1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013-2016, Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/acpi.h>
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/devfreq.h>
10 #include <linux/gpio/consumer.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/phy/phy.h>
15 #include <linux/platform_device.h>
16 #include <linux/reset-controller.h>
17 #include <linux/time.h>
18 #include <linux/unaligned.h>
19 #include <linux/units.h>
20 
21 #include <soc/qcom/ice.h>
22 
23 #include <ufs/ufshcd.h>
24 #include <ufs/ufshci.h>
25 #include <ufs/ufs_quirks.h>
26 #include <ufs/unipro.h>
27 #include "ufshcd-pltfrm.h"
28 #include "ufs-qcom.h"
29 
30 #define MCQ_QCFGPTR_MASK	GENMASK(7, 0)
31 #define MCQ_QCFGPTR_UNIT	0x200
32 #define MCQ_SQATTR_OFFSET(c) \
33 	((((c) >> 16) & MCQ_QCFGPTR_MASK) * MCQ_QCFGPTR_UNIT)
34 #define MCQ_QCFG_SIZE	0x40
35 
36 /* De-emphasis for gear-5 */
37 #define DEEMPHASIS_3_5_dB	0x04
38 #define NO_DEEMPHASIS		0x0
39 
40 enum {
41 	TSTBUS_UAWM,
42 	TSTBUS_UARM,
43 	TSTBUS_TXUC,
44 	TSTBUS_RXUC,
45 	TSTBUS_DFC,
46 	TSTBUS_TRLUT,
47 	TSTBUS_TMRLUT,
48 	TSTBUS_OCSC,
49 	TSTBUS_UTP_HCI,
50 	TSTBUS_COMBINED,
51 	TSTBUS_WRAPPER,
52 	TSTBUS_UNIPRO,
53 	TSTBUS_MAX,
54 };
55 
56 #define QCOM_UFS_MAX_GEAR 5
57 #define QCOM_UFS_MAX_LANE 2
58 
59 enum {
60 	MODE_MIN,
61 	MODE_PWM,
62 	MODE_HS_RA,
63 	MODE_HS_RB,
64 	MODE_MAX,
65 };
66 
67 static const struct __ufs_qcom_bw_table {
68 	u32 mem_bw;
69 	u32 cfg_bw;
70 } ufs_qcom_bw_table[MODE_MAX + 1][QCOM_UFS_MAX_GEAR + 1][QCOM_UFS_MAX_LANE + 1] = {
71 	[MODE_MIN][0][0]		   = { 0,		0 }, /* Bandwidth values in KB/s */
72 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_1] = { 922,		1000 },
73 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_1] = { 1844,		1000 },
74 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_1] = { 3688,		1000 },
75 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_1] = { 7376,		1000 },
76 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_1] = { 14752,		1000 },
77 	[MODE_PWM][UFS_PWM_G1][UFS_LANE_2] = { 1844,		1000 },
78 	[MODE_PWM][UFS_PWM_G2][UFS_LANE_2] = { 3688,		1000 },
79 	[MODE_PWM][UFS_PWM_G3][UFS_LANE_2] = { 7376,		1000 },
80 	[MODE_PWM][UFS_PWM_G4][UFS_LANE_2] = { 14752,		1000 },
81 	[MODE_PWM][UFS_PWM_G5][UFS_LANE_2] = { 29504,		1000 },
82 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_1] = { 127796,		1000 },
83 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_1] = { 255591,		1000 },
84 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
85 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
86 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
87 	[MODE_HS_RA][UFS_HS_G1][UFS_LANE_2] = { 255591,		1000 },
88 	[MODE_HS_RA][UFS_HS_G2][UFS_LANE_2] = { 511181,		1000 },
89 	[MODE_HS_RA][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
90 	[MODE_HS_RA][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
91 	[MODE_HS_RA][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
92 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_1] = { 149422,		1000 },
93 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_1] = { 298189,		1000 },
94 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_1] = { 1492582,	102400 },
95 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_1] = { 2915200,	204800 },
96 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_1] = { 5836800,	409600 },
97 	[MODE_HS_RB][UFS_HS_G1][UFS_LANE_2] = { 298189,		1000 },
98 	[MODE_HS_RB][UFS_HS_G2][UFS_LANE_2] = { 596378,		1000 },
99 	[MODE_HS_RB][UFS_HS_G3][UFS_LANE_2] = { 1492582,	204800 },
100 	[MODE_HS_RB][UFS_HS_G4][UFS_LANE_2] = { 2915200,	409600 },
101 	[MODE_HS_RB][UFS_HS_G5][UFS_LANE_2] = { 5836800,	819200 },
102 	[MODE_MAX][0][0]		    = { 7643136,	819200 },
103 };
104 
105 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host);
106 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, unsigned long freq);
107 
rcdev_to_ufs_host(struct reset_controller_dev * rcd)108 static struct ufs_qcom_host *rcdev_to_ufs_host(struct reset_controller_dev *rcd)
109 {
110 	return container_of(rcd, struct ufs_qcom_host, rcdev);
111 }
112 
113 #ifdef CONFIG_SCSI_UFS_CRYPTO
114 /**
115  * ufs_qcom_config_ice_allocator() - ICE core allocator configuration
116  *
117  * @host: pointer to qcom specific variant structure.
118  */
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)119 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
120 {
121 	struct ufs_hba *hba = host->hba;
122 	static const uint8_t val[4] = { NUM_RX_R1W0, NUM_TX_R0W1, NUM_RX_R1W1, NUM_TX_R1W1 };
123 	u32 config;
124 
125 	if (!(host->caps & UFS_QCOM_CAP_ICE_CONFIG) ||
126 			!(host->hba->caps & UFSHCD_CAP_CRYPTO))
127 		return;
128 
129 	config = get_unaligned_le32(val);
130 
131 	ufshcd_writel(hba, ICE_ALLOCATOR_TYPE, REG_UFS_MEM_ICE_CONFIG);
132 	ufshcd_writel(hba, config, REG_UFS_MEM_ICE_NUM_CORE);
133 }
134 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)135 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
136 {
137 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
138 		qcom_ice_enable(host->ice);
139 }
140 
141 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops; /* forward decl */
142 
ufs_qcom_ice_init(struct ufs_qcom_host * host)143 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
144 {
145 	struct ufs_hba *hba = host->hba;
146 	struct blk_crypto_profile *profile = &hba->crypto_profile;
147 	struct device *dev = hba->dev;
148 	struct qcom_ice *ice;
149 	union ufs_crypto_capabilities caps;
150 	union ufs_crypto_cap_entry cap;
151 	int err;
152 	int i;
153 
154 	ice = devm_of_qcom_ice_get(dev);
155 	if (ice == ERR_PTR(-EOPNOTSUPP)) {
156 		dev_warn(dev, "Disabling inline encryption support\n");
157 		ice = NULL;
158 	}
159 
160 	if (IS_ERR_OR_NULL(ice))
161 		return PTR_ERR_OR_ZERO(ice);
162 
163 	host->ice = ice;
164 
165 	/* Initialize the blk_crypto_profile */
166 
167 	caps.reg_val = cpu_to_le32(ufshcd_readl(hba, REG_UFS_CCAP));
168 
169 	/* The number of keyslots supported is (CFGC+1) */
170 	err = devm_blk_crypto_profile_init(dev, profile, caps.config_count + 1);
171 	if (err)
172 		return err;
173 
174 	profile->ll_ops = ufs_qcom_crypto_ops;
175 	profile->max_dun_bytes_supported = 8;
176 	profile->key_types_supported = BLK_CRYPTO_KEY_TYPE_RAW;
177 	profile->dev = dev;
178 
179 	/*
180 	 * Currently this driver only supports AES-256-XTS.  All known versions
181 	 * of ICE support it, but to be safe make sure it is really declared in
182 	 * the crypto capability registers.  The crypto capability registers
183 	 * also give the supported data unit size(s).
184 	 */
185 	for (i = 0; i < caps.num_crypto_cap; i++) {
186 		cap.reg_val = cpu_to_le32(ufshcd_readl(hba,
187 						       REG_UFS_CRYPTOCAP +
188 						       i * sizeof(__le32)));
189 		if (cap.algorithm_id == UFS_CRYPTO_ALG_AES_XTS &&
190 		    cap.key_size == UFS_CRYPTO_KEY_SIZE_256)
191 			profile->modes_supported[BLK_ENCRYPTION_MODE_AES_256_XTS] |=
192 				cap.sdus_mask * 512;
193 	}
194 
195 	hba->caps |= UFSHCD_CAP_CRYPTO;
196 	hba->quirks |= UFSHCD_QUIRK_CUSTOM_CRYPTO_PROFILE;
197 	return 0;
198 }
199 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)200 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
201 {
202 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
203 		return qcom_ice_resume(host->ice);
204 
205 	return 0;
206 }
207 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)208 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
209 {
210 	if (host->hba->caps & UFSHCD_CAP_CRYPTO)
211 		return qcom_ice_suspend(host->ice);
212 
213 	return 0;
214 }
215 
ufs_qcom_ice_keyslot_program(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)216 static int ufs_qcom_ice_keyslot_program(struct blk_crypto_profile *profile,
217 					const struct blk_crypto_key *key,
218 					unsigned int slot)
219 {
220 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
221 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
222 	int err;
223 
224 	/* Only AES-256-XTS has been tested so far. */
225 	if (key->crypto_cfg.crypto_mode != BLK_ENCRYPTION_MODE_AES_256_XTS)
226 		return -EOPNOTSUPP;
227 
228 	ufshcd_hold(hba);
229 	err = qcom_ice_program_key(host->ice,
230 				   QCOM_ICE_CRYPTO_ALG_AES_XTS,
231 				   QCOM_ICE_CRYPTO_KEY_SIZE_256,
232 				   key->bytes,
233 				   key->crypto_cfg.data_unit_size / 512,
234 				   slot);
235 	ufshcd_release(hba);
236 	return err;
237 }
238 
ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)239 static int ufs_qcom_ice_keyslot_evict(struct blk_crypto_profile *profile,
240 				      const struct blk_crypto_key *key,
241 				      unsigned int slot)
242 {
243 	struct ufs_hba *hba = ufs_hba_from_crypto_profile(profile);
244 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
245 	int err;
246 
247 	ufshcd_hold(hba);
248 	err = qcom_ice_evict_key(host->ice, slot);
249 	ufshcd_release(hba);
250 	return err;
251 }
252 
253 static const struct blk_crypto_ll_ops ufs_qcom_crypto_ops = {
254 	.keyslot_program	= ufs_qcom_ice_keyslot_program,
255 	.keyslot_evict		= ufs_qcom_ice_keyslot_evict,
256 };
257 
258 #else
259 
ufs_qcom_ice_enable(struct ufs_qcom_host * host)260 static inline void ufs_qcom_ice_enable(struct ufs_qcom_host *host)
261 {
262 }
263 
ufs_qcom_ice_init(struct ufs_qcom_host * host)264 static int ufs_qcom_ice_init(struct ufs_qcom_host *host)
265 {
266 	return 0;
267 }
268 
ufs_qcom_ice_resume(struct ufs_qcom_host * host)269 static inline int ufs_qcom_ice_resume(struct ufs_qcom_host *host)
270 {
271 	return 0;
272 }
273 
ufs_qcom_ice_suspend(struct ufs_qcom_host * host)274 static inline int ufs_qcom_ice_suspend(struct ufs_qcom_host *host)
275 {
276 	return 0;
277 }
278 
ufs_qcom_config_ice_allocator(struct ufs_qcom_host * host)279 static void ufs_qcom_config_ice_allocator(struct ufs_qcom_host *host)
280 {
281 }
282 
283 #endif
284 
ufs_qcom_disable_lane_clks(struct ufs_qcom_host * host)285 static void ufs_qcom_disable_lane_clks(struct ufs_qcom_host *host)
286 {
287 	if (!host->is_lane_clks_enabled)
288 		return;
289 
290 	clk_bulk_disable_unprepare(host->num_clks, host->clks);
291 
292 	host->is_lane_clks_enabled = false;
293 }
294 
ufs_qcom_enable_lane_clks(struct ufs_qcom_host * host)295 static int ufs_qcom_enable_lane_clks(struct ufs_qcom_host *host)
296 {
297 	int err;
298 
299 	err = clk_bulk_prepare_enable(host->num_clks, host->clks);
300 	if (err)
301 		return err;
302 
303 	host->is_lane_clks_enabled = true;
304 
305 	return 0;
306 }
307 
ufs_qcom_init_lane_clks(struct ufs_qcom_host * host)308 static int ufs_qcom_init_lane_clks(struct ufs_qcom_host *host)
309 {
310 	int err;
311 	struct device *dev = host->hba->dev;
312 
313 	if (has_acpi_companion(dev))
314 		return 0;
315 
316 	err = devm_clk_bulk_get_all(dev, &host->clks);
317 	if (err <= 0)
318 		return err;
319 
320 	host->num_clks = err;
321 
322 	return 0;
323 }
324 
ufs_qcom_check_hibern8(struct ufs_hba * hba)325 static int ufs_qcom_check_hibern8(struct ufs_hba *hba)
326 {
327 	int err;
328 	u32 tx_fsm_val;
329 	unsigned long timeout = jiffies + msecs_to_jiffies(HBRN8_POLL_TOUT_MS);
330 
331 	do {
332 		err = ufshcd_dme_get(hba,
333 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
334 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
335 				&tx_fsm_val);
336 		if (err || tx_fsm_val == TX_FSM_HIBERN8)
337 			break;
338 
339 		/* sleep for max. 200us */
340 		usleep_range(100, 200);
341 	} while (time_before(jiffies, timeout));
342 
343 	/*
344 	 * we might have scheduled out for long during polling so
345 	 * check the state again.
346 	 */
347 	if (time_after(jiffies, timeout))
348 		err = ufshcd_dme_get(hba,
349 				UIC_ARG_MIB_SEL(MPHY_TX_FSM_STATE,
350 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
351 				&tx_fsm_val);
352 
353 	if (err) {
354 		dev_err(hba->dev, "%s: unable to get TX_FSM_STATE, err %d\n",
355 				__func__, err);
356 	} else if (tx_fsm_val != TX_FSM_HIBERN8) {
357 		err = tx_fsm_val;
358 		dev_err(hba->dev, "%s: invalid TX_FSM_STATE = %d\n",
359 				__func__, err);
360 	}
361 
362 	return err;
363 }
364 
ufs_qcom_select_unipro_mode(struct ufs_qcom_host * host)365 static void ufs_qcom_select_unipro_mode(struct ufs_qcom_host *host)
366 {
367 	ufshcd_rmwl(host->hba, QUNIPRO_SEL, QUNIPRO_SEL, REG_UFS_CFG1);
368 
369 	if (host->hw_ver.major >= 0x05)
370 		ufshcd_rmwl(host->hba, QUNIPRO_G4_SEL, 0, REG_UFS_CFG0);
371 }
372 
373 /*
374  * ufs_qcom_host_reset - reset host controller and PHY
375  */
ufs_qcom_host_reset(struct ufs_hba * hba)376 static int ufs_qcom_host_reset(struct ufs_hba *hba)
377 {
378 	int ret;
379 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
380 	bool reenable_intr;
381 
382 	if (!host->core_reset)
383 		return 0;
384 
385 	reenable_intr = hba->is_irq_enabled;
386 	ufshcd_disable_irq(hba);
387 
388 	ret = reset_control_assert(host->core_reset);
389 	if (ret) {
390 		dev_err(hba->dev, "%s: core_reset assert failed, err = %d\n",
391 				 __func__, ret);
392 		return ret;
393 	}
394 
395 	/*
396 	 * The hardware requirement for delay between assert/deassert
397 	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
398 	 * ~125us (4/32768). To be on the safe side add 200us delay.
399 	 */
400 	usleep_range(200, 210);
401 
402 	ret = reset_control_deassert(host->core_reset);
403 	if (ret) {
404 		dev_err(hba->dev, "%s: core_reset deassert failed, err = %d\n",
405 				 __func__, ret);
406 		return ret;
407 	}
408 
409 	usleep_range(1000, 1100);
410 
411 	if (reenable_intr)
412 		ufshcd_enable_irq(hba);
413 
414 	return 0;
415 }
416 
ufs_qcom_get_hs_gear(struct ufs_hba * hba)417 static u32 ufs_qcom_get_hs_gear(struct ufs_hba *hba)
418 {
419 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
420 
421 	if (host->hw_ver.major >= 0x4)
422 		return UFS_QCOM_MAX_GEAR(ufshcd_readl(hba, REG_UFS_PARAM0));
423 
424 	/* Default is HS-G3 */
425 	return UFS_HS_G3;
426 }
427 
ufs_qcom_power_up_sequence(struct ufs_hba * hba)428 static int ufs_qcom_power_up_sequence(struct ufs_hba *hba)
429 {
430 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
431 	struct ufs_host_params *host_params = &host->host_params;
432 	struct phy *phy = host->generic_phy;
433 	enum phy_mode mode;
434 	int ret;
435 
436 	/*
437 	 * HW ver 5 can only support up to HS-G5 Rate-A due to HW limitations.
438 	 * If the HS-G5 PHY gear is used, update host_params->hs_rate to Rate-A,
439 	 * so that the subsequent power mode change shall stick to Rate-A.
440 	 */
441 	if (host->hw_ver.major == 0x5) {
442 		if (host->phy_gear == UFS_HS_G5)
443 			host_params->hs_rate = PA_HS_MODE_A;
444 		else
445 			host_params->hs_rate = PA_HS_MODE_B;
446 	}
447 
448 	mode = host_params->hs_rate == PA_HS_MODE_B ? PHY_MODE_UFS_HS_B : PHY_MODE_UFS_HS_A;
449 
450 	/* Reset UFS Host Controller and PHY */
451 	ret = ufs_qcom_host_reset(hba);
452 	if (ret)
453 		return ret;
454 
455 	if (phy->power_count) {
456 		phy_power_off(phy);
457 		phy_exit(phy);
458 	}
459 
460 	/* phy initialization - calibrate the phy */
461 	ret = phy_init(phy);
462 	if (ret) {
463 		dev_err(hba->dev, "%s: phy init failed, ret = %d\n",
464 			__func__, ret);
465 		return ret;
466 	}
467 
468 	ret = phy_set_mode_ext(phy, mode, host->phy_gear);
469 	if (ret)
470 		goto out_disable_phy;
471 
472 	/* power on phy - start serdes and phy's power and clocks */
473 	ret = phy_power_on(phy);
474 	if (ret) {
475 		dev_err(hba->dev, "%s: phy power on failed, ret = %d\n",
476 			__func__, ret);
477 		goto out_disable_phy;
478 	}
479 
480 	ufs_qcom_select_unipro_mode(host);
481 
482 	return 0;
483 
484 out_disable_phy:
485 	phy_exit(phy);
486 
487 	return ret;
488 }
489 
490 /*
491  * The UTP controller has a number of internal clock gating cells (CGCs).
492  * Internal hardware sub-modules within the UTP controller control the CGCs.
493  * Hardware CGCs disable the clock to inactivate UTP sub-modules not involved
494  * in a specific operation, UTP controller CGCs are by default disabled and
495  * this function enables them (after every UFS link startup) to save some power
496  * leakage.
497  */
ufs_qcom_enable_hw_clk_gating(struct ufs_hba * hba)498 static void ufs_qcom_enable_hw_clk_gating(struct ufs_hba *hba)
499 {
500 	ufshcd_rmwl(hba, REG_UFS_CFG2_CGC_EN_ALL, REG_UFS_CFG2_CGC_EN_ALL,
501 		    REG_UFS_CFG2);
502 
503 	/* Ensure that HW clock gating is enabled before next operations */
504 	ufshcd_readl(hba, REG_UFS_CFG2);
505 }
506 
ufs_qcom_hce_enable_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)507 static int ufs_qcom_hce_enable_notify(struct ufs_hba *hba,
508 				      enum ufs_notify_change_status status)
509 {
510 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
511 	int err;
512 
513 	switch (status) {
514 	case PRE_CHANGE:
515 		err = ufs_qcom_power_up_sequence(hba);
516 		if (err)
517 			return err;
518 
519 		/*
520 		 * The PHY PLL output is the source of tx/rx lane symbol
521 		 * clocks, hence, enable the lane clocks only after PHY
522 		 * is initialized.
523 		 */
524 		err = ufs_qcom_enable_lane_clks(host);
525 		break;
526 	case POST_CHANGE:
527 		/* check if UFS PHY moved from DISABLED to HIBERN8 */
528 		err = ufs_qcom_check_hibern8(hba);
529 		ufs_qcom_enable_hw_clk_gating(hba);
530 		ufs_qcom_ice_enable(host);
531 		ufs_qcom_config_ice_allocator(host);
532 		break;
533 	default:
534 		dev_err(hba->dev, "%s: invalid status %d\n", __func__, status);
535 		err = -EINVAL;
536 		break;
537 	}
538 	return err;
539 }
540 
541 /**
542  * ufs_qcom_cfg_timers - Configure ufs qcom cfg timers
543  *
544  * @hba: host controller instance
545  * @is_pre_scale_up: flag to check if pre scale up condition.
546  * Return: zero for success and non-zero in case of a failure.
547  */
ufs_qcom_cfg_timers(struct ufs_hba * hba,bool is_pre_scale_up)548 static int ufs_qcom_cfg_timers(struct ufs_hba *hba, bool is_pre_scale_up)
549 {
550 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
551 	struct ufs_clk_info *clki;
552 	unsigned long core_clk_rate = 0;
553 	u32 core_clk_cycles_per_us;
554 
555 	/*
556 	 * UTP controller uses SYS1CLK_1US_REG register for Interrupt
557 	 * Aggregation logic.
558 	 * It is mandatory to write SYS1CLK_1US_REG register on UFS host
559 	 * controller V4.0.0 onwards.
560 	 */
561 	if (host->hw_ver.major < 4 && !ufshcd_is_intr_aggr_allowed(hba))
562 		return 0;
563 
564 	list_for_each_entry(clki, &hba->clk_list_head, list) {
565 		if (!strcmp(clki->name, "core_clk")) {
566 			if (is_pre_scale_up)
567 				core_clk_rate = clki->max_freq;
568 			else
569 				core_clk_rate = clk_get_rate(clki->clk);
570 			break;
571 		}
572 
573 	}
574 
575 	/* If frequency is smaller than 1MHz, set to 1MHz */
576 	if (core_clk_rate < DEFAULT_CLK_RATE_HZ)
577 		core_clk_rate = DEFAULT_CLK_RATE_HZ;
578 
579 	core_clk_cycles_per_us = core_clk_rate / USEC_PER_SEC;
580 	if (ufshcd_readl(hba, REG_UFS_SYS1CLK_1US) != core_clk_cycles_per_us) {
581 		ufshcd_writel(hba, core_clk_cycles_per_us, REG_UFS_SYS1CLK_1US);
582 		/*
583 		 * make sure above write gets applied before we return from
584 		 * this function.
585 		 */
586 		ufshcd_readl(hba, REG_UFS_SYS1CLK_1US);
587 	}
588 
589 	return 0;
590 }
591 
ufs_qcom_link_startup_notify(struct ufs_hba * hba,enum ufs_notify_change_status status)592 static int ufs_qcom_link_startup_notify(struct ufs_hba *hba,
593 					enum ufs_notify_change_status status)
594 {
595 	int err = 0;
596 
597 	switch (status) {
598 	case PRE_CHANGE:
599 		if (ufs_qcom_cfg_timers(hba, false)) {
600 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
601 				__func__);
602 			return -EINVAL;
603 		}
604 
605 		err = ufs_qcom_set_core_clk_ctrl(hba, ULONG_MAX);
606 		if (err)
607 			dev_err(hba->dev, "cfg core clk ctrl failed\n");
608 		/*
609 		 * Some UFS devices (and may be host) have issues if LCC is
610 		 * enabled. So we are setting PA_Local_TX_LCC_Enable to 0
611 		 * before link startup which will make sure that both host
612 		 * and device TX LCC are disabled once link startup is
613 		 * completed.
614 		 */
615 		err = ufshcd_disable_host_tx_lcc(hba);
616 
617 		break;
618 	default:
619 		break;
620 	}
621 
622 	return err;
623 }
624 
ufs_qcom_device_reset_ctrl(struct ufs_hba * hba,bool asserted)625 static void ufs_qcom_device_reset_ctrl(struct ufs_hba *hba, bool asserted)
626 {
627 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
628 
629 	/* reset gpio is optional */
630 	if (!host->device_reset)
631 		return;
632 
633 	gpiod_set_value_cansleep(host->device_reset, asserted);
634 }
635 
ufs_qcom_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op,enum ufs_notify_change_status status)636 static int ufs_qcom_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op,
637 	enum ufs_notify_change_status status)
638 {
639 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
640 	struct phy *phy = host->generic_phy;
641 
642 	if (status == PRE_CHANGE)
643 		return 0;
644 
645 	if (ufs_qcom_is_link_off(hba)) {
646 		/*
647 		 * Disable the tx/rx lane symbol clocks before PHY is
648 		 * powered down as the PLL source should be disabled
649 		 * after downstream clocks are disabled.
650 		 */
651 		ufs_qcom_disable_lane_clks(host);
652 		phy_power_off(phy);
653 
654 		/* reset the connected UFS device during power down */
655 		ufs_qcom_device_reset_ctrl(hba, true);
656 
657 	} else if (!ufs_qcom_is_link_active(hba)) {
658 		ufs_qcom_disable_lane_clks(host);
659 	}
660 
661 	return ufs_qcom_ice_suspend(host);
662 }
663 
ufs_qcom_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)664 static int ufs_qcom_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
665 {
666 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
667 	struct phy *phy = host->generic_phy;
668 	int err;
669 
670 	if (ufs_qcom_is_link_off(hba)) {
671 		err = phy_power_on(phy);
672 		if (err) {
673 			dev_err(hba->dev, "%s: failed PHY power on: %d\n",
674 				__func__, err);
675 			return err;
676 		}
677 
678 		err = ufs_qcom_enable_lane_clks(host);
679 		if (err)
680 			return err;
681 
682 	} else if (!ufs_qcom_is_link_active(hba)) {
683 		err = ufs_qcom_enable_lane_clks(host);
684 		if (err)
685 			return err;
686 	}
687 
688 	return ufs_qcom_ice_resume(host);
689 }
690 
ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host * host,bool enable)691 static void ufs_qcom_dev_ref_clk_ctrl(struct ufs_qcom_host *host, bool enable)
692 {
693 	if (host->dev_ref_clk_ctrl_mmio &&
694 	    (enable ^ host->is_dev_ref_clk_enabled)) {
695 		u32 temp = readl_relaxed(host->dev_ref_clk_ctrl_mmio);
696 
697 		if (enable)
698 			temp |= host->dev_ref_clk_en_mask;
699 		else
700 			temp &= ~host->dev_ref_clk_en_mask;
701 
702 		/*
703 		 * If we are here to disable this clock it might be immediately
704 		 * after entering into hibern8 in which case we need to make
705 		 * sure that device ref_clk is active for specific time after
706 		 * hibern8 enter.
707 		 */
708 		if (!enable) {
709 			unsigned long gating_wait;
710 
711 			gating_wait = host->hba->dev_info.clk_gating_wait_us;
712 			if (!gating_wait) {
713 				udelay(1);
714 			} else {
715 				/*
716 				 * bRefClkGatingWaitTime defines the minimum
717 				 * time for which the reference clock is
718 				 * required by device during transition from
719 				 * HS-MODE to LS-MODE or HIBERN8 state. Give it
720 				 * more delay to be on the safe side.
721 				 */
722 				gating_wait += 10;
723 				usleep_range(gating_wait, gating_wait + 10);
724 			}
725 		}
726 
727 		writel_relaxed(temp, host->dev_ref_clk_ctrl_mmio);
728 
729 		/*
730 		 * Make sure the write to ref_clk reaches the destination and
731 		 * not stored in a Write Buffer (WB).
732 		 */
733 		readl(host->dev_ref_clk_ctrl_mmio);
734 
735 		/*
736 		 * If we call hibern8 exit after this, we need to make sure that
737 		 * device ref_clk is stable for at least 1us before the hibern8
738 		 * exit command.
739 		 */
740 		if (enable)
741 			udelay(1);
742 
743 		host->is_dev_ref_clk_enabled = enable;
744 	}
745 }
746 
ufs_qcom_icc_set_bw(struct ufs_qcom_host * host,u32 mem_bw,u32 cfg_bw)747 static int ufs_qcom_icc_set_bw(struct ufs_qcom_host *host, u32 mem_bw, u32 cfg_bw)
748 {
749 	struct device *dev = host->hba->dev;
750 	int ret;
751 
752 	ret = icc_set_bw(host->icc_ddr, 0, mem_bw);
753 	if (ret < 0) {
754 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
755 		return ret;
756 	}
757 
758 	ret = icc_set_bw(host->icc_cpu, 0, cfg_bw);
759 	if (ret < 0) {
760 		dev_err(dev, "failed to set bandwidth request: %d\n", ret);
761 		return ret;
762 	}
763 
764 	return 0;
765 }
766 
ufs_qcom_get_bw_table(struct ufs_qcom_host * host)767 static struct __ufs_qcom_bw_table ufs_qcom_get_bw_table(struct ufs_qcom_host *host)
768 {
769 	struct ufs_pa_layer_attr *p = &host->dev_req_params;
770 	int gear = max_t(u32, p->gear_rx, p->gear_tx);
771 	int lane = max_t(u32, p->lane_rx, p->lane_tx);
772 
773 	if (WARN_ONCE(gear > QCOM_UFS_MAX_GEAR,
774 		      "ICC scaling for UFS Gear (%d) not supported. Using Gear (%d) bandwidth\n",
775 		      gear, QCOM_UFS_MAX_GEAR))
776 		gear = QCOM_UFS_MAX_GEAR;
777 
778 	if (WARN_ONCE(lane > QCOM_UFS_MAX_LANE,
779 		      "ICC scaling for UFS Lane (%d) not supported. Using Lane (%d) bandwidth\n",
780 		      lane, QCOM_UFS_MAX_LANE))
781 		lane = QCOM_UFS_MAX_LANE;
782 
783 	if (ufshcd_is_hs_mode(p)) {
784 		if (p->hs_rate == PA_HS_MODE_B)
785 			return ufs_qcom_bw_table[MODE_HS_RB][gear][lane];
786 		else
787 			return ufs_qcom_bw_table[MODE_HS_RA][gear][lane];
788 	} else {
789 		return ufs_qcom_bw_table[MODE_PWM][gear][lane];
790 	}
791 }
792 
ufs_qcom_icc_update_bw(struct ufs_qcom_host * host)793 static int ufs_qcom_icc_update_bw(struct ufs_qcom_host *host)
794 {
795 	struct __ufs_qcom_bw_table bw_table;
796 
797 	bw_table = ufs_qcom_get_bw_table(host);
798 
799 	return ufs_qcom_icc_set_bw(host, bw_table.mem_bw, bw_table.cfg_bw);
800 }
801 
ufs_qcom_set_tx_hs_equalizer(struct ufs_hba * hba,u32 gear,u32 tx_lanes)802 static void ufs_qcom_set_tx_hs_equalizer(struct ufs_hba *hba, u32 gear, u32 tx_lanes)
803 {
804 	u32 equalizer_val;
805 	int ret, i;
806 
807 	/* Determine the equalizer value based on the gear */
808 	equalizer_val = (gear == 5) ? DEEMPHASIS_3_5_dB : NO_DEEMPHASIS;
809 
810 	for (i = 0; i < tx_lanes; i++) {
811 		ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(TX_HS_EQUALIZER, i),
812 				     equalizer_val);
813 		if (ret)
814 			dev_err(hba->dev, "%s: failed equalizer lane %d\n",
815 				__func__, i);
816 	}
817 }
818 
ufs_qcom_pwr_change_notify(struct ufs_hba * hba,enum ufs_notify_change_status status,const struct ufs_pa_layer_attr * dev_max_params,struct ufs_pa_layer_attr * dev_req_params)819 static int ufs_qcom_pwr_change_notify(struct ufs_hba *hba,
820 				enum ufs_notify_change_status status,
821 				const struct ufs_pa_layer_attr *dev_max_params,
822 				struct ufs_pa_layer_attr *dev_req_params)
823 {
824 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
825 	struct ufs_host_params *host_params = &host->host_params;
826 	int ret = 0;
827 
828 	if (!dev_req_params) {
829 		pr_err("%s: incoming dev_req_params is NULL\n", __func__);
830 		return -EINVAL;
831 	}
832 
833 	switch (status) {
834 	case PRE_CHANGE:
835 		ret = ufshcd_negotiate_pwr_params(host_params, dev_max_params, dev_req_params);
836 		if (ret) {
837 			dev_err(hba->dev, "%s: failed to determine capabilities\n",
838 					__func__);
839 			return ret;
840 		}
841 
842 		/*
843 		 * During UFS driver probe, always update the PHY gear to match the negotiated
844 		 * gear, so that, if quirk UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is enabled,
845 		 * the second init can program the optimal PHY settings. This allows one to start
846 		 * the first init with either the minimum or the maximum support gear.
847 		 */
848 		if (hba->ufshcd_state == UFSHCD_STATE_RESET) {
849 			/*
850 			 * Skip REINIT if the negotiated gear matches with the
851 			 * initial phy_gear. Otherwise, update the phy_gear to
852 			 * program the optimal gear setting during REINIT.
853 			 */
854 			if (host->phy_gear == dev_req_params->gear_tx)
855 				hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
856 			else
857 				host->phy_gear = dev_req_params->gear_tx;
858 		}
859 
860 		/* enable the device ref clock before changing to HS mode */
861 		if (!ufshcd_is_hs_mode(&hba->pwr_info) &&
862 			ufshcd_is_hs_mode(dev_req_params))
863 			ufs_qcom_dev_ref_clk_ctrl(host, true);
864 
865 		if (host->hw_ver.major >= 0x4) {
866 			ufshcd_dme_configure_adapt(hba,
867 						dev_req_params->gear_tx,
868 						PA_INITIAL_ADAPT);
869 		}
870 
871 		if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING)
872 			ufs_qcom_set_tx_hs_equalizer(hba,
873 					dev_req_params->gear_tx, dev_req_params->lane_tx);
874 
875 		break;
876 	case POST_CHANGE:
877 		if (ufs_qcom_cfg_timers(hba, false)) {
878 			dev_err(hba->dev, "%s: ufs_qcom_cfg_timers() failed\n",
879 				__func__);
880 			/*
881 			 * we return error code at the end of the routine,
882 			 * but continue to configure UFS_PHY_TX_LANE_ENABLE
883 			 * and bus voting as usual
884 			 */
885 			ret = -EINVAL;
886 		}
887 
888 		/* cache the power mode parameters to use internally */
889 		memcpy(&host->dev_req_params,
890 				dev_req_params, sizeof(*dev_req_params));
891 
892 		ufs_qcom_icc_update_bw(host);
893 
894 		/* disable the device ref clock if entered PWM mode */
895 		if (ufshcd_is_hs_mode(&hba->pwr_info) &&
896 			!ufshcd_is_hs_mode(dev_req_params))
897 			ufs_qcom_dev_ref_clk_ctrl(host, false);
898 		break;
899 	default:
900 		ret = -EINVAL;
901 		break;
902 	}
903 
904 	return ret;
905 }
906 
ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba * hba)907 static int ufs_qcom_quirk_host_pa_saveconfigtime(struct ufs_hba *hba)
908 {
909 	int err;
910 	u32 pa_vs_config_reg1;
911 
912 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
913 			     &pa_vs_config_reg1);
914 	if (err)
915 		return err;
916 
917 	/* Allow extension of MSB bits of PA_SaveConfigTime attribute */
918 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CONFIG_REG1),
919 			    (pa_vs_config_reg1 | (1 << 12)));
920 }
921 
ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba * hba)922 static void ufs_qcom_override_pa_tx_hsg1_sync_len(struct ufs_hba *hba)
923 {
924 	int err;
925 
926 	err = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TX_HSG1_SYNC_LENGTH),
927 				  PA_TX_HSG1_SYNC_LENGTH_VAL);
928 	if (err)
929 		dev_err(hba->dev, "Failed (%d) set PA_TX_HSG1_SYNC_LENGTH\n", err);
930 }
931 
ufs_qcom_apply_dev_quirks(struct ufs_hba * hba)932 static int ufs_qcom_apply_dev_quirks(struct ufs_hba *hba)
933 {
934 	int err = 0;
935 
936 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME)
937 		err = ufs_qcom_quirk_host_pa_saveconfigtime(hba);
938 
939 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH)
940 		ufs_qcom_override_pa_tx_hsg1_sync_len(hba);
941 
942 	return err;
943 }
944 
945 /* UFS device-specific quirks */
946 static struct ufs_dev_quirk ufs_qcom_dev_fixups[] = {
947 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
948 	  .model = UFS_ANY_MODEL,
949 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
950 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
951 	  .model = UFS_ANY_MODEL,
952 	  .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM },
953 	{ .wmanufacturerid = UFS_VENDOR_WDC,
954 	  .model = UFS_ANY_MODEL,
955 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE },
956 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
957 	  .model = UFS_ANY_MODEL,
958 	  .quirk = UFS_DEVICE_QUIRK_PA_TX_HSG1_SYNC_LENGTH |
959 		   UFS_DEVICE_QUIRK_PA_TX_DEEMPHASIS_TUNING },
960 	{}
961 };
962 
ufs_qcom_fixup_dev_quirks(struct ufs_hba * hba)963 static void ufs_qcom_fixup_dev_quirks(struct ufs_hba *hba)
964 {
965 	ufshcd_fixup_dev_quirks(hba, ufs_qcom_dev_fixups);
966 }
967 
ufs_qcom_get_ufs_hci_version(struct ufs_hba * hba)968 static u32 ufs_qcom_get_ufs_hci_version(struct ufs_hba *hba)
969 {
970 	return ufshci_version(2, 0);
971 }
972 
973 /**
974  * ufs_qcom_advertise_quirks - advertise the known QCOM UFS controller quirks
975  * @hba: host controller instance
976  *
977  * QCOM UFS host controller might have some non standard behaviours (quirks)
978  * than what is specified by UFSHCI specification. Advertise all such
979  * quirks to standard UFS host controller driver so standard takes them into
980  * account.
981  */
ufs_qcom_advertise_quirks(struct ufs_hba * hba)982 static void ufs_qcom_advertise_quirks(struct ufs_hba *hba)
983 {
984 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
985 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
986 
987 	if (host->hw_ver.major == 0x2)
988 		hba->quirks |= UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION;
989 
990 	if (host->hw_ver.major > 0x3)
991 		hba->quirks |= UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
992 
993 	if (drvdata && drvdata->quirks)
994 		hba->quirks |= drvdata->quirks;
995 }
996 
ufs_qcom_set_phy_gear(struct ufs_qcom_host * host)997 static void ufs_qcom_set_phy_gear(struct ufs_qcom_host *host)
998 {
999 	struct ufs_host_params *host_params = &host->host_params;
1000 	u32 val, dev_major;
1001 
1002 	/*
1003 	 * Default to powering up the PHY to the max gear possible, which is
1004 	 * backwards compatible with lower gears but not optimal from
1005 	 * a power usage point of view. After device negotiation, if the
1006 	 * gear is lower a reinit will be performed to program the PHY
1007 	 * to the ideal gear for this combo of controller and device.
1008 	 */
1009 	host->phy_gear = host_params->hs_tx_gear;
1010 
1011 	if (host->hw_ver.major < 0x4) {
1012 		/*
1013 		 * These controllers only have one PHY init sequence,
1014 		 * let's power up the PHY using that (the minimum supported
1015 		 * gear, UFS_HS_G2).
1016 		 */
1017 		host->phy_gear = UFS_HS_G2;
1018 	} else if (host->hw_ver.major >= 0x5) {
1019 		val = ufshcd_readl(host->hba, REG_UFS_DEBUG_SPARE_CFG);
1020 		dev_major = FIELD_GET(UFS_DEV_VER_MAJOR_MASK, val);
1021 
1022 		/*
1023 		 * Since the UFS device version is populated, let's remove the
1024 		 * REINIT quirk as the negotiated gear won't change during boot.
1025 		 * So there is no need to do reinit.
1026 		 */
1027 		if (dev_major != 0x0)
1028 			host->hba->quirks &= ~UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH;
1029 
1030 		/*
1031 		 * For UFS 3.1 device and older, power up the PHY using HS-G4
1032 		 * PHY gear to save power.
1033 		 */
1034 		if (dev_major > 0x0 && dev_major < 0x4)
1035 			host->phy_gear = UFS_HS_G4;
1036 	}
1037 }
1038 
ufs_qcom_set_host_params(struct ufs_hba * hba)1039 static void ufs_qcom_set_host_params(struct ufs_hba *hba)
1040 {
1041 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1042 	struct ufs_host_params *host_params = &host->host_params;
1043 
1044 	ufshcd_init_host_params(host_params);
1045 
1046 	/* This driver only supports symmetic gear setting i.e., hs_tx_gear == hs_rx_gear */
1047 	host_params->hs_tx_gear = host_params->hs_rx_gear = ufs_qcom_get_hs_gear(hba);
1048 }
1049 
ufs_qcom_set_host_caps(struct ufs_hba * hba)1050 static void ufs_qcom_set_host_caps(struct ufs_hba *hba)
1051 {
1052 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1053 
1054 	if (host->hw_ver.major >= 0x5)
1055 		host->caps |= UFS_QCOM_CAP_ICE_CONFIG;
1056 }
1057 
ufs_qcom_set_caps(struct ufs_hba * hba)1058 static void ufs_qcom_set_caps(struct ufs_hba *hba)
1059 {
1060 	hba->caps |= UFSHCD_CAP_CLK_GATING | UFSHCD_CAP_HIBERN8_WITH_CLK_GATING;
1061 	hba->caps |= UFSHCD_CAP_CLK_SCALING | UFSHCD_CAP_WB_WITH_CLK_SCALING;
1062 	hba->caps |= UFSHCD_CAP_AUTO_BKOPS_SUSPEND;
1063 	hba->caps |= UFSHCD_CAP_WB_EN;
1064 	hba->caps |= UFSHCD_CAP_AGGR_POWER_COLLAPSE;
1065 	hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND;
1066 
1067 	ufs_qcom_set_host_caps(hba);
1068 }
1069 
1070 /**
1071  * ufs_qcom_setup_clocks - enables/disable clocks
1072  * @hba: host controller instance
1073  * @on: If true, enable clocks else disable them.
1074  * @status: PRE_CHANGE or POST_CHANGE notify
1075  *
1076  * Return: 0 on success, non-zero on failure.
1077  */
ufs_qcom_setup_clocks(struct ufs_hba * hba,bool on,enum ufs_notify_change_status status)1078 static int ufs_qcom_setup_clocks(struct ufs_hba *hba, bool on,
1079 				 enum ufs_notify_change_status status)
1080 {
1081 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1082 
1083 	/*
1084 	 * In case ufs_qcom_init() is not yet done, simply ignore.
1085 	 * This ufs_qcom_setup_clocks() shall be called from
1086 	 * ufs_qcom_init() after init is done.
1087 	 */
1088 	if (!host)
1089 		return 0;
1090 
1091 	switch (status) {
1092 	case PRE_CHANGE:
1093 		if (on) {
1094 			ufs_qcom_icc_update_bw(host);
1095 		} else {
1096 			if (!ufs_qcom_is_link_active(hba)) {
1097 				/* disable device ref_clk */
1098 				ufs_qcom_dev_ref_clk_ctrl(host, false);
1099 			}
1100 		}
1101 		break;
1102 	case POST_CHANGE:
1103 		if (on) {
1104 			/* enable the device ref clock for HS mode*/
1105 			if (ufshcd_is_hs_mode(&hba->pwr_info))
1106 				ufs_qcom_dev_ref_clk_ctrl(host, true);
1107 		} else {
1108 			ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MIN][0][0].mem_bw,
1109 					    ufs_qcom_bw_table[MODE_MIN][0][0].cfg_bw);
1110 		}
1111 		break;
1112 	}
1113 
1114 	return 0;
1115 }
1116 
1117 static int
ufs_qcom_reset_assert(struct reset_controller_dev * rcdev,unsigned long id)1118 ufs_qcom_reset_assert(struct reset_controller_dev *rcdev, unsigned long id)
1119 {
1120 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1121 
1122 	ufs_qcom_assert_reset(host->hba);
1123 	/* provide 1ms delay to let the reset pulse propagate. */
1124 	usleep_range(1000, 1100);
1125 	return 0;
1126 }
1127 
1128 static int
ufs_qcom_reset_deassert(struct reset_controller_dev * rcdev,unsigned long id)1129 ufs_qcom_reset_deassert(struct reset_controller_dev *rcdev, unsigned long id)
1130 {
1131 	struct ufs_qcom_host *host = rcdev_to_ufs_host(rcdev);
1132 
1133 	ufs_qcom_deassert_reset(host->hba);
1134 
1135 	/*
1136 	 * after reset deassertion, phy will need all ref clocks,
1137 	 * voltage, current to settle down before starting serdes.
1138 	 */
1139 	usleep_range(1000, 1100);
1140 	return 0;
1141 }
1142 
1143 static const struct reset_control_ops ufs_qcom_reset_ops = {
1144 	.assert = ufs_qcom_reset_assert,
1145 	.deassert = ufs_qcom_reset_deassert,
1146 };
1147 
ufs_qcom_icc_init(struct ufs_qcom_host * host)1148 static int ufs_qcom_icc_init(struct ufs_qcom_host *host)
1149 {
1150 	struct device *dev = host->hba->dev;
1151 	int ret;
1152 
1153 	host->icc_ddr = devm_of_icc_get(dev, "ufs-ddr");
1154 	if (IS_ERR(host->icc_ddr))
1155 		return dev_err_probe(dev, PTR_ERR(host->icc_ddr),
1156 				    "failed to acquire interconnect path\n");
1157 
1158 	host->icc_cpu = devm_of_icc_get(dev, "cpu-ufs");
1159 	if (IS_ERR(host->icc_cpu))
1160 		return dev_err_probe(dev, PTR_ERR(host->icc_cpu),
1161 				    "failed to acquire interconnect path\n");
1162 
1163 	/*
1164 	 * Set Maximum bandwidth vote before initializing the UFS controller and
1165 	 * device. Ideally, a minimal interconnect vote would suffice for the
1166 	 * initialization, but a max vote would allow faster initialization.
1167 	 */
1168 	ret = ufs_qcom_icc_set_bw(host, ufs_qcom_bw_table[MODE_MAX][0][0].mem_bw,
1169 				  ufs_qcom_bw_table[MODE_MAX][0][0].cfg_bw);
1170 	if (ret < 0)
1171 		return dev_err_probe(dev, ret, "failed to set bandwidth request\n");
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  * ufs_qcom_init - bind phy with controller
1178  * @hba: host controller instance
1179  *
1180  * Binds PHY with controller and powers up PHY enabling clocks
1181  * and regulators.
1182  *
1183  * Return: -EPROBE_DEFER if binding fails, returns negative error
1184  * on phy power up failure and returns zero on success.
1185  */
ufs_qcom_init(struct ufs_hba * hba)1186 static int ufs_qcom_init(struct ufs_hba *hba)
1187 {
1188 	int err;
1189 	struct device *dev = hba->dev;
1190 	struct ufs_qcom_host *host;
1191 	struct ufs_clk_info *clki;
1192 	const struct ufs_qcom_drvdata *drvdata = of_device_get_match_data(hba->dev);
1193 
1194 	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
1195 	if (!host)
1196 		return -ENOMEM;
1197 
1198 	/* Make a two way bind between the qcom host and the hba */
1199 	host->hba = hba;
1200 	ufshcd_set_variant(hba, host);
1201 
1202 	/* Setup the optional reset control of HCI */
1203 	host->core_reset = devm_reset_control_get_optional(hba->dev, "rst");
1204 	if (IS_ERR(host->core_reset)) {
1205 		err = dev_err_probe(dev, PTR_ERR(host->core_reset),
1206 				    "Failed to get reset control\n");
1207 		goto out_variant_clear;
1208 	}
1209 
1210 	/* Fire up the reset controller. Failure here is non-fatal. */
1211 	host->rcdev.of_node = dev->of_node;
1212 	host->rcdev.ops = &ufs_qcom_reset_ops;
1213 	host->rcdev.owner = dev->driver->owner;
1214 	host->rcdev.nr_resets = 1;
1215 	err = devm_reset_controller_register(dev, &host->rcdev);
1216 	if (err)
1217 		dev_warn(dev, "Failed to register reset controller\n");
1218 
1219 	if (!has_acpi_companion(dev)) {
1220 		host->generic_phy = devm_phy_get(dev, "ufsphy");
1221 		if (IS_ERR(host->generic_phy)) {
1222 			err = dev_err_probe(dev, PTR_ERR(host->generic_phy), "Failed to get PHY\n");
1223 			goto out_variant_clear;
1224 		}
1225 	}
1226 
1227 	err = ufs_qcom_icc_init(host);
1228 	if (err)
1229 		goto out_variant_clear;
1230 
1231 	host->device_reset = devm_gpiod_get_optional(dev, "reset",
1232 						     GPIOD_OUT_HIGH);
1233 	if (IS_ERR(host->device_reset)) {
1234 		err = dev_err_probe(dev, PTR_ERR(host->device_reset),
1235 				    "Failed to acquire device reset gpio\n");
1236 		goto out_variant_clear;
1237 	}
1238 
1239 	ufs_qcom_get_controller_revision(hba, &host->hw_ver.major,
1240 		&host->hw_ver.minor, &host->hw_ver.step);
1241 
1242 	host->dev_ref_clk_ctrl_mmio = hba->mmio_base + REG_UFS_CFG1;
1243 	host->dev_ref_clk_en_mask = BIT(26);
1244 
1245 	list_for_each_entry(clki, &hba->clk_list_head, list) {
1246 		if (!strcmp(clki->name, "core_clk_unipro"))
1247 			clki->keep_link_active = true;
1248 	}
1249 
1250 	err = ufs_qcom_init_lane_clks(host);
1251 	if (err)
1252 		goto out_variant_clear;
1253 
1254 	ufs_qcom_set_caps(hba);
1255 	ufs_qcom_advertise_quirks(hba);
1256 	ufs_qcom_set_host_params(hba);
1257 	ufs_qcom_set_phy_gear(host);
1258 
1259 	err = ufs_qcom_ice_init(host);
1260 	if (err)
1261 		goto out_variant_clear;
1262 
1263 	ufs_qcom_setup_clocks(hba, true, POST_CHANGE);
1264 
1265 	ufs_qcom_get_default_testbus_cfg(host);
1266 	err = ufs_qcom_testbus_config(host);
1267 	if (err)
1268 		/* Failure is non-fatal */
1269 		dev_warn(dev, "%s: failed to configure the testbus %d\n",
1270 				__func__, err);
1271 
1272 	if (drvdata && drvdata->no_phy_retention)
1273 		hba->spm_lvl = UFS_PM_LVL_5;
1274 
1275 	return 0;
1276 
1277 out_variant_clear:
1278 	ufshcd_set_variant(hba, NULL);
1279 
1280 	return err;
1281 }
1282 
ufs_qcom_exit(struct ufs_hba * hba)1283 static void ufs_qcom_exit(struct ufs_hba *hba)
1284 {
1285 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1286 
1287 	ufs_qcom_disable_lane_clks(host);
1288 	phy_power_off(host->generic_phy);
1289 	phy_exit(host->generic_phy);
1290 }
1291 
1292 /**
1293  * ufs_qcom_set_clk_40ns_cycles - Configure 40ns clk cycles
1294  *
1295  * @hba: host controller instance
1296  * @cycles_in_1us: No of cycles in 1us to be configured
1297  *
1298  * Returns error if dme get/set configuration for 40ns fails
1299  * and returns zero on success.
1300  */
ufs_qcom_set_clk_40ns_cycles(struct ufs_hba * hba,u32 cycles_in_1us)1301 static int ufs_qcom_set_clk_40ns_cycles(struct ufs_hba *hba,
1302 					u32 cycles_in_1us)
1303 {
1304 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1305 	u32 cycles_in_40ns;
1306 	u32 reg;
1307 	int err;
1308 
1309 	/*
1310 	 * UFS host controller V4.0.0 onwards needs to program
1311 	 * PA_VS_CORE_CLK_40NS_CYCLES attribute per programmed
1312 	 * frequency of unipro core clk of UFS host controller.
1313 	 */
1314 	if (host->hw_ver.major < 4)
1315 		return 0;
1316 
1317 	/*
1318 	 * Generic formulae for cycles_in_40ns = (freq_unipro/25) is not
1319 	 * applicable for all frequencies. For ex: ceil(37.5 MHz/25) will
1320 	 * be 2 and ceil(403 MHZ/25) will be 17 whereas Hardware
1321 	 * specification expect to be 16. Hence use exact hardware spec
1322 	 * mandated value for cycles_in_40ns instead of calculating using
1323 	 * generic formulae.
1324 	 */
1325 	switch (cycles_in_1us) {
1326 	case UNIPRO_CORE_CLK_FREQ_403_MHZ:
1327 		cycles_in_40ns = 16;
1328 		break;
1329 	case UNIPRO_CORE_CLK_FREQ_300_MHZ:
1330 		cycles_in_40ns = 12;
1331 		break;
1332 	case UNIPRO_CORE_CLK_FREQ_201_5_MHZ:
1333 		cycles_in_40ns = 8;
1334 		break;
1335 	case UNIPRO_CORE_CLK_FREQ_150_MHZ:
1336 		cycles_in_40ns = 6;
1337 		break;
1338 	case UNIPRO_CORE_CLK_FREQ_100_MHZ:
1339 		cycles_in_40ns = 4;
1340 		break;
1341 	case  UNIPRO_CORE_CLK_FREQ_75_MHZ:
1342 		cycles_in_40ns = 3;
1343 		break;
1344 	case UNIPRO_CORE_CLK_FREQ_37_5_MHZ:
1345 		cycles_in_40ns = 2;
1346 		break;
1347 	default:
1348 		dev_err(hba->dev, "UNIPRO clk freq %u MHz not supported\n",
1349 				cycles_in_1us);
1350 		return -EINVAL;
1351 	}
1352 
1353 	err = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), &reg);
1354 	if (err)
1355 		return err;
1356 
1357 	reg &= ~PA_VS_CORE_CLK_40NS_CYCLES_MASK;
1358 	reg |= cycles_in_40ns;
1359 
1360 	return ufshcd_dme_set(hba, UIC_ARG_MIB(PA_VS_CORE_CLK_40NS_CYCLES), reg);
1361 }
1362 
ufs_qcom_set_core_clk_ctrl(struct ufs_hba * hba,unsigned long freq)1363 static int ufs_qcom_set_core_clk_ctrl(struct ufs_hba *hba, unsigned long freq)
1364 {
1365 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1366 	struct list_head *head = &hba->clk_list_head;
1367 	struct ufs_clk_info *clki;
1368 	u32 cycles_in_1us = 0;
1369 	u32 core_clk_ctrl_reg;
1370 	int err;
1371 
1372 	list_for_each_entry(clki, head, list) {
1373 		if (!IS_ERR_OR_NULL(clki->clk) &&
1374 		    !strcmp(clki->name, "core_clk_unipro")) {
1375 			if (!clki->max_freq)
1376 				cycles_in_1us = 150; /* default for backwards compatibility */
1377 			else if (freq == ULONG_MAX)
1378 				cycles_in_1us = ceil(clki->max_freq, HZ_PER_MHZ);
1379 			else
1380 				cycles_in_1us = ceil(freq, HZ_PER_MHZ);
1381 
1382 			break;
1383 		}
1384 	}
1385 
1386 	err = ufshcd_dme_get(hba,
1387 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1388 			    &core_clk_ctrl_reg);
1389 	if (err)
1390 		return err;
1391 
1392 	/* Bit mask is different for UFS host controller V4.0.0 onwards */
1393 	if (host->hw_ver.major >= 4) {
1394 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK_V4, cycles_in_1us))
1395 			return -ERANGE;
1396 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK_V4;
1397 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK_V4, cycles_in_1us);
1398 	} else {
1399 		if (!FIELD_FIT(CLK_1US_CYCLES_MASK, cycles_in_1us))
1400 			return -ERANGE;
1401 		core_clk_ctrl_reg &= ~CLK_1US_CYCLES_MASK;
1402 		core_clk_ctrl_reg |= FIELD_PREP(CLK_1US_CYCLES_MASK, cycles_in_1us);
1403 	}
1404 
1405 	/* Clear CORE_CLK_DIV_EN */
1406 	core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1407 
1408 	err = ufshcd_dme_set(hba,
1409 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1410 			    core_clk_ctrl_reg);
1411 	if (err)
1412 		return err;
1413 
1414 	/* Configure unipro core clk 40ns attribute */
1415 	return ufs_qcom_set_clk_40ns_cycles(hba, cycles_in_1us);
1416 }
1417 
ufs_qcom_clk_scale_up_pre_change(struct ufs_hba * hba,unsigned long freq)1418 static int ufs_qcom_clk_scale_up_pre_change(struct ufs_hba *hba, unsigned long freq)
1419 {
1420 	int ret;
1421 
1422 	ret = ufs_qcom_cfg_timers(hba, true);
1423 	if (ret) {
1424 		dev_err(hba->dev, "%s ufs cfg timer failed\n", __func__);
1425 		return ret;
1426 	}
1427 	/* set unipro core clock attributes and clear clock divider */
1428 	return ufs_qcom_set_core_clk_ctrl(hba, freq);
1429 }
1430 
ufs_qcom_clk_scale_up_post_change(struct ufs_hba * hba)1431 static int ufs_qcom_clk_scale_up_post_change(struct ufs_hba *hba)
1432 {
1433 	return 0;
1434 }
1435 
ufs_qcom_clk_scale_down_pre_change(struct ufs_hba * hba)1436 static int ufs_qcom_clk_scale_down_pre_change(struct ufs_hba *hba)
1437 {
1438 	int err;
1439 	u32 core_clk_ctrl_reg;
1440 
1441 	err = ufshcd_dme_get(hba,
1442 			    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1443 			    &core_clk_ctrl_reg);
1444 
1445 	/* make sure CORE_CLK_DIV_EN is cleared */
1446 	if (!err &&
1447 	    (core_clk_ctrl_reg & DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT)) {
1448 		core_clk_ctrl_reg &= ~DME_VS_CORE_CLK_CTRL_CORE_CLK_DIV_EN_BIT;
1449 		err = ufshcd_dme_set(hba,
1450 				    UIC_ARG_MIB(DME_VS_CORE_CLK_CTRL),
1451 				    core_clk_ctrl_reg);
1452 	}
1453 
1454 	return err;
1455 }
1456 
ufs_qcom_clk_scale_down_post_change(struct ufs_hba * hba,unsigned long freq)1457 static int ufs_qcom_clk_scale_down_post_change(struct ufs_hba *hba, unsigned long freq)
1458 {
1459 	/* set unipro core clock attributes and clear clock divider */
1460 	return ufs_qcom_set_core_clk_ctrl(hba, freq);
1461 }
1462 
ufs_qcom_clk_scale_notify(struct ufs_hba * hba,bool scale_up,unsigned long target_freq,enum ufs_notify_change_status status)1463 static int ufs_qcom_clk_scale_notify(struct ufs_hba *hba, bool scale_up,
1464 				     unsigned long target_freq,
1465 				     enum ufs_notify_change_status status)
1466 {
1467 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1468 	int err;
1469 
1470 	/* check the host controller state before sending hibern8 cmd */
1471 	if (!ufshcd_is_hba_active(hba))
1472 		return 0;
1473 
1474 	if (status == PRE_CHANGE) {
1475 		err = ufshcd_uic_hibern8_enter(hba);
1476 		if (err)
1477 			return err;
1478 		if (scale_up)
1479 			err = ufs_qcom_clk_scale_up_pre_change(hba, target_freq);
1480 		else
1481 			err = ufs_qcom_clk_scale_down_pre_change(hba);
1482 
1483 		if (err) {
1484 			ufshcd_uic_hibern8_exit(hba);
1485 			return err;
1486 		}
1487 	} else {
1488 		if (scale_up)
1489 			err = ufs_qcom_clk_scale_up_post_change(hba);
1490 		else
1491 			err = ufs_qcom_clk_scale_down_post_change(hba, target_freq);
1492 
1493 
1494 		if (err) {
1495 			ufshcd_uic_hibern8_exit(hba);
1496 			return err;
1497 		}
1498 
1499 		ufs_qcom_icc_update_bw(host);
1500 		ufshcd_uic_hibern8_exit(hba);
1501 	}
1502 
1503 	return 0;
1504 }
1505 
ufs_qcom_enable_test_bus(struct ufs_qcom_host * host)1506 static void ufs_qcom_enable_test_bus(struct ufs_qcom_host *host)
1507 {
1508 	ufshcd_rmwl(host->hba, UFS_REG_TEST_BUS_EN,
1509 			UFS_REG_TEST_BUS_EN, REG_UFS_CFG1);
1510 	ufshcd_rmwl(host->hba, TEST_BUS_EN, TEST_BUS_EN, REG_UFS_CFG1);
1511 }
1512 
ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host * host)1513 static void ufs_qcom_get_default_testbus_cfg(struct ufs_qcom_host *host)
1514 {
1515 	/* provide a legal default configuration */
1516 	host->testbus.select_major = TSTBUS_UNIPRO;
1517 	host->testbus.select_minor = 37;
1518 }
1519 
ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host * host)1520 static bool ufs_qcom_testbus_cfg_is_ok(struct ufs_qcom_host *host)
1521 {
1522 	if (host->testbus.select_major >= TSTBUS_MAX) {
1523 		dev_err(host->hba->dev,
1524 			"%s: UFS_CFG1[TEST_BUS_SEL} may not equal 0x%05X\n",
1525 			__func__, host->testbus.select_major);
1526 		return false;
1527 	}
1528 
1529 	return true;
1530 }
1531 
ufs_qcom_testbus_config(struct ufs_qcom_host * host)1532 int ufs_qcom_testbus_config(struct ufs_qcom_host *host)
1533 {
1534 	int reg;
1535 	int offset;
1536 	u32 mask = TEST_BUS_SUB_SEL_MASK;
1537 
1538 	if (!host)
1539 		return -EINVAL;
1540 
1541 	if (!ufs_qcom_testbus_cfg_is_ok(host))
1542 		return -EPERM;
1543 
1544 	switch (host->testbus.select_major) {
1545 	case TSTBUS_UAWM:
1546 		reg = UFS_TEST_BUS_CTRL_0;
1547 		offset = 24;
1548 		break;
1549 	case TSTBUS_UARM:
1550 		reg = UFS_TEST_BUS_CTRL_0;
1551 		offset = 16;
1552 		break;
1553 	case TSTBUS_TXUC:
1554 		reg = UFS_TEST_BUS_CTRL_0;
1555 		offset = 8;
1556 		break;
1557 	case TSTBUS_RXUC:
1558 		reg = UFS_TEST_BUS_CTRL_0;
1559 		offset = 0;
1560 		break;
1561 	case TSTBUS_DFC:
1562 		reg = UFS_TEST_BUS_CTRL_1;
1563 		offset = 24;
1564 		break;
1565 	case TSTBUS_TRLUT:
1566 		reg = UFS_TEST_BUS_CTRL_1;
1567 		offset = 16;
1568 		break;
1569 	case TSTBUS_TMRLUT:
1570 		reg = UFS_TEST_BUS_CTRL_1;
1571 		offset = 8;
1572 		break;
1573 	case TSTBUS_OCSC:
1574 		reg = UFS_TEST_BUS_CTRL_1;
1575 		offset = 0;
1576 		break;
1577 	case TSTBUS_WRAPPER:
1578 		reg = UFS_TEST_BUS_CTRL_2;
1579 		offset = 16;
1580 		break;
1581 	case TSTBUS_COMBINED:
1582 		reg = UFS_TEST_BUS_CTRL_2;
1583 		offset = 8;
1584 		break;
1585 	case TSTBUS_UTP_HCI:
1586 		reg = UFS_TEST_BUS_CTRL_2;
1587 		offset = 0;
1588 		break;
1589 	case TSTBUS_UNIPRO:
1590 		reg = UFS_UNIPRO_CFG;
1591 		offset = 20;
1592 		mask = 0xFFF;
1593 		break;
1594 	/*
1595 	 * No need for a default case, since
1596 	 * ufs_qcom_testbus_cfg_is_ok() checks that the configuration
1597 	 * is legal
1598 	 */
1599 	}
1600 	mask <<= offset;
1601 	ufshcd_rmwl(host->hba, TEST_BUS_SEL,
1602 		    (u32)host->testbus.select_major << 19,
1603 		    REG_UFS_CFG1);
1604 	ufshcd_rmwl(host->hba, mask,
1605 		    (u32)host->testbus.select_minor << offset,
1606 		    reg);
1607 	ufs_qcom_enable_test_bus(host);
1608 
1609 	return 0;
1610 }
1611 
ufs_qcom_dump_dbg_regs(struct ufs_hba * hba)1612 static void ufs_qcom_dump_dbg_regs(struct ufs_hba *hba)
1613 {
1614 	u32 reg;
1615 	struct ufs_qcom_host *host;
1616 
1617 	host = ufshcd_get_variant(hba);
1618 
1619 	ufshcd_dump_regs(hba, REG_UFS_SYS1CLK_1US, 16 * 4,
1620 			 "HCI Vendor Specific Registers ");
1621 
1622 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_REG_OCSC);
1623 	ufshcd_dump_regs(hba, reg, 44 * 4, "UFS_UFS_DBG_RD_REG_OCSC ");
1624 
1625 	reg = ufshcd_readl(hba, REG_UFS_CFG1);
1626 	reg |= UTP_DBG_RAMS_EN;
1627 	ufshcd_writel(hba, reg, REG_UFS_CFG1);
1628 
1629 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_EDTL_RAM);
1630 	ufshcd_dump_regs(hba, reg, 32 * 4, "UFS_UFS_DBG_RD_EDTL_RAM ");
1631 
1632 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_DESC_RAM);
1633 	ufshcd_dump_regs(hba, reg, 128 * 4, "UFS_UFS_DBG_RD_DESC_RAM ");
1634 
1635 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_UFS_DBG_RD_PRDT_RAM);
1636 	ufshcd_dump_regs(hba, reg, 64 * 4, "UFS_UFS_DBG_RD_PRDT_RAM ");
1637 
1638 	/* clear bit 17 - UTP_DBG_RAMS_EN */
1639 	ufshcd_rmwl(hba, UTP_DBG_RAMS_EN, 0, REG_UFS_CFG1);
1640 
1641 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UAWM);
1642 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UAWM ");
1643 
1644 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_UARM);
1645 	ufshcd_dump_regs(hba, reg, 4 * 4, "UFS_DBG_RD_REG_UARM ");
1646 
1647 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TXUC);
1648 	ufshcd_dump_regs(hba, reg, 48 * 4, "UFS_DBG_RD_REG_TXUC ");
1649 
1650 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_RXUC);
1651 	ufshcd_dump_regs(hba, reg, 27 * 4, "UFS_DBG_RD_REG_RXUC ");
1652 
1653 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_DFC);
1654 	ufshcd_dump_regs(hba, reg, 19 * 4, "UFS_DBG_RD_REG_DFC ");
1655 
1656 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TRLUT);
1657 	ufshcd_dump_regs(hba, reg, 34 * 4, "UFS_DBG_RD_REG_TRLUT ");
1658 
1659 	reg = ufs_qcom_get_debug_reg_offset(host, UFS_DBG_RD_REG_TMRLUT);
1660 	ufshcd_dump_regs(hba, reg, 9 * 4, "UFS_DBG_RD_REG_TMRLUT ");
1661 }
1662 
1663 /**
1664  * ufs_qcom_device_reset() - toggle the (optional) device reset line
1665  * @hba: per-adapter instance
1666  *
1667  * Toggles the (optional) reset line to reset the attached device.
1668  */
ufs_qcom_device_reset(struct ufs_hba * hba)1669 static int ufs_qcom_device_reset(struct ufs_hba *hba)
1670 {
1671 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1672 
1673 	/* reset gpio is optional */
1674 	if (!host->device_reset)
1675 		return -EOPNOTSUPP;
1676 
1677 	/*
1678 	 * The UFS device shall detect reset pulses of 1us, sleep for 10us to
1679 	 * be on the safe side.
1680 	 */
1681 	ufs_qcom_device_reset_ctrl(hba, true);
1682 	usleep_range(10, 15);
1683 
1684 	ufs_qcom_device_reset_ctrl(hba, false);
1685 	usleep_range(10, 15);
1686 
1687 	return 0;
1688 }
1689 
1690 #if IS_ENABLED(CONFIG_DEVFREQ_GOV_SIMPLE_ONDEMAND)
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * d)1691 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1692 					struct devfreq_dev_profile *p,
1693 					struct devfreq_simple_ondemand_data *d)
1694 {
1695 	p->polling_ms = 60;
1696 	p->timer = DEVFREQ_TIMER_DELAYED;
1697 	d->upthreshold = 70;
1698 	d->downdifferential = 5;
1699 
1700 	hba->clk_scaling.suspend_on_no_request = true;
1701 }
1702 #else
ufs_qcom_config_scaling_param(struct ufs_hba * hba,struct devfreq_dev_profile * p,struct devfreq_simple_ondemand_data * data)1703 static void ufs_qcom_config_scaling_param(struct ufs_hba *hba,
1704 		struct devfreq_dev_profile *p,
1705 		struct devfreq_simple_ondemand_data *data)
1706 {
1707 }
1708 #endif
1709 
1710 /* Resources */
1711 static const struct ufshcd_res_info ufs_res_info[RES_MAX] = {
1712 	{.name = "ufs_mem",},
1713 	{.name = "mcq",},
1714 	/* Submission Queue DAO */
1715 	{.name = "mcq_sqd",},
1716 	/* Submission Queue Interrupt Status */
1717 	{.name = "mcq_sqis",},
1718 	/* Completion Queue DAO */
1719 	{.name = "mcq_cqd",},
1720 	/* Completion Queue Interrupt Status */
1721 	{.name = "mcq_cqis",},
1722 	/* MCQ vendor specific */
1723 	{.name = "mcq_vs",},
1724 };
1725 
ufs_qcom_mcq_config_resource(struct ufs_hba * hba)1726 static int ufs_qcom_mcq_config_resource(struct ufs_hba *hba)
1727 {
1728 	struct platform_device *pdev = to_platform_device(hba->dev);
1729 	struct ufshcd_res_info *res;
1730 	struct resource *res_mem, *res_mcq;
1731 	int i, ret;
1732 
1733 	memcpy(hba->res, ufs_res_info, sizeof(ufs_res_info));
1734 
1735 	for (i = 0; i < RES_MAX; i++) {
1736 		res = &hba->res[i];
1737 		res->resource = platform_get_resource_byname(pdev,
1738 							     IORESOURCE_MEM,
1739 							     res->name);
1740 		if (!res->resource) {
1741 			dev_info(hba->dev, "Resource %s not provided\n", res->name);
1742 			if (i == RES_UFS)
1743 				return -ENODEV;
1744 			continue;
1745 		} else if (i == RES_UFS) {
1746 			res_mem = res->resource;
1747 			res->base = hba->mmio_base;
1748 			continue;
1749 		}
1750 
1751 		res->base = devm_ioremap_resource(hba->dev, res->resource);
1752 		if (IS_ERR(res->base)) {
1753 			dev_err(hba->dev, "Failed to map res %s, err=%d\n",
1754 					 res->name, (int)PTR_ERR(res->base));
1755 			ret = PTR_ERR(res->base);
1756 			res->base = NULL;
1757 			return ret;
1758 		}
1759 	}
1760 
1761 	/* MCQ resource provided in DT */
1762 	res = &hba->res[RES_MCQ];
1763 	/* Bail if MCQ resource is provided */
1764 	if (res->base)
1765 		goto out;
1766 
1767 	/* Explicitly allocate MCQ resource from ufs_mem */
1768 	res_mcq = devm_kzalloc(hba->dev, sizeof(*res_mcq), GFP_KERNEL);
1769 	if (!res_mcq)
1770 		return -ENOMEM;
1771 
1772 	res_mcq->start = res_mem->start +
1773 			 MCQ_SQATTR_OFFSET(hba->mcq_capabilities);
1774 	res_mcq->end = res_mcq->start + hba->nr_hw_queues * MCQ_QCFG_SIZE - 1;
1775 	res_mcq->flags = res_mem->flags;
1776 	res_mcq->name = "mcq";
1777 
1778 	ret = insert_resource(&iomem_resource, res_mcq);
1779 	if (ret) {
1780 		dev_err(hba->dev, "Failed to insert MCQ resource, err=%d\n",
1781 			ret);
1782 		return ret;
1783 	}
1784 
1785 	res->base = devm_ioremap_resource(hba->dev, res_mcq);
1786 	if (IS_ERR(res->base)) {
1787 		dev_err(hba->dev, "MCQ registers mapping failed, err=%d\n",
1788 			(int)PTR_ERR(res->base));
1789 		ret = PTR_ERR(res->base);
1790 		goto ioremap_err;
1791 	}
1792 
1793 out:
1794 	hba->mcq_base = res->base;
1795 	return 0;
1796 ioremap_err:
1797 	res->base = NULL;
1798 	remove_resource(res_mcq);
1799 	return ret;
1800 }
1801 
ufs_qcom_op_runtime_config(struct ufs_hba * hba)1802 static int ufs_qcom_op_runtime_config(struct ufs_hba *hba)
1803 {
1804 	struct ufshcd_res_info *mem_res, *sqdao_res;
1805 	struct ufshcd_mcq_opr_info_t *opr;
1806 	int i;
1807 
1808 	mem_res = &hba->res[RES_UFS];
1809 	sqdao_res = &hba->res[RES_MCQ_SQD];
1810 
1811 	if (!mem_res->base || !sqdao_res->base)
1812 		return -EINVAL;
1813 
1814 	for (i = 0; i < OPR_MAX; i++) {
1815 		opr = &hba->mcq_opr[i];
1816 		opr->offset = sqdao_res->resource->start -
1817 			      mem_res->resource->start + 0x40 * i;
1818 		opr->stride = 0x100;
1819 		opr->base = sqdao_res->base + 0x40 * i;
1820 	}
1821 
1822 	return 0;
1823 }
1824 
ufs_qcom_get_hba_mac(struct ufs_hba * hba)1825 static int ufs_qcom_get_hba_mac(struct ufs_hba *hba)
1826 {
1827 	/* Qualcomm HC supports up to 64 */
1828 	return MAX_SUPP_MAC;
1829 }
1830 
ufs_qcom_get_outstanding_cqs(struct ufs_hba * hba,unsigned long * ocqs)1831 static int ufs_qcom_get_outstanding_cqs(struct ufs_hba *hba,
1832 					unsigned long *ocqs)
1833 {
1834 	struct ufshcd_res_info *mcq_vs_res = &hba->res[RES_MCQ_VS];
1835 
1836 	if (!mcq_vs_res->base)
1837 		return -EINVAL;
1838 
1839 	*ocqs = readl(mcq_vs_res->base + UFS_MEM_CQIS_VS);
1840 
1841 	return 0;
1842 }
1843 
ufs_qcom_write_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1844 static void ufs_qcom_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1845 {
1846 	struct device *dev = msi_desc_to_dev(desc);
1847 	struct ufs_hba *hba = dev_get_drvdata(dev);
1848 
1849 	ufshcd_mcq_config_esi(hba, msg);
1850 }
1851 
ufs_qcom_mcq_esi_handler(int irq,void * data)1852 static irqreturn_t ufs_qcom_mcq_esi_handler(int irq, void *data)
1853 {
1854 	struct msi_desc *desc = data;
1855 	struct device *dev = msi_desc_to_dev(desc);
1856 	struct ufs_hba *hba = dev_get_drvdata(dev);
1857 	u32 id = desc->msi_index;
1858 	struct ufs_hw_queue *hwq = &hba->uhq[id];
1859 
1860 	ufshcd_mcq_write_cqis(hba, 0x1, id);
1861 	ufshcd_mcq_poll_cqe_lock(hba, hwq);
1862 
1863 	return IRQ_HANDLED;
1864 }
1865 
ufs_qcom_config_esi(struct ufs_hba * hba)1866 static int ufs_qcom_config_esi(struct ufs_hba *hba)
1867 {
1868 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
1869 	struct msi_desc *desc;
1870 	struct msi_desc *failed_desc = NULL;
1871 	int nr_irqs, ret;
1872 
1873 	if (host->esi_enabled)
1874 		return 0;
1875 
1876 	/*
1877 	 * 1. We only handle CQs as of now.
1878 	 * 2. Poll queues do not need ESI.
1879 	 */
1880 	nr_irqs = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
1881 	ret = platform_device_msi_init_and_alloc_irqs(hba->dev, nr_irqs,
1882 						      ufs_qcom_write_msi_msg);
1883 	if (ret) {
1884 		dev_err(hba->dev, "Failed to request Platform MSI %d\n", ret);
1885 		return ret;
1886 	}
1887 
1888 	msi_lock_descs(hba->dev);
1889 	msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
1890 		ret = devm_request_irq(hba->dev, desc->irq,
1891 				       ufs_qcom_mcq_esi_handler,
1892 				       IRQF_SHARED, "qcom-mcq-esi", desc);
1893 		if (ret) {
1894 			dev_err(hba->dev, "%s: Fail to request IRQ for %d, err = %d\n",
1895 				__func__, desc->irq, ret);
1896 			failed_desc = desc;
1897 			break;
1898 		}
1899 	}
1900 	msi_unlock_descs(hba->dev);
1901 
1902 	if (ret) {
1903 		/* Rewind */
1904 		msi_lock_descs(hba->dev);
1905 		msi_for_each_desc(desc, hba->dev, MSI_DESC_ALL) {
1906 			if (desc == failed_desc)
1907 				break;
1908 			devm_free_irq(hba->dev, desc->irq, hba);
1909 		}
1910 		msi_unlock_descs(hba->dev);
1911 		platform_device_msi_free_irqs_all(hba->dev);
1912 	} else {
1913 		if (host->hw_ver.major == 6 && host->hw_ver.minor == 0 &&
1914 		    host->hw_ver.step == 0)
1915 			ufshcd_rmwl(hba, ESI_VEC_MASK,
1916 				    FIELD_PREP(ESI_VEC_MASK, MAX_ESI_VEC - 1),
1917 				    REG_UFS_CFG3);
1918 		ufshcd_mcq_enable_esi(hba);
1919 		host->esi_enabled = true;
1920 	}
1921 
1922 	return ret;
1923 }
1924 
ufs_qcom_freq_to_gear_speed(struct ufs_hba * hba,unsigned long freq)1925 static u32 ufs_qcom_freq_to_gear_speed(struct ufs_hba *hba, unsigned long freq)
1926 {
1927 	u32 gear = 0;
1928 
1929 	switch (freq) {
1930 	case 403000000:
1931 		gear = UFS_HS_G5;
1932 		break;
1933 	case 300000000:
1934 		gear = UFS_HS_G4;
1935 		break;
1936 	case 201500000:
1937 		gear = UFS_HS_G3;
1938 		break;
1939 	case 150000000:
1940 	case 100000000:
1941 		gear = UFS_HS_G2;
1942 		break;
1943 	case 75000000:
1944 	case 37500000:
1945 		gear = UFS_HS_G1;
1946 		break;
1947 	default:
1948 		dev_err(hba->dev, "%s: Unsupported clock freq : %lu\n", __func__, freq);
1949 		break;
1950 	}
1951 
1952 	return gear;
1953 }
1954 
1955 /*
1956  * struct ufs_hba_qcom_vops - UFS QCOM specific variant operations
1957  *
1958  * The variant operations configure the necessary controller and PHY
1959  * handshake during initialization.
1960  */
1961 static const struct ufs_hba_variant_ops ufs_hba_qcom_vops = {
1962 	.name                   = "qcom",
1963 	.init                   = ufs_qcom_init,
1964 	.exit                   = ufs_qcom_exit,
1965 	.get_ufs_hci_version	= ufs_qcom_get_ufs_hci_version,
1966 	.clk_scale_notify	= ufs_qcom_clk_scale_notify,
1967 	.setup_clocks           = ufs_qcom_setup_clocks,
1968 	.hce_enable_notify      = ufs_qcom_hce_enable_notify,
1969 	.link_startup_notify    = ufs_qcom_link_startup_notify,
1970 	.pwr_change_notify	= ufs_qcom_pwr_change_notify,
1971 	.apply_dev_quirks	= ufs_qcom_apply_dev_quirks,
1972 	.fixup_dev_quirks       = ufs_qcom_fixup_dev_quirks,
1973 	.suspend		= ufs_qcom_suspend,
1974 	.resume			= ufs_qcom_resume,
1975 	.dbg_register_dump	= ufs_qcom_dump_dbg_regs,
1976 	.device_reset		= ufs_qcom_device_reset,
1977 	.config_scaling_param = ufs_qcom_config_scaling_param,
1978 	.mcq_config_resource	= ufs_qcom_mcq_config_resource,
1979 	.get_hba_mac		= ufs_qcom_get_hba_mac,
1980 	.op_runtime_config	= ufs_qcom_op_runtime_config,
1981 	.get_outstanding_cqs	= ufs_qcom_get_outstanding_cqs,
1982 	.config_esi		= ufs_qcom_config_esi,
1983 	.freq_to_gear_speed	= ufs_qcom_freq_to_gear_speed,
1984 };
1985 
1986 /**
1987  * ufs_qcom_probe - probe routine of the driver
1988  * @pdev: pointer to Platform device handle
1989  *
1990  * Return: zero for success and non-zero for failure.
1991  */
ufs_qcom_probe(struct platform_device * pdev)1992 static int ufs_qcom_probe(struct platform_device *pdev)
1993 {
1994 	int err;
1995 	struct device *dev = &pdev->dev;
1996 
1997 	/* Perform generic probe */
1998 	err = ufshcd_pltfrm_init(pdev, &ufs_hba_qcom_vops);
1999 	if (err)
2000 		return dev_err_probe(dev, err, "ufshcd_pltfrm_init() failed\n");
2001 
2002 	return 0;
2003 }
2004 
2005 /**
2006  * ufs_qcom_remove - set driver_data of the device to NULL
2007  * @pdev: pointer to platform device handle
2008  *
2009  * Always returns 0
2010  */
ufs_qcom_remove(struct platform_device * pdev)2011 static void ufs_qcom_remove(struct platform_device *pdev)
2012 {
2013 	struct ufs_hba *hba =  platform_get_drvdata(pdev);
2014 	struct ufs_qcom_host *host = ufshcd_get_variant(hba);
2015 
2016 	ufshcd_pltfrm_remove(pdev);
2017 	if (host->esi_enabled)
2018 		platform_device_msi_free_irqs_all(hba->dev);
2019 }
2020 
2021 static const struct ufs_qcom_drvdata ufs_qcom_sm8550_drvdata = {
2022 	.quirks = UFSHCD_QUIRK_BROKEN_LSDBS_CAP,
2023 	.no_phy_retention = true,
2024 };
2025 
2026 static const struct of_device_id ufs_qcom_of_match[] __maybe_unused = {
2027 	{ .compatible = "qcom,ufshc" },
2028 	{ .compatible = "qcom,sm8550-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2029 	{ .compatible = "qcom,sm8650-ufshc", .data = &ufs_qcom_sm8550_drvdata },
2030 	{},
2031 };
2032 MODULE_DEVICE_TABLE(of, ufs_qcom_of_match);
2033 
2034 #ifdef CONFIG_ACPI
2035 static const struct acpi_device_id ufs_qcom_acpi_match[] = {
2036 	{ "QCOM24A5" },
2037 	{ },
2038 };
2039 MODULE_DEVICE_TABLE(acpi, ufs_qcom_acpi_match);
2040 #endif
2041 
2042 static const struct dev_pm_ops ufs_qcom_pm_ops = {
2043 	SET_RUNTIME_PM_OPS(ufshcd_runtime_suspend, ufshcd_runtime_resume, NULL)
2044 	.prepare	 = ufshcd_suspend_prepare,
2045 	.complete	 = ufshcd_resume_complete,
2046 #ifdef CONFIG_PM_SLEEP
2047 	.suspend         = ufshcd_system_suspend,
2048 	.resume          = ufshcd_system_resume,
2049 	.freeze          = ufshcd_system_freeze,
2050 	.restore         = ufshcd_system_restore,
2051 	.thaw            = ufshcd_system_thaw,
2052 #endif
2053 };
2054 
2055 static struct platform_driver ufs_qcom_pltform = {
2056 	.probe	= ufs_qcom_probe,
2057 	.remove = ufs_qcom_remove,
2058 	.driver	= {
2059 		.name	= "ufshcd-qcom",
2060 		.pm	= &ufs_qcom_pm_ops,
2061 		.of_match_table = of_match_ptr(ufs_qcom_of_match),
2062 		.acpi_match_table = ACPI_PTR(ufs_qcom_acpi_match),
2063 	},
2064 };
2065 module_platform_driver(ufs_qcom_pltform);
2066 
2067 MODULE_DESCRIPTION("Qualcomm UFS host controller driver");
2068 MODULE_LICENSE("GPL v2");
2069