if (value)
2109 		__ufshcd_release(hba);
2110 	else
2111 		hba->clk_gating.active_reqs++;
2112 
2113 	hba->clk_gating.is_enabled = value;
2114 
2115 	return count;
2116 }
2117 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)2118 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
2119 {
2120 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
2121 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
2122 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
2123 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
2124 	hba->clk_gating.delay_attr.attr.mode = 0644;
2125 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
2126 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
2127 
2128 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
2129 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
2130 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
2131 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
2132 	hba->clk_gating.enable_attr.attr.mode = 0644;
2133 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
2134 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
2135 }
2136 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)2137 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2138 {
2139 	if (hba->clk_gating.delay_attr.attr.name)
2140 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2141 	if (hba->clk_gating.enable_attr.attr.name)
2142 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2143 }
2144 
ufshcd_init_clk_gating(struct ufs_hba * hba)2145 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2146 {
2147 	if (!ufshcd_is_clkgating_allowed(hba))
2148 		return;
2149 
2150 	hba->clk_gating.state = CLKS_ON;
2151 
2152 	hba->clk_gating.delay_ms = 150;
2153 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2154 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2155 
2156 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(
2157 		"ufs_clk_gating_%d", WQ_MEM_RECLAIM | WQ_HIGHPRI,
2158 		hba->host->host_no);
2159 
2160 	ufshcd_init_clk_gating_sysfs(hba);
2161 
2162 	hba->clk_gating.is_enabled = true;
2163 	hba->clk_gating.is_initialized = true;
2164 }
2165 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2166 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2167 {
2168 	if (!hba->clk_gating.is_initialized)
2169 		return;
2170 
2171 	ufshcd_remove_clk_gating_sysfs(hba);
2172 
2173 	/* Ungate the clock if necessary. */
2174 	ufshcd_hold(hba);
2175 	hba->clk_gating.is_initialized = false;
2176 	ufshcd_release(hba);
2177 
2178 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2179 }
2180 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2181 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2182 {
2183 	bool queue_resume_work = false;
2184 	ktime_t curr_t = ktime_get();
2185 
2186 	if (!ufshcd_is_clkscaling_supported(hba))
2187 		return;
2188 
2189 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2190 
2191 	if (!hba->clk_scaling.active_reqs++)
2192 		queue_resume_work = true;
2193 
2194 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress)
2195 		return;
2196 
2197 	if (queue_resume_work)
2198 		queue_work(hba->clk_scaling.workq,
2199 			   &hba->clk_scaling.resume_work);
2200 
2201 	if (!hba->clk_scaling.window_start_t) {
2202 		hba->clk_scaling.window_start_t = curr_t;
2203 		hba->clk_scaling.tot_busy_t = 0;
2204 		hba->clk_scaling.is_busy_started = false;
2205 	}
2206 
2207 	if (!hba->clk_scaling.is_busy_started) {
2208 		hba->clk_scaling.busy_start_t = curr_t;
2209 		hba->clk_scaling.is_busy_started = true;
2210 	}
2211 }
2212 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2213 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2214 {
2215 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2216 
2217 	if (!ufshcd_is_clkscaling_supported(hba))
2218 		return;
2219 
2220 	guard(spinlock_irqsave)(&hba->clk_scaling.lock);
2221 
2222 	hba->clk_scaling.active_reqs--;
2223 	if (!scaling->active_reqs && scaling->is_busy_started) {
2224 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2225 					scaling->busy_start_t));
2226 		scaling->busy_start_t = 0;
2227 		scaling->is_busy_started = false;
2228 	}
2229 }
2230 
ufshcd_monitor_opcode2dir(u8 opcode)2231 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2232 {
2233 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2234 		return READ;
2235 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2236 		return WRITE;
2237 	else
2238 		return -EINVAL;
2239 }
2240 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2241 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2242 						struct ufshcd_lrb *lrbp)
2243 {
2244 	const struct ufs_hba_monitor *m = &hba->monitor;
2245 
2246 	return (m->enabled && lrbp && lrbp->cmd &&
2247 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2248 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2249 }
2250 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2251 static void ufshcd_start_monitor(struct ufs_hba *hba,
2252 				 const struct ufshcd_lrb *lrbp)
2253 {
2254 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2255 	unsigned long flags;
2256 
2257 	spin_lock_irqsave(hba->host->host_lock, flags);
2258 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2259 		hba->monitor.busy_start_ts[dir] = ktime_get();
2260 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2261 }
2262 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2263 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2264 {
2265 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(hba->host->host_lock, flags);
2269 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2270 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2271 		struct ufs_hba_monitor *m = &hba->monitor;
2272 		ktime_t now, inc, lat;
2273 
2274 		now = lrbp->compl_time_stamp;
2275 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2276 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2277 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2278 
2279 		/* Update latencies */
2280 		m->nr_req[dir]++;
2281 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2282 		m->lat_sum[dir] += lat;
2283 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2284 			m->lat_max[dir] = lat;
2285 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2286 			m->lat_min[dir] = lat;
2287 
2288 		m->nr_queued[dir]--;
2289 		/* Push forward the busy start of monitor */
2290 		m->busy_start_ts[dir] = now;
2291 	}
2292 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2293 }
2294 
2295 /**
2296  * ufshcd_send_command - Send SCSI or device management commands
2297  * @hba: per adapter instance
2298  * @task_tag: Task tag of the command
2299  * @hwq: pointer to hardware queue instance
2300  */
2301 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2302 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2303 			 struct ufs_hw_queue *hwq)
2304 {
2305 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2306 	unsigned long flags;
2307 
2308 	lrbp->issue_time_stamp = ktime_get();
2309 	lrbp->issue_time_stamp_local_clock = local_clock();
2310 	lrbp->compl_time_stamp = ktime_set(0, 0);
2311 	lrbp->compl_time_stamp_local_clock = 0;
2312 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2313 	if (lrbp->cmd)
2314 		ufshcd_clk_scaling_start_busy(hba);
2315 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2316 		ufshcd_start_monitor(hba, lrbp);
2317 
2318 	if (hba->mcq_enabled) {
2319 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2320 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2321 		struct utp_transfer_req_desc *dest;
2322 
2323 		spin_lock(&hwq->sq_lock);
2324 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2325 		memcpy(dest, src, utrd_size);
2326 		ufshcd_inc_sq_tail(hwq);
2327 		spin_unlock(&hwq->sq_lock);
2328 	} else {
2329 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2330 		if (hba->vops && hba->vops->setup_xfer_req)
2331 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2332 						  !!lrbp->cmd);
2333 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2334 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2335 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2336 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2337 	}
2338 }
2339 
2340 /**
2341  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2342  * @lrbp: pointer to local reference block
2343  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2344 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2345 {
2346 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2347 	u16 resp_len;
2348 	int len;
2349 
2350 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2351 	if (sense_buffer && resp_len) {
2352 		int len_to_copy;
2353 
2354 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2355 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2356 
2357 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2358 		       len_to_copy);
2359 	}
2360 }
2361 
2362 /**
2363  * ufshcd_copy_query_response() - Copy the Query Response and the data
2364  * descriptor
2365  * @hba: per adapter instance
2366  * @lrbp: pointer to local reference block
2367  *
2368  * Return: 0 upon success; < 0 upon failure.
2369  */
2370 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2371 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2372 {
2373 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2374 
2375 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2376 
2377 	/* Get the descriptor */
2378 	if (hba->dev_cmd.query.descriptor &&
2379 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2380 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2381 				GENERAL_UPIU_REQUEST_SIZE;
2382 		u16 resp_len;
2383 		u16 buf_len;
2384 
2385 		/* data segment length */
2386 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2387 				       .data_segment_length);
2388 		buf_len = be16_to_cpu(
2389 				hba->dev_cmd.query.request.upiu_req.length);
2390 		if (likely(buf_len >= resp_len)) {
2391 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2392 		} else {
2393 			dev_warn(hba->dev,
2394 				 "%s: rsp size %d is bigger than buffer size %d",
2395 				 __func__, resp_len, buf_len);
2396 			return -EINVAL;
2397 		}
2398 	}
2399 
2400 	return 0;
2401 }
2402 
2403 /**
2404  * ufshcd_hba_capabilities - Read controller capabilities
2405  * @hba: per adapter instance
2406  *
2407  * Return: 0 on success, negative on error.
2408  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2409 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2410 {
2411 	int err;
2412 
2413 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2414 
2415 	/* nutrs and nutmrs are 0 based values */
2416 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS_SDB) + 1;
2417 	hba->nutmrs =
2418 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2419 	hba->reserved_slot = hba->nutrs - 1;
2420 
2421 	hba->nortt = FIELD_GET(MASK_NUMBER_OUTSTANDING_RTT, hba->capabilities) + 1;
2422 
2423 	/* Read crypto capabilities */
2424 	err = ufshcd_hba_init_crypto_capabilities(hba);
2425 	if (err) {
2426 		dev_err(hba->dev, "crypto setup failed\n");
2427 		return err;
2428 	}
2429 
2430 	/*
2431 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2432 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2433 	 * means we can simply read values regardless of version.
2434 	 */
2435 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2436 	/*
2437 	 * 0h: legacy single doorbell support is available
2438 	 * 1h: indicate that legacy single doorbell support has been removed
2439 	 */
2440 	if (!(hba->quirks & UFSHCD_QUIRK_BROKEN_LSDBS_CAP))
2441 		hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2442 	else
2443 		hba->lsdb_sup = true;
2444 
2445 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2446 
2447 	return 0;
2448 }
2449 
2450 /**
2451  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2452  *                            to accept UIC commands
2453  * @hba: per adapter instance
2454  *
2455  * Return: true on success, else false.
2456  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2457 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2458 {
2459 	u32 val;
2460 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2461 				    500, uic_cmd_timeout * 1000, false, hba,
2462 				    REG_CONTROLLER_STATUS);
2463 	return ret == 0;
2464 }
2465 
2466 /**
2467  * ufshcd_get_upmcrs - Get the power mode change request status
2468  * @hba: Pointer to adapter instance
2469  *
2470  * This function gets the UPMCRS field of HCS register
2471  *
2472  * Return: value of UPMCRS field.
2473  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2474 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2475 {
2476 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2477 }
2478 
2479 /**
2480  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2481  * @hba: per adapter instance
2482  * @uic_cmd: UIC command
2483  */
2484 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2485 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2486 {
2487 	lockdep_assert_held(&hba->uic_cmd_mutex);
2488 
2489 	WARN_ON(hba->active_uic_cmd);
2490 
2491 	hba->active_uic_cmd = uic_cmd;
2492 
2493 	/* Write Args */
2494 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2495 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2496 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2497 
2498 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2499 
2500 	/* Write UIC Cmd */
2501 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2502 		      REG_UIC_COMMAND);
2503 }
2504 
2505 /**
2506  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2507  * @hba: per adapter instance
2508  * @uic_cmd: UIC command
2509  *
2510  * Return: 0 only if success.
2511  */
2512 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2513 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2514 {
2515 	int ret;
2516 	unsigned long flags;
2517 
2518 	lockdep_assert_held(&hba->uic_cmd_mutex);
2519 
2520 	if (wait_for_completion_timeout(&uic_cmd->done,
2521 					msecs_to_jiffies(uic_cmd_timeout))) {
2522 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2523 	} else {
2524 		ret = -ETIMEDOUT;
2525 		dev_err(hba->dev,
2526 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2527 			uic_cmd->command, uic_cmd->argument3);
2528 
2529 		if (!uic_cmd->cmd_active) {
2530 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2531 				__func__);
2532 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2533 		}
2534 	}
2535 
2536 	spin_lock_irqsave(hba->host->host_lock, flags);
2537 	hba->active_uic_cmd = NULL;
2538 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2539 
2540 	return ret;
2541 }
2542 
2543 /**
2544  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2545  * @hba: per adapter instance
2546  * @uic_cmd: UIC command
2547  *
2548  * Return: 0 only if success.
2549  */
2550 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2551 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2552 {
2553 	lockdep_assert_held(&hba->uic_cmd_mutex);
2554 
2555 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2556 		dev_err(hba->dev,
2557 			"Controller not ready to accept UIC commands\n");
2558 		return -EIO;
2559 	}
2560 
2561 	init_completion(&uic_cmd->done);
2562 
2563 	uic_cmd->cmd_active = 1;
2564 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2565 
2566 	return 0;
2567 }
2568 
2569 /**
2570  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2571  * @hba: per adapter instance
2572  * @uic_cmd: UIC command
2573  *
2574  * Return: 0 only if success.
2575  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2576 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2577 {
2578 	int ret;
2579 
2580 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2581 		return 0;
2582 
2583 	ufshcd_hold(hba);
2584 	mutex_lock(&hba->uic_cmd_mutex);
2585 	ufshcd_add_delay_before_dme_cmd(hba);
2586 
2587 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2588 	if (!ret)
2589 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2590 
2591 	mutex_unlock(&hba->uic_cmd_mutex);
2592 
2593 	ufshcd_release(hba);
2594 	return ret;
2595 }
2596 
2597 /**
2598  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2599  * @hba:	per-adapter instance
2600  * @lrbp:	pointer to local reference block
2601  * @sg_entries:	The number of sg lists actually used
2602  * @sg_list:	Pointer to SG list
2603  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2604 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2605 			       struct scatterlist *sg_list)
2606 {
2607 	struct ufshcd_sg_entry *prd;
2608 	struct scatterlist *sg;
2609 	int i;
2610 
2611 	if (sg_entries) {
2612 
2613 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2614 			lrbp->utr_descriptor_ptr->prd_table_length =
2615 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2616 		else
2617 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2618 
2619 		prd = lrbp->ucd_prdt_ptr;
2620 
2621 		for_each_sg(sg_list, sg, sg_entries, i) {
2622 			const unsigned int len = sg_dma_len(sg);
2623 
2624 			/*
2625 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2626 			 * based value that indicates the length, in bytes, of
2627 			 * the data block. A maximum of length of 256KB may
2628 			 * exist for any entry. Bits 1:0 of this field shall be
2629 			 * 11b to indicate Dword granularity. A value of '3'
2630 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2631 			 */
2632 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2633 			prd->size = cpu_to_le32(len - 1);
2634 			prd->addr = cpu_to_le64(sg->dma_address);
2635 			prd->reserved = 0;
2636 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2637 		}
2638 	} else {
2639 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2640 	}
2641 }
2642 
2643 /**
2644  * ufshcd_map_sg - Map scatter-gather list to prdt
2645  * @hba: per adapter instance
2646  * @lrbp: pointer to local reference block
2647  *
2648  * Return: 0 in case of success, non-zero value in case of failure.
2649  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2650 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2651 {
2652 	struct scsi_cmnd *cmd = lrbp->cmd;
2653 	int sg_segments = scsi_dma_map(cmd);
2654 
2655 	if (sg_segments < 0)
2656 		return sg_segments;
2657 
2658 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2659 
2660 	return ufshcd_crypto_fill_prdt(hba, lrbp);
2661 }
2662 
2663 /**
2664  * ufshcd_enable_intr - enable interrupts
2665  * @hba: per adapter instance
2666  * @intrs: interrupt bits
2667  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2668 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2669 {
2670 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2671 
2672 	set |= intrs;
2673 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2674 }
2675 
2676 /**
2677  * ufshcd_disable_intr - disable interrupts
2678  * @hba: per adapter instance
2679  * @intrs: interrupt bits
2680  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2681 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2682 {
2683 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2684 
2685 	set &= ~intrs;
2686 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2687 }
2688 
2689 /**
2690  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2691  * descriptor according to request
2692  * @hba: per adapter instance
2693  * @lrbp: pointer to local reference block
2694  * @upiu_flags: flags required in the header
2695  * @cmd_dir: requests data direction
2696  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2697  */
2698 static void
ufshcd_prepare_req_desc_hdr(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2699 ufshcd_prepare_req_desc_hdr(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2700 			    u8 *upiu_flags, enum dma_data_direction cmd_dir,
2701 			    int ehs_length)
2702 {
2703 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2704 	struct request_desc_header *h = &req_desc->header;
2705 	enum utp_data_direction data_direction;
2706 
2707 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2708 
2709 	*h = (typeof(*h)){ };
2710 
2711 	if (cmd_dir == DMA_FROM_DEVICE) {
2712 		data_direction = UTP_DEVICE_TO_HOST;
2713 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2714 	} else if (cmd_dir == DMA_TO_DEVICE) {
2715 		data_direction = UTP_HOST_TO_DEVICE;
2716 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2717 	} else {
2718 		data_direction = UTP_NO_DATA_TRANSFER;
2719 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2720 	}
2721 
2722 	h->command_type = lrbp->command_type;
2723 	h->data_direction = data_direction;
2724 	h->ehs_length = ehs_length;
2725 
2726 	if (lrbp->intr_cmd)
2727 		h->interrupt = 1;
2728 
2729 	/* Prepare crypto related dwords */
2730 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2731 
2732 	/*
2733 	 * assigning invalid value for command status. Controller
2734 	 * updates OCS on command completion, with the command
2735 	 * status
2736 	 */
2737 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2738 
2739 	req_desc->prd_table_length = 0;
2740 }
2741 
2742 /**
2743  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2744  * for scsi commands
2745  * @lrbp: local reference block pointer
2746  * @upiu_flags: flags
2747  */
2748 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2749 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2750 {
2751 	struct scsi_cmnd *cmd = lrbp->cmd;
2752 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2753 	unsigned short cdb_len;
2754 
2755 	ucd_req_ptr->header = (struct utp_upiu_header){
2756 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2757 		.flags = upiu_flags,
2758 		.lun = lrbp->lun,
2759 		.task_tag = lrbp->task_tag,
2760 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2761 	};
2762 
2763 	WARN_ON_ONCE(ucd_req_ptr->header.task_tag != lrbp->task_tag);
2764 
2765 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2766 
2767 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2768 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2769 
2770 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2771 }
2772 
2773 /**
2774  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2775  * @hba: UFS hba
2776  * @lrbp: local reference block pointer
2777  * @upiu_flags: flags
2778  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2779 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2780 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2781 {
2782 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2783 	struct ufs_query *query = &hba->dev_cmd.query;
2784 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2785 
2786 	/* Query request header */
2787 	ucd_req_ptr->header = (struct utp_upiu_header){
2788 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2789 		.flags = upiu_flags,
2790 		.lun = lrbp->lun,
2791 		.task_tag = lrbp->task_tag,
2792 		.query_function = query->request.query_func,
2793 		/* Data segment length only need for WRITE_DESC */
2794 		.data_segment_length =
2795 			query->request.upiu_req.opcode ==
2796 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2797 				cpu_to_be16(len) :
2798 				0,
2799 	};
2800 
2801 	/* Copy the Query Request buffer as is */
2802 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2803 			QUERY_OSF_SIZE);
2804 
2805 	/* Copy the Descriptor */
2806 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2807 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2808 
2809 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2810 }
2811 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2812 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2813 {
2814 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2815 
2816 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2817 
2818 	ucd_req_ptr->header = (struct utp_upiu_header){
2819 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2820 		.task_tag = lrbp->task_tag,
2821 	};
2822 
2823 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2824 }
2825 
2826 /**
2827  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2828  *			     for Device Management Purposes
2829  * @hba: per adapter instance
2830  * @lrbp: pointer to local reference block
2831  *
2832  * Return: 0 upon success; < 0 upon failure.
2833  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2834 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2835 				      struct ufshcd_lrb *lrbp)
2836 {
2837 	u8 upiu_flags;
2838 	int ret = 0;
2839 
2840 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
2841 
2842 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2843 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2844 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2845 		ufshcd_prepare_utp_nop_upiu(lrbp);
2846 	else
2847 		ret = -EINVAL;
2848 
2849 	return ret;
2850 }
2851 
2852 /**
2853  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2854  *			   for SCSI Purposes
2855  * @hba: per adapter instance
2856  * @lrbp: pointer to local reference block
2857  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2858 static void ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2859 {
2860 	struct request *rq = scsi_cmd_to_rq(lrbp->cmd);
2861 	unsigned int ioprio_class = IOPRIO_PRIO_CLASS(req_get_ioprio(rq));
2862 	u8 upiu_flags;
2863 
2864 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2865 	if (ioprio_class == IOPRIO_CLASS_RT)
2866 		upiu_flags |= UPIU_CMD_FLAGS_CP;
2867 	ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2868 }
2869 
__ufshcd_setup_cmd(struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2870 static void __ufshcd_setup_cmd(struct ufshcd_lrb *lrbp, struct scsi_cmnd *cmd, u8 lun, int tag)
2871 {
2872 	memset(lrbp->ucd_req_ptr, 0, sizeof(*lrbp->ucd_req_ptr));
2873 
2874 	lrbp->cmd = cmd;
2875 	lrbp->task_tag = tag;
2876 	lrbp->lun = lun;
2877 	ufshcd_prepare_lrbp_crypto(cmd ? scsi_cmd_to_rq(cmd) : NULL, lrbp);
2878 }
2879 
ufshcd_setup_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct scsi_cmnd * cmd,u8 lun,int tag)2880 static void ufshcd_setup_scsi_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
2881 				  struct scsi_cmnd *cmd, u8 lun, int tag)
2882 {
2883 	__ufshcd_setup_cmd(lrbp, cmd, lun, tag);
2884 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2885 	lrbp->req_abort_skip = false;
2886 
2887 	ufshcd_comp_scsi_upiu(hba, lrbp);
2888 }
2889 
2890 /**
2891  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2892  * @upiu_wlun_id: UPIU W-LUN id
2893  *
2894  * Return: SCSI W-LUN id.
2895  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2896 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2897 {
2898 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2899 }
2900 
is_device_wlun(struct scsi_device * sdev)2901 static inline bool is_device_wlun(struct scsi_device *sdev)
2902 {
2903 	return sdev->lun ==
2904 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2905 }
2906 
2907 /*
2908  * Associate the UFS controller queue with the default and poll HCTX types.
2909  * Initialize the mq_map[] arrays.
2910  */
ufshcd_map_queues(struct Scsi_Host * shost)2911 static void ufshcd_map_queues(struct Scsi_Host *shost)
2912 {
2913 	struct ufs_hba *hba = shost_priv(shost);
2914 	int i, queue_offset = 0;
2915 
2916 	if (!is_mcq_supported(hba)) {
2917 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2918 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2919 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2920 		hba->nr_hw_queues = 1;
2921 	}
2922 
2923 	for (i = 0; i < shost->nr_maps; i++) {
2924 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2925 
2926 		map->nr_queues = hba->nr_queues[i];
2927 		if (!map->nr_queues)
2928 			continue;
2929 		map->queue_offset = queue_offset;
2930 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2931 			map->queue_offset = 0;
2932 
2933 		blk_mq_map_queues(map);
2934 		queue_offset += map->nr_queues;
2935 	}
2936 }
2937 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2938 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2939 {
2940 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2941 		i * ufshcd_get_ucd_size(hba);
2942 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2943 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2944 		i * ufshcd_get_ucd_size(hba);
2945 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2946 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2947 
2948 	lrb->utr_descriptor_ptr = utrdlp + i;
2949 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2950 		i * sizeof(struct utp_transfer_req_desc);
2951 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2952 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2953 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2954 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2955 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2956 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2957 }
2958 
2959 /**
2960  * ufshcd_queuecommand - main entry point for SCSI requests
2961  * @host: SCSI host pointer
2962  * @cmd: command from SCSI Midlayer
2963  *
2964  * Return: 0 for success, non-zero in case of failure.
2965  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2966 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2967 {
2968 	struct ufs_hba *hba = shost_priv(host);
2969 	int tag = scsi_cmd_to_rq(cmd)->tag;
2970 	struct ufshcd_lrb *lrbp;
2971 	int err = 0;
2972 	struct ufs_hw_queue *hwq = NULL;
2973 
2974 	switch (hba->ufshcd_state) {
2975 	case UFSHCD_STATE_OPERATIONAL:
2976 		break;
2977 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2978 		/*
2979 		 * SCSI error handler can call ->queuecommand() while UFS error
2980 		 * handler is in progress. Error interrupts could change the
2981 		 * state from UFSHCD_STATE_RESET to
2982 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2983 		 * being issued in that case.
2984 		 */
2985 		if (ufshcd_eh_in_progress(hba)) {
2986 			err = SCSI_MLQUEUE_HOST_BUSY;
2987 			goto out;
2988 		}
2989 		break;
2990 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2991 		/*
2992 		 * pm_runtime_get_sync() is used at error handling preparation
2993 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2994 		 * PM ops, it can never be finished if we let SCSI layer keep
2995 		 * retrying it, which gets err handler stuck forever. Neither
2996 		 * can we let the scsi cmd pass through, because UFS is in bad
2997 		 * state, the scsi cmd may eventually time out, which will get
2998 		 * err handler blocked for too long. So, just fail the scsi cmd
2999 		 * sent from PM ops, err handler can recover PM error anyways.
3000 		 */
3001 		if (hba->pm_op_in_progress) {
3002 			hba->force_reset = true;
3003 			set_host_byte(cmd, DID_BAD_TARGET);
3004 			scsi_done(cmd);
3005 			goto out;
3006 		}
3007 		fallthrough;
3008 	case UFSHCD_STATE_RESET:
3009 		err = SCSI_MLQUEUE_HOST_BUSY;
3010 		goto out;
3011 	case UFSHCD_STATE_ERROR:
3012 		set_host_byte(cmd, DID_ERROR);
3013 		scsi_done(cmd);
3014 		goto out;
3015 	}
3016 
3017 	hba->req_abort_count = 0;
3018 
3019 	ufshcd_hold(hba);
3020 
3021 	lrbp = &hba->lrb[tag];
3022 
3023 	ufshcd_setup_scsi_cmd(hba, lrbp, cmd, ufshcd_scsi_to_upiu_lun(cmd->device->lun), tag);
3024 
3025 	err = ufshcd_map_sg(hba, lrbp);
3026 	if (err) {
3027 		ufshcd_release(hba);
3028 		goto out;
3029 	}
3030 
3031 	if (hba->mcq_enabled)
3032 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
3033 
3034 	ufshcd_send_command(hba, tag, hwq);
3035 
3036 out:
3037 	if (ufs_trigger_eh(hba)) {
3038 		unsigned long flags;
3039 
3040 		spin_lock_irqsave(hba->host->host_lock, flags);
3041 		ufshcd_schedule_eh_work(hba);
3042 		spin_unlock_irqrestore(hba->host->host_lock, flags);
3043 	}
3044 
3045 	return err;
3046 }
3047 
ufshcd_setup_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,u8 lun,int tag)3048 static void ufshcd_setup_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3049 			     enum dev_cmd_type cmd_type, u8 lun, int tag)
3050 {
3051 	__ufshcd_setup_cmd(lrbp, NULL, lun, tag);
3052 	lrbp->intr_cmd = true; /* No interrupt aggregation */
3053 	hba->dev_cmd.type = cmd_type;
3054 }
3055 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)3056 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
3057 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
3058 {
3059 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
3060 
3061 	return ufshcd_compose_devman_upiu(hba, lrbp);
3062 }
3063 
3064 /*
3065  * Check with the block layer if the command is inflight
3066  * @cmd: command to check.
3067  *
3068  * Return: true if command is inflight; false if not.
3069  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)3070 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
3071 {
3072 	return cmd && blk_mq_rq_state(scsi_cmd_to_rq(cmd)) == MQ_RQ_IN_FLIGHT;
3073 }
3074 
3075 /*
3076  * Clear the pending command in the controller and wait until
3077  * the controller confirms that the command has been cleared.
3078  * @hba: per adapter instance
3079  * @task_tag: The tag number of the command to be cleared.
3080  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)3081 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
3082 {
3083 	u32 mask;
3084 	int err;
3085 
3086 	if (hba->mcq_enabled) {
3087 		/*
3088 		 * MCQ mode. Clean up the MCQ resources similar to
3089 		 * what the ufshcd_utrl_clear() does for SDB mode.
3090 		 */
3091 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
3092 		if (err) {
3093 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
3094 				__func__, task_tag, err);
3095 			return err;
3096 		}
3097 		return 0;
3098 	}
3099 
3100 	mask = 1U << task_tag;
3101 
3102 	/* clear outstanding transaction before retry */
3103 	ufshcd_utrl_clear(hba, mask);
3104 
3105 	/*
3106 	 * wait for h/w to clear corresponding bit in door-bell.
3107 	 * max. wait is 1 sec.
3108 	 */
3109 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3110 					mask, ~mask, 1000, 1000);
3111 }
3112 
3113 /**
3114  * ufshcd_dev_cmd_completion() - handles device management command responses
3115  * @hba: per adapter instance
3116  * @lrbp: pointer to local reference block
3117  *
3118  * Return: 0 upon success; < 0 upon failure.
3119  */
3120 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3121 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3122 {
3123 	enum upiu_response_transaction resp;
3124 	int err = 0;
3125 
3126 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3127 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3128 
3129 	switch (resp) {
3130 	case UPIU_TRANSACTION_NOP_IN:
3131 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3132 			err = -EINVAL;
3133 			dev_err(hba->dev, "%s: unexpected response %x\n",
3134 					__func__, resp);
3135 		}
3136 		break;
3137 	case UPIU_TRANSACTION_QUERY_RSP: {
3138 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3139 
3140 		if (response == 0) {
3141 			err = ufshcd_copy_query_response(hba, lrbp);
3142 		} else {
3143 			err = -EINVAL;
3144 			dev_err(hba->dev, "%s: unexpected response in Query RSP: %x\n",
3145 					__func__, response);
3146 		}
3147 		break;
3148 	}
3149 	case UPIU_TRANSACTION_REJECT_UPIU:
3150 		/* TODO: handle Reject UPIU Response */
3151 		err = -EPERM;
3152 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3153 				__func__);
3154 		break;
3155 	case UPIU_TRANSACTION_RESPONSE:
3156 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3157 			err = -EINVAL;
3158 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3159 		}
3160 		break;
3161 	default:
3162 		err = -EINVAL;
3163 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3164 				__func__, resp);
3165 		break;
3166 	}
3167 
3168 	return err;
3169 }
3170 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3171 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3172 		struct ufshcd_lrb *lrbp, int max_timeout)
3173 {
3174 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3175 	unsigned long flags;
3176 	bool pending;
3177 	int err;
3178 
3179 retry:
3180 	time_left = wait_for_completion_timeout(&hba->dev_cmd.complete,
3181 						time_left);
3182 
3183 	if (likely(time_left)) {
3184 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3185 		if (!err)
3186 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3187 	} else {
3188 		err = -ETIMEDOUT;
3189 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3190 			__func__, lrbp->task_tag);
3191 
3192 		/* MCQ mode */
3193 		if (hba->mcq_enabled) {
3194 			/* successfully cleared the command, retry if needed */
3195 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3196 				err = -EAGAIN;
3197 			return err;
3198 		}
3199 
3200 		/* SDB mode */
3201 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3202 			/* successfully cleared the command, retry if needed */
3203 			err = -EAGAIN;
3204 			/*
3205 			 * Since clearing the command succeeded we also need to
3206 			 * clear the task tag bit from the outstanding_reqs
3207 			 * variable.
3208 			 */
3209 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3210 			pending = test_bit(lrbp->task_tag,
3211 					   &hba->outstanding_reqs);
3212 			if (pending)
3213 				__clear_bit(lrbp->task_tag,
3214 					    &hba->outstanding_reqs);
3215 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3216 
3217 			if (!pending) {
3218 				/*
3219 				 * The completion handler ran while we tried to
3220 				 * clear the command.
3221 				 */
3222 				time_left = 1;
3223 				goto retry;
3224 			}
3225 		} else {
3226 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3227 				__func__, lrbp->task_tag);
3228 
3229 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3230 			pending = test_bit(lrbp->task_tag,
3231 					   &hba->outstanding_reqs);
3232 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3233 
3234 			if (!pending) {
3235 				/*
3236 				 * The completion handler ran while we tried to
3237 				 * clear the command.
3238 				 */
3239 				time_left = 1;
3240 				goto retry;
3241 			}
3242 		}
3243 	}
3244 
3245 	return err;
3246 }
3247 
ufshcd_dev_man_lock(struct ufs_hba * hba)3248 static void ufshcd_dev_man_lock(struct ufs_hba *hba)
3249 {
3250 	ufshcd_hold(hba);
3251 	mutex_lock(&hba->dev_cmd.lock);
3252 	down_read(&hba->clk_scaling_lock);
3253 }
3254 
ufshcd_dev_man_unlock(struct ufs_hba * hba)3255 static void ufshcd_dev_man_unlock(struct ufs_hba *hba)
3256 {
3257 	up_read(&hba->clk_scaling_lock);
3258 	mutex_unlock(&hba->dev_cmd.lock);
3259 	ufshcd_release(hba);
3260 }
3261 
ufshcd_issue_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,const u32 tag,int timeout)3262 static int ufshcd_issue_dev_cmd(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
3263 			  const u32 tag, int timeout)
3264 {
3265 	int err;
3266 
3267 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3268 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3269 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3270 
3271 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3272 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3273 
3274 	return err;
3275 }
3276 
3277 /**
3278  * ufshcd_exec_dev_cmd - API for sending device management requests
3279  * @hba: UFS hba
3280  * @cmd_type: specifies the type (NOP, Query...)
3281  * @timeout: timeout in milliseconds
3282  *
3283  * Return: 0 upon success; < 0 upon failure.
3284  *
3285  * NOTE: Since there is only one available tag for device management commands,
3286  * it is expected you hold the hba->dev_cmd.lock mutex.
3287  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3288 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3289 		enum dev_cmd_type cmd_type, int timeout)
3290 {
3291 	const u32 tag = hba->reserved_slot;
3292 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
3293 	int err;
3294 
3295 	/* Protects use of hba->reserved_slot. */
3296 	lockdep_assert_held(&hba->dev_cmd.lock);
3297 
3298 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3299 	if (unlikely(err))
3300 		return err;
3301 
3302 	return ufshcd_issue_dev_cmd(hba, lrbp, tag, timeout);
3303 }
3304 
3305 /**
3306  * ufshcd_init_query() - init the query response and request parameters
3307  * @hba: per-adapter instance
3308  * @request: address of the request pointer to be initialized
3309  * @response: address of the response pointer to be initialized
3310  * @opcode: operation to perform
3311  * @idn: flag idn to access
3312  * @index: LU number to access
3313  * @selector: query/flag/descriptor further identification
3314  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3315 static inline void ufshcd_init_query(struct ufs_hba *hba,
3316 		struct ufs_query_req **request, struct ufs_query_res **response,
3317 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3318 {
3319 	*request = &hba->dev_cmd.query.request;
3320 	*response = &hba->dev_cmd.query.response;
3321 	memset(*request, 0, sizeof(struct ufs_query_req));
3322 	memset(*response, 0, sizeof(struct ufs_query_res));
3323 	(*request)->upiu_req.opcode = opcode;
3324 	(*request)->upiu_req.idn = idn;
3325 	(*request)->upiu_req.index = index;
3326 	(*request)->upiu_req.selector = selector;
3327 }
3328 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3329 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3330 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3331 {
3332 	int ret;
3333 	int retries;
3334 
3335 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3336 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3337 		if (ret)
3338 			dev_dbg(hba->dev,
3339 				"%s: failed with error %d, retries %d\n",
3340 				__func__, ret, retries);
3341 		else
3342 			break;
3343 	}
3344 
3345 	if (ret)
3346 		dev_err(hba->dev,
3347 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3348 			__func__, opcode, idn, ret, retries);
3349 	return ret;
3350 }
3351 
3352 /**
3353  * ufshcd_query_flag() - API function for sending flag query requests
3354  * @hba: per-adapter instance
3355  * @opcode: flag query to perform
3356  * @idn: flag idn to access
3357  * @index: flag index to access
3358  * @flag_res: the flag value after the query request completes
3359  *
3360  * Return: 0 for success, non-zero in case of failure.
3361  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3362 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3363 			enum flag_idn idn, u8 index, bool *flag_res)
3364 {
3365 	struct ufs_query_req *request = NULL;
3366 	struct ufs_query_res *response = NULL;
3367 	int err, selector = 0;
3368 	int timeout = QUERY_REQ_TIMEOUT;
3369 
3370 	BUG_ON(!hba);
3371 
3372 	ufshcd_dev_man_lock(hba);
3373 
3374 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3375 			selector);
3376 
3377 	switch (opcode) {
3378 	case UPIU_QUERY_OPCODE_SET_FLAG:
3379 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3380 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3381 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3382 		break;
3383 	case UPIU_QUERY_OPCODE_READ_FLAG:
3384 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3385 		if (!flag_res) {
3386 			/* No dummy reads */
3387 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3388 					__func__);
3389 			err = -EINVAL;
3390 			goto out_unlock;
3391 		}
3392 		break;
3393 	default:
3394 		dev_err(hba->dev,
3395 			"%s: Expected query flag opcode but got = %d\n",
3396 			__func__, opcode);
3397 		err = -EINVAL;
3398 		goto out_unlock;
3399 	}
3400 
3401 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3402 
3403 	if (err) {
3404 		dev_err(hba->dev,
3405 			"%s: Sending flag query for idn %d failed, err = %d\n",
3406 			__func__, idn, err);
3407 		goto out_unlock;
3408 	}
3409 
3410 	if (flag_res)
3411 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3412 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3413 
3414 out_unlock:
3415 	ufshcd_dev_man_unlock(hba);
3416 	return err;
3417 }
3418 
3419 /**
3420  * ufshcd_query_attr - API function for sending attribute requests
3421  * @hba: per-adapter instance
3422  * @opcode: attribute opcode
3423  * @idn: attribute idn to access
3424  * @index: index field
3425  * @selector: selector field
3426  * @attr_val: the attribute value after the query request completes
3427  *
3428  * Return: 0 for success, non-zero in case of failure.
3429 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3430 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3431 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3432 {
3433 	struct ufs_query_req *request = NULL;
3434 	struct ufs_query_res *response = NULL;
3435 	int err;
3436 
3437 	BUG_ON(!hba);
3438 
3439 	if (!attr_val) {
3440 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3441 				__func__, opcode);
3442 		return -EINVAL;
3443 	}
3444 
3445 	ufshcd_dev_man_lock(hba);
3446 
3447 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3448 			selector);
3449 
3450 	switch (opcode) {
3451 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3452 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3453 		request->upiu_req.value = cpu_to_be32(*attr_val);
3454 		break;
3455 	case UPIU_QUERY_OPCODE_READ_ATTR:
3456 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3457 		break;
3458 	default:
3459 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3460 				__func__, opcode);
3461 		err = -EINVAL;
3462 		goto out_unlock;
3463 	}
3464 
3465 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3466 
3467 	if (err) {
3468 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3469 				__func__, opcode, idn, index, err);
3470 		goto out_unlock;
3471 	}
3472 
3473 	*attr_val = be32_to_cpu(response->upiu_res.value);
3474 
3475 out_unlock:
3476 	ufshcd_dev_man_unlock(hba);
3477 	return err;
3478 }
3479 
3480 /**
3481  * ufshcd_query_attr_retry() - API function for sending query
3482  * attribute with retries
3483  * @hba: per-adapter instance
3484  * @opcode: attribute opcode
3485  * @idn: attribute idn to access
3486  * @index: index field
3487  * @selector: selector field
3488  * @attr_val: the attribute value after the query request
3489  * completes
3490  *
3491  * Return: 0 for success, non-zero in case of failure.
3492 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3493 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3494 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3495 	u32 *attr_val)
3496 {
3497 	int ret = 0;
3498 	u32 retries;
3499 
3500 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3501 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3502 						selector, attr_val);
3503 		if (ret)
3504 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3505 				__func__, ret, retries);
3506 		else
3507 			break;
3508 	}
3509 
3510 	if (ret)
3511 		dev_err(hba->dev,
3512 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3513 			__func__, idn, ret, QUERY_REQ_RETRIES);
3514 	return ret;
3515 }
3516 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3517 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3518 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3519 			u8 selector, u8 *desc_buf, int *buf_len)
3520 {
3521 	struct ufs_query_req *request = NULL;
3522 	struct ufs_query_res *response = NULL;
3523 	int err;
3524 
3525 	BUG_ON(!hba);
3526 
3527 	if (!desc_buf) {
3528 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3529 				__func__, opcode);
3530 		return -EINVAL;
3531 	}
3532 
3533 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3534 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3535 				__func__, *buf_len);
3536 		return -EINVAL;
3537 	}
3538 
3539 	ufshcd_dev_man_lock(hba);
3540 
3541 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3542 			selector);
3543 	hba->dev_cmd.query.descriptor = desc_buf;
3544 	request->upiu_req.length = cpu_to_be16(*buf_len);
3545 
3546 	switch (opcode) {
3547 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3548 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3549 		break;
3550 	case UPIU_QUERY_OPCODE_READ_DESC:
3551 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3552 		break;
3553 	default:
3554 		dev_err(hba->dev,
3555 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3556 				__func__, opcode);
3557 		err = -EINVAL;
3558 		goto out_unlock;
3559 	}
3560 
3561 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3562 
3563 	if (err) {
3564 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3565 				__func__, opcode, idn, index, err);
3566 		goto out_unlock;
3567 	}
3568 
3569 	*buf_len = be16_to_cpu(response->upiu_res.length);
3570 
3571 out_unlock:
3572 	hba->dev_cmd.query.descriptor = NULL;
3573 	ufshcd_dev_man_unlock(hba);
3574 	return err;
3575 }
3576 
3577 /**
3578  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3579  * @hba: per-adapter instance
3580  * @opcode: attribute opcode
3581  * @idn: attribute idn to access
3582  * @index: index field
3583  * @selector: selector field
3584  * @desc_buf: the buffer that contains the descriptor
3585  * @buf_len: length parameter passed to the device
3586  *
3587  * The buf_len parameter will contain, on return, the length parameter
3588  * received on the response.
3589  *
3590  * Return: 0 for success, non-zero in case of failure.
3591  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3592 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3593 				  enum query_opcode opcode,
3594 				  enum desc_idn idn, u8 index,
3595 				  u8 selector,
3596 				  u8 *desc_buf, int *buf_len)
3597 {
3598 	int err;
3599 	int retries;
3600 
3601 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3602 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3603 						selector, desc_buf, buf_len);
3604 		if (!err || err == -EINVAL)
3605 			break;
3606 	}
3607 
3608 	return err;
3609 }
3610 
3611 /**
3612  * ufshcd_read_desc_param - read the specified descriptor parameter
3613  * @hba: Pointer to adapter instance
3614  * @desc_id: descriptor idn value
3615  * @desc_index: descriptor index
3616  * @param_offset: offset of the parameter to read
3617  * @param_read_buf: pointer to buffer where parameter would be read
3618  * @param_size: sizeof(param_read_buf)
3619  *
3620  * Return: 0 in case of success, non-zero otherwise.
3621  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3622 int ufshcd_read_desc_param(struct ufs_hba *hba,
3623 			   enum desc_idn desc_id,
3624 			   int desc_index,
3625 			   u8 param_offset,
3626 			   u8 *param_read_buf,
3627 			   u8 param_size)
3628 {
3629 	int ret;
3630 	u8 *desc_buf;
3631 	int buff_len = QUERY_DESC_MAX_SIZE;
3632 	bool is_kmalloc = true;
3633 
3634 	/* Safety check */
3635 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3636 		return -EINVAL;
3637 
3638 	/* Check whether we need temp memory */
3639 	if (param_offset != 0 || param_size < buff_len) {
3640 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3641 		if (!desc_buf)
3642 			return -ENOMEM;
3643 	} else {
3644 		desc_buf = param_read_buf;
3645 		is_kmalloc = false;
3646 	}
3647 
3648 	/* Request for full descriptor */
3649 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3650 					    desc_id, desc_index, 0,
3651 					    desc_buf, &buff_len);
3652 	if (ret) {
3653 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3654 			__func__, desc_id, desc_index, param_offset, ret);
3655 		goto out;
3656 	}
3657 
3658 	/* Update descriptor length */
3659 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3660 
3661 	if (param_offset >= buff_len) {
3662 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3663 			__func__, param_offset, desc_id, buff_len);
3664 		ret = -EINVAL;
3665 		goto out;
3666 	}
3667 
3668 	/* Sanity check */
3669 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3670 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3671 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3672 		ret = -EINVAL;
3673 		goto out;
3674 	}
3675 
3676 	if (is_kmalloc) {
3677 		/* Make sure we don't copy more data than available */
3678 		if (param_offset >= buff_len)
3679 			ret = -EINVAL;
3680 		else
3681 			memcpy(param_read_buf, &desc_buf[param_offset],
3682 			       min_t(u32, param_size, buff_len - param_offset));
3683 	}
3684 out:
3685 	if (is_kmalloc)
3686 		kfree(desc_buf);
3687 	return ret;
3688 }
3689 
3690 /**
3691  * struct uc_string_id - unicode string
3692  *
3693  * @len: size of this descriptor inclusive
3694  * @type: descriptor type
3695  * @uc: unicode string character
3696  */
3697 struct uc_string_id {
3698 	u8 len;
3699 	u8 type;
3700 	wchar_t uc[];
3701 } __packed;
3702 
3703 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3704 static inline char ufshcd_remove_non_printable(u8 ch)
3705 {
3706 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3707 }
3708 
3709 /**
3710  * ufshcd_read_string_desc - read string descriptor
3711  * @hba: pointer to adapter instance
3712  * @desc_index: descriptor index
3713  * @buf: pointer to buffer where descriptor would be read,
3714  *       the caller should free the memory.
3715  * @ascii: if true convert from unicode to ascii characters
3716  *         null terminated string.
3717  *
3718  * Return:
3719  * *      string size on success.
3720  * *      -ENOMEM: on allocation failure
3721  * *      -EINVAL: on a wrong parameter
3722  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3723 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3724 			    u8 **buf, bool ascii)
3725 {
3726 	struct uc_string_id *uc_str;
3727 	u8 *str;
3728 	int ret;
3729 
3730 	if (!buf)
3731 		return -EINVAL;
3732 
3733 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3734 	if (!uc_str)
3735 		return -ENOMEM;
3736 
3737 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3738 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3739 	if (ret < 0) {
3740 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3741 			QUERY_REQ_RETRIES, ret);
3742 		str = NULL;
3743 		goto out;
3744 	}
3745 
3746 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3747 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3748 		str = NULL;
3749 		ret = 0;
3750 		goto out;
3751 	}
3752 
3753 	if (ascii) {
3754 		ssize_t ascii_len;
3755 		int i;
3756 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3757 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3758 		str = kzalloc(ascii_len, GFP_KERNEL);
3759 		if (!str) {
3760 			ret = -ENOMEM;
3761 			goto out;
3762 		}
3763 
3764 		/*
3765 		 * the descriptor contains string in UTF16 format
3766 		 * we need to convert to utf-8 so it can be displayed
3767 		 */
3768 		ret = utf16s_to_utf8s(uc_str->uc,
3769 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3770 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3771 
3772 		/* replace non-printable or non-ASCII characters with spaces */
3773 		for (i = 0; i < ret; i++)
3774 			str[i] = ufshcd_remove_non_printable(str[i]);
3775 
3776 		str[ret++] = '\0';
3777 
3778 	} else {
3779 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3780 		if (!str) {
3781 			ret = -ENOMEM;
3782 			goto out;
3783 		}
3784 		ret = uc_str->len;
3785 	}
3786 out:
3787 	*buf = str;
3788 	kfree(uc_str);
3789 	return ret;
3790 }
3791 
3792 /**
3793  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3794  * @hba: Pointer to adapter instance
3795  * @lun: lun id
3796  * @param_offset: offset of the parameter to read
3797  * @param_read_buf: pointer to buffer where parameter would be read
3798  * @param_size: sizeof(param_read_buf)
3799  *
3800  * Return: 0 in case of success, non-zero otherwise.
3801  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3802 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3803 					      int lun,
3804 					      enum unit_desc_param param_offset,
3805 					      u8 *param_read_buf,
3806 					      u32 param_size)
3807 {
3808 	/*
3809 	 * Unit descriptors are only available for general purpose LUs (LUN id
3810 	 * from 0 to 7) and RPMB Well known LU.
3811 	 */
3812 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3813 		return -EOPNOTSUPP;
3814 
3815 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3816 				      param_offset, param_read_buf, param_size);
3817 }
3818 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3819 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3820 {
3821 	int err = 0;
3822 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3823 
3824 	if (hba->dev_info.wspecversion >= 0x300) {
3825 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3826 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3827 				&gating_wait);
3828 		if (err)
3829 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3830 					 err, gating_wait);
3831 
3832 		if (gating_wait == 0) {
3833 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3834 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3835 					 gating_wait);
3836 		}
3837 
3838 		hba->dev_info.clk_gating_wait_us = gating_wait;
3839 	}
3840 
3841 	return err;
3842 }
3843 
3844 /**
3845  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3846  * @hba: per adapter instance
3847  *
3848  * 1. Allocate DMA memory for Command Descriptor array
3849  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3850  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3851  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3852  *	(UTMRDL)
3853  * 4. Allocate memory for local reference block(lrb).
3854  *
3855  * Return: 0 for success, non-zero in case of failure.
3856  */
ufshcd_memory_alloc(struct ufs_hba * hba)3857 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3858 {
3859 	size_t utmrdl_size, utrdl_size, ucdl_size;
3860 
3861 	/* Allocate memory for UTP command descriptors */
3862 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3863 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3864 						  ucdl_size,
3865 						  &hba->ucdl_dma_addr,
3866 						  GFP_KERNEL);
3867 
3868 	/*
3869 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3870 	 */
3871 	if (!hba->ucdl_base_addr ||
3872 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3873 		dev_err(hba->dev,
3874 			"Command Descriptor Memory allocation failed\n");
3875 		goto out;
3876 	}
3877 
3878 	/*
3879 	 * Allocate memory for UTP Transfer descriptors
3880 	 * UFSHCI requires 1KB alignment of UTRD
3881 	 */
3882 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3883 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3884 						   utrdl_size,
3885 						   &hba->utrdl_dma_addr,
3886 						   GFP_KERNEL);
3887 	if (!hba->utrdl_base_addr ||
3888 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3889 		dev_err(hba->dev,
3890 			"Transfer Descriptor Memory allocation failed\n");
3891 		goto out;
3892 	}
3893 
3894 	/*
3895 	 * Skip utmrdl allocation; it may have been
3896 	 * allocated during first pass and not released during
3897 	 * MCQ memory allocation.
3898 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3899 	 */
3900 	if (hba->utmrdl_base_addr)
3901 		goto skip_utmrdl;
3902 	/*
3903 	 * Allocate memory for UTP Task Management descriptors
3904 	 * UFSHCI requires 1KB alignment of UTMRD
3905 	 */
3906 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3907 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3908 						    utmrdl_size,
3909 						    &hba->utmrdl_dma_addr,
3910 						    GFP_KERNEL);
3911 	if (!hba->utmrdl_base_addr ||
3912 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3913 		dev_err(hba->dev,
3914 		"Task Management Descriptor Memory allocation failed\n");
3915 		goto out;
3916 	}
3917 
3918 skip_utmrdl:
3919 	/* Allocate memory for local reference block */
3920 	hba->lrb = devm_kcalloc(hba->dev,
3921 				hba->nutrs, sizeof(struct ufshcd_lrb),
3922 				GFP_KERNEL);
3923 	if (!hba->lrb) {
3924 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3925 		goto out;
3926 	}
3927 	return 0;
3928 out:
3929 	return -ENOMEM;
3930 }
3931 
3932 /**
3933  * ufshcd_host_memory_configure - configure local reference block with
3934  *				memory offsets
3935  * @hba: per adapter instance
3936  *
3937  * Configure Host memory space
3938  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3939  * address.
3940  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3941  * and PRDT offset.
3942  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3943  * into local reference block.
3944  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3945 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3946 {
3947 	struct utp_transfer_req_desc *utrdlp;
3948 	dma_addr_t cmd_desc_dma_addr;
3949 	dma_addr_t cmd_desc_element_addr;
3950 	u16 response_offset;
3951 	u16 prdt_offset;
3952 	int cmd_desc_size;
3953 	int i;
3954 
3955 	utrdlp = hba->utrdl_base_addr;
3956 
3957 	response_offset =
3958 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3959 	prdt_offset =
3960 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3961 
3962 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3963 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3964 
3965 	for (i = 0; i < hba->nutrs; i++) {
3966 		/* Configure UTRD with command descriptor base address */
3967 		cmd_desc_element_addr =
3968 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3969 		utrdlp[i].command_desc_base_addr =
3970 				cpu_to_le64(cmd_desc_element_addr);
3971 
3972 		/* Response upiu and prdt offset should be in double words */
3973 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3974 			utrdlp[i].response_upiu_offset =
3975 				cpu_to_le16(response_offset);
3976 			utrdlp[i].prd_table_offset =
3977 				cpu_to_le16(prdt_offset);
3978 			utrdlp[i].response_upiu_length =
3979 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3980 		} else {
3981 			utrdlp[i].response_upiu_offset =
3982 				cpu_to_le16(response_offset >> 2);
3983 			utrdlp[i].prd_table_offset =
3984 				cpu_to_le16(prdt_offset >> 2);
3985 			utrdlp[i].response_upiu_length =
3986 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3987 		}
3988 
3989 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3990 	}
3991 }
3992 
3993 /**
3994  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3995  * @hba: per adapter instance
3996  *
3997  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3998  * in order to initialize the Unipro link startup procedure.
3999  * Once the Unipro links are up, the device connected to the controller
4000  * is detected.
4001  *
4002  * Return: 0 on success, non-zero value on failure.
4003  */
ufshcd_dme_link_startup(struct ufs_hba * hba)4004 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
4005 {
4006 	struct uic_command uic_cmd = {
4007 		.command = UIC_CMD_DME_LINK_STARTUP,
4008 	};
4009 	int ret;
4010 
4011 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4012 	if (ret)
4013 		dev_dbg(hba->dev,
4014 			"dme-link-startup: error code %d\n", ret);
4015 	return ret;
4016 }
4017 /**
4018  * ufshcd_dme_reset - UIC command for DME_RESET
4019  * @hba: per adapter instance
4020  *
4021  * DME_RESET command is issued in order to reset UniPro stack.
4022  * This function now deals with cold reset.
4023  *
4024  * Return: 0 on success, non-zero value on failure.
4025  */
ufshcd_dme_reset(struct ufs_hba * hba)4026 int ufshcd_dme_reset(struct ufs_hba *hba)
4027 {
4028 	struct uic_command uic_cmd = {
4029 		.command = UIC_CMD_DME_RESET,
4030 	};
4031 	int ret;
4032 
4033 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4034 	if (ret)
4035 		dev_err(hba->dev,
4036 			"dme-reset: error code %d\n", ret);
4037 
4038 	return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(ufshcd_dme_reset);
4041 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)4042 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
4043 			       int agreed_gear,
4044 			       int adapt_val)
4045 {
4046 	int ret;
4047 
4048 	if (agreed_gear < UFS_HS_G4)
4049 		adapt_val = PA_NO_ADAPT;
4050 
4051 	ret = ufshcd_dme_set(hba,
4052 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
4053 			     adapt_val);
4054 	return ret;
4055 }
4056 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
4057 
4058 /**
4059  * ufshcd_dme_enable - UIC command for DME_ENABLE
4060  * @hba: per adapter instance
4061  *
4062  * DME_ENABLE command is issued in order to enable UniPro stack.
4063  *
4064  * Return: 0 on success, non-zero value on failure.
4065  */
ufshcd_dme_enable(struct ufs_hba * hba)4066 int ufshcd_dme_enable(struct ufs_hba *hba)
4067 {
4068 	struct uic_command uic_cmd = {
4069 		.command = UIC_CMD_DME_ENABLE,
4070 	};
4071 	int ret;
4072 
4073 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4074 	if (ret)
4075 		dev_err(hba->dev,
4076 			"dme-enable: error code %d\n", ret);
4077 
4078 	return ret;
4079 }
4080 EXPORT_SYMBOL_GPL(ufshcd_dme_enable);
4081 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)4082 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
4083 {
4084 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
4085 	unsigned long min_sleep_time_us;
4086 
4087 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
4088 		return;
4089 
4090 	/*
4091 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
4092 	 * this function
4093 	 */
4094 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
4095 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
4096 	} else {
4097 		unsigned long delta =
4098 			(unsigned long) ktime_to_us(
4099 				ktime_sub(ktime_get(),
4100 				hba->last_dme_cmd_tstamp));
4101 
4102 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
4103 			min_sleep_time_us =
4104 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
4105 		else
4106 			min_sleep_time_us = 0; /* no more delay required */
4107 	}
4108 
4109 	if (min_sleep_time_us > 0) {
4110 		/* allow sleep for extra 50us if needed */
4111 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
4112 	}
4113 
4114 	/* update the last_dme_cmd_tstamp */
4115 	hba->last_dme_cmd_tstamp = ktime_get();
4116 }
4117 
4118 /**
4119  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4120  * @hba: per adapter instance
4121  * @attr_sel: uic command argument1
4122  * @attr_set: attribute set type as uic command argument2
4123  * @mib_val: setting value as uic command argument3
4124  * @peer: indicate whether peer or local
4125  *
4126  * Return: 0 on success, non-zero value on failure.
4127  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4128 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4129 			u8 attr_set, u32 mib_val, u8 peer)
4130 {
4131 	struct uic_command uic_cmd = {
4132 		.command = peer ? UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET,
4133 		.argument1 = attr_sel,
4134 		.argument2 = UIC_ARG_ATTR_TYPE(attr_set),
4135 		.argument3 = mib_val,
4136 	};
4137 	static const char *const action[] = {
4138 		"dme-set",
4139 		"dme-peer-set"
4140 	};
4141 	const char *set = action[!!peer];
4142 	int ret;
4143 	int retries = UFS_UIC_COMMAND_RETRIES;
4144 
4145 	do {
4146 		/* for peer attributes we retry upon failure */
4147 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4148 		if (ret)
4149 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4150 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4151 	} while (ret && peer && --retries);
4152 
4153 	if (ret)
4154 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4155 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4156 			UFS_UIC_COMMAND_RETRIES - retries);
4157 
4158 	return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4161 
4162 /**
4163  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4164  * @hba: per adapter instance
4165  * @attr_sel: uic command argument1
4166  * @mib_val: the value of the attribute as returned by the UIC command
4167  * @peer: indicate whether peer or local
4168  *
4169  * Return: 0 on success, non-zero value on failure.
4170  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4171 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4172 			u32 *mib_val, u8 peer)
4173 {
4174 	struct uic_command uic_cmd = {
4175 		.command = peer ? UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET,
4176 		.argument1 = attr_sel,
4177 	};
4178 	static const char *const action[] = {
4179 		"dme-get",
4180 		"dme-peer-get"
4181 	};
4182 	const char *get = action[!!peer];
4183 	int ret;
4184 	int retries = UFS_UIC_COMMAND_RETRIES;
4185 	struct ufs_pa_layer_attr orig_pwr_info;
4186 	struct ufs_pa_layer_attr temp_pwr_info;
4187 	bool pwr_mode_change = false;
4188 
4189 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4190 		orig_pwr_info = hba->pwr_info;
4191 		temp_pwr_info = orig_pwr_info;
4192 
4193 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4194 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4195 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4196 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4197 			pwr_mode_change = true;
4198 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4199 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4200 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4201 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4202 			pwr_mode_change = true;
4203 		}
4204 		if (pwr_mode_change) {
4205 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4206 			if (ret)
4207 				goto out;
4208 		}
4209 	}
4210 
4211 	do {
4212 		/* for peer attributes we retry upon failure */
4213 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4214 		if (ret)
4215 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4216 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4217 	} while (ret && peer && --retries);
4218 
4219 	if (ret)
4220 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4221 			get, UIC_GET_ATTR_ID(attr_sel),
4222 			UFS_UIC_COMMAND_RETRIES - retries);
4223 
4224 	if (mib_val && !ret)
4225 		*mib_val = uic_cmd.argument3;
4226 
4227 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4228 	    && pwr_mode_change)
4229 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4230 out:
4231 	return ret;
4232 }
4233 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4234 
4235 /**
4236  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4237  * state) and waits for it to take effect.
4238  *
4239  * @hba: per adapter instance
4240  * @cmd: UIC command to execute
4241  *
4242  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4243  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4244  * and device UniPro link and hence it's final completion would be indicated by
4245  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4246  * addition to normal UIC command completion Status (UCCS). This function only
4247  * returns after the relevant status bits indicate the completion.
4248  *
4249  * Return: 0 on success, non-zero value on failure.
4250  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4251 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4252 {
4253 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4254 	unsigned long flags;
4255 	u8 status;
4256 	int ret;
4257 	bool reenable_intr = false;
4258 
4259 	mutex_lock(&hba->uic_cmd_mutex);
4260 	ufshcd_add_delay_before_dme_cmd(hba);
4261 
4262 	spin_lock_irqsave(hba->host->host_lock, flags);
4263 	if (ufshcd_is_link_broken(hba)) {
4264 		ret = -ENOLINK;
4265 		goto out_unlock;
4266 	}
4267 	hba->uic_async_done = &uic_async_done;
4268 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4269 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4270 		/*
4271 		 * Make sure UIC command completion interrupt is disabled before
4272 		 * issuing UIC command.
4273 		 */
4274 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4275 		reenable_intr = true;
4276 	}
4277 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4278 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4279 	if (ret) {
4280 		dev_err(hba->dev,
4281 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4282 			cmd->command, cmd->argument3, ret);
4283 		goto out;
4284 	}
4285 
4286 	if (!wait_for_completion_timeout(hba->uic_async_done,
4287 					 msecs_to_jiffies(uic_cmd_timeout))) {
4288 		dev_err(hba->dev,
4289 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4290 			cmd->command, cmd->argument3);
4291 
4292 		if (!cmd->cmd_active) {
4293 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4294 				__func__);
4295 			goto check_upmcrs;
4296 		}
4297 
4298 		ret = -ETIMEDOUT;
4299 		goto out;
4300 	}
4301 
4302 check_upmcrs:
4303 	status = ufshcd_get_upmcrs(hba);
4304 	if (status != PWR_LOCAL) {
4305 		dev_err(hba->dev,
4306 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4307 			cmd->command, status);
4308 		ret = (status != PWR_OK) ? status : -1;
4309 	}
4310 out:
4311 	if (ret) {
4312 		ufshcd_print_host_state(hba);
4313 		ufshcd_print_pwr_info(hba);
4314 		ufshcd_print_evt_hist(hba);
4315 	}
4316 
4317 	spin_lock_irqsave(hba->host->host_lock, flags);
4318 	hba->active_uic_cmd = NULL;
4319 	hba->uic_async_done = NULL;
4320 	if (reenable_intr)
4321 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4322 	if (ret) {
4323 		ufshcd_set_link_broken(hba);
4324 		ufshcd_schedule_eh_work(hba);
4325 	}
4326 out_unlock:
4327 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4328 	mutex_unlock(&hba->uic_cmd_mutex);
4329 
4330 	return ret;
4331 }
4332 
4333 /**
4334  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4335  * @hba: per adapter instance
4336  * @uic_cmd: UIC command
4337  *
4338  * Return: 0 only if success.
4339  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4340 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4341 {
4342 	int ret;
4343 
4344 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4345 		return 0;
4346 
4347 	ufshcd_hold(hba);
4348 
4349 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4350 	    uic_cmd->command == UIC_CMD_DME_SET) {
4351 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4352 		goto out;
4353 	}
4354 
4355 	mutex_lock(&hba->uic_cmd_mutex);
4356 	ufshcd_add_delay_before_dme_cmd(hba);
4357 
4358 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4359 	if (!ret)
4360 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4361 
4362 	mutex_unlock(&hba->uic_cmd_mutex);
4363 
4364 out:
4365 	ufshcd_release(hba);
4366 	return ret;
4367 }
4368 
4369 /**
4370  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4371  *				using DME_SET primitives.
4372  * @hba: per adapter instance
4373  * @mode: powr mode value
4374  *
4375  * Return: 0 on success, non-zero value on failure.
4376  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4377 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4378 {
4379 	struct uic_command uic_cmd = {
4380 		.command = UIC_CMD_DME_SET,
4381 		.argument1 = UIC_ARG_MIB(PA_PWRMODE),
4382 		.argument3 = mode,
4383 	};
4384 	int ret;
4385 
4386 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4387 		ret = ufshcd_dme_set(hba,
4388 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4389 		if (ret) {
4390 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4391 						__func__, ret);
4392 			goto out;
4393 		}
4394 	}
4395 
4396 	ufshcd_hold(hba);
4397 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4398 	ufshcd_release(hba);
4399 
4400 out:
4401 	return ret;
4402 }
4403 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4404 
ufshcd_link_recovery(struct ufs_hba * hba)4405 int ufshcd_link_recovery(struct ufs_hba *hba)
4406 {
4407 	int ret;
4408 	unsigned long flags;
4409 
4410 	spin_lock_irqsave(hba->host->host_lock, flags);
4411 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4412 	ufshcd_set_eh_in_progress(hba);
4413 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4414 
4415 	/* Reset the attached device */
4416 	ufshcd_device_reset(hba);
4417 
4418 	ret = ufshcd_host_reset_and_restore(hba);
4419 
4420 	spin_lock_irqsave(hba->host->host_lock, flags);
4421 	if (ret)
4422 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4423 	ufshcd_clear_eh_in_progress(hba);
4424 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4425 
4426 	if (ret)
4427 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4428 			__func__, ret);
4429 
4430 	return ret;
4431 }
4432 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4433 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4434 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4435 {
4436 	struct uic_command uic_cmd = {
4437 		.command = UIC_CMD_DME_HIBER_ENTER,
4438 	};
4439 	ktime_t start = ktime_get();
4440 	int ret;
4441 
4442 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4443 
4444 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4445 	trace_ufshcd_profile_hibern8(hba, "enter",
4446 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4447 
4448 	if (ret)
4449 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4450 			__func__, ret);
4451 	else
4452 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4453 								POST_CHANGE);
4454 
4455 	return ret;
4456 }
4457 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4458 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4459 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4460 {
4461 	struct uic_command uic_cmd = {
4462 		.command = UIC_CMD_DME_HIBER_EXIT,
4463 	};
4464 	int ret;
4465 	ktime_t start = ktime_get();
4466 
4467 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4468 
4469 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4470 	trace_ufshcd_profile_hibern8(hba, "exit",
4471 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4472 
4473 	if (ret) {
4474 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4475 			__func__, ret);
4476 	} else {
4477 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4478 								POST_CHANGE);
4479 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4480 		hba->ufs_stats.hibern8_exit_cnt++;
4481 	}
4482 
4483 	return ret;
4484 }
4485 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4486 
ufshcd_configure_auto_hibern8(struct ufs_hba * hba)4487 static void ufshcd_configure_auto_hibern8(struct ufs_hba *hba)
4488 {
4489 	if (!ufshcd_is_auto_hibern8_supported(hba))
4490 		return;
4491 
4492 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4493 }
4494 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4495 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4496 {
4497 	const u32 cur_ahit = READ_ONCE(hba->ahit);
4498 
4499 	if (!ufshcd_is_auto_hibern8_supported(hba) || cur_ahit == ahit)
4500 		return;
4501 
4502 	WRITE_ONCE(hba->ahit, ahit);
4503 	if (!pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4504 		ufshcd_rpm_get_sync(hba);
4505 		ufshcd_hold(hba);
4506 		ufshcd_configure_auto_hibern8(hba);
4507 		ufshcd_release(hba);
4508 		ufshcd_rpm_put_sync(hba);
4509 	}
4510 }
4511 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4512 
4513  /**
4514  * ufshcd_init_pwr_info - setting the POR (power on reset)
4515  * values in hba power info
4516  * @hba: per-adapter instance
4517  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4518 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4519 {
4520 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4521 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4522 	hba->pwr_info.lane_rx = UFS_LANE_1;
4523 	hba->pwr_info.lane_tx = UFS_LANE_1;
4524 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4525 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4526 	hba->pwr_info.hs_rate = 0;
4527 }
4528 
4529 /**
4530  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4531  * @hba: per-adapter instance
4532  *
4533  * Return: 0 upon success; < 0 upon failure.
4534  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4535 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4536 {
4537 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4538 
4539 	if (hba->max_pwr_info.is_valid)
4540 		return 0;
4541 
4542 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4543 		pwr_info->pwr_tx = FASTAUTO_MODE;
4544 		pwr_info->pwr_rx = FASTAUTO_MODE;
4545 	} else {
4546 		pwr_info->pwr_tx = FAST_MODE;
4547 		pwr_info->pwr_rx = FAST_MODE;
4548 	}
4549 	pwr_info->hs_rate = PA_HS_MODE_B;
4550 
4551 	/* Get the connected lane count */
4552 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4553 			&pwr_info->lane_rx);
4554 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4555 			&pwr_info->lane_tx);
4556 
4557 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4558 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4559 				__func__,
4560 				pwr_info->lane_rx,
4561 				pwr_info->lane_tx);
4562 		return -EINVAL;
4563 	}
4564 
4565 	if (pwr_info->lane_rx != pwr_info->lane_tx) {
4566 		dev_err(hba->dev, "%s: asymmetric connected lanes. rx=%d, tx=%d\n",
4567 			__func__,
4568 				pwr_info->lane_rx,
4569 				pwr_info->lane_tx);
4570 		return -EINVAL;
4571 	}
4572 
4573 	/*
4574 	 * First, get the maximum gears of HS speed.
4575 	 * If a zero value, it means there is no HSGEAR capability.
4576 	 * Then, get the maximum gears of PWM speed.
4577 	 */
4578 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4579 	if (!pwr_info->gear_rx) {
4580 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4581 				&pwr_info->gear_rx);
4582 		if (!pwr_info->gear_rx) {
4583 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4584 				__func__, pwr_info->gear_rx);
4585 			return -EINVAL;
4586 		}
4587 		pwr_info->pwr_rx = SLOW_MODE;
4588 	}
4589 
4590 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4591 			&pwr_info->gear_tx);
4592 	if (!pwr_info->gear_tx) {
4593 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4594 				&pwr_info->gear_tx);
4595 		if (!pwr_info->gear_tx) {
4596 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4597 				__func__, pwr_info->gear_tx);
4598 			return -EINVAL;
4599 		}
4600 		pwr_info->pwr_tx = SLOW_MODE;
4601 	}
4602 
4603 	hba->max_pwr_info.is_valid = true;
4604 	return 0;
4605 }
4606 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4607 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4608 			     struct ufs_pa_layer_attr *pwr_mode)
4609 {
4610 	int ret;
4611 
4612 	/* if already configured to the requested pwr_mode */
4613 	if (!hba->force_pmc &&
4614 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4615 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4616 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4617 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4618 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4619 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4620 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4621 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4622 		return 0;
4623 	}
4624 
4625 	/*
4626 	 * Configure attributes for power mode change with below.
4627 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4628 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4629 	 * - PA_HSSERIES
4630 	 */
4631 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4632 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4633 			pwr_mode->lane_rx);
4634 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4635 			pwr_mode->pwr_rx == FAST_MODE)
4636 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4637 	else
4638 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4639 
4640 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4641 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4642 			pwr_mode->lane_tx);
4643 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4644 			pwr_mode->pwr_tx == FAST_MODE)
4645 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4646 	else
4647 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4648 
4649 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4650 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4651 	    pwr_mode->pwr_rx == FAST_MODE ||
4652 	    pwr_mode->pwr_tx == FAST_MODE)
4653 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4654 						pwr_mode->hs_rate);
4655 
4656 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4657 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4658 				DL_FC0ProtectionTimeOutVal_Default);
4659 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4660 				DL_TC0ReplayTimeOutVal_Default);
4661 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4662 				DL_AFC0ReqTimeOutVal_Default);
4663 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4664 				DL_FC1ProtectionTimeOutVal_Default);
4665 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4666 				DL_TC1ReplayTimeOutVal_Default);
4667 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4668 				DL_AFC1ReqTimeOutVal_Default);
4669 
4670 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4671 				DL_FC0ProtectionTimeOutVal_Default);
4672 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4673 				DL_TC0ReplayTimeOutVal_Default);
4674 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4675 				DL_AFC0ReqTimeOutVal_Default);
4676 	}
4677 
4678 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4679 			| pwr_mode->pwr_tx);
4680 
4681 	if (ret) {
4682 		dev_err(hba->dev,
4683 			"%s: power mode change failed %d\n", __func__, ret);
4684 	} else {
4685 		memcpy(&hba->pwr_info, pwr_mode,
4686 			sizeof(struct ufs_pa_layer_attr));
4687 	}
4688 
4689 	return ret;
4690 }
4691 
4692 /**
4693  * ufshcd_config_pwr_mode - configure a new power mode
4694  * @hba: per-adapter instance
4695  * @desired_pwr_mode: desired power configuration
4696  *
4697  * Return: 0 upon success; < 0 upon failure.
4698  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4699 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4700 		struct ufs_pa_layer_attr *desired_pwr_mode)
4701 {
4702 	struct ufs_pa_layer_attr final_params = { 0 };
4703 	int ret;
4704 
4705 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4706 					desired_pwr_mode, &final_params);
4707 
4708 	if (ret)
4709 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4710 
4711 	ret = ufshcd_change_power_mode(hba, &final_params);
4712 
4713 	if (!ret)
4714 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4715 					&final_params);
4716 
4717 	return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4720 
4721 /**
4722  * ufshcd_complete_dev_init() - checks device readiness
4723  * @hba: per-adapter instance
4724  *
4725  * Set fDeviceInit flag and poll until device toggles it.
4726  *
4727  * Return: 0 upon success; < 0 upon failure.
4728  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4729 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4730 {
4731 	int err;
4732 	bool flag_res = true;
4733 	ktime_t timeout;
4734 
4735 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4736 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4737 	if (err) {
4738 		dev_err(hba->dev,
4739 			"%s: setting fDeviceInit flag failed with error %d\n",
4740 			__func__, err);
4741 		goto out;
4742 	}
4743 
4744 	/* Poll fDeviceInit flag to be cleared */
4745 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4746 	do {
4747 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4748 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4749 		if (!flag_res)
4750 			break;
4751 		usleep_range(500, 1000);
4752 	} while (ktime_before(ktime_get(), timeout));
4753 
4754 	if (err) {
4755 		dev_err(hba->dev,
4756 				"%s: reading fDeviceInit flag failed with error %d\n",
4757 				__func__, err);
4758 	} else if (flag_res) {
4759 		dev_err(hba->dev,
4760 				"%s: fDeviceInit was not cleared by the device\n",
4761 				__func__);
4762 		err = -EBUSY;
4763 	}
4764 out:
4765 	return err;
4766 }
4767 
4768 /**
4769  * ufshcd_make_hba_operational - Make UFS controller operational
4770  * @hba: per adapter instance
4771  *
4772  * To bring UFS host controller to operational state,
4773  * 1. Enable required interrupts
4774  * 2. Configure interrupt aggregation
4775  * 3. Program UTRL and UTMRL base address
4776  * 4. Configure run-stop-registers
4777  *
4778  * Return: 0 on success, non-zero value on failure.
4779  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4780 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4781 {
4782 	int err = 0;
4783 	u32 reg;
4784 
4785 	/* Enable required interrupts */
4786 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4787 
4788 	/* Configure interrupt aggregation */
4789 	if (ufshcd_is_intr_aggr_allowed(hba))
4790 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4791 	else
4792 		ufshcd_disable_intr_aggr(hba);
4793 
4794 	/* Configure UTRL and UTMRL base address registers */
4795 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4796 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4797 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4798 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4799 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4800 			REG_UTP_TASK_REQ_LIST_BASE_L);
4801 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4802 			REG_UTP_TASK_REQ_LIST_BASE_H);
4803 
4804 	/*
4805 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4806 	 */
4807 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4808 	if (!(ufshcd_get_lists_status(reg))) {
4809 		ufshcd_enable_run_stop_reg(hba);
4810 	} else {
4811 		dev_err(hba->dev,
4812 			"Host controller not ready to process requests");
4813 		err = -EIO;
4814 	}
4815 
4816 	return err;
4817 }
4818 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4819 
4820 /**
4821  * ufshcd_hba_stop - Send controller to reset state
4822  * @hba: per adapter instance
4823  */
ufshcd_hba_stop(struct ufs_hba * hba)4824 void ufshcd_hba_stop(struct ufs_hba *hba)
4825 {
4826 	int err;
4827 
4828 	ufshcd_disable_irq(hba);
4829 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4830 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4831 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4832 					10, 1);
4833 	ufshcd_enable_irq(hba);
4834 	if (err)
4835 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4836 }
4837 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4838 
4839 /**
4840  * ufshcd_hba_execute_hce - initialize the controller
4841  * @hba: per adapter instance
4842  *
4843  * The controller resets itself and controller firmware initialization
4844  * sequence kicks off. When controller is ready it will set
4845  * the Host Controller Enable bit to 1.
4846  *
4847  * Return: 0 on success, non-zero value on failure.
4848  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4849 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4850 {
4851 	int retry;
4852 
4853 	for (retry = 3; retry > 0; retry--) {
4854 		if (ufshcd_is_hba_active(hba))
4855 			/* change controller state to "reset state" */
4856 			ufshcd_hba_stop(hba);
4857 
4858 		/* UniPro link is disabled at this point */
4859 		ufshcd_set_link_off(hba);
4860 
4861 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4862 
4863 		/* start controller initialization sequence */
4864 		ufshcd_hba_start(hba);
4865 
4866 		/*
4867 		 * To initialize a UFS host controller HCE bit must be set to 1.
4868 		 * During initialization the HCE bit value changes from 1->0->1.
4869 		 * When the host controller completes initialization sequence
4870 		 * it sets the value of HCE bit to 1. The same HCE bit is read back
4871 		 * to check if the controller has completed initialization sequence.
4872 		 * So without this delay the value HCE = 1, set in the previous
4873 		 * instruction might be read back.
4874 		 * This delay can be changed based on the controller.
4875 		 */
4876 		ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4877 
4878 		/* wait for the host controller to complete initialization */
4879 		if (!ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, CONTROLLER_ENABLE,
4880 					      CONTROLLER_ENABLE, 1000, 50))
4881 			break;
4882 
4883 		dev_err(hba->dev, "Enabling the controller failed\n");
4884 	}
4885 
4886 	if (!retry)
4887 		return -EIO;
4888 
4889 	/* enable UIC related interrupts */
4890 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4891 
4892 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4893 
4894 	return 0;
4895 }
4896 
ufshcd_hba_enable(struct ufs_hba * hba)4897 int ufshcd_hba_enable(struct ufs_hba *hba)
4898 {
4899 	int ret;
4900 
4901 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4902 		ufshcd_set_link_off(hba);
4903 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4904 
4905 		/* enable UIC related interrupts */
4906 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4907 		ret = ufshcd_dme_reset(hba);
4908 		if (ret) {
4909 			dev_err(hba->dev, "DME_RESET failed\n");
4910 			return ret;
4911 		}
4912 
4913 		ret = ufshcd_dme_enable(hba);
4914 		if (ret) {
4915 			dev_err(hba->dev, "Enabling DME failed\n");
4916 			return ret;
4917 		}
4918 
4919 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4920 	} else {
4921 		ret = ufshcd_hba_execute_hce(hba);
4922 	}
4923 
4924 	return ret;
4925 }
4926 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4927 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4928 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4929 {
4930 	int tx_lanes = 0, i, err = 0;
4931 
4932 	if (!peer)
4933 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4934 			       &tx_lanes);
4935 	else
4936 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4937 				    &tx_lanes);
4938 	for (i = 0; i < tx_lanes; i++) {
4939 		if (!peer)
4940 			err = ufshcd_dme_set(hba,
4941 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4942 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4943 					0);
4944 		else
4945 			err = ufshcd_dme_peer_set(hba,
4946 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4947 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4948 					0);
4949 		if (err) {
4950 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4951 				__func__, peer, i, err);
4952 			break;
4953 		}
4954 	}
4955 
4956 	return err;
4957 }
4958 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4959 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4960 {
4961 	return ufshcd_disable_tx_lcc(hba, true);
4962 }
4963 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4964 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4965 {
4966 	struct ufs_event_hist *e;
4967 
4968 	if (id >= UFS_EVT_CNT)
4969 		return;
4970 
4971 	e = &hba->ufs_stats.event[id];
4972 	e->val[e->pos] = val;
4973 	e->tstamp[e->pos] = local_clock();
4974 	e->cnt += 1;
4975 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4976 
4977 	ufshcd_vops_event_notify(hba, id, &val);
4978 }
4979 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4980 
4981 /**
4982  * ufshcd_link_startup - Initialize unipro link startup
4983  * @hba: per adapter instance
4984  *
4985  * Return: 0 for success, non-zero in case of failure.
4986  */
ufshcd_link_startup(struct ufs_hba * hba)4987 static int ufshcd_link_startup(struct ufs_hba *hba)
4988 {
4989 	int ret;
4990 	int retries = DME_LINKSTARTUP_RETRIES;
4991 	bool link_startup_again = false;
4992 
4993 	/*
4994 	 * If UFS device isn't active then we will have to issue link startup
4995 	 * 2 times to make sure the device state move to active.
4996 	 */
4997 	if (!ufshcd_is_ufs_dev_active(hba))
4998 		link_startup_again = true;
4999 
5000 link_startup:
5001 	do {
5002 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
5003 
5004 		ret = ufshcd_dme_link_startup(hba);
5005 
5006 		/* check if device is detected by inter-connect layer */
5007 		if (!ret && !ufshcd_is_device_present(hba)) {
5008 			ufshcd_update_evt_hist(hba,
5009 					       UFS_EVT_LINK_STARTUP_FAIL,
5010 					       0);
5011 			dev_err(hba->dev, "%s: Device not present\n", __func__);
5012 			ret = -ENXIO;
5013 			goto out;
5014 		}
5015 
5016 		/*
5017 		 * DME link lost indication is only received when link is up,
5018 		 * but we can't be sure if the link is up until link startup
5019 		 * succeeds. So reset the local Uni-Pro and try again.
5020 		 */
5021 		if (ret && retries && ufshcd_hba_enable(hba)) {
5022 			ufshcd_update_evt_hist(hba,
5023 					       UFS_EVT_LINK_STARTUP_FAIL,
5024 					       (u32)ret);
5025 			goto out;
5026 		}
5027 	} while (ret && retries--);
5028 
5029 	if (ret) {
5030 		/* failed to get the link up... retire */
5031 		ufshcd_update_evt_hist(hba,
5032 				       UFS_EVT_LINK_STARTUP_FAIL,
5033 				       (u32)ret);
5034 		goto out;
5035 	}
5036 
5037 	if (link_startup_again) {
5038 		link_startup_again = false;
5039 		retries = DME_LINKSTARTUP_RETRIES;
5040 		goto link_startup;
5041 	}
5042 
5043 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
5044 	ufshcd_init_pwr_info(hba);
5045 	ufshcd_print_pwr_info(hba);
5046 
5047 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
5048 		ret = ufshcd_disable_device_tx_lcc(hba);
5049 		if (ret)
5050 			goto out;
5051 	}
5052 
5053 	/* Include any host controller configuration via UIC commands */
5054 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
5055 	if (ret)
5056 		goto out;
5057 
5058 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
5059 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
5060 	ret = ufshcd_make_hba_operational(hba);
5061 out:
5062 	if (ret) {
5063 		dev_err(hba->dev, "link startup failed %d\n", ret);
5064 		ufshcd_print_host_state(hba);
5065 		ufshcd_print_pwr_info(hba);
5066 		ufshcd_print_evt_hist(hba);
5067 	}
5068 	return ret;
5069 }
5070 
5071 /**
5072  * ufshcd_verify_dev_init() - Verify device initialization
5073  * @hba: per-adapter instance
5074  *
5075  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
5076  * device Transport Protocol (UTP) layer is ready after a reset.
5077  * If the UTP layer at the device side is not initialized, it may
5078  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
5079  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
5080  *
5081  * Return: 0 upon success; < 0 upon failure.
5082  */
ufshcd_verify_dev_init(struct ufs_hba * hba)5083 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
5084 {
5085 	int err = 0;
5086 	int retries;
5087 
5088 	ufshcd_dev_man_lock(hba);
5089 
5090 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
5091 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
5092 					  hba->nop_out_timeout);
5093 
5094 		if (!err || err == -ETIMEDOUT)
5095 			break;
5096 
5097 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5098 	}
5099 
5100 	ufshcd_dev_man_unlock(hba);
5101 
5102 	if (err)
5103 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5104 	return err;
5105 }
5106 
5107 /**
5108  * ufshcd_setup_links - associate link b/w device wlun and other luns
5109  * @sdev: pointer to SCSI device
5110  * @hba: pointer to ufs hba
5111  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5112 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5113 {
5114 	struct device_link *link;
5115 
5116 	/*
5117 	 * Device wlun is the supplier & rest of the luns are consumers.
5118 	 * This ensures that device wlun suspends after all other luns.
5119 	 */
5120 	if (hba->ufs_device_wlun) {
5121 		link = device_link_add(&sdev->sdev_gendev,
5122 				       &hba->ufs_device_wlun->sdev_gendev,
5123 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5124 		if (!link) {
5125 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5126 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5127 			return;
5128 		}
5129 		hba->luns_avail--;
5130 		/* Ignore REPORT_LUN wlun probing */
5131 		if (hba->luns_avail == 1) {
5132 			ufshcd_rpm_put(hba);
5133 			return;
5134 		}
5135 	} else {
5136 		/*
5137 		 * Device wlun is probed. The assumption is that WLUNs are
5138 		 * scanned before other LUNs.
5139 		 */
5140 		hba->luns_avail--;
5141 	}
5142 }
5143 
5144 /**
5145  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5146  * @hba: per-adapter instance
5147  * @sdev: pointer to SCSI device
5148  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5149 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5150 {
5151 	int len = QUERY_DESC_MAX_SIZE;
5152 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5153 	u8 lun_qdepth = hba->nutrs;
5154 	u8 *desc_buf;
5155 	int ret;
5156 
5157 	desc_buf = kzalloc(len, GFP_KERNEL);
5158 	if (!desc_buf)
5159 		goto set_qdepth;
5160 
5161 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5162 	if (ret < 0) {
5163 		if (ret == -EOPNOTSUPP)
5164 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5165 			lun_qdepth = 1;
5166 		kfree(desc_buf);
5167 		goto set_qdepth;
5168 	}
5169 
5170 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5171 		/*
5172 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5173 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5174 		 */
5175 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5176 	}
5177 	/*
5178 	 * According to UFS device specification, the write protection mode is only supported by
5179 	 * normal LU, not supported by WLUN.
5180 	 */
5181 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5182 	    !hba->dev_info.is_lu_power_on_wp &&
5183 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5184 		hba->dev_info.is_lu_power_on_wp = true;
5185 
5186 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5187 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5188 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5189 		hba->dev_info.b_advanced_rpmb_en = true;
5190 
5191 
5192 	kfree(desc_buf);
5193 set_qdepth:
5194 	/*
5195 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5196 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5197 	 */
5198 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5199 	scsi_change_queue_depth(sdev, lun_qdepth);
5200 }
5201 
5202 /**
5203  * ufshcd_sdev_init - handle initial SCSI device configurations
5204  * @sdev: pointer to SCSI device
5205  *
5206  * Return: success.
5207  */
ufshcd_sdev_init(struct scsi_device * sdev)5208 static int ufshcd_sdev_init(struct scsi_device *sdev)
5209 {
5210 	struct ufs_hba *hba;
5211 
5212 	hba = shost_priv(sdev->host);
5213 
5214 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5215 	sdev->use_10_for_ms = 1;
5216 
5217 	/* DBD field should be set to 1 in mode sense(10) */
5218 	sdev->set_dbd_for_ms = 1;
5219 
5220 	/* allow SCSI layer to restart the device in case of errors */
5221 	sdev->allow_restart = 1;
5222 
5223 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5224 	sdev->no_report_opcodes = 1;
5225 
5226 	/* WRITE_SAME command is not supported */
5227 	sdev->no_write_same = 1;
5228 
5229 	ufshcd_lu_init(hba, sdev);
5230 
5231 	ufshcd_setup_links(hba, sdev);
5232 
5233 	return 0;
5234 }
5235 
5236 /**
5237  * ufshcd_change_queue_depth - change queue depth
5238  * @sdev: pointer to SCSI device
5239  * @depth: required depth to set
5240  *
5241  * Change queue depth and make sure the max. limits are not crossed.
5242  *
5243  * Return: new queue depth.
5244  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5245 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5246 {
5247 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5248 }
5249 
5250 /**
5251  * ufshcd_sdev_configure - adjust SCSI device configurations
5252  * @sdev: pointer to SCSI device
5253  * @lim: queue limits
5254  *
5255  * Return: 0 (success).
5256  */
ufshcd_sdev_configure(struct scsi_device * sdev,struct queue_limits * lim)5257 static int ufshcd_sdev_configure(struct scsi_device *sdev,
5258 				 struct queue_limits *lim)
5259 {
5260 	struct ufs_hba *hba = shost_priv(sdev->host);
5261 	struct request_queue *q = sdev->request_queue;
5262 
5263 	lim->dma_pad_mask = PRDT_DATA_BYTE_COUNT_PAD - 1;
5264 
5265 	/*
5266 	 * Block runtime-pm until all consumers are added.
5267 	 * Refer ufshcd_setup_links().
5268 	 */
5269 	if (is_device_wlun(sdev))
5270 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5271 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5272 		sdev->rpm_autosuspend = 1;
5273 	/*
5274 	 * Do not print messages during runtime PM to avoid never-ending cycles
5275 	 * of messages written back to storage by user space causing runtime
5276 	 * resume, causing more messages and so on.
5277 	 */
5278 	sdev->silence_suspend = 1;
5279 
5280 	if (hba->vops && hba->vops->config_scsi_dev)
5281 		hba->vops->config_scsi_dev(sdev);
5282 
5283 	ufshcd_crypto_register(hba, q);
5284 
5285 	return 0;
5286 }
5287 
5288 /**
5289  * ufshcd_sdev_destroy - remove SCSI device configurations
5290  * @sdev: pointer to SCSI device
5291  */
ufshcd_sdev_destroy(struct scsi_device * sdev)5292 static void ufshcd_sdev_destroy(struct scsi_device *sdev)
5293 {
5294 	struct ufs_hba *hba;
5295 	unsigned long flags;
5296 
5297 	hba = shost_priv(sdev->host);
5298 
5299 	/* Drop the reference as it won't be needed anymore */
5300 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5301 		spin_lock_irqsave(hba->host->host_lock, flags);
5302 		hba->ufs_device_wlun = NULL;
5303 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5304 	} else if (hba->ufs_device_wlun) {
5305 		struct device *supplier = NULL;
5306 
5307 		/* Ensure UFS Device WLUN exists and does not disappear */
5308 		spin_lock_irqsave(hba->host->host_lock, flags);
5309 		if (hba->ufs_device_wlun) {
5310 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5311 			get_device(supplier);
5312 		}
5313 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5314 
5315 		if (supplier) {
5316 			/*
5317 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5318 			 * device will not have been registered but can still
5319 			 * have a device link holding a reference to the device.
5320 			 */
5321 			device_link_remove(&sdev->sdev_gendev, supplier);
5322 			put_device(supplier);
5323 		}
5324 	}
5325 }
5326 
5327 /**
5328  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5329  * @lrbp: pointer to local reference block of completed command
5330  * @scsi_status: SCSI command status
5331  *
5332  * Return: value base on SCSI command status.
5333  */
5334 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5335 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5336 {
5337 	int result = 0;
5338 
5339 	switch (scsi_status) {
5340 	case SAM_STAT_CHECK_CONDITION:
5341 		ufshcd_copy_sense_data(lrbp);
5342 		fallthrough;
5343 	case SAM_STAT_GOOD:
5344 		result |= DID_OK << 16 | scsi_status;
5345 		break;
5346 	case SAM_STAT_TASK_SET_FULL:
5347 	case SAM_STAT_BUSY:
5348 	case SAM_STAT_TASK_ABORTED:
5349 		ufshcd_copy_sense_data(lrbp);
5350 		result |= scsi_status;
5351 		break;
5352 	default:
5353 		result |= DID_ERROR << 16;
5354 		break;
5355 	} /* end of switch */
5356 
5357 	return result;
5358 }
5359 
5360 /**
5361  * ufshcd_transfer_rsp_status - Get overall status of the response
5362  * @hba: per adapter instance
5363  * @lrbp: pointer to local reference block of completed command
5364  * @cqe: pointer to the completion queue entry
5365  *
5366  * Return: result of the command to notify SCSI midlayer.
5367  */
5368 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5369 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5370 			   struct cq_entry *cqe)
5371 {
5372 	int result = 0;
5373 	int scsi_status;
5374 	enum utp_ocs ocs;
5375 	u8 upiu_flags;
5376 	u32 resid;
5377 
5378 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5379 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5380 	/*
5381 	 * Test !overflow instead of underflow to support UFS devices that do
5382 	 * not set either flag.
5383 	 */
5384 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5385 		scsi_set_resid(lrbp->cmd, resid);
5386 
5387 	/* overall command status of utrd */
5388 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5389 
5390 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5391 		if (lrbp->ucd_rsp_ptr->header.response ||
5392 		    lrbp->ucd_rsp_ptr->header.status)
5393 			ocs = OCS_SUCCESS;
5394 	}
5395 
5396 	switch (ocs) {
5397 	case OCS_SUCCESS:
5398 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5399 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5400 		case UPIU_TRANSACTION_RESPONSE:
5401 			/*
5402 			 * get the result based on SCSI status response
5403 			 * to notify the SCSI midlayer of the command status
5404 			 */
5405 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5406 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5407 
5408 			/*
5409 			 * Currently we are only supporting BKOPs exception
5410 			 * events hence we can ignore BKOPs exception event
5411 			 * during power management callbacks. BKOPs exception
5412 			 * event is not expected to be raised in runtime suspend
5413 			 * callback as it allows the urgent bkops.
5414 			 * During system suspend, we are anyway forcefully
5415 			 * disabling the bkops and if urgent bkops is needed
5416 			 * it will be enabled on system resume. Long term
5417 			 * solution could be to abort the system suspend if
5418 			 * UFS device needs urgent BKOPs.
5419 			 */
5420 			if (!hba->pm_op_in_progress &&
5421 			    !ufshcd_eh_in_progress(hba) &&
5422 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5423 				/* Flushed in suspend */
5424 				schedule_work(&hba->eeh_work);
5425 			break;
5426 		case UPIU_TRANSACTION_REJECT_UPIU:
5427 			/* TODO: handle Reject UPIU Response */
5428 			result = DID_ERROR << 16;
5429 			dev_err(hba->dev,
5430 				"Reject UPIU not fully implemented\n");
5431 			break;
5432 		default:
5433 			dev_err(hba->dev,
5434 				"Unexpected request response code = %x\n",
5435 				result);
5436 			result = DID_ERROR << 16;
5437 			break;
5438 		}
5439 		break;
5440 	case OCS_ABORTED:
5441 	case OCS_INVALID_COMMAND_STATUS:
5442 		result |= DID_REQUEUE << 16;
5443 		dev_warn(hba->dev,
5444 				"OCS %s from controller for tag %d\n",
5445 				(ocs == OCS_ABORTED ? "aborted" : "invalid"),
5446 				lrbp->task_tag);
5447 		break;
5448 	case OCS_INVALID_CMD_TABLE_ATTR:
5449 	case OCS_INVALID_PRDT_ATTR:
5450 	case OCS_MISMATCH_DATA_BUF_SIZE:
5451 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5452 	case OCS_PEER_COMM_FAILURE:
5453 	case OCS_FATAL_ERROR:
5454 	case OCS_DEVICE_FATAL_ERROR:
5455 	case OCS_INVALID_CRYPTO_CONFIG:
5456 	case OCS_GENERAL_CRYPTO_ERROR:
5457 	default:
5458 		result |= DID_ERROR << 16;
5459 		dev_err(hba->dev,
5460 				"OCS error from controller = %x for tag %d\n",
5461 				ocs, lrbp->task_tag);
5462 		ufshcd_print_evt_hist(hba);
5463 		ufshcd_print_host_state(hba);
5464 		break;
5465 	} /* end of switch */
5466 
5467 	if ((host_byte(result) != DID_OK) &&
5468 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5469 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5470 	return result;
5471 }
5472 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5473 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5474 					 u32 intr_mask)
5475 {
5476 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5477 	    !ufshcd_is_auto_hibern8_enabled(hba))
5478 		return false;
5479 
5480 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5481 		return false;
5482 
5483 	if (hba->active_uic_cmd &&
5484 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5485 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5486 		return false;
5487 
5488 	return true;
5489 }
5490 
5491 /**
5492  * ufshcd_uic_cmd_compl - handle completion of uic command
5493  * @hba: per adapter instance
5494  * @intr_status: interrupt status generated by the controller
5495  *
5496  * Return:
5497  *  IRQ_HANDLED - If interrupt is valid
5498  *  IRQ_NONE    - If invalid interrupt
5499  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5500 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5501 {
5502 	irqreturn_t retval = IRQ_NONE;
5503 	struct uic_command *cmd;
5504 
5505 	spin_lock(hba->host->host_lock);
5506 	cmd = hba->active_uic_cmd;
5507 	if (WARN_ON_ONCE(!cmd))
5508 		goto unlock;
5509 
5510 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5511 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5512 
5513 	if (intr_status & UIC_COMMAND_COMPL) {
5514 		cmd->argument2 |= ufshcd_get_uic_cmd_result(hba);
5515 		cmd->argument3 = ufshcd_get_dme_attr_val(hba);
5516 		if (!hba->uic_async_done)
5517 			cmd->cmd_active = 0;
5518 		complete(&cmd->done);
5519 		retval = IRQ_HANDLED;
5520 	}
5521 
5522 	if (intr_status & UFSHCD_UIC_PWR_MASK && hba->uic_async_done) {
5523 		cmd->cmd_active = 0;
5524 		complete(hba->uic_async_done);
5525 		retval = IRQ_HANDLED;
5526 	}
5527 
5528 	if (retval == IRQ_HANDLED)
5529 		ufshcd_add_uic_command_trace(hba, cmd, UFS_CMD_COMP);
5530 
5531 unlock:
5532 	spin_unlock(hba->host->host_lock);
5533 
5534 	return retval;
5535 }
5536 
5537 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5538 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5539 			     struct ufshcd_lrb *lrbp)
5540 {
5541 	struct scsi_cmnd *cmd = lrbp->cmd;
5542 
5543 	scsi_dma_unmap(cmd);
5544 	ufshcd_crypto_clear_prdt(hba, lrbp);
5545 	ufshcd_release(hba);
5546 	ufshcd_clk_scaling_update_busy(hba);
5547 }
5548 
5549 /**
5550  * ufshcd_compl_one_cqe - handle a completion queue entry
5551  * @hba: per adapter instance
5552  * @task_tag: the task tag of the request to be completed
5553  * @cqe: pointer to the completion queue entry
5554  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5555 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5556 			  struct cq_entry *cqe)
5557 {
5558 	struct ufshcd_lrb *lrbp;
5559 	struct scsi_cmnd *cmd;
5560 	enum utp_ocs ocs;
5561 
5562 	lrbp = &hba->lrb[task_tag];
5563 	lrbp->compl_time_stamp = ktime_get();
5564 	lrbp->compl_time_stamp_local_clock = local_clock();
5565 	cmd = lrbp->cmd;
5566 	if (cmd) {
5567 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5568 			ufshcd_update_monitor(hba, lrbp);
5569 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5570 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5571 		ufshcd_release_scsi_cmd(hba, lrbp);
5572 		/* Do not touch lrbp after scsi done */
5573 		scsi_done(cmd);
5574 	} else {
5575 		if (cqe) {
5576 			ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5577 			lrbp->utr_descriptor_ptr->header.ocs = ocs;
5578 		}
5579 		complete(&hba->dev_cmd.complete);
5580 	}
5581 }
5582 
5583 /**
5584  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5585  * @hba: per adapter instance
5586  * @completed_reqs: bitmask that indicates which requests to complete
5587  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5588 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5589 					unsigned long completed_reqs)
5590 {
5591 	int tag;
5592 
5593 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5594 		ufshcd_compl_one_cqe(hba, tag, NULL);
5595 }
5596 
5597 /* Any value that is not an existing queue number is fine for this constant. */
5598 enum {
5599 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5600 };
5601 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5602 static void ufshcd_clear_polled(struct ufs_hba *hba,
5603 				unsigned long *completed_reqs)
5604 {
5605 	int tag;
5606 
5607 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5608 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5609 
5610 		if (!cmd)
5611 			continue;
5612 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5613 			__clear_bit(tag, completed_reqs);
5614 	}
5615 }
5616 
5617 /*
5618  * Return: > 0 if one or more commands have been completed or 0 if no
5619  * requests have been completed.
5620  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5621 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5622 {
5623 	struct ufs_hba *hba = shost_priv(shost);
5624 	unsigned long completed_reqs, flags;
5625 	u32 tr_doorbell;
5626 	struct ufs_hw_queue *hwq;
5627 
5628 	if (hba->mcq_enabled) {
5629 		hwq = &hba->uhq[queue_num];
5630 
5631 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5632 	}
5633 
5634 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5635 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5636 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5637 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5638 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5639 		  hba->outstanding_reqs);
5640 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5641 		/* Do not complete polled requests from interrupt context. */
5642 		ufshcd_clear_polled(hba, &completed_reqs);
5643 	}
5644 	hba->outstanding_reqs &= ~completed_reqs;
5645 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5646 
5647 	if (completed_reqs)
5648 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5649 
5650 	return completed_reqs != 0;
5651 }
5652 
5653 /**
5654  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5655  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5656  * to complete the pending transfers and free the resources associated with
5657  * the scsi command.
5658  *
5659  * @hba: per adapter instance
5660  * @force_compl: This flag is set to true when invoked
5661  * from ufshcd_host_reset_and_restore() in which case it requires special
5662  * handling because the host controller has been reset by ufshcd_hba_stop().
5663  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5664 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5665 					      bool force_compl)
5666 {
5667 	struct ufs_hw_queue *hwq;
5668 	struct ufshcd_lrb *lrbp;
5669 	struct scsi_cmnd *cmd;
5670 	unsigned long flags;
5671 	int tag;
5672 
5673 	for (tag = 0; tag < hba->nutrs; tag++) {
5674 		lrbp = &hba->lrb[tag];
5675 		cmd = lrbp->cmd;
5676 		if (!ufshcd_cmd_inflight(cmd) ||
5677 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5678 			continue;
5679 
5680 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
5681 		if (!hwq)
5682 			continue;
5683 
5684 		if (force_compl) {
5685 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5686 			/*
5687 			 * For those cmds of which the cqes are not present
5688 			 * in the cq, complete them explicitly.
5689 			 */
5690 			spin_lock_irqsave(&hwq->cq_lock, flags);
5691 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5692 				set_host_byte(cmd, DID_REQUEUE);
5693 				ufshcd_release_scsi_cmd(hba, lrbp);
5694 				scsi_done(cmd);
5695 			}
5696 			spin_unlock_irqrestore(&hwq->cq_lock, flags);
5697 		} else {
5698 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5699 		}
5700 	}
5701 }
5702 
5703 /**
5704  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5705  * @hba: per adapter instance
5706  *
5707  * Return:
5708  *  IRQ_HANDLED - If interrupt is valid
5709  *  IRQ_NONE    - If invalid interrupt
5710  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5711 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5712 {
5713 	/* Resetting interrupt aggregation counters first and reading the
5714 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5715 	 * In order to prevent other interrupts starvation the DB is read once
5716 	 * after reset. The down side of this solution is the possibility of
5717 	 * false interrupt if device completes another request after resetting
5718 	 * aggregation and before reading the DB.
5719 	 */
5720 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5721 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5722 		ufshcd_reset_intr_aggr(hba);
5723 
5724 	if (ufs_fail_completion(hba))
5725 		return IRQ_HANDLED;
5726 
5727 	/*
5728 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5729 	 * do not want polling to trigger spurious interrupt complaints.
5730 	 */
5731 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5732 
5733 	return IRQ_HANDLED;
5734 }
5735 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5736 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5737 {
5738 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5739 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5740 				       &ee_ctrl_mask);
5741 }
5742 
ufshcd_write_ee_control(struct ufs_hba * hba)5743 int ufshcd_write_ee_control(struct ufs_hba *hba)
5744 {
5745 	int err;
5746 
5747 	mutex_lock(&hba->ee_ctrl_mutex);
5748 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5749 	mutex_unlock(&hba->ee_ctrl_mutex);
5750 	if (err)
5751 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5752 			__func__, err);
5753 	return err;
5754 }
5755 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5756 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5757 			     const u16 *other_mask, u16 set, u16 clr)
5758 {
5759 	u16 new_mask, ee_ctrl_mask;
5760 	int err = 0;
5761 
5762 	mutex_lock(&hba->ee_ctrl_mutex);
5763 	new_mask = (*mask & ~clr) | set;
5764 	ee_ctrl_mask = new_mask | *other_mask;
5765 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5766 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5767 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5768 	if (!err) {
5769 		hba->ee_ctrl_mask = ee_ctrl_mask;
5770 		*mask = new_mask;
5771 	}
5772 	mutex_unlock(&hba->ee_ctrl_mutex);
5773 	return err;
5774 }
5775 
5776 /**
5777  * ufshcd_disable_ee - disable exception event
5778  * @hba: per-adapter instance
5779  * @mask: exception event to disable
5780  *
5781  * Disables exception event in the device so that the EVENT_ALERT
5782  * bit is not set.
5783  *
5784  * Return: zero on success, non-zero error value on failure.
5785  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5786 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5787 {
5788 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5789 }
5790 
5791 /**
5792  * ufshcd_enable_ee - enable exception event
5793  * @hba: per-adapter instance
5794  * @mask: exception event to enable
5795  *
5796  * Enable corresponding exception event in the device to allow
5797  * device to alert host in critical scenarios.
5798  *
5799  * Return: zero on success, non-zero error value on failure.
5800  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5801 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5802 {
5803 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5804 }
5805 
5806 /**
5807  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5808  * @hba: per-adapter instance
5809  *
5810  * Allow device to manage background operations on its own. Enabling
5811  * this might lead to inconsistent latencies during normal data transfers
5812  * as the device is allowed to manage its own way of handling background
5813  * operations.
5814  *
5815  * Return: zero on success, non-zero on failure.
5816  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5817 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5818 {
5819 	int err = 0;
5820 
5821 	if (hba->auto_bkops_enabled)
5822 		goto out;
5823 
5824 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5825 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5826 	if (err) {
5827 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5828 				__func__, err);
5829 		goto out;
5830 	}
5831 
5832 	hba->auto_bkops_enabled = true;
5833 	trace_ufshcd_auto_bkops_state(hba, "Enabled");
5834 
5835 	/* No need of URGENT_BKOPS exception from the device */
5836 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5837 	if (err)
5838 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5839 				__func__, err);
5840 out:
5841 	return err;
5842 }
5843 
5844 /**
5845  * ufshcd_disable_auto_bkops - block device in doing background operations
5846  * @hba: per-adapter instance
5847  *
5848  * Disabling background operations improves command response latency but
5849  * has drawback of device moving into critical state where the device is
5850  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5851  * host is idle so that BKOPS are managed effectively without any negative
5852  * impacts.
5853  *
5854  * Return: zero on success, non-zero on failure.
5855  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5856 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5857 {
5858 	int err = 0;
5859 
5860 	if (!hba->auto_bkops_enabled)
5861 		goto out;
5862 
5863 	/*
5864 	 * If host assisted BKOPs is to be enabled, make sure
5865 	 * urgent bkops exception is allowed.
5866 	 */
5867 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5868 	if (err) {
5869 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5870 				__func__, err);
5871 		goto out;
5872 	}
5873 
5874 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5875 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5876 	if (err) {
5877 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5878 				__func__, err);
5879 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5880 		goto out;
5881 	}
5882 
5883 	hba->auto_bkops_enabled = false;
5884 	trace_ufshcd_auto_bkops_state(hba, "Disabled");
5885 	hba->is_urgent_bkops_lvl_checked = false;
5886 out:
5887 	return err;
5888 }
5889 
5890 /**
5891  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5892  * @hba: per adapter instance
5893  *
5894  * After a device reset the device may toggle the BKOPS_EN flag
5895  * to default value. The s/w tracking variables should be updated
5896  * as well. This function would change the auto-bkops state based on
5897  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5898  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5899 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5900 {
5901 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5902 		hba->auto_bkops_enabled = false;
5903 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5904 		ufshcd_enable_auto_bkops(hba);
5905 	} else {
5906 		hba->auto_bkops_enabled = true;
5907 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5908 		ufshcd_disable_auto_bkops(hba);
5909 	}
5910 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5911 	hba->is_urgent_bkops_lvl_checked = false;
5912 }
5913 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5914 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5915 {
5916 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5917 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5918 }
5919 
5920 /**
5921  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5922  * @hba: per-adapter instance
5923  *
5924  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5925  * flag in the device to permit background operations if the device
5926  * bkops_status is greater than or equal to the "hba->urgent_bkops_lvl",
5927  * disable otherwise.
5928  *
5929  * Return: 0 for success, non-zero in case of failure.
5930  *
5931  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5932  * to know whether auto bkops is enabled or disabled after this function
5933  * returns control to it.
5934  */
ufshcd_bkops_ctrl(struct ufs_hba * hba)5935 static int ufshcd_bkops_ctrl(struct ufs_hba *hba)
5936 {
5937 	enum bkops_status status = hba->urgent_bkops_lvl;
5938 	u32 curr_status = 0;
5939 	int err;
5940 
5941 	err = ufshcd_get_bkops_status(hba, &curr_status);
5942 	if (err) {
5943 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5944 				__func__, err);
5945 		goto out;
5946 	} else if (curr_status > BKOPS_STATUS_MAX) {
5947 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5948 				__func__, curr_status);
5949 		err = -EINVAL;
5950 		goto out;
5951 	}
5952 
5953 	if (curr_status >= status)
5954 		err = ufshcd_enable_auto_bkops(hba);
5955 	else
5956 		err = ufshcd_disable_auto_bkops(hba);
5957 out:
5958 	return err;
5959 }
5960 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5961 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5962 {
5963 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5964 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5965 }
5966 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5967 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5968 {
5969 	int err;
5970 	u32 curr_status = 0;
5971 
5972 	if (hba->is_urgent_bkops_lvl_checked)
5973 		goto enable_auto_bkops;
5974 
5975 	err = ufshcd_get_bkops_status(hba, &curr_status);
5976 	if (err) {
5977 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5978 				__func__, err);
5979 		goto out;
5980 	}
5981 
5982 	/*
5983 	 * We are seeing that some devices are raising the urgent bkops
5984 	 * exception events even when BKOPS status doesn't indicate performace
5985 	 * impacted or critical. Handle these device by determining their urgent
5986 	 * bkops status at runtime.
5987 	 */
5988 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5989 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5990 				__func__, curr_status);
5991 		/* update the current status as the urgent bkops level */
5992 		hba->urgent_bkops_lvl = curr_status;
5993 		hba->is_urgent_bkops_lvl_checked = true;
5994 	}
5995 
5996 enable_auto_bkops:
5997 	err = ufshcd_enable_auto_bkops(hba);
5998 out:
5999 	if (err < 0)
6000 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
6001 				__func__, err);
6002 }
6003 
ufshcd_read_device_lvl_exception_id(struct ufs_hba * hba,u64 * exception_id)6004 int ufshcd_read_device_lvl_exception_id(struct ufs_hba *hba, u64 *exception_id)
6005 {
6006 	struct utp_upiu_query_v4_0 *upiu_resp;
6007 	struct ufs_query_req *request = NULL;
6008 	struct ufs_query_res *response = NULL;
6009 	int err;
6010 
6011 	if (hba->dev_info.wspecversion < 0x410)
6012 		return -EOPNOTSUPP;
6013 
6014 	ufshcd_hold(hba);
6015 	mutex_lock(&hba->dev_cmd.lock);
6016 
6017 	ufshcd_init_query(hba, &request, &response,
6018 			  UPIU_QUERY_OPCODE_READ_ATTR,
6019 			  QUERY_ATTR_IDN_DEV_LVL_EXCEPTION_ID, 0, 0);
6020 
6021 	request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
6022 
6023 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
6024 
6025 	if (err) {
6026 		dev_err(hba->dev, "%s: failed to read device level exception %d\n",
6027 			__func__, err);
6028 		goto out;
6029 	}
6030 
6031 	upiu_resp = (struct utp_upiu_query_v4_0 *)response;
6032 	*exception_id = get_unaligned_be64(&upiu_resp->osf3);
6033 out:
6034 	mutex_unlock(&hba->dev_cmd.lock);
6035 	ufshcd_release(hba);
6036 
6037 	return err;
6038 }
6039 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)6040 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
6041 {
6042 	u8 index;
6043 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
6044 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
6045 
6046 	index = ufshcd_wb_get_query_index(hba);
6047 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
6048 }
6049 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)6050 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
6051 {
6052 	int ret;
6053 
6054 	if (!ufshcd_is_wb_allowed(hba) ||
6055 	    hba->dev_info.wb_enabled == enable)
6056 		return 0;
6057 
6058 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
6059 	if (ret) {
6060 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
6061 			__func__, enable ? "enabling" : "disabling", ret);
6062 		return ret;
6063 	}
6064 
6065 	hba->dev_info.wb_enabled = enable;
6066 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
6067 			__func__, enable ? "enabled" : "disabled");
6068 
6069 	return ret;
6070 }
6071 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)6072 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
6073 						 bool enable)
6074 {
6075 	int ret;
6076 
6077 	ret = __ufshcd_wb_toggle(hba, enable,
6078 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
6079 	if (ret) {
6080 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
6081 			__func__, enable ? "enabling" : "disabling", ret);
6082 		return;
6083 	}
6084 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
6085 			__func__, enable ? "enabled" : "disabled");
6086 }
6087 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)6088 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
6089 {
6090 	int ret;
6091 
6092 	if (!ufshcd_is_wb_allowed(hba) ||
6093 	    hba->dev_info.wb_buf_flush_enabled == enable)
6094 		return 0;
6095 
6096 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
6097 	if (ret) {
6098 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
6099 			__func__, enable ? "enabling" : "disabling", ret);
6100 		return ret;
6101 	}
6102 
6103 	hba->dev_info.wb_buf_flush_enabled = enable;
6104 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6105 			__func__, enable ? "enabled" : "disabled");
6106 
6107 	return ret;
6108 }
6109 
ufshcd_wb_curr_buff_threshold_check(struct ufs_hba * hba,u32 avail_buf)6110 static bool ufshcd_wb_curr_buff_threshold_check(struct ufs_hba *hba,
6111 						u32 avail_buf)
6112 {
6113 	u32 cur_buf;
6114 	int ret;
6115 	u8 index;
6116 
6117 	index = ufshcd_wb_get_query_index(hba);
6118 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6119 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6120 					      index, 0, &cur_buf);
6121 	if (ret) {
6122 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6123 			__func__, ret);
6124 		return false;
6125 	}
6126 
6127 	if (!cur_buf) {
6128 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6129 			 cur_buf);
6130 		return false;
6131 	}
6132 	/* Let it continue to flush when available buffer exceeds threshold */
6133 	return avail_buf < hba->vps->wb_flush_threshold;
6134 }
6135 
ufshcd_wb_force_disable(struct ufs_hba * hba)6136 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6137 {
6138 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6139 		ufshcd_wb_toggle_buf_flush(hba, false);
6140 
6141 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6142 	ufshcd_wb_toggle(hba, false);
6143 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6144 
6145 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6146 }
6147 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6148 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6149 {
6150 	u32 lifetime;
6151 	int ret;
6152 	u8 index;
6153 
6154 	index = ufshcd_wb_get_query_index(hba);
6155 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6156 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6157 				      index, 0, &lifetime);
6158 	if (ret) {
6159 		dev_err(hba->dev,
6160 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6161 			__func__, ret);
6162 		return false;
6163 	}
6164 
6165 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6166 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6167 			__func__, lifetime);
6168 		return false;
6169 	}
6170 
6171 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6172 		__func__, lifetime);
6173 
6174 	return true;
6175 }
6176 
ufshcd_wb_need_flush(struct ufs_hba * hba)6177 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6178 {
6179 	int ret;
6180 	u32 avail_buf;
6181 	u8 index;
6182 
6183 	if (!ufshcd_is_wb_allowed(hba))
6184 		return false;
6185 
6186 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6187 		ufshcd_wb_force_disable(hba);
6188 		return false;
6189 	}
6190 
6191 	/*
6192 	 * With user-space reduction enabled, it's enough to enable flush
6193 	 * by checking only the available buffer. The threshold
6194 	 * defined here is > 90% full.
6195 	 * With user-space preserved enabled, the current-buffer
6196 	 * should be checked too because the wb buffer size can reduce
6197 	 * when disk tends to be full. This info is provided by current
6198 	 * buffer (dCurrentWriteBoosterBufferSize).
6199 	 */
6200 	index = ufshcd_wb_get_query_index(hba);
6201 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6202 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6203 				      index, 0, &avail_buf);
6204 	if (ret) {
6205 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6206 			 __func__, ret);
6207 		return false;
6208 	}
6209 
6210 	if (!hba->dev_info.b_presrv_uspc_en)
6211 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6212 
6213 	return ufshcd_wb_curr_buff_threshold_check(hba, avail_buf);
6214 }
6215 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6216 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6217 {
6218 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6219 					   struct ufs_hba,
6220 					   rpm_dev_flush_recheck_work);
6221 	/*
6222 	 * To prevent unnecessary VCC power drain after device finishes
6223 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6224 	 * after a certain delay to recheck the threshold by next runtime
6225 	 * suspend.
6226 	 */
6227 	ufshcd_rpm_get_sync(hba);
6228 	ufshcd_rpm_put_sync(hba);
6229 }
6230 
6231 /**
6232  * ufshcd_exception_event_handler - handle exceptions raised by device
6233  * @work: pointer to work data
6234  *
6235  * Read bExceptionEventStatus attribute from the device and handle the
6236  * exception event accordingly.
6237  */
ufshcd_exception_event_handler(struct work_struct * work)6238 static void ufshcd_exception_event_handler(struct work_struct *work)
6239 {
6240 	struct ufs_hba *hba;
6241 	int err;
6242 	u32 status = 0;
6243 	hba = container_of(work, struct ufs_hba, eeh_work);
6244 
6245 	err = ufshcd_get_ee_status(hba, &status);
6246 	if (err) {
6247 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6248 				__func__, err);
6249 		return;
6250 	}
6251 
6252 	trace_ufshcd_exception_event(hba, status);
6253 
6254 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6255 		ufshcd_bkops_exception_event_handler(hba);
6256 
6257 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6258 		ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
6259 
6260 	if (status & hba->ee_drv_mask & MASK_EE_HEALTH_CRITICAL) {
6261 		hba->critical_health_count++;
6262 		sysfs_notify(&hba->dev->kobj, NULL, "critical_health");
6263 	}
6264 
6265 	if (status & hba->ee_drv_mask & MASK_EE_DEV_LVL_EXCEPTION) {
6266 		atomic_inc(&hba->dev_lvl_exception_count);
6267 		sysfs_notify(&hba->dev->kobj, NULL, "device_lvl_exception_count");
6268 	}
6269 
6270 	ufs_debugfs_exception_event(hba, status);
6271 }
6272 
6273 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6274 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6275 {
6276 	if (hba->mcq_enabled)
6277 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6278 	else
6279 		ufshcd_transfer_req_compl(hba);
6280 
6281 	ufshcd_tmc_handler(hba);
6282 }
6283 
6284 /**
6285  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6286  *				to recover from the DL NAC errors or not.
6287  * @hba: per-adapter instance
6288  *
6289  * Return: true if error handling is required, false otherwise.
6290  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6291 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6292 {
6293 	unsigned long flags;
6294 	bool err_handling = true;
6295 
6296 	spin_lock_irqsave(hba->host->host_lock, flags);
6297 	/*
6298 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6299 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6300 	 */
6301 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6302 		goto out;
6303 
6304 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6305 	    ((hba->saved_err & UIC_ERROR) &&
6306 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6307 		goto out;
6308 
6309 	if ((hba->saved_err & UIC_ERROR) &&
6310 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6311 		int err;
6312 		/*
6313 		 * wait for 50ms to see if we can get any other errors or not.
6314 		 */
6315 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6316 		msleep(50);
6317 		spin_lock_irqsave(hba->host->host_lock, flags);
6318 
6319 		/*
6320 		 * now check if we have got any other severe errors other than
6321 		 * DL NAC error?
6322 		 */
6323 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6324 		    ((hba->saved_err & UIC_ERROR) &&
6325 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6326 			goto out;
6327 
6328 		/*
6329 		 * As DL NAC is the only error received so far, send out NOP
6330 		 * command to confirm if link is still active or not.
6331 		 *   - If we don't get any response then do error recovery.
6332 		 *   - If we get response then clear the DL NAC error bit.
6333 		 */
6334 
6335 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6336 		err = ufshcd_verify_dev_init(hba);
6337 		spin_lock_irqsave(hba->host->host_lock, flags);
6338 
6339 		if (err)
6340 			goto out;
6341 
6342 		/* Link seems to be alive hence ignore the DL NAC errors */
6343 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6344 			hba->saved_err &= ~UIC_ERROR;
6345 		/* clear NAC error */
6346 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6347 		if (!hba->saved_uic_err)
6348 			err_handling = false;
6349 	}
6350 out:
6351 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6352 	return err_handling;
6353 }
6354 
6355 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6356 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6357 {
6358 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6359 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6360 }
6361 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6362 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6363 {
6364 	lockdep_assert_held(hba->host->host_lock);
6365 
6366 	/* handle fatal errors only when link is not in error state */
6367 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6368 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6369 		    ufshcd_is_saved_err_fatal(hba))
6370 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6371 		else
6372 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6373 		queue_work(hba->eh_wq, &hba->eh_work);
6374 	}
6375 }
6376 
ufshcd_force_error_recovery(struct ufs_hba * hba)6377 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6378 {
6379 	spin_lock_irq(hba->host->host_lock);
6380 	hba->force_reset = true;
6381 	ufshcd_schedule_eh_work(hba);
6382 	spin_unlock_irq(hba->host->host_lock);
6383 }
6384 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6385 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6386 {
6387 	mutex_lock(&hba->wb_mutex);
6388 	down_write(&hba->clk_scaling_lock);
6389 	hba->clk_scaling.is_allowed = allow;
6390 	up_write(&hba->clk_scaling_lock);
6391 	mutex_unlock(&hba->wb_mutex);
6392 }
6393 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6394 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6395 {
6396 	if (suspend) {
6397 		if (hba->clk_scaling.is_enabled)
6398 			ufshcd_suspend_clkscaling(hba);
6399 		ufshcd_clk_scaling_allow(hba, false);
6400 	} else {
6401 		ufshcd_clk_scaling_allow(hba, true);
6402 		if (hba->clk_scaling.is_enabled)
6403 			ufshcd_resume_clkscaling(hba);
6404 	}
6405 }
6406 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6407 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6408 {
6409 	ufshcd_rpm_get_sync(hba);
6410 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6411 	    hba->is_sys_suspended) {
6412 		enum ufs_pm_op pm_op;
6413 
6414 		/*
6415 		 * Don't assume anything of resume, if
6416 		 * resume fails, irq and clocks can be OFF, and powers
6417 		 * can be OFF or in LPM.
6418 		 */
6419 		ufshcd_setup_hba_vreg(hba, true);
6420 		ufshcd_enable_irq(hba);
6421 		ufshcd_setup_vreg(hba, true);
6422 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6423 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6424 		ufshcd_hold(hba);
6425 		if (!ufshcd_is_clkgating_allowed(hba))
6426 			ufshcd_setup_clocks(hba, true);
6427 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6428 		ufshcd_vops_resume(hba, pm_op);
6429 	} else {
6430 		ufshcd_hold(hba);
6431 		if (ufshcd_is_clkscaling_supported(hba) &&
6432 		    hba->clk_scaling.is_enabled)
6433 			ufshcd_suspend_clkscaling(hba);
6434 		ufshcd_clk_scaling_allow(hba, false);
6435 	}
6436 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6437 	blk_mq_quiesce_tagset(&hba->host->tag_set);
6438 	cancel_work_sync(&hba->eeh_work);
6439 }
6440 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6441 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6442 {
6443 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
6444 	ufshcd_release(hba);
6445 	if (ufshcd_is_clkscaling_supported(hba))
6446 		ufshcd_clk_scaling_suspend(hba, false);
6447 	ufshcd_rpm_put(hba);
6448 }
6449 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6450 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6451 {
6452 	return (!hba->is_powered || hba->shutting_down ||
6453 		!hba->ufs_device_wlun ||
6454 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6455 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6456 		   ufshcd_is_link_broken(hba))));
6457 }
6458 
6459 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6460 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6461 {
6462 	struct Scsi_Host *shost = hba->host;
6463 	struct scsi_device *sdev;
6464 	struct request_queue *q;
6465 	int ret;
6466 
6467 	hba->is_sys_suspended = false;
6468 	/*
6469 	 * Set RPM status of wlun device to RPM_ACTIVE,
6470 	 * this also clears its runtime error.
6471 	 */
6472 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6473 
6474 	/* hba device might have a runtime error otherwise */
6475 	if (ret)
6476 		ret = pm_runtime_set_active(hba->dev);
6477 	/*
6478 	 * If wlun device had runtime error, we also need to resume those
6479 	 * consumer scsi devices in case any of them has failed to be
6480 	 * resumed due to supplier runtime resume failure. This is to unblock
6481 	 * blk_queue_enter in case there are bios waiting inside it.
6482 	 */
6483 	if (!ret) {
6484 		shost_for_each_device(sdev, shost) {
6485 			q = sdev->request_queue;
6486 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6487 				       q->rpm_status == RPM_SUSPENDING))
6488 				pm_request_resume(q->dev);
6489 		}
6490 	}
6491 }
6492 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6493 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6494 {
6495 }
6496 #endif
6497 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6498 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6499 {
6500 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6501 	u32 mode;
6502 
6503 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6504 
6505 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6506 		return true;
6507 
6508 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6509 		return true;
6510 
6511 	return false;
6512 }
6513 
ufshcd_abort_one(struct request * rq,void * priv)6514 static bool ufshcd_abort_one(struct request *rq, void *priv)
6515 {
6516 	int *ret = priv;
6517 	u32 tag = rq->tag;
6518 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6519 	struct scsi_device *sdev = cmd->device;
6520 	struct Scsi_Host *shost = sdev->host;
6521 	struct ufs_hba *hba = shost_priv(shost);
6522 
6523 	*ret = ufshcd_try_to_abort_task(hba, tag);
6524 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6525 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6526 		*ret ? "failed" : "succeeded");
6527 
6528 	return *ret == 0;
6529 }
6530 
6531 /**
6532  * ufshcd_abort_all - Abort all pending commands.
6533  * @hba: Host bus adapter pointer.
6534  *
6535  * Return: true if and only if the host controller needs to be reset.
6536  */
ufshcd_abort_all(struct ufs_hba * hba)6537 static bool ufshcd_abort_all(struct ufs_hba *hba)
6538 {
6539 	int tag, ret = 0;
6540 
6541 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6542 	if (ret)
6543 		goto out;
6544 
6545 	/* Clear pending task management requests */
6546 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6547 		ret = ufshcd_clear_tm_cmd(hba, tag);
6548 		if (ret)
6549 			goto out;
6550 	}
6551 
6552 out:
6553 	/* Complete the requests that are cleared by s/w */
6554 	ufshcd_complete_requests(hba, false);
6555 
6556 	return ret != 0;
6557 }
6558 
6559 /**
6560  * ufshcd_err_handler - handle UFS errors that require s/w attention
6561  * @work: pointer to work structure
6562  */
ufshcd_err_handler(struct work_struct * work)6563 static void ufshcd_err_handler(struct work_struct *work)
6564 {
6565 	int retries = MAX_ERR_HANDLER_RETRIES;
6566 	struct ufs_hba *hba;
6567 	unsigned long flags;
6568 	bool needs_restore;
6569 	bool needs_reset;
6570 	int pmc_err;
6571 
6572 	hba = container_of(work, struct ufs_hba, eh_work);
6573 
6574 	dev_info(hba->dev,
6575 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6576 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6577 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6578 		 hba->saved_uic_err, hba->force_reset,
6579 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6580 
6581 	down(&hba->host_sem);
6582 	spin_lock_irqsave(hba->host->host_lock, flags);
6583 	if (ufshcd_err_handling_should_stop(hba)) {
6584 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6585 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6586 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6587 		up(&hba->host_sem);
6588 		return;
6589 	}
6590 	ufshcd_set_eh_in_progress(hba);
6591 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6592 	ufshcd_err_handling_prepare(hba);
6593 	/* Complete requests that have door-bell cleared by h/w */
6594 	ufshcd_complete_requests(hba, false);
6595 	spin_lock_irqsave(hba->host->host_lock, flags);
6596 again:
6597 	needs_restore = false;
6598 	needs_reset = false;
6599 
6600 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6601 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6602 	/*
6603 	 * A full reset and restore might have happened after preparation
6604 	 * is finished, double check whether we should stop.
6605 	 */
6606 	if (ufshcd_err_handling_should_stop(hba))
6607 		goto skip_err_handling;
6608 
6609 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6610 	    !hba->force_reset) {
6611 		bool ret;
6612 
6613 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6614 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6615 		ret = ufshcd_quirk_dl_nac_errors(hba);
6616 		spin_lock_irqsave(hba->host->host_lock, flags);
6617 		if (!ret && ufshcd_err_handling_should_stop(hba))
6618 			goto skip_err_handling;
6619 	}
6620 
6621 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6622 	    (hba->saved_uic_err &&
6623 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6624 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6625 
6626 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6627 		ufshcd_print_host_state(hba);
6628 		ufshcd_print_pwr_info(hba);
6629 		ufshcd_print_evt_hist(hba);
6630 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6631 		ufshcd_print_trs_all(hba, pr_prdt);
6632 		spin_lock_irqsave(hba->host->host_lock, flags);
6633 	}
6634 
6635 	/*
6636 	 * if host reset is required then skip clearing the pending
6637 	 * transfers forcefully because they will get cleared during
6638 	 * host reset and restore
6639 	 */
6640 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6641 	    ufshcd_is_saved_err_fatal(hba) ||
6642 	    ((hba->saved_err & UIC_ERROR) &&
6643 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6644 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6645 		needs_reset = true;
6646 		goto do_reset;
6647 	}
6648 
6649 	/*
6650 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6651 	 * check if power mode restore is needed.
6652 	 */
6653 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6654 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6655 		if (!hba->saved_uic_err)
6656 			hba->saved_err &= ~UIC_ERROR;
6657 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6658 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6659 			needs_restore = true;
6660 		spin_lock_irqsave(hba->host->host_lock, flags);
6661 		if (!hba->saved_err && !needs_restore)
6662 			goto skip_err_handling;
6663 	}
6664 
6665 	hba->silence_err_logs = true;
6666 	/* release lock as clear command might sleep */
6667 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6668 
6669 	needs_reset = ufshcd_abort_all(hba);
6670 
6671 	spin_lock_irqsave(hba->host->host_lock, flags);
6672 	hba->silence_err_logs = false;
6673 	if (needs_reset)
6674 		goto do_reset;
6675 
6676 	/*
6677 	 * After all reqs and tasks are cleared from doorbell,
6678 	 * now it is safe to retore power mode.
6679 	 */
6680 	if (needs_restore) {
6681 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6682 		/*
6683 		 * Hold the scaling lock just in case dev cmds
6684 		 * are sent via bsg and/or sysfs.
6685 		 */
6686 		down_write(&hba->clk_scaling_lock);
6687 		hba->force_pmc = true;
6688 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6689 		if (pmc_err) {
6690 			needs_reset = true;
6691 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6692 					__func__, pmc_err);
6693 		}
6694 		hba->force_pmc = false;
6695 		ufshcd_print_pwr_info(hba);
6696 		up_write(&hba->clk_scaling_lock);
6697 		spin_lock_irqsave(hba->host->host_lock, flags);
6698 	}
6699 
6700 do_reset:
6701 	/* Fatal errors need reset */
6702 	if (needs_reset) {
6703 		int err;
6704 
6705 		hba->force_reset = false;
6706 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6707 		err = ufshcd_reset_and_restore(hba);
6708 		if (err)
6709 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6710 					__func__, err);
6711 		else
6712 			ufshcd_recover_pm_error(hba);
6713 		spin_lock_irqsave(hba->host->host_lock, flags);
6714 	}
6715 
6716 skip_err_handling:
6717 	if (!needs_reset) {
6718 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6719 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6720 		if (hba->saved_err || hba->saved_uic_err)
6721 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6722 			    __func__, hba->saved_err, hba->saved_uic_err);
6723 	}
6724 	/* Exit in an operational state or dead */
6725 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6726 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6727 		if (--retries)
6728 			goto again;
6729 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6730 	}
6731 	ufshcd_clear_eh_in_progress(hba);
6732 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6733 	ufshcd_err_handling_unprepare(hba);
6734 	up(&hba->host_sem);
6735 
6736 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6737 		 ufshcd_state_name[hba->ufshcd_state]);
6738 }
6739 
6740 /**
6741  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6742  * @hba: per-adapter instance
6743  *
6744  * Return:
6745  *  IRQ_HANDLED - If interrupt is valid
6746  *  IRQ_NONE    - If invalid interrupt
6747  */
ufshcd_update_uic_error(struct ufs_hba * hba)6748 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6749 {
6750 	u32 reg;
6751 	irqreturn_t retval = IRQ_NONE;
6752 
6753 	/* PHY layer error */
6754 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6755 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6756 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6757 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6758 		/*
6759 		 * To know whether this error is fatal or not, DB timeout
6760 		 * must be checked but this error is handled separately.
6761 		 */
6762 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6763 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6764 					__func__);
6765 
6766 		/* Got a LINERESET indication. */
6767 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6768 			struct uic_command *cmd = NULL;
6769 
6770 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6771 			if (hba->uic_async_done && hba->active_uic_cmd)
6772 				cmd = hba->active_uic_cmd;
6773 			/*
6774 			 * Ignore the LINERESET during power mode change
6775 			 * operation via DME_SET command.
6776 			 */
6777 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6778 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6779 		}
6780 		retval |= IRQ_HANDLED;
6781 	}
6782 
6783 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6784 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6785 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6786 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6787 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6788 
6789 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6790 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6791 		else if (hba->dev_quirks &
6792 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6793 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6794 				hba->uic_error |=
6795 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6796 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6797 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6798 		}
6799 		retval |= IRQ_HANDLED;
6800 	}
6801 
6802 	/* UIC NL/TL/DME errors needs software retry */
6803 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6804 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6805 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6806 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6807 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6808 		retval |= IRQ_HANDLED;
6809 	}
6810 
6811 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6812 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6813 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6814 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6815 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6816 		retval |= IRQ_HANDLED;
6817 	}
6818 
6819 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6820 	if ((reg & UIC_DME_ERROR) &&
6821 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6822 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6823 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6824 		retval |= IRQ_HANDLED;
6825 	}
6826 
6827 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6828 			__func__, hba->uic_error);
6829 	return retval;
6830 }
6831 
6832 /**
6833  * ufshcd_check_errors - Check for errors that need s/w attention
6834  * @hba: per-adapter instance
6835  * @intr_status: interrupt status generated by the controller
6836  *
6837  * Return:
6838  *  IRQ_HANDLED - If interrupt is valid
6839  *  IRQ_NONE    - If invalid interrupt
6840  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6841 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6842 {
6843 	bool queue_eh_work = false;
6844 	irqreturn_t retval = IRQ_NONE;
6845 
6846 	spin_lock(hba->host->host_lock);
6847 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6848 
6849 	if (hba->errors & INT_FATAL_ERRORS) {
6850 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6851 				       hba->errors);
6852 		queue_eh_work = true;
6853 	}
6854 
6855 	if (hba->errors & UIC_ERROR) {
6856 		hba->uic_error = 0;
6857 		retval = ufshcd_update_uic_error(hba);
6858 		if (hba->uic_error)
6859 			queue_eh_work = true;
6860 	}
6861 
6862 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6863 		dev_err(hba->dev,
6864 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6865 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6866 			"Enter" : "Exit",
6867 			hba->errors, ufshcd_get_upmcrs(hba));
6868 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6869 				       hba->errors);
6870 		ufshcd_set_link_broken(hba);
6871 		queue_eh_work = true;
6872 	}
6873 
6874 	if (queue_eh_work) {
6875 		/*
6876 		 * update the transfer error masks to sticky bits, let's do this
6877 		 * irrespective of current ufshcd_state.
6878 		 */
6879 		hba->saved_err |= hba->errors;
6880 		hba->saved_uic_err |= hba->uic_error;
6881 
6882 		/* dump controller state before resetting */
6883 		if ((hba->saved_err &
6884 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6885 		    (hba->saved_uic_err &&
6886 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6887 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6888 					__func__, hba->saved_err,
6889 					hba->saved_uic_err);
6890 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6891 					 "host_regs: ");
6892 			ufshcd_print_pwr_info(hba);
6893 		}
6894 		ufshcd_schedule_eh_work(hba);
6895 		retval |= IRQ_HANDLED;
6896 	}
6897 	/*
6898 	 * if (!queue_eh_work) -
6899 	 * Other errors are either non-fatal where host recovers
6900 	 * itself without s/w intervention or errors that will be
6901 	 * handled by the SCSI core layer.
6902 	 */
6903 	hba->errors = 0;
6904 	hba->uic_error = 0;
6905 	spin_unlock(hba->host->host_lock);
6906 	return retval;
6907 }
6908 
6909 /**
6910  * ufshcd_tmc_handler - handle task management function completion
6911  * @hba: per adapter instance
6912  *
6913  * Return:
6914  *  IRQ_HANDLED - If interrupt is valid
6915  *  IRQ_NONE    - If invalid interrupt
6916  */
ufshcd_tmc_handler(struct ufs_hba * hba)6917 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6918 {
6919 	unsigned long flags, pending, issued;
6920 	irqreturn_t ret = IRQ_NONE;
6921 	int tag;
6922 
6923 	spin_lock_irqsave(hba->host->host_lock, flags);
6924 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6925 	issued = hba->outstanding_tasks & ~pending;
6926 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6927 		struct request *req = hba->tmf_rqs[tag];
6928 		struct completion *c = req->end_io_data;
6929 
6930 		complete(c);
6931 		ret = IRQ_HANDLED;
6932 	}
6933 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6934 
6935 	return ret;
6936 }
6937 
6938 /**
6939  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6940  * @hba: per adapter instance
6941  *
6942  * Return: IRQ_HANDLED if interrupt is handled.
6943  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6944 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6945 {
6946 	struct ufs_hw_queue *hwq;
6947 	unsigned long outstanding_cqs;
6948 	unsigned int nr_queues;
6949 	int i, ret;
6950 	u32 events;
6951 
6952 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6953 	if (ret)
6954 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6955 
6956 	/* Exclude the poll queues */
6957 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6958 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6959 		hwq = &hba->uhq[i];
6960 
6961 		events = ufshcd_mcq_read_cqis(hba, i);
6962 		if (events)
6963 			ufshcd_mcq_write_cqis(hba, events, i);
6964 
6965 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6966 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6967 	}
6968 
6969 	return IRQ_HANDLED;
6970 }
6971 
6972 /**
6973  * ufshcd_sl_intr - Interrupt service routine
6974  * @hba: per adapter instance
6975  * @intr_status: contains interrupts generated by the controller
6976  *
6977  * Return:
6978  *  IRQ_HANDLED - If interrupt is valid
6979  *  IRQ_NONE    - If invalid interrupt
6980  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6981 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6982 {
6983 	irqreturn_t retval = IRQ_NONE;
6984 
6985 	if (intr_status & UFSHCD_UIC_MASK)
6986 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6987 
6988 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6989 		retval |= ufshcd_check_errors(hba, intr_status);
6990 
6991 	if (intr_status & UTP_TASK_REQ_COMPL)
6992 		retval |= ufshcd_tmc_handler(hba);
6993 
6994 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6995 		retval |= ufshcd_transfer_req_compl(hba);
6996 
6997 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6998 		retval |= ufshcd_handle_mcq_cq_events(hba);
6999 
7000 	return retval;
7001 }
7002 
7003 /**
7004  * ufshcd_intr - Main interrupt service routine
7005  * @irq: irq number
7006  * @__hba: pointer to adapter instance
7007  *
7008  * Return:
7009  *  IRQ_HANDLED - If interrupt is valid
7010  *  IRQ_NONE    - If invalid interrupt
7011  */
ufshcd_intr(int irq,void * __hba)7012 static irqreturn_t ufshcd_intr(int irq, void *__hba)
7013 {
7014 	u32 intr_status, enabled_intr_status = 0;
7015 	irqreturn_t retval = IRQ_NONE;
7016 	struct ufs_hba *hba = __hba;
7017 	int retries = hba->nutrs;
7018 
7019 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7020 	hba->ufs_stats.last_intr_status = intr_status;
7021 	hba->ufs_stats.last_intr_ts = local_clock();
7022 
7023 	/*
7024 	 * There could be max of hba->nutrs reqs in flight and in worst case
7025 	 * if the reqs get finished 1 by 1 after the interrupt status is
7026 	 * read, make sure we handle them by checking the interrupt status
7027 	 * again in a loop until we process all of the reqs before returning.
7028 	 */
7029 	while (intr_status && retries--) {
7030 		enabled_intr_status =
7031 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
7032 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
7033 		if (enabled_intr_status)
7034 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
7035 
7036 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
7037 	}
7038 
7039 	if (enabled_intr_status && retval == IRQ_NONE &&
7040 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
7041 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
7042 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
7043 					__func__,
7044 					intr_status,
7045 					hba->ufs_stats.last_intr_status,
7046 					enabled_intr_status);
7047 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
7048 	}
7049 
7050 	return retval;
7051 }
7052 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)7053 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
7054 {
7055 	int err = 0;
7056 	u32 mask = 1 << tag;
7057 
7058 	if (!test_bit(tag, &hba->outstanding_tasks))
7059 		goto out;
7060 
7061 	ufshcd_utmrl_clear(hba, tag);
7062 
7063 	/* poll for max. 1 sec to clear door bell register by h/w */
7064 	err = ufshcd_wait_for_register(hba,
7065 			REG_UTP_TASK_REQ_DOOR_BELL,
7066 			mask, 0, 1000, 1000);
7067 
7068 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
7069 		tag, err < 0 ? "failed" : "succeeded");
7070 
7071 out:
7072 	return err;
7073 }
7074 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)7075 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
7076 		struct utp_task_req_desc *treq, u8 tm_function)
7077 {
7078 	struct request_queue *q = hba->tmf_queue;
7079 	struct Scsi_Host *host = hba->host;
7080 	DECLARE_COMPLETION_ONSTACK(wait);
7081 	struct request *req;
7082 	unsigned long flags;
7083 	int task_tag, err;
7084 
7085 	/*
7086 	 * blk_mq_alloc_request() is used here only to get a free tag.
7087 	 */
7088 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
7089 	if (IS_ERR(req))
7090 		return PTR_ERR(req);
7091 
7092 	req->end_io_data = &wait;
7093 	ufshcd_hold(hba);
7094 
7095 	spin_lock_irqsave(host->host_lock, flags);
7096 
7097 	task_tag = req->tag;
7098 	hba->tmf_rqs[req->tag] = req;
7099 	treq->upiu_req.req_header.task_tag = task_tag;
7100 
7101 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7102 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7103 
7104 	__set_bit(task_tag, &hba->outstanding_tasks);
7105 
7106 	spin_unlock_irqrestore(host->host_lock, flags);
7107 
7108 	/* send command to the controller */
7109 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7110 
7111 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7112 
7113 	/* wait until the task management command is completed */
7114 	err = wait_for_completion_io_timeout(&wait,
7115 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7116 	if (!err) {
7117 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7118 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7119 				__func__, tm_function);
7120 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7121 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7122 					__func__, task_tag);
7123 		err = -ETIMEDOUT;
7124 	} else {
7125 		err = 0;
7126 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7127 
7128 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7129 	}
7130 
7131 	spin_lock_irqsave(hba->host->host_lock, flags);
7132 	hba->tmf_rqs[req->tag] = NULL;
7133 	__clear_bit(task_tag, &hba->outstanding_tasks);
7134 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7135 
7136 	ufshcd_release(hba);
7137 	blk_mq_free_request(req);
7138 
7139 	return err;
7140 }
7141 
7142 /**
7143  * ufshcd_issue_tm_cmd - issues task management commands to controller
7144  * @hba: per adapter instance
7145  * @lun_id: LUN ID to which TM command is sent
7146  * @task_id: task ID to which the TM command is applicable
7147  * @tm_function: task management function opcode
7148  * @tm_response: task management service response return value
7149  *
7150  * Return: non-zero value on error, zero on success.
7151  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7152 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7153 		u8 tm_function, u8 *tm_response)
7154 {
7155 	struct utp_task_req_desc treq = { };
7156 	enum utp_ocs ocs_value;
7157 	int err;
7158 
7159 	/* Configure task request descriptor */
7160 	treq.header.interrupt = 1;
7161 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7162 
7163 	/* Configure task request UPIU */
7164 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7165 	treq.upiu_req.req_header.lun = lun_id;
7166 	treq.upiu_req.req_header.tm_function = tm_function;
7167 
7168 	/*
7169 	 * The host shall provide the same value for LUN field in the basic
7170 	 * header and for Input Parameter.
7171 	 */
7172 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7173 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7174 
7175 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7176 	if (err == -ETIMEDOUT)
7177 		return err;
7178 
7179 	ocs_value = treq.header.ocs & MASK_OCS;
7180 	if (ocs_value != OCS_SUCCESS)
7181 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7182 				__func__, ocs_value);
7183 	else if (tm_response)
7184 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7185 				MASK_TM_SERVICE_RESP;
7186 	return err;
7187 }
7188 
7189 /**
7190  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7191  * @hba:	per-adapter instance
7192  * @req_upiu:	upiu request
7193  * @rsp_upiu:	upiu reply
7194  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7195  * @buff_len:	descriptor size, 0 if NA
7196  * @cmd_type:	specifies the type (NOP, Query...)
7197  * @desc_op:	descriptor operation
7198  *
7199  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7200  * Therefore, it "rides" the device management infrastructure: uses its tag and
7201  * tasks work queues.
7202  *
7203  * Since there is only one available tag for device management commands,
7204  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7205  *
7206  * Return: 0 upon success; < 0 upon failure.
7207  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7208 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7209 					struct utp_upiu_req *req_upiu,
7210 					struct utp_upiu_req *rsp_upiu,
7211 					u8 *desc_buff, int *buff_len,
7212 					enum dev_cmd_type cmd_type,
7213 					enum query_opcode desc_op)
7214 {
7215 	const u32 tag = hba->reserved_slot;
7216 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7217 	int err = 0;
7218 	u8 upiu_flags;
7219 
7220 	/* Protects use of hba->reserved_slot. */
7221 	lockdep_assert_held(&hba->dev_cmd.lock);
7222 
7223 	ufshcd_setup_dev_cmd(hba, lrbp, cmd_type, 0, tag);
7224 
7225 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, 0);
7226 
7227 	/* update the task tag in the request upiu */
7228 	req_upiu->header.task_tag = tag;
7229 
7230 	/* just copy the upiu request as it is */
7231 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7232 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7233 		/* The Data Segment Area is optional depending upon the query
7234 		 * function value. for WRITE DESCRIPTOR, the data segment
7235 		 * follows right after the tsf.
7236 		 */
7237 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7238 		*buff_len = 0;
7239 	}
7240 
7241 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7242 
7243 	/*
7244 	 * ignore the returning value here - ufshcd_check_query_response is
7245 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7246 	 * read the response directly ignoring all errors.
7247 	 */
7248 	ufshcd_issue_dev_cmd(hba, lrbp, tag, QUERY_REQ_TIMEOUT);
7249 
7250 	/* just copy the upiu response as it is */
7251 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7252 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7253 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7254 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7255 					   .data_segment_length);
7256 
7257 		if (*buff_len >= resp_len) {
7258 			memcpy(desc_buff, descp, resp_len);
7259 			*buff_len = resp_len;
7260 		} else {
7261 			dev_warn(hba->dev,
7262 				 "%s: rsp size %d is bigger than buffer size %d",
7263 				 __func__, resp_len, *buff_len);
7264 			*buff_len = 0;
7265 			err = -EINVAL;
7266 		}
7267 	}
7268 
7269 	return err;
7270 }
7271 
7272 /**
7273  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7274  * @hba:	per-adapter instance
7275  * @req_upiu:	upiu request
7276  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7277  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7278  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7279  * @buff_len:	descriptor size, 0 if NA
7280  * @desc_op:	descriptor operation
7281  *
7282  * Supports UTP Transfer requests (nop and query), and UTP Task
7283  * Management requests.
7284  * It is up to the caller to fill the upiu conent properly, as it will
7285  * be copied without any further input validations.
7286  *
7287  * Return: 0 upon success; < 0 upon failure.
7288  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7289 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7290 			     struct utp_upiu_req *req_upiu,
7291 			     struct utp_upiu_req *rsp_upiu,
7292 			     enum upiu_request_transaction msgcode,
7293 			     u8 *desc_buff, int *buff_len,
7294 			     enum query_opcode desc_op)
7295 {
7296 	int err;
7297 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7298 	struct utp_task_req_desc treq = { };
7299 	enum utp_ocs ocs_value;
7300 	u8 tm_f = req_upiu->header.tm_function;
7301 
7302 	switch (msgcode) {
7303 	case UPIU_TRANSACTION_NOP_OUT:
7304 		cmd_type = DEV_CMD_TYPE_NOP;
7305 		fallthrough;
7306 	case UPIU_TRANSACTION_QUERY_REQ:
7307 		ufshcd_dev_man_lock(hba);
7308 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7309 						   desc_buff, buff_len,
7310 						   cmd_type, desc_op);
7311 		ufshcd_dev_man_unlock(hba);
7312 
7313 		break;
7314 	case UPIU_TRANSACTION_TASK_REQ:
7315 		treq.header.interrupt = 1;
7316 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7317 
7318 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7319 
7320 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7321 		if (err == -ETIMEDOUT)
7322 			break;
7323 
7324 		ocs_value = treq.header.ocs & MASK_OCS;
7325 		if (ocs_value != OCS_SUCCESS) {
7326 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7327 				ocs_value);
7328 			break;
7329 		}
7330 
7331 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7332 
7333 		break;
7334 	default:
7335 		err = -EINVAL;
7336 
7337 		break;
7338 	}
7339 
7340 	return err;
7341 }
7342 
7343 /**
7344  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7345  * @hba:	per adapter instance
7346  * @req_upiu:	upiu request
7347  * @rsp_upiu:	upiu reply
7348  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7349  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7350  * @sg_cnt:	The number of sg lists actually used
7351  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7352  * @dir:	DMA direction
7353  *
7354  * Return: zero on success, non-zero on failure.
7355  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7356 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7357 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7358 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7359 			 enum dma_data_direction dir)
7360 {
7361 	const u32 tag = hba->reserved_slot;
7362 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7363 	int err = 0;
7364 	int result;
7365 	u8 upiu_flags;
7366 	u8 *ehs_data;
7367 	u16 ehs_len;
7368 	int ehs = (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) ? 2 : 0;
7369 
7370 	/* Protects use of hba->reserved_slot. */
7371 	ufshcd_dev_man_lock(hba);
7372 
7373 	ufshcd_setup_dev_cmd(hba, lrbp, DEV_CMD_TYPE_RPMB, UFS_UPIU_RPMB_WLUN, tag);
7374 
7375 	ufshcd_prepare_req_desc_hdr(hba, lrbp, &upiu_flags, DMA_NONE, ehs);
7376 
7377 	/* update the task tag */
7378 	req_upiu->header.task_tag = tag;
7379 
7380 	/* copy the UPIU(contains CDB) request as it is */
7381 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7382 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7383 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7384 
7385 	if (dir != DMA_NONE && sg_list)
7386 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7387 
7388 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7389 
7390 	err = ufshcd_issue_dev_cmd(hba, lrbp, tag, ADVANCED_RPMB_REQ_TIMEOUT);
7391 
7392 	if (!err) {
7393 		/* Just copy the upiu response as it is */
7394 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7395 		/* Get the response UPIU result */
7396 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7397 			lrbp->ucd_rsp_ptr->header.status;
7398 
7399 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7400 		/*
7401 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7402 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7403 		 * Message is 02h
7404 		 */
7405 		if (ehs_len == 2 && rsp_ehs) {
7406 			/*
7407 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7408 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7409 			 */
7410 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7411 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7412 		}
7413 	}
7414 
7415 	ufshcd_dev_man_unlock(hba);
7416 
7417 	return err ? : result;
7418 }
7419 
7420 /**
7421  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7422  * @cmd: SCSI command pointer
7423  *
7424  * Return: SUCCESS or FAILED.
7425  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7426 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7427 {
7428 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7429 	struct Scsi_Host *host;
7430 	struct ufs_hba *hba;
7431 	struct ufs_hw_queue *hwq;
7432 	struct ufshcd_lrb *lrbp;
7433 	u32 pos, not_cleared_mask = 0;
7434 	int err;
7435 	u8 resp = 0xF, lun;
7436 
7437 	host = cmd->device->host;
7438 	hba = shost_priv(host);
7439 
7440 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7441 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7442 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7443 		if (!err)
7444 			err = resp;
7445 		goto out;
7446 	}
7447 
7448 	if (hba->mcq_enabled) {
7449 		for (pos = 0; pos < hba->nutrs; pos++) {
7450 			lrbp = &hba->lrb[pos];
7451 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7452 			    lrbp->lun == lun) {
7453 				ufshcd_clear_cmd(hba, pos);
7454 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7455 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7456 			}
7457 		}
7458 		err = 0;
7459 		goto out;
7460 	}
7461 
7462 	/* clear the commands that were pending for corresponding LUN */
7463 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7464 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7465 		if (hba->lrb[pos].lun == lun)
7466 			__set_bit(pos, &pending_reqs);
7467 	hba->outstanding_reqs &= ~pending_reqs;
7468 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7469 
7470 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7471 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7472 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7473 			not_cleared = 1U << pos &
7474 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7475 			hba->outstanding_reqs |= not_cleared;
7476 			not_cleared_mask |= not_cleared;
7477 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7478 
7479 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7480 				__func__, pos);
7481 		}
7482 	}
7483 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7484 
7485 out:
7486 	hba->req_abort_count = 0;
7487 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7488 	if (!err) {
7489 		err = SUCCESS;
7490 	} else {
7491 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7492 		err = FAILED;
7493 	}
7494 	return err;
7495 }
7496 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7497 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7498 {
7499 	struct ufshcd_lrb *lrbp;
7500 	int tag;
7501 
7502 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7503 		lrbp = &hba->lrb[tag];
7504 		lrbp->req_abort_skip = true;
7505 	}
7506 }
7507 
7508 /**
7509  * ufshcd_try_to_abort_task - abort a specific task
7510  * @hba: Pointer to adapter instance
7511  * @tag: Task tag/index to be aborted
7512  *
7513  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7514  * command, and in host controller by clearing the door-bell register. There can
7515  * be race between controller sending the command to the device while abort is
7516  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7517  * really issued and then try to abort it.
7518  *
7519  * Return: zero on success, non-zero on failure.
7520  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7521 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7522 {
7523 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7524 	int err;
7525 	int poll_cnt;
7526 	u8 resp = 0xF;
7527 
7528 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7529 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7530 				UFS_QUERY_TASK, &resp);
7531 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7532 			/* cmd pending in the device */
7533 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7534 				__func__, tag);
7535 			break;
7536 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7537 			/*
7538 			 * cmd not pending in the device, check if it is
7539 			 * in transition.
7540 			 */
7541 			dev_info(
7542 				hba->dev,
7543 				"%s: cmd with tag %d not pending in the device.\n",
7544 				__func__, tag);
7545 			if (!ufshcd_cmd_inflight(lrbp->cmd)) {
7546 				dev_info(hba->dev,
7547 					 "%s: cmd with tag=%d completed.\n",
7548 					 __func__, tag);
7549 				return 0;
7550 			}
7551 			usleep_range(100, 200);
7552 		} else {
7553 			dev_err(hba->dev,
7554 				"%s: no response from device. tag = %d, err %d\n",
7555 				__func__, tag, err);
7556 			return err ? : resp;
7557 		}
7558 	}
7559 
7560 	if (!poll_cnt)
7561 		return -EBUSY;
7562 
7563 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7564 			UFS_ABORT_TASK, &resp);
7565 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7566 		if (!err) {
7567 			err = resp; /* service response error */
7568 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7569 				__func__, tag, err);
7570 		}
7571 		return err;
7572 	}
7573 
7574 	err = ufshcd_clear_cmd(hba, tag);
7575 	if (err)
7576 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7577 			__func__, tag, err);
7578 
7579 	return err;
7580 }
7581 
7582 /**
7583  * ufshcd_abort - scsi host template eh_abort_handler callback
7584  * @cmd: SCSI command pointer
7585  *
7586  * Return: SUCCESS or FAILED.
7587  */
ufshcd_abort(struct scsi_cmnd * cmd)7588 static int ufshcd_abort(struct scsi_cmnd *cmd)
7589 {
7590 	struct Scsi_Host *host = cmd->device->host;
7591 	struct ufs_hba *hba = shost_priv(host);
7592 	int tag = scsi_cmd_to_rq(cmd)->tag;
7593 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7594 	unsigned long flags;
7595 	int err = FAILED;
7596 	bool outstanding;
7597 	u32 reg;
7598 
7599 	ufshcd_hold(hba);
7600 
7601 	if (!hba->mcq_enabled) {
7602 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7603 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7604 			/* If command is already aborted/completed, return FAILED. */
7605 			dev_err(hba->dev,
7606 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7607 				__func__, tag, hba->outstanding_reqs, reg);
7608 			goto release;
7609 		}
7610 	}
7611 
7612 	/* Print Transfer Request of aborted task */
7613 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7614 
7615 	/*
7616 	 * Print detailed info about aborted request.
7617 	 * As more than one request might get aborted at the same time,
7618 	 * print full information only for the first aborted request in order
7619 	 * to reduce repeated printouts. For other aborted requests only print
7620 	 * basic details.
7621 	 */
7622 	scsi_print_command(cmd);
7623 	if (!hba->req_abort_count) {
7624 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7625 		ufshcd_print_evt_hist(hba);
7626 		ufshcd_print_host_state(hba);
7627 		ufshcd_print_pwr_info(hba);
7628 		ufshcd_print_tr(hba, tag, true);
7629 	} else {
7630 		ufshcd_print_tr(hba, tag, false);
7631 	}
7632 	hba->req_abort_count++;
7633 
7634 	if (!hba->mcq_enabled && !(reg & (1 << tag))) {
7635 		/* only execute this code in single doorbell mode */
7636 		dev_err(hba->dev,
7637 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7638 		__func__, tag);
7639 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7640 		goto release;
7641 	}
7642 
7643 	/*
7644 	 * Task abort to the device W-LUN is illegal. When this command
7645 	 * will fail, due to spec violation, scsi err handling next step
7646 	 * will be to send LU reset which, again, is a spec violation.
7647 	 * To avoid these unnecessary/illegal steps, first we clean up
7648 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7649 	 * then queue the eh_work and bail.
7650 	 */
7651 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7652 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7653 
7654 		spin_lock_irqsave(host->host_lock, flags);
7655 		hba->force_reset = true;
7656 		ufshcd_schedule_eh_work(hba);
7657 		spin_unlock_irqrestore(host->host_lock, flags);
7658 		goto release;
7659 	}
7660 
7661 	if (hba->mcq_enabled) {
7662 		/* MCQ mode. Branch off to handle abort for mcq mode */
7663 		err = ufshcd_mcq_abort(cmd);
7664 		goto release;
7665 	}
7666 
7667 	/* Skip task abort in case previous aborts failed and report failure */
7668 	if (lrbp->req_abort_skip) {
7669 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7670 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7671 		goto release;
7672 	}
7673 
7674 	err = ufshcd_try_to_abort_task(hba, tag);
7675 	if (err) {
7676 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7677 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7678 		err = FAILED;
7679 		goto release;
7680 	}
7681 
7682 	/*
7683 	 * Clear the corresponding bit from outstanding_reqs since the command
7684 	 * has been aborted successfully.
7685 	 */
7686 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7687 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7688 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7689 
7690 	if (outstanding)
7691 		ufshcd_release_scsi_cmd(hba, lrbp);
7692 
7693 	err = SUCCESS;
7694 
7695 release:
7696 	/* Matches the ufshcd_hold() call at the start of this function. */
7697 	ufshcd_release(hba);
7698 	return err;
7699 }
7700 
7701 /**
7702  * ufshcd_process_probe_result - Process the ufshcd_probe_hba() result.
7703  * @hba: UFS host controller instance.
7704  * @probe_start: time when the ufshcd_probe_hba() call started.
7705  * @ret: ufshcd_probe_hba() return value.
7706  */
ufshcd_process_probe_result(struct ufs_hba * hba,ktime_t probe_start,int ret)7707 static void ufshcd_process_probe_result(struct ufs_hba *hba,
7708 					ktime_t probe_start, int ret)
7709 {
7710 	unsigned long flags;
7711 
7712 	spin_lock_irqsave(hba->host->host_lock, flags);
7713 	if (ret)
7714 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7715 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
7716 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
7717 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7718 
7719 	trace_ufshcd_init(hba, ret,
7720 			  ktime_to_us(ktime_sub(ktime_get(), probe_start)),
7721 			  hba->curr_dev_pwr_mode, hba->uic_link_state);
7722 }
7723 
7724 /**
7725  * ufshcd_host_reset_and_restore - reset and restore host controller
7726  * @hba: per-adapter instance
7727  *
7728  * Note that host controller reset may issue DME_RESET to
7729  * local and remote (device) Uni-Pro stack and the attributes
7730  * are reset to default state.
7731  *
7732  * Return: zero on success, non-zero on failure.
7733  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7734 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7735 {
7736 	int err;
7737 
7738 	/*
7739 	 * Stop the host controller and complete the requests
7740 	 * cleared by h/w
7741 	 */
7742 	ufshcd_hba_stop(hba);
7743 	hba->silence_err_logs = true;
7744 	ufshcd_complete_requests(hba, true);
7745 	hba->silence_err_logs = false;
7746 
7747 	/* scale up clocks to max frequency before full reinitialization */
7748 	ufshcd_scale_clks(hba, ULONG_MAX, true);
7749 
7750 	err = ufshcd_hba_enable(hba);
7751 
7752 	/* Establish the link again and restore the device */
7753 	if (!err) {
7754 		ktime_t probe_start = ktime_get();
7755 
7756 		err = ufshcd_device_init(hba, /*init_dev_params=*/false);
7757 		if (!err)
7758 			err = ufshcd_probe_hba(hba, false);
7759 		ufshcd_process_probe_result(hba, probe_start, err);
7760 	}
7761 
7762 	if (err)
7763 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7764 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7765 	return err;
7766 }
7767 
7768 /**
7769  * ufshcd_reset_and_restore - reset and re-initialize host/device
7770  * @hba: per-adapter instance
7771  *
7772  * Reset and recover device, host and re-establish link. This
7773  * is helpful to recover the communication in fatal error conditions.
7774  *
7775  * Return: zero on success, non-zero on failure.
7776  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7777 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7778 {
7779 	u32 saved_err = 0;
7780 	u32 saved_uic_err = 0;
7781 	int err = 0;
7782 	unsigned long flags;
7783 	int retries = MAX_HOST_RESET_RETRIES;
7784 
7785 	spin_lock_irqsave(hba->host->host_lock, flags);
7786 	do {
7787 		/*
7788 		 * This is a fresh start, cache and clear saved error first,
7789 		 * in case new error generated during reset and restore.
7790 		 */
7791 		saved_err |= hba->saved_err;
7792 		saved_uic_err |= hba->saved_uic_err;
7793 		hba->saved_err = 0;
7794 		hba->saved_uic_err = 0;
7795 		hba->force_reset = false;
7796 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7797 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7798 
7799 		/* Reset the attached device */
7800 		ufshcd_device_reset(hba);
7801 
7802 		err = ufshcd_host_reset_and_restore(hba);
7803 
7804 		spin_lock_irqsave(hba->host->host_lock, flags);
7805 		if (err)
7806 			continue;
7807 		/* Do not exit unless operational or dead */
7808 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7809 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7810 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7811 			err = -EAGAIN;
7812 	} while (err && --retries);
7813 
7814 	/*
7815 	 * Inform scsi mid-layer that we did reset and allow to handle
7816 	 * Unit Attention properly.
7817 	 */
7818 	scsi_report_bus_reset(hba->host, 0);
7819 	if (err) {
7820 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7821 		hba->saved_err |= saved_err;
7822 		hba->saved_uic_err |= saved_uic_err;
7823 	}
7824 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7825 
7826 	return err;
7827 }
7828 
7829 /**
7830  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7831  * @cmd: SCSI command pointer
7832  *
7833  * Return: SUCCESS or FAILED.
7834  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7835 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7836 {
7837 	int err = SUCCESS;
7838 	unsigned long flags;
7839 	struct ufs_hba *hba;
7840 
7841 	hba = shost_priv(cmd->device->host);
7842 
7843 	/*
7844 	 * If runtime PM sent SSU and got a timeout, scsi_error_handler is
7845 	 * stuck in this function waiting for flush_work(&hba->eh_work). And
7846 	 * ufshcd_err_handler(eh_work) is stuck waiting for runtime PM. Do
7847 	 * ufshcd_link_recovery instead of eh_work to prevent deadlock.
7848 	 */
7849 	if (hba->pm_op_in_progress) {
7850 		if (ufshcd_link_recovery(hba))
7851 			err = FAILED;
7852 
7853 		return err;
7854 	}
7855 
7856 	spin_lock_irqsave(hba->host->host_lock, flags);
7857 	hba->force_reset = true;
7858 	ufshcd_schedule_eh_work(hba);
7859 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7860 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7861 
7862 	flush_work(&hba->eh_work);
7863 
7864 	spin_lock_irqsave(hba->host->host_lock, flags);
7865 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7866 		err = FAILED;
7867 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7868 
7869 	return err;
7870 }
7871 
7872 /**
7873  * ufshcd_get_max_icc_level - calculate the ICC level
7874  * @sup_curr_uA: max. current supported by the regulator
7875  * @start_scan: row at the desc table to start scan from
7876  * @buff: power descriptor buffer
7877  *
7878  * Return: calculated max ICC level for specific regulator.
7879  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7880 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7881 				    const char *buff)
7882 {
7883 	int i;
7884 	int curr_uA;
7885 	u16 data;
7886 	u16 unit;
7887 
7888 	for (i = start_scan; i >= 0; i--) {
7889 		data = get_unaligned_be16(&buff[2 * i]);
7890 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7891 						ATTR_ICC_LVL_UNIT_OFFSET;
7892 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7893 		switch (unit) {
7894 		case UFSHCD_NANO_AMP:
7895 			curr_uA = curr_uA / 1000;
7896 			break;
7897 		case UFSHCD_MILI_AMP:
7898 			curr_uA = curr_uA * 1000;
7899 			break;
7900 		case UFSHCD_AMP:
7901 			curr_uA = curr_uA * 1000 * 1000;
7902 			break;
7903 		case UFSHCD_MICRO_AMP:
7904 		default:
7905 			break;
7906 		}
7907 		if (sup_curr_uA >= curr_uA)
7908 			break;
7909 	}
7910 	if (i < 0) {
7911 		i = 0;
7912 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7913 	}
7914 
7915 	return (u32)i;
7916 }
7917 
7918 /**
7919  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7920  * In case regulators are not initialized we'll return 0
7921  * @hba: per-adapter instance
7922  * @desc_buf: power descriptor buffer to extract ICC levels from.
7923  *
7924  * Return: calculated ICC level.
7925  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7926 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7927 						const u8 *desc_buf)
7928 {
7929 	u32 icc_level = 0;
7930 
7931 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7932 						!hba->vreg_info.vccq2) {
7933 		/*
7934 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7935 		 * never-ending cycles of messages written back to storage by
7936 		 * user space causing runtime resume, causing more messages and
7937 		 * so on.
7938 		 */
7939 		dev_dbg(hba->dev,
7940 			"%s: Regulator capability was not set, actvIccLevel=%d",
7941 							__func__, icc_level);
7942 		goto out;
7943 	}
7944 
7945 	if (hba->vreg_info.vcc->max_uA)
7946 		icc_level = ufshcd_get_max_icc_level(
7947 				hba->vreg_info.vcc->max_uA,
7948 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7949 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7950 
7951 	if (hba->vreg_info.vccq->max_uA)
7952 		icc_level = ufshcd_get_max_icc_level(
7953 				hba->vreg_info.vccq->max_uA,
7954 				icc_level,
7955 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7956 
7957 	if (hba->vreg_info.vccq2->max_uA)
7958 		icc_level = ufshcd_get_max_icc_level(
7959 				hba->vreg_info.vccq2->max_uA,
7960 				icc_level,
7961 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7962 out:
7963 	return icc_level;
7964 }
7965 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7966 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7967 {
7968 	int ret;
7969 	u8 *desc_buf;
7970 	u32 icc_level;
7971 
7972 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7973 	if (!desc_buf)
7974 		return;
7975 
7976 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7977 				     desc_buf, QUERY_DESC_MAX_SIZE);
7978 	if (ret) {
7979 		dev_err(hba->dev,
7980 			"%s: Failed reading power descriptor ret = %d",
7981 			__func__, ret);
7982 		goto out;
7983 	}
7984 
7985 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7986 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7987 
7988 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7989 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7990 
7991 	if (ret)
7992 		dev_err(hba->dev,
7993 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7994 			__func__, icc_level, ret);
7995 
7996 out:
7997 	kfree(desc_buf);
7998 }
7999 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)8000 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
8001 {
8002 	struct Scsi_Host *shost = sdev->host;
8003 
8004 	scsi_autopm_get_device(sdev);
8005 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
8006 	if (sdev->rpm_autosuspend)
8007 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
8008 						 shost->rpm_autosuspend_delay);
8009 	scsi_autopm_put_device(sdev);
8010 }
8011 
8012 /**
8013  * ufshcd_scsi_add_wlus - Adds required W-LUs
8014  * @hba: per-adapter instance
8015  *
8016  * UFS device specification requires the UFS devices to support 4 well known
8017  * logical units:
8018  *	"REPORT_LUNS" (address: 01h)
8019  *	"UFS Device" (address: 50h)
8020  *	"RPMB" (address: 44h)
8021  *	"BOOT" (address: 30h)
8022  * UFS device's power management needs to be controlled by "POWER CONDITION"
8023  * field of SSU (START STOP UNIT) command. But this "power condition" field
8024  * will take effect only when its sent to "UFS device" well known logical unit
8025  * hence we require the scsi_device instance to represent this logical unit in
8026  * order for the UFS host driver to send the SSU command for power management.
8027  *
8028  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
8029  * Block) LU so user space process can control this LU. User space may also
8030  * want to have access to BOOT LU.
8031  *
8032  * This function adds scsi device instances for each of all well known LUs
8033  * (except "REPORT LUNS" LU).
8034  *
8035  * Return: zero on success (all required W-LUs are added successfully),
8036  * non-zero error value on failure (if failed to add any of the required W-LU).
8037  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)8038 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
8039 {
8040 	int ret = 0;
8041 	struct scsi_device *sdev_boot, *sdev_rpmb;
8042 
8043 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
8044 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
8045 	if (IS_ERR(hba->ufs_device_wlun)) {
8046 		ret = PTR_ERR(hba->ufs_device_wlun);
8047 		hba->ufs_device_wlun = NULL;
8048 		goto out;
8049 	}
8050 	scsi_device_put(hba->ufs_device_wlun);
8051 
8052 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
8053 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
8054 	if (IS_ERR(sdev_rpmb)) {
8055 		ret = PTR_ERR(sdev_rpmb);
8056 		goto remove_ufs_device_wlun;
8057 	}
8058 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8059 	scsi_device_put(sdev_rpmb);
8060 
8061 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8062 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8063 	if (IS_ERR(sdev_boot)) {
8064 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8065 	} else {
8066 		ufshcd_blk_pm_runtime_init(sdev_boot);
8067 		scsi_device_put(sdev_boot);
8068 	}
8069 	goto out;
8070 
8071 remove_ufs_device_wlun:
8072 	scsi_remove_device(hba->ufs_device_wlun);
8073 out:
8074 	return ret;
8075 }
8076 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8077 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8078 {
8079 	struct ufs_dev_info *dev_info = &hba->dev_info;
8080 	u8 lun;
8081 	u32 d_lu_wb_buf_alloc;
8082 	u32 ext_ufs_feature;
8083 
8084 	if (!ufshcd_is_wb_allowed(hba))
8085 		return;
8086 
8087 	/*
8088 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8089 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8090 	 * enabled
8091 	 */
8092 	if (!(dev_info->wspecversion >= 0x310 ||
8093 	      dev_info->wspecversion == 0x220 ||
8094 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8095 		goto wb_disabled;
8096 
8097 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8098 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8099 
8100 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8101 		goto wb_disabled;
8102 
8103 	/*
8104 	 * WB may be supported but not configured while provisioning. The spec
8105 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8106 	 * buffer configured.
8107 	 */
8108 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8109 
8110 	dev_info->b_presrv_uspc_en =
8111 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8112 
8113 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8114 		if (!get_unaligned_be32(desc_buf +
8115 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8116 			goto wb_disabled;
8117 	} else {
8118 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8119 			d_lu_wb_buf_alloc = 0;
8120 			ufshcd_read_unit_desc_param(hba,
8121 					lun,
8122 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8123 					(u8 *)&d_lu_wb_buf_alloc,
8124 					sizeof(d_lu_wb_buf_alloc));
8125 			if (d_lu_wb_buf_alloc) {
8126 				dev_info->wb_dedicated_lu = lun;
8127 				break;
8128 			}
8129 		}
8130 
8131 		if (!d_lu_wb_buf_alloc)
8132 			goto wb_disabled;
8133 	}
8134 
8135 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8136 		goto wb_disabled;
8137 
8138 	return;
8139 
8140 wb_disabled:
8141 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8142 }
8143 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8144 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8145 {
8146 	struct ufs_dev_info *dev_info = &hba->dev_info;
8147 	u32 ext_ufs_feature;
8148 	u8 mask = 0;
8149 
8150 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8151 		return;
8152 
8153 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8154 
8155 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8156 		mask |= MASK_EE_TOO_LOW_TEMP;
8157 
8158 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8159 		mask |= MASK_EE_TOO_HIGH_TEMP;
8160 
8161 	if (mask) {
8162 		ufshcd_enable_ee(hba, mask);
8163 		ufs_hwmon_probe(hba, mask);
8164 	}
8165 }
8166 
ufshcd_device_lvl_exception_probe(struct ufs_hba * hba,u8 * desc_buf)8167 static void ufshcd_device_lvl_exception_probe(struct ufs_hba *hba, u8 *desc_buf)
8168 {
8169 	u32 ext_ufs_feature;
8170 
8171 	if (hba->dev_info.wspecversion < 0x410)
8172 		return;
8173 
8174 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8175 				DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8176 	if (!(ext_ufs_feature & UFS_DEV_LVL_EXCEPTION_SUP))
8177 		return;
8178 
8179 	atomic_set(&hba->dev_lvl_exception_count, 0);
8180 	ufshcd_enable_ee(hba, MASK_EE_DEV_LVL_EXCEPTION);
8181 }
8182 
ufshcd_set_rtt(struct ufs_hba * hba)8183 static void ufshcd_set_rtt(struct ufs_hba *hba)
8184 {
8185 	struct ufs_dev_info *dev_info = &hba->dev_info;
8186 	u32 rtt = 0;
8187 	u32 dev_rtt = 0;
8188 	int host_rtt_cap = hba->vops && hba->vops->max_num_rtt ?
8189 			   hba->vops->max_num_rtt : hba->nortt;
8190 
8191 	/* RTT override makes sense only for UFS-4.0 and above */
8192 	if (dev_info->wspecversion < 0x400)
8193 		return;
8194 
8195 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8196 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &dev_rtt)) {
8197 		dev_err(hba->dev, "failed reading bMaxNumOfRTT\n");
8198 		return;
8199 	}
8200 
8201 	/* do not override if it was already written */
8202 	if (dev_rtt != DEFAULT_MAX_NUM_RTT)
8203 		return;
8204 
8205 	rtt = min_t(int, dev_info->rtt_cap, host_rtt_cap);
8206 
8207 	if (rtt == dev_rtt)
8208 		return;
8209 
8210 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8211 				    QUERY_ATTR_IDN_MAX_NUM_OF_RTT, 0, 0, &rtt))
8212 		dev_err(hba->dev, "failed writing bMaxNumOfRTT\n");
8213 }
8214 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8215 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8216 			     const struct ufs_dev_quirk *fixups)
8217 {
8218 	const struct ufs_dev_quirk *f;
8219 	struct ufs_dev_info *dev_info = &hba->dev_info;
8220 
8221 	if (!fixups)
8222 		return;
8223 
8224 	for (f = fixups; f->quirk; f++) {
8225 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8226 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8227 		     ((dev_info->model &&
8228 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8229 		      !strcmp(f->model, UFS_ANY_MODEL)))
8230 			hba->dev_quirks |= f->quirk;
8231 	}
8232 }
8233 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8234 
ufs_fixup_device_setup(struct ufs_hba * hba)8235 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8236 {
8237 	/* fix by general quirk table */
8238 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8239 
8240 	/* allow vendors to fix quirks */
8241 	ufshcd_vops_fixup_dev_quirks(hba);
8242 }
8243 
ufshcd_update_rtc(struct ufs_hba * hba)8244 static void ufshcd_update_rtc(struct ufs_hba *hba)
8245 {
8246 	struct timespec64 ts64;
8247 	int err;
8248 	u32 val;
8249 
8250 	ktime_get_real_ts64(&ts64);
8251 
8252 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8253 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8254 		return;
8255 	}
8256 
8257 	/*
8258 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8259 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8260 	 */
8261 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8262 
8263 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8264 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8265 		return;
8266 
8267 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8268 				0, 0, &val);
8269 	ufshcd_rpm_put(hba);
8270 
8271 	if (err)
8272 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8273 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8274 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8275 }
8276 
ufshcd_rtc_work(struct work_struct * work)8277 static void ufshcd_rtc_work(struct work_struct *work)
8278 {
8279 	struct ufs_hba *hba;
8280 
8281 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8282 
8283 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8284 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8285 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8286 	    !hba->clk_gating.active_reqs)
8287 		ufshcd_update_rtc(hba);
8288 
8289 	if (ufshcd_is_ufs_dev_active(hba) && hba->dev_info.rtc_update_period)
8290 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8291 				      msecs_to_jiffies(hba->dev_info.rtc_update_period));
8292 }
8293 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8294 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8295 {
8296 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8297 	struct ufs_dev_info *dev_info = &hba->dev_info;
8298 
8299 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8300 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8301 
8302 		/*
8303 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8304 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8305 		 * 2010 00:00, here we need to adjust ABS baseline.
8306 		 */
8307 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8308 							mktime64(1970, 1, 1, 0, 0, 0);
8309 	} else {
8310 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8311 		dev_info->rtc_time_baseline = 0;
8312 	}
8313 
8314 	/*
8315 	 * We ignore TIME_PERIOD defined in wPeriodicRTCUpdate because Spec does not clearly state
8316 	 * how to calculate the specific update period for each time unit. And we disable periodic
8317 	 * RTC update work, let user configure by sysfs node according to specific circumstance.
8318 	 */
8319 	dev_info->rtc_update_period = 0;
8320 }
8321 
ufs_get_device_desc(struct ufs_hba * hba)8322 static int ufs_get_device_desc(struct ufs_hba *hba)
8323 {
8324 	int err;
8325 	u8 model_index;
8326 	u8 *desc_buf;
8327 	struct ufs_dev_info *dev_info = &hba->dev_info;
8328 
8329 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8330 	if (!desc_buf) {
8331 		err = -ENOMEM;
8332 		goto out;
8333 	}
8334 
8335 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8336 				     QUERY_DESC_MAX_SIZE);
8337 	if (err) {
8338 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8339 			__func__, err);
8340 		goto out;
8341 	}
8342 
8343 	/*
8344 	 * getting vendor (manufacturerID) and Bank Index in big endian
8345 	 * format
8346 	 */
8347 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8348 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8349 
8350 	/* getting Specification Version in big endian format */
8351 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8352 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8353 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8354 
8355 	dev_info->rtt_cap = desc_buf[DEVICE_DESC_PARAM_RTT_CAP];
8356 
8357 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8358 
8359 	err = ufshcd_read_string_desc(hba, model_index,
8360 				      &dev_info->model, SD_ASCII_STD);
8361 	if (err < 0) {
8362 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8363 			__func__, err);
8364 		goto out;
8365 	}
8366 
8367 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8368 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8369 
8370 	ufs_fixup_device_setup(hba);
8371 
8372 	ufshcd_wb_probe(hba, desc_buf);
8373 
8374 	ufshcd_temp_notif_probe(hba, desc_buf);
8375 
8376 	if (dev_info->wspecversion >= 0x410) {
8377 		hba->critical_health_count = 0;
8378 		ufshcd_enable_ee(hba, MASK_EE_HEALTH_CRITICAL);
8379 	}
8380 
8381 	ufs_init_rtc(hba, desc_buf);
8382 
8383 	ufshcd_device_lvl_exception_probe(hba, desc_buf);
8384 
8385 	/*
8386 	 * ufshcd_read_string_desc returns size of the string
8387 	 * reset the error value
8388 	 */
8389 	err = 0;
8390 
8391 out:
8392 	kfree(desc_buf);
8393 	return err;
8394 }
8395 
ufs_put_device_desc(struct ufs_hba * hba)8396 static void ufs_put_device_desc(struct ufs_hba *hba)
8397 {
8398 	struct ufs_dev_info *dev_info = &hba->dev_info;
8399 
8400 	kfree(dev_info->model);
8401 	dev_info->model = NULL;
8402 }
8403 
8404 /**
8405  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8406  * less than device PA_TACTIVATE time.
8407  * @hba: per-adapter instance
8408  *
8409  * Some UFS devices require host PA_TACTIVATE to be lower than device
8410  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8411  * for such devices.
8412  *
8413  * Return: zero on success, non-zero error value on failure.
8414  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8415 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8416 {
8417 	int ret = 0;
8418 	u32 granularity, peer_granularity;
8419 	u32 pa_tactivate, peer_pa_tactivate;
8420 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8421 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8422 
8423 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8424 				  &granularity);
8425 	if (ret)
8426 		goto out;
8427 
8428 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8429 				  &peer_granularity);
8430 	if (ret)
8431 		goto out;
8432 
8433 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8434 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8435 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8436 			__func__, granularity);
8437 		return -EINVAL;
8438 	}
8439 
8440 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8441 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8442 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8443 			__func__, peer_granularity);
8444 		return -EINVAL;
8445 	}
8446 
8447 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8448 	if (ret)
8449 		goto out;
8450 
8451 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8452 				  &peer_pa_tactivate);
8453 	if (ret)
8454 		goto out;
8455 
8456 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8457 	peer_pa_tactivate_us = peer_pa_tactivate *
8458 			     gran_to_us_table[peer_granularity - 1];
8459 
8460 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8461 		u32 new_peer_pa_tactivate;
8462 
8463 		new_peer_pa_tactivate = pa_tactivate_us /
8464 				      gran_to_us_table[peer_granularity - 1];
8465 		new_peer_pa_tactivate++;
8466 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8467 					  new_peer_pa_tactivate);
8468 	}
8469 
8470 out:
8471 	return ret;
8472 }
8473 
8474 /**
8475  * ufshcd_quirk_override_pa_h8time - Ensures proper adjustment of PA_HIBERN8TIME.
8476  * @hba: per-adapter instance
8477  *
8478  * Some UFS devices require specific adjustments to the PA_HIBERN8TIME parameter
8479  * to ensure proper hibernation timing. This function retrieves the current
8480  * PA_HIBERN8TIME value and increments it by 100us.
8481  */
ufshcd_quirk_override_pa_h8time(struct ufs_hba * hba)8482 static void ufshcd_quirk_override_pa_h8time(struct ufs_hba *hba)
8483 {
8484 	u32 pa_h8time;
8485 	int ret;
8486 
8487 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_HIBERN8TIME), &pa_h8time);
8488 	if (ret) {
8489 		dev_err(hba->dev, "Failed to get PA_HIBERN8TIME: %d\n", ret);
8490 		return;
8491 	}
8492 
8493 	/* Increment by 1 to increase hibernation time by 100 µs */
8494 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), pa_h8time + 1);
8495 	if (ret)
8496 		dev_err(hba->dev, "Failed updating PA_HIBERN8TIME: %d\n", ret);
8497 }
8498 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8499 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8500 {
8501 	ufshcd_vops_apply_dev_quirks(hba);
8502 
8503 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8504 		/* set 1ms timeout for PA_TACTIVATE */
8505 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8506 
8507 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8508 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8509 
8510 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_HIBER8TIME)
8511 		ufshcd_quirk_override_pa_h8time(hba);
8512 }
8513 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8514 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8515 {
8516 	hba->ufs_stats.hibern8_exit_cnt = 0;
8517 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8518 	hba->req_abort_count = 0;
8519 }
8520 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8521 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8522 {
8523 	int err;
8524 	u8 *desc_buf;
8525 
8526 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8527 	if (!desc_buf) {
8528 		err = -ENOMEM;
8529 		goto out;
8530 	}
8531 
8532 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8533 				     desc_buf, QUERY_DESC_MAX_SIZE);
8534 	if (err) {
8535 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8536 				__func__, err);
8537 		goto out;
8538 	}
8539 
8540 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8541 		hba->dev_info.max_lu_supported = 32;
8542 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8543 		hba->dev_info.max_lu_supported = 8;
8544 
8545 out:
8546 	kfree(desc_buf);
8547 	return err;
8548 }
8549 
8550 struct ufs_ref_clk {
8551 	unsigned long freq_hz;
8552 	enum ufs_ref_clk_freq val;
8553 };
8554 
8555 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8556 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8557 	{26000000, REF_CLK_FREQ_26_MHZ},
8558 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8559 	{52000000, REF_CLK_FREQ_52_MHZ},
8560 	{0, REF_CLK_FREQ_INVAL},
8561 };
8562 
8563 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8564 ufs_get_bref_clk_from_hz(unsigned long freq)
8565 {
8566 	int i;
8567 
8568 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8569 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8570 			return ufs_ref_clk_freqs[i].val;
8571 
8572 	return REF_CLK_FREQ_INVAL;
8573 }
8574 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8575 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8576 {
8577 	unsigned long freq;
8578 
8579 	freq = clk_get_rate(refclk);
8580 
8581 	hba->dev_ref_clk_freq =
8582 		ufs_get_bref_clk_from_hz(freq);
8583 
8584 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8585 		dev_err(hba->dev,
8586 		"invalid ref_clk setting = %ld\n", freq);
8587 }
8588 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8589 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8590 {
8591 	int err;
8592 	u32 ref_clk;
8593 	u32 freq = hba->dev_ref_clk_freq;
8594 
8595 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8596 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8597 
8598 	if (err) {
8599 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8600 			err);
8601 		goto out;
8602 	}
8603 
8604 	if (ref_clk == freq)
8605 		goto out; /* nothing to update */
8606 
8607 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8608 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8609 
8610 	if (err) {
8611 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8612 			ufs_ref_clk_freqs[freq].freq_hz);
8613 		goto out;
8614 	}
8615 
8616 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8617 			ufs_ref_clk_freqs[freq].freq_hz);
8618 
8619 out:
8620 	return err;
8621 }
8622 
ufshcd_device_params_init(struct ufs_hba * hba)8623 static int ufshcd_device_params_init(struct ufs_hba *hba)
8624 {
8625 	bool flag;
8626 	int ret;
8627 
8628 	/* Init UFS geometry descriptor related parameters */
8629 	ret = ufshcd_device_geo_params_init(hba);
8630 	if (ret)
8631 		goto out;
8632 
8633 	/* Check and apply UFS device quirks */
8634 	ret = ufs_get_device_desc(hba);
8635 	if (ret) {
8636 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8637 			__func__, ret);
8638 		goto out;
8639 	}
8640 
8641 	ufshcd_set_rtt(hba);
8642 
8643 	ufshcd_get_ref_clk_gating_wait(hba);
8644 
8645 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8646 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8647 		hba->dev_info.f_power_on_wp_en = flag;
8648 
8649 	/* Probe maximum power mode co-supported by both UFS host and device */
8650 	if (ufshcd_get_max_pwr_mode(hba))
8651 		dev_err(hba->dev,
8652 			"%s: Failed getting max supported power mode\n",
8653 			__func__);
8654 out:
8655 	return ret;
8656 }
8657 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8658 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8659 {
8660 	int err;
8661 	struct ufs_query_req *request = NULL;
8662 	struct ufs_query_res *response = NULL;
8663 	struct ufs_dev_info *dev_info = &hba->dev_info;
8664 	struct utp_upiu_query_v4_0 *upiu_data;
8665 
8666 	if (dev_info->wspecversion < 0x400)
8667 		return;
8668 
8669 	ufshcd_dev_man_lock(hba);
8670 
8671 	ufshcd_init_query(hba, &request, &response,
8672 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8673 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8674 
8675 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8676 
8677 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8678 
8679 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8680 
8681 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8682 
8683 	if (err)
8684 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8685 			__func__, err);
8686 
8687 	ufshcd_dev_man_unlock(hba);
8688 }
8689 
8690 /**
8691  * ufshcd_add_lus - probe and add UFS logical units
8692  * @hba: per-adapter instance
8693  *
8694  * Return: 0 upon success; < 0 upon failure.
8695  */
ufshcd_add_lus(struct ufs_hba * hba)8696 static int ufshcd_add_lus(struct ufs_hba *hba)
8697 {
8698 	int ret;
8699 
8700 	/* Add required well known logical units to scsi mid layer */
8701 	ret = ufshcd_scsi_add_wlus(hba);
8702 	if (ret)
8703 		goto out;
8704 
8705 	/* Initialize devfreq after UFS device is detected */
8706 	if (ufshcd_is_clkscaling_supported(hba)) {
8707 		memcpy(&hba->clk_scaling.saved_pwr_info,
8708 			&hba->pwr_info,
8709 			sizeof(struct ufs_pa_layer_attr));
8710 		hba->clk_scaling.is_allowed = true;
8711 
8712 		ret = ufshcd_devfreq_init(hba);
8713 		if (ret)
8714 			goto out;
8715 
8716 		hba->clk_scaling.is_enabled = true;
8717 		ufshcd_init_clk_scaling_sysfs(hba);
8718 	}
8719 
8720 	/*
8721 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8722 	 * pointer and hence must only be started after the WLUN pointer has
8723 	 * been initialized by ufshcd_scsi_add_wlus().
8724 	 */
8725 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8726 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8727 
8728 	ufs_bsg_probe(hba);
8729 	scsi_scan_host(hba->host);
8730 
8731 out:
8732 	return ret;
8733 }
8734 
8735 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8736 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8737 {
8738 	size_t ucdl_size, utrdl_size;
8739 
8740 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8741 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8742 			   hba->ucdl_dma_addr);
8743 
8744 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8745 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8746 			   hba->utrdl_dma_addr);
8747 
8748 	devm_kfree(hba->dev, hba->lrb);
8749 }
8750 
ufshcd_alloc_mcq(struct ufs_hba * hba)8751 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8752 {
8753 	int ret;
8754 	int old_nutrs = hba->nutrs;
8755 
8756 	ret = ufshcd_mcq_decide_queue_depth(hba);
8757 	if (ret < 0)
8758 		return ret;
8759 
8760 	hba->nutrs = ret;
8761 	ret = ufshcd_mcq_init(hba);
8762 	if (ret)
8763 		goto err;
8764 
8765 	/*
8766 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8767 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8768 	 */
8769 	if (hba->nutrs != old_nutrs) {
8770 		ufshcd_release_sdb_queue(hba, old_nutrs);
8771 		ret = ufshcd_memory_alloc(hba);
8772 		if (ret)
8773 			goto err;
8774 		ufshcd_host_memory_configure(hba);
8775 	}
8776 
8777 	ret = ufshcd_mcq_memory_alloc(hba);
8778 	if (ret)
8779 		goto err;
8780 
8781 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8782 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8783 
8784 	return 0;
8785 err:
8786 	hba->nutrs = old_nutrs;
8787 	return ret;
8788 }
8789 
ufshcd_config_mcq(struct ufs_hba * hba)8790 static void ufshcd_config_mcq(struct ufs_hba *hba)
8791 {
8792 	int ret;
8793 	u32 intrs;
8794 
8795 	ret = ufshcd_mcq_vops_config_esi(hba);
8796 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8797 
8798 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8799 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8800 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8801 	ufshcd_enable_intr(hba, intrs);
8802 	ufshcd_mcq_make_queues_operational(hba);
8803 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8804 
8805 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8806 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8807 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8808 		 hba->nutrs);
8809 }
8810 
ufshcd_post_device_init(struct ufs_hba * hba)8811 static int ufshcd_post_device_init(struct ufs_hba *hba)
8812 {
8813 	int ret;
8814 
8815 	ufshcd_tune_unipro_params(hba);
8816 
8817 	/* UFS device is also active now */
8818 	ufshcd_set_ufs_dev_active(hba);
8819 	ufshcd_force_reset_auto_bkops(hba);
8820 
8821 	ufshcd_set_timestamp_attr(hba);
8822 
8823 	if (!hba->max_pwr_info.is_valid)
8824 		return 0;
8825 
8826 	/*
8827 	 * Set the right value to bRefClkFreq before attempting to
8828 	 * switch to HS gears.
8829 	 */
8830 	if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8831 		ufshcd_set_dev_ref_clk(hba);
8832 	/* Gear up to HS gear. */
8833 	ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8834 	if (ret) {
8835 		dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8836 			__func__, ret);
8837 		return ret;
8838 	}
8839 
8840 	return 0;
8841 }
8842 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8843 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8844 {
8845 	int ret;
8846 
8847 	WARN_ON_ONCE(!hba->scsi_host_added);
8848 
8849 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8850 
8851 	ret = ufshcd_link_startup(hba);
8852 	if (ret)
8853 		return ret;
8854 
8855 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8856 		return ret;
8857 
8858 	/* Debug counters initialization */
8859 	ufshcd_clear_dbg_ufs_stats(hba);
8860 
8861 	/* UniPro link is active now */
8862 	ufshcd_set_link_active(hba);
8863 
8864 	/* Reconfigure MCQ upon reset */
8865 	if (hba->mcq_enabled && !init_dev_params) {
8866 		ufshcd_config_mcq(hba);
8867 		ufshcd_mcq_enable(hba);
8868 	}
8869 
8870 	/* Verify device initialization by sending NOP OUT UPIU */
8871 	ret = ufshcd_verify_dev_init(hba);
8872 	if (ret)
8873 		return ret;
8874 
8875 	/* Initiate UFS initialization, and waiting until completion */
8876 	ret = ufshcd_complete_dev_init(hba);
8877 	if (ret)
8878 		return ret;
8879 
8880 	/*
8881 	 * Initialize UFS device parameters used by driver, these
8882 	 * parameters are associated with UFS descriptors.
8883 	 */
8884 	if (init_dev_params) {
8885 		ret = ufshcd_device_params_init(hba);
8886 		if (ret)
8887 			return ret;
8888 		if (is_mcq_supported(hba) &&
8889 		    hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH) {
8890 			ufshcd_config_mcq(hba);
8891 			ufshcd_mcq_enable(hba);
8892 		}
8893 	}
8894 
8895 	return ufshcd_post_device_init(hba);
8896 }
8897 
8898 /**
8899  * ufshcd_probe_hba - probe hba to detect device and initialize it
8900  * @hba: per-adapter instance
8901  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8902  *
8903  * Execute link-startup and verify device initialization
8904  *
8905  * Return: 0 upon success; < 0 upon failure.
8906  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8907 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8908 {
8909 	int ret;
8910 
8911 	if (!hba->pm_op_in_progress &&
8912 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8913 		/* Reset the device and controller before doing reinit */
8914 		ufshcd_device_reset(hba);
8915 		ufs_put_device_desc(hba);
8916 		ufshcd_hba_stop(hba);
8917 		ret = ufshcd_hba_enable(hba);
8918 		if (ret) {
8919 			dev_err(hba->dev, "Host controller enable failed\n");
8920 			ufshcd_print_evt_hist(hba);
8921 			ufshcd_print_host_state(hba);
8922 			return ret;
8923 		}
8924 
8925 		/* Reinit the device */
8926 		ret = ufshcd_device_init(hba, init_dev_params);
8927 		if (ret)
8928 			return ret;
8929 	}
8930 
8931 	ufshcd_print_pwr_info(hba);
8932 
8933 	/*
8934 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8935 	 * and for removable UFS card as well, hence always set the parameter.
8936 	 * Note: Error handler may issue the device reset hence resetting
8937 	 * bActiveICCLevel as well so it is always safe to set this here.
8938 	 */
8939 	ufshcd_set_active_icc_lvl(hba);
8940 
8941 	/* Enable UFS Write Booster if supported */
8942 	ufshcd_configure_wb(hba);
8943 
8944 	if (hba->ee_usr_mask)
8945 		ufshcd_write_ee_control(hba);
8946 	ufshcd_configure_auto_hibern8(hba);
8947 
8948 	return 0;
8949 }
8950 
8951 /**
8952  * ufshcd_async_scan - asynchronous execution for probing hba
8953  * @data: data pointer to pass to this function
8954  * @cookie: cookie data
8955  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8956 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8957 {
8958 	struct ufs_hba *hba = (struct ufs_hba *)data;
8959 	ktime_t probe_start;
8960 	int ret;
8961 
8962 	down(&hba->host_sem);
8963 	/* Initialize hba, detect and initialize UFS device */
8964 	probe_start = ktime_get();
8965 	ret = ufshcd_probe_hba(hba, true);
8966 	ufshcd_process_probe_result(hba, probe_start, ret);
8967 	up(&hba->host_sem);
8968 	if (ret)
8969 		goto out;
8970 
8971 	/* Probe and add UFS logical units  */
8972 	ret = ufshcd_add_lus(hba);
8973 
8974 out:
8975 	pm_runtime_put_sync(hba->dev);
8976 
8977 	if (ret)
8978 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8979 }
8980 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8981 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8982 {
8983 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8984 
8985 	if (!hba->system_suspending) {
8986 		/* Activate the error handler in the SCSI core. */
8987 		return SCSI_EH_NOT_HANDLED;
8988 	}
8989 
8990 	/*
8991 	 * If we get here we know that no TMFs are outstanding and also that
8992 	 * the only pending command is a START STOP UNIT command. Handle the
8993 	 * timeout of that command directly to prevent a deadlock between
8994 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8995 	 */
8996 	ufshcd_link_recovery(hba);
8997 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8998 		 __func__, hba->outstanding_tasks);
8999 
9000 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
9001 }
9002 
9003 static const struct attribute_group *ufshcd_driver_groups[] = {
9004 	&ufs_sysfs_unit_descriptor_group,
9005 	&ufs_sysfs_lun_attributes_group,
9006 	NULL,
9007 };
9008 
9009 static struct ufs_hba_variant_params ufs_hba_vps = {
9010 	.hba_enable_delay_us		= 1000,
9011 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
9012 	.devfreq_profile.polling_ms	= 100,
9013 	.devfreq_profile.target		= ufshcd_devfreq_target,
9014 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9015 	.ondemand_data.upthreshold	= 70,
9016 	.ondemand_data.downdifferential	= 5,
9017 };
9018 
9019 static const struct scsi_host_template ufshcd_driver_template = {
9020 	.module			= THIS_MODULE,
9021 	.name			= UFSHCD,
9022 	.proc_name		= UFSHCD,
9023 	.map_queues		= ufshcd_map_queues,
9024 	.queuecommand		= ufshcd_queuecommand,
9025 	.mq_poll		= ufshcd_poll,
9026 	.sdev_init		= ufshcd_sdev_init,
9027 	.sdev_configure		= ufshcd_sdev_configure,
9028 	.sdev_destroy		= ufshcd_sdev_destroy,
9029 	.change_queue_depth	= ufshcd_change_queue_depth,
9030 	.eh_abort_handler	= ufshcd_abort,
9031 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9032 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9033 	.eh_timed_out		= ufshcd_eh_timed_out,
9034 	.this_id		= -1,
9035 	.sg_tablesize		= SG_ALL,
9036 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9037 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9038 	.max_host_blocked	= 1,
9039 	.track_queue_depth	= 1,
9040 	.skip_settle_delay	= 1,
9041 	.sdev_groups		= ufshcd_driver_groups,
9042 };
9043 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9044 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9045 				   int ua)
9046 {
9047 	int ret;
9048 
9049 	if (!vreg)
9050 		return 0;
9051 
9052 	/*
9053 	 * "set_load" operation shall be required on those regulators
9054 	 * which specifically configured current limitation. Otherwise
9055 	 * zero max_uA may cause unexpected behavior when regulator is
9056 	 * enabled or set as high power mode.
9057 	 */
9058 	if (!vreg->max_uA)
9059 		return 0;
9060 
9061 	ret = regulator_set_load(vreg->reg, ua);
9062 	if (ret < 0) {
9063 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9064 				__func__, vreg->name, ua, ret);
9065 	}
9066 
9067 	return ret;
9068 }
9069 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9070 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9071 					 struct ufs_vreg *vreg)
9072 {
9073 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9074 }
9075 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9076 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9077 					 struct ufs_vreg *vreg)
9078 {
9079 	if (!vreg)
9080 		return 0;
9081 
9082 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9083 }
9084 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9085 static int ufshcd_config_vreg(struct device *dev,
9086 		struct ufs_vreg *vreg, bool on)
9087 {
9088 	if (regulator_count_voltages(vreg->reg) <= 0)
9089 		return 0;
9090 
9091 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9092 }
9093 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9094 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9095 {
9096 	int ret = 0;
9097 
9098 	if (!vreg || vreg->enabled)
9099 		goto out;
9100 
9101 	ret = ufshcd_config_vreg(dev, vreg, true);
9102 	if (!ret)
9103 		ret = regulator_enable(vreg->reg);
9104 
9105 	if (!ret)
9106 		vreg->enabled = true;
9107 	else
9108 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9109 				__func__, vreg->name, ret);
9110 out:
9111 	return ret;
9112 }
9113 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9114 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9115 {
9116 	int ret = 0;
9117 
9118 	if (!vreg || !vreg->enabled || vreg->always_on)
9119 		goto out;
9120 
9121 	ret = regulator_disable(vreg->reg);
9122 
9123 	if (!ret) {
9124 		/* ignore errors on applying disable config */
9125 		ufshcd_config_vreg(dev, vreg, false);
9126 		vreg->enabled = false;
9127 	} else {
9128 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9129 				__func__, vreg->name, ret);
9130 	}
9131 out:
9132 	return ret;
9133 }
9134 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9135 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9136 {
9137 	int ret = 0;
9138 	struct device *dev = hba->dev;
9139 	struct ufs_vreg_info *info = &hba->vreg_info;
9140 
9141 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9142 	if (ret)
9143 		goto out;
9144 
9145 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9146 	if (ret)
9147 		goto out;
9148 
9149 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9150 
9151 out:
9152 	if (ret) {
9153 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9154 		ufshcd_toggle_vreg(dev, info->vccq, false);
9155 		ufshcd_toggle_vreg(dev, info->vcc, false);
9156 	}
9157 	return ret;
9158 }
9159 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9160 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9161 {
9162 	struct ufs_vreg_info *info = &hba->vreg_info;
9163 
9164 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9165 }
9166 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9167 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9168 {
9169 	int ret = 0;
9170 
9171 	if (!vreg)
9172 		goto out;
9173 
9174 	vreg->reg = devm_regulator_get(dev, vreg->name);
9175 	if (IS_ERR(vreg->reg)) {
9176 		ret = PTR_ERR(vreg->reg);
9177 		dev_err(dev, "%s: %s get failed, err=%d\n",
9178 				__func__, vreg->name, ret);
9179 	}
9180 out:
9181 	return ret;
9182 }
9183 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9184 
ufshcd_init_vreg(struct ufs_hba * hba)9185 static int ufshcd_init_vreg(struct ufs_hba *hba)
9186 {
9187 	int ret = 0;
9188 	struct device *dev = hba->dev;
9189 	struct ufs_vreg_info *info = &hba->vreg_info;
9190 
9191 	ret = ufshcd_get_vreg(dev, info->vcc);
9192 	if (ret)
9193 		goto out;
9194 
9195 	ret = ufshcd_get_vreg(dev, info->vccq);
9196 	if (!ret)
9197 		ret = ufshcd_get_vreg(dev, info->vccq2);
9198 out:
9199 	return ret;
9200 }
9201 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9202 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9203 {
9204 	struct ufs_vreg_info *info = &hba->vreg_info;
9205 
9206 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9207 }
9208 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9209 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9210 {
9211 	int ret = 0;
9212 	struct ufs_clk_info *clki;
9213 	struct list_head *head = &hba->clk_list_head;
9214 	ktime_t start = ktime_get();
9215 	bool clk_state_changed = false;
9216 
9217 	if (list_empty(head))
9218 		goto out;
9219 
9220 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9221 	if (ret)
9222 		return ret;
9223 
9224 	list_for_each_entry(clki, head, list) {
9225 		if (!IS_ERR_OR_NULL(clki->clk)) {
9226 			/*
9227 			 * Don't disable clocks which are needed
9228 			 * to keep the link active.
9229 			 */
9230 			if (ufshcd_is_link_active(hba) &&
9231 			    clki->keep_link_active)
9232 				continue;
9233 
9234 			clk_state_changed = on ^ clki->enabled;
9235 			if (on && !clki->enabled) {
9236 				ret = clk_prepare_enable(clki->clk);
9237 				if (ret) {
9238 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9239 						__func__, clki->name, ret);
9240 					goto out;
9241 				}
9242 			} else if (!on && clki->enabled) {
9243 				clk_disable_unprepare(clki->clk);
9244 			}
9245 			clki->enabled = on;
9246 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9247 					clki->name, on ? "en" : "dis");
9248 		}
9249 	}
9250 
9251 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9252 	if (ret)
9253 		return ret;
9254 
9255 	if (!ufshcd_is_clkscaling_supported(hba))
9256 		ufshcd_pm_qos_update(hba, on);
9257 out:
9258 	if (ret) {
9259 		list_for_each_entry(clki, head, list) {
9260 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9261 				clk_disable_unprepare(clki->clk);
9262 		}
9263 	} else if (!ret && on && hba->clk_gating.is_initialized) {
9264 		scoped_guard(spinlock_irqsave, &hba->clk_gating.lock)
9265 			hba->clk_gating.state = CLKS_ON;
9266 		trace_ufshcd_clk_gating(hba,
9267 					hba->clk_gating.state);
9268 	}
9269 
9270 	if (clk_state_changed)
9271 		trace_ufshcd_profile_clk_gating(hba,
9272 			(on ? "on" : "off"),
9273 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9274 	return ret;
9275 }
9276 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9277 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9278 {
9279 	u32 freq;
9280 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9281 
9282 	if (ret) {
9283 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9284 		return REF_CLK_FREQ_INVAL;
9285 	}
9286 
9287 	return ufs_get_bref_clk_from_hz(freq);
9288 }
9289 
ufshcd_init_clocks(struct ufs_hba * hba)9290 static int ufshcd_init_clocks(struct ufs_hba *hba)
9291 {
9292 	int ret = 0;
9293 	struct ufs_clk_info *clki;
9294 	struct device *dev = hba->dev;
9295 	struct list_head *head = &hba->clk_list_head;
9296 
9297 	if (list_empty(head))
9298 		goto out;
9299 
9300 	list_for_each_entry(clki, head, list) {
9301 		if (!clki->name)
9302 			continue;
9303 
9304 		clki->clk = devm_clk_get(dev, clki->name);
9305 		if (IS_ERR(clki->clk)) {
9306 			ret = PTR_ERR(clki->clk);
9307 			dev_err(dev, "%s: %s clk get failed, %d\n",
9308 					__func__, clki->name, ret);
9309 			goto out;
9310 		}
9311 
9312 		/*
9313 		 * Parse device ref clk freq as per device tree "ref_clk".
9314 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9315 		 * in ufshcd_alloc_host().
9316 		 */
9317 		if (!strcmp(clki->name, "ref_clk"))
9318 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9319 
9320 		if (clki->max_freq) {
9321 			ret = clk_set_rate(clki->clk, clki->max_freq);
9322 			if (ret) {
9323 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9324 					__func__, clki->name,
9325 					clki->max_freq, ret);
9326 				goto out;
9327 			}
9328 			clki->curr_freq = clki->max_freq;
9329 		}
9330 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9331 				clki->name, clk_get_rate(clki->clk));
9332 	}
9333 
9334 	/* Set Max. frequency for all clocks */
9335 	if (hba->use_pm_opp) {
9336 		ret = ufshcd_opp_set_rate(hba, ULONG_MAX);
9337 		if (ret) {
9338 			dev_err(hba->dev, "%s: failed to set OPP: %d", __func__,
9339 				ret);
9340 			goto out;
9341 		}
9342 	}
9343 
9344 out:
9345 	return ret;
9346 }
9347 
ufshcd_variant_hba_init(struct ufs_hba * hba)9348 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9349 {
9350 	int err = 0;
9351 
9352 	if (!hba->vops)
9353 		goto out;
9354 
9355 	err = ufshcd_vops_init(hba);
9356 	if (err)
9357 		dev_err_probe(hba->dev, err,
9358 			      "%s: variant %s init failed with err %d\n",
9359 			      __func__, ufshcd_get_var_name(hba), err);
9360 out:
9361 	return err;
9362 }
9363 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9364 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9365 {
9366 	if (!hba->vops)
9367 		return;
9368 
9369 	ufshcd_vops_exit(hba);
9370 }
9371 
ufshcd_hba_init(struct ufs_hba * hba)9372 static int ufshcd_hba_init(struct ufs_hba *hba)
9373 {
9374 	int err;
9375 
9376 	/*
9377 	 * Handle host controller power separately from the UFS device power
9378 	 * rails as it will help controlling the UFS host controller power
9379 	 * collapse easily which is different than UFS device power collapse.
9380 	 * Also, enable the host controller power before we go ahead with rest
9381 	 * of the initialization here.
9382 	 */
9383 	err = ufshcd_init_hba_vreg(hba);
9384 	if (err)
9385 		goto out;
9386 
9387 	err = ufshcd_setup_hba_vreg(hba, true);
9388 	if (err)
9389 		goto out;
9390 
9391 	err = ufshcd_init_clocks(hba);
9392 	if (err)
9393 		goto out_disable_hba_vreg;
9394 
9395 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9396 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9397 
9398 	err = ufshcd_setup_clocks(hba, true);
9399 	if (err)
9400 		goto out_disable_hba_vreg;
9401 
9402 	err = ufshcd_init_vreg(hba);
9403 	if (err)
9404 		goto out_disable_clks;
9405 
9406 	err = ufshcd_setup_vreg(hba, true);
9407 	if (err)
9408 		goto out_disable_clks;
9409 
9410 	err = ufshcd_variant_hba_init(hba);
9411 	if (err)
9412 		goto out_disable_vreg;
9413 
9414 	ufs_debugfs_hba_init(hba);
9415 	ufs_fault_inject_hba_init(hba);
9416 
9417 	hba->is_powered = true;
9418 	goto out;
9419 
9420 out_disable_vreg:
9421 	ufshcd_setup_vreg(hba, false);
9422 out_disable_clks:
9423 	ufshcd_setup_clocks(hba, false);
9424 out_disable_hba_vreg:
9425 	ufshcd_setup_hba_vreg(hba, false);
9426 out:
9427 	return err;
9428 }
9429 
ufshcd_hba_exit(struct ufs_hba * hba)9430 static void ufshcd_hba_exit(struct ufs_hba *hba)
9431 {
9432 	if (hba->is_powered) {
9433 		ufshcd_pm_qos_exit(hba);
9434 		ufshcd_exit_clk_scaling(hba);
9435 		ufshcd_exit_clk_gating(hba);
9436 		if (hba->eh_wq)
9437 			destroy_workqueue(hba->eh_wq);
9438 		ufs_debugfs_hba_exit(hba);
9439 		ufshcd_variant_hba_exit(hba);
9440 		ufshcd_setup_vreg(hba, false);
9441 		ufshcd_setup_clocks(hba, false);
9442 		ufshcd_setup_hba_vreg(hba, false);
9443 		hba->is_powered = false;
9444 		ufs_put_device_desc(hba);
9445 	}
9446 }
9447 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9448 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9449 				     enum ufs_dev_pwr_mode pwr_mode,
9450 				     struct scsi_sense_hdr *sshdr)
9451 {
9452 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9453 	struct scsi_failure failure_defs[] = {
9454 		{
9455 			.allowed = 2,
9456 			.result = SCMD_FAILURE_RESULT_ANY,
9457 		},
9458 	};
9459 	struct scsi_failures failures = {
9460 		.failure_definitions = failure_defs,
9461 	};
9462 	const struct scsi_exec_args args = {
9463 		.failures = &failures,
9464 		.sshdr = sshdr,
9465 		.req_flags = BLK_MQ_REQ_PM,
9466 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9467 	};
9468 
9469 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9470 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9471 			&args);
9472 }
9473 
9474 /**
9475  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9476  *			     power mode
9477  * @hba: per adapter instance
9478  * @pwr_mode: device power mode to set
9479  *
9480  * Return: 0 if requested power mode is set successfully;
9481  *         < 0 if failed to set the requested power mode.
9482  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9483 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9484 				     enum ufs_dev_pwr_mode pwr_mode)
9485 {
9486 	struct scsi_sense_hdr sshdr;
9487 	struct scsi_device *sdp;
9488 	unsigned long flags;
9489 	int ret;
9490 
9491 	spin_lock_irqsave(hba->host->host_lock, flags);
9492 	sdp = hba->ufs_device_wlun;
9493 	if (sdp && scsi_device_online(sdp))
9494 		ret = scsi_device_get(sdp);
9495 	else
9496 		ret = -ENODEV;
9497 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9498 
9499 	if (ret)
9500 		return ret;
9501 
9502 	/*
9503 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9504 	 * handling, which would wait for host to be resumed. Since we know
9505 	 * we are functional while we are here, skip host resume in error
9506 	 * handling context.
9507 	 */
9508 	hba->host->eh_noresume = 1;
9509 
9510 	/*
9511 	 * Current function would be generally called from the power management
9512 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9513 	 * already suspended childs.
9514 	 */
9515 	ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9516 	if (ret) {
9517 		sdev_printk(KERN_WARNING, sdp,
9518 			    "START_STOP failed for power mode: %d, result %x\n",
9519 			    pwr_mode, ret);
9520 		if (ret > 0) {
9521 			if (scsi_sense_valid(&sshdr))
9522 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9523 			ret = -EIO;
9524 		}
9525 	} else {
9526 		hba->curr_dev_pwr_mode = pwr_mode;
9527 	}
9528 
9529 	scsi_device_put(sdp);
9530 	hba->host->eh_noresume = 0;
9531 	return ret;
9532 }
9533 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9534 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9535 					enum uic_link_state req_link_state,
9536 					bool check_for_bkops)
9537 {
9538 	int ret = 0;
9539 
9540 	if (req_link_state == hba->uic_link_state)
9541 		return 0;
9542 
9543 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9544 		ret = ufshcd_uic_hibern8_enter(hba);
9545 		if (!ret) {
9546 			ufshcd_set_link_hibern8(hba);
9547 		} else {
9548 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9549 					__func__, ret);
9550 			goto out;
9551 		}
9552 	}
9553 	/*
9554 	 * If autobkops is enabled, link can't be turned off because
9555 	 * turning off the link would also turn off the device, except in the
9556 	 * case of DeepSleep where the device is expected to remain powered.
9557 	 */
9558 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9559 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9560 		/*
9561 		 * Let's make sure that link is in low power mode, we are doing
9562 		 * this currently by putting the link in Hibern8. Otherway to
9563 		 * put the link in low power mode is to send the DME end point
9564 		 * to device and then send the DME reset command to local
9565 		 * unipro. But putting the link in hibern8 is much faster.
9566 		 *
9567 		 * Note also that putting the link in Hibern8 is a requirement
9568 		 * for entering DeepSleep.
9569 		 */
9570 		ret = ufshcd_uic_hibern8_enter(hba);
9571 		if (ret) {
9572 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9573 					__func__, ret);
9574 			goto out;
9575 		}
9576 		/*
9577 		 * Change controller state to "reset state" which
9578 		 * should also put the link in off/reset state
9579 		 */
9580 		ufshcd_hba_stop(hba);
9581 		/*
9582 		 * TODO: Check if we need any delay to make sure that
9583 		 * controller is reset
9584 		 */
9585 		ufshcd_set_link_off(hba);
9586 	}
9587 
9588 out:
9589 	return ret;
9590 }
9591 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9592 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9593 {
9594 	bool vcc_off = false;
9595 
9596 	/*
9597 	 * It seems some UFS devices may keep drawing more than sleep current
9598 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9599 	 * To avoid this situation, add 2ms delay before putting these UFS
9600 	 * rails in LPM mode.
9601 	 */
9602 	if (!ufshcd_is_link_active(hba) &&
9603 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9604 		usleep_range(2000, 2100);
9605 
9606 	/*
9607 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9608 	 * power.
9609 	 *
9610 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9611 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9612 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9613 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9614 	 *
9615 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9616 	 * in low power state which would save some power.
9617 	 *
9618 	 * If Write Booster is enabled and the device needs to flush the WB
9619 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9620 	 */
9621 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9622 	    !hba->dev_info.is_lu_power_on_wp) {
9623 		ufshcd_setup_vreg(hba, false);
9624 		vcc_off = true;
9625 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9626 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9627 		vcc_off = true;
9628 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9629 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9630 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9631 		}
9632 	}
9633 
9634 	/*
9635 	 * Some UFS devices require delay after VCC power rail is turned-off.
9636 	 */
9637 	if (vcc_off && hba->vreg_info.vcc &&
9638 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9639 		usleep_range(5000, 5100);
9640 }
9641 
9642 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9643 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9644 {
9645 	int ret = 0;
9646 
9647 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9648 	    !hba->dev_info.is_lu_power_on_wp) {
9649 		ret = ufshcd_setup_vreg(hba, true);
9650 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9651 		if (!ufshcd_is_link_active(hba)) {
9652 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9653 			if (ret)
9654 				goto vcc_disable;
9655 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9656 			if (ret)
9657 				goto vccq_lpm;
9658 		}
9659 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9660 	}
9661 	goto out;
9662 
9663 vccq_lpm:
9664 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9665 vcc_disable:
9666 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9667 out:
9668 	return ret;
9669 }
9670 #endif /* CONFIG_PM */
9671 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9672 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9673 {
9674 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9675 		ufshcd_setup_hba_vreg(hba, false);
9676 }
9677 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9678 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9679 {
9680 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9681 		ufshcd_setup_hba_vreg(hba, true);
9682 }
9683 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9684 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9685 {
9686 	int ret = 0;
9687 	bool check_for_bkops;
9688 	enum ufs_pm_level pm_lvl;
9689 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9690 	enum uic_link_state req_link_state;
9691 
9692 	hba->pm_op_in_progress = true;
9693 	if (pm_op != UFS_SHUTDOWN_PM) {
9694 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9695 			 hba->rpm_lvl : hba->spm_lvl;
9696 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9697 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9698 	} else {
9699 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9700 		req_link_state = UIC_LINK_OFF_STATE;
9701 	}
9702 
9703 	/*
9704 	 * If we can't transition into any of the low power modes
9705 	 * just gate the clocks.
9706 	 */
9707 	ufshcd_hold(hba);
9708 	hba->clk_gating.is_suspended = true;
9709 
9710 	if (ufshcd_is_clkscaling_supported(hba))
9711 		ufshcd_clk_scaling_suspend(hba, true);
9712 
9713 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9714 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9715 		goto vops_suspend;
9716 	}
9717 
9718 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9719 	    (req_link_state == hba->uic_link_state))
9720 		goto enable_scaling;
9721 
9722 	/* UFS device & link must be active before we enter in this function */
9723 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9724 		/*  Wait err handler finish or trigger err recovery */
9725 		if (!ufshcd_eh_in_progress(hba))
9726 			ufshcd_force_error_recovery(hba);
9727 		ret = -EBUSY;
9728 		goto enable_scaling;
9729 	}
9730 
9731 	if (pm_op == UFS_RUNTIME_PM) {
9732 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9733 			/*
9734 			 * The device is idle with no requests in the queue,
9735 			 * allow background operations if bkops status shows
9736 			 * that performance might be impacted.
9737 			 */
9738 			ret = ufshcd_bkops_ctrl(hba);
9739 			if (ret) {
9740 				/*
9741 				 * If return err in suspend flow, IO will hang.
9742 				 * Trigger error handler and break suspend for
9743 				 * error recovery.
9744 				 */
9745 				ufshcd_force_error_recovery(hba);
9746 				ret = -EBUSY;
9747 				goto enable_scaling;
9748 			}
9749 		} else {
9750 			/* make sure that auto bkops is disabled */
9751 			ufshcd_disable_auto_bkops(hba);
9752 		}
9753 		/*
9754 		 * If device needs to do BKOP or WB buffer flush during
9755 		 * Hibern8, keep device power mode as "active power mode"
9756 		 * and VCC supply.
9757 		 */
9758 		hba->dev_info.b_rpm_dev_flush_capable =
9759 			hba->auto_bkops_enabled ||
9760 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9761 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9762 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9763 			ufshcd_wb_need_flush(hba));
9764 	}
9765 
9766 	flush_work(&hba->eeh_work);
9767 
9768 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9769 	if (ret)
9770 		goto enable_scaling;
9771 
9772 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9773 		if (pm_op != UFS_RUNTIME_PM)
9774 			/* ensure that bkops is disabled */
9775 			ufshcd_disable_auto_bkops(hba);
9776 
9777 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9778 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9779 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9780 				/*
9781 				 * If return err in suspend flow, IO will hang.
9782 				 * Trigger error handler and break suspend for
9783 				 * error recovery.
9784 				 */
9785 				ufshcd_force_error_recovery(hba);
9786 				ret = -EBUSY;
9787 			}
9788 			if (ret)
9789 				goto enable_scaling;
9790 		}
9791 	}
9792 
9793 	/*
9794 	 * In the case of DeepSleep, the device is expected to remain powered
9795 	 * with the link off, so do not check for bkops.
9796 	 */
9797 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9798 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9799 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9800 		/*
9801 		 * If return err in suspend flow, IO will hang.
9802 		 * Trigger error handler and break suspend for
9803 		 * error recovery.
9804 		 */
9805 		ufshcd_force_error_recovery(hba);
9806 		ret = -EBUSY;
9807 	}
9808 	if (ret)
9809 		goto set_dev_active;
9810 
9811 vops_suspend:
9812 	/*
9813 	 * Call vendor specific suspend callback. As these callbacks may access
9814 	 * vendor specific host controller register space call them before the
9815 	 * host clocks are ON.
9816 	 */
9817 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9818 	if (ret)
9819 		goto set_link_active;
9820 
9821 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9822 	goto out;
9823 
9824 set_link_active:
9825 	/*
9826 	 * Device hardware reset is required to exit DeepSleep. Also, for
9827 	 * DeepSleep, the link is off so host reset and restore will be done
9828 	 * further below.
9829 	 */
9830 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9831 		ufshcd_device_reset(hba);
9832 		WARN_ON(!ufshcd_is_link_off(hba));
9833 	}
9834 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9835 		ufshcd_set_link_active(hba);
9836 	else if (ufshcd_is_link_off(hba))
9837 		ufshcd_host_reset_and_restore(hba);
9838 set_dev_active:
9839 	/* Can also get here needing to exit DeepSleep */
9840 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9841 		ufshcd_device_reset(hba);
9842 		ufshcd_host_reset_and_restore(hba);
9843 	}
9844 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9845 		ufshcd_disable_auto_bkops(hba);
9846 enable_scaling:
9847 	if (ufshcd_is_clkscaling_supported(hba))
9848 		ufshcd_clk_scaling_suspend(hba, false);
9849 
9850 	hba->dev_info.b_rpm_dev_flush_capable = false;
9851 out:
9852 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9853 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9854 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9855 	}
9856 
9857 	if (ret) {
9858 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9859 		hba->clk_gating.is_suspended = false;
9860 		ufshcd_release(hba);
9861 	}
9862 	hba->pm_op_in_progress = false;
9863 	return ret;
9864 }
9865 
9866 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9867 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9868 {
9869 	int ret;
9870 	enum uic_link_state old_link_state = hba->uic_link_state;
9871 
9872 	hba->pm_op_in_progress = true;
9873 
9874 	/*
9875 	 * Call vendor specific resume callback. As these callbacks may access
9876 	 * vendor specific host controller register space call them when the
9877 	 * host clocks are ON.
9878 	 */
9879 	ret = ufshcd_vops_resume(hba, pm_op);
9880 	if (ret)
9881 		goto out;
9882 
9883 	/* For DeepSleep, the only supported option is to have the link off */
9884 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9885 
9886 	if (ufshcd_is_link_hibern8(hba)) {
9887 		ret = ufshcd_uic_hibern8_exit(hba);
9888 		if (!ret) {
9889 			ufshcd_set_link_active(hba);
9890 		} else {
9891 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9892 					__func__, ret);
9893 			goto vendor_suspend;
9894 		}
9895 	} else if (ufshcd_is_link_off(hba)) {
9896 		/*
9897 		 * A full initialization of the host and the device is
9898 		 * required since the link was put to off during suspend.
9899 		 * Note, in the case of DeepSleep, the device will exit
9900 		 * DeepSleep due to device reset.
9901 		 */
9902 		ret = ufshcd_reset_and_restore(hba);
9903 		/*
9904 		 * ufshcd_reset_and_restore() should have already
9905 		 * set the link state as active
9906 		 */
9907 		if (ret || !ufshcd_is_link_active(hba))
9908 			goto vendor_suspend;
9909 	}
9910 
9911 	if (!ufshcd_is_ufs_dev_active(hba)) {
9912 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9913 		if (ret)
9914 			goto set_old_link_state;
9915 		ufshcd_set_timestamp_attr(hba);
9916 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9917 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9918 	}
9919 
9920 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9921 		ufshcd_enable_auto_bkops(hba);
9922 	else
9923 		/*
9924 		 * If BKOPs operations are urgently needed at this moment then
9925 		 * keep auto-bkops enabled or else disable it.
9926 		 */
9927 		ufshcd_bkops_ctrl(hba);
9928 
9929 	if (hba->ee_usr_mask)
9930 		ufshcd_write_ee_control(hba);
9931 
9932 	if (ufshcd_is_clkscaling_supported(hba))
9933 		ufshcd_clk_scaling_suspend(hba, false);
9934 
9935 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9936 		hba->dev_info.b_rpm_dev_flush_capable = false;
9937 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9938 	}
9939 
9940 	ufshcd_configure_auto_hibern8(hba);
9941 
9942 	goto out;
9943 
9944 set_old_link_state:
9945 	ufshcd_link_state_transition(hba, old_link_state, 0);
9946 vendor_suspend:
9947 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9948 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9949 out:
9950 	if (ret)
9951 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9952 	hba->clk_gating.is_suspended = false;
9953 	ufshcd_release(hba);
9954 	hba->pm_op_in_progress = false;
9955 	return ret;
9956 }
9957 
ufshcd_wl_runtime_suspend(struct device * dev)9958 static int ufshcd_wl_runtime_suspend(struct device *dev)
9959 {
9960 	struct scsi_device *sdev = to_scsi_device(dev);
9961 	struct ufs_hba *hba;
9962 	int ret;
9963 	ktime_t start = ktime_get();
9964 
9965 	hba = shost_priv(sdev->host);
9966 
9967 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9968 	if (ret)
9969 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9970 
9971 	trace_ufshcd_wl_runtime_suspend(hba, ret,
9972 		ktime_to_us(ktime_sub(ktime_get(), start)),
9973 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9974 
9975 	return ret;
9976 }
9977 
ufshcd_wl_runtime_resume(struct device * dev)9978 static int ufshcd_wl_runtime_resume(struct device *dev)
9979 {
9980 	struct scsi_device *sdev = to_scsi_device(dev);
9981 	struct ufs_hba *hba;
9982 	int ret = 0;
9983 	ktime_t start = ktime_get();
9984 
9985 	hba = shost_priv(sdev->host);
9986 
9987 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9988 	if (ret)
9989 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9990 
9991 	trace_ufshcd_wl_runtime_resume(hba, ret,
9992 		ktime_to_us(ktime_sub(ktime_get(), start)),
9993 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9994 
9995 	return ret;
9996 }
9997 #endif
9998 
9999 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)10000 static int ufshcd_wl_suspend(struct device *dev)
10001 {
10002 	struct scsi_device *sdev = to_scsi_device(dev);
10003 	struct ufs_hba *hba;
10004 	int ret = 0;
10005 	ktime_t start = ktime_get();
10006 
10007 	hba = shost_priv(sdev->host);
10008 	down(&hba->host_sem);
10009 	hba->system_suspending = true;
10010 
10011 	if (pm_runtime_suspended(dev))
10012 		goto out;
10013 
10014 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
10015 	if (ret) {
10016 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
10017 		up(&hba->host_sem);
10018 	}
10019 
10020 out:
10021 	if (!ret)
10022 		hba->is_sys_suspended = true;
10023 	trace_ufshcd_wl_suspend(hba, ret,
10024 		ktime_to_us(ktime_sub(ktime_get(), start)),
10025 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10026 
10027 	return ret;
10028 }
10029 
ufshcd_wl_resume(struct device * dev)10030 static int ufshcd_wl_resume(struct device *dev)
10031 {
10032 	struct scsi_device *sdev = to_scsi_device(dev);
10033 	struct ufs_hba *hba;
10034 	int ret = 0;
10035 	ktime_t start = ktime_get();
10036 
10037 	hba = shost_priv(sdev->host);
10038 
10039 	if (pm_runtime_suspended(dev))
10040 		goto out;
10041 
10042 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10043 	if (ret)
10044 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10045 out:
10046 	trace_ufshcd_wl_resume(hba, ret,
10047 		ktime_to_us(ktime_sub(ktime_get(), start)),
10048 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10049 	if (!ret)
10050 		hba->is_sys_suspended = false;
10051 	hba->system_suspending = false;
10052 	up(&hba->host_sem);
10053 	return ret;
10054 }
10055 #endif
10056 
10057 /**
10058  * ufshcd_suspend - helper function for suspend operations
10059  * @hba: per adapter instance
10060  *
10061  * This function will put disable irqs, turn off clocks
10062  * and set vreg and hba-vreg in lpm mode.
10063  *
10064  * Return: 0 upon success; < 0 upon failure.
10065  */
ufshcd_suspend(struct ufs_hba * hba)10066 static int ufshcd_suspend(struct ufs_hba *hba)
10067 {
10068 	int ret;
10069 
10070 	if (!hba->is_powered)
10071 		return 0;
10072 	/*
10073 	 * Disable the host irq as host controller as there won't be any
10074 	 * host controller transaction expected till resume.
10075 	 */
10076 	ufshcd_disable_irq(hba);
10077 	ret = ufshcd_setup_clocks(hba, false);
10078 	if (ret) {
10079 		ufshcd_enable_irq(hba);
10080 		return ret;
10081 	}
10082 	if (ufshcd_is_clkgating_allowed(hba)) {
10083 		hba->clk_gating.state = CLKS_OFF;
10084 		trace_ufshcd_clk_gating(hba,
10085 					hba->clk_gating.state);
10086 	}
10087 
10088 	ufshcd_vreg_set_lpm(hba);
10089 	/* Put the host controller in low power mode if possible */
10090 	ufshcd_hba_vreg_set_lpm(hba);
10091 	ufshcd_pm_qos_update(hba, false);
10092 	return ret;
10093 }
10094 
10095 #ifdef CONFIG_PM
10096 /**
10097  * ufshcd_resume - helper function for resume operations
10098  * @hba: per adapter instance
10099  *
10100  * This function basically turns on the regulators, clocks and
10101  * irqs of the hba.
10102  *
10103  * Return: 0 for success and non-zero for failure.
10104  */
ufshcd_resume(struct ufs_hba * hba)10105 static int ufshcd_resume(struct ufs_hba *hba)
10106 {
10107 	int ret;
10108 
10109 	if (!hba->is_powered)
10110 		return 0;
10111 
10112 	ufshcd_hba_vreg_set_hpm(hba);
10113 	ret = ufshcd_vreg_set_hpm(hba);
10114 	if (ret)
10115 		goto out;
10116 
10117 	/* Make sure clocks are enabled before accessing controller */
10118 	ret = ufshcd_setup_clocks(hba, true);
10119 	if (ret)
10120 		goto disable_vreg;
10121 
10122 	/* enable the host irq as host controller would be active soon */
10123 	ufshcd_enable_irq(hba);
10124 
10125 	goto out;
10126 
10127 disable_vreg:
10128 	ufshcd_vreg_set_lpm(hba);
10129 out:
10130 	if (ret)
10131 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10132 	return ret;
10133 }
10134 #endif /* CONFIG_PM */
10135 
10136 #ifdef CONFIG_PM_SLEEP
10137 /**
10138  * ufshcd_system_suspend - system suspend callback
10139  * @dev: Device associated with the UFS controller.
10140  *
10141  * Executed before putting the system into a sleep state in which the contents
10142  * of main memory are preserved.
10143  *
10144  * Return: 0 for success and non-zero for failure.
10145  */
ufshcd_system_suspend(struct device * dev)10146 int ufshcd_system_suspend(struct device *dev)
10147 {
10148 	struct ufs_hba *hba = dev_get_drvdata(dev);
10149 	int ret = 0;
10150 	ktime_t start = ktime_get();
10151 
10152 	if (pm_runtime_suspended(hba->dev))
10153 		goto out;
10154 
10155 	ret = ufshcd_suspend(hba);
10156 out:
10157 	trace_ufshcd_system_suspend(hba, ret,
10158 		ktime_to_us(ktime_sub(ktime_get(), start)),
10159 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10160 	return ret;
10161 }
10162 EXPORT_SYMBOL(ufshcd_system_suspend);
10163 
10164 /**
10165  * ufshcd_system_resume - system resume callback
10166  * @dev: Device associated with the UFS controller.
10167  *
10168  * Executed after waking the system up from a sleep state in which the contents
10169  * of main memory were preserved.
10170  *
10171  * Return: 0 for success and non-zero for failure.
10172  */
ufshcd_system_resume(struct device * dev)10173 int ufshcd_system_resume(struct device *dev)
10174 {
10175 	struct ufs_hba *hba = dev_get_drvdata(dev);
10176 	ktime_t start = ktime_get();
10177 	int ret = 0;
10178 
10179 	if (pm_runtime_suspended(hba->dev))
10180 		goto out;
10181 
10182 	ret = ufshcd_resume(hba);
10183 
10184 out:
10185 	trace_ufshcd_system_resume(hba, ret,
10186 		ktime_to_us(ktime_sub(ktime_get(), start)),
10187 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10188 
10189 	return ret;
10190 }
10191 EXPORT_SYMBOL(ufshcd_system_resume);
10192 #endif /* CONFIG_PM_SLEEP */
10193 
10194 #ifdef CONFIG_PM
10195 /**
10196  * ufshcd_runtime_suspend - runtime suspend callback
10197  * @dev: Device associated with the UFS controller.
10198  *
10199  * Check the description of ufshcd_suspend() function for more details.
10200  *
10201  * Return: 0 for success and non-zero for failure.
10202  */
ufshcd_runtime_suspend(struct device * dev)10203 int ufshcd_runtime_suspend(struct device *dev)
10204 {
10205 	struct ufs_hba *hba = dev_get_drvdata(dev);
10206 	int ret;
10207 	ktime_t start = ktime_get();
10208 
10209 	ret = ufshcd_suspend(hba);
10210 
10211 	trace_ufshcd_runtime_suspend(hba, ret,
10212 		ktime_to_us(ktime_sub(ktime_get(), start)),
10213 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10214 	return ret;
10215 }
10216 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10217 
10218 /**
10219  * ufshcd_runtime_resume - runtime resume routine
10220  * @dev: Device associated with the UFS controller.
10221  *
10222  * This function basically brings controller
10223  * to active state. Following operations are done in this function:
10224  *
10225  * 1. Turn on all the controller related clocks
10226  * 2. Turn ON VCC rail
10227  *
10228  * Return: 0 upon success; < 0 upon failure.
10229  */
ufshcd_runtime_resume(struct device * dev)10230 int ufshcd_runtime_resume(struct device *dev)
10231 {
10232 	struct ufs_hba *hba = dev_get_drvdata(dev);
10233 	int ret;
10234 	ktime_t start = ktime_get();
10235 
10236 	ret = ufshcd_resume(hba);
10237 
10238 	trace_ufshcd_runtime_resume(hba, ret,
10239 		ktime_to_us(ktime_sub(ktime_get(), start)),
10240 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10241 	return ret;
10242 }
10243 EXPORT_SYMBOL(ufshcd_runtime_resume);
10244 #endif /* CONFIG_PM */
10245 
ufshcd_wl_shutdown(struct device * dev)10246 static void ufshcd_wl_shutdown(struct device *dev)
10247 {
10248 	struct scsi_device *sdev = to_scsi_device(dev);
10249 	struct ufs_hba *hba = shost_priv(sdev->host);
10250 
10251 	down(&hba->host_sem);
10252 	hba->shutting_down = true;
10253 	up(&hba->host_sem);
10254 
10255 	/* Turn on everything while shutting down */
10256 	ufshcd_rpm_get_sync(hba);
10257 	scsi_device_quiesce(sdev);
10258 	shost_for_each_device(sdev, hba->host) {
10259 		if (sdev == hba->ufs_device_wlun)
10260 			continue;
10261 		mutex_lock(&sdev->state_mutex);
10262 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10263 		mutex_unlock(&sdev->state_mutex);
10264 	}
10265 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10266 
10267 	/*
10268 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10269 	 * clocks.
10270 	 */
10271 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10272 		ufshcd_suspend(hba);
10273 
10274 	hba->is_powered = false;
10275 }
10276 
10277 /**
10278  * ufshcd_remove - de-allocate SCSI host and host memory space
10279  *		data structure memory
10280  * @hba: per adapter instance
10281  */
ufshcd_remove(struct ufs_hba * hba)10282 void ufshcd_remove(struct ufs_hba *hba)
10283 {
10284 	if (hba->ufs_device_wlun)
10285 		ufshcd_rpm_get_sync(hba);
10286 	ufs_hwmon_remove(hba);
10287 	ufs_bsg_remove(hba);
10288 	ufs_sysfs_remove_nodes(hba->dev);
10289 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10290 	blk_mq_destroy_queue(hba->tmf_queue);
10291 	blk_put_queue(hba->tmf_queue);
10292 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10293 	if (hba->scsi_host_added)
10294 		scsi_remove_host(hba->host);
10295 	/* disable interrupts */
10296 	ufshcd_disable_intr(hba, hba->intr_mask);
10297 	ufshcd_hba_stop(hba);
10298 	ufshcd_hba_exit(hba);
10299 }
10300 EXPORT_SYMBOL_GPL(ufshcd_remove);
10301 
10302 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10303 int ufshcd_system_freeze(struct device *dev)
10304 {
10305 
10306 	return ufshcd_system_suspend(dev);
10307 
10308 }
10309 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10310 
ufshcd_system_restore(struct device * dev)10311 int ufshcd_system_restore(struct device *dev)
10312 {
10313 
10314 	struct ufs_hba *hba = dev_get_drvdata(dev);
10315 	int ret;
10316 
10317 	ret = ufshcd_system_resume(dev);
10318 	if (ret)
10319 		return ret;
10320 
10321 	/* Configure UTRL and UTMRL base address registers */
10322 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10323 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10324 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10325 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10326 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10327 			REG_UTP_TASK_REQ_LIST_BASE_L);
10328 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10329 			REG_UTP_TASK_REQ_LIST_BASE_H);
10330 	/*
10331 	 * Make sure that UTRL and UTMRL base address registers
10332 	 * are updated with the latest queue addresses. Only after
10333 	 * updating these addresses, we can queue the new commands.
10334 	 */
10335 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10336 
10337 	return 0;
10338 
10339 }
10340 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10341 
ufshcd_system_thaw(struct device * dev)10342 int ufshcd_system_thaw(struct device *dev)
10343 {
10344 	return ufshcd_system_resume(dev);
10345 }
10346 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10347 #endif /* CONFIG_PM_SLEEP  */
10348 
10349 /**
10350  * ufshcd_set_dma_mask - Set dma mask based on the controller
10351  *			 addressing capability
10352  * @hba: per adapter instance
10353  *
10354  * Return: 0 for success, non-zero for failure.
10355  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10356 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10357 {
10358 	if (hba->vops && hba->vops->set_dma_mask)
10359 		return hba->vops->set_dma_mask(hba);
10360 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10361 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10362 			return 0;
10363 	}
10364 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10365 }
10366 
10367 /**
10368  * ufshcd_devres_release - devres cleanup handler, invoked during release of
10369  *			   hba->dev
10370  * @host: pointer to SCSI host
10371  */
ufshcd_devres_release(void * host)10372 static void ufshcd_devres_release(void *host)
10373 {
10374 	scsi_host_put(host);
10375 }
10376 
10377 /**
10378  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10379  * @dev: pointer to device handle
10380  * @hba_handle: driver private handle
10381  *
10382  * Return: 0 on success, non-zero value on failure.
10383  *
10384  * NOTE: There is no corresponding ufshcd_dealloc_host() because this function
10385  * keeps track of its allocations using devres and deallocates everything on
10386  * device removal automatically.
10387  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10388 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10389 {
10390 	struct Scsi_Host *host;
10391 	struct ufs_hba *hba;
10392 	int err = 0;
10393 
10394 	if (!dev) {
10395 		dev_err(dev,
10396 		"Invalid memory reference for dev is NULL\n");
10397 		err = -ENODEV;
10398 		goto out_error;
10399 	}
10400 
10401 	host = scsi_host_alloc(&ufshcd_driver_template,
10402 				sizeof(struct ufs_hba));
10403 	if (!host) {
10404 		dev_err(dev, "scsi_host_alloc failed\n");
10405 		err = -ENOMEM;
10406 		goto out_error;
10407 	}
10408 
10409 	err = devm_add_action_or_reset(dev, ufshcd_devres_release,
10410 				       host);
10411 	if (err)
10412 		return dev_err_probe(dev, err,
10413 				     "failed to add ufshcd dealloc action\n");
10414 
10415 	host->nr_maps = HCTX_TYPE_POLL + 1;
10416 	hba = shost_priv(host);
10417 	hba->host = host;
10418 	hba->dev = dev;
10419 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10420 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10421 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10422 	INIT_LIST_HEAD(&hba->clk_list_head);
10423 	spin_lock_init(&hba->outstanding_lock);
10424 
10425 	*hba_handle = hba;
10426 
10427 out_error:
10428 	return err;
10429 }
10430 EXPORT_SYMBOL(ufshcd_alloc_host);
10431 
10432 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10433 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10434 				     const struct blk_mq_queue_data *qd)
10435 {
10436 	WARN_ON_ONCE(true);
10437 	return BLK_STS_NOTSUPP;
10438 }
10439 
10440 static const struct blk_mq_ops ufshcd_tmf_ops = {
10441 	.queue_rq = ufshcd_queue_tmf,
10442 };
10443 
ufshcd_add_scsi_host(struct ufs_hba * hba)10444 static int ufshcd_add_scsi_host(struct ufs_hba *hba)
10445 {
10446 	int err;
10447 
10448 	if (is_mcq_supported(hba)) {
10449 		ufshcd_mcq_enable(hba);
10450 		err = ufshcd_alloc_mcq(hba);
10451 		if (!err) {
10452 			ufshcd_config_mcq(hba);
10453 		} else {
10454 			/* Continue with SDB mode */
10455 			ufshcd_mcq_disable(hba);
10456 			use_mcq_mode = false;
10457 			dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
10458 				err);
10459 		}
10460 	}
10461 	if (!is_mcq_supported(hba) && !hba->lsdb_sup) {
10462 		dev_err(hba->dev,
10463 			"%s: failed to initialize (legacy doorbell mode not supported)\n",
10464 			__func__);
10465 		return -EINVAL;
10466 	}
10467 
10468 	err = scsi_add_host(hba->host, hba->dev);
10469 	if (err) {
10470 		dev_err(hba->dev, "scsi_add_host failed\n");
10471 		return err;
10472 	}
10473 	hba->scsi_host_added = true;
10474 
10475 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10476 		.nr_hw_queues	= 1,
10477 		.queue_depth	= hba->nutmrs,
10478 		.ops		= &ufshcd_tmf_ops,
10479 	};
10480 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10481 	if (err < 0)
10482 		goto remove_scsi_host;
10483 	hba->tmf_queue = blk_mq_alloc_queue(&hba->tmf_tag_set, NULL, NULL);
10484 	if (IS_ERR(hba->tmf_queue)) {
10485 		err = PTR_ERR(hba->tmf_queue);
10486 		goto free_tmf_tag_set;
10487 	}
10488 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10489 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10490 	if (!hba->tmf_rqs) {
10491 		err = -ENOMEM;
10492 		goto free_tmf_queue;
10493 	}
10494 
10495 	return 0;
10496 
10497 free_tmf_queue:
10498 	blk_mq_destroy_queue(hba->tmf_queue);
10499 	blk_put_queue(hba->tmf_queue);
10500 
10501 free_tmf_tag_set:
10502 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10503 
10504 remove_scsi_host:
10505 	if (hba->scsi_host_added)
10506 		scsi_remove_host(hba->host);
10507 
10508 	return err;
10509 }
10510 
10511 /**
10512  * ufshcd_init - Driver initialization routine
10513  * @hba: per-adapter instance
10514  * @mmio_base: base register address
10515  * @irq: Interrupt line of device
10516  *
10517  * Return: 0 on success, non-zero value on failure.
10518  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10519 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10520 {
10521 	int err;
10522 	struct Scsi_Host *host = hba->host;
10523 	struct device *dev = hba->dev;
10524 
10525 	/*
10526 	 * dev_set_drvdata() must be called before any callbacks are registered
10527 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10528 	 * sysfs).
10529 	 */
10530 	dev_set_drvdata(dev, hba);
10531 
10532 	if (!mmio_base) {
10533 		dev_err(hba->dev,
10534 		"Invalid memory reference for mmio_base is NULL\n");
10535 		err = -ENODEV;
10536 		goto out_error;
10537 	}
10538 
10539 	hba->mmio_base = mmio_base;
10540 	hba->irq = irq;
10541 	hba->vps = &ufs_hba_vps;
10542 
10543 	/*
10544 	 * Initialize clk_gating.lock early since it is being used in
10545 	 * ufshcd_setup_clocks()
10546 	 */
10547 	spin_lock_init(&hba->clk_gating.lock);
10548 
10549 	/*
10550 	 * Set the default power management level for runtime and system PM.
10551 	 * Host controller drivers can override them in their
10552 	 * 'ufs_hba_variant_ops::init' callback.
10553 	 *
10554 	 * Default power saving mode is to keep UFS link in Hibern8 state
10555 	 * and UFS device in sleep state.
10556 	 */
10557 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10558 						UFS_SLEEP_PWR_MODE,
10559 						UIC_LINK_HIBERN8_STATE);
10560 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10561 						UFS_SLEEP_PWR_MODE,
10562 						UIC_LINK_HIBERN8_STATE);
10563 
10564 	init_completion(&hba->dev_cmd.complete);
10565 
10566 	err = ufshcd_hba_init(hba);
10567 	if (err)
10568 		goto out_error;
10569 
10570 	/* Read capabilities registers */
10571 	err = ufshcd_hba_capabilities(hba);
10572 	if (err)
10573 		goto out_disable;
10574 
10575 	/* Get UFS version supported by the controller */
10576 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10577 
10578 	/* Get Interrupt bit mask per version */
10579 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10580 
10581 	err = ufshcd_set_dma_mask(hba);
10582 	if (err) {
10583 		dev_err(hba->dev, "set dma mask failed\n");
10584 		goto out_disable;
10585 	}
10586 
10587 	/* Allocate memory for host memory space */
10588 	err = ufshcd_memory_alloc(hba);
10589 	if (err) {
10590 		dev_err(hba->dev, "Memory allocation failed\n");
10591 		goto out_disable;
10592 	}
10593 
10594 	/* Configure LRB */
10595 	ufshcd_host_memory_configure(hba);
10596 
10597 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10598 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10599 	host->max_id = UFSHCD_MAX_ID;
10600 	host->max_lun = UFS_MAX_LUNS;
10601 	host->max_channel = UFSHCD_MAX_CHANNEL;
10602 	host->unique_id = host->host_no;
10603 	host->max_cmd_len = UFS_CDB_SIZE;
10604 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10605 
10606 	/* Use default RPM delay if host not set */
10607 	if (host->rpm_autosuspend_delay == 0)
10608 		host->rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS;
10609 
10610 	hba->max_pwr_info.is_valid = false;
10611 
10612 	/* Initialize work queues */
10613 	hba->eh_wq = alloc_ordered_workqueue("ufs_eh_wq_%d", WQ_MEM_RECLAIM,
10614 					     hba->host->host_no);
10615 	if (!hba->eh_wq) {
10616 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10617 			__func__);
10618 		err = -ENOMEM;
10619 		goto out_disable;
10620 	}
10621 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10622 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10623 
10624 	sema_init(&hba->host_sem, 1);
10625 
10626 	/* Initialize UIC command mutex */
10627 	mutex_init(&hba->uic_cmd_mutex);
10628 
10629 	/* Initialize mutex for device management commands */
10630 	mutex_init(&hba->dev_cmd.lock);
10631 
10632 	/* Initialize mutex for exception event control */
10633 	mutex_init(&hba->ee_ctrl_mutex);
10634 
10635 	mutex_init(&hba->wb_mutex);
10636 	init_rwsem(&hba->clk_scaling_lock);
10637 
10638 	ufshcd_init_clk_gating(hba);
10639 
10640 	ufshcd_init_clk_scaling(hba);
10641 
10642 	/*
10643 	 * In order to avoid any spurious interrupt immediately after
10644 	 * registering UFS controller interrupt handler, clear any pending UFS
10645 	 * interrupt status and disable all the UFS interrupts.
10646 	 */
10647 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10648 		      REG_INTERRUPT_STATUS);
10649 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10650 	/*
10651 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10652 	 * status is cleared before registering UFS interrupt handler.
10653 	 */
10654 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10655 
10656 	/* IRQ registration */
10657 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10658 	if (err) {
10659 		dev_err(hba->dev, "request irq failed\n");
10660 		goto out_disable;
10661 	} else {
10662 		hba->is_irq_enabled = true;
10663 	}
10664 
10665 	/* Reset the attached device */
10666 	ufshcd_device_reset(hba);
10667 
10668 	ufshcd_init_crypto(hba);
10669 
10670 	/* Host controller enable */
10671 	err = ufshcd_hba_enable(hba);
10672 	if (err) {
10673 		dev_err(hba->dev, "Host controller enable failed\n");
10674 		ufshcd_print_evt_hist(hba);
10675 		ufshcd_print_host_state(hba);
10676 		goto out_disable;
10677 	}
10678 
10679 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10680 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10681 
10682 	/* Set the default auto-hiberate idle timer value to 150 ms */
10683 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10684 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10685 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10686 	}
10687 
10688 	/* Hold auto suspend until async scan completes */
10689 	pm_runtime_get_sync(dev);
10690 
10691 	/*
10692 	 * We are assuming that device wasn't put in sleep/power-down
10693 	 * state exclusively during the boot stage before kernel.
10694 	 * This assumption helps avoid doing link startup twice during
10695 	 * ufshcd_probe_hba().
10696 	 */
10697 	ufshcd_set_ufs_dev_active(hba);
10698 
10699 	/* Initialize hba, detect and initialize UFS device */
10700 	ktime_t probe_start = ktime_get();
10701 
10702 	hba->ufshcd_state = UFSHCD_STATE_RESET;
10703 
10704 	err = ufshcd_link_startup(hba);
10705 	if (err)
10706 		goto out_disable;
10707 
10708 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
10709 		goto initialized;
10710 
10711 	/* Debug counters initialization */
10712 	ufshcd_clear_dbg_ufs_stats(hba);
10713 
10714 	/* UniPro link is active now */
10715 	ufshcd_set_link_active(hba);
10716 
10717 	/* Verify device initialization by sending NOP OUT UPIU */
10718 	err = ufshcd_verify_dev_init(hba);
10719 	if (err)
10720 		goto out_disable;
10721 
10722 	/* Initiate UFS initialization, and waiting until completion */
10723 	err = ufshcd_complete_dev_init(hba);
10724 	if (err)
10725 		goto out_disable;
10726 
10727 	err = ufshcd_device_params_init(hba);
10728 	if (err)
10729 		goto out_disable;
10730 
10731 	err = ufshcd_post_device_init(hba);
10732 
10733 initialized:
10734 	ufshcd_process_probe_result(hba, probe_start, err);
10735 	if (err)
10736 		goto out_disable;
10737 
10738 	err = ufshcd_add_scsi_host(hba);
10739 	if (err)
10740 		goto out_disable;
10741 
10742 	async_schedule(ufshcd_async_scan, hba);
10743 	ufs_sysfs_add_nodes(hba->dev);
10744 
10745 	device_enable_async_suspend(dev);
10746 	ufshcd_pm_qos_init(hba);
10747 	return 0;
10748 
10749 out_disable:
10750 	hba->is_irq_enabled = false;
10751 	ufshcd_hba_exit(hba);
10752 out_error:
10753 	return err;
10754 }
10755 EXPORT_SYMBOL_GPL(ufshcd_init);
10756 
ufshcd_resume_complete(struct device * dev)10757 void ufshcd_resume_complete(struct device *dev)
10758 {
10759 	struct ufs_hba *hba = dev_get_drvdata(dev);
10760 
10761 	if (hba->complete_put) {
10762 		ufshcd_rpm_put(hba);
10763 		hba->complete_put = false;
10764 	}
10765 }
10766 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10767 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10768 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10769 {
10770 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10771 	enum ufs_dev_pwr_mode dev_pwr_mode;
10772 	enum uic_link_state link_state;
10773 	unsigned long flags;
10774 	bool res;
10775 
10776 	spin_lock_irqsave(&dev->power.lock, flags);
10777 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10778 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10779 	res = pm_runtime_suspended(dev) &&
10780 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10781 	      hba->uic_link_state == link_state &&
10782 	      !hba->dev_info.b_rpm_dev_flush_capable;
10783 	spin_unlock_irqrestore(&dev->power.lock, flags);
10784 
10785 	return res;
10786 }
10787 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10788 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10789 {
10790 	struct ufs_hba *hba = dev_get_drvdata(dev);
10791 	int ret;
10792 
10793 	/*
10794 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10795 	 * are same. And it doesn't wake up the device for system-suspend
10796 	 * if it's runtime suspended. But ufs doesn't follow that.
10797 	 * Refer ufshcd_resume_complete()
10798 	 */
10799 	if (hba->ufs_device_wlun) {
10800 		/* Prevent runtime suspend */
10801 		ufshcd_rpm_get_noresume(hba);
10802 		/*
10803 		 * Check if already runtime suspended in same state as system
10804 		 * suspend would be.
10805 		 */
10806 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10807 			/* RPM state is not ok for SPM, so runtime resume */
10808 			ret = ufshcd_rpm_resume(hba);
10809 			if (ret < 0 && ret != -EACCES) {
10810 				ufshcd_rpm_put(hba);
10811 				return ret;
10812 			}
10813 		}
10814 		hba->complete_put = true;
10815 	}
10816 	return 0;
10817 }
10818 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10819 
ufshcd_suspend_prepare(struct device * dev)10820 int ufshcd_suspend_prepare(struct device *dev)
10821 {
10822 	return __ufshcd_suspend_prepare(dev, true);
10823 }
10824 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10825 
10826 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10827 static int ufshcd_wl_poweroff(struct device *dev)
10828 {
10829 	struct scsi_device *sdev = to_scsi_device(dev);
10830 	struct ufs_hba *hba = shost_priv(sdev->host);
10831 
10832 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10833 	return 0;
10834 }
10835 #endif
10836 
ufshcd_wl_probe(struct device * dev)10837 static int ufshcd_wl_probe(struct device *dev)
10838 {
10839 	struct scsi_device *sdev = to_scsi_device(dev);
10840 
10841 	if (!is_device_wlun(sdev))
10842 		return -ENODEV;
10843 
10844 	blk_pm_runtime_init(sdev->request_queue, dev);
10845 	pm_runtime_set_autosuspend_delay(dev, 0);
10846 	pm_runtime_allow(dev);
10847 
10848 	return  0;
10849 }
10850 
ufshcd_wl_remove(struct device * dev)10851 static int ufshcd_wl_remove(struct device *dev)
10852 {
10853 	pm_runtime_forbid(dev);
10854 	return 0;
10855 }
10856 
10857 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10858 #ifdef CONFIG_PM_SLEEP
10859 	.suspend = ufshcd_wl_suspend,
10860 	.resume = ufshcd_wl_resume,
10861 	.freeze = ufshcd_wl_suspend,
10862 	.thaw = ufshcd_wl_resume,
10863 	.poweroff = ufshcd_wl_poweroff,
10864 	.restore = ufshcd_wl_resume,
10865 #endif
10866 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10867 };
10868 
ufshcd_check_header_layout(void)10869 static void ufshcd_check_header_layout(void)
10870 {
10871 	/*
10872 	 * gcc compilers before version 10 cannot do constant-folding for
10873 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10874 	 * before.
10875 	 */
10876 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10877 		return;
10878 
10879 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10880 				.cci = 3})[0] != 3);
10881 
10882 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10883 				.ehs_length = 2})[1] != 2);
10884 
10885 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10886 				.enable_crypto = 1})[2]
10887 		     != 0x80);
10888 
10889 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10890 					.command_type = 5,
10891 					.data_direction = 3,
10892 					.interrupt = 1,
10893 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10894 
10895 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10896 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10897 		cpu_to_le32(0xdeadbeef));
10898 
10899 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10900 				.ocs = 4})[8] != 4);
10901 
10902 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10903 				.cds = 5})[9] != 5);
10904 
10905 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10906 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10907 		cpu_to_le32(0xbadcafe));
10908 
10909 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10910 			     .iid = 0xf })[4] != 0xf0);
10911 
10912 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10913 			     .command_set_type = 0xf })[4] != 0xf);
10914 }
10915 
10916 /*
10917  * ufs_dev_wlun_template - describes ufs device wlun
10918  * ufs-device wlun - used to send pm commands
10919  * All luns are consumers of ufs-device wlun.
10920  *
10921  * Currently, no sd driver is present for wluns.
10922  * Hence the no specific pm operations are performed.
10923  * With ufs design, SSU should be sent to ufs-device wlun.
10924  * Hence register a scsi driver for ufs wluns only.
10925  */
10926 static struct scsi_driver ufs_dev_wlun_template = {
10927 	.gendrv = {
10928 		.name = "ufs_device_wlun",
10929 		.probe = ufshcd_wl_probe,
10930 		.remove = ufshcd_wl_remove,
10931 		.pm = &ufshcd_wl_pm_ops,
10932 		.shutdown = ufshcd_wl_shutdown,
10933 	},
10934 };
10935 
ufshcd_core_init(void)10936 static int __init ufshcd_core_init(void)
10937 {
10938 	int ret;
10939 
10940 	ufshcd_check_header_layout();
10941 
10942 	ufs_debugfs_init();
10943 
10944 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10945 	if (ret)
10946 		ufs_debugfs_exit();
10947 	return ret;
10948 }
10949 
ufshcd_core_exit(void)10950 static void __exit ufshcd_core_exit(void)
10951 {
10952 	ufs_debugfs_exit();
10953 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10954 }
10955 
10956 module_init(ufshcd_core_init);
10957 module_exit(ufshcd_core_exit);
10958 
10959 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10960 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10961 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10962 MODULE_SOFTDEP("pre: governor_simpleondemand");
10963 MODULE_LICENSE("GPL");
10964