1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Longest prefix match list implementation
4 *
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
8
9 #include <linux/bpf.h>
10 #include <linux/btf.h>
11 #include <linux/err.h>
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/vmalloc.h>
15 #include <net/ipv6.h>
16 #include <uapi/linux/btf.h>
17 #include <linux/btf_ids.h>
18 #include <asm/rqspinlock.h>
19 #include <linux/bpf_mem_alloc.h>
20
21 /* Intermediate node */
22 #define LPM_TREE_NODE_FLAG_IM BIT(0)
23
24 struct lpm_trie_node;
25
26 struct lpm_trie_node {
27 struct lpm_trie_node __rcu *child[2];
28 u32 prefixlen;
29 u32 flags;
30 u8 data[];
31 };
32
33 struct lpm_trie {
34 struct bpf_map map;
35 struct lpm_trie_node __rcu *root;
36 struct bpf_mem_alloc ma;
37 size_t n_entries;
38 size_t max_prefixlen;
39 size_t data_size;
40 rqspinlock_t lock;
41 };
42
43 /* This trie implements a longest prefix match algorithm that can be used to
44 * match IP addresses to a stored set of ranges.
45 *
46 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
47 * interpreted as big endian, so data[0] stores the most significant byte.
48 *
49 * Match ranges are internally stored in instances of struct lpm_trie_node
50 * which each contain their prefix length as well as two pointers that may
51 * lead to more nodes containing more specific matches. Each node also stores
52 * a value that is defined by and returned to userspace via the update_elem
53 * and lookup functions.
54 *
55 * For instance, let's start with a trie that was created with a prefix length
56 * of 32, so it can be used for IPv4 addresses, and one single element that
57 * matches 192.168.0.0/16. The data array would hence contain
58 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
59 * stick to IP-address notation for readability though.
60 *
61 * As the trie is empty initially, the new node (1) will be places as root
62 * node, denoted as (R) in the example below. As there are no other node, both
63 * child pointers are %NULL.
64 *
65 * +----------------+
66 * | (1) (R) |
67 * | 192.168.0.0/16 |
68 * | value: 1 |
69 * | [0] [1] |
70 * +----------------+
71 *
72 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
73 * a node with the same data and a smaller prefix (ie, a less specific one),
74 * node (2) will become a child of (1). In child index depends on the next bit
75 * that is outside of what (1) matches, and that bit is 0, so (2) will be
76 * child[0] of (1):
77 *
78 * +----------------+
79 * | (1) (R) |
80 * | 192.168.0.0/16 |
81 * | value: 1 |
82 * | [0] [1] |
83 * +----------------+
84 * |
85 * +----------------+
86 * | (2) |
87 * | 192.168.0.0/24 |
88 * | value: 2 |
89 * | [0] [1] |
90 * +----------------+
91 *
92 * The child[1] slot of (1) could be filled with another node which has bit #17
93 * (the next bit after the ones that (1) matches on) set to 1. For instance,
94 * 192.168.128.0/24:
95 *
96 * +----------------+
97 * | (1) (R) |
98 * | 192.168.0.0/16 |
99 * | value: 1 |
100 * | [0] [1] |
101 * +----------------+
102 * | |
103 * +----------------+ +------------------+
104 * | (2) | | (3) |
105 * | 192.168.0.0/24 | | 192.168.128.0/24 |
106 * | value: 2 | | value: 3 |
107 * | [0] [1] | | [0] [1] |
108 * +----------------+ +------------------+
109 *
110 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
111 * it, node (1) is looked at first, and because (4) of the semantics laid out
112 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
113 * However, that slot is already allocated, so a new node is needed in between.
114 * That node does not have a value attached to it and it will never be
115 * returned to users as result of a lookup. It is only there to differentiate
116 * the traversal further. It will get a prefix as wide as necessary to
117 * distinguish its two children:
118 *
119 * +----------------+
120 * | (1) (R) |
121 * | 192.168.0.0/16 |
122 * | value: 1 |
123 * | [0] [1] |
124 * +----------------+
125 * | |
126 * +----------------+ +------------------+
127 * | (4) (I) | | (3) |
128 * | 192.168.0.0/23 | | 192.168.128.0/24 |
129 * | value: --- | | value: 3 |
130 * | [0] [1] | | [0] [1] |
131 * +----------------+ +------------------+
132 * | |
133 * +----------------+ +----------------+
134 * | (2) | | (5) |
135 * | 192.168.0.0/24 | | 192.168.1.0/24 |
136 * | value: 2 | | value: 5 |
137 * | [0] [1] | | [0] [1] |
138 * +----------------+ +----------------+
139 *
140 * 192.168.1.1/32 would be a child of (5) etc.
141 *
142 * An intermediate node will be turned into a 'real' node on demand. In the
143 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
144 *
145 * A fully populated trie would have a height of 32 nodes, as the trie was
146 * created with a prefix length of 32.
147 *
148 * The lookup starts at the root node. If the current node matches and if there
149 * is a child that can be used to become more specific, the trie is traversed
150 * downwards. The last node in the traversal that is a non-intermediate one is
151 * returned.
152 */
153
extract_bit(const u8 * data,size_t index)154 static inline int extract_bit(const u8 *data, size_t index)
155 {
156 return !!(data[index / 8] & (1 << (7 - (index % 8))));
157 }
158
159 /**
160 * __longest_prefix_match() - determine the longest prefix
161 * @trie: The trie to get internal sizes from
162 * @node: The node to operate on
163 * @key: The key to compare to @node
164 *
165 * Determine the longest prefix of @node that matches the bits in @key.
166 */
167 static __always_inline
__longest_prefix_match(const struct lpm_trie * trie,const struct lpm_trie_node * node,const struct bpf_lpm_trie_key_u8 * key)168 size_t __longest_prefix_match(const struct lpm_trie *trie,
169 const struct lpm_trie_node *node,
170 const struct bpf_lpm_trie_key_u8 *key)
171 {
172 u32 limit = min(node->prefixlen, key->prefixlen);
173 u32 prefixlen = 0, i = 0;
174
175 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
176 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key_u8, data) % sizeof(u32));
177
178 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
179
180 /* data_size >= 16 has very small probability.
181 * We do not use a loop for optimal code generation.
182 */
183 if (trie->data_size >= 8) {
184 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
185 *(__be64 *)key->data);
186
187 prefixlen = 64 - fls64(diff);
188 if (prefixlen >= limit)
189 return limit;
190 if (diff)
191 return prefixlen;
192 i = 8;
193 }
194 #endif
195
196 while (trie->data_size >= i + 4) {
197 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
198 *(__be32 *)&key->data[i]);
199
200 prefixlen += 32 - fls(diff);
201 if (prefixlen >= limit)
202 return limit;
203 if (diff)
204 return prefixlen;
205 i += 4;
206 }
207
208 if (trie->data_size >= i + 2) {
209 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
210 *(__be16 *)&key->data[i]);
211
212 prefixlen += 16 - fls(diff);
213 if (prefixlen >= limit)
214 return limit;
215 if (diff)
216 return prefixlen;
217 i += 2;
218 }
219
220 if (trie->data_size >= i + 1) {
221 prefixlen += 8 - fls(node->data[i] ^ key->data[i]);
222
223 if (prefixlen >= limit)
224 return limit;
225 }
226
227 return prefixlen;
228 }
229
longest_prefix_match(const struct lpm_trie * trie,const struct lpm_trie_node * node,const struct bpf_lpm_trie_key_u8 * key)230 static size_t longest_prefix_match(const struct lpm_trie *trie,
231 const struct lpm_trie_node *node,
232 const struct bpf_lpm_trie_key_u8 *key)
233 {
234 return __longest_prefix_match(trie, node, key);
235 }
236
237 /* Called from syscall or from eBPF program */
trie_lookup_elem(struct bpf_map * map,void * _key)238 static void *trie_lookup_elem(struct bpf_map *map, void *_key)
239 {
240 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
241 struct lpm_trie_node *node, *found = NULL;
242 struct bpf_lpm_trie_key_u8 *key = _key;
243
244 if (key->prefixlen > trie->max_prefixlen)
245 return NULL;
246
247 /* Start walking the trie from the root node ... */
248
249 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
250 node;) {
251 unsigned int next_bit;
252 size_t matchlen;
253
254 /* Determine the longest prefix of @node that matches @key.
255 * If it's the maximum possible prefix for this trie, we have
256 * an exact match and can return it directly.
257 */
258 matchlen = __longest_prefix_match(trie, node, key);
259 if (matchlen == trie->max_prefixlen) {
260 found = node;
261 break;
262 }
263
264 /* If the number of bits that match is smaller than the prefix
265 * length of @node, bail out and return the node we have seen
266 * last in the traversal (ie, the parent).
267 */
268 if (matchlen < node->prefixlen)
269 break;
270
271 /* Consider this node as return candidate unless it is an
272 * artificially added intermediate one.
273 */
274 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
275 found = node;
276
277 /* If the node match is fully satisfied, let's see if we can
278 * become more specific. Determine the next bit in the key and
279 * traverse down.
280 */
281 next_bit = extract_bit(key->data, node->prefixlen);
282 node = rcu_dereference_check(node->child[next_bit],
283 rcu_read_lock_bh_held());
284 }
285
286 if (!found)
287 return NULL;
288
289 return found->data + trie->data_size;
290 }
291
lpm_trie_node_alloc(struct lpm_trie * trie,const void * value)292 static struct lpm_trie_node *lpm_trie_node_alloc(struct lpm_trie *trie,
293 const void *value)
294 {
295 struct lpm_trie_node *node;
296
297 node = bpf_mem_cache_alloc(&trie->ma);
298
299 if (!node)
300 return NULL;
301
302 node->flags = 0;
303
304 if (value)
305 memcpy(node->data + trie->data_size, value,
306 trie->map.value_size);
307
308 return node;
309 }
310
trie_check_add_elem(struct lpm_trie * trie,u64 flags)311 static int trie_check_add_elem(struct lpm_trie *trie, u64 flags)
312 {
313 if (flags == BPF_EXIST)
314 return -ENOENT;
315 if (trie->n_entries == trie->map.max_entries)
316 return -ENOSPC;
317 trie->n_entries++;
318 return 0;
319 }
320
321 /* Called from syscall or from eBPF program */
trie_update_elem(struct bpf_map * map,void * _key,void * value,u64 flags)322 static long trie_update_elem(struct bpf_map *map,
323 void *_key, void *value, u64 flags)
324 {
325 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
326 struct lpm_trie_node *node, *im_node, *new_node;
327 struct lpm_trie_node *free_node = NULL;
328 struct lpm_trie_node __rcu **slot;
329 struct bpf_lpm_trie_key_u8 *key = _key;
330 unsigned long irq_flags;
331 unsigned int next_bit;
332 size_t matchlen = 0;
333 int ret = 0;
334
335 if (unlikely(flags > BPF_EXIST))
336 return -EINVAL;
337
338 if (key->prefixlen > trie->max_prefixlen)
339 return -EINVAL;
340
341 /* Allocate and fill a new node */
342 new_node = lpm_trie_node_alloc(trie, value);
343 if (!new_node)
344 return -ENOMEM;
345
346 ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags);
347 if (ret)
348 goto out_free;
349
350 new_node->prefixlen = key->prefixlen;
351 RCU_INIT_POINTER(new_node->child[0], NULL);
352 RCU_INIT_POINTER(new_node->child[1], NULL);
353 memcpy(new_node->data, key->data, trie->data_size);
354
355 /* Now find a slot to attach the new node. To do that, walk the tree
356 * from the root and match as many bits as possible for each node until
357 * we either find an empty slot or a slot that needs to be replaced by
358 * an intermediate node.
359 */
360 slot = &trie->root;
361
362 while ((node = rcu_dereference(*slot))) {
363 matchlen = longest_prefix_match(trie, node, key);
364
365 if (node->prefixlen != matchlen ||
366 node->prefixlen == key->prefixlen)
367 break;
368
369 next_bit = extract_bit(key->data, node->prefixlen);
370 slot = &node->child[next_bit];
371 }
372
373 /* If the slot is empty (a free child pointer or an empty root),
374 * simply assign the @new_node to that slot and be done.
375 */
376 if (!node) {
377 ret = trie_check_add_elem(trie, flags);
378 if (ret)
379 goto out;
380
381 rcu_assign_pointer(*slot, new_node);
382 goto out;
383 }
384
385 /* If the slot we picked already exists, replace it with @new_node
386 * which already has the correct data array set.
387 */
388 if (node->prefixlen == matchlen) {
389 if (!(node->flags & LPM_TREE_NODE_FLAG_IM)) {
390 if (flags == BPF_NOEXIST) {
391 ret = -EEXIST;
392 goto out;
393 }
394 } else {
395 ret = trie_check_add_elem(trie, flags);
396 if (ret)
397 goto out;
398 }
399
400 new_node->child[0] = node->child[0];
401 new_node->child[1] = node->child[1];
402
403 rcu_assign_pointer(*slot, new_node);
404 free_node = node;
405
406 goto out;
407 }
408
409 ret = trie_check_add_elem(trie, flags);
410 if (ret)
411 goto out;
412
413 /* If the new node matches the prefix completely, it must be inserted
414 * as an ancestor. Simply insert it between @node and *@slot.
415 */
416 if (matchlen == key->prefixlen) {
417 next_bit = extract_bit(node->data, matchlen);
418 rcu_assign_pointer(new_node->child[next_bit], node);
419 rcu_assign_pointer(*slot, new_node);
420 goto out;
421 }
422
423 im_node = lpm_trie_node_alloc(trie, NULL);
424 if (!im_node) {
425 trie->n_entries--;
426 ret = -ENOMEM;
427 goto out;
428 }
429
430 im_node->prefixlen = matchlen;
431 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
432 memcpy(im_node->data, node->data, trie->data_size);
433
434 /* Now determine which child to install in which slot */
435 if (extract_bit(key->data, matchlen)) {
436 rcu_assign_pointer(im_node->child[0], node);
437 rcu_assign_pointer(im_node->child[1], new_node);
438 } else {
439 rcu_assign_pointer(im_node->child[0], new_node);
440 rcu_assign_pointer(im_node->child[1], node);
441 }
442
443 /* Finally, assign the intermediate node to the determined slot */
444 rcu_assign_pointer(*slot, im_node);
445
446 out:
447 raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags);
448 out_free:
449 if (ret)
450 bpf_mem_cache_free(&trie->ma, new_node);
451 bpf_mem_cache_free_rcu(&trie->ma, free_node);
452
453 return ret;
454 }
455
456 /* Called from syscall or from eBPF program */
trie_delete_elem(struct bpf_map * map,void * _key)457 static long trie_delete_elem(struct bpf_map *map, void *_key)
458 {
459 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
460 struct lpm_trie_node *free_node = NULL, *free_parent = NULL;
461 struct bpf_lpm_trie_key_u8 *key = _key;
462 struct lpm_trie_node __rcu **trim, **trim2;
463 struct lpm_trie_node *node, *parent;
464 unsigned long irq_flags;
465 unsigned int next_bit;
466 size_t matchlen = 0;
467 int ret = 0;
468
469 if (key->prefixlen > trie->max_prefixlen)
470 return -EINVAL;
471
472 ret = raw_res_spin_lock_irqsave(&trie->lock, irq_flags);
473 if (ret)
474 return ret;
475
476 /* Walk the tree looking for an exact key/length match and keeping
477 * track of the path we traverse. We will need to know the node
478 * we wish to delete, and the slot that points to the node we want
479 * to delete. We may also need to know the nodes parent and the
480 * slot that contains it.
481 */
482 trim = &trie->root;
483 trim2 = trim;
484 parent = NULL;
485 while ((node = rcu_dereference(*trim))) {
486 matchlen = longest_prefix_match(trie, node, key);
487
488 if (node->prefixlen != matchlen ||
489 node->prefixlen == key->prefixlen)
490 break;
491
492 parent = node;
493 trim2 = trim;
494 next_bit = extract_bit(key->data, node->prefixlen);
495 trim = &node->child[next_bit];
496 }
497
498 if (!node || node->prefixlen != key->prefixlen ||
499 node->prefixlen != matchlen ||
500 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
501 ret = -ENOENT;
502 goto out;
503 }
504
505 trie->n_entries--;
506
507 /* If the node we are removing has two children, simply mark it
508 * as intermediate and we are done.
509 */
510 if (rcu_access_pointer(node->child[0]) &&
511 rcu_access_pointer(node->child[1])) {
512 node->flags |= LPM_TREE_NODE_FLAG_IM;
513 goto out;
514 }
515
516 /* If the parent of the node we are about to delete is an intermediate
517 * node, and the deleted node doesn't have any children, we can delete
518 * the intermediate parent as well and promote its other child
519 * up the tree. Doing this maintains the invariant that all
520 * intermediate nodes have exactly 2 children and that there are no
521 * unnecessary intermediate nodes in the tree.
522 */
523 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
524 !node->child[0] && !node->child[1]) {
525 if (node == rcu_access_pointer(parent->child[0]))
526 rcu_assign_pointer(
527 *trim2, rcu_access_pointer(parent->child[1]));
528 else
529 rcu_assign_pointer(
530 *trim2, rcu_access_pointer(parent->child[0]));
531 free_parent = parent;
532 free_node = node;
533 goto out;
534 }
535
536 /* The node we are removing has either zero or one child. If there
537 * is a child, move it into the removed node's slot then delete
538 * the node. Otherwise just clear the slot and delete the node.
539 */
540 if (node->child[0])
541 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
542 else if (node->child[1])
543 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
544 else
545 RCU_INIT_POINTER(*trim, NULL);
546 free_node = node;
547
548 out:
549 raw_res_spin_unlock_irqrestore(&trie->lock, irq_flags);
550
551 bpf_mem_cache_free_rcu(&trie->ma, free_parent);
552 bpf_mem_cache_free_rcu(&trie->ma, free_node);
553
554 return ret;
555 }
556
557 #define LPM_DATA_SIZE_MAX 256
558 #define LPM_DATA_SIZE_MIN 1
559
560 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
561 sizeof(struct lpm_trie_node))
562 #define LPM_VAL_SIZE_MIN 1
563
564 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key_u8) + (X))
565 #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
566 #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
567
568 #define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
569 BPF_F_ACCESS_MASK)
570
trie_alloc(union bpf_attr * attr)571 static struct bpf_map *trie_alloc(union bpf_attr *attr)
572 {
573 struct lpm_trie *trie;
574 size_t leaf_size;
575 int err;
576
577 /* check sanity of attributes */
578 if (attr->max_entries == 0 ||
579 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
580 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
581 !bpf_map_flags_access_ok(attr->map_flags) ||
582 attr->key_size < LPM_KEY_SIZE_MIN ||
583 attr->key_size > LPM_KEY_SIZE_MAX ||
584 attr->value_size < LPM_VAL_SIZE_MIN ||
585 attr->value_size > LPM_VAL_SIZE_MAX)
586 return ERR_PTR(-EINVAL);
587
588 trie = bpf_map_area_alloc(sizeof(*trie), NUMA_NO_NODE);
589 if (!trie)
590 return ERR_PTR(-ENOMEM);
591
592 /* copy mandatory map attributes */
593 bpf_map_init_from_attr(&trie->map, attr);
594 trie->data_size = attr->key_size -
595 offsetof(struct bpf_lpm_trie_key_u8, data);
596 trie->max_prefixlen = trie->data_size * 8;
597
598 raw_res_spin_lock_init(&trie->lock);
599
600 /* Allocate intermediate and leaf nodes from the same allocator */
601 leaf_size = sizeof(struct lpm_trie_node) + trie->data_size +
602 trie->map.value_size;
603 err = bpf_mem_alloc_init(&trie->ma, leaf_size, false);
604 if (err)
605 goto free_out;
606 return &trie->map;
607
608 free_out:
609 bpf_map_area_free(trie);
610 return ERR_PTR(err);
611 }
612
trie_free(struct bpf_map * map)613 static void trie_free(struct bpf_map *map)
614 {
615 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
616 struct lpm_trie_node __rcu **slot;
617 struct lpm_trie_node *node;
618
619 /* Always start at the root and walk down to a node that has no
620 * children. Then free that node, nullify its reference in the parent
621 * and start over.
622 */
623
624 for (;;) {
625 slot = &trie->root;
626
627 for (;;) {
628 node = rcu_dereference_protected(*slot, 1);
629 if (!node)
630 goto out;
631
632 if (rcu_access_pointer(node->child[0])) {
633 slot = &node->child[0];
634 continue;
635 }
636
637 if (rcu_access_pointer(node->child[1])) {
638 slot = &node->child[1];
639 continue;
640 }
641
642 /* No bpf program may access the map, so freeing the
643 * node without waiting for the extra RCU GP.
644 */
645 bpf_mem_cache_raw_free(node);
646 RCU_INIT_POINTER(*slot, NULL);
647 break;
648 }
649 }
650
651 out:
652 bpf_mem_alloc_destroy(&trie->ma);
653 bpf_map_area_free(trie);
654 }
655
trie_get_next_key(struct bpf_map * map,void * _key,void * _next_key)656 static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
657 {
658 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
659 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
660 struct bpf_lpm_trie_key_u8 *key = _key, *next_key = _next_key;
661 struct lpm_trie_node **node_stack = NULL;
662 int err = 0, stack_ptr = -1;
663 unsigned int next_bit;
664 size_t matchlen = 0;
665
666 /* The get_next_key follows postorder. For the 4 node example in
667 * the top of this file, the trie_get_next_key() returns the following
668 * one after another:
669 * 192.168.0.0/24
670 * 192.168.1.0/24
671 * 192.168.128.0/24
672 * 192.168.0.0/16
673 *
674 * The idea is to return more specific keys before less specific ones.
675 */
676
677 /* Empty trie */
678 search_root = rcu_dereference(trie->root);
679 if (!search_root)
680 return -ENOENT;
681
682 /* For invalid key, find the leftmost node in the trie */
683 if (!key || key->prefixlen > trie->max_prefixlen)
684 goto find_leftmost;
685
686 node_stack = kmalloc_array(trie->max_prefixlen + 1,
687 sizeof(struct lpm_trie_node *),
688 GFP_ATOMIC | __GFP_NOWARN);
689 if (!node_stack)
690 return -ENOMEM;
691
692 /* Try to find the exact node for the given key */
693 for (node = search_root; node;) {
694 node_stack[++stack_ptr] = node;
695 matchlen = longest_prefix_match(trie, node, key);
696 if (node->prefixlen != matchlen ||
697 node->prefixlen == key->prefixlen)
698 break;
699
700 next_bit = extract_bit(key->data, node->prefixlen);
701 node = rcu_dereference(node->child[next_bit]);
702 }
703 if (!node || node->prefixlen != matchlen ||
704 (node->flags & LPM_TREE_NODE_FLAG_IM))
705 goto find_leftmost;
706
707 /* The node with the exactly-matching key has been found,
708 * find the first node in postorder after the matched node.
709 */
710 node = node_stack[stack_ptr];
711 while (stack_ptr > 0) {
712 parent = node_stack[stack_ptr - 1];
713 if (rcu_dereference(parent->child[0]) == node) {
714 search_root = rcu_dereference(parent->child[1]);
715 if (search_root)
716 goto find_leftmost;
717 }
718 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
719 next_node = parent;
720 goto do_copy;
721 }
722
723 node = parent;
724 stack_ptr--;
725 }
726
727 /* did not find anything */
728 err = -ENOENT;
729 goto free_stack;
730
731 find_leftmost:
732 /* Find the leftmost non-intermediate node, all intermediate nodes
733 * have exact two children, so this function will never return NULL.
734 */
735 for (node = search_root; node;) {
736 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
737 node = rcu_dereference(node->child[0]);
738 } else {
739 next_node = node;
740 node = rcu_dereference(node->child[0]);
741 if (!node)
742 node = rcu_dereference(next_node->child[1]);
743 }
744 }
745 do_copy:
746 next_key->prefixlen = next_node->prefixlen;
747 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key_u8, data),
748 next_node->data, trie->data_size);
749 free_stack:
750 kfree(node_stack);
751 return err;
752 }
753
trie_check_btf(const struct bpf_map * map,const struct btf * btf,const struct btf_type * key_type,const struct btf_type * value_type)754 static int trie_check_btf(const struct bpf_map *map,
755 const struct btf *btf,
756 const struct btf_type *key_type,
757 const struct btf_type *value_type)
758 {
759 /* Keys must have struct bpf_lpm_trie_key_u8 embedded. */
760 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
761 -EINVAL : 0;
762 }
763
trie_mem_usage(const struct bpf_map * map)764 static u64 trie_mem_usage(const struct bpf_map *map)
765 {
766 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
767 u64 elem_size;
768
769 elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
770 trie->map.value_size;
771 return elem_size * READ_ONCE(trie->n_entries);
772 }
773
774 BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
775 const struct bpf_map_ops trie_map_ops = {
776 .map_meta_equal = bpf_map_meta_equal,
777 .map_alloc = trie_alloc,
778 .map_free = trie_free,
779 .map_get_next_key = trie_get_next_key,
780 .map_lookup_elem = trie_lookup_elem,
781 .map_update_elem = trie_update_elem,
782 .map_delete_elem = trie_delete_elem,
783 .map_lookup_batch = generic_map_lookup_batch,
784 .map_update_batch = generic_map_update_batch,
785 .map_delete_batch = generic_map_delete_batch,
786 .map_check_btf = trie_check_btf,
787 .map_mem_usage = trie_mem_usage,
788 .map_btf_id = &trie_map_btf_ids[0],
789 };
790