xref: /qemu/target/arm/tcg/translate-a64.c (revision df6fe2abf2e990f767ce755d426bc439c7bba336)
1 /*
2  *  AArch64 translation
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "exec/target_page.h"
21 #include "translate.h"
22 #include "translate-a64.h"
23 #include "qemu/log.h"
24 #include "arm_ldst.h"
25 #include "semihosting/semihost.h"
26 #include "cpregs.h"
27 
28 static TCGv_i64 cpu_X[32];
29 static TCGv_i64 cpu_pc;
30 
31 /* Load/store exclusive handling */
32 static TCGv_i64 cpu_exclusive_high;
33 
34 static const char *regnames[] = {
35     "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
36     "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
37     "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
38     "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
39 };
40 
41 enum a64_shift_type {
42     A64_SHIFT_TYPE_LSL = 0,
43     A64_SHIFT_TYPE_LSR = 1,
44     A64_SHIFT_TYPE_ASR = 2,
45     A64_SHIFT_TYPE_ROR = 3
46 };
47 
48 /*
49  * Helpers for extracting complex instruction fields
50  */
51 
52 /*
53  * For load/store with an unsigned 12 bit immediate scaled by the element
54  * size. The input has the immediate field in bits [14:3] and the element
55  * size in [2:0].
56  */
57 static int uimm_scaled(DisasContext *s, int x)
58 {
59     unsigned imm = x >> 3;
60     unsigned scale = extract32(x, 0, 3);
61     return imm << scale;
62 }
63 
64 /* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
65 static int scale_by_log2_tag_granule(DisasContext *s, int x)
66 {
67     return x << LOG2_TAG_GRANULE;
68 }
69 
70 /*
71  * Include the generated decoders.
72  */
73 
74 #include "decode-sme-fa64.c.inc"
75 #include "decode-a64.c.inc"
76 
77 /* initialize TCG globals.  */
78 void a64_translate_init(void)
79 {
80     int i;
81 
82     cpu_pc = tcg_global_mem_new_i64(tcg_env,
83                                     offsetof(CPUARMState, pc),
84                                     "pc");
85     for (i = 0; i < 32; i++) {
86         cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
87                                           offsetof(CPUARMState, xregs[i]),
88                                           regnames[i]);
89     }
90 
91     cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
92         offsetof(CPUARMState, exclusive_high), "exclusive_high");
93 }
94 
95 /*
96  * Return the core mmu_idx to use for A64 load/store insns which
97  * have a "unprivileged load/store" variant. Those insns access
98  * EL0 if executed from an EL which has control over EL0 (usually
99  * EL1) but behave like normal loads and stores if executed from
100  * elsewhere (eg EL3).
101  *
102  * @unpriv : true for the unprivileged encoding; false for the
103  *           normal encoding (in which case we will return the same
104  *           thing as get_mem_index().
105  */
106 static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
107 {
108     /*
109      * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
110      * which is the usual mmu_idx for this cpu state.
111      */
112     ARMMMUIdx useridx = s->mmu_idx;
113 
114     if (unpriv && s->unpriv) {
115         /*
116          * We have pre-computed the condition for AccType_UNPRIV.
117          * Therefore we should never get here with a mmu_idx for
118          * which we do not know the corresponding user mmu_idx.
119          */
120         switch (useridx) {
121         case ARMMMUIdx_E10_1:
122         case ARMMMUIdx_E10_1_PAN:
123             useridx = ARMMMUIdx_E10_0;
124             break;
125         case ARMMMUIdx_E20_2:
126         case ARMMMUIdx_E20_2_PAN:
127             useridx = ARMMMUIdx_E20_0;
128             break;
129         default:
130             g_assert_not_reached();
131         }
132     }
133     return arm_to_core_mmu_idx(useridx);
134 }
135 
136 static void set_btype_raw(int val)
137 {
138     tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
139                    offsetof(CPUARMState, btype));
140 }
141 
142 static void set_btype(DisasContext *s, int val)
143 {
144     /* BTYPE is a 2-bit field, and 0 should be done with reset_btype.  */
145     tcg_debug_assert(val >= 1 && val <= 3);
146     set_btype_raw(val);
147     s->btype = -1;
148 }
149 
150 static void reset_btype(DisasContext *s)
151 {
152     if (s->btype != 0) {
153         set_btype_raw(0);
154         s->btype = 0;
155     }
156 }
157 
158 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
159 {
160     assert(s->pc_save != -1);
161     if (tb_cflags(s->base.tb) & CF_PCREL) {
162         tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
163     } else {
164         tcg_gen_movi_i64(dest, s->pc_curr + diff);
165     }
166 }
167 
168 void gen_a64_update_pc(DisasContext *s, target_long diff)
169 {
170     gen_pc_plus_diff(s, cpu_pc, diff);
171     s->pc_save = s->pc_curr + diff;
172 }
173 
174 /*
175  * Handle Top Byte Ignore (TBI) bits.
176  *
177  * If address tagging is enabled via the TCR TBI bits:
178  *  + for EL2 and EL3 there is only one TBI bit, and if it is set
179  *    then the address is zero-extended, clearing bits [63:56]
180  *  + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
181  *    and TBI1 controls addresses with bit 55 == 1.
182  *    If the appropriate TBI bit is set for the address then
183  *    the address is sign-extended from bit 55 into bits [63:56]
184  *
185  * Here We have concatenated TBI{1,0} into tbi.
186  */
187 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
188                                 TCGv_i64 src, int tbi)
189 {
190     if (tbi == 0) {
191         /* Load unmodified address */
192         tcg_gen_mov_i64(dst, src);
193     } else if (!regime_has_2_ranges(s->mmu_idx)) {
194         /* Force tag byte to all zero */
195         tcg_gen_extract_i64(dst, src, 0, 56);
196     } else {
197         /* Sign-extend from bit 55.  */
198         tcg_gen_sextract_i64(dst, src, 0, 56);
199 
200         switch (tbi) {
201         case 1:
202             /* tbi0 but !tbi1: only use the extension if positive */
203             tcg_gen_and_i64(dst, dst, src);
204             break;
205         case 2:
206             /* !tbi0 but tbi1: only use the extension if negative */
207             tcg_gen_or_i64(dst, dst, src);
208             break;
209         case 3:
210             /* tbi0 and tbi1: always use the extension */
211             break;
212         default:
213             g_assert_not_reached();
214         }
215     }
216 }
217 
218 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
219 {
220     /*
221      * If address tagging is enabled for instructions via the TCR TBI bits,
222      * then loading an address into the PC will clear out any tag.
223      */
224     gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
225     s->pc_save = -1;
226 }
227 
228 /*
229  * Handle MTE and/or TBI.
230  *
231  * For TBI, ideally, we would do nothing.  Proper behaviour on fault is
232  * for the tag to be present in the FAR_ELx register.  But for user-only
233  * mode we do not have a TLB with which to implement this, so we must
234  * remove the top byte now.
235  *
236  * Always return a fresh temporary that we can increment independently
237  * of the write-back address.
238  */
239 
240 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
241 {
242     TCGv_i64 clean = tcg_temp_new_i64();
243 #ifdef CONFIG_USER_ONLY
244     gen_top_byte_ignore(s, clean, addr, s->tbid);
245 #else
246     tcg_gen_mov_i64(clean, addr);
247 #endif
248     return clean;
249 }
250 
251 /* Insert a zero tag into src, with the result at dst. */
252 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
253 {
254     tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
255 }
256 
257 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
258                              MMUAccessType acc, int log2_size)
259 {
260     gen_helper_probe_access(tcg_env, ptr,
261                             tcg_constant_i32(acc),
262                             tcg_constant_i32(get_mem_index(s)),
263                             tcg_constant_i32(1 << log2_size));
264 }
265 
266 /*
267  * For MTE, check a single logical or atomic access.  This probes a single
268  * address, the exact one specified.  The size and alignment of the access
269  * is not relevant to MTE, per se, but watchpoints do require the size,
270  * and we want to recognize those before making any other changes to state.
271  */
272 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
273                                       bool is_write, bool tag_checked,
274                                       MemOp memop, bool is_unpriv,
275                                       int core_idx)
276 {
277     if (tag_checked && s->mte_active[is_unpriv]) {
278         TCGv_i64 ret;
279         int desc = 0;
280 
281         desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
282         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
283         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
284         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
285         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(memop));
286         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
287 
288         ret = tcg_temp_new_i64();
289         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
290 
291         return ret;
292     }
293     return clean_data_tbi(s, addr);
294 }
295 
296 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
297                         bool tag_checked, MemOp memop)
298 {
299     return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
300                                  false, get_mem_index(s));
301 }
302 
303 /*
304  * For MTE, check multiple logical sequential accesses.
305  */
306 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
307                         bool tag_checked, int total_size, MemOp single_mop)
308 {
309     if (tag_checked && s->mte_active[0]) {
310         TCGv_i64 ret;
311         int desc = 0;
312 
313         desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
314         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
315         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
316         desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
317         desc = FIELD_DP32(desc, MTEDESC, ALIGN, memop_alignment_bits(single_mop));
318         desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
319 
320         ret = tcg_temp_new_i64();
321         gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
322 
323         return ret;
324     }
325     return clean_data_tbi(s, addr);
326 }
327 
328 /*
329  * Generate the special alignment check that applies to AccType_ATOMIC
330  * and AccType_ORDERED insns under FEAT_LSE2: the access need not be
331  * naturally aligned, but it must not cross a 16-byte boundary.
332  * See AArch64.CheckAlignment().
333  */
334 static void check_lse2_align(DisasContext *s, int rn, int imm,
335                              bool is_write, MemOp mop)
336 {
337     TCGv_i32 tmp;
338     TCGv_i64 addr;
339     TCGLabel *over_label;
340     MMUAccessType type;
341     int mmu_idx;
342 
343     tmp = tcg_temp_new_i32();
344     tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
345     tcg_gen_addi_i32(tmp, tmp, imm & 15);
346     tcg_gen_andi_i32(tmp, tmp, 15);
347     tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
348 
349     over_label = gen_new_label();
350     tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
351 
352     addr = tcg_temp_new_i64();
353     tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
354 
355     type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
356     mmu_idx = get_mem_index(s);
357     gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
358                                 tcg_constant_i32(mmu_idx));
359 
360     gen_set_label(over_label);
361 
362 }
363 
364 /* Handle the alignment check for AccType_ATOMIC instructions. */
365 static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
366 {
367     MemOp size = mop & MO_SIZE;
368 
369     if (size == MO_8) {
370         return mop;
371     }
372 
373     /*
374      * If size == MO_128, this is a LDXP, and the operation is single-copy
375      * atomic for each doubleword, not the entire quadword; it still must
376      * be quadword aligned.
377      */
378     if (size == MO_128) {
379         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
380                                    MO_ATOM_IFALIGN_PAIR);
381     }
382     if (dc_isar_feature(aa64_lse2, s)) {
383         check_lse2_align(s, rn, 0, true, mop);
384     } else {
385         mop |= MO_ALIGN;
386     }
387     return finalize_memop(s, mop);
388 }
389 
390 /* Handle the alignment check for AccType_ORDERED instructions. */
391 static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
392                                  bool is_write, MemOp mop)
393 {
394     MemOp size = mop & MO_SIZE;
395 
396     if (size == MO_8) {
397         return mop;
398     }
399     if (size == MO_128) {
400         return finalize_memop_atom(s, MO_128 | MO_ALIGN,
401                                    MO_ATOM_IFALIGN_PAIR);
402     }
403     if (!dc_isar_feature(aa64_lse2, s)) {
404         mop |= MO_ALIGN;
405     } else if (!s->naa) {
406         check_lse2_align(s, rn, imm, is_write, mop);
407     }
408     return finalize_memop(s, mop);
409 }
410 
411 typedef struct DisasCompare64 {
412     TCGCond cond;
413     TCGv_i64 value;
414 } DisasCompare64;
415 
416 static void a64_test_cc(DisasCompare64 *c64, int cc)
417 {
418     DisasCompare c32;
419 
420     arm_test_cc(&c32, cc);
421 
422     /*
423      * Sign-extend the 32-bit value so that the GE/LT comparisons work
424      * properly.  The NE/EQ comparisons are also fine with this choice.
425       */
426     c64->cond = c32.cond;
427     c64->value = tcg_temp_new_i64();
428     tcg_gen_ext_i32_i64(c64->value, c32.value);
429 }
430 
431 static void gen_rebuild_hflags(DisasContext *s)
432 {
433     gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
434 }
435 
436 static void gen_exception_internal_insn(DisasContext *s, int excp)
437 {
438     gen_a64_update_pc(s, 0);
439     gen_exception_internal(excp);
440     s->base.is_jmp = DISAS_NORETURN;
441 }
442 
443 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
444 {
445     gen_a64_update_pc(s, 0);
446     gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
447     s->base.is_jmp = DISAS_NORETURN;
448 }
449 
450 static void gen_step_complete_exception(DisasContext *s)
451 {
452     /* We just completed step of an insn. Move from Active-not-pending
453      * to Active-pending, and then also take the swstep exception.
454      * This corresponds to making the (IMPDEF) choice to prioritize
455      * swstep exceptions over asynchronous exceptions taken to an exception
456      * level where debug is disabled. This choice has the advantage that
457      * we do not need to maintain internal state corresponding to the
458      * ISV/EX syndrome bits between completion of the step and generation
459      * of the exception, and our syndrome information is always correct.
460      */
461     gen_ss_advance(s);
462     gen_swstep_exception(s, 1, s->is_ldex);
463     s->base.is_jmp = DISAS_NORETURN;
464 }
465 
466 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
467 {
468     if (s->ss_active) {
469         return false;
470     }
471     return translator_use_goto_tb(&s->base, dest);
472 }
473 
474 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
475 {
476     if (use_goto_tb(s, s->pc_curr + diff)) {
477         /*
478          * For pcrel, the pc must always be up-to-date on entry to
479          * the linked TB, so that it can use simple additions for all
480          * further adjustments.  For !pcrel, the linked TB is compiled
481          * to know its full virtual address, so we can delay the
482          * update to pc to the unlinked path.  A long chain of links
483          * can thus avoid many updates to the PC.
484          */
485         if (tb_cflags(s->base.tb) & CF_PCREL) {
486             gen_a64_update_pc(s, diff);
487             tcg_gen_goto_tb(n);
488         } else {
489             tcg_gen_goto_tb(n);
490             gen_a64_update_pc(s, diff);
491         }
492         tcg_gen_exit_tb(s->base.tb, n);
493         s->base.is_jmp = DISAS_NORETURN;
494     } else {
495         gen_a64_update_pc(s, diff);
496         if (s->ss_active) {
497             gen_step_complete_exception(s);
498         } else {
499             tcg_gen_lookup_and_goto_ptr();
500             s->base.is_jmp = DISAS_NORETURN;
501         }
502     }
503 }
504 
505 /*
506  * Register access functions
507  *
508  * These functions are used for directly accessing a register in where
509  * changes to the final register value are likely to be made. If you
510  * need to use a register for temporary calculation (e.g. index type
511  * operations) use the read_* form.
512  *
513  * B1.2.1 Register mappings
514  *
515  * In instruction register encoding 31 can refer to ZR (zero register) or
516  * the SP (stack pointer) depending on context. In QEMU's case we map SP
517  * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
518  * This is the point of the _sp forms.
519  */
520 TCGv_i64 cpu_reg(DisasContext *s, int reg)
521 {
522     if (reg == 31) {
523         TCGv_i64 t = tcg_temp_new_i64();
524         tcg_gen_movi_i64(t, 0);
525         return t;
526     } else {
527         return cpu_X[reg];
528     }
529 }
530 
531 /* register access for when 31 == SP */
532 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
533 {
534     return cpu_X[reg];
535 }
536 
537 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
538  * representing the register contents. This TCGv is an auto-freed
539  * temporary so it need not be explicitly freed, and may be modified.
540  */
541 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
542 {
543     TCGv_i64 v = tcg_temp_new_i64();
544     if (reg != 31) {
545         if (sf) {
546             tcg_gen_mov_i64(v, cpu_X[reg]);
547         } else {
548             tcg_gen_ext32u_i64(v, cpu_X[reg]);
549         }
550     } else {
551         tcg_gen_movi_i64(v, 0);
552     }
553     return v;
554 }
555 
556 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
557 {
558     TCGv_i64 v = tcg_temp_new_i64();
559     if (sf) {
560         tcg_gen_mov_i64(v, cpu_X[reg]);
561     } else {
562         tcg_gen_ext32u_i64(v, cpu_X[reg]);
563     }
564     return v;
565 }
566 
567 /* Return the offset into CPUARMState of a slice (from
568  * the least significant end) of FP register Qn (ie
569  * Dn, Sn, Hn or Bn).
570  * (Note that this is not the same mapping as for A32; see cpu.h)
571  */
572 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
573 {
574     return vec_reg_offset(s, regno, 0, size);
575 }
576 
577 /* Offset of the high half of the 128 bit vector Qn */
578 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
579 {
580     return vec_reg_offset(s, regno, 1, MO_64);
581 }
582 
583 /* Convenience accessors for reading and writing single and double
584  * FP registers. Writing clears the upper parts of the associated
585  * 128 bit vector register, as required by the architecture.
586  * Note that unlike the GP register accessors, the values returned
587  * by the read functions must be manually freed.
588  */
589 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
590 {
591     TCGv_i64 v = tcg_temp_new_i64();
592 
593     tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
594     return v;
595 }
596 
597 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
598 {
599     TCGv_i32 v = tcg_temp_new_i32();
600 
601     tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
602     return v;
603 }
604 
605 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
606 {
607     TCGv_i32 v = tcg_temp_new_i32();
608 
609     tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
610     return v;
611 }
612 
613 static void clear_vec(DisasContext *s, int rd)
614 {
615     unsigned ofs = fp_reg_offset(s, rd, MO_64);
616     unsigned vsz = vec_full_reg_size(s);
617 
618     tcg_gen_gvec_dup_imm(MO_64, ofs, vsz, vsz, 0);
619 }
620 
621 /*
622  * Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
623  * If SVE is not enabled, then there are only 128 bits in the vector.
624  */
625 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
626 {
627     unsigned ofs = fp_reg_offset(s, rd, MO_64);
628     unsigned vsz = vec_full_reg_size(s);
629 
630     /* Nop move, with side effect of clearing the tail. */
631     tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
632 }
633 
634 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
635 {
636     unsigned ofs = fp_reg_offset(s, reg, MO_64);
637 
638     tcg_gen_st_i64(v, tcg_env, ofs);
639     clear_vec_high(s, false, reg);
640 }
641 
642 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
643 {
644     TCGv_i64 tmp = tcg_temp_new_i64();
645 
646     tcg_gen_extu_i32_i64(tmp, v);
647     write_fp_dreg(s, reg, tmp);
648 }
649 
650 /*
651  * Write a double result to 128 bit vector register reg, honouring FPCR.NEP:
652  * - if FPCR.NEP == 0, clear the high elements of reg
653  * - if FPCR.NEP == 1, set the high elements of reg from mergereg
654  *   (i.e. merge the result with those high elements)
655  * In either case, SVE register bits above 128 are zeroed (per R_WKYLB).
656  */
657 static void write_fp_dreg_merging(DisasContext *s, int reg, int mergereg,
658                                   TCGv_i64 v)
659 {
660     if (!s->fpcr_nep) {
661         write_fp_dreg(s, reg, v);
662         return;
663     }
664 
665     /*
666      * Move from mergereg to reg; this sets the high elements and
667      * clears the bits above 128 as a side effect.
668      */
669     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
670                      vec_full_reg_offset(s, mergereg),
671                      16, vec_full_reg_size(s));
672     tcg_gen_st_i64(v, tcg_env, vec_full_reg_offset(s, reg));
673 }
674 
675 /*
676  * Write a single-prec result, but only clear the higher elements
677  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
678  */
679 static void write_fp_sreg_merging(DisasContext *s, int reg, int mergereg,
680                                   TCGv_i32 v)
681 {
682     if (!s->fpcr_nep) {
683         write_fp_sreg(s, reg, v);
684         return;
685     }
686 
687     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
688                      vec_full_reg_offset(s, mergereg),
689                      16, vec_full_reg_size(s));
690     tcg_gen_st_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
691 }
692 
693 /*
694  * Write a half-prec result, but only clear the higher elements
695  * of the destination register if FPCR.NEP is 0; otherwise preserve them.
696  * The caller must ensure that the top 16 bits of v are zero.
697  */
698 static void write_fp_hreg_merging(DisasContext *s, int reg, int mergereg,
699                                   TCGv_i32 v)
700 {
701     if (!s->fpcr_nep) {
702         write_fp_sreg(s, reg, v);
703         return;
704     }
705 
706     tcg_gen_gvec_mov(MO_64, vec_full_reg_offset(s, reg),
707                      vec_full_reg_offset(s, mergereg),
708                      16, vec_full_reg_size(s));
709     tcg_gen_st16_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
710 }
711 
712 /* Expand a 2-operand AdvSIMD vector operation using an expander function.  */
713 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
714                          GVecGen2Fn *gvec_fn, int vece)
715 {
716     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
717             is_q ? 16 : 8, vec_full_reg_size(s));
718 }
719 
720 /* Expand a 2-operand + immediate AdvSIMD vector operation using
721  * an expander function.
722  */
723 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
724                           int64_t imm, GVecGen2iFn *gvec_fn, int vece)
725 {
726     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
727             imm, is_q ? 16 : 8, vec_full_reg_size(s));
728 }
729 
730 /* Expand a 3-operand AdvSIMD vector operation using an expander function.  */
731 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
732                          GVecGen3Fn *gvec_fn, int vece)
733 {
734     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
735             vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
736 }
737 
738 /* Expand a 4-operand AdvSIMD vector operation using an expander function.  */
739 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
740                          int rx, GVecGen4Fn *gvec_fn, int vece)
741 {
742     gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
743             vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
744             is_q ? 16 : 8, vec_full_reg_size(s));
745 }
746 
747 /* Expand a 2-operand operation using an out-of-line helper.  */
748 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
749                              int rn, int data, gen_helper_gvec_2 *fn)
750 {
751     tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
752                        vec_full_reg_offset(s, rn),
753                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
754 }
755 
756 /* Expand a 3-operand operation using an out-of-line helper.  */
757 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
758                              int rn, int rm, int data, gen_helper_gvec_3 *fn)
759 {
760     tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
761                        vec_full_reg_offset(s, rn),
762                        vec_full_reg_offset(s, rm),
763                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
764 }
765 
766 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
767  * an out-of-line helper.
768  */
769 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
770                               int rm, ARMFPStatusFlavour fpsttype, int data,
771                               gen_helper_gvec_3_ptr *fn)
772 {
773     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
774     tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
775                        vec_full_reg_offset(s, rn),
776                        vec_full_reg_offset(s, rm), fpst,
777                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
778 }
779 
780 /* Expand a 4-operand operation using an out-of-line helper.  */
781 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
782                              int rm, int ra, int data, gen_helper_gvec_4 *fn)
783 {
784     tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
785                        vec_full_reg_offset(s, rn),
786                        vec_full_reg_offset(s, rm),
787                        vec_full_reg_offset(s, ra),
788                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
789 }
790 
791 /*
792  * Expand a 4-operand operation using an out-of-line helper that takes
793  * a pointer to the CPU env.
794  */
795 static void gen_gvec_op4_env(DisasContext *s, bool is_q, int rd, int rn,
796                              int rm, int ra, int data,
797                              gen_helper_gvec_4_ptr *fn)
798 {
799     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
800                        vec_full_reg_offset(s, rn),
801                        vec_full_reg_offset(s, rm),
802                        vec_full_reg_offset(s, ra),
803                        tcg_env,
804                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
805 }
806 
807 /*
808  * Expand a 4-operand + fpstatus pointer + simd data value operation using
809  * an out-of-line helper.
810  */
811 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
812                               int rm, int ra, ARMFPStatusFlavour fpsttype,
813                               int data,
814                               gen_helper_gvec_4_ptr *fn)
815 {
816     TCGv_ptr fpst = fpstatus_ptr(fpsttype);
817     tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
818                        vec_full_reg_offset(s, rn),
819                        vec_full_reg_offset(s, rm),
820                        vec_full_reg_offset(s, ra), fpst,
821                        is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
822 }
823 
824 /*
825  * When FPCR.AH == 1, NEG and ABS do not flip the sign bit of a NaN.
826  * These functions implement
827  *   d = floatN_is_any_nan(s) ? s : floatN_chs(s)
828  * which for float32 is
829  *   d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s ^ (1 << 31))
830  * and similarly for the other float sizes.
831  */
832 static void gen_vfp_ah_negh(TCGv_i32 d, TCGv_i32 s)
833 {
834     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
835 
836     gen_vfp_negh(chs_s, s);
837     gen_vfp_absh(abs_s, s);
838     tcg_gen_movcond_i32(TCG_COND_GTU, d,
839                         abs_s, tcg_constant_i32(0x7c00),
840                         s, chs_s);
841 }
842 
843 static void gen_vfp_ah_negs(TCGv_i32 d, TCGv_i32 s)
844 {
845     TCGv_i32 abs_s = tcg_temp_new_i32(), chs_s = tcg_temp_new_i32();
846 
847     gen_vfp_negs(chs_s, s);
848     gen_vfp_abss(abs_s, s);
849     tcg_gen_movcond_i32(TCG_COND_GTU, d,
850                         abs_s, tcg_constant_i32(0x7f800000UL),
851                         s, chs_s);
852 }
853 
854 static void gen_vfp_ah_negd(TCGv_i64 d, TCGv_i64 s)
855 {
856     TCGv_i64 abs_s = tcg_temp_new_i64(), chs_s = tcg_temp_new_i64();
857 
858     gen_vfp_negd(chs_s, s);
859     gen_vfp_absd(abs_s, s);
860     tcg_gen_movcond_i64(TCG_COND_GTU, d,
861                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
862                         s, chs_s);
863 }
864 
865 /*
866  * These functions implement
867  *  d = floatN_is_any_nan(s) ? s : floatN_abs(s)
868  * which for float32 is
869  *  d = (s & ~(1 << 31)) > 0x7f800000UL) ? s : (s & ~(1 << 31))
870  * and similarly for the other float sizes.
871  */
872 static void gen_vfp_ah_absh(TCGv_i32 d, TCGv_i32 s)
873 {
874     TCGv_i32 abs_s = tcg_temp_new_i32();
875 
876     gen_vfp_absh(abs_s, s);
877     tcg_gen_movcond_i32(TCG_COND_GTU, d,
878                         abs_s, tcg_constant_i32(0x7c00),
879                         s, abs_s);
880 }
881 
882 static void gen_vfp_ah_abss(TCGv_i32 d, TCGv_i32 s)
883 {
884     TCGv_i32 abs_s = tcg_temp_new_i32();
885 
886     gen_vfp_abss(abs_s, s);
887     tcg_gen_movcond_i32(TCG_COND_GTU, d,
888                         abs_s, tcg_constant_i32(0x7f800000UL),
889                         s, abs_s);
890 }
891 
892 static void gen_vfp_ah_absd(TCGv_i64 d, TCGv_i64 s)
893 {
894     TCGv_i64 abs_s = tcg_temp_new_i64();
895 
896     gen_vfp_absd(abs_s, s);
897     tcg_gen_movcond_i64(TCG_COND_GTU, d,
898                         abs_s, tcg_constant_i64(0x7ff0000000000000ULL),
899                         s, abs_s);
900 }
901 
902 static void gen_vfp_maybe_ah_negh(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
903 {
904     if (dc->fpcr_ah) {
905         gen_vfp_ah_negh(d, s);
906     } else {
907         gen_vfp_negh(d, s);
908     }
909 }
910 
911 static void gen_vfp_maybe_ah_negs(DisasContext *dc, TCGv_i32 d, TCGv_i32 s)
912 {
913     if (dc->fpcr_ah) {
914         gen_vfp_ah_negs(d, s);
915     } else {
916         gen_vfp_negs(d, s);
917     }
918 }
919 
920 static void gen_vfp_maybe_ah_negd(DisasContext *dc, TCGv_i64 d, TCGv_i64 s)
921 {
922     if (dc->fpcr_ah) {
923         gen_vfp_ah_negd(d, s);
924     } else {
925         gen_vfp_negd(d, s);
926     }
927 }
928 
929 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
930  * than the 32 bit equivalent.
931  */
932 static inline void gen_set_NZ64(TCGv_i64 result)
933 {
934     tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
935     tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
936 }
937 
938 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
939 static inline void gen_logic_CC(int sf, TCGv_i64 result)
940 {
941     if (sf) {
942         gen_set_NZ64(result);
943     } else {
944         tcg_gen_extrl_i64_i32(cpu_ZF, result);
945         tcg_gen_mov_i32(cpu_NF, cpu_ZF);
946     }
947     tcg_gen_movi_i32(cpu_CF, 0);
948     tcg_gen_movi_i32(cpu_VF, 0);
949 }
950 
951 /* dest = T0 + T1; compute C, N, V and Z flags */
952 static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
953 {
954     TCGv_i64 result, flag, tmp;
955     result = tcg_temp_new_i64();
956     flag = tcg_temp_new_i64();
957     tmp = tcg_temp_new_i64();
958 
959     tcg_gen_movi_i64(tmp, 0);
960     tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
961 
962     tcg_gen_extrl_i64_i32(cpu_CF, flag);
963 
964     gen_set_NZ64(result);
965 
966     tcg_gen_xor_i64(flag, result, t0);
967     tcg_gen_xor_i64(tmp, t0, t1);
968     tcg_gen_andc_i64(flag, flag, tmp);
969     tcg_gen_extrh_i64_i32(cpu_VF, flag);
970 
971     tcg_gen_mov_i64(dest, result);
972 }
973 
974 static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
975 {
976     TCGv_i32 t0_32 = tcg_temp_new_i32();
977     TCGv_i32 t1_32 = tcg_temp_new_i32();
978     TCGv_i32 tmp = tcg_temp_new_i32();
979 
980     tcg_gen_movi_i32(tmp, 0);
981     tcg_gen_extrl_i64_i32(t0_32, t0);
982     tcg_gen_extrl_i64_i32(t1_32, t1);
983     tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
984     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
985     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
986     tcg_gen_xor_i32(tmp, t0_32, t1_32);
987     tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
988     tcg_gen_extu_i32_i64(dest, cpu_NF);
989 }
990 
991 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
992 {
993     if (sf) {
994         gen_add64_CC(dest, t0, t1);
995     } else {
996         gen_add32_CC(dest, t0, t1);
997     }
998 }
999 
1000 /* dest = T0 - T1; compute C, N, V and Z flags */
1001 static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1002 {
1003     /* 64 bit arithmetic */
1004     TCGv_i64 result, flag, tmp;
1005 
1006     result = tcg_temp_new_i64();
1007     flag = tcg_temp_new_i64();
1008     tcg_gen_sub_i64(result, t0, t1);
1009 
1010     gen_set_NZ64(result);
1011 
1012     tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
1013     tcg_gen_extrl_i64_i32(cpu_CF, flag);
1014 
1015     tcg_gen_xor_i64(flag, result, t0);
1016     tmp = tcg_temp_new_i64();
1017     tcg_gen_xor_i64(tmp, t0, t1);
1018     tcg_gen_and_i64(flag, flag, tmp);
1019     tcg_gen_extrh_i64_i32(cpu_VF, flag);
1020     tcg_gen_mov_i64(dest, result);
1021 }
1022 
1023 static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1024 {
1025     /* 32 bit arithmetic */
1026     TCGv_i32 t0_32 = tcg_temp_new_i32();
1027     TCGv_i32 t1_32 = tcg_temp_new_i32();
1028     TCGv_i32 tmp;
1029 
1030     tcg_gen_extrl_i64_i32(t0_32, t0);
1031     tcg_gen_extrl_i64_i32(t1_32, t1);
1032     tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
1033     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1034     tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
1035     tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1036     tmp = tcg_temp_new_i32();
1037     tcg_gen_xor_i32(tmp, t0_32, t1_32);
1038     tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
1039     tcg_gen_extu_i32_i64(dest, cpu_NF);
1040 }
1041 
1042 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1043 {
1044     if (sf) {
1045         gen_sub64_CC(dest, t0, t1);
1046     } else {
1047         gen_sub32_CC(dest, t0, t1);
1048     }
1049 }
1050 
1051 /* dest = T0 + T1 + CF; do not compute flags. */
1052 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1053 {
1054     TCGv_i64 flag = tcg_temp_new_i64();
1055     tcg_gen_extu_i32_i64(flag, cpu_CF);
1056     tcg_gen_add_i64(dest, t0, t1);
1057     tcg_gen_add_i64(dest, dest, flag);
1058 
1059     if (!sf) {
1060         tcg_gen_ext32u_i64(dest, dest);
1061     }
1062 }
1063 
1064 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
1065 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
1066 {
1067     if (sf) {
1068         TCGv_i64 result = tcg_temp_new_i64();
1069         TCGv_i64 cf_64 = tcg_temp_new_i64();
1070         TCGv_i64 vf_64 = tcg_temp_new_i64();
1071         TCGv_i64 tmp = tcg_temp_new_i64();
1072 
1073         tcg_gen_extu_i32_i64(cf_64, cpu_CF);
1074         tcg_gen_addcio_i64(result, cf_64, t0, t1, cf_64);
1075         tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
1076         gen_set_NZ64(result);
1077 
1078         tcg_gen_xor_i64(vf_64, result, t0);
1079         tcg_gen_xor_i64(tmp, t0, t1);
1080         tcg_gen_andc_i64(vf_64, vf_64, tmp);
1081         tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
1082 
1083         tcg_gen_mov_i64(dest, result);
1084     } else {
1085         TCGv_i32 t0_32 = tcg_temp_new_i32();
1086         TCGv_i32 t1_32 = tcg_temp_new_i32();
1087         TCGv_i32 tmp = tcg_temp_new_i32();
1088 
1089         tcg_gen_extrl_i64_i32(t0_32, t0);
1090         tcg_gen_extrl_i64_i32(t1_32, t1);
1091         tcg_gen_addcio_i32(cpu_NF, cpu_CF, t0_32, t1_32, cpu_CF);
1092 
1093         tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1094         tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
1095         tcg_gen_xor_i32(tmp, t0_32, t1_32);
1096         tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
1097         tcg_gen_extu_i32_i64(dest, cpu_NF);
1098     }
1099 }
1100 
1101 /*
1102  * Load/Store generators
1103  */
1104 
1105 /*
1106  * Store from GPR register to memory.
1107  */
1108 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
1109                              TCGv_i64 tcg_addr, MemOp memop, int memidx,
1110                              bool iss_valid,
1111                              unsigned int iss_srt,
1112                              bool iss_sf, bool iss_ar)
1113 {
1114     tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
1115 
1116     if (iss_valid) {
1117         uint32_t syn;
1118 
1119         syn = syn_data_abort_with_iss(0,
1120                                       (memop & MO_SIZE),
1121                                       false,
1122                                       iss_srt,
1123                                       iss_sf,
1124                                       iss_ar,
1125                                       0, 0, 0, 0, 0, false);
1126         disas_set_insn_syndrome(s, syn);
1127     }
1128 }
1129 
1130 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
1131                       TCGv_i64 tcg_addr, MemOp memop,
1132                       bool iss_valid,
1133                       unsigned int iss_srt,
1134                       bool iss_sf, bool iss_ar)
1135 {
1136     do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
1137                      iss_valid, iss_srt, iss_sf, iss_ar);
1138 }
1139 
1140 /*
1141  * Load from memory to GPR register
1142  */
1143 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1144                              MemOp memop, bool extend, int memidx,
1145                              bool iss_valid, unsigned int iss_srt,
1146                              bool iss_sf, bool iss_ar)
1147 {
1148     tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
1149 
1150     if (extend && (memop & MO_SIGN)) {
1151         g_assert((memop & MO_SIZE) <= MO_32);
1152         tcg_gen_ext32u_i64(dest, dest);
1153     }
1154 
1155     if (iss_valid) {
1156         uint32_t syn;
1157 
1158         syn = syn_data_abort_with_iss(0,
1159                                       (memop & MO_SIZE),
1160                                       (memop & MO_SIGN) != 0,
1161                                       iss_srt,
1162                                       iss_sf,
1163                                       iss_ar,
1164                                       0, 0, 0, 0, 0, false);
1165         disas_set_insn_syndrome(s, syn);
1166     }
1167 }
1168 
1169 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
1170                       MemOp memop, bool extend,
1171                       bool iss_valid, unsigned int iss_srt,
1172                       bool iss_sf, bool iss_ar)
1173 {
1174     do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
1175                      iss_valid, iss_srt, iss_sf, iss_ar);
1176 }
1177 
1178 /*
1179  * Store from FP register to memory
1180  */
1181 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
1182 {
1183     /* This writes the bottom N bits of a 128 bit wide vector to memory */
1184     TCGv_i64 tmplo = tcg_temp_new_i64();
1185 
1186     tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
1187 
1188     if ((mop & MO_SIZE) < MO_128) {
1189         tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1190     } else {
1191         TCGv_i64 tmphi = tcg_temp_new_i64();
1192         TCGv_i128 t16 = tcg_temp_new_i128();
1193 
1194         tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
1195         tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
1196 
1197         tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
1198     }
1199 }
1200 
1201 /*
1202  * Load from memory to FP register
1203  */
1204 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
1205 {
1206     /* This always zero-extends and writes to a full 128 bit wide vector */
1207     TCGv_i64 tmplo = tcg_temp_new_i64();
1208     TCGv_i64 tmphi = NULL;
1209 
1210     if ((mop & MO_SIZE) < MO_128) {
1211         tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1212     } else {
1213         TCGv_i128 t16 = tcg_temp_new_i128();
1214 
1215         tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
1216 
1217         tmphi = tcg_temp_new_i64();
1218         tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
1219     }
1220 
1221     tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
1222 
1223     if (tmphi) {
1224         tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
1225     }
1226     clear_vec_high(s, tmphi != NULL, destidx);
1227 }
1228 
1229 /*
1230  * Vector load/store helpers.
1231  *
1232  * The principal difference between this and a FP load is that we don't
1233  * zero extend as we are filling a partial chunk of the vector register.
1234  * These functions don't support 128 bit loads/stores, which would be
1235  * normal load/store operations.
1236  *
1237  * The _i32 versions are useful when operating on 32 bit quantities
1238  * (eg for floating point single or using Neon helper functions).
1239  */
1240 
1241 /* Get value of an element within a vector register */
1242 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1243                              int element, MemOp memop)
1244 {
1245     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1246     switch ((unsigned)memop) {
1247     case MO_8:
1248         tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
1249         break;
1250     case MO_16:
1251         tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
1252         break;
1253     case MO_32:
1254         tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
1255         break;
1256     case MO_8|MO_SIGN:
1257         tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
1258         break;
1259     case MO_16|MO_SIGN:
1260         tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
1261         break;
1262     case MO_32|MO_SIGN:
1263         tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
1264         break;
1265     case MO_64:
1266     case MO_64|MO_SIGN:
1267         tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
1268         break;
1269     default:
1270         g_assert_not_reached();
1271     }
1272 }
1273 
1274 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1275                                  int element, MemOp memop)
1276 {
1277     int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1278     switch (memop) {
1279     case MO_8:
1280         tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
1281         break;
1282     case MO_16:
1283         tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
1284         break;
1285     case MO_8|MO_SIGN:
1286         tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
1287         break;
1288     case MO_16|MO_SIGN:
1289         tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
1290         break;
1291     case MO_32:
1292     case MO_32|MO_SIGN:
1293         tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
1294         break;
1295     default:
1296         g_assert_not_reached();
1297     }
1298 }
1299 
1300 /* Set value of an element within a vector register */
1301 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1302                               int element, MemOp memop)
1303 {
1304     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1305     switch (memop) {
1306     case MO_8:
1307         tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
1308         break;
1309     case MO_16:
1310         tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
1311         break;
1312     case MO_32:
1313         tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
1314         break;
1315     case MO_64:
1316         tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
1317         break;
1318     default:
1319         g_assert_not_reached();
1320     }
1321 }
1322 
1323 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1324                                   int destidx, int element, MemOp memop)
1325 {
1326     int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1327     switch (memop) {
1328     case MO_8:
1329         tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
1330         break;
1331     case MO_16:
1332         tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
1333         break;
1334     case MO_32:
1335         tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
1336         break;
1337     default:
1338         g_assert_not_reached();
1339     }
1340 }
1341 
1342 /* Store from vector register to memory */
1343 static void do_vec_st(DisasContext *s, int srcidx, int element,
1344                       TCGv_i64 tcg_addr, MemOp mop)
1345 {
1346     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1347 
1348     read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1349     tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1350 }
1351 
1352 /* Load from memory to vector register */
1353 static void do_vec_ld(DisasContext *s, int destidx, int element,
1354                       TCGv_i64 tcg_addr, MemOp mop)
1355 {
1356     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1357 
1358     tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1359     write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1360 }
1361 
1362 /* Check that FP/Neon access is enabled. If it is, return
1363  * true. If not, emit code to generate an appropriate exception,
1364  * and return false; the caller should not emit any code for
1365  * the instruction. Note that this check must happen after all
1366  * unallocated-encoding checks (otherwise the syndrome information
1367  * for the resulting exception will be incorrect).
1368  */
1369 static bool fp_access_check_only(DisasContext *s)
1370 {
1371     if (s->fp_excp_el) {
1372         assert(!s->fp_access_checked);
1373         s->fp_access_checked = -1;
1374 
1375         gen_exception_insn_el(s, 0, EXCP_UDEF,
1376                               syn_fp_access_trap(1, 0xe, false, 0),
1377                               s->fp_excp_el);
1378         return false;
1379     }
1380     s->fp_access_checked = 1;
1381     return true;
1382 }
1383 
1384 static bool nonstreaming_check(DisasContext *s)
1385 {
1386     if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1387         gen_exception_insn(s, 0, EXCP_UDEF,
1388                            syn_smetrap(SME_ET_Streaming, false));
1389         return false;
1390     }
1391     return true;
1392 }
1393 
1394 static bool fp_access_check(DisasContext *s)
1395 {
1396     return fp_access_check_only(s) && nonstreaming_check(s);
1397 }
1398 
1399 /*
1400  * Return <0 for non-supported element sizes, with MO_16 controlled by
1401  * FEAT_FP16; return 0 for fp disabled; otherwise return >0 for success.
1402  */
1403 static int fp_access_check_scalar_hsd(DisasContext *s, MemOp esz)
1404 {
1405     switch (esz) {
1406     case MO_64:
1407     case MO_32:
1408         break;
1409     case MO_16:
1410         if (!dc_isar_feature(aa64_fp16, s)) {
1411             return -1;
1412         }
1413         break;
1414     default:
1415         return -1;
1416     }
1417     return fp_access_check(s);
1418 }
1419 
1420 /* Likewise, but vector MO_64 must have two elements. */
1421 static int fp_access_check_vector_hsd(DisasContext *s, bool is_q, MemOp esz)
1422 {
1423     switch (esz) {
1424     case MO_64:
1425         if (!is_q) {
1426             return -1;
1427         }
1428         break;
1429     case MO_32:
1430         break;
1431     case MO_16:
1432         if (!dc_isar_feature(aa64_fp16, s)) {
1433             return -1;
1434         }
1435         break;
1436     default:
1437         return -1;
1438     }
1439     return fp_access_check(s);
1440 }
1441 
1442 /*
1443  * Check that SVE access is enabled.  If it is, return true.
1444  * If not, emit code to generate an appropriate exception and return false.
1445  * This function corresponds to CheckSVEEnabled().
1446  */
1447 bool sve_access_check(DisasContext *s)
1448 {
1449     if (dc_isar_feature(aa64_sme, s)) {
1450         bool ret;
1451 
1452         if (s->pstate_sm) {
1453             ret = sme_enabled_check(s);
1454         } else if (dc_isar_feature(aa64_sve, s)) {
1455             goto continue_sve;
1456         } else {
1457             ret = sme_sm_enabled_check(s);
1458         }
1459         if (ret) {
1460             ret = nonstreaming_check(s);
1461         }
1462         s->sve_access_checked = (ret ? 1 : -1);
1463         return ret;
1464     }
1465 
1466  continue_sve:
1467     if (s->sve_excp_el) {
1468         /* Assert that we only raise one exception per instruction. */
1469         assert(!s->sve_access_checked);
1470         gen_exception_insn_el(s, 0, EXCP_UDEF,
1471                               syn_sve_access_trap(), s->sve_excp_el);
1472         s->sve_access_checked = -1;
1473         return false;
1474     }
1475     s->sve_access_checked = 1;
1476     return fp_access_check(s);
1477 }
1478 
1479 /*
1480  * Check that SME access is enabled, raise an exception if not.
1481  * Note that this function corresponds to CheckSMEAccess and is
1482  * only used directly for cpregs.
1483  */
1484 static bool sme_access_check(DisasContext *s)
1485 {
1486     if (s->sme_excp_el) {
1487         gen_exception_insn_el(s, 0, EXCP_UDEF,
1488                               syn_smetrap(SME_ET_AccessTrap, false),
1489                               s->sme_excp_el);
1490         return false;
1491     }
1492     return true;
1493 }
1494 
1495 /* This function corresponds to CheckSMEEnabled. */
1496 bool sme_enabled_check(DisasContext *s)
1497 {
1498     /*
1499      * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1500      * to be zero when fp_excp_el has priority.  This is because we need
1501      * sme_excp_el by itself for cpregs access checks.
1502      */
1503     if (s->sme_excp_el
1504         && (!s->fp_excp_el || s->sme_excp_el <= s->fp_excp_el)) {
1505         bool ret = sme_access_check(s);
1506         s->fp_access_checked = (ret ? 1 : -1);
1507         return ret;
1508     }
1509     return fp_access_check_only(s);
1510 }
1511 
1512 /* Common subroutine for CheckSMEAnd*Enabled. */
1513 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1514 {
1515     if (!sme_enabled_check(s)) {
1516         return false;
1517     }
1518     if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1519         gen_exception_insn(s, 0, EXCP_UDEF,
1520                            syn_smetrap(SME_ET_NotStreaming, false));
1521         return false;
1522     }
1523     if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1524         gen_exception_insn(s, 0, EXCP_UDEF,
1525                            syn_smetrap(SME_ET_InactiveZA, false));
1526         return false;
1527     }
1528     return true;
1529 }
1530 
1531 /*
1532  * Expanders for AdvSIMD translation functions.
1533  */
1534 
1535 static bool do_gvec_op2_ool(DisasContext *s, arg_qrr_e *a, int data,
1536                             gen_helper_gvec_2 *fn)
1537 {
1538     if (!a->q && a->esz == MO_64) {
1539         return false;
1540     }
1541     if (fp_access_check(s)) {
1542         gen_gvec_op2_ool(s, a->q, a->rd, a->rn, data, fn);
1543     }
1544     return true;
1545 }
1546 
1547 static bool do_gvec_op3_ool(DisasContext *s, arg_qrrr_e *a, int data,
1548                             gen_helper_gvec_3 *fn)
1549 {
1550     if (!a->q && a->esz == MO_64) {
1551         return false;
1552     }
1553     if (fp_access_check(s)) {
1554         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, data, fn);
1555     }
1556     return true;
1557 }
1558 
1559 static bool do_gvec_fn3(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1560 {
1561     if (!a->q && a->esz == MO_64) {
1562         return false;
1563     }
1564     if (fp_access_check(s)) {
1565         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1566     }
1567     return true;
1568 }
1569 
1570 static bool do_gvec_fn3_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1571 {
1572     if (a->esz == MO_64) {
1573         return false;
1574     }
1575     if (fp_access_check(s)) {
1576         gen_gvec_fn3(s, a->q, a->rd, a->rn, a->rm, fn, a->esz);
1577     }
1578     return true;
1579 }
1580 
1581 static bool do_gvec_fn3_no8_no64(DisasContext *s, arg_qrrr_e *a, GVecGen3Fn *fn)
1582 {
1583     if (a->esz == MO_8) {
1584         return false;
1585     }
1586     return do_gvec_fn3_no64(s, a, fn);
1587 }
1588 
1589 static bool do_gvec_fn4(DisasContext *s, arg_qrrrr_e *a, GVecGen4Fn *fn)
1590 {
1591     if (!a->q && a->esz == MO_64) {
1592         return false;
1593     }
1594     if (fp_access_check(s)) {
1595         gen_gvec_fn4(s, a->q, a->rd, a->rn, a->rm, a->ra, fn, a->esz);
1596     }
1597     return true;
1598 }
1599 
1600 /*
1601  * This utility function is for doing register extension with an
1602  * optional shift. You will likely want to pass a temporary for the
1603  * destination register. See DecodeRegExtend() in the ARM ARM.
1604  */
1605 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1606                               int option, unsigned int shift)
1607 {
1608     int extsize = extract32(option, 0, 2);
1609     bool is_signed = extract32(option, 2, 1);
1610 
1611     tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
1612     tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1613 }
1614 
1615 static inline void gen_check_sp_alignment(DisasContext *s)
1616 {
1617     /* The AArch64 architecture mandates that (if enabled via PSTATE
1618      * or SCTLR bits) there is a check that SP is 16-aligned on every
1619      * SP-relative load or store (with an exception generated if it is not).
1620      * In line with general QEMU practice regarding misaligned accesses,
1621      * we omit these checks for the sake of guest program performance.
1622      * This function is provided as a hook so we can more easily add these
1623      * checks in future (possibly as a "favour catching guest program bugs
1624      * over speed" user selectable option).
1625      */
1626 }
1627 
1628 /*
1629  * The instruction disassembly implemented here matches
1630  * the instruction encoding classifications in chapter C4
1631  * of the ARM Architecture Reference Manual (DDI0487B_a);
1632  * classification names and decode diagrams here should generally
1633  * match up with those in the manual.
1634  */
1635 
1636 static bool trans_B(DisasContext *s, arg_i *a)
1637 {
1638     reset_btype(s);
1639     gen_goto_tb(s, 0, a->imm);
1640     return true;
1641 }
1642 
1643 static bool trans_BL(DisasContext *s, arg_i *a)
1644 {
1645     gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1646     reset_btype(s);
1647     gen_goto_tb(s, 0, a->imm);
1648     return true;
1649 }
1650 
1651 
1652 static bool trans_CBZ(DisasContext *s, arg_cbz *a)
1653 {
1654     DisasLabel match;
1655     TCGv_i64 tcg_cmp;
1656 
1657     tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
1658     reset_btype(s);
1659 
1660     match = gen_disas_label(s);
1661     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1662                         tcg_cmp, 0, match.label);
1663     gen_goto_tb(s, 0, 4);
1664     set_disas_label(s, match);
1665     gen_goto_tb(s, 1, a->imm);
1666     return true;
1667 }
1668 
1669 static bool trans_TBZ(DisasContext *s, arg_tbz *a)
1670 {
1671     DisasLabel match;
1672     TCGv_i64 tcg_cmp;
1673 
1674     tcg_cmp = tcg_temp_new_i64();
1675     tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
1676 
1677     reset_btype(s);
1678 
1679     match = gen_disas_label(s);
1680     tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
1681                         tcg_cmp, 0, match.label);
1682     gen_goto_tb(s, 0, 4);
1683     set_disas_label(s, match);
1684     gen_goto_tb(s, 1, a->imm);
1685     return true;
1686 }
1687 
1688 static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
1689 {
1690     /* BC.cond is only present with FEAT_HBC */
1691     if (a->c && !dc_isar_feature(aa64_hbc, s)) {
1692         return false;
1693     }
1694     reset_btype(s);
1695     if (a->cond < 0x0e) {
1696         /* genuinely conditional branches */
1697         DisasLabel match = gen_disas_label(s);
1698         arm_gen_test_cc(a->cond, match.label);
1699         gen_goto_tb(s, 0, 4);
1700         set_disas_label(s, match);
1701         gen_goto_tb(s, 1, a->imm);
1702     } else {
1703         /* 0xe and 0xf are both "always" conditions */
1704         gen_goto_tb(s, 0, a->imm);
1705     }
1706     return true;
1707 }
1708 
1709 static void set_btype_for_br(DisasContext *s, int rn)
1710 {
1711     if (dc_isar_feature(aa64_bti, s)) {
1712         /* BR to {x16,x17} or !guard -> 1, else 3.  */
1713         if (rn == 16 || rn == 17) {
1714             set_btype(s, 1);
1715         } else {
1716             TCGv_i64 pc = tcg_temp_new_i64();
1717             gen_pc_plus_diff(s, pc, 0);
1718             gen_helper_guarded_page_br(tcg_env, pc);
1719             s->btype = -1;
1720         }
1721     }
1722 }
1723 
1724 static void set_btype_for_blr(DisasContext *s)
1725 {
1726     if (dc_isar_feature(aa64_bti, s)) {
1727         /* BLR sets BTYPE to 2, regardless of source guarded page.  */
1728         set_btype(s, 2);
1729     }
1730 }
1731 
1732 static bool trans_BR(DisasContext *s, arg_r *a)
1733 {
1734     set_btype_for_br(s, a->rn);
1735     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1736     s->base.is_jmp = DISAS_JUMP;
1737     return true;
1738 }
1739 
1740 static bool trans_BLR(DisasContext *s, arg_r *a)
1741 {
1742     TCGv_i64 dst = cpu_reg(s, a->rn);
1743     TCGv_i64 lr = cpu_reg(s, 30);
1744     if (dst == lr) {
1745         TCGv_i64 tmp = tcg_temp_new_i64();
1746         tcg_gen_mov_i64(tmp, dst);
1747         dst = tmp;
1748     }
1749     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1750     gen_a64_set_pc(s, dst);
1751     set_btype_for_blr(s);
1752     s->base.is_jmp = DISAS_JUMP;
1753     return true;
1754 }
1755 
1756 static bool trans_RET(DisasContext *s, arg_r *a)
1757 {
1758     gen_a64_set_pc(s, cpu_reg(s, a->rn));
1759     s->base.is_jmp = DISAS_JUMP;
1760     return true;
1761 }
1762 
1763 static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
1764                                    TCGv_i64 modifier, bool use_key_a)
1765 {
1766     TCGv_i64 truedst;
1767     /*
1768      * Return the branch target for a BRAA/RETA/etc, which is either
1769      * just the destination dst, or that value with the pauth check
1770      * done and the code removed from the high bits.
1771      */
1772     if (!s->pauth_active) {
1773         return dst;
1774     }
1775 
1776     truedst = tcg_temp_new_i64();
1777     if (use_key_a) {
1778         gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
1779     } else {
1780         gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
1781     }
1782     return truedst;
1783 }
1784 
1785 static bool trans_BRAZ(DisasContext *s, arg_braz *a)
1786 {
1787     TCGv_i64 dst;
1788 
1789     if (!dc_isar_feature(aa64_pauth, s)) {
1790         return false;
1791     }
1792 
1793     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1794     set_btype_for_br(s, a->rn);
1795     gen_a64_set_pc(s, dst);
1796     s->base.is_jmp = DISAS_JUMP;
1797     return true;
1798 }
1799 
1800 static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
1801 {
1802     TCGv_i64 dst, lr;
1803 
1804     if (!dc_isar_feature(aa64_pauth, s)) {
1805         return false;
1806     }
1807 
1808     dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
1809     lr = cpu_reg(s, 30);
1810     if (dst == lr) {
1811         TCGv_i64 tmp = tcg_temp_new_i64();
1812         tcg_gen_mov_i64(tmp, dst);
1813         dst = tmp;
1814     }
1815     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1816     gen_a64_set_pc(s, dst);
1817     set_btype_for_blr(s);
1818     s->base.is_jmp = DISAS_JUMP;
1819     return true;
1820 }
1821 
1822 static bool trans_RETA(DisasContext *s, arg_reta *a)
1823 {
1824     TCGv_i64 dst;
1825 
1826     if (!dc_isar_feature(aa64_pauth, s)) {
1827         return false;
1828     }
1829 
1830     dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
1831     gen_a64_set_pc(s, dst);
1832     s->base.is_jmp = DISAS_JUMP;
1833     return true;
1834 }
1835 
1836 static bool trans_BRA(DisasContext *s, arg_bra *a)
1837 {
1838     TCGv_i64 dst;
1839 
1840     if (!dc_isar_feature(aa64_pauth, s)) {
1841         return false;
1842     }
1843     dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
1844     gen_a64_set_pc(s, dst);
1845     set_btype_for_br(s, a->rn);
1846     s->base.is_jmp = DISAS_JUMP;
1847     return true;
1848 }
1849 
1850 static bool trans_BLRA(DisasContext *s, arg_bra *a)
1851 {
1852     TCGv_i64 dst, lr;
1853 
1854     if (!dc_isar_feature(aa64_pauth, s)) {
1855         return false;
1856     }
1857     dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
1858     lr = cpu_reg(s, 30);
1859     if (dst == lr) {
1860         TCGv_i64 tmp = tcg_temp_new_i64();
1861         tcg_gen_mov_i64(tmp, dst);
1862         dst = tmp;
1863     }
1864     gen_pc_plus_diff(s, lr, curr_insn_len(s));
1865     gen_a64_set_pc(s, dst);
1866     set_btype_for_blr(s);
1867     s->base.is_jmp = DISAS_JUMP;
1868     return true;
1869 }
1870 
1871 static bool trans_ERET(DisasContext *s, arg_ERET *a)
1872 {
1873     TCGv_i64 dst;
1874 
1875     if (s->current_el == 0) {
1876         return false;
1877     }
1878     if (s->trap_eret) {
1879         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
1880         return true;
1881     }
1882     dst = tcg_temp_new_i64();
1883     tcg_gen_ld_i64(dst, tcg_env,
1884                    offsetof(CPUARMState, elr_el[s->current_el]));
1885 
1886     translator_io_start(&s->base);
1887 
1888     gen_helper_exception_return(tcg_env, dst);
1889     /* Must exit loop to check un-masked IRQs */
1890     s->base.is_jmp = DISAS_EXIT;
1891     return true;
1892 }
1893 
1894 static bool trans_ERETA(DisasContext *s, arg_reta *a)
1895 {
1896     TCGv_i64 dst;
1897 
1898     if (!dc_isar_feature(aa64_pauth, s)) {
1899         return false;
1900     }
1901     if (s->current_el == 0) {
1902         return false;
1903     }
1904     /* The FGT trap takes precedence over an auth trap. */
1905     if (s->trap_eret) {
1906         gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
1907         return true;
1908     }
1909     dst = tcg_temp_new_i64();
1910     tcg_gen_ld_i64(dst, tcg_env,
1911                    offsetof(CPUARMState, elr_el[s->current_el]));
1912 
1913     dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
1914 
1915     translator_io_start(&s->base);
1916 
1917     gen_helper_exception_return(tcg_env, dst);
1918     /* Must exit loop to check un-masked IRQs */
1919     s->base.is_jmp = DISAS_EXIT;
1920     return true;
1921 }
1922 
1923 static bool trans_NOP(DisasContext *s, arg_NOP *a)
1924 {
1925     return true;
1926 }
1927 
1928 static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
1929 {
1930     /*
1931      * When running in MTTCG we don't generate jumps to the yield and
1932      * WFE helpers as it won't affect the scheduling of other vCPUs.
1933      * If we wanted to more completely model WFE/SEV so we don't busy
1934      * spin unnecessarily we would need to do something more involved.
1935      */
1936     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1937         s->base.is_jmp = DISAS_YIELD;
1938     }
1939     return true;
1940 }
1941 
1942 static bool trans_WFI(DisasContext *s, arg_WFI *a)
1943 {
1944     s->base.is_jmp = DISAS_WFI;
1945     return true;
1946 }
1947 
1948 static bool trans_WFE(DisasContext *s, arg_WFI *a)
1949 {
1950     /*
1951      * When running in MTTCG we don't generate jumps to the yield and
1952      * WFE helpers as it won't affect the scheduling of other vCPUs.
1953      * If we wanted to more completely model WFE/SEV so we don't busy
1954      * spin unnecessarily we would need to do something more involved.
1955      */
1956     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1957         s->base.is_jmp = DISAS_WFE;
1958     }
1959     return true;
1960 }
1961 
1962 static bool trans_WFIT(DisasContext *s, arg_WFIT *a)
1963 {
1964     if (!dc_isar_feature(aa64_wfxt, s)) {
1965         return false;
1966     }
1967 
1968     /*
1969      * Because we need to pass the register value to the helper,
1970      * it's easier to emit the code now, unlike trans_WFI which
1971      * defers it to aarch64_tr_tb_stop(). That means we need to
1972      * check ss_active so that single-stepping a WFIT doesn't halt.
1973      */
1974     if (s->ss_active) {
1975         /* Act like a NOP under architectural singlestep */
1976         return true;
1977     }
1978 
1979     gen_a64_update_pc(s, 4);
1980     gen_helper_wfit(tcg_env, cpu_reg(s, a->rd));
1981     /* Go back to the main loop to check for interrupts */
1982     s->base.is_jmp = DISAS_EXIT;
1983     return true;
1984 }
1985 
1986 static bool trans_WFET(DisasContext *s, arg_WFET *a)
1987 {
1988     if (!dc_isar_feature(aa64_wfxt, s)) {
1989         return false;
1990     }
1991 
1992     /*
1993      * We rely here on our WFE implementation being a NOP, so we
1994      * don't need to do anything different to handle the WFET timeout
1995      * from what trans_WFE does.
1996      */
1997     if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1998         s->base.is_jmp = DISAS_WFE;
1999     }
2000     return true;
2001 }
2002 
2003 static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
2004 {
2005     if (s->pauth_active) {
2006         gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
2007     }
2008     return true;
2009 }
2010 
2011 static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
2012 {
2013     if (s->pauth_active) {
2014         gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2015     }
2016     return true;
2017 }
2018 
2019 static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
2020 {
2021     if (s->pauth_active) {
2022         gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2023     }
2024     return true;
2025 }
2026 
2027 static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
2028 {
2029     if (s->pauth_active) {
2030         gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2031     }
2032     return true;
2033 }
2034 
2035 static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
2036 {
2037     if (s->pauth_active) {
2038         gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
2039     }
2040     return true;
2041 }
2042 
2043 static bool trans_ESB(DisasContext *s, arg_ESB *a)
2044 {
2045     /* Without RAS, we must implement this as NOP. */
2046     if (dc_isar_feature(aa64_ras, s)) {
2047         /*
2048          * QEMU does not have a source of physical SErrors,
2049          * so we are only concerned with virtual SErrors.
2050          * The pseudocode in the ARM for this case is
2051          *   if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
2052          *      AArch64.vESBOperation();
2053          * Most of the condition can be evaluated at translation time.
2054          * Test for EL2 present, and defer test for SEL2 to runtime.
2055          */
2056         if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
2057             gen_helper_vesb(tcg_env);
2058         }
2059     }
2060     return true;
2061 }
2062 
2063 static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
2064 {
2065     if (s->pauth_active) {
2066         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2067     }
2068     return true;
2069 }
2070 
2071 static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
2072 {
2073     if (s->pauth_active) {
2074         gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2075     }
2076     return true;
2077 }
2078 
2079 static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
2080 {
2081     if (s->pauth_active) {
2082         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2083     }
2084     return true;
2085 }
2086 
2087 static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
2088 {
2089     if (s->pauth_active) {
2090         gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2091     }
2092     return true;
2093 }
2094 
2095 static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
2096 {
2097     if (s->pauth_active) {
2098         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2099     }
2100     return true;
2101 }
2102 
2103 static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
2104 {
2105     if (s->pauth_active) {
2106         gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2107     }
2108     return true;
2109 }
2110 
2111 static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
2112 {
2113     if (s->pauth_active) {
2114         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
2115     }
2116     return true;
2117 }
2118 
2119 static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
2120 {
2121     if (s->pauth_active) {
2122         gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
2123     }
2124     return true;
2125 }
2126 
2127 static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
2128 {
2129     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2130     return true;
2131 }
2132 
2133 static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
2134 {
2135     /* We handle DSB and DMB the same way */
2136     TCGBar bar;
2137 
2138     switch (a->types) {
2139     case 1: /* MBReqTypes_Reads */
2140         bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
2141         break;
2142     case 2: /* MBReqTypes_Writes */
2143         bar = TCG_BAR_SC | TCG_MO_ST_ST;
2144         break;
2145     default: /* MBReqTypes_All */
2146         bar = TCG_BAR_SC | TCG_MO_ALL;
2147         break;
2148     }
2149     tcg_gen_mb(bar);
2150     return true;
2151 }
2152 
2153 static bool trans_DSB_nXS(DisasContext *s, arg_DSB_nXS *a)
2154 {
2155     if (!dc_isar_feature(aa64_xs, s)) {
2156         return false;
2157     }
2158     tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
2159     return true;
2160 }
2161 
2162 static bool trans_ISB(DisasContext *s, arg_ISB *a)
2163 {
2164     /*
2165      * We need to break the TB after this insn to execute
2166      * self-modifying code correctly and also to take
2167      * any pending interrupts immediately.
2168      */
2169     reset_btype(s);
2170     gen_goto_tb(s, 0, 4);
2171     return true;
2172 }
2173 
2174 static bool trans_SB(DisasContext *s, arg_SB *a)
2175 {
2176     if (!dc_isar_feature(aa64_sb, s)) {
2177         return false;
2178     }
2179     /*
2180      * TODO: There is no speculation barrier opcode for TCG;
2181      * MB and end the TB instead.
2182      */
2183     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
2184     gen_goto_tb(s, 0, 4);
2185     return true;
2186 }
2187 
2188 static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
2189 {
2190     if (!dc_isar_feature(aa64_condm_4, s)) {
2191         return false;
2192     }
2193     tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
2194     return true;
2195 }
2196 
2197 static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
2198 {
2199     TCGv_i32 z;
2200 
2201     if (!dc_isar_feature(aa64_condm_5, s)) {
2202         return false;
2203     }
2204 
2205     z = tcg_temp_new_i32();
2206 
2207     tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
2208 
2209     /*
2210      * (!C & !Z) << 31
2211      * (!(C | Z)) << 31
2212      * ~((C | Z) << 31)
2213      * ~-(C | Z)
2214      * (C | Z) - 1
2215      */
2216     tcg_gen_or_i32(cpu_NF, cpu_CF, z);
2217     tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
2218 
2219     /* !(Z & C) */
2220     tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
2221     tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
2222 
2223     /* (!C & Z) << 31 -> -(Z & ~C) */
2224     tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
2225     tcg_gen_neg_i32(cpu_VF, cpu_VF);
2226 
2227     /* C | Z */
2228     tcg_gen_or_i32(cpu_CF, cpu_CF, z);
2229 
2230     return true;
2231 }
2232 
2233 static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
2234 {
2235     if (!dc_isar_feature(aa64_condm_5, s)) {
2236         return false;
2237     }
2238 
2239     tcg_gen_sari_i32(cpu_VF, cpu_VF, 31);         /* V ? -1 : 0 */
2240     tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF);     /* C & !V */
2241 
2242     /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
2243     tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
2244 
2245     tcg_gen_movi_i32(cpu_NF, 0);
2246     tcg_gen_movi_i32(cpu_VF, 0);
2247 
2248     return true;
2249 }
2250 
2251 static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
2252 {
2253     if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
2254         return false;
2255     }
2256     if (a->imm & 1) {
2257         set_pstate_bits(PSTATE_UAO);
2258     } else {
2259         clear_pstate_bits(PSTATE_UAO);
2260     }
2261     gen_rebuild_hflags(s);
2262     s->base.is_jmp = DISAS_TOO_MANY;
2263     return true;
2264 }
2265 
2266 static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
2267 {
2268     if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
2269         return false;
2270     }
2271     if (a->imm & 1) {
2272         set_pstate_bits(PSTATE_PAN);
2273     } else {
2274         clear_pstate_bits(PSTATE_PAN);
2275     }
2276     gen_rebuild_hflags(s);
2277     s->base.is_jmp = DISAS_TOO_MANY;
2278     return true;
2279 }
2280 
2281 static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
2282 {
2283     if (s->current_el == 0) {
2284         return false;
2285     }
2286     gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
2287     s->base.is_jmp = DISAS_TOO_MANY;
2288     return true;
2289 }
2290 
2291 static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
2292 {
2293     if (!dc_isar_feature(aa64_ssbs, s)) {
2294         return false;
2295     }
2296     if (a->imm & 1) {
2297         set_pstate_bits(PSTATE_SSBS);
2298     } else {
2299         clear_pstate_bits(PSTATE_SSBS);
2300     }
2301     /* Don't need to rebuild hflags since SSBS is a nop */
2302     s->base.is_jmp = DISAS_TOO_MANY;
2303     return true;
2304 }
2305 
2306 static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
2307 {
2308     if (!dc_isar_feature(aa64_dit, s)) {
2309         return false;
2310     }
2311     if (a->imm & 1) {
2312         set_pstate_bits(PSTATE_DIT);
2313     } else {
2314         clear_pstate_bits(PSTATE_DIT);
2315     }
2316     /* There's no need to rebuild hflags because DIT is a nop */
2317     s->base.is_jmp = DISAS_TOO_MANY;
2318     return true;
2319 }
2320 
2321 static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
2322 {
2323     if (dc_isar_feature(aa64_mte, s)) {
2324         /* Full MTE is enabled -- set the TCO bit as directed. */
2325         if (a->imm & 1) {
2326             set_pstate_bits(PSTATE_TCO);
2327         } else {
2328             clear_pstate_bits(PSTATE_TCO);
2329         }
2330         gen_rebuild_hflags(s);
2331         /* Many factors, including TCO, go into MTE_ACTIVE. */
2332         s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
2333         return true;
2334     } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
2335         /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI.  */
2336         return true;
2337     } else {
2338         /* Insn not present */
2339         return false;
2340     }
2341 }
2342 
2343 static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
2344 {
2345     gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
2346     s->base.is_jmp = DISAS_TOO_MANY;
2347     return true;
2348 }
2349 
2350 static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
2351 {
2352     gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
2353     /* Exit the cpu loop to re-evaluate pending IRQs. */
2354     s->base.is_jmp = DISAS_UPDATE_EXIT;
2355     return true;
2356 }
2357 
2358 static bool trans_MSR_i_ALLINT(DisasContext *s, arg_i *a)
2359 {
2360     if (!dc_isar_feature(aa64_nmi, s) || s->current_el == 0) {
2361         return false;
2362     }
2363 
2364     if (a->imm == 0) {
2365         clear_pstate_bits(PSTATE_ALLINT);
2366     } else if (s->current_el > 1) {
2367         set_pstate_bits(PSTATE_ALLINT);
2368     } else {
2369         gen_helper_msr_set_allint_el1(tcg_env);
2370     }
2371 
2372     /* Exit the cpu loop to re-evaluate pending IRQs. */
2373     s->base.is_jmp = DISAS_UPDATE_EXIT;
2374     return true;
2375 }
2376 
2377 static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
2378 {
2379     if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
2380         return false;
2381     }
2382     if (sme_access_check(s)) {
2383         int old = s->pstate_sm | (s->pstate_za << 1);
2384         int new = a->imm * 3;
2385 
2386         if ((old ^ new) & a->mask) {
2387             /* At least one bit changes. */
2388             gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
2389                                 tcg_constant_i32(a->mask));
2390             s->base.is_jmp = DISAS_TOO_MANY;
2391         }
2392     }
2393     return true;
2394 }
2395 
2396 static void gen_get_nzcv(TCGv_i64 tcg_rt)
2397 {
2398     TCGv_i32 tmp = tcg_temp_new_i32();
2399     TCGv_i32 nzcv = tcg_temp_new_i32();
2400 
2401     /* build bit 31, N */
2402     tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
2403     /* build bit 30, Z */
2404     tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
2405     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
2406     /* build bit 29, C */
2407     tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
2408     /* build bit 28, V */
2409     tcg_gen_shri_i32(tmp, cpu_VF, 31);
2410     tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
2411     /* generate result */
2412     tcg_gen_extu_i32_i64(tcg_rt, nzcv);
2413 }
2414 
2415 static void gen_set_nzcv(TCGv_i64 tcg_rt)
2416 {
2417     TCGv_i32 nzcv = tcg_temp_new_i32();
2418 
2419     /* take NZCV from R[t] */
2420     tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
2421 
2422     /* bit 31, N */
2423     tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
2424     /* bit 30, Z */
2425     tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
2426     tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
2427     /* bit 29, C */
2428     tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
2429     tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
2430     /* bit 28, V */
2431     tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
2432     tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
2433 }
2434 
2435 static void gen_sysreg_undef(DisasContext *s, bool isread,
2436                              uint8_t op0, uint8_t op1, uint8_t op2,
2437                              uint8_t crn, uint8_t crm, uint8_t rt)
2438 {
2439     /*
2440      * Generate code to emit an UNDEF with correct syndrome
2441      * information for a failed system register access.
2442      * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
2443      * but if FEAT_IDST is implemented then read accesses to registers
2444      * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
2445      * syndrome.
2446      */
2447     uint32_t syndrome;
2448 
2449     if (isread && dc_isar_feature(aa64_ids, s) &&
2450         arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
2451         syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2452     } else {
2453         syndrome = syn_uncategorized();
2454     }
2455     gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
2456 }
2457 
2458 /* MRS - move from system register
2459  * MSR (register) - move to system register
2460  * SYS
2461  * SYSL
2462  * These are all essentially the same insn in 'read' and 'write'
2463  * versions, with varying op0 fields.
2464  */
2465 static void handle_sys(DisasContext *s, bool isread,
2466                        unsigned int op0, unsigned int op1, unsigned int op2,
2467                        unsigned int crn, unsigned int crm, unsigned int rt)
2468 {
2469     uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2470                                       crn, crm, op0, op1, op2);
2471     const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
2472     bool need_exit_tb = false;
2473     bool nv_trap_to_el2 = false;
2474     bool nv_redirect_reg = false;
2475     bool skip_fp_access_checks = false;
2476     bool nv2_mem_redirect = false;
2477     TCGv_ptr tcg_ri = NULL;
2478     TCGv_i64 tcg_rt;
2479     uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
2480 
2481     if (crn == 11 || crn == 15) {
2482         /*
2483          * Check for TIDCP trap, which must take precedence over
2484          * the UNDEF for "no such register" etc.
2485          */
2486         switch (s->current_el) {
2487         case 0:
2488             if (dc_isar_feature(aa64_tidcp1, s)) {
2489                 gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
2490             }
2491             break;
2492         case 1:
2493             gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
2494             break;
2495         }
2496     }
2497 
2498     if (!ri) {
2499         /* Unknown register; this might be a guest error or a QEMU
2500          * unimplemented feature.
2501          */
2502         qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
2503                       "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
2504                       isread ? "read" : "write", op0, op1, crn, crm, op2);
2505         gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2506         return;
2507     }
2508 
2509     if (s->nv2 && ri->nv2_redirect_offset) {
2510         /*
2511          * Some registers always redirect to memory; some only do so if
2512          * HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
2513          * pairs which share an offset; see the table in R_CSRPQ).
2514          */
2515         if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
2516             nv2_mem_redirect = s->nv1;
2517         } else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
2518             nv2_mem_redirect = !s->nv1;
2519         } else {
2520             nv2_mem_redirect = true;
2521         }
2522     }
2523 
2524     /* Check access permissions */
2525     if (!cp_access_ok(s->current_el, ri, isread)) {
2526         /*
2527          * FEAT_NV/NV2 handling does not do the usual FP access checks
2528          * for registers only accessible at EL2 (though it *does* do them
2529          * for registers accessible at EL1).
2530          */
2531         skip_fp_access_checks = true;
2532         if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
2533             /*
2534              * This is one of the few EL2 registers which should redirect
2535              * to the equivalent EL1 register. We do that after running
2536              * the EL2 register's accessfn.
2537              */
2538             nv_redirect_reg = true;
2539             assert(!nv2_mem_redirect);
2540         } else if (nv2_mem_redirect) {
2541             /*
2542              * NV2 redirect-to-memory takes precedence over trap to EL2 or
2543              * UNDEF to EL1.
2544              */
2545         } else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
2546             /*
2547              * This register / instruction exists and is an EL2 register, so
2548              * we must trap to EL2 if accessed in nested virtualization EL1
2549              * instead of UNDEFing. We'll do that after the usual access checks.
2550              * (This makes a difference only for a couple of registers like
2551              * VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
2552              * over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
2553              * an accessfn which does nothing when called from EL1, because
2554              * the trap-to-EL3 controls which would apply to that register
2555              * at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
2556              */
2557             nv_trap_to_el2 = true;
2558         } else {
2559             gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
2560             return;
2561         }
2562     }
2563 
2564     if (ri->accessfn || (ri->fgt && s->fgt_active)) {
2565         /* Emit code to perform further access permissions checks at
2566          * runtime; this may result in an exception.
2567          */
2568         gen_a64_update_pc(s, 0);
2569         tcg_ri = tcg_temp_new_ptr();
2570         gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
2571                                        tcg_constant_i32(key),
2572                                        tcg_constant_i32(syndrome),
2573                                        tcg_constant_i32(isread));
2574     } else if (ri->type & ARM_CP_RAISES_EXC) {
2575         /*
2576          * The readfn or writefn might raise an exception;
2577          * synchronize the CPU state in case it does.
2578          */
2579         gen_a64_update_pc(s, 0);
2580     }
2581 
2582     if (!skip_fp_access_checks) {
2583         if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2584             return;
2585         } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2586             return;
2587         } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2588             return;
2589         }
2590     }
2591 
2592     if (nv_trap_to_el2) {
2593         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2594         return;
2595     }
2596 
2597     if (nv_redirect_reg) {
2598         /*
2599          * FEAT_NV2 redirection of an EL2 register to an EL1 register.
2600          * Conveniently in all cases the encoding of the EL1 register is
2601          * identical to the EL2 register except that opc1 is 0.
2602          * Get the reginfo for the EL1 register to use for the actual access.
2603          * We don't use the EL1 register's access function, and
2604          * fine-grained-traps on EL1 also do not apply here.
2605          */
2606         key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
2607                                  crn, crm, op0, 0, op2);
2608         ri = get_arm_cp_reginfo(s->cp_regs, key);
2609         assert(ri);
2610         assert(cp_access_ok(s->current_el, ri, isread));
2611         /*
2612          * We might not have done an update_pc earlier, so check we don't
2613          * need it. We could support this in future if necessary.
2614          */
2615         assert(!(ri->type & ARM_CP_RAISES_EXC));
2616     }
2617 
2618     if (nv2_mem_redirect) {
2619         /*
2620          * This system register is being redirected into an EL2 memory access.
2621          * This means it is not an IO operation, doesn't change hflags,
2622          * and need not end the TB, because it has no side effects.
2623          *
2624          * The access is 64-bit single copy atomic, guaranteed aligned because
2625          * of the definition of VCNR_EL2. Its endianness depends on
2626          * SCTLR_EL2.EE, not on the data endianness of EL1.
2627          * It is done under either the EL2 translation regime or the EL2&0
2628          * translation regime, depending on HCR_EL2.E2H. It behaves as if
2629          * PSTATE.PAN is 0.
2630          */
2631         TCGv_i64 ptr = tcg_temp_new_i64();
2632         MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
2633         ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
2634         int memidx = arm_to_core_mmu_idx(armmemidx);
2635         uint32_t syn;
2636 
2637         mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
2638 
2639         tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
2640         tcg_gen_addi_i64(ptr, ptr,
2641                          (ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
2642         tcg_rt = cpu_reg(s, rt);
2643 
2644         syn = syn_data_abort_vncr(0, !isread, 0);
2645         disas_set_insn_syndrome(s, syn);
2646         if (isread) {
2647             tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
2648         } else {
2649             tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
2650         }
2651         return;
2652     }
2653 
2654     /* Handle special cases first */
2655     switch (ri->type & ARM_CP_SPECIAL_MASK) {
2656     case 0:
2657         break;
2658     case ARM_CP_NOP:
2659         return;
2660     case ARM_CP_NZCV:
2661         tcg_rt = cpu_reg(s, rt);
2662         if (isread) {
2663             gen_get_nzcv(tcg_rt);
2664         } else {
2665             gen_set_nzcv(tcg_rt);
2666         }
2667         return;
2668     case ARM_CP_CURRENTEL:
2669     {
2670         /*
2671          * Reads as current EL value from pstate, which is
2672          * guaranteed to be constant by the tb flags.
2673          * For nested virt we should report EL2.
2674          */
2675         int el = s->nv ? 2 : s->current_el;
2676         tcg_rt = cpu_reg(s, rt);
2677         tcg_gen_movi_i64(tcg_rt, el << 2);
2678         return;
2679     }
2680     case ARM_CP_DC_ZVA:
2681         /* Writes clear the aligned block of memory which rt points into. */
2682         if (s->mte_active[0]) {
2683             int desc = 0;
2684 
2685             desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2686             desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2687             desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2688 
2689             tcg_rt = tcg_temp_new_i64();
2690             gen_helper_mte_check_zva(tcg_rt, tcg_env,
2691                                      tcg_constant_i32(desc), cpu_reg(s, rt));
2692         } else {
2693             tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2694         }
2695         gen_helper_dc_zva(tcg_env, tcg_rt);
2696         return;
2697     case ARM_CP_DC_GVA:
2698         {
2699             TCGv_i64 clean_addr, tag;
2700 
2701             /*
2702              * DC_GVA, like DC_ZVA, requires that we supply the original
2703              * pointer for an invalid page.  Probe that address first.
2704              */
2705             tcg_rt = cpu_reg(s, rt);
2706             clean_addr = clean_data_tbi(s, tcg_rt);
2707             gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2708 
2709             if (s->ata[0]) {
2710                 /* Extract the tag from the register to match STZGM.  */
2711                 tag = tcg_temp_new_i64();
2712                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2713                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2714             }
2715         }
2716         return;
2717     case ARM_CP_DC_GZVA:
2718         {
2719             TCGv_i64 clean_addr, tag;
2720 
2721             /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2722             tcg_rt = cpu_reg(s, rt);
2723             clean_addr = clean_data_tbi(s, tcg_rt);
2724             gen_helper_dc_zva(tcg_env, clean_addr);
2725 
2726             if (s->ata[0]) {
2727                 /* Extract the tag from the register to match STZGM.  */
2728                 tag = tcg_temp_new_i64();
2729                 tcg_gen_shri_i64(tag, tcg_rt, 56);
2730                 gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
2731             }
2732         }
2733         return;
2734     default:
2735         g_assert_not_reached();
2736     }
2737 
2738     if (ri->type & ARM_CP_IO) {
2739         /* I/O operations must end the TB here (whether read or write) */
2740         need_exit_tb = translator_io_start(&s->base);
2741     }
2742 
2743     tcg_rt = cpu_reg(s, rt);
2744 
2745     if (isread) {
2746         if (ri->type & ARM_CP_CONST) {
2747             tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2748         } else if (ri->readfn) {
2749             if (!tcg_ri) {
2750                 tcg_ri = gen_lookup_cp_reg(key);
2751             }
2752             gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
2753         } else {
2754             tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
2755         }
2756     } else {
2757         if (ri->type & ARM_CP_CONST) {
2758             /* If not forbidden by access permissions, treat as WI */
2759             return;
2760         } else if (ri->writefn) {
2761             if (!tcg_ri) {
2762                 tcg_ri = gen_lookup_cp_reg(key);
2763             }
2764             gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
2765         } else {
2766             tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
2767         }
2768     }
2769 
2770     if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2771         /*
2772          * A write to any coprocessor register that ends a TB
2773          * must rebuild the hflags for the next TB.
2774          */
2775         gen_rebuild_hflags(s);
2776         /*
2777          * We default to ending the TB on a coprocessor register write,
2778          * but allow this to be suppressed by the register definition
2779          * (usually only necessary to work around guest bugs).
2780          */
2781         need_exit_tb = true;
2782     }
2783     if (need_exit_tb) {
2784         s->base.is_jmp = DISAS_UPDATE_EXIT;
2785     }
2786 }
2787 
2788 static bool trans_SYS(DisasContext *s, arg_SYS *a)
2789 {
2790     handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
2791     return true;
2792 }
2793 
2794 static bool trans_SVC(DisasContext *s, arg_i *a)
2795 {
2796     /*
2797      * For SVC, HVC and SMC we advance the single-step state
2798      * machine before taking the exception. This is architecturally
2799      * mandated, to ensure that single-stepping a system call
2800      * instruction works properly.
2801      */
2802     uint32_t syndrome = syn_aa64_svc(a->imm);
2803     if (s->fgt_svc) {
2804         gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2805         return true;
2806     }
2807     gen_ss_advance(s);
2808     gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2809     return true;
2810 }
2811 
2812 static bool trans_HVC(DisasContext *s, arg_i *a)
2813 {
2814     int target_el = s->current_el == 3 ? 3 : 2;
2815 
2816     if (s->current_el == 0) {
2817         unallocated_encoding(s);
2818         return true;
2819     }
2820     /*
2821      * The pre HVC helper handles cases when HVC gets trapped
2822      * as an undefined insn by runtime configuration.
2823      */
2824     gen_a64_update_pc(s, 0);
2825     gen_helper_pre_hvc(tcg_env);
2826     /* Architecture requires ss advance before we do the actual work */
2827     gen_ss_advance(s);
2828     gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
2829     return true;
2830 }
2831 
2832 static bool trans_SMC(DisasContext *s, arg_i *a)
2833 {
2834     if (s->current_el == 0) {
2835         unallocated_encoding(s);
2836         return true;
2837     }
2838     gen_a64_update_pc(s, 0);
2839     gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
2840     /* Architecture requires ss advance before we do the actual work */
2841     gen_ss_advance(s);
2842     gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
2843     return true;
2844 }
2845 
2846 static bool trans_BRK(DisasContext *s, arg_i *a)
2847 {
2848     gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
2849     return true;
2850 }
2851 
2852 static bool trans_HLT(DisasContext *s, arg_i *a)
2853 {
2854     /*
2855      * HLT. This has two purposes.
2856      * Architecturally, it is an external halting debug instruction.
2857      * Since QEMU doesn't implement external debug, we treat this as
2858      * it is required for halting debug disabled: it will UNDEF.
2859      * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2860      */
2861     if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
2862         gen_exception_internal_insn(s, EXCP_SEMIHOST);
2863     } else {
2864         unallocated_encoding(s);
2865     }
2866     return true;
2867 }
2868 
2869 /*
2870  * Load/Store exclusive instructions are implemented by remembering
2871  * the value/address loaded, and seeing if these are the same
2872  * when the store is performed. This is not actually the architecturally
2873  * mandated semantics, but it works for typical guest code sequences
2874  * and avoids having to monitor regular stores.
2875  *
2876  * The store exclusive uses the atomic cmpxchg primitives to avoid
2877  * races in multi-threaded linux-user and when MTTCG softmmu is
2878  * enabled.
2879  */
2880 static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
2881                                int size, bool is_pair)
2882 {
2883     int idx = get_mem_index(s);
2884     TCGv_i64 dirty_addr, clean_addr;
2885     MemOp memop = check_atomic_align(s, rn, size + is_pair);
2886 
2887     s->is_ldex = true;
2888     dirty_addr = cpu_reg_sp(s, rn);
2889     clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
2890 
2891     g_assert(size <= 3);
2892     if (is_pair) {
2893         g_assert(size >= 2);
2894         if (size == 2) {
2895             tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2896             if (s->be_data == MO_LE) {
2897                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2898                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2899             } else {
2900                 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2901                 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2902             }
2903         } else {
2904             TCGv_i128 t16 = tcg_temp_new_i128();
2905 
2906             tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
2907 
2908             if (s->be_data == MO_LE) {
2909                 tcg_gen_extr_i128_i64(cpu_exclusive_val,
2910                                       cpu_exclusive_high, t16);
2911             } else {
2912                 tcg_gen_extr_i128_i64(cpu_exclusive_high,
2913                                       cpu_exclusive_val, t16);
2914             }
2915             tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2916             tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2917         }
2918     } else {
2919         tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
2920         tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2921     }
2922     tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
2923 }
2924 
2925 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2926                                 int rn, int size, int is_pair)
2927 {
2928     /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2929      *     && (!is_pair || env->exclusive_high == [addr + datasize])) {
2930      *     [addr] = {Rt};
2931      *     if (is_pair) {
2932      *         [addr + datasize] = {Rt2};
2933      *     }
2934      *     {Rd} = 0;
2935      * } else {
2936      *     {Rd} = 1;
2937      * }
2938      * env->exclusive_addr = -1;
2939      */
2940     TCGLabel *fail_label = gen_new_label();
2941     TCGLabel *done_label = gen_new_label();
2942     TCGv_i64 tmp, clean_addr;
2943     MemOp memop;
2944 
2945     /*
2946      * FIXME: We are out of spec here.  We have recorded only the address
2947      * from load_exclusive, not the entire range, and we assume that the
2948      * size of the access on both sides match.  The architecture allows the
2949      * store to be smaller than the load, so long as the stored bytes are
2950      * within the range recorded by the load.
2951      */
2952 
2953     /* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
2954     clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
2955     tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
2956 
2957     /*
2958      * The write, and any associated faults, only happen if the virtual
2959      * and physical addresses pass the exclusive monitor check.  These
2960      * faults are exceedingly unlikely, because normally the guest uses
2961      * the exact same address register for the load_exclusive, and we
2962      * would have recognized these faults there.
2963      *
2964      * It is possible to trigger an alignment fault pre-LSE2, e.g. with an
2965      * unaligned 4-byte write within the range of an aligned 8-byte load.
2966      * With LSE2, the store would need to cross a 16-byte boundary when the
2967      * load did not, which would mean the store is outside the range
2968      * recorded for the monitor, which would have failed a corrected monitor
2969      * check above.  For now, we assume no size change and retain the
2970      * MO_ALIGN to let tcg know what we checked in the load_exclusive.
2971      *
2972      * It is possible to trigger an MTE fault, by performing the load with
2973      * a virtual address with a valid tag and performing the store with the
2974      * same virtual address and a different invalid tag.
2975      */
2976     memop = size + is_pair;
2977     if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
2978         memop |= MO_ALIGN;
2979     }
2980     memop = finalize_memop(s, memop);
2981     gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
2982 
2983     tmp = tcg_temp_new_i64();
2984     if (is_pair) {
2985         if (size == 2) {
2986             if (s->be_data == MO_LE) {
2987                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2988             } else {
2989                 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2990             }
2991             tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2992                                        cpu_exclusive_val, tmp,
2993                                        get_mem_index(s), memop);
2994             tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2995         } else {
2996             TCGv_i128 t16 = tcg_temp_new_i128();
2997             TCGv_i128 c16 = tcg_temp_new_i128();
2998             TCGv_i64 a, b;
2999 
3000             if (s->be_data == MO_LE) {
3001                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
3002                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
3003                                         cpu_exclusive_high);
3004             } else {
3005                 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
3006                 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
3007                                         cpu_exclusive_val);
3008             }
3009 
3010             tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
3011                                         get_mem_index(s), memop);
3012 
3013             a = tcg_temp_new_i64();
3014             b = tcg_temp_new_i64();
3015             if (s->be_data == MO_LE) {
3016                 tcg_gen_extr_i128_i64(a, b, t16);
3017             } else {
3018                 tcg_gen_extr_i128_i64(b, a, t16);
3019             }
3020 
3021             tcg_gen_xor_i64(a, a, cpu_exclusive_val);
3022             tcg_gen_xor_i64(b, b, cpu_exclusive_high);
3023             tcg_gen_or_i64(tmp, a, b);
3024 
3025             tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
3026         }
3027     } else {
3028         tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
3029                                    cpu_reg(s, rt), get_mem_index(s), memop);
3030         tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
3031     }
3032     tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
3033     tcg_gen_br(done_label);
3034 
3035     gen_set_label(fail_label);
3036     tcg_gen_movi_i64(cpu_reg(s, rd), 1);
3037     gen_set_label(done_label);
3038     tcg_gen_movi_i64(cpu_exclusive_addr, -1);
3039 }
3040 
3041 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
3042                                  int rn, int size)
3043 {
3044     TCGv_i64 tcg_rs = cpu_reg(s, rs);
3045     TCGv_i64 tcg_rt = cpu_reg(s, rt);
3046     int memidx = get_mem_index(s);
3047     TCGv_i64 clean_addr;
3048     MemOp memop;
3049 
3050     if (rn == 31) {
3051         gen_check_sp_alignment(s);
3052     }
3053     memop = check_atomic_align(s, rn, size);
3054     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3055     tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
3056                                memidx, memop);
3057 }
3058 
3059 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
3060                                       int rn, int size)
3061 {
3062     TCGv_i64 s1 = cpu_reg(s, rs);
3063     TCGv_i64 s2 = cpu_reg(s, rs + 1);
3064     TCGv_i64 t1 = cpu_reg(s, rt);
3065     TCGv_i64 t2 = cpu_reg(s, rt + 1);
3066     TCGv_i64 clean_addr;
3067     int memidx = get_mem_index(s);
3068     MemOp memop;
3069 
3070     if (rn == 31) {
3071         gen_check_sp_alignment(s);
3072     }
3073 
3074     /* This is a single atomic access, despite the "pair". */
3075     memop = check_atomic_align(s, rn, size + 1);
3076     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
3077 
3078     if (size == 2) {
3079         TCGv_i64 cmp = tcg_temp_new_i64();
3080         TCGv_i64 val = tcg_temp_new_i64();
3081 
3082         if (s->be_data == MO_LE) {
3083             tcg_gen_concat32_i64(val, t1, t2);
3084             tcg_gen_concat32_i64(cmp, s1, s2);
3085         } else {
3086             tcg_gen_concat32_i64(val, t2, t1);
3087             tcg_gen_concat32_i64(cmp, s2, s1);
3088         }
3089 
3090         tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
3091 
3092         if (s->be_data == MO_LE) {
3093             tcg_gen_extr32_i64(s1, s2, cmp);
3094         } else {
3095             tcg_gen_extr32_i64(s2, s1, cmp);
3096         }
3097     } else {
3098         TCGv_i128 cmp = tcg_temp_new_i128();
3099         TCGv_i128 val = tcg_temp_new_i128();
3100 
3101         if (s->be_data == MO_LE) {
3102             tcg_gen_concat_i64_i128(val, t1, t2);
3103             tcg_gen_concat_i64_i128(cmp, s1, s2);
3104         } else {
3105             tcg_gen_concat_i64_i128(val, t2, t1);
3106             tcg_gen_concat_i64_i128(cmp, s2, s1);
3107         }
3108 
3109         tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
3110 
3111         if (s->be_data == MO_LE) {
3112             tcg_gen_extr_i128_i64(s1, s2, cmp);
3113         } else {
3114             tcg_gen_extr_i128_i64(s2, s1, cmp);
3115         }
3116     }
3117 }
3118 
3119 /*
3120  * Compute the ISS.SF bit for syndrome information if an exception
3121  * is taken on a load or store. This indicates whether the instruction
3122  * is accessing a 32-bit or 64-bit register. This logic is derived
3123  * from the ARMv8 specs for LDR (Shared decode for all encodings).
3124  */
3125 static bool ldst_iss_sf(int size, bool sign, bool ext)
3126 {
3127 
3128     if (sign) {
3129         /*
3130          * Signed loads are 64 bit results if we are not going to
3131          * do a zero-extend from 32 to 64 after the load.
3132          * (For a store, sign and ext are always false.)
3133          */
3134         return !ext;
3135     } else {
3136         /* Unsigned loads/stores work at the specified size */
3137         return size == MO_64;
3138     }
3139 }
3140 
3141 static bool trans_STXR(DisasContext *s, arg_stxr *a)
3142 {
3143     if (a->rn == 31) {
3144         gen_check_sp_alignment(s);
3145     }
3146     if (a->lasr) {
3147         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3148     }
3149     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
3150     return true;
3151 }
3152 
3153 static bool trans_LDXR(DisasContext *s, arg_stxr *a)
3154 {
3155     if (a->rn == 31) {
3156         gen_check_sp_alignment(s);
3157     }
3158     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
3159     if (a->lasr) {
3160         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3161     }
3162     return true;
3163 }
3164 
3165 static bool trans_STLR(DisasContext *s, arg_stlr *a)
3166 {
3167     TCGv_i64 clean_addr;
3168     MemOp memop;
3169     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3170 
3171     /*
3172      * StoreLORelease is the same as Store-Release for QEMU, but
3173      * needs the feature-test.
3174      */
3175     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3176         return false;
3177     }
3178     /* Generate ISS for non-exclusive accesses including LASR.  */
3179     if (a->rn == 31) {
3180         gen_check_sp_alignment(s);
3181     }
3182     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3183     memop = check_ordered_align(s, a->rn, 0, true, a->sz);
3184     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3185                                 true, a->rn != 31, memop);
3186     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
3187               iss_sf, a->lasr);
3188     return true;
3189 }
3190 
3191 static bool trans_LDAR(DisasContext *s, arg_stlr *a)
3192 {
3193     TCGv_i64 clean_addr;
3194     MemOp memop;
3195     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3196 
3197     /* LoadLOAcquire is the same as Load-Acquire for QEMU.  */
3198     if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
3199         return false;
3200     }
3201     /* Generate ISS for non-exclusive accesses including LASR.  */
3202     if (a->rn == 31) {
3203         gen_check_sp_alignment(s);
3204     }
3205     memop = check_ordered_align(s, a->rn, 0, false, a->sz);
3206     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
3207                                 false, a->rn != 31, memop);
3208     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
3209               a->rt, iss_sf, a->lasr);
3210     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3211     return true;
3212 }
3213 
3214 static bool trans_STXP(DisasContext *s, arg_stxr *a)
3215 {
3216     if (a->rn == 31) {
3217         gen_check_sp_alignment(s);
3218     }
3219     if (a->lasr) {
3220         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3221     }
3222     gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
3223     return true;
3224 }
3225 
3226 static bool trans_LDXP(DisasContext *s, arg_stxr *a)
3227 {
3228     if (a->rn == 31) {
3229         gen_check_sp_alignment(s);
3230     }
3231     gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
3232     if (a->lasr) {
3233         tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3234     }
3235     return true;
3236 }
3237 
3238 static bool trans_CASP(DisasContext *s, arg_CASP *a)
3239 {
3240     if (!dc_isar_feature(aa64_atomics, s)) {
3241         return false;
3242     }
3243     if (((a->rt | a->rs) & 1) != 0) {
3244         return false;
3245     }
3246 
3247     gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
3248     return true;
3249 }
3250 
3251 static bool trans_CAS(DisasContext *s, arg_CAS *a)
3252 {
3253     if (!dc_isar_feature(aa64_atomics, s)) {
3254         return false;
3255     }
3256     gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
3257     return true;
3258 }
3259 
3260 static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
3261 {
3262     bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
3263     TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
3264     TCGv_i64 clean_addr = tcg_temp_new_i64();
3265     MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3266 
3267     gen_pc_plus_diff(s, clean_addr, a->imm);
3268     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3269               false, true, a->rt, iss_sf, false);
3270     return true;
3271 }
3272 
3273 static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
3274 {
3275     /* Load register (literal), vector version */
3276     TCGv_i64 clean_addr;
3277     MemOp memop;
3278 
3279     if (!fp_access_check(s)) {
3280         return true;
3281     }
3282     memop = finalize_memop_asimd(s, a->sz);
3283     clean_addr = tcg_temp_new_i64();
3284     gen_pc_plus_diff(s, clean_addr, a->imm);
3285     do_fp_ld(s, a->rt, clean_addr, memop);
3286     return true;
3287 }
3288 
3289 static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
3290                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3291                                  uint64_t offset, bool is_store, MemOp mop)
3292 {
3293     if (a->rn == 31) {
3294         gen_check_sp_alignment(s);
3295     }
3296 
3297     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3298     if (!a->p) {
3299         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3300     }
3301 
3302     *clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
3303                                  (a->w || a->rn != 31), 2 << a->sz, mop);
3304 }
3305 
3306 static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
3307                                   TCGv_i64 dirty_addr, uint64_t offset)
3308 {
3309     if (a->w) {
3310         if (a->p) {
3311             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3312         }
3313         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3314     }
3315 }
3316 
3317 static bool trans_STP(DisasContext *s, arg_ldstpair *a)
3318 {
3319     uint64_t offset = a->imm << a->sz;
3320     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3321     MemOp mop = finalize_memop(s, a->sz);
3322 
3323     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3324     tcg_rt = cpu_reg(s, a->rt);
3325     tcg_rt2 = cpu_reg(s, a->rt2);
3326     /*
3327      * We built mop above for the single logical access -- rebuild it
3328      * now for the paired operation.
3329      *
3330      * With LSE2, non-sign-extending pairs are treated atomically if
3331      * aligned, and if unaligned one of the pair will be completely
3332      * within a 16-byte block and that element will be atomic.
3333      * Otherwise each element is separately atomic.
3334      * In all cases, issue one operation with the correct atomicity.
3335      */
3336     mop = a->sz + 1;
3337     if (s->align_mem) {
3338         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3339     }
3340     mop = finalize_memop_pair(s, mop);
3341     if (a->sz == 2) {
3342         TCGv_i64 tmp = tcg_temp_new_i64();
3343 
3344         if (s->be_data == MO_LE) {
3345             tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
3346         } else {
3347             tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
3348         }
3349         tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
3350     } else {
3351         TCGv_i128 tmp = tcg_temp_new_i128();
3352 
3353         if (s->be_data == MO_LE) {
3354             tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3355         } else {
3356             tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3357         }
3358         tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3359     }
3360     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3361     return true;
3362 }
3363 
3364 static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
3365 {
3366     uint64_t offset = a->imm << a->sz;
3367     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3368     MemOp mop = finalize_memop(s, a->sz);
3369 
3370     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3371     tcg_rt = cpu_reg(s, a->rt);
3372     tcg_rt2 = cpu_reg(s, a->rt2);
3373 
3374     /*
3375      * We built mop above for the single logical access -- rebuild it
3376      * now for the paired operation.
3377      *
3378      * With LSE2, non-sign-extending pairs are treated atomically if
3379      * aligned, and if unaligned one of the pair will be completely
3380      * within a 16-byte block and that element will be atomic.
3381      * Otherwise each element is separately atomic.
3382      * In all cases, issue one operation with the correct atomicity.
3383      *
3384      * This treats sign-extending loads like zero-extending loads,
3385      * since that reuses the most code below.
3386      */
3387     mop = a->sz + 1;
3388     if (s->align_mem) {
3389         mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
3390     }
3391     mop = finalize_memop_pair(s, mop);
3392     if (a->sz == 2) {
3393         int o2 = s->be_data == MO_LE ? 32 : 0;
3394         int o1 = o2 ^ 32;
3395 
3396         tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
3397         if (a->sign) {
3398             tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
3399             tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
3400         } else {
3401             tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
3402             tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
3403         }
3404     } else {
3405         TCGv_i128 tmp = tcg_temp_new_i128();
3406 
3407         tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
3408         if (s->be_data == MO_LE) {
3409             tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
3410         } else {
3411             tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
3412         }
3413     }
3414     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3415     return true;
3416 }
3417 
3418 static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
3419 {
3420     uint64_t offset = a->imm << a->sz;
3421     TCGv_i64 clean_addr, dirty_addr;
3422     MemOp mop;
3423 
3424     if (!fp_access_check(s)) {
3425         return true;
3426     }
3427 
3428     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3429     mop = finalize_memop_asimd(s, a->sz);
3430     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
3431     do_fp_st(s, a->rt, clean_addr, mop);
3432     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3433     do_fp_st(s, a->rt2, clean_addr, mop);
3434     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3435     return true;
3436 }
3437 
3438 static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
3439 {
3440     uint64_t offset = a->imm << a->sz;
3441     TCGv_i64 clean_addr, dirty_addr;
3442     MemOp mop;
3443 
3444     if (!fp_access_check(s)) {
3445         return true;
3446     }
3447 
3448     /* LSE2 does not merge FP pairs; leave these as separate operations. */
3449     mop = finalize_memop_asimd(s, a->sz);
3450     op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
3451     do_fp_ld(s, a->rt, clean_addr, mop);
3452     tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
3453     do_fp_ld(s, a->rt2, clean_addr, mop);
3454     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3455     return true;
3456 }
3457 
3458 static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
3459 {
3460     TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
3461     uint64_t offset = a->imm << LOG2_TAG_GRANULE;
3462     MemOp mop;
3463     TCGv_i128 tmp;
3464 
3465     /* STGP only comes in one size. */
3466     tcg_debug_assert(a->sz == MO_64);
3467 
3468     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
3469         return false;
3470     }
3471 
3472     if (a->rn == 31) {
3473         gen_check_sp_alignment(s);
3474     }
3475 
3476     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3477     if (!a->p) {
3478         tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3479     }
3480 
3481     clean_addr = clean_data_tbi(s, dirty_addr);
3482     tcg_rt = cpu_reg(s, a->rt);
3483     tcg_rt2 = cpu_reg(s, a->rt2);
3484 
3485     /*
3486      * STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
3487      * and one tag operation.  We implement it as one single aligned 16-byte
3488      * memory operation for convenience.  Note that the alignment ensures
3489      * MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
3490      */
3491     mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
3492 
3493     tmp = tcg_temp_new_i128();
3494     if (s->be_data == MO_LE) {
3495         tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
3496     } else {
3497         tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
3498     }
3499     tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
3500 
3501     /* Perform the tag store, if tag access enabled. */
3502     if (s->ata[0]) {
3503         if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3504             gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
3505         } else {
3506             gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
3507         }
3508     }
3509 
3510     op_addr_ldstpair_post(s, a, dirty_addr, offset);
3511     return true;
3512 }
3513 
3514 static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
3515                                  TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3516                                  uint64_t offset, bool is_store, MemOp mop)
3517 {
3518     int memidx;
3519 
3520     if (a->rn == 31) {
3521         gen_check_sp_alignment(s);
3522     }
3523 
3524     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3525     if (!a->p) {
3526         tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
3527     }
3528     memidx = get_a64_user_mem_index(s, a->unpriv);
3529     *clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
3530                                         a->w || a->rn != 31,
3531                                         mop, a->unpriv, memidx);
3532 }
3533 
3534 static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
3535                                   TCGv_i64 dirty_addr, uint64_t offset)
3536 {
3537     if (a->w) {
3538         if (a->p) {
3539             tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3540         }
3541         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3542     }
3543 }
3544 
3545 static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
3546 {
3547     bool iss_sf, iss_valid = !a->w;
3548     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3549     int memidx = get_a64_user_mem_index(s, a->unpriv);
3550     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3551 
3552     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3553 
3554     tcg_rt = cpu_reg(s, a->rt);
3555     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3556 
3557     do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
3558                      iss_valid, a->rt, iss_sf, false);
3559     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3560     return true;
3561 }
3562 
3563 static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
3564 {
3565     bool iss_sf, iss_valid = !a->w;
3566     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3567     int memidx = get_a64_user_mem_index(s, a->unpriv);
3568     MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3569 
3570     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3571 
3572     tcg_rt = cpu_reg(s, a->rt);
3573     iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3574 
3575     do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
3576                      a->ext, memidx, iss_valid, a->rt, iss_sf, false);
3577     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3578     return true;
3579 }
3580 
3581 static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
3582 {
3583     TCGv_i64 clean_addr, dirty_addr;
3584     MemOp mop;
3585 
3586     if (!fp_access_check(s)) {
3587         return true;
3588     }
3589     mop = finalize_memop_asimd(s, a->sz);
3590     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
3591     do_fp_st(s, a->rt, clean_addr, mop);
3592     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3593     return true;
3594 }
3595 
3596 static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
3597 {
3598     TCGv_i64 clean_addr, dirty_addr;
3599     MemOp mop;
3600 
3601     if (!fp_access_check(s)) {
3602         return true;
3603     }
3604     mop = finalize_memop_asimd(s, a->sz);
3605     op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
3606     do_fp_ld(s, a->rt, clean_addr, mop);
3607     op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
3608     return true;
3609 }
3610 
3611 static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
3612                              TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
3613                              bool is_store, MemOp memop)
3614 {
3615     TCGv_i64 tcg_rm;
3616 
3617     if (a->rn == 31) {
3618         gen_check_sp_alignment(s);
3619     }
3620     *dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3621 
3622     tcg_rm = read_cpu_reg(s, a->rm, 1);
3623     ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
3624 
3625     tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
3626     *clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
3627 }
3628 
3629 static bool trans_LDR(DisasContext *s, arg_ldst *a)
3630 {
3631     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3632     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3633     MemOp memop;
3634 
3635     if (extract32(a->opt, 1, 1) == 0) {
3636         return false;
3637     }
3638 
3639     memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
3640     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3641     tcg_rt = cpu_reg(s, a->rt);
3642     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3643               a->ext, true, a->rt, iss_sf, false);
3644     return true;
3645 }
3646 
3647 static bool trans_STR(DisasContext *s, arg_ldst *a)
3648 {
3649     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3650     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3651     MemOp memop;
3652 
3653     if (extract32(a->opt, 1, 1) == 0) {
3654         return false;
3655     }
3656 
3657     memop = finalize_memop(s, a->sz);
3658     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3659     tcg_rt = cpu_reg(s, a->rt);
3660     do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
3661     return true;
3662 }
3663 
3664 static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
3665 {
3666     TCGv_i64 clean_addr, dirty_addr;
3667     MemOp memop;
3668 
3669     if (extract32(a->opt, 1, 1) == 0) {
3670         return false;
3671     }
3672 
3673     if (!fp_access_check(s)) {
3674         return true;
3675     }
3676 
3677     memop = finalize_memop_asimd(s, a->sz);
3678     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
3679     do_fp_ld(s, a->rt, clean_addr, memop);
3680     return true;
3681 }
3682 
3683 static bool trans_STR_v(DisasContext *s, arg_ldst *a)
3684 {
3685     TCGv_i64 clean_addr, dirty_addr;
3686     MemOp memop;
3687 
3688     if (extract32(a->opt, 1, 1) == 0) {
3689         return false;
3690     }
3691 
3692     if (!fp_access_check(s)) {
3693         return true;
3694     }
3695 
3696     memop = finalize_memop_asimd(s, a->sz);
3697     op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
3698     do_fp_st(s, a->rt, clean_addr, memop);
3699     return true;
3700 }
3701 
3702 
3703 static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
3704                          int sign, bool invert)
3705 {
3706     MemOp mop = a->sz | sign;
3707     TCGv_i64 clean_addr, tcg_rs, tcg_rt;
3708 
3709     if (a->rn == 31) {
3710         gen_check_sp_alignment(s);
3711     }
3712     mop = check_atomic_align(s, a->rn, mop);
3713     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3714                                 a->rn != 31, mop);
3715     tcg_rs = read_cpu_reg(s, a->rs, true);
3716     tcg_rt = cpu_reg(s, a->rt);
3717     if (invert) {
3718         tcg_gen_not_i64(tcg_rs, tcg_rs);
3719     }
3720     /*
3721      * The tcg atomic primitives are all full barriers.  Therefore we
3722      * can ignore the Acquire and Release bits of this instruction.
3723      */
3724     fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3725 
3726     if (mop & MO_SIGN) {
3727         switch (a->sz) {
3728         case MO_8:
3729             tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
3730             break;
3731         case MO_16:
3732             tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
3733             break;
3734         case MO_32:
3735             tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3736             break;
3737         case MO_64:
3738             break;
3739         default:
3740             g_assert_not_reached();
3741         }
3742     }
3743     return true;
3744 }
3745 
3746 TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
3747 TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
3748 TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
3749 TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
3750 TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
3751 TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
3752 TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
3753 TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
3754 TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
3755 
3756 static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
3757 {
3758     bool iss_sf = ldst_iss_sf(a->sz, false, false);
3759     TCGv_i64 clean_addr;
3760     MemOp mop;
3761 
3762     if (!dc_isar_feature(aa64_atomics, s) ||
3763         !dc_isar_feature(aa64_rcpc_8_3, s)) {
3764         return false;
3765     }
3766     if (a->rn == 31) {
3767         gen_check_sp_alignment(s);
3768     }
3769     mop = check_ordered_align(s, a->rn, 0, false, a->sz);
3770     clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
3771                                 a->rn != 31, mop);
3772     /*
3773      * LDAPR* are a special case because they are a simple load, not a
3774      * fetch-and-do-something op.
3775      * The architectural consistency requirements here are weaker than
3776      * full load-acquire (we only need "load-acquire processor consistent"),
3777      * but we choose to implement them as full LDAQ.
3778      */
3779     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
3780               true, a->rt, iss_sf, true);
3781     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3782     return true;
3783 }
3784 
3785 static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
3786 {
3787     TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3788     MemOp memop;
3789 
3790     /* Load with pointer authentication */
3791     if (!dc_isar_feature(aa64_pauth, s)) {
3792         return false;
3793     }
3794 
3795     if (a->rn == 31) {
3796         gen_check_sp_alignment(s);
3797     }
3798     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3799 
3800     if (s->pauth_active) {
3801         if (!a->m) {
3802             gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
3803                                       tcg_constant_i64(0));
3804         } else {
3805             gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
3806                                       tcg_constant_i64(0));
3807         }
3808     }
3809 
3810     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3811 
3812     memop = finalize_memop(s, MO_64);
3813 
3814     /* Note that "clean" and "dirty" here refer to TBI not PAC.  */
3815     clean_addr = gen_mte_check1(s, dirty_addr, false,
3816                                 a->w || a->rn != 31, memop);
3817 
3818     tcg_rt = cpu_reg(s, a->rt);
3819     do_gpr_ld(s, tcg_rt, clean_addr, memop,
3820               /* extend */ false, /* iss_valid */ !a->w,
3821               /* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
3822 
3823     if (a->w) {
3824         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
3825     }
3826     return true;
3827 }
3828 
3829 static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3830 {
3831     TCGv_i64 clean_addr, dirty_addr;
3832     MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
3833     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3834 
3835     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3836         return false;
3837     }
3838 
3839     if (a->rn == 31) {
3840         gen_check_sp_alignment(s);
3841     }
3842 
3843     mop = check_ordered_align(s, a->rn, a->imm, false, mop);
3844     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3845     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3846     clean_addr = clean_data_tbi(s, dirty_addr);
3847 
3848     /*
3849      * Load-AcquirePC semantics; we implement as the slightly more
3850      * restrictive Load-Acquire.
3851      */
3852     do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
3853               a->rt, iss_sf, true);
3854     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3855     return true;
3856 }
3857 
3858 static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
3859 {
3860     TCGv_i64 clean_addr, dirty_addr;
3861     MemOp mop = a->sz;
3862     bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
3863 
3864     if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3865         return false;
3866     }
3867 
3868     /* TODO: ARMv8.4-LSE SCTLR.nAA */
3869 
3870     if (a->rn == 31) {
3871         gen_check_sp_alignment(s);
3872     }
3873 
3874     mop = check_ordered_align(s, a->rn, a->imm, true, mop);
3875     dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
3876     tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
3877     clean_addr = clean_data_tbi(s, dirty_addr);
3878 
3879     /* Store-Release semantics */
3880     tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3881     do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
3882     return true;
3883 }
3884 
3885 static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
3886 {
3887     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3888     MemOp endian, align, mop;
3889 
3890     int total;    /* total bytes */
3891     int elements; /* elements per vector */
3892     int r;
3893     int size = a->sz;
3894 
3895     if (!a->p && a->rm != 0) {
3896         /* For non-postindexed accesses the Rm field must be 0 */
3897         return false;
3898     }
3899     if (size == 3 && !a->q && a->selem != 1) {
3900         return false;
3901     }
3902     if (!fp_access_check(s)) {
3903         return true;
3904     }
3905 
3906     if (a->rn == 31) {
3907         gen_check_sp_alignment(s);
3908     }
3909 
3910     /* For our purposes, bytes are always little-endian.  */
3911     endian = s->be_data;
3912     if (size == 0) {
3913         endian = MO_LE;
3914     }
3915 
3916     total = a->rpt * a->selem * (a->q ? 16 : 8);
3917     tcg_rn = cpu_reg_sp(s, a->rn);
3918 
3919     /*
3920      * Issue the MTE check vs the logical repeat count, before we
3921      * promote consecutive little-endian elements below.
3922      */
3923     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
3924                                 finalize_memop_asimd(s, size));
3925 
3926     /*
3927      * Consecutive little-endian elements from a single register
3928      * can be promoted to a larger little-endian operation.
3929      */
3930     align = MO_ALIGN;
3931     if (a->selem == 1 && endian == MO_LE) {
3932         align = pow2_align(size);
3933         size = 3;
3934     }
3935     if (!s->align_mem) {
3936         align = 0;
3937     }
3938     mop = endian | size | align;
3939 
3940     elements = (a->q ? 16 : 8) >> size;
3941     tcg_ebytes = tcg_constant_i64(1 << size);
3942     for (r = 0; r < a->rpt; r++) {
3943         int e;
3944         for (e = 0; e < elements; e++) {
3945             int xs;
3946             for (xs = 0; xs < a->selem; xs++) {
3947                 int tt = (a->rt + r + xs) % 32;
3948                 do_vec_ld(s, tt, e, clean_addr, mop);
3949                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3950             }
3951         }
3952     }
3953 
3954     /*
3955      * For non-quad operations, setting a slice of the low 64 bits of
3956      * the register clears the high 64 bits (in the ARM ARM pseudocode
3957      * this is implicit in the fact that 'rval' is a 64 bit wide
3958      * variable).  For quad operations, we might still need to zero
3959      * the high bits of SVE.
3960      */
3961     for (r = 0; r < a->rpt * a->selem; r++) {
3962         int tt = (a->rt + r) % 32;
3963         clear_vec_high(s, a->q, tt);
3964     }
3965 
3966     if (a->p) {
3967         if (a->rm == 31) {
3968             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3969         } else {
3970             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
3971         }
3972     }
3973     return true;
3974 }
3975 
3976 static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
3977 {
3978     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3979     MemOp endian, align, mop;
3980 
3981     int total;    /* total bytes */
3982     int elements; /* elements per vector */
3983     int r;
3984     int size = a->sz;
3985 
3986     if (!a->p && a->rm != 0) {
3987         /* For non-postindexed accesses the Rm field must be 0 */
3988         return false;
3989     }
3990     if (size == 3 && !a->q && a->selem != 1) {
3991         return false;
3992     }
3993     if (!fp_access_check(s)) {
3994         return true;
3995     }
3996 
3997     if (a->rn == 31) {
3998         gen_check_sp_alignment(s);
3999     }
4000 
4001     /* For our purposes, bytes are always little-endian.  */
4002     endian = s->be_data;
4003     if (size == 0) {
4004         endian = MO_LE;
4005     }
4006 
4007     total = a->rpt * a->selem * (a->q ? 16 : 8);
4008     tcg_rn = cpu_reg_sp(s, a->rn);
4009 
4010     /*
4011      * Issue the MTE check vs the logical repeat count, before we
4012      * promote consecutive little-endian elements below.
4013      */
4014     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
4015                                 finalize_memop_asimd(s, size));
4016 
4017     /*
4018      * Consecutive little-endian elements from a single register
4019      * can be promoted to a larger little-endian operation.
4020      */
4021     align = MO_ALIGN;
4022     if (a->selem == 1 && endian == MO_LE) {
4023         align = pow2_align(size);
4024         size = 3;
4025     }
4026     if (!s->align_mem) {
4027         align = 0;
4028     }
4029     mop = endian | size | align;
4030 
4031     elements = (a->q ? 16 : 8) >> size;
4032     tcg_ebytes = tcg_constant_i64(1 << size);
4033     for (r = 0; r < a->rpt; r++) {
4034         int e;
4035         for (e = 0; e < elements; e++) {
4036             int xs;
4037             for (xs = 0; xs < a->selem; xs++) {
4038                 int tt = (a->rt + r + xs) % 32;
4039                 do_vec_st(s, tt, e, clean_addr, mop);
4040                 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4041             }
4042         }
4043     }
4044 
4045     if (a->p) {
4046         if (a->rm == 31) {
4047             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4048         } else {
4049             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4050         }
4051     }
4052     return true;
4053 }
4054 
4055 static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
4056 {
4057     int xs, total, rt;
4058     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4059     MemOp mop;
4060 
4061     if (!a->p && a->rm != 0) {
4062         return false;
4063     }
4064     if (!fp_access_check(s)) {
4065         return true;
4066     }
4067 
4068     if (a->rn == 31) {
4069         gen_check_sp_alignment(s);
4070     }
4071 
4072     total = a->selem << a->scale;
4073     tcg_rn = cpu_reg_sp(s, a->rn);
4074 
4075     mop = finalize_memop_asimd(s, a->scale);
4076     clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
4077                                 total, mop);
4078 
4079     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4080     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4081         do_vec_st(s, rt, a->index, clean_addr, mop);
4082         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4083     }
4084 
4085     if (a->p) {
4086         if (a->rm == 31) {
4087             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4088         } else {
4089             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4090         }
4091     }
4092     return true;
4093 }
4094 
4095 static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
4096 {
4097     int xs, total, rt;
4098     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4099     MemOp mop;
4100 
4101     if (!a->p && a->rm != 0) {
4102         return false;
4103     }
4104     if (!fp_access_check(s)) {
4105         return true;
4106     }
4107 
4108     if (a->rn == 31) {
4109         gen_check_sp_alignment(s);
4110     }
4111 
4112     total = a->selem << a->scale;
4113     tcg_rn = cpu_reg_sp(s, a->rn);
4114 
4115     mop = finalize_memop_asimd(s, a->scale);
4116     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4117                                 total, mop);
4118 
4119     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4120     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4121         do_vec_ld(s, rt, a->index, clean_addr, mop);
4122         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4123     }
4124 
4125     if (a->p) {
4126         if (a->rm == 31) {
4127             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4128         } else {
4129             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4130         }
4131     }
4132     return true;
4133 }
4134 
4135 static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
4136 {
4137     int xs, total, rt;
4138     TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
4139     MemOp mop;
4140 
4141     if (!a->p && a->rm != 0) {
4142         return false;
4143     }
4144     if (!fp_access_check(s)) {
4145         return true;
4146     }
4147 
4148     if (a->rn == 31) {
4149         gen_check_sp_alignment(s);
4150     }
4151 
4152     total = a->selem << a->scale;
4153     tcg_rn = cpu_reg_sp(s, a->rn);
4154 
4155     mop = finalize_memop_asimd(s, a->scale);
4156     clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
4157                                 total, mop);
4158 
4159     tcg_ebytes = tcg_constant_i64(1 << a->scale);
4160     for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
4161         /* Load and replicate to all elements */
4162         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4163 
4164         tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4165         tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
4166                              (a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
4167         tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4168     }
4169 
4170     if (a->p) {
4171         if (a->rm == 31) {
4172             tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4173         } else {
4174             tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
4175         }
4176     }
4177     return true;
4178 }
4179 
4180 static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
4181 {
4182     TCGv_i64 addr, clean_addr, tcg_rt;
4183     int size = 4 << s->dcz_blocksize;
4184 
4185     if (!dc_isar_feature(aa64_mte, s)) {
4186         return false;
4187     }
4188     if (s->current_el == 0) {
4189         return false;
4190     }
4191 
4192     if (a->rn == 31) {
4193         gen_check_sp_alignment(s);
4194     }
4195 
4196     addr = read_cpu_reg_sp(s, a->rn, true);
4197     tcg_gen_addi_i64(addr, addr, a->imm);
4198     tcg_rt = cpu_reg(s, a->rt);
4199 
4200     if (s->ata[0]) {
4201         gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
4202     }
4203     /*
4204      * The non-tags portion of STZGM is mostly like DC_ZVA,
4205      * except the alignment happens before the access.
4206      */
4207     clean_addr = clean_data_tbi(s, addr);
4208     tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4209     gen_helper_dc_zva(tcg_env, clean_addr);
4210     return true;
4211 }
4212 
4213 static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
4214 {
4215     TCGv_i64 addr, clean_addr, tcg_rt;
4216 
4217     if (!dc_isar_feature(aa64_mte, s)) {
4218         return false;
4219     }
4220     if (s->current_el == 0) {
4221         return false;
4222     }
4223 
4224     if (a->rn == 31) {
4225         gen_check_sp_alignment(s);
4226     }
4227 
4228     addr = read_cpu_reg_sp(s, a->rn, true);
4229     tcg_gen_addi_i64(addr, addr, a->imm);
4230     tcg_rt = cpu_reg(s, a->rt);
4231 
4232     if (s->ata[0]) {
4233         gen_helper_stgm(tcg_env, addr, tcg_rt);
4234     } else {
4235         MMUAccessType acc = MMU_DATA_STORE;
4236         int size = 4 << s->gm_blocksize;
4237 
4238         clean_addr = clean_data_tbi(s, addr);
4239         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4240         gen_probe_access(s, clean_addr, acc, size);
4241     }
4242     return true;
4243 }
4244 
4245 static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
4246 {
4247     TCGv_i64 addr, clean_addr, tcg_rt;
4248 
4249     if (!dc_isar_feature(aa64_mte, s)) {
4250         return false;
4251     }
4252     if (s->current_el == 0) {
4253         return false;
4254     }
4255 
4256     if (a->rn == 31) {
4257         gen_check_sp_alignment(s);
4258     }
4259 
4260     addr = read_cpu_reg_sp(s, a->rn, true);
4261     tcg_gen_addi_i64(addr, addr, a->imm);
4262     tcg_rt = cpu_reg(s, a->rt);
4263 
4264     if (s->ata[0]) {
4265         gen_helper_ldgm(tcg_rt, tcg_env, addr);
4266     } else {
4267         MMUAccessType acc = MMU_DATA_LOAD;
4268         int size = 4 << s->gm_blocksize;
4269 
4270         clean_addr = clean_data_tbi(s, addr);
4271         tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4272         gen_probe_access(s, clean_addr, acc, size);
4273         /* The result tags are zeros.  */
4274         tcg_gen_movi_i64(tcg_rt, 0);
4275     }
4276     return true;
4277 }
4278 
4279 static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
4280 {
4281     TCGv_i64 addr, clean_addr, tcg_rt;
4282 
4283     if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
4284         return false;
4285     }
4286 
4287     if (a->rn == 31) {
4288         gen_check_sp_alignment(s);
4289     }
4290 
4291     addr = read_cpu_reg_sp(s, a->rn, true);
4292     if (!a->p) {
4293         /* pre-index or signed offset */
4294         tcg_gen_addi_i64(addr, addr, a->imm);
4295     }
4296 
4297     tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4298     tcg_rt = cpu_reg(s, a->rt);
4299     if (s->ata[0]) {
4300         gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
4301     } else {
4302         /*
4303          * Tag access disabled: we must check for aborts on the load
4304          * load from [rn+offset], and then insert a 0 tag into rt.
4305          */
4306         clean_addr = clean_data_tbi(s, addr);
4307         gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4308         gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
4309     }
4310 
4311     if (a->w) {
4312         /* pre-index or post-index */
4313         if (a->p) {
4314             /* post-index */
4315             tcg_gen_addi_i64(addr, addr, a->imm);
4316         }
4317         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4318     }
4319     return true;
4320 }
4321 
4322 static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
4323 {
4324     TCGv_i64 addr, tcg_rt;
4325 
4326     if (a->rn == 31) {
4327         gen_check_sp_alignment(s);
4328     }
4329 
4330     addr = read_cpu_reg_sp(s, a->rn, true);
4331     if (!a->p) {
4332         /* pre-index or signed offset */
4333         tcg_gen_addi_i64(addr, addr, a->imm);
4334     }
4335     tcg_rt = cpu_reg_sp(s, a->rt);
4336     if (!s->ata[0]) {
4337         /*
4338          * For STG and ST2G, we need to check alignment and probe memory.
4339          * TODO: For STZG and STZ2G, we could rely on the stores below,
4340          * at least for system mode; user-only won't enforce alignment.
4341          */
4342         if (is_pair) {
4343             gen_helper_st2g_stub(tcg_env, addr);
4344         } else {
4345             gen_helper_stg_stub(tcg_env, addr);
4346         }
4347     } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4348         if (is_pair) {
4349             gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
4350         } else {
4351             gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
4352         }
4353     } else {
4354         if (is_pair) {
4355             gen_helper_st2g(tcg_env, addr, tcg_rt);
4356         } else {
4357             gen_helper_stg(tcg_env, addr, tcg_rt);
4358         }
4359     }
4360 
4361     if (is_zero) {
4362         TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4363         TCGv_i64 zero64 = tcg_constant_i64(0);
4364         TCGv_i128 zero128 = tcg_temp_new_i128();
4365         int mem_index = get_mem_index(s);
4366         MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
4367 
4368         tcg_gen_concat_i64_i128(zero128, zero64, zero64);
4369 
4370         /* This is 1 or 2 atomic 16-byte operations. */
4371         tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4372         if (is_pair) {
4373             tcg_gen_addi_i64(clean_addr, clean_addr, 16);
4374             tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
4375         }
4376     }
4377 
4378     if (a->w) {
4379         /* pre-index or post-index */
4380         if (a->p) {
4381             /* post-index */
4382             tcg_gen_addi_i64(addr, addr, a->imm);
4383         }
4384         tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
4385     }
4386     return true;
4387 }
4388 
4389 TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
4390 TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
4391 TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
4392 TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
4393 
4394 typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
4395 
4396 static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
4397                    bool is_setg, SetFn fn)
4398 {
4399     int memidx;
4400     uint32_t syndrome, desc = 0;
4401 
4402     if (is_setg && !dc_isar_feature(aa64_mte, s)) {
4403         return false;
4404     }
4405 
4406     /*
4407      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4408      * us to pull this check before the CheckMOPSEnabled() test
4409      * (which we do in the helper function)
4410      */
4411     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4412         a->rd == 31 || a->rn == 31) {
4413         return false;
4414     }
4415 
4416     memidx = get_a64_user_mem_index(s, a->unpriv);
4417 
4418     /*
4419      * We pass option_a == true, matching our implementation;
4420      * we pass wrong_option == false: helper function may set that bit.
4421      */
4422     syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
4423                        is_epilogue, false, true, a->rd, a->rs, a->rn);
4424 
4425     if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
4426         /* We may need to do MTE tag checking, so assemble the descriptor */
4427         desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
4428         desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
4429         desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
4430         /* SIZEM1 and ALIGN we leave 0 (byte write) */
4431     }
4432     /* The helper function always needs the memidx even with MTE disabled */
4433     desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
4434 
4435     /*
4436      * The helper needs the register numbers, but since they're in
4437      * the syndrome anyway, we let it extract them from there rather
4438      * than passing in an extra three integer arguments.
4439      */
4440     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
4441     return true;
4442 }
4443 
4444 TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
4445 TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
4446 TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
4447 TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
4448 TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
4449 TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
4450 
4451 typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
4452 
4453 static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
4454 {
4455     int rmemidx, wmemidx;
4456     uint32_t syndrome, rdesc = 0, wdesc = 0;
4457     bool wunpriv = extract32(a->options, 0, 1);
4458     bool runpriv = extract32(a->options, 1, 1);
4459 
4460     /*
4461      * UNPREDICTABLE cases: we choose to UNDEF, which allows
4462      * us to pull this check before the CheckMOPSEnabled() test
4463      * (which we do in the helper function)
4464      */
4465     if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
4466         a->rd == 31 || a->rs == 31 || a->rn == 31) {
4467         return false;
4468     }
4469 
4470     rmemidx = get_a64_user_mem_index(s, runpriv);
4471     wmemidx = get_a64_user_mem_index(s, wunpriv);
4472 
4473     /*
4474      * We pass option_a == true, matching our implementation;
4475      * we pass wrong_option == false: helper function may set that bit.
4476      */
4477     syndrome = syn_mop(false, false, a->options, is_epilogue,
4478                        false, true, a->rd, a->rs, a->rn);
4479 
4480     /* If we need to do MTE tag checking, assemble the descriptors */
4481     if (s->mte_active[runpriv]) {
4482         rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
4483         rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
4484     }
4485     if (s->mte_active[wunpriv]) {
4486         wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
4487         wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
4488         wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
4489     }
4490     /* The helper function needs these parts of the descriptor regardless */
4491     rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
4492     wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
4493 
4494     /*
4495      * The helper needs the register numbers, but since they're in
4496      * the syndrome anyway, we let it extract them from there rather
4497      * than passing in an extra three integer arguments.
4498      */
4499     fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
4500        tcg_constant_i32(rdesc));
4501     return true;
4502 }
4503 
4504 TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
4505 TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
4506 TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
4507 TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
4508 TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
4509 TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
4510 
4511 typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
4512 
4513 static bool gen_rri(DisasContext *s, arg_rri_sf *a,
4514                     bool rd_sp, bool rn_sp, ArithTwoOp *fn)
4515 {
4516     TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
4517     TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
4518     TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
4519 
4520     fn(tcg_rd, tcg_rn, tcg_imm);
4521     if (!a->sf) {
4522         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4523     }
4524     return true;
4525 }
4526 
4527 /*
4528  * PC-rel. addressing
4529  */
4530 
4531 static bool trans_ADR(DisasContext *s, arg_ri *a)
4532 {
4533     gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
4534     return true;
4535 }
4536 
4537 static bool trans_ADRP(DisasContext *s, arg_ri *a)
4538 {
4539     int64_t offset = (int64_t)a->imm << 12;
4540 
4541     /* The page offset is ok for CF_PCREL. */
4542     offset -= s->pc_curr & 0xfff;
4543     gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
4544     return true;
4545 }
4546 
4547 /*
4548  * Add/subtract (immediate)
4549  */
4550 TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
4551 TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
4552 TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
4553 TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
4554 
4555 /*
4556  * Add/subtract (immediate, with tags)
4557  */
4558 
4559 static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
4560                                       bool sub_op)
4561 {
4562     TCGv_i64 tcg_rn, tcg_rd;
4563     int imm;
4564 
4565     imm = a->uimm6 << LOG2_TAG_GRANULE;
4566     if (sub_op) {
4567         imm = -imm;
4568     }
4569 
4570     tcg_rn = cpu_reg_sp(s, a->rn);
4571     tcg_rd = cpu_reg_sp(s, a->rd);
4572 
4573     if (s->ata[0]) {
4574         gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
4575                            tcg_constant_i32(imm),
4576                            tcg_constant_i32(a->uimm4));
4577     } else {
4578         tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4579         gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4580     }
4581     return true;
4582 }
4583 
4584 TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
4585 TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
4586 
4587 /* The input should be a value in the bottom e bits (with higher
4588  * bits zero); returns that value replicated into every element
4589  * of size e in a 64 bit integer.
4590  */
4591 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4592 {
4593     assert(e != 0);
4594     while (e < 64) {
4595         mask |= mask << e;
4596         e *= 2;
4597     }
4598     return mask;
4599 }
4600 
4601 /*
4602  * Logical (immediate)
4603  */
4604 
4605 /*
4606  * Simplified variant of pseudocode DecodeBitMasks() for the case where we
4607  * only require the wmask. Returns false if the imms/immr/immn are a reserved
4608  * value (ie should cause a guest UNDEF exception), and true if they are
4609  * valid, in which case the decoded bit pattern is written to result.
4610  */
4611 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4612                             unsigned int imms, unsigned int immr)
4613 {
4614     uint64_t mask;
4615     unsigned e, levels, s, r;
4616     int len;
4617 
4618     assert(immn < 2 && imms < 64 && immr < 64);
4619 
4620     /* The bit patterns we create here are 64 bit patterns which
4621      * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4622      * 64 bits each. Each element contains the same value: a run
4623      * of between 1 and e-1 non-zero bits, rotated within the
4624      * element by between 0 and e-1 bits.
4625      *
4626      * The element size and run length are encoded into immn (1 bit)
4627      * and imms (6 bits) as follows:
4628      * 64 bit elements: immn = 1, imms = <length of run - 1>
4629      * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4630      * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4631      *  8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4632      *  4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4633      *  2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4634      * Notice that immn = 0, imms = 11111x is the only combination
4635      * not covered by one of the above options; this is reserved.
4636      * Further, <length of run - 1> all-ones is a reserved pattern.
4637      *
4638      * In all cases the rotation is by immr % e (and immr is 6 bits).
4639      */
4640 
4641     /* First determine the element size */
4642     len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4643     if (len < 1) {
4644         /* This is the immn == 0, imms == 0x11111x case */
4645         return false;
4646     }
4647     e = 1 << len;
4648 
4649     levels = e - 1;
4650     s = imms & levels;
4651     r = immr & levels;
4652 
4653     if (s == levels) {
4654         /* <length of run - 1> mustn't be all-ones. */
4655         return false;
4656     }
4657 
4658     /* Create the value of one element: s+1 set bits rotated
4659      * by r within the element (which is e bits wide)...
4660      */
4661     mask = MAKE_64BIT_MASK(0, s + 1);
4662     if (r) {
4663         mask = (mask >> r) | (mask << (e - r));
4664         mask &= MAKE_64BIT_MASK(0, e);
4665     }
4666     /* ...then replicate the element over the whole 64 bit value */
4667     mask = bitfield_replicate(mask, e);
4668     *result = mask;
4669     return true;
4670 }
4671 
4672 static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
4673                         void (*fn)(TCGv_i64, TCGv_i64, int64_t))
4674 {
4675     TCGv_i64 tcg_rd, tcg_rn;
4676     uint64_t imm;
4677 
4678     /* Some immediate field values are reserved. */
4679     if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
4680                                 extract32(a->dbm, 0, 6),
4681                                 extract32(a->dbm, 6, 6))) {
4682         return false;
4683     }
4684     if (!a->sf) {
4685         imm &= 0xffffffffull;
4686     }
4687 
4688     tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
4689     tcg_rn = cpu_reg(s, a->rn);
4690 
4691     fn(tcg_rd, tcg_rn, imm);
4692     if (set_cc) {
4693         gen_logic_CC(a->sf, tcg_rd);
4694     }
4695     if (!a->sf) {
4696         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4697     }
4698     return true;
4699 }
4700 
4701 TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
4702 TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
4703 TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
4704 TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
4705 
4706 /*
4707  * Move wide (immediate)
4708  */
4709 
4710 static bool trans_MOVZ(DisasContext *s, arg_movw *a)
4711 {
4712     int pos = a->hw << 4;
4713     tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
4714     return true;
4715 }
4716 
4717 static bool trans_MOVN(DisasContext *s, arg_movw *a)
4718 {
4719     int pos = a->hw << 4;
4720     uint64_t imm = a->imm;
4721 
4722     imm = ~(imm << pos);
4723     if (!a->sf) {
4724         imm = (uint32_t)imm;
4725     }
4726     tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
4727     return true;
4728 }
4729 
4730 static bool trans_MOVK(DisasContext *s, arg_movw *a)
4731 {
4732     int pos = a->hw << 4;
4733     TCGv_i64 tcg_rd, tcg_im;
4734 
4735     tcg_rd = cpu_reg(s, a->rd);
4736     tcg_im = tcg_constant_i64(a->imm);
4737     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
4738     if (!a->sf) {
4739         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4740     }
4741     return true;
4742 }
4743 
4744 /*
4745  * Bitfield
4746  */
4747 
4748 static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
4749 {
4750     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4751     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4752     unsigned int bitsize = a->sf ? 64 : 32;
4753     unsigned int ri = a->immr;
4754     unsigned int si = a->imms;
4755     unsigned int pos, len;
4756 
4757     if (si >= ri) {
4758         /* Wd<s-r:0> = Wn<s:r> */
4759         len = (si - ri) + 1;
4760         tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4761         if (!a->sf) {
4762             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4763         }
4764     } else {
4765         /* Wd<32+s-r,32-r> = Wn<s:0> */
4766         len = si + 1;
4767         pos = (bitsize - ri) & (bitsize - 1);
4768 
4769         if (len < ri) {
4770             /*
4771              * Sign extend the destination field from len to fill the
4772              * balance of the word.  Let the deposit below insert all
4773              * of those sign bits.
4774              */
4775             tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4776             len = ri;
4777         }
4778 
4779         /*
4780          * We start with zero, and we haven't modified any bits outside
4781          * bitsize, therefore no final zero-extension is unneeded for !sf.
4782          */
4783         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4784     }
4785     return true;
4786 }
4787 
4788 static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
4789 {
4790     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4791     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4792     unsigned int bitsize = a->sf ? 64 : 32;
4793     unsigned int ri = a->immr;
4794     unsigned int si = a->imms;
4795     unsigned int pos, len;
4796 
4797     tcg_rd = cpu_reg(s, a->rd);
4798     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4799 
4800     if (si >= ri) {
4801         /* Wd<s-r:0> = Wn<s:r> */
4802         len = (si - ri) + 1;
4803         tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4804     } else {
4805         /* Wd<32+s-r,32-r> = Wn<s:0> */
4806         len = si + 1;
4807         pos = (bitsize - ri) & (bitsize - 1);
4808         tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4809     }
4810     return true;
4811 }
4812 
4813 static bool trans_BFM(DisasContext *s, arg_BFM *a)
4814 {
4815     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
4816     TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
4817     unsigned int bitsize = a->sf ? 64 : 32;
4818     unsigned int ri = a->immr;
4819     unsigned int si = a->imms;
4820     unsigned int pos, len;
4821 
4822     tcg_rd = cpu_reg(s, a->rd);
4823     tcg_tmp = read_cpu_reg(s, a->rn, 1);
4824 
4825     if (si >= ri) {
4826         /* Wd<s-r:0> = Wn<s:r> */
4827         tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4828         len = (si - ri) + 1;
4829         pos = 0;
4830     } else {
4831         /* Wd<32+s-r,32-r> = Wn<s:0> */
4832         len = si + 1;
4833         pos = (bitsize - ri) & (bitsize - 1);
4834     }
4835 
4836     tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4837     if (!a->sf) {
4838         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4839     }
4840     return true;
4841 }
4842 
4843 static bool trans_EXTR(DisasContext *s, arg_extract *a)
4844 {
4845     TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4846 
4847     tcg_rd = cpu_reg(s, a->rd);
4848 
4849     if (unlikely(a->imm == 0)) {
4850         /*
4851          * tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4852          * so an extract from bit 0 is a special case.
4853          */
4854         if (a->sf) {
4855             tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
4856         } else {
4857             tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
4858         }
4859     } else {
4860         tcg_rm = cpu_reg(s, a->rm);
4861         tcg_rn = cpu_reg(s, a->rn);
4862 
4863         if (a->sf) {
4864             /* Specialization to ROR happens in EXTRACT2.  */
4865             tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
4866         } else {
4867             TCGv_i32 t0 = tcg_temp_new_i32();
4868 
4869             tcg_gen_extrl_i64_i32(t0, tcg_rm);
4870             if (a->rm == a->rn) {
4871                 tcg_gen_rotri_i32(t0, t0, a->imm);
4872             } else {
4873                 TCGv_i32 t1 = tcg_temp_new_i32();
4874                 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4875                 tcg_gen_extract2_i32(t0, t0, t1, a->imm);
4876             }
4877             tcg_gen_extu_i32_i64(tcg_rd, t0);
4878         }
4879     }
4880     return true;
4881 }
4882 
4883 static bool trans_TBL_TBX(DisasContext *s, arg_TBL_TBX *a)
4884 {
4885     if (fp_access_check(s)) {
4886         int len = (a->len + 1) * 16;
4887 
4888         tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
4889                            vec_full_reg_offset(s, a->rm), tcg_env,
4890                            a->q ? 16 : 8, vec_full_reg_size(s),
4891                            (len << 6) | (a->tbx << 5) | a->rn,
4892                            gen_helper_simd_tblx);
4893     }
4894     return true;
4895 }
4896 
4897 typedef int simd_permute_idx_fn(int i, int part, int elements);
4898 
4899 static bool do_simd_permute(DisasContext *s, arg_qrrr_e *a,
4900                             simd_permute_idx_fn *fn, int part)
4901 {
4902     MemOp esz = a->esz;
4903     int datasize = a->q ? 16 : 8;
4904     int elements = datasize >> esz;
4905     TCGv_i64 tcg_res[2], tcg_ele;
4906 
4907     if (esz == MO_64 && !a->q) {
4908         return false;
4909     }
4910     if (!fp_access_check(s)) {
4911         return true;
4912     }
4913 
4914     tcg_res[0] = tcg_temp_new_i64();
4915     tcg_res[1] = a->q ? tcg_temp_new_i64() : NULL;
4916     tcg_ele = tcg_temp_new_i64();
4917 
4918     for (int i = 0; i < elements; i++) {
4919         int o, w, idx;
4920 
4921         idx = fn(i, part, elements);
4922         read_vec_element(s, tcg_ele, (idx & elements ? a->rm : a->rn),
4923                          idx & (elements - 1), esz);
4924 
4925         w = (i << (esz + 3)) / 64;
4926         o = (i << (esz + 3)) % 64;
4927         if (o == 0) {
4928             tcg_gen_mov_i64(tcg_res[w], tcg_ele);
4929         } else {
4930             tcg_gen_deposit_i64(tcg_res[w], tcg_res[w], tcg_ele, o, 8 << esz);
4931         }
4932     }
4933 
4934     for (int i = a->q; i >= 0; --i) {
4935         write_vec_element(s, tcg_res[i], a->rd, i, MO_64);
4936     }
4937     clear_vec_high(s, a->q, a->rd);
4938     return true;
4939 }
4940 
4941 static int permute_load_uzp(int i, int part, int elements)
4942 {
4943     return 2 * i + part;
4944 }
4945 
4946 TRANS(UZP1, do_simd_permute, a, permute_load_uzp, 0)
4947 TRANS(UZP2, do_simd_permute, a, permute_load_uzp, 1)
4948 
4949 static int permute_load_trn(int i, int part, int elements)
4950 {
4951     return (i & 1) * elements + (i & ~1) + part;
4952 }
4953 
4954 TRANS(TRN1, do_simd_permute, a, permute_load_trn, 0)
4955 TRANS(TRN2, do_simd_permute, a, permute_load_trn, 1)
4956 
4957 static int permute_load_zip(int i, int part, int elements)
4958 {
4959     return (i & 1) * elements + ((part * elements + i) >> 1);
4960 }
4961 
4962 TRANS(ZIP1, do_simd_permute, a, permute_load_zip, 0)
4963 TRANS(ZIP2, do_simd_permute, a, permute_load_zip, 1)
4964 
4965 /*
4966  * Cryptographic AES, SHA, SHA512
4967  */
4968 
4969 TRANS_FEAT(AESE, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aese)
4970 TRANS_FEAT(AESD, aa64_aes, do_gvec_op3_ool, a, 0, gen_helper_crypto_aesd)
4971 TRANS_FEAT(AESMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesmc)
4972 TRANS_FEAT(AESIMC, aa64_aes, do_gvec_op2_ool, a, 0, gen_helper_crypto_aesimc)
4973 
4974 TRANS_FEAT(SHA1C, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1c)
4975 TRANS_FEAT(SHA1P, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1p)
4976 TRANS_FEAT(SHA1M, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1m)
4977 TRANS_FEAT(SHA1SU0, aa64_sha1, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha1su0)
4978 
4979 TRANS_FEAT(SHA256H, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h)
4980 TRANS_FEAT(SHA256H2, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256h2)
4981 TRANS_FEAT(SHA256SU1, aa64_sha256, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha256su1)
4982 
4983 TRANS_FEAT(SHA1H, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1h)
4984 TRANS_FEAT(SHA1SU1, aa64_sha1, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha1su1)
4985 TRANS_FEAT(SHA256SU0, aa64_sha256, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha256su0)
4986 
4987 TRANS_FEAT(SHA512H, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h)
4988 TRANS_FEAT(SHA512H2, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512h2)
4989 TRANS_FEAT(SHA512SU1, aa64_sha512, do_gvec_op3_ool, a, 0, gen_helper_crypto_sha512su1)
4990 TRANS_FEAT(RAX1, aa64_sha3, do_gvec_fn3, a, gen_gvec_rax1)
4991 TRANS_FEAT(SM3PARTW1, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw1)
4992 TRANS_FEAT(SM3PARTW2, aa64_sm3, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm3partw2)
4993 TRANS_FEAT(SM4EKEY, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4ekey)
4994 
4995 TRANS_FEAT(SHA512SU0, aa64_sha512, do_gvec_op2_ool, a, 0, gen_helper_crypto_sha512su0)
4996 TRANS_FEAT(SM4E, aa64_sm4, do_gvec_op3_ool, a, 0, gen_helper_crypto_sm4e)
4997 
4998 TRANS_FEAT(EOR3, aa64_sha3, do_gvec_fn4, a, gen_gvec_eor3)
4999 TRANS_FEAT(BCAX, aa64_sha3, do_gvec_fn4, a, gen_gvec_bcax)
5000 
5001 static bool trans_SM3SS1(DisasContext *s, arg_SM3SS1 *a)
5002 {
5003     if (!dc_isar_feature(aa64_sm3, s)) {
5004         return false;
5005     }
5006     if (fp_access_check(s)) {
5007         TCGv_i32 tcg_op1 = tcg_temp_new_i32();
5008         TCGv_i32 tcg_op2 = tcg_temp_new_i32();
5009         TCGv_i32 tcg_op3 = tcg_temp_new_i32();
5010         TCGv_i32 tcg_res = tcg_temp_new_i32();
5011 
5012         read_vec_element_i32(s, tcg_op1, a->rn, 3, MO_32);
5013         read_vec_element_i32(s, tcg_op2, a->rm, 3, MO_32);
5014         read_vec_element_i32(s, tcg_op3, a->ra, 3, MO_32);
5015 
5016         tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
5017         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
5018         tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
5019         tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
5020 
5021         /* Clear the whole register first, then store bits [127:96]. */
5022         clear_vec(s, a->rd);
5023         write_vec_element_i32(s, tcg_res, a->rd, 3, MO_32);
5024     }
5025     return true;
5026 }
5027 
5028 static bool do_crypto3i(DisasContext *s, arg_crypto3i *a, gen_helper_gvec_3 *fn)
5029 {
5030     if (fp_access_check(s)) {
5031         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->imm, fn);
5032     }
5033     return true;
5034 }
5035 TRANS_FEAT(SM3TT1A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1a)
5036 TRANS_FEAT(SM3TT1B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt1b)
5037 TRANS_FEAT(SM3TT2A, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2a)
5038 TRANS_FEAT(SM3TT2B, aa64_sm3, do_crypto3i, a, gen_helper_crypto_sm3tt2b)
5039 
5040 static bool trans_XAR(DisasContext *s, arg_XAR *a)
5041 {
5042     if (!dc_isar_feature(aa64_sha3, s)) {
5043         return false;
5044     }
5045     if (fp_access_check(s)) {
5046         gen_gvec_xar(MO_64, vec_full_reg_offset(s, a->rd),
5047                      vec_full_reg_offset(s, a->rn),
5048                      vec_full_reg_offset(s, a->rm), a->imm, 16,
5049                      vec_full_reg_size(s));
5050     }
5051     return true;
5052 }
5053 
5054 /*
5055  * Advanced SIMD copy
5056  */
5057 
5058 static bool decode_esz_idx(int imm, MemOp *pesz, unsigned *pidx)
5059 {
5060     unsigned esz = ctz32(imm);
5061     if (esz <= MO_64) {
5062         *pesz = esz;
5063         *pidx = imm >> (esz + 1);
5064         return true;
5065     }
5066     return false;
5067 }
5068 
5069 static bool trans_DUP_element_s(DisasContext *s, arg_DUP_element_s *a)
5070 {
5071     MemOp esz;
5072     unsigned idx;
5073 
5074     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5075         return false;
5076     }
5077     if (fp_access_check(s)) {
5078         /*
5079          * This instruction just extracts the specified element and
5080          * zero-extends it into the bottom of the destination register.
5081          */
5082         TCGv_i64 tmp = tcg_temp_new_i64();
5083         read_vec_element(s, tmp, a->rn, idx, esz);
5084         write_fp_dreg(s, a->rd, tmp);
5085     }
5086     return true;
5087 }
5088 
5089 static bool trans_DUP_element_v(DisasContext *s, arg_DUP_element_v *a)
5090 {
5091     MemOp esz;
5092     unsigned idx;
5093 
5094     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5095         return false;
5096     }
5097     if (esz == MO_64 && !a->q) {
5098         return false;
5099     }
5100     if (fp_access_check(s)) {
5101         tcg_gen_gvec_dup_mem(esz, vec_full_reg_offset(s, a->rd),
5102                              vec_reg_offset(s, a->rn, idx, esz),
5103                              a->q ? 16 : 8, vec_full_reg_size(s));
5104     }
5105     return true;
5106 }
5107 
5108 static bool trans_DUP_general(DisasContext *s, arg_DUP_general *a)
5109 {
5110     MemOp esz;
5111     unsigned idx;
5112 
5113     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5114         return false;
5115     }
5116     if (esz == MO_64 && !a->q) {
5117         return false;
5118     }
5119     if (fp_access_check(s)) {
5120         tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
5121                              a->q ? 16 : 8, vec_full_reg_size(s),
5122                              cpu_reg(s, a->rn));
5123     }
5124     return true;
5125 }
5126 
5127 static bool do_smov_umov(DisasContext *s, arg_SMOV *a, MemOp is_signed)
5128 {
5129     MemOp esz;
5130     unsigned idx;
5131 
5132     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5133         return false;
5134     }
5135     if (is_signed) {
5136         if (esz == MO_64 || (esz == MO_32 && !a->q)) {
5137             return false;
5138         }
5139     } else {
5140         if (esz == MO_64 ? !a->q : a->q) {
5141             return false;
5142         }
5143     }
5144     if (fp_access_check(s)) {
5145         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
5146         read_vec_element(s, tcg_rd, a->rn, idx, esz | is_signed);
5147         if (is_signed && !a->q) {
5148             tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5149         }
5150     }
5151     return true;
5152 }
5153 
5154 TRANS(SMOV, do_smov_umov, a, MO_SIGN)
5155 TRANS(UMOV, do_smov_umov, a, 0)
5156 
5157 static bool trans_INS_general(DisasContext *s, arg_INS_general *a)
5158 {
5159     MemOp esz;
5160     unsigned idx;
5161 
5162     if (!decode_esz_idx(a->imm, &esz, &idx)) {
5163         return false;
5164     }
5165     if (fp_access_check(s)) {
5166         write_vec_element(s, cpu_reg(s, a->rn), a->rd, idx, esz);
5167         clear_vec_high(s, true, a->rd);
5168     }
5169     return true;
5170 }
5171 
5172 static bool trans_INS_element(DisasContext *s, arg_INS_element *a)
5173 {
5174     MemOp esz;
5175     unsigned didx, sidx;
5176 
5177     if (!decode_esz_idx(a->di, &esz, &didx)) {
5178         return false;
5179     }
5180     sidx = a->si >> esz;
5181     if (fp_access_check(s)) {
5182         TCGv_i64 tmp = tcg_temp_new_i64();
5183 
5184         read_vec_element(s, tmp, a->rn, sidx, esz);
5185         write_vec_element(s, tmp, a->rd, didx, esz);
5186 
5187         /* INS is considered a 128-bit write for SVE. */
5188         clear_vec_high(s, true, a->rd);
5189     }
5190     return true;
5191 }
5192 
5193 /*
5194  * Advanced SIMD three same
5195  */
5196 
5197 typedef struct FPScalar {
5198     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5199     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
5200     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
5201 } FPScalar;
5202 
5203 static bool do_fp3_scalar_with_fpsttype(DisasContext *s, arg_rrr_e *a,
5204                                         const FPScalar *f, int mergereg,
5205                                         ARMFPStatusFlavour fpsttype)
5206 {
5207     switch (a->esz) {
5208     case MO_64:
5209         if (fp_access_check(s)) {
5210             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5211             TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5212             f->gen_d(t0, t0, t1, fpstatus_ptr(fpsttype));
5213             write_fp_dreg_merging(s, a->rd, mergereg, t0);
5214         }
5215         break;
5216     case MO_32:
5217         if (fp_access_check(s)) {
5218             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5219             TCGv_i32 t1 = read_fp_sreg(s, a->rm);
5220             f->gen_s(t0, t0, t1, fpstatus_ptr(fpsttype));
5221             write_fp_sreg_merging(s, a->rd, mergereg, t0);
5222         }
5223         break;
5224     case MO_16:
5225         if (!dc_isar_feature(aa64_fp16, s)) {
5226             return false;
5227         }
5228         if (fp_access_check(s)) {
5229             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5230             TCGv_i32 t1 = read_fp_hreg(s, a->rm);
5231             f->gen_h(t0, t0, t1, fpstatus_ptr(fpsttype));
5232             write_fp_hreg_merging(s, a->rd, mergereg, t0);
5233         }
5234         break;
5235     default:
5236         return false;
5237     }
5238     return true;
5239 }
5240 
5241 static bool do_fp3_scalar(DisasContext *s, arg_rrr_e *a, const FPScalar *f,
5242                           int mergereg)
5243 {
5244     return do_fp3_scalar_with_fpsttype(s, a, f, mergereg,
5245                                        a->esz == MO_16 ?
5246                                        FPST_A64_F16 : FPST_A64);
5247 }
5248 
5249 static bool do_fp3_scalar_ah_2fn(DisasContext *s, arg_rrr_e *a,
5250                                  const FPScalar *fnormal, const FPScalar *fah,
5251                                  int mergereg)
5252 {
5253     return do_fp3_scalar_with_fpsttype(s, a, s->fpcr_ah ? fah : fnormal,
5254                                        mergereg, select_ah_fpst(s, a->esz));
5255 }
5256 
5257 /* Some insns need to call different helpers when FPCR.AH == 1 */
5258 static bool do_fp3_scalar_2fn(DisasContext *s, arg_rrr_e *a,
5259                               const FPScalar *fnormal,
5260                               const FPScalar *fah,
5261                               int mergereg)
5262 {
5263     return do_fp3_scalar(s, a, s->fpcr_ah ? fah : fnormal, mergereg);
5264 }
5265 
5266 static const FPScalar f_scalar_fadd = {
5267     gen_helper_vfp_addh,
5268     gen_helper_vfp_adds,
5269     gen_helper_vfp_addd,
5270 };
5271 TRANS(FADD_s, do_fp3_scalar, a, &f_scalar_fadd, a->rn)
5272 
5273 static const FPScalar f_scalar_fsub = {
5274     gen_helper_vfp_subh,
5275     gen_helper_vfp_subs,
5276     gen_helper_vfp_subd,
5277 };
5278 TRANS(FSUB_s, do_fp3_scalar, a, &f_scalar_fsub, a->rn)
5279 
5280 static const FPScalar f_scalar_fdiv = {
5281     gen_helper_vfp_divh,
5282     gen_helper_vfp_divs,
5283     gen_helper_vfp_divd,
5284 };
5285 TRANS(FDIV_s, do_fp3_scalar, a, &f_scalar_fdiv, a->rn)
5286 
5287 static const FPScalar f_scalar_fmul = {
5288     gen_helper_vfp_mulh,
5289     gen_helper_vfp_muls,
5290     gen_helper_vfp_muld,
5291 };
5292 TRANS(FMUL_s, do_fp3_scalar, a, &f_scalar_fmul, a->rn)
5293 
5294 static const FPScalar f_scalar_fmax = {
5295     gen_helper_vfp_maxh,
5296     gen_helper_vfp_maxs,
5297     gen_helper_vfp_maxd,
5298 };
5299 static const FPScalar f_scalar_fmax_ah = {
5300     gen_helper_vfp_ah_maxh,
5301     gen_helper_vfp_ah_maxs,
5302     gen_helper_vfp_ah_maxd,
5303 };
5304 TRANS(FMAX_s, do_fp3_scalar_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah, a->rn)
5305 
5306 static const FPScalar f_scalar_fmin = {
5307     gen_helper_vfp_minh,
5308     gen_helper_vfp_mins,
5309     gen_helper_vfp_mind,
5310 };
5311 static const FPScalar f_scalar_fmin_ah = {
5312     gen_helper_vfp_ah_minh,
5313     gen_helper_vfp_ah_mins,
5314     gen_helper_vfp_ah_mind,
5315 };
5316 TRANS(FMIN_s, do_fp3_scalar_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah, a->rn)
5317 
5318 static const FPScalar f_scalar_fmaxnm = {
5319     gen_helper_vfp_maxnumh,
5320     gen_helper_vfp_maxnums,
5321     gen_helper_vfp_maxnumd,
5322 };
5323 TRANS(FMAXNM_s, do_fp3_scalar, a, &f_scalar_fmaxnm, a->rn)
5324 
5325 static const FPScalar f_scalar_fminnm = {
5326     gen_helper_vfp_minnumh,
5327     gen_helper_vfp_minnums,
5328     gen_helper_vfp_minnumd,
5329 };
5330 TRANS(FMINNM_s, do_fp3_scalar, a, &f_scalar_fminnm, a->rn)
5331 
5332 static const FPScalar f_scalar_fmulx = {
5333     gen_helper_advsimd_mulxh,
5334     gen_helper_vfp_mulxs,
5335     gen_helper_vfp_mulxd,
5336 };
5337 TRANS(FMULX_s, do_fp3_scalar, a, &f_scalar_fmulx, a->rn)
5338 
5339 static void gen_fnmul_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5340 {
5341     gen_helper_vfp_mulh(d, n, m, s);
5342     gen_vfp_negh(d, d);
5343 }
5344 
5345 static void gen_fnmul_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5346 {
5347     gen_helper_vfp_muls(d, n, m, s);
5348     gen_vfp_negs(d, d);
5349 }
5350 
5351 static void gen_fnmul_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5352 {
5353     gen_helper_vfp_muld(d, n, m, s);
5354     gen_vfp_negd(d, d);
5355 }
5356 
5357 static void gen_fnmul_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5358 {
5359     gen_helper_vfp_mulh(d, n, m, s);
5360     gen_vfp_ah_negh(d, d);
5361 }
5362 
5363 static void gen_fnmul_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5364 {
5365     gen_helper_vfp_muls(d, n, m, s);
5366     gen_vfp_ah_negs(d, d);
5367 }
5368 
5369 static void gen_fnmul_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5370 {
5371     gen_helper_vfp_muld(d, n, m, s);
5372     gen_vfp_ah_negd(d, d);
5373 }
5374 
5375 static const FPScalar f_scalar_fnmul = {
5376     gen_fnmul_h,
5377     gen_fnmul_s,
5378     gen_fnmul_d,
5379 };
5380 static const FPScalar f_scalar_ah_fnmul = {
5381     gen_fnmul_ah_h,
5382     gen_fnmul_ah_s,
5383     gen_fnmul_ah_d,
5384 };
5385 TRANS(FNMUL_s, do_fp3_scalar_2fn, a, &f_scalar_fnmul, &f_scalar_ah_fnmul, a->rn)
5386 
5387 static const FPScalar f_scalar_fcmeq = {
5388     gen_helper_advsimd_ceq_f16,
5389     gen_helper_neon_ceq_f32,
5390     gen_helper_neon_ceq_f64,
5391 };
5392 TRANS(FCMEQ_s, do_fp3_scalar, a, &f_scalar_fcmeq, a->rm)
5393 
5394 static const FPScalar f_scalar_fcmge = {
5395     gen_helper_advsimd_cge_f16,
5396     gen_helper_neon_cge_f32,
5397     gen_helper_neon_cge_f64,
5398 };
5399 TRANS(FCMGE_s, do_fp3_scalar, a, &f_scalar_fcmge, a->rm)
5400 
5401 static const FPScalar f_scalar_fcmgt = {
5402     gen_helper_advsimd_cgt_f16,
5403     gen_helper_neon_cgt_f32,
5404     gen_helper_neon_cgt_f64,
5405 };
5406 TRANS(FCMGT_s, do_fp3_scalar, a, &f_scalar_fcmgt, a->rm)
5407 
5408 static const FPScalar f_scalar_facge = {
5409     gen_helper_advsimd_acge_f16,
5410     gen_helper_neon_acge_f32,
5411     gen_helper_neon_acge_f64,
5412 };
5413 TRANS(FACGE_s, do_fp3_scalar, a, &f_scalar_facge, a->rm)
5414 
5415 static const FPScalar f_scalar_facgt = {
5416     gen_helper_advsimd_acgt_f16,
5417     gen_helper_neon_acgt_f32,
5418     gen_helper_neon_acgt_f64,
5419 };
5420 TRANS(FACGT_s, do_fp3_scalar, a, &f_scalar_facgt, a->rm)
5421 
5422 static void gen_fabd_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5423 {
5424     gen_helper_vfp_subh(d, n, m, s);
5425     gen_vfp_absh(d, d);
5426 }
5427 
5428 static void gen_fabd_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5429 {
5430     gen_helper_vfp_subs(d, n, m, s);
5431     gen_vfp_abss(d, d);
5432 }
5433 
5434 static void gen_fabd_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5435 {
5436     gen_helper_vfp_subd(d, n, m, s);
5437     gen_vfp_absd(d, d);
5438 }
5439 
5440 static void gen_fabd_ah_h(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5441 {
5442     gen_helper_vfp_subh(d, n, m, s);
5443     gen_vfp_ah_absh(d, d);
5444 }
5445 
5446 static void gen_fabd_ah_s(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, TCGv_ptr s)
5447 {
5448     gen_helper_vfp_subs(d, n, m, s);
5449     gen_vfp_ah_abss(d, d);
5450 }
5451 
5452 static void gen_fabd_ah_d(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_ptr s)
5453 {
5454     gen_helper_vfp_subd(d, n, m, s);
5455     gen_vfp_ah_absd(d, d);
5456 }
5457 
5458 static const FPScalar f_scalar_fabd = {
5459     gen_fabd_h,
5460     gen_fabd_s,
5461     gen_fabd_d,
5462 };
5463 static const FPScalar f_scalar_ah_fabd = {
5464     gen_fabd_ah_h,
5465     gen_fabd_ah_s,
5466     gen_fabd_ah_d,
5467 };
5468 TRANS(FABD_s, do_fp3_scalar_2fn, a, &f_scalar_fabd, &f_scalar_ah_fabd, a->rn)
5469 
5470 static const FPScalar f_scalar_frecps = {
5471     gen_helper_recpsf_f16,
5472     gen_helper_recpsf_f32,
5473     gen_helper_recpsf_f64,
5474 };
5475 static const FPScalar f_scalar_ah_frecps = {
5476     gen_helper_recpsf_ah_f16,
5477     gen_helper_recpsf_ah_f32,
5478     gen_helper_recpsf_ah_f64,
5479 };
5480 TRANS(FRECPS_s, do_fp3_scalar_ah_2fn, a,
5481       &f_scalar_frecps, &f_scalar_ah_frecps, a->rn)
5482 
5483 static const FPScalar f_scalar_frsqrts = {
5484     gen_helper_rsqrtsf_f16,
5485     gen_helper_rsqrtsf_f32,
5486     gen_helper_rsqrtsf_f64,
5487 };
5488 static const FPScalar f_scalar_ah_frsqrts = {
5489     gen_helper_rsqrtsf_ah_f16,
5490     gen_helper_rsqrtsf_ah_f32,
5491     gen_helper_rsqrtsf_ah_f64,
5492 };
5493 TRANS(FRSQRTS_s, do_fp3_scalar_ah_2fn, a,
5494       &f_scalar_frsqrts, &f_scalar_ah_frsqrts, a->rn)
5495 
5496 static bool do_fcmp0_s(DisasContext *s, arg_rr_e *a,
5497                        const FPScalar *f, bool swap)
5498 {
5499     switch (a->esz) {
5500     case MO_64:
5501         if (fp_access_check(s)) {
5502             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5503             TCGv_i64 t1 = tcg_constant_i64(0);
5504             if (swap) {
5505                 f->gen_d(t0, t1, t0, fpstatus_ptr(FPST_A64));
5506             } else {
5507                 f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
5508             }
5509             write_fp_dreg(s, a->rd, t0);
5510         }
5511         break;
5512     case MO_32:
5513         if (fp_access_check(s)) {
5514             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
5515             TCGv_i32 t1 = tcg_constant_i32(0);
5516             if (swap) {
5517                 f->gen_s(t0, t1, t0, fpstatus_ptr(FPST_A64));
5518             } else {
5519                 f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
5520             }
5521             write_fp_sreg(s, a->rd, t0);
5522         }
5523         break;
5524     case MO_16:
5525         if (!dc_isar_feature(aa64_fp16, s)) {
5526             return false;
5527         }
5528         if (fp_access_check(s)) {
5529             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
5530             TCGv_i32 t1 = tcg_constant_i32(0);
5531             if (swap) {
5532                 f->gen_h(t0, t1, t0, fpstatus_ptr(FPST_A64_F16));
5533             } else {
5534                 f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
5535             }
5536             write_fp_sreg(s, a->rd, t0);
5537         }
5538         break;
5539     default:
5540         return false;
5541     }
5542     return true;
5543 }
5544 
5545 TRANS(FCMEQ0_s, do_fcmp0_s, a, &f_scalar_fcmeq, false)
5546 TRANS(FCMGT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, false)
5547 TRANS(FCMGE0_s, do_fcmp0_s, a, &f_scalar_fcmge, false)
5548 TRANS(FCMLT0_s, do_fcmp0_s, a, &f_scalar_fcmgt, true)
5549 TRANS(FCMLE0_s, do_fcmp0_s, a, &f_scalar_fcmge, true)
5550 
5551 static bool do_satacc_s(DisasContext *s, arg_rrr_e *a,
5552                 MemOp sgn_n, MemOp sgn_m,
5553                 void (*gen_bhs)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, MemOp),
5554                 void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
5555 {
5556     TCGv_i64 t0, t1, t2, qc;
5557     MemOp esz = a->esz;
5558 
5559     if (!fp_access_check(s)) {
5560         return true;
5561     }
5562 
5563     t0 = tcg_temp_new_i64();
5564     t1 = tcg_temp_new_i64();
5565     t2 = tcg_temp_new_i64();
5566     qc = tcg_temp_new_i64();
5567     read_vec_element(s, t1, a->rn, 0, esz | sgn_n);
5568     read_vec_element(s, t2, a->rm, 0, esz | sgn_m);
5569     tcg_gen_ld_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5570 
5571     if (esz == MO_64) {
5572         gen_d(t0, qc, t1, t2);
5573     } else {
5574         gen_bhs(t0, qc, t1, t2, esz);
5575         tcg_gen_ext_i64(t0, t0, esz);
5576     }
5577 
5578     write_fp_dreg(s, a->rd, t0);
5579     tcg_gen_st_i64(qc, tcg_env, offsetof(CPUARMState, vfp.qc));
5580     return true;
5581 }
5582 
5583 TRANS(SQADD_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqadd_bhs, gen_sqadd_d)
5584 TRANS(SQSUB_s, do_satacc_s, a, MO_SIGN, MO_SIGN, gen_sqsub_bhs, gen_sqsub_d)
5585 TRANS(UQADD_s, do_satacc_s, a, 0, 0, gen_uqadd_bhs, gen_uqadd_d)
5586 TRANS(UQSUB_s, do_satacc_s, a, 0, 0, gen_uqsub_bhs, gen_uqsub_d)
5587 TRANS(SUQADD_s, do_satacc_s, a, MO_SIGN, 0, gen_suqadd_bhs, gen_suqadd_d)
5588 TRANS(USQADD_s, do_satacc_s, a, 0, MO_SIGN, gen_usqadd_bhs, gen_usqadd_d)
5589 
5590 static bool do_int3_scalar_d(DisasContext *s, arg_rrr_e *a,
5591                              void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64))
5592 {
5593     if (fp_access_check(s)) {
5594         TCGv_i64 t0 = tcg_temp_new_i64();
5595         TCGv_i64 t1 = tcg_temp_new_i64();
5596 
5597         read_vec_element(s, t0, a->rn, 0, MO_64);
5598         read_vec_element(s, t1, a->rm, 0, MO_64);
5599         fn(t0, t0, t1);
5600         write_fp_dreg(s, a->rd, t0);
5601     }
5602     return true;
5603 }
5604 
5605 TRANS(SSHL_s, do_int3_scalar_d, a, gen_sshl_i64)
5606 TRANS(USHL_s, do_int3_scalar_d, a, gen_ushl_i64)
5607 TRANS(SRSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_s64)
5608 TRANS(URSHL_s, do_int3_scalar_d, a, gen_helper_neon_rshl_u64)
5609 TRANS(ADD_s, do_int3_scalar_d, a, tcg_gen_add_i64)
5610 TRANS(SUB_s, do_int3_scalar_d, a, tcg_gen_sub_i64)
5611 
5612 typedef struct ENVScalar2 {
5613     NeonGenTwoOpEnvFn *gen_bhs[3];
5614     NeonGenTwo64OpEnvFn *gen_d;
5615 } ENVScalar2;
5616 
5617 static bool do_env_scalar2(DisasContext *s, arg_rrr_e *a, const ENVScalar2 *f)
5618 {
5619     if (!fp_access_check(s)) {
5620         return true;
5621     }
5622     if (a->esz == MO_64) {
5623         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5624         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5625         f->gen_d(t0, tcg_env, t0, t1);
5626         write_fp_dreg(s, a->rd, t0);
5627     } else {
5628         TCGv_i32 t0 = tcg_temp_new_i32();
5629         TCGv_i32 t1 = tcg_temp_new_i32();
5630 
5631         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5632         read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5633         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
5634         write_fp_sreg(s, a->rd, t0);
5635     }
5636     return true;
5637 }
5638 
5639 static const ENVScalar2 f_scalar_sqshl = {
5640     { gen_helper_neon_qshl_s8,
5641       gen_helper_neon_qshl_s16,
5642       gen_helper_neon_qshl_s32 },
5643     gen_helper_neon_qshl_s64,
5644 };
5645 TRANS(SQSHL_s, do_env_scalar2, a, &f_scalar_sqshl)
5646 
5647 static const ENVScalar2 f_scalar_uqshl = {
5648     { gen_helper_neon_qshl_u8,
5649       gen_helper_neon_qshl_u16,
5650       gen_helper_neon_qshl_u32 },
5651     gen_helper_neon_qshl_u64,
5652 };
5653 TRANS(UQSHL_s, do_env_scalar2, a, &f_scalar_uqshl)
5654 
5655 static const ENVScalar2 f_scalar_sqrshl = {
5656     { gen_helper_neon_qrshl_s8,
5657       gen_helper_neon_qrshl_s16,
5658       gen_helper_neon_qrshl_s32 },
5659     gen_helper_neon_qrshl_s64,
5660 };
5661 TRANS(SQRSHL_s, do_env_scalar2, a, &f_scalar_sqrshl)
5662 
5663 static const ENVScalar2 f_scalar_uqrshl = {
5664     { gen_helper_neon_qrshl_u8,
5665       gen_helper_neon_qrshl_u16,
5666       gen_helper_neon_qrshl_u32 },
5667     gen_helper_neon_qrshl_u64,
5668 };
5669 TRANS(UQRSHL_s, do_env_scalar2, a, &f_scalar_uqrshl)
5670 
5671 static bool do_env_scalar2_hs(DisasContext *s, arg_rrr_e *a,
5672                               const ENVScalar2 *f)
5673 {
5674     if (a->esz == MO_16 || a->esz == MO_32) {
5675         return do_env_scalar2(s, a, f);
5676     }
5677     return false;
5678 }
5679 
5680 static const ENVScalar2 f_scalar_sqdmulh = {
5681     { NULL, gen_helper_neon_qdmulh_s16, gen_helper_neon_qdmulh_s32 }
5682 };
5683 TRANS(SQDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqdmulh)
5684 
5685 static const ENVScalar2 f_scalar_sqrdmulh = {
5686     { NULL, gen_helper_neon_qrdmulh_s16, gen_helper_neon_qrdmulh_s32 }
5687 };
5688 TRANS(SQRDMULH_s, do_env_scalar2_hs, a, &f_scalar_sqrdmulh)
5689 
5690 typedef struct ENVScalar3 {
5691     NeonGenThreeOpEnvFn *gen_hs[2];
5692 } ENVScalar3;
5693 
5694 static bool do_env_scalar3_hs(DisasContext *s, arg_rrr_e *a,
5695                               const ENVScalar3 *f)
5696 {
5697     TCGv_i32 t0, t1, t2;
5698 
5699     if (a->esz != MO_16 && a->esz != MO_32) {
5700         return false;
5701     }
5702     if (!fp_access_check(s)) {
5703         return true;
5704     }
5705 
5706     t0 = tcg_temp_new_i32();
5707     t1 = tcg_temp_new_i32();
5708     t2 = tcg_temp_new_i32();
5709     read_vec_element_i32(s, t0, a->rn, 0, a->esz);
5710     read_vec_element_i32(s, t1, a->rm, 0, a->esz);
5711     read_vec_element_i32(s, t2, a->rd, 0, a->esz);
5712     f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
5713     write_fp_sreg(s, a->rd, t0);
5714     return true;
5715 }
5716 
5717 static const ENVScalar3 f_scalar_sqrdmlah = {
5718     { gen_helper_neon_qrdmlah_s16, gen_helper_neon_qrdmlah_s32 }
5719 };
5720 TRANS_FEAT(SQRDMLAH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlah)
5721 
5722 static const ENVScalar3 f_scalar_sqrdmlsh = {
5723     { gen_helper_neon_qrdmlsh_s16, gen_helper_neon_qrdmlsh_s32 }
5724 };
5725 TRANS_FEAT(SQRDMLSH_s, aa64_rdm, do_env_scalar3_hs, a, &f_scalar_sqrdmlsh)
5726 
5727 static bool do_cmop_d(DisasContext *s, arg_rrr_e *a, TCGCond cond)
5728 {
5729     if (fp_access_check(s)) {
5730         TCGv_i64 t0 = read_fp_dreg(s, a->rn);
5731         TCGv_i64 t1 = read_fp_dreg(s, a->rm);
5732         tcg_gen_negsetcond_i64(cond, t0, t0, t1);
5733         write_fp_dreg(s, a->rd, t0);
5734     }
5735     return true;
5736 }
5737 
5738 TRANS(CMGT_s, do_cmop_d, a, TCG_COND_GT)
5739 TRANS(CMHI_s, do_cmop_d, a, TCG_COND_GTU)
5740 TRANS(CMGE_s, do_cmop_d, a, TCG_COND_GE)
5741 TRANS(CMHS_s, do_cmop_d, a, TCG_COND_GEU)
5742 TRANS(CMEQ_s, do_cmop_d, a, TCG_COND_EQ)
5743 TRANS(CMTST_s, do_cmop_d, a, TCG_COND_TSTNE)
5744 
5745 static bool do_fp3_vector_with_fpsttype(DisasContext *s, arg_qrrr_e *a,
5746                                         int data,
5747                                         gen_helper_gvec_3_ptr * const fns[3],
5748                                         ARMFPStatusFlavour fpsttype)
5749 {
5750     MemOp esz = a->esz;
5751     int check = fp_access_check_vector_hsd(s, a->q, esz);
5752 
5753     if (check <= 0) {
5754         return check == 0;
5755     }
5756 
5757     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm, fpsttype,
5758                       data, fns[esz - 1]);
5759     return true;
5760 }
5761 
5762 static bool do_fp3_vector(DisasContext *s, arg_qrrr_e *a, int data,
5763                           gen_helper_gvec_3_ptr * const fns[3])
5764 {
5765     return do_fp3_vector_with_fpsttype(s, a, data, fns,
5766                                        a->esz == MO_16 ?
5767                                        FPST_A64_F16 : FPST_A64);
5768 }
5769 
5770 static bool do_fp3_vector_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5771                               gen_helper_gvec_3_ptr * const fnormal[3],
5772                               gen_helper_gvec_3_ptr * const fah[3])
5773 {
5774     return do_fp3_vector(s, a, data, s->fpcr_ah ? fah : fnormal);
5775 }
5776 
5777 static bool do_fp3_vector_ah_2fn(DisasContext *s, arg_qrrr_e *a, int data,
5778                                  gen_helper_gvec_3_ptr * const fnormal[3],
5779                                  gen_helper_gvec_3_ptr * const fah[3])
5780 {
5781     return do_fp3_vector_with_fpsttype(s, a, data, s->fpcr_ah ? fah : fnormal,
5782                                        select_ah_fpst(s, a->esz));
5783 }
5784 
5785 static gen_helper_gvec_3_ptr * const f_vector_fadd[3] = {
5786     gen_helper_gvec_fadd_h,
5787     gen_helper_gvec_fadd_s,
5788     gen_helper_gvec_fadd_d,
5789 };
5790 TRANS(FADD_v, do_fp3_vector, a, 0, f_vector_fadd)
5791 
5792 static gen_helper_gvec_3_ptr * const f_vector_fsub[3] = {
5793     gen_helper_gvec_fsub_h,
5794     gen_helper_gvec_fsub_s,
5795     gen_helper_gvec_fsub_d,
5796 };
5797 TRANS(FSUB_v, do_fp3_vector, a, 0, f_vector_fsub)
5798 
5799 static gen_helper_gvec_3_ptr * const f_vector_fdiv[3] = {
5800     gen_helper_gvec_fdiv_h,
5801     gen_helper_gvec_fdiv_s,
5802     gen_helper_gvec_fdiv_d,
5803 };
5804 TRANS(FDIV_v, do_fp3_vector, a, 0, f_vector_fdiv)
5805 
5806 static gen_helper_gvec_3_ptr * const f_vector_fmul[3] = {
5807     gen_helper_gvec_fmul_h,
5808     gen_helper_gvec_fmul_s,
5809     gen_helper_gvec_fmul_d,
5810 };
5811 TRANS(FMUL_v, do_fp3_vector, a, 0, f_vector_fmul)
5812 
5813 static gen_helper_gvec_3_ptr * const f_vector_fmax[3] = {
5814     gen_helper_gvec_fmax_h,
5815     gen_helper_gvec_fmax_s,
5816     gen_helper_gvec_fmax_d,
5817 };
5818 static gen_helper_gvec_3_ptr * const f_vector_fmax_ah[3] = {
5819     gen_helper_gvec_ah_fmax_h,
5820     gen_helper_gvec_ah_fmax_s,
5821     gen_helper_gvec_ah_fmax_d,
5822 };
5823 TRANS(FMAX_v, do_fp3_vector_2fn, a, 0, f_vector_fmax, f_vector_fmax_ah)
5824 
5825 static gen_helper_gvec_3_ptr * const f_vector_fmin[3] = {
5826     gen_helper_gvec_fmin_h,
5827     gen_helper_gvec_fmin_s,
5828     gen_helper_gvec_fmin_d,
5829 };
5830 static gen_helper_gvec_3_ptr * const f_vector_fmin_ah[3] = {
5831     gen_helper_gvec_ah_fmin_h,
5832     gen_helper_gvec_ah_fmin_s,
5833     gen_helper_gvec_ah_fmin_d,
5834 };
5835 TRANS(FMIN_v, do_fp3_vector_2fn, a, 0, f_vector_fmin, f_vector_fmin_ah)
5836 
5837 static gen_helper_gvec_3_ptr * const f_vector_fmaxnm[3] = {
5838     gen_helper_gvec_fmaxnum_h,
5839     gen_helper_gvec_fmaxnum_s,
5840     gen_helper_gvec_fmaxnum_d,
5841 };
5842 TRANS(FMAXNM_v, do_fp3_vector, a, 0, f_vector_fmaxnm)
5843 
5844 static gen_helper_gvec_3_ptr * const f_vector_fminnm[3] = {
5845     gen_helper_gvec_fminnum_h,
5846     gen_helper_gvec_fminnum_s,
5847     gen_helper_gvec_fminnum_d,
5848 };
5849 TRANS(FMINNM_v, do_fp3_vector, a, 0, f_vector_fminnm)
5850 
5851 static gen_helper_gvec_3_ptr * const f_vector_fmulx[3] = {
5852     gen_helper_gvec_fmulx_h,
5853     gen_helper_gvec_fmulx_s,
5854     gen_helper_gvec_fmulx_d,
5855 };
5856 TRANS(FMULX_v, do_fp3_vector, a, 0, f_vector_fmulx)
5857 
5858 static gen_helper_gvec_3_ptr * const f_vector_fmla[3] = {
5859     gen_helper_gvec_vfma_h,
5860     gen_helper_gvec_vfma_s,
5861     gen_helper_gvec_vfma_d,
5862 };
5863 TRANS(FMLA_v, do_fp3_vector, a, 0, f_vector_fmla)
5864 
5865 static gen_helper_gvec_3_ptr * const f_vector_fmls[3] = {
5866     gen_helper_gvec_vfms_h,
5867     gen_helper_gvec_vfms_s,
5868     gen_helper_gvec_vfms_d,
5869 };
5870 static gen_helper_gvec_3_ptr * const f_vector_fmls_ah[3] = {
5871     gen_helper_gvec_ah_vfms_h,
5872     gen_helper_gvec_ah_vfms_s,
5873     gen_helper_gvec_ah_vfms_d,
5874 };
5875 TRANS(FMLS_v, do_fp3_vector_2fn, a, 0, f_vector_fmls, f_vector_fmls_ah)
5876 
5877 static gen_helper_gvec_3_ptr * const f_vector_fcmeq[3] = {
5878     gen_helper_gvec_fceq_h,
5879     gen_helper_gvec_fceq_s,
5880     gen_helper_gvec_fceq_d,
5881 };
5882 TRANS(FCMEQ_v, do_fp3_vector, a, 0, f_vector_fcmeq)
5883 
5884 static gen_helper_gvec_3_ptr * const f_vector_fcmge[3] = {
5885     gen_helper_gvec_fcge_h,
5886     gen_helper_gvec_fcge_s,
5887     gen_helper_gvec_fcge_d,
5888 };
5889 TRANS(FCMGE_v, do_fp3_vector, a, 0, f_vector_fcmge)
5890 
5891 static gen_helper_gvec_3_ptr * const f_vector_fcmgt[3] = {
5892     gen_helper_gvec_fcgt_h,
5893     gen_helper_gvec_fcgt_s,
5894     gen_helper_gvec_fcgt_d,
5895 };
5896 TRANS(FCMGT_v, do_fp3_vector, a, 0, f_vector_fcmgt)
5897 
5898 static gen_helper_gvec_3_ptr * const f_vector_facge[3] = {
5899     gen_helper_gvec_facge_h,
5900     gen_helper_gvec_facge_s,
5901     gen_helper_gvec_facge_d,
5902 };
5903 TRANS(FACGE_v, do_fp3_vector, a, 0, f_vector_facge)
5904 
5905 static gen_helper_gvec_3_ptr * const f_vector_facgt[3] = {
5906     gen_helper_gvec_facgt_h,
5907     gen_helper_gvec_facgt_s,
5908     gen_helper_gvec_facgt_d,
5909 };
5910 TRANS(FACGT_v, do_fp3_vector, a, 0, f_vector_facgt)
5911 
5912 static gen_helper_gvec_3_ptr * const f_vector_fabd[3] = {
5913     gen_helper_gvec_fabd_h,
5914     gen_helper_gvec_fabd_s,
5915     gen_helper_gvec_fabd_d,
5916 };
5917 static gen_helper_gvec_3_ptr * const f_vector_ah_fabd[3] = {
5918     gen_helper_gvec_ah_fabd_h,
5919     gen_helper_gvec_ah_fabd_s,
5920     gen_helper_gvec_ah_fabd_d,
5921 };
5922 TRANS(FABD_v, do_fp3_vector_2fn, a, 0, f_vector_fabd, f_vector_ah_fabd)
5923 
5924 static gen_helper_gvec_3_ptr * const f_vector_frecps[3] = {
5925     gen_helper_gvec_recps_h,
5926     gen_helper_gvec_recps_s,
5927     gen_helper_gvec_recps_d,
5928 };
5929 static gen_helper_gvec_3_ptr * const f_vector_ah_frecps[3] = {
5930     gen_helper_gvec_ah_recps_h,
5931     gen_helper_gvec_ah_recps_s,
5932     gen_helper_gvec_ah_recps_d,
5933 };
5934 TRANS(FRECPS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frecps, f_vector_ah_frecps)
5935 
5936 static gen_helper_gvec_3_ptr * const f_vector_frsqrts[3] = {
5937     gen_helper_gvec_rsqrts_h,
5938     gen_helper_gvec_rsqrts_s,
5939     gen_helper_gvec_rsqrts_d,
5940 };
5941 static gen_helper_gvec_3_ptr * const f_vector_ah_frsqrts[3] = {
5942     gen_helper_gvec_ah_rsqrts_h,
5943     gen_helper_gvec_ah_rsqrts_s,
5944     gen_helper_gvec_ah_rsqrts_d,
5945 };
5946 TRANS(FRSQRTS_v, do_fp3_vector_ah_2fn, a, 0, f_vector_frsqrts, f_vector_ah_frsqrts)
5947 
5948 static gen_helper_gvec_3_ptr * const f_vector_faddp[3] = {
5949     gen_helper_gvec_faddp_h,
5950     gen_helper_gvec_faddp_s,
5951     gen_helper_gvec_faddp_d,
5952 };
5953 TRANS(FADDP_v, do_fp3_vector, a, 0, f_vector_faddp)
5954 
5955 static gen_helper_gvec_3_ptr * const f_vector_fmaxp[3] = {
5956     gen_helper_gvec_fmaxp_h,
5957     gen_helper_gvec_fmaxp_s,
5958     gen_helper_gvec_fmaxp_d,
5959 };
5960 static gen_helper_gvec_3_ptr * const f_vector_ah_fmaxp[3] = {
5961     gen_helper_gvec_ah_fmaxp_h,
5962     gen_helper_gvec_ah_fmaxp_s,
5963     gen_helper_gvec_ah_fmaxp_d,
5964 };
5965 TRANS(FMAXP_v, do_fp3_vector_2fn, a, 0, f_vector_fmaxp, f_vector_ah_fmaxp)
5966 
5967 static gen_helper_gvec_3_ptr * const f_vector_fminp[3] = {
5968     gen_helper_gvec_fminp_h,
5969     gen_helper_gvec_fminp_s,
5970     gen_helper_gvec_fminp_d,
5971 };
5972 static gen_helper_gvec_3_ptr * const f_vector_ah_fminp[3] = {
5973     gen_helper_gvec_ah_fminp_h,
5974     gen_helper_gvec_ah_fminp_s,
5975     gen_helper_gvec_ah_fminp_d,
5976 };
5977 TRANS(FMINP_v, do_fp3_vector_2fn, a, 0, f_vector_fminp, f_vector_ah_fminp)
5978 
5979 static gen_helper_gvec_3_ptr * const f_vector_fmaxnmp[3] = {
5980     gen_helper_gvec_fmaxnump_h,
5981     gen_helper_gvec_fmaxnump_s,
5982     gen_helper_gvec_fmaxnump_d,
5983 };
5984 TRANS(FMAXNMP_v, do_fp3_vector, a, 0, f_vector_fmaxnmp)
5985 
5986 static gen_helper_gvec_3_ptr * const f_vector_fminnmp[3] = {
5987     gen_helper_gvec_fminnump_h,
5988     gen_helper_gvec_fminnump_s,
5989     gen_helper_gvec_fminnump_d,
5990 };
5991 TRANS(FMINNMP_v, do_fp3_vector, a, 0, f_vector_fminnmp)
5992 
5993 static bool do_fmlal(DisasContext *s, arg_qrrr_e *a, bool is_s, bool is_2)
5994 {
5995     if (fp_access_check(s)) {
5996         int data = (is_2 << 1) | is_s;
5997         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
5998                            vec_full_reg_offset(s, a->rn),
5999                            vec_full_reg_offset(s, a->rm), tcg_env,
6000                            a->q ? 16 : 8, vec_full_reg_size(s),
6001                            data, gen_helper_gvec_fmlal_a64);
6002     }
6003     return true;
6004 }
6005 
6006 TRANS_FEAT(FMLAL_v, aa64_fhm, do_fmlal, a, false, false)
6007 TRANS_FEAT(FMLSL_v, aa64_fhm, do_fmlal, a, true, false)
6008 TRANS_FEAT(FMLAL2_v, aa64_fhm, do_fmlal, a, false, true)
6009 TRANS_FEAT(FMLSL2_v, aa64_fhm, do_fmlal, a, true, true)
6010 
6011 TRANS(ADDP_v, do_gvec_fn3, a, gen_gvec_addp)
6012 TRANS(SMAXP_v, do_gvec_fn3_no64, a, gen_gvec_smaxp)
6013 TRANS(SMINP_v, do_gvec_fn3_no64, a, gen_gvec_sminp)
6014 TRANS(UMAXP_v, do_gvec_fn3_no64, a, gen_gvec_umaxp)
6015 TRANS(UMINP_v, do_gvec_fn3_no64, a, gen_gvec_uminp)
6016 
6017 TRANS(AND_v, do_gvec_fn3, a, tcg_gen_gvec_and)
6018 TRANS(BIC_v, do_gvec_fn3, a, tcg_gen_gvec_andc)
6019 TRANS(ORR_v, do_gvec_fn3, a, tcg_gen_gvec_or)
6020 TRANS(ORN_v, do_gvec_fn3, a, tcg_gen_gvec_orc)
6021 TRANS(EOR_v, do_gvec_fn3, a, tcg_gen_gvec_xor)
6022 
6023 static bool do_bitsel(DisasContext *s, bool is_q, int d, int a, int b, int c)
6024 {
6025     if (fp_access_check(s)) {
6026         gen_gvec_fn4(s, is_q, d, a, b, c, tcg_gen_gvec_bitsel, 0);
6027     }
6028     return true;
6029 }
6030 
6031 TRANS(BSL_v, do_bitsel, a->q, a->rd, a->rd, a->rn, a->rm)
6032 TRANS(BIT_v, do_bitsel, a->q, a->rd, a->rm, a->rn, a->rd)
6033 TRANS(BIF_v, do_bitsel, a->q, a->rd, a->rm, a->rd, a->rn)
6034 
6035 TRANS(SQADD_v, do_gvec_fn3, a, gen_gvec_sqadd_qc)
6036 TRANS(UQADD_v, do_gvec_fn3, a, gen_gvec_uqadd_qc)
6037 TRANS(SQSUB_v, do_gvec_fn3, a, gen_gvec_sqsub_qc)
6038 TRANS(UQSUB_v, do_gvec_fn3, a, gen_gvec_uqsub_qc)
6039 TRANS(SUQADD_v, do_gvec_fn3, a, gen_gvec_suqadd_qc)
6040 TRANS(USQADD_v, do_gvec_fn3, a, gen_gvec_usqadd_qc)
6041 
6042 TRANS(SSHL_v, do_gvec_fn3, a, gen_gvec_sshl)
6043 TRANS(USHL_v, do_gvec_fn3, a, gen_gvec_ushl)
6044 TRANS(SRSHL_v, do_gvec_fn3, a, gen_gvec_srshl)
6045 TRANS(URSHL_v, do_gvec_fn3, a, gen_gvec_urshl)
6046 TRANS(SQSHL_v, do_gvec_fn3, a, gen_neon_sqshl)
6047 TRANS(UQSHL_v, do_gvec_fn3, a, gen_neon_uqshl)
6048 TRANS(SQRSHL_v, do_gvec_fn3, a, gen_neon_sqrshl)
6049 TRANS(UQRSHL_v, do_gvec_fn3, a, gen_neon_uqrshl)
6050 
6051 TRANS(ADD_v, do_gvec_fn3, a, tcg_gen_gvec_add)
6052 TRANS(SUB_v, do_gvec_fn3, a, tcg_gen_gvec_sub)
6053 TRANS(SHADD_v, do_gvec_fn3_no64, a, gen_gvec_shadd)
6054 TRANS(UHADD_v, do_gvec_fn3_no64, a, gen_gvec_uhadd)
6055 TRANS(SHSUB_v, do_gvec_fn3_no64, a, gen_gvec_shsub)
6056 TRANS(UHSUB_v, do_gvec_fn3_no64, a, gen_gvec_uhsub)
6057 TRANS(SRHADD_v, do_gvec_fn3_no64, a, gen_gvec_srhadd)
6058 TRANS(URHADD_v, do_gvec_fn3_no64, a, gen_gvec_urhadd)
6059 TRANS(SMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smax)
6060 TRANS(UMAX_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umax)
6061 TRANS(SMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_smin)
6062 TRANS(UMIN_v, do_gvec_fn3_no64, a, tcg_gen_gvec_umin)
6063 TRANS(SABA_v, do_gvec_fn3_no64, a, gen_gvec_saba)
6064 TRANS(UABA_v, do_gvec_fn3_no64, a, gen_gvec_uaba)
6065 TRANS(SABD_v, do_gvec_fn3_no64, a, gen_gvec_sabd)
6066 TRANS(UABD_v, do_gvec_fn3_no64, a, gen_gvec_uabd)
6067 TRANS(MUL_v, do_gvec_fn3_no64, a, tcg_gen_gvec_mul)
6068 TRANS(PMUL_v, do_gvec_op3_ool, a, 0, gen_helper_gvec_pmul_b)
6069 TRANS(MLA_v, do_gvec_fn3_no64, a, gen_gvec_mla)
6070 TRANS(MLS_v, do_gvec_fn3_no64, a, gen_gvec_mls)
6071 
6072 static bool do_cmop_v(DisasContext *s, arg_qrrr_e *a, TCGCond cond)
6073 {
6074     if (a->esz == MO_64 && !a->q) {
6075         return false;
6076     }
6077     if (fp_access_check(s)) {
6078         tcg_gen_gvec_cmp(cond, a->esz,
6079                          vec_full_reg_offset(s, a->rd),
6080                          vec_full_reg_offset(s, a->rn),
6081                          vec_full_reg_offset(s, a->rm),
6082                          a->q ? 16 : 8, vec_full_reg_size(s));
6083     }
6084     return true;
6085 }
6086 
6087 TRANS(CMGT_v, do_cmop_v, a, TCG_COND_GT)
6088 TRANS(CMHI_v, do_cmop_v, a, TCG_COND_GTU)
6089 TRANS(CMGE_v, do_cmop_v, a, TCG_COND_GE)
6090 TRANS(CMHS_v, do_cmop_v, a, TCG_COND_GEU)
6091 TRANS(CMEQ_v, do_cmop_v, a, TCG_COND_EQ)
6092 TRANS(CMTST_v, do_gvec_fn3, a, gen_gvec_cmtst)
6093 
6094 TRANS(SQDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqdmulh_qc)
6095 TRANS(SQRDMULH_v, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmulh_qc)
6096 TRANS_FEAT(SQRDMLAH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlah_qc)
6097 TRANS_FEAT(SQRDMLSH_v, aa64_rdm, do_gvec_fn3_no8_no64, a, gen_gvec_sqrdmlsh_qc)
6098 
6099 static bool do_dot_vector(DisasContext *s, arg_qrrr_e *a,
6100                           gen_helper_gvec_4 *fn)
6101 {
6102     if (fp_access_check(s)) {
6103         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6104     }
6105     return true;
6106 }
6107 
6108 static bool do_dot_vector_env(DisasContext *s, arg_qrrr_e *a,
6109                               gen_helper_gvec_4_ptr *fn)
6110 {
6111     if (fp_access_check(s)) {
6112         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, 0, fn);
6113     }
6114     return true;
6115 }
6116 
6117 TRANS_FEAT(SDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_sdot_4b)
6118 TRANS_FEAT(UDOT_v, aa64_dp, do_dot_vector, a, gen_helper_gvec_udot_4b)
6119 TRANS_FEAT(USDOT_v, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usdot_4b)
6120 TRANS_FEAT(BFDOT_v, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfdot)
6121 TRANS_FEAT(BFMMLA, aa64_bf16, do_dot_vector_env, a, gen_helper_gvec_bfmmla)
6122 TRANS_FEAT(SMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_smmla_b)
6123 TRANS_FEAT(UMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_ummla_b)
6124 TRANS_FEAT(USMMLA, aa64_i8mm, do_dot_vector, a, gen_helper_gvec_usmmla_b)
6125 
6126 static bool trans_BFMLAL_v(DisasContext *s, arg_qrrr_e *a)
6127 {
6128     if (!dc_isar_feature(aa64_bf16, s)) {
6129         return false;
6130     }
6131     if (fp_access_check(s)) {
6132         /* Q bit selects BFMLALB vs BFMLALT. */
6133         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6134                           s->fpcr_ah ? FPST_AH : FPST_A64, a->q,
6135                           gen_helper_gvec_bfmlal);
6136     }
6137     return true;
6138 }
6139 
6140 static gen_helper_gvec_3_ptr * const f_vector_fcadd[3] = {
6141     gen_helper_gvec_fcaddh,
6142     gen_helper_gvec_fcadds,
6143     gen_helper_gvec_fcaddd,
6144 };
6145 /*
6146  * Encode FPCR.AH into the data so the helper knows whether the
6147  * negations it does should avoid flipping the sign bit on a NaN
6148  */
6149 TRANS_FEAT(FCADD_90, aa64_fcma, do_fp3_vector, a, 0 | (s->fpcr_ah << 1),
6150            f_vector_fcadd)
6151 TRANS_FEAT(FCADD_270, aa64_fcma, do_fp3_vector, a, 1 | (s->fpcr_ah << 1),
6152            f_vector_fcadd)
6153 
6154 static bool trans_FCMLA_v(DisasContext *s, arg_FCMLA_v *a)
6155 {
6156     static gen_helper_gvec_4_ptr * const fn[] = {
6157         [MO_16] = gen_helper_gvec_fcmlah,
6158         [MO_32] = gen_helper_gvec_fcmlas,
6159         [MO_64] = gen_helper_gvec_fcmlad,
6160     };
6161     int check;
6162 
6163     if (!dc_isar_feature(aa64_fcma, s)) {
6164         return false;
6165     }
6166 
6167     check = fp_access_check_vector_hsd(s, a->q, a->esz);
6168     if (check <= 0) {
6169         return check == 0;
6170     }
6171 
6172     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6173                       a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6174                       a->rot | (s->fpcr_ah << 2), fn[a->esz]);
6175     return true;
6176 }
6177 
6178 /*
6179  * Widening vector x vector/indexed.
6180  *
6181  * These read from the top or bottom half of a 128-bit vector.
6182  * After widening, optionally accumulate with a 128-bit vector.
6183  * Implement these inline, as the number of elements are limited
6184  * and the related SVE and SME operations on larger vectors use
6185  * even/odd elements instead of top/bottom half.
6186  *
6187  * If idx >= 0, operand 2 is indexed, otherwise vector.
6188  * If acc, operand 0 is loaded with rd.
6189  */
6190 
6191 /* For low half, iterating up. */
6192 static bool do_3op_widening(DisasContext *s, MemOp memop, int top,
6193                             int rd, int rn, int rm, int idx,
6194                             NeonGenTwo64OpFn *fn, bool acc)
6195 {
6196     TCGv_i64 tcg_op0 = tcg_temp_new_i64();
6197     TCGv_i64 tcg_op1 = tcg_temp_new_i64();
6198     TCGv_i64 tcg_op2 = tcg_temp_new_i64();
6199     MemOp esz = memop & MO_SIZE;
6200     int half = 8 >> esz;
6201     int top_swap, top_half;
6202 
6203     /* There are no 64x64->128 bit operations. */
6204     if (esz >= MO_64) {
6205         return false;
6206     }
6207     if (!fp_access_check(s)) {
6208         return true;
6209     }
6210 
6211     if (idx >= 0) {
6212         read_vec_element(s, tcg_op2, rm, idx, memop);
6213     }
6214 
6215     /*
6216      * For top half inputs, iterate forward; backward for bottom half.
6217      * This means the store to the destination will not occur until
6218      * overlapping input inputs are consumed.
6219      * Use top_swap to conditionally invert the forward iteration index.
6220      */
6221     top_swap = top ? 0 : half - 1;
6222     top_half = top ? half : 0;
6223 
6224     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6225         int elt = elt_fwd ^ top_swap;
6226 
6227         read_vec_element(s, tcg_op1, rn, elt + top_half, memop);
6228         if (idx < 0) {
6229             read_vec_element(s, tcg_op2, rm, elt + top_half, memop);
6230         }
6231         if (acc) {
6232             read_vec_element(s, tcg_op0, rd, elt, memop + 1);
6233         }
6234         fn(tcg_op0, tcg_op1, tcg_op2);
6235         write_vec_element(s, tcg_op0, rd, elt, esz + 1);
6236     }
6237     clear_vec_high(s, 1, rd);
6238     return true;
6239 }
6240 
6241 static void gen_muladd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6242 {
6243     TCGv_i64 t = tcg_temp_new_i64();
6244     tcg_gen_mul_i64(t, n, m);
6245     tcg_gen_add_i64(d, d, t);
6246 }
6247 
6248 static void gen_mulsub_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6249 {
6250     TCGv_i64 t = tcg_temp_new_i64();
6251     tcg_gen_mul_i64(t, n, m);
6252     tcg_gen_sub_i64(d, d, t);
6253 }
6254 
6255 TRANS(SMULL_v, do_3op_widening,
6256       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6257       tcg_gen_mul_i64, false)
6258 TRANS(UMULL_v, do_3op_widening,
6259       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6260       tcg_gen_mul_i64, false)
6261 TRANS(SMLAL_v, do_3op_widening,
6262       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6263       gen_muladd_i64, true)
6264 TRANS(UMLAL_v, do_3op_widening,
6265       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6266       gen_muladd_i64, true)
6267 TRANS(SMLSL_v, do_3op_widening,
6268       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6269       gen_mulsub_i64, true)
6270 TRANS(UMLSL_v, do_3op_widening,
6271       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6272       gen_mulsub_i64, true)
6273 
6274 TRANS(SMULL_vi, do_3op_widening,
6275       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6276       tcg_gen_mul_i64, false)
6277 TRANS(UMULL_vi, do_3op_widening,
6278       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6279       tcg_gen_mul_i64, false)
6280 TRANS(SMLAL_vi, do_3op_widening,
6281       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6282       gen_muladd_i64, true)
6283 TRANS(UMLAL_vi, do_3op_widening,
6284       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6285       gen_muladd_i64, true)
6286 TRANS(SMLSL_vi, do_3op_widening,
6287       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6288       gen_mulsub_i64, true)
6289 TRANS(UMLSL_vi, do_3op_widening,
6290       a->esz, a->q, a->rd, a->rn, a->rm, a->idx,
6291       gen_mulsub_i64, true)
6292 
6293 static void gen_sabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6294 {
6295     TCGv_i64 t1 = tcg_temp_new_i64();
6296     TCGv_i64 t2 = tcg_temp_new_i64();
6297 
6298     tcg_gen_sub_i64(t1, n, m);
6299     tcg_gen_sub_i64(t2, m, n);
6300     tcg_gen_movcond_i64(TCG_COND_GE, d, n, m, t1, t2);
6301 }
6302 
6303 static void gen_uabd_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6304 {
6305     TCGv_i64 t1 = tcg_temp_new_i64();
6306     TCGv_i64 t2 = tcg_temp_new_i64();
6307 
6308     tcg_gen_sub_i64(t1, n, m);
6309     tcg_gen_sub_i64(t2, m, n);
6310     tcg_gen_movcond_i64(TCG_COND_GEU, d, n, m, t1, t2);
6311 }
6312 
6313 static void gen_saba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6314 {
6315     TCGv_i64 t = tcg_temp_new_i64();
6316     gen_sabd_i64(t, n, m);
6317     tcg_gen_add_i64(d, d, t);
6318 }
6319 
6320 static void gen_uaba_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6321 {
6322     TCGv_i64 t = tcg_temp_new_i64();
6323     gen_uabd_i64(t, n, m);
6324     tcg_gen_add_i64(d, d, t);
6325 }
6326 
6327 TRANS(SADDL_v, do_3op_widening,
6328       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6329       tcg_gen_add_i64, false)
6330 TRANS(UADDL_v, do_3op_widening,
6331       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6332       tcg_gen_add_i64, false)
6333 TRANS(SSUBL_v, do_3op_widening,
6334       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6335       tcg_gen_sub_i64, false)
6336 TRANS(USUBL_v, do_3op_widening,
6337       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6338       tcg_gen_sub_i64, false)
6339 TRANS(SABDL_v, do_3op_widening,
6340       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6341       gen_sabd_i64, false)
6342 TRANS(UABDL_v, do_3op_widening,
6343       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6344       gen_uabd_i64, false)
6345 TRANS(SABAL_v, do_3op_widening,
6346       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6347       gen_saba_i64, true)
6348 TRANS(UABAL_v, do_3op_widening,
6349       a->esz, a->q, a->rd, a->rn, a->rm, -1,
6350       gen_uaba_i64, true)
6351 
6352 static void gen_sqdmull_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6353 {
6354     tcg_gen_mul_i64(d, n, m);
6355     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, d);
6356 }
6357 
6358 static void gen_sqdmull_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6359 {
6360     tcg_gen_mul_i64(d, n, m);
6361     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, d);
6362 }
6363 
6364 static void gen_sqdmlal_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6365 {
6366     TCGv_i64 t = tcg_temp_new_i64();
6367 
6368     tcg_gen_mul_i64(t, n, m);
6369     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6370     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6371 }
6372 
6373 static void gen_sqdmlal_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6374 {
6375     TCGv_i64 t = tcg_temp_new_i64();
6376 
6377     tcg_gen_mul_i64(t, n, m);
6378     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6379     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6380 }
6381 
6382 static void gen_sqdmlsl_h(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6383 {
6384     TCGv_i64 t = tcg_temp_new_i64();
6385 
6386     tcg_gen_mul_i64(t, n, m);
6387     gen_helper_neon_addl_saturate_s32(t, tcg_env, t, t);
6388     tcg_gen_neg_i64(t, t);
6389     gen_helper_neon_addl_saturate_s32(d, tcg_env, d, t);
6390 }
6391 
6392 static void gen_sqdmlsl_s(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
6393 {
6394     TCGv_i64 t = tcg_temp_new_i64();
6395 
6396     tcg_gen_mul_i64(t, n, m);
6397     gen_helper_neon_addl_saturate_s64(t, tcg_env, t, t);
6398     tcg_gen_neg_i64(t, t);
6399     gen_helper_neon_addl_saturate_s64(d, tcg_env, d, t);
6400 }
6401 
6402 TRANS(SQDMULL_v, do_3op_widening,
6403       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6404       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6405 TRANS(SQDMLAL_v, do_3op_widening,
6406       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6407       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6408 TRANS(SQDMLSL_v, do_3op_widening,
6409       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, -1,
6410       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6411 
6412 TRANS(SQDMULL_vi, do_3op_widening,
6413       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6414       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6415 TRANS(SQDMLAL_vi, do_3op_widening,
6416       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6417       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6418 TRANS(SQDMLSL_vi, do_3op_widening,
6419       a->esz | MO_SIGN, a->q, a->rd, a->rn, a->rm, a->idx,
6420       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6421 
6422 static bool do_addsub_wide(DisasContext *s, arg_qrrr_e *a,
6423                            MemOp sign, bool sub)
6424 {
6425     TCGv_i64 tcg_op0, tcg_op1;
6426     MemOp esz = a->esz;
6427     int half = 8 >> esz;
6428     bool top = a->q;
6429     int top_swap = top ? 0 : half - 1;
6430     int top_half = top ? half : 0;
6431 
6432     /* There are no 64x64->128 bit operations. */
6433     if (esz >= MO_64) {
6434         return false;
6435     }
6436     if (!fp_access_check(s)) {
6437         return true;
6438     }
6439     tcg_op0 = tcg_temp_new_i64();
6440     tcg_op1 = tcg_temp_new_i64();
6441 
6442     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6443         int elt = elt_fwd ^ top_swap;
6444 
6445         read_vec_element(s, tcg_op1, a->rm, elt + top_half, esz | sign);
6446         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6447         if (sub) {
6448             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6449         } else {
6450             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6451         }
6452         write_vec_element(s, tcg_op0, a->rd, elt, esz + 1);
6453     }
6454     clear_vec_high(s, 1, a->rd);
6455     return true;
6456 }
6457 
6458 TRANS(SADDW, do_addsub_wide, a, MO_SIGN, false)
6459 TRANS(UADDW, do_addsub_wide, a, 0, false)
6460 TRANS(SSUBW, do_addsub_wide, a, MO_SIGN, true)
6461 TRANS(USUBW, do_addsub_wide, a, 0, true)
6462 
6463 static bool do_addsub_highnarrow(DisasContext *s, arg_qrrr_e *a,
6464                                  bool sub, bool round)
6465 {
6466     TCGv_i64 tcg_op0, tcg_op1;
6467     MemOp esz = a->esz;
6468     int half = 8 >> esz;
6469     bool top = a->q;
6470     int ebits = 8 << esz;
6471     uint64_t rbit = 1ull << (ebits - 1);
6472     int top_swap, top_half;
6473 
6474     /* There are no 128x128->64 bit operations. */
6475     if (esz >= MO_64) {
6476         return false;
6477     }
6478     if (!fp_access_check(s)) {
6479         return true;
6480     }
6481     tcg_op0 = tcg_temp_new_i64();
6482     tcg_op1 = tcg_temp_new_i64();
6483 
6484     /*
6485      * For top half inputs, iterate backward; forward for bottom half.
6486      * This means the store to the destination will not occur until
6487      * overlapping input inputs are consumed.
6488      */
6489     top_swap = top ? half - 1 : 0;
6490     top_half = top ? half : 0;
6491 
6492     for (int elt_fwd = 0; elt_fwd < half; ++elt_fwd) {
6493         int elt = elt_fwd ^ top_swap;
6494 
6495         read_vec_element(s, tcg_op1, a->rm, elt, esz + 1);
6496         read_vec_element(s, tcg_op0, a->rn, elt, esz + 1);
6497         if (sub) {
6498             tcg_gen_sub_i64(tcg_op0, tcg_op0, tcg_op1);
6499         } else {
6500             tcg_gen_add_i64(tcg_op0, tcg_op0, tcg_op1);
6501         }
6502         if (round) {
6503             tcg_gen_addi_i64(tcg_op0, tcg_op0, rbit);
6504         }
6505         tcg_gen_shri_i64(tcg_op0, tcg_op0, ebits);
6506         write_vec_element(s, tcg_op0, a->rd, elt + top_half, esz);
6507     }
6508     clear_vec_high(s, top, a->rd);
6509     return true;
6510 }
6511 
6512 TRANS(ADDHN, do_addsub_highnarrow, a, false, false)
6513 TRANS(SUBHN, do_addsub_highnarrow, a, true, false)
6514 TRANS(RADDHN, do_addsub_highnarrow, a, false, true)
6515 TRANS(RSUBHN, do_addsub_highnarrow, a, true, true)
6516 
6517 static bool do_pmull(DisasContext *s, arg_qrrr_e *a, gen_helper_gvec_3 *fn)
6518 {
6519     if (fp_access_check(s)) {
6520         /* The Q field specifies lo/hi half input for these insns.  */
6521         gen_gvec_op3_ool(s, true, a->rd, a->rn, a->rm, a->q, fn);
6522     }
6523     return true;
6524 }
6525 
6526 TRANS(PMULL_p8, do_pmull, a, gen_helper_neon_pmull_h)
6527 TRANS_FEAT(PMULL_p64, aa64_pmull, do_pmull, a, gen_helper_gvec_pmull_q)
6528 
6529 /*
6530  * Advanced SIMD scalar/vector x indexed element
6531  */
6532 
6533 static bool do_fp3_scalar_idx(DisasContext *s, arg_rrx_e *a, const FPScalar *f)
6534 {
6535     switch (a->esz) {
6536     case MO_64:
6537         if (fp_access_check(s)) {
6538             TCGv_i64 t0 = read_fp_dreg(s, a->rn);
6539             TCGv_i64 t1 = tcg_temp_new_i64();
6540 
6541             read_vec_element(s, t1, a->rm, a->idx, MO_64);
6542             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6543             write_fp_dreg_merging(s, a->rd, a->rn, t0);
6544         }
6545         break;
6546     case MO_32:
6547         if (fp_access_check(s)) {
6548             TCGv_i32 t0 = read_fp_sreg(s, a->rn);
6549             TCGv_i32 t1 = tcg_temp_new_i32();
6550 
6551             read_vec_element_i32(s, t1, a->rm, a->idx, MO_32);
6552             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6553             write_fp_sreg_merging(s, a->rd, a->rn, t0);
6554         }
6555         break;
6556     case MO_16:
6557         if (!dc_isar_feature(aa64_fp16, s)) {
6558             return false;
6559         }
6560         if (fp_access_check(s)) {
6561             TCGv_i32 t0 = read_fp_hreg(s, a->rn);
6562             TCGv_i32 t1 = tcg_temp_new_i32();
6563 
6564             read_vec_element_i32(s, t1, a->rm, a->idx, MO_16);
6565             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6566             write_fp_hreg_merging(s, a->rd, a->rn, t0);
6567         }
6568         break;
6569     default:
6570         g_assert_not_reached();
6571     }
6572     return true;
6573 }
6574 
6575 TRANS(FMUL_si, do_fp3_scalar_idx, a, &f_scalar_fmul)
6576 TRANS(FMULX_si, do_fp3_scalar_idx, a, &f_scalar_fmulx)
6577 
6578 static bool do_fmla_scalar_idx(DisasContext *s, arg_rrx_e *a, bool neg)
6579 {
6580     switch (a->esz) {
6581     case MO_64:
6582         if (fp_access_check(s)) {
6583             TCGv_i64 t0 = read_fp_dreg(s, a->rd);
6584             TCGv_i64 t1 = read_fp_dreg(s, a->rn);
6585             TCGv_i64 t2 = tcg_temp_new_i64();
6586 
6587             read_vec_element(s, t2, a->rm, a->idx, MO_64);
6588             if (neg) {
6589                 gen_vfp_maybe_ah_negd(s, t1, t1);
6590             }
6591             gen_helper_vfp_muladdd(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6592             write_fp_dreg_merging(s, a->rd, a->rd, t0);
6593         }
6594         break;
6595     case MO_32:
6596         if (fp_access_check(s)) {
6597             TCGv_i32 t0 = read_fp_sreg(s, a->rd);
6598             TCGv_i32 t1 = read_fp_sreg(s, a->rn);
6599             TCGv_i32 t2 = tcg_temp_new_i32();
6600 
6601             read_vec_element_i32(s, t2, a->rm, a->idx, MO_32);
6602             if (neg) {
6603                 gen_vfp_maybe_ah_negs(s, t1, t1);
6604             }
6605             gen_helper_vfp_muladds(t0, t1, t2, t0, fpstatus_ptr(FPST_A64));
6606             write_fp_sreg_merging(s, a->rd, a->rd, t0);
6607         }
6608         break;
6609     case MO_16:
6610         if (!dc_isar_feature(aa64_fp16, s)) {
6611             return false;
6612         }
6613         if (fp_access_check(s)) {
6614             TCGv_i32 t0 = read_fp_hreg(s, a->rd);
6615             TCGv_i32 t1 = read_fp_hreg(s, a->rn);
6616             TCGv_i32 t2 = tcg_temp_new_i32();
6617 
6618             read_vec_element_i32(s, t2, a->rm, a->idx, MO_16);
6619             if (neg) {
6620                 gen_vfp_maybe_ah_negh(s, t1, t1);
6621             }
6622             gen_helper_advsimd_muladdh(t0, t1, t2, t0,
6623                                        fpstatus_ptr(FPST_A64_F16));
6624             write_fp_hreg_merging(s, a->rd, a->rd, t0);
6625         }
6626         break;
6627     default:
6628         g_assert_not_reached();
6629     }
6630     return true;
6631 }
6632 
6633 TRANS(FMLA_si, do_fmla_scalar_idx, a, false)
6634 TRANS(FMLS_si, do_fmla_scalar_idx, a, true)
6635 
6636 static bool do_env_scalar2_idx_hs(DisasContext *s, arg_rrx_e *a,
6637                                   const ENVScalar2 *f)
6638 {
6639     if (a->esz < MO_16 || a->esz > MO_32) {
6640         return false;
6641     }
6642     if (fp_access_check(s)) {
6643         TCGv_i32 t0 = tcg_temp_new_i32();
6644         TCGv_i32 t1 = tcg_temp_new_i32();
6645 
6646         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6647         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6648         f->gen_bhs[a->esz](t0, tcg_env, t0, t1);
6649         write_fp_sreg(s, a->rd, t0);
6650     }
6651     return true;
6652 }
6653 
6654 TRANS(SQDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqdmulh)
6655 TRANS(SQRDMULH_si, do_env_scalar2_idx_hs, a, &f_scalar_sqrdmulh)
6656 
6657 static bool do_env_scalar3_idx_hs(DisasContext *s, arg_rrx_e *a,
6658                                   const ENVScalar3 *f)
6659 {
6660     if (a->esz < MO_16 || a->esz > MO_32) {
6661         return false;
6662     }
6663     if (fp_access_check(s)) {
6664         TCGv_i32 t0 = tcg_temp_new_i32();
6665         TCGv_i32 t1 = tcg_temp_new_i32();
6666         TCGv_i32 t2 = tcg_temp_new_i32();
6667 
6668         read_vec_element_i32(s, t0, a->rn, 0, a->esz);
6669         read_vec_element_i32(s, t1, a->rm, a->idx, a->esz);
6670         read_vec_element_i32(s, t2, a->rd, 0, a->esz);
6671         f->gen_hs[a->esz - 1](t0, tcg_env, t0, t1, t2);
6672         write_fp_sreg(s, a->rd, t0);
6673     }
6674     return true;
6675 }
6676 
6677 TRANS_FEAT(SQRDMLAH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlah)
6678 TRANS_FEAT(SQRDMLSH_si, aa64_rdm, do_env_scalar3_idx_hs, a, &f_scalar_sqrdmlsh)
6679 
6680 static bool do_scalar_muladd_widening_idx(DisasContext *s, arg_rrx_e *a,
6681                                           NeonGenTwo64OpFn *fn, bool acc)
6682 {
6683     if (fp_access_check(s)) {
6684         TCGv_i64 t0 = tcg_temp_new_i64();
6685         TCGv_i64 t1 = tcg_temp_new_i64();
6686         TCGv_i64 t2 = tcg_temp_new_i64();
6687 
6688         if (acc) {
6689             read_vec_element(s, t0, a->rd, 0, a->esz + 1);
6690         }
6691         read_vec_element(s, t1, a->rn, 0, a->esz | MO_SIGN);
6692         read_vec_element(s, t2, a->rm, a->idx, a->esz | MO_SIGN);
6693         fn(t0, t1, t2);
6694 
6695         /* Clear the whole register first, then store scalar. */
6696         clear_vec(s, a->rd);
6697         write_vec_element(s, t0, a->rd, 0, a->esz + 1);
6698     }
6699     return true;
6700 }
6701 
6702 TRANS(SQDMULL_si, do_scalar_muladd_widening_idx, a,
6703       a->esz == MO_16 ? gen_sqdmull_h : gen_sqdmull_s, false)
6704 TRANS(SQDMLAL_si, do_scalar_muladd_widening_idx, a,
6705       a->esz == MO_16 ? gen_sqdmlal_h : gen_sqdmlal_s, true)
6706 TRANS(SQDMLSL_si, do_scalar_muladd_widening_idx, a,
6707       a->esz == MO_16 ? gen_sqdmlsl_h : gen_sqdmlsl_s, true)
6708 
6709 static bool do_fp3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6710                               gen_helper_gvec_3_ptr * const fns[3])
6711 {
6712     MemOp esz = a->esz;
6713     int check = fp_access_check_vector_hsd(s, a->q, esz);
6714 
6715     if (check <= 0) {
6716         return check == 0;
6717     }
6718 
6719     gen_gvec_op3_fpst(s, a->q, a->rd, a->rn, a->rm,
6720                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6721                       a->idx, fns[esz - 1]);
6722     return true;
6723 }
6724 
6725 static gen_helper_gvec_3_ptr * const f_vector_idx_fmul[3] = {
6726     gen_helper_gvec_fmul_idx_h,
6727     gen_helper_gvec_fmul_idx_s,
6728     gen_helper_gvec_fmul_idx_d,
6729 };
6730 TRANS(FMUL_vi, do_fp3_vector_idx, a, f_vector_idx_fmul)
6731 
6732 static gen_helper_gvec_3_ptr * const f_vector_idx_fmulx[3] = {
6733     gen_helper_gvec_fmulx_idx_h,
6734     gen_helper_gvec_fmulx_idx_s,
6735     gen_helper_gvec_fmulx_idx_d,
6736 };
6737 TRANS(FMULX_vi, do_fp3_vector_idx, a, f_vector_idx_fmulx)
6738 
6739 static bool do_fmla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool neg)
6740 {
6741     static gen_helper_gvec_4_ptr * const fns[3][3] = {
6742         { gen_helper_gvec_fmla_idx_h,
6743           gen_helper_gvec_fmla_idx_s,
6744           gen_helper_gvec_fmla_idx_d },
6745         { gen_helper_gvec_fmls_idx_h,
6746           gen_helper_gvec_fmls_idx_s,
6747           gen_helper_gvec_fmls_idx_d },
6748         { gen_helper_gvec_ah_fmls_idx_h,
6749           gen_helper_gvec_ah_fmls_idx_s,
6750           gen_helper_gvec_ah_fmls_idx_d },
6751     };
6752     MemOp esz = a->esz;
6753     int check = fp_access_check_vector_hsd(s, a->q, esz);
6754 
6755     if (check <= 0) {
6756         return check == 0;
6757     }
6758 
6759     gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6760                       esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6761                       a->idx, fns[neg ? 1 + s->fpcr_ah : 0][esz - 1]);
6762     return true;
6763 }
6764 
6765 TRANS(FMLA_vi, do_fmla_vector_idx, a, false)
6766 TRANS(FMLS_vi, do_fmla_vector_idx, a, true)
6767 
6768 static bool do_fmlal_idx(DisasContext *s, arg_qrrx_e *a, bool is_s, bool is_2)
6769 {
6770     if (fp_access_check(s)) {
6771         int data = (a->idx << 2) | (is_2 << 1) | is_s;
6772         tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
6773                            vec_full_reg_offset(s, a->rn),
6774                            vec_full_reg_offset(s, a->rm), tcg_env,
6775                            a->q ? 16 : 8, vec_full_reg_size(s),
6776                            data, gen_helper_gvec_fmlal_idx_a64);
6777     }
6778     return true;
6779 }
6780 
6781 TRANS_FEAT(FMLAL_vi, aa64_fhm, do_fmlal_idx, a, false, false)
6782 TRANS_FEAT(FMLSL_vi, aa64_fhm, do_fmlal_idx, a, true, false)
6783 TRANS_FEAT(FMLAL2_vi, aa64_fhm, do_fmlal_idx, a, false, true)
6784 TRANS_FEAT(FMLSL2_vi, aa64_fhm, do_fmlal_idx, a, true, true)
6785 
6786 static bool do_int3_vector_idx(DisasContext *s, arg_qrrx_e *a,
6787                                gen_helper_gvec_3 * const fns[2])
6788 {
6789     assert(a->esz == MO_16 || a->esz == MO_32);
6790     if (fp_access_check(s)) {
6791         gen_gvec_op3_ool(s, a->q, a->rd, a->rn, a->rm, a->idx, fns[a->esz - 1]);
6792     }
6793     return true;
6794 }
6795 
6796 static gen_helper_gvec_3 * const f_vector_idx_mul[2] = {
6797     gen_helper_gvec_mul_idx_h,
6798     gen_helper_gvec_mul_idx_s,
6799 };
6800 TRANS(MUL_vi, do_int3_vector_idx, a, f_vector_idx_mul)
6801 
6802 static bool do_mla_vector_idx(DisasContext *s, arg_qrrx_e *a, bool sub)
6803 {
6804     static gen_helper_gvec_4 * const fns[2][2] = {
6805         { gen_helper_gvec_mla_idx_h, gen_helper_gvec_mls_idx_h },
6806         { gen_helper_gvec_mla_idx_s, gen_helper_gvec_mls_idx_s },
6807     };
6808 
6809     assert(a->esz == MO_16 || a->esz == MO_32);
6810     if (fp_access_check(s)) {
6811         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd,
6812                          a->idx, fns[a->esz - 1][sub]);
6813     }
6814     return true;
6815 }
6816 
6817 TRANS(MLA_vi, do_mla_vector_idx, a, false)
6818 TRANS(MLS_vi, do_mla_vector_idx, a, true)
6819 
6820 static bool do_int3_qc_vector_idx(DisasContext *s, arg_qrrx_e *a,
6821                                   gen_helper_gvec_4 * const fns[2])
6822 {
6823     assert(a->esz == MO_16 || a->esz == MO_32);
6824     if (fp_access_check(s)) {
6825         tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
6826                            vec_full_reg_offset(s, a->rn),
6827                            vec_full_reg_offset(s, a->rm),
6828                            offsetof(CPUARMState, vfp.qc),
6829                            a->q ? 16 : 8, vec_full_reg_size(s),
6830                            a->idx, fns[a->esz - 1]);
6831     }
6832     return true;
6833 }
6834 
6835 static gen_helper_gvec_4 * const f_vector_idx_sqdmulh[2] = {
6836     gen_helper_neon_sqdmulh_idx_h,
6837     gen_helper_neon_sqdmulh_idx_s,
6838 };
6839 TRANS(SQDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqdmulh)
6840 
6841 static gen_helper_gvec_4 * const f_vector_idx_sqrdmulh[2] = {
6842     gen_helper_neon_sqrdmulh_idx_h,
6843     gen_helper_neon_sqrdmulh_idx_s,
6844 };
6845 TRANS(SQRDMULH_vi, do_int3_qc_vector_idx, a, f_vector_idx_sqrdmulh)
6846 
6847 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlah[2] = {
6848     gen_helper_neon_sqrdmlah_idx_h,
6849     gen_helper_neon_sqrdmlah_idx_s,
6850 };
6851 TRANS_FEAT(SQRDMLAH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6852            f_vector_idx_sqrdmlah)
6853 
6854 static gen_helper_gvec_4 * const f_vector_idx_sqrdmlsh[2] = {
6855     gen_helper_neon_sqrdmlsh_idx_h,
6856     gen_helper_neon_sqrdmlsh_idx_s,
6857 };
6858 TRANS_FEAT(SQRDMLSH_vi, aa64_rdm, do_int3_qc_vector_idx, a,
6859            f_vector_idx_sqrdmlsh)
6860 
6861 static bool do_dot_vector_idx(DisasContext *s, arg_qrrx_e *a,
6862                               gen_helper_gvec_4 *fn)
6863 {
6864     if (fp_access_check(s)) {
6865         gen_gvec_op4_ool(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6866     }
6867     return true;
6868 }
6869 
6870 static bool do_dot_vector_idx_env(DisasContext *s, arg_qrrx_e *a,
6871                                   gen_helper_gvec_4_ptr *fn)
6872 {
6873     if (fp_access_check(s)) {
6874         gen_gvec_op4_env(s, a->q, a->rd, a->rn, a->rm, a->rd, a->idx, fn);
6875     }
6876     return true;
6877 }
6878 
6879 TRANS_FEAT(SDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_sdot_idx_4b)
6880 TRANS_FEAT(UDOT_vi, aa64_dp, do_dot_vector_idx, a, gen_helper_gvec_udot_idx_4b)
6881 TRANS_FEAT(SUDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6882            gen_helper_gvec_sudot_idx_4b)
6883 TRANS_FEAT(USDOT_vi, aa64_i8mm, do_dot_vector_idx, a,
6884            gen_helper_gvec_usdot_idx_4b)
6885 TRANS_FEAT(BFDOT_vi, aa64_bf16, do_dot_vector_idx_env, a,
6886            gen_helper_gvec_bfdot_idx)
6887 
6888 static bool trans_BFMLAL_vi(DisasContext *s, arg_qrrx_e *a)
6889 {
6890     if (!dc_isar_feature(aa64_bf16, s)) {
6891         return false;
6892     }
6893     if (fp_access_check(s)) {
6894         /* Q bit selects BFMLALB vs BFMLALT. */
6895         gen_gvec_op4_fpst(s, true, a->rd, a->rn, a->rm, a->rd,
6896                           s->fpcr_ah ? FPST_AH : FPST_A64,
6897                           (a->idx << 1) | a->q,
6898                           gen_helper_gvec_bfmlal_idx);
6899     }
6900     return true;
6901 }
6902 
6903 static bool trans_FCMLA_vi(DisasContext *s, arg_FCMLA_vi *a)
6904 {
6905     gen_helper_gvec_4_ptr *fn;
6906 
6907     if (!dc_isar_feature(aa64_fcma, s)) {
6908         return false;
6909     }
6910     switch (a->esz) {
6911     case MO_16:
6912         if (!dc_isar_feature(aa64_fp16, s)) {
6913             return false;
6914         }
6915         fn = gen_helper_gvec_fcmlah_idx;
6916         break;
6917     case MO_32:
6918         fn = gen_helper_gvec_fcmlas_idx;
6919         break;
6920     default:
6921         g_assert_not_reached();
6922     }
6923     if (fp_access_check(s)) {
6924         gen_gvec_op4_fpst(s, a->q, a->rd, a->rn, a->rm, a->rd,
6925                           a->esz == MO_16 ? FPST_A64_F16 : FPST_A64,
6926                           (s->fpcr_ah << 4) | (a->idx << 2) | a->rot, fn);
6927     }
6928     return true;
6929 }
6930 
6931 /*
6932  * Advanced SIMD scalar pairwise
6933  */
6934 
6935 static bool do_fp3_scalar_pair(DisasContext *s, arg_rr_e *a, const FPScalar *f)
6936 {
6937     switch (a->esz) {
6938     case MO_64:
6939         if (fp_access_check(s)) {
6940             TCGv_i64 t0 = tcg_temp_new_i64();
6941             TCGv_i64 t1 = tcg_temp_new_i64();
6942 
6943             read_vec_element(s, t0, a->rn, 0, MO_64);
6944             read_vec_element(s, t1, a->rn, 1, MO_64);
6945             f->gen_d(t0, t0, t1, fpstatus_ptr(FPST_A64));
6946             write_fp_dreg(s, a->rd, t0);
6947         }
6948         break;
6949     case MO_32:
6950         if (fp_access_check(s)) {
6951             TCGv_i32 t0 = tcg_temp_new_i32();
6952             TCGv_i32 t1 = tcg_temp_new_i32();
6953 
6954             read_vec_element_i32(s, t0, a->rn, 0, MO_32);
6955             read_vec_element_i32(s, t1, a->rn, 1, MO_32);
6956             f->gen_s(t0, t0, t1, fpstatus_ptr(FPST_A64));
6957             write_fp_sreg(s, a->rd, t0);
6958         }
6959         break;
6960     case MO_16:
6961         if (!dc_isar_feature(aa64_fp16, s)) {
6962             return false;
6963         }
6964         if (fp_access_check(s)) {
6965             TCGv_i32 t0 = tcg_temp_new_i32();
6966             TCGv_i32 t1 = tcg_temp_new_i32();
6967 
6968             read_vec_element_i32(s, t0, a->rn, 0, MO_16);
6969             read_vec_element_i32(s, t1, a->rn, 1, MO_16);
6970             f->gen_h(t0, t0, t1, fpstatus_ptr(FPST_A64_F16));
6971             write_fp_sreg(s, a->rd, t0);
6972         }
6973         break;
6974     default:
6975         g_assert_not_reached();
6976     }
6977     return true;
6978 }
6979 
6980 static bool do_fp3_scalar_pair_2fn(DisasContext *s, arg_rr_e *a,
6981                                    const FPScalar *fnormal,
6982                                    const FPScalar *fah)
6983 {
6984     return do_fp3_scalar_pair(s, a, s->fpcr_ah ? fah : fnormal);
6985 }
6986 
6987 TRANS(FADDP_s, do_fp3_scalar_pair, a, &f_scalar_fadd)
6988 TRANS(FMAXP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmax, &f_scalar_fmax_ah)
6989 TRANS(FMINP_s, do_fp3_scalar_pair_2fn, a, &f_scalar_fmin, &f_scalar_fmin_ah)
6990 TRANS(FMAXNMP_s, do_fp3_scalar_pair, a, &f_scalar_fmaxnm)
6991 TRANS(FMINNMP_s, do_fp3_scalar_pair, a, &f_scalar_fminnm)
6992 
6993 static bool trans_ADDP_s(DisasContext *s, arg_rr_e *a)
6994 {
6995     if (fp_access_check(s)) {
6996         TCGv_i64 t0 = tcg_temp_new_i64();
6997         TCGv_i64 t1 = tcg_temp_new_i64();
6998 
6999         read_vec_element(s, t0, a->rn, 0, MO_64);
7000         read_vec_element(s, t1, a->rn, 1, MO_64);
7001         tcg_gen_add_i64(t0, t0, t1);
7002         write_fp_dreg(s, a->rd, t0);
7003     }
7004     return true;
7005 }
7006 
7007 /*
7008  * Floating-point conditional select
7009  */
7010 
7011 static bool trans_FCSEL(DisasContext *s, arg_FCSEL *a)
7012 {
7013     TCGv_i64 t_true, t_false;
7014     DisasCompare64 c;
7015     int check = fp_access_check_scalar_hsd(s, a->esz);
7016 
7017     if (check <= 0) {
7018         return check == 0;
7019     }
7020 
7021     /* Zero extend sreg & hreg inputs to 64 bits now.  */
7022     t_true = tcg_temp_new_i64();
7023     t_false = tcg_temp_new_i64();
7024     read_vec_element(s, t_true, a->rn, 0, a->esz);
7025     read_vec_element(s, t_false, a->rm, 0, a->esz);
7026 
7027     a64_test_cc(&c, a->cond);
7028     tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
7029                         t_true, t_false);
7030 
7031     /*
7032      * Note that sregs & hregs write back zeros to the high bits,
7033      * and we've already done the zero-extension.
7034      */
7035     write_fp_dreg(s, a->rd, t_true);
7036     return true;
7037 }
7038 
7039 /*
7040  * Advanced SIMD Extract
7041  */
7042 
7043 static bool trans_EXT_d(DisasContext *s, arg_EXT_d *a)
7044 {
7045     if (fp_access_check(s)) {
7046         TCGv_i64 lo = read_fp_dreg(s, a->rn);
7047         if (a->imm != 0) {
7048             TCGv_i64 hi = read_fp_dreg(s, a->rm);
7049             tcg_gen_extract2_i64(lo, lo, hi, a->imm * 8);
7050         }
7051         write_fp_dreg(s, a->rd, lo);
7052     }
7053     return true;
7054 }
7055 
7056 static bool trans_EXT_q(DisasContext *s, arg_EXT_q *a)
7057 {
7058     TCGv_i64 lo, hi;
7059     int pos = (a->imm & 7) * 8;
7060     int elt = a->imm >> 3;
7061 
7062     if (!fp_access_check(s)) {
7063         return true;
7064     }
7065 
7066     lo = tcg_temp_new_i64();
7067     hi = tcg_temp_new_i64();
7068 
7069     read_vec_element(s, lo, a->rn, elt, MO_64);
7070     elt++;
7071     read_vec_element(s, hi, elt & 2 ? a->rm : a->rn, elt & 1, MO_64);
7072     elt++;
7073 
7074     if (pos != 0) {
7075         TCGv_i64 hh = tcg_temp_new_i64();
7076         tcg_gen_extract2_i64(lo, lo, hi, pos);
7077         read_vec_element(s, hh, a->rm, elt & 1, MO_64);
7078         tcg_gen_extract2_i64(hi, hi, hh, pos);
7079     }
7080 
7081     write_vec_element(s, lo, a->rd, 0, MO_64);
7082     write_vec_element(s, hi, a->rd, 1, MO_64);
7083     clear_vec_high(s, true, a->rd);
7084     return true;
7085 }
7086 
7087 /*
7088  * Floating-point data-processing (3 source)
7089  */
7090 
7091 static bool do_fmadd(DisasContext *s, arg_rrrr_e *a, bool neg_a, bool neg_n)
7092 {
7093     TCGv_ptr fpst;
7094 
7095     /*
7096      * These are fused multiply-add.  Note that doing the negations here
7097      * as separate steps is correct: an input NaN should come out with
7098      * its sign bit flipped if it is a negated-input.
7099      */
7100     switch (a->esz) {
7101     case MO_64:
7102         if (fp_access_check(s)) {
7103             TCGv_i64 tn = read_fp_dreg(s, a->rn);
7104             TCGv_i64 tm = read_fp_dreg(s, a->rm);
7105             TCGv_i64 ta = read_fp_dreg(s, a->ra);
7106 
7107             if (neg_a) {
7108                 gen_vfp_maybe_ah_negd(s, ta, ta);
7109             }
7110             if (neg_n) {
7111                 gen_vfp_maybe_ah_negd(s, tn, tn);
7112             }
7113             fpst = fpstatus_ptr(FPST_A64);
7114             gen_helper_vfp_muladdd(ta, tn, tm, ta, fpst);
7115             write_fp_dreg_merging(s, a->rd, a->ra, ta);
7116         }
7117         break;
7118 
7119     case MO_32:
7120         if (fp_access_check(s)) {
7121             TCGv_i32 tn = read_fp_sreg(s, a->rn);
7122             TCGv_i32 tm = read_fp_sreg(s, a->rm);
7123             TCGv_i32 ta = read_fp_sreg(s, a->ra);
7124 
7125             if (neg_a) {
7126                 gen_vfp_maybe_ah_negs(s, ta, ta);
7127             }
7128             if (neg_n) {
7129                 gen_vfp_maybe_ah_negs(s, tn, tn);
7130             }
7131             fpst = fpstatus_ptr(FPST_A64);
7132             gen_helper_vfp_muladds(ta, tn, tm, ta, fpst);
7133             write_fp_sreg_merging(s, a->rd, a->ra, ta);
7134         }
7135         break;
7136 
7137     case MO_16:
7138         if (!dc_isar_feature(aa64_fp16, s)) {
7139             return false;
7140         }
7141         if (fp_access_check(s)) {
7142             TCGv_i32 tn = read_fp_hreg(s, a->rn);
7143             TCGv_i32 tm = read_fp_hreg(s, a->rm);
7144             TCGv_i32 ta = read_fp_hreg(s, a->ra);
7145 
7146             if (neg_a) {
7147                 gen_vfp_maybe_ah_negh(s, ta, ta);
7148             }
7149             if (neg_n) {
7150                 gen_vfp_maybe_ah_negh(s, tn, tn);
7151             }
7152             fpst = fpstatus_ptr(FPST_A64_F16);
7153             gen_helper_advsimd_muladdh(ta, tn, tm, ta, fpst);
7154             write_fp_hreg_merging(s, a->rd, a->ra, ta);
7155         }
7156         break;
7157 
7158     default:
7159         return false;
7160     }
7161     return true;
7162 }
7163 
7164 TRANS(FMADD, do_fmadd, a, false, false)
7165 TRANS(FNMADD, do_fmadd, a, true, true)
7166 TRANS(FMSUB, do_fmadd, a, false, true)
7167 TRANS(FNMSUB, do_fmadd, a, true, false)
7168 
7169 /*
7170  * Advanced SIMD Across Lanes
7171  */
7172 
7173 static bool do_int_reduction(DisasContext *s, arg_qrr_e *a, bool widen,
7174                              MemOp src_sign, NeonGenTwo64OpFn *fn)
7175 {
7176     TCGv_i64 tcg_res, tcg_elt;
7177     MemOp src_mop = a->esz | src_sign;
7178     int elements = (a->q ? 16 : 8) >> a->esz;
7179 
7180     /* Reject MO_64, and MO_32 without Q: a minimum of 4 elements. */
7181     if (elements < 4) {
7182         return false;
7183     }
7184     if (!fp_access_check(s)) {
7185         return true;
7186     }
7187 
7188     tcg_res = tcg_temp_new_i64();
7189     tcg_elt = tcg_temp_new_i64();
7190 
7191     read_vec_element(s, tcg_res, a->rn, 0, src_mop);
7192     for (int i = 1; i < elements; i++) {
7193         read_vec_element(s, tcg_elt, a->rn, i, src_mop);
7194         fn(tcg_res, tcg_res, tcg_elt);
7195     }
7196 
7197     tcg_gen_ext_i64(tcg_res, tcg_res, a->esz + widen);
7198     write_fp_dreg(s, a->rd, tcg_res);
7199     return true;
7200 }
7201 
7202 TRANS(ADDV, do_int_reduction, a, false, 0, tcg_gen_add_i64)
7203 TRANS(SADDLV, do_int_reduction, a, true, MO_SIGN, tcg_gen_add_i64)
7204 TRANS(UADDLV, do_int_reduction, a, true, 0, tcg_gen_add_i64)
7205 TRANS(SMAXV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smax_i64)
7206 TRANS(UMAXV, do_int_reduction, a, false, 0, tcg_gen_umax_i64)
7207 TRANS(SMINV, do_int_reduction, a, false, MO_SIGN, tcg_gen_smin_i64)
7208 TRANS(UMINV, do_int_reduction, a, false, 0, tcg_gen_umin_i64)
7209 
7210 /*
7211  * do_fp_reduction helper
7212  *
7213  * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7214  * important for correct NaN propagation that we do these
7215  * operations in exactly the order specified by the pseudocode.
7216  *
7217  * This is a recursive function.
7218  */
7219 static TCGv_i32 do_reduction_op(DisasContext *s, int rn, MemOp esz,
7220                                 int ebase, int ecount, TCGv_ptr fpst,
7221                                 NeonGenTwoSingleOpFn *fn)
7222 {
7223     if (ecount == 1) {
7224         TCGv_i32 tcg_elem = tcg_temp_new_i32();
7225         read_vec_element_i32(s, tcg_elem, rn, ebase, esz);
7226         return tcg_elem;
7227     } else {
7228         int half = ecount >> 1;
7229         TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7230 
7231         tcg_hi = do_reduction_op(s, rn, esz, ebase + half, half, fpst, fn);
7232         tcg_lo = do_reduction_op(s, rn, esz, ebase, half, fpst, fn);
7233         tcg_res = tcg_temp_new_i32();
7234 
7235         fn(tcg_res, tcg_lo, tcg_hi, fpst);
7236         return tcg_res;
7237     }
7238 }
7239 
7240 static bool do_fp_reduction(DisasContext *s, arg_qrr_e *a,
7241                             NeonGenTwoSingleOpFn *fnormal,
7242                             NeonGenTwoSingleOpFn *fah)
7243 {
7244     if (fp_access_check(s)) {
7245         MemOp esz = a->esz;
7246         int elts = (a->q ? 16 : 8) >> esz;
7247         TCGv_ptr fpst = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
7248         TCGv_i32 res = do_reduction_op(s, a->rn, esz, 0, elts, fpst,
7249                                        s->fpcr_ah ? fah : fnormal);
7250         write_fp_sreg(s, a->rd, res);
7251     }
7252     return true;
7253 }
7254 
7255 TRANS_FEAT(FMAXNMV_h, aa64_fp16, do_fp_reduction, a,
7256            gen_helper_vfp_maxnumh, gen_helper_vfp_maxnumh)
7257 TRANS_FEAT(FMINNMV_h, aa64_fp16, do_fp_reduction, a,
7258            gen_helper_vfp_minnumh, gen_helper_vfp_minnumh)
7259 TRANS_FEAT(FMAXV_h, aa64_fp16, do_fp_reduction, a,
7260            gen_helper_vfp_maxh, gen_helper_vfp_ah_maxh)
7261 TRANS_FEAT(FMINV_h, aa64_fp16, do_fp_reduction, a,
7262            gen_helper_vfp_minh, gen_helper_vfp_ah_minh)
7263 
7264 TRANS(FMAXNMV_s, do_fp_reduction, a,
7265       gen_helper_vfp_maxnums, gen_helper_vfp_maxnums)
7266 TRANS(FMINNMV_s, do_fp_reduction, a,
7267       gen_helper_vfp_minnums, gen_helper_vfp_minnums)
7268 TRANS(FMAXV_s, do_fp_reduction, a, gen_helper_vfp_maxs, gen_helper_vfp_ah_maxs)
7269 TRANS(FMINV_s, do_fp_reduction, a, gen_helper_vfp_mins, gen_helper_vfp_ah_mins)
7270 
7271 /*
7272  * Floating-point Immediate
7273  */
7274 
7275 static bool trans_FMOVI_s(DisasContext *s, arg_FMOVI_s *a)
7276 {
7277     int check = fp_access_check_scalar_hsd(s, a->esz);
7278     uint64_t imm;
7279 
7280     if (check <= 0) {
7281         return check == 0;
7282     }
7283 
7284     imm = vfp_expand_imm(a->esz, a->imm);
7285     write_fp_dreg(s, a->rd, tcg_constant_i64(imm));
7286     return true;
7287 }
7288 
7289 /*
7290  * Floating point compare, conditional compare
7291  */
7292 
7293 static void handle_fp_compare(DisasContext *s, int size,
7294                               unsigned int rn, unsigned int rm,
7295                               bool cmp_with_zero, bool signal_all_nans)
7296 {
7297     TCGv_i64 tcg_flags = tcg_temp_new_i64();
7298     TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_A64_F16 : FPST_A64);
7299 
7300     if (size == MO_64) {
7301         TCGv_i64 tcg_vn, tcg_vm;
7302 
7303         tcg_vn = read_fp_dreg(s, rn);
7304         if (cmp_with_zero) {
7305             tcg_vm = tcg_constant_i64(0);
7306         } else {
7307             tcg_vm = read_fp_dreg(s, rm);
7308         }
7309         if (signal_all_nans) {
7310             gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7311         } else {
7312             gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7313         }
7314     } else {
7315         TCGv_i32 tcg_vn = tcg_temp_new_i32();
7316         TCGv_i32 tcg_vm = tcg_temp_new_i32();
7317 
7318         read_vec_element_i32(s, tcg_vn, rn, 0, size);
7319         if (cmp_with_zero) {
7320             tcg_gen_movi_i32(tcg_vm, 0);
7321         } else {
7322             read_vec_element_i32(s, tcg_vm, rm, 0, size);
7323         }
7324 
7325         switch (size) {
7326         case MO_32:
7327             if (signal_all_nans) {
7328                 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7329             } else {
7330                 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7331             }
7332             break;
7333         case MO_16:
7334             if (signal_all_nans) {
7335                 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7336             } else {
7337                 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
7338             }
7339             break;
7340         default:
7341             g_assert_not_reached();
7342         }
7343     }
7344 
7345     gen_set_nzcv(tcg_flags);
7346 }
7347 
7348 /* FCMP, FCMPE */
7349 static bool trans_FCMP(DisasContext *s, arg_FCMP *a)
7350 {
7351     int check = fp_access_check_scalar_hsd(s, a->esz);
7352 
7353     if (check <= 0) {
7354         return check == 0;
7355     }
7356 
7357     handle_fp_compare(s, a->esz, a->rn, a->rm, a->z, a->e);
7358     return true;
7359 }
7360 
7361 /* FCCMP, FCCMPE */
7362 static bool trans_FCCMP(DisasContext *s, arg_FCCMP *a)
7363 {
7364     TCGLabel *label_continue = NULL;
7365     int check = fp_access_check_scalar_hsd(s, a->esz);
7366 
7367     if (check <= 0) {
7368         return check == 0;
7369     }
7370 
7371     if (a->cond < 0x0e) { /* not always */
7372         TCGLabel *label_match = gen_new_label();
7373         label_continue = gen_new_label();
7374         arm_gen_test_cc(a->cond, label_match);
7375         /* nomatch: */
7376         gen_set_nzcv(tcg_constant_i64(a->nzcv << 28));
7377         tcg_gen_br(label_continue);
7378         gen_set_label(label_match);
7379     }
7380 
7381     handle_fp_compare(s, a->esz, a->rn, a->rm, false, a->e);
7382 
7383     if (label_continue) {
7384         gen_set_label(label_continue);
7385     }
7386     return true;
7387 }
7388 
7389 /*
7390  * Advanced SIMD Modified Immediate
7391  */
7392 
7393 static bool trans_FMOVI_v_h(DisasContext *s, arg_FMOVI_v_h *a)
7394 {
7395     if (!dc_isar_feature(aa64_fp16, s)) {
7396         return false;
7397     }
7398     if (fp_access_check(s)) {
7399         tcg_gen_gvec_dup_imm(MO_16, vec_full_reg_offset(s, a->rd),
7400                              a->q ? 16 : 8, vec_full_reg_size(s),
7401                              vfp_expand_imm(MO_16, a->abcdefgh));
7402     }
7403     return true;
7404 }
7405 
7406 static void gen_movi(unsigned vece, uint32_t dofs, uint32_t aofs,
7407                      int64_t c, uint32_t oprsz, uint32_t maxsz)
7408 {
7409     tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, c);
7410 }
7411 
7412 static bool trans_Vimm(DisasContext *s, arg_Vimm *a)
7413 {
7414     GVecGen2iFn *fn;
7415 
7416     /* Handle decode of cmode/op here between ORR/BIC/MOVI */
7417     if ((a->cmode & 1) && a->cmode < 12) {
7418         /* For op=1, the imm will be inverted, so BIC becomes AND. */
7419         fn = a->op ? tcg_gen_gvec_andi : tcg_gen_gvec_ori;
7420     } else {
7421         /* There is one unallocated cmode/op combination in this space */
7422         if (a->cmode == 15 && a->op == 1 && a->q == 0) {
7423             return false;
7424         }
7425         fn = gen_movi;
7426     }
7427 
7428     if (fp_access_check(s)) {
7429         uint64_t imm = asimd_imm_const(a->abcdefgh, a->cmode, a->op);
7430         gen_gvec_fn2i(s, a->q, a->rd, a->rd, imm, fn, MO_64);
7431     }
7432     return true;
7433 }
7434 
7435 /*
7436  * Advanced SIMD Shift by Immediate
7437  */
7438 
7439 static bool do_vec_shift_imm(DisasContext *s, arg_qrri_e *a, GVecGen2iFn *fn)
7440 {
7441     if (fp_access_check(s)) {
7442         gen_gvec_fn2i(s, a->q, a->rd, a->rn, a->imm, fn, a->esz);
7443     }
7444     return true;
7445 }
7446 
7447 TRANS(SSHR_v, do_vec_shift_imm, a, gen_gvec_sshr)
7448 TRANS(USHR_v, do_vec_shift_imm, a, gen_gvec_ushr)
7449 TRANS(SSRA_v, do_vec_shift_imm, a, gen_gvec_ssra)
7450 TRANS(USRA_v, do_vec_shift_imm, a, gen_gvec_usra)
7451 TRANS(SRSHR_v, do_vec_shift_imm, a, gen_gvec_srshr)
7452 TRANS(URSHR_v, do_vec_shift_imm, a, gen_gvec_urshr)
7453 TRANS(SRSRA_v, do_vec_shift_imm, a, gen_gvec_srsra)
7454 TRANS(URSRA_v, do_vec_shift_imm, a, gen_gvec_ursra)
7455 TRANS(SRI_v, do_vec_shift_imm, a, gen_gvec_sri)
7456 TRANS(SHL_v, do_vec_shift_imm, a, tcg_gen_gvec_shli)
7457 TRANS(SLI_v, do_vec_shift_imm, a, gen_gvec_sli);
7458 TRANS(SQSHL_vi, do_vec_shift_imm, a, gen_neon_sqshli)
7459 TRANS(UQSHL_vi, do_vec_shift_imm, a, gen_neon_uqshli)
7460 TRANS(SQSHLU_vi, do_vec_shift_imm, a, gen_neon_sqshlui)
7461 
7462 static bool do_vec_shift_imm_wide(DisasContext *s, arg_qrri_e *a, bool is_u)
7463 {
7464     TCGv_i64 tcg_rn, tcg_rd;
7465     int esz = a->esz;
7466     int esize;
7467 
7468     if (!fp_access_check(s)) {
7469         return true;
7470     }
7471 
7472     /*
7473      * For the LL variants the store is larger than the load,
7474      * so if rd == rn we would overwrite parts of our input.
7475      * So load everything right now and use shifts in the main loop.
7476      */
7477     tcg_rd = tcg_temp_new_i64();
7478     tcg_rn = tcg_temp_new_i64();
7479     read_vec_element(s, tcg_rn, a->rn, a->q, MO_64);
7480 
7481     esize = 8 << esz;
7482     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7483         if (is_u) {
7484             tcg_gen_extract_i64(tcg_rd, tcg_rn, i * esize, esize);
7485         } else {
7486             tcg_gen_sextract_i64(tcg_rd, tcg_rn, i * esize, esize);
7487         }
7488         tcg_gen_shli_i64(tcg_rd, tcg_rd, a->imm);
7489         write_vec_element(s, tcg_rd, a->rd, i, esz + 1);
7490     }
7491     clear_vec_high(s, true, a->rd);
7492     return true;
7493 }
7494 
7495 TRANS(SSHLL_v, do_vec_shift_imm_wide, a, false)
7496 TRANS(USHLL_v, do_vec_shift_imm_wide, a, true)
7497 
7498 static void gen_sshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7499 {
7500     assert(shift >= 0 && shift <= 64);
7501     tcg_gen_sari_i64(dst, src, MIN(shift, 63));
7502 }
7503 
7504 static void gen_ushr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7505 {
7506     assert(shift >= 0 && shift <= 64);
7507     if (shift == 64) {
7508         tcg_gen_movi_i64(dst, 0);
7509     } else {
7510         tcg_gen_shri_i64(dst, src, shift);
7511     }
7512 }
7513 
7514 static void gen_ssra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7515 {
7516     gen_sshr_d(src, src, shift);
7517     tcg_gen_add_i64(dst, dst, src);
7518 }
7519 
7520 static void gen_usra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7521 {
7522     gen_ushr_d(src, src, shift);
7523     tcg_gen_add_i64(dst, dst, src);
7524 }
7525 
7526 static void gen_srshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7527 {
7528     assert(shift >= 0 && shift <= 32);
7529     if (shift) {
7530         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7531         tcg_gen_add_i64(dst, src, rnd);
7532         tcg_gen_sari_i64(dst, dst, shift);
7533     } else {
7534         tcg_gen_mov_i64(dst, src);
7535     }
7536 }
7537 
7538 static void gen_urshr_bhs(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7539 {
7540     assert(shift >= 0 && shift <= 32);
7541     if (shift) {
7542         TCGv_i64 rnd = tcg_constant_i64(1ull << (shift - 1));
7543         tcg_gen_add_i64(dst, src, rnd);
7544         tcg_gen_shri_i64(dst, dst, shift);
7545     } else {
7546         tcg_gen_mov_i64(dst, src);
7547     }
7548 }
7549 
7550 static void gen_srshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7551 {
7552     assert(shift >= 0 && shift <= 64);
7553     if (shift == 0) {
7554         tcg_gen_mov_i64(dst, src);
7555     } else if (shift == 64) {
7556         /* Extension of sign bit (0,-1) plus sign bit (0,1) is zero. */
7557         tcg_gen_movi_i64(dst, 0);
7558     } else {
7559         TCGv_i64 rnd = tcg_temp_new_i64();
7560         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7561         tcg_gen_sari_i64(dst, src, shift);
7562         tcg_gen_add_i64(dst, dst, rnd);
7563     }
7564 }
7565 
7566 static void gen_urshr_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7567 {
7568     assert(shift >= 0 && shift <= 64);
7569     if (shift == 0) {
7570         tcg_gen_mov_i64(dst, src);
7571     } else if (shift == 64) {
7572         /* Rounding will propagate bit 63 into bit 64. */
7573         tcg_gen_shri_i64(dst, src, 63);
7574     } else {
7575         TCGv_i64 rnd = tcg_temp_new_i64();
7576         tcg_gen_extract_i64(rnd, src, shift - 1, 1);
7577         tcg_gen_shri_i64(dst, src, shift);
7578         tcg_gen_add_i64(dst, dst, rnd);
7579     }
7580 }
7581 
7582 static void gen_srsra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7583 {
7584     gen_srshr_d(src, src, shift);
7585     tcg_gen_add_i64(dst, dst, src);
7586 }
7587 
7588 static void gen_ursra_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7589 {
7590     gen_urshr_d(src, src, shift);
7591     tcg_gen_add_i64(dst, dst, src);
7592 }
7593 
7594 static void gen_sri_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7595 {
7596     /* If shift is 64, dst is unchanged. */
7597     if (shift != 64) {
7598         tcg_gen_shri_i64(src, src, shift);
7599         tcg_gen_deposit_i64(dst, dst, src, 0, 64 - shift);
7600     }
7601 }
7602 
7603 static void gen_sli_d(TCGv_i64 dst, TCGv_i64 src, int64_t shift)
7604 {
7605     tcg_gen_deposit_i64(dst, dst, src, shift, 64 - shift);
7606 }
7607 
7608 static bool do_vec_shift_imm_narrow(DisasContext *s, arg_qrri_e *a,
7609                                     WideShiftImmFn * const fns[3], MemOp sign)
7610 {
7611     TCGv_i64 tcg_rn, tcg_rd;
7612     int esz = a->esz;
7613     int esize;
7614     WideShiftImmFn *fn;
7615 
7616     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7617 
7618     if (!fp_access_check(s)) {
7619         return true;
7620     }
7621 
7622     tcg_rn = tcg_temp_new_i64();
7623     tcg_rd = tcg_temp_new_i64();
7624     tcg_gen_movi_i64(tcg_rd, 0);
7625 
7626     fn = fns[esz];
7627     esize = 8 << esz;
7628     for (int i = 0, elements = 8 >> esz; i < elements; i++) {
7629         read_vec_element(s, tcg_rn, a->rn, i, (esz + 1) | sign);
7630         fn(tcg_rn, tcg_rn, a->imm);
7631         tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, esize * i, esize);
7632     }
7633 
7634     write_vec_element(s, tcg_rd, a->rd, a->q, MO_64);
7635     clear_vec_high(s, a->q, a->rd);
7636     return true;
7637 }
7638 
7639 static void gen_sqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7640 {
7641     tcg_gen_sari_i64(d, s, i);
7642     tcg_gen_ext16u_i64(d, d);
7643     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7644 }
7645 
7646 static void gen_sqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7647 {
7648     tcg_gen_sari_i64(d, s, i);
7649     tcg_gen_ext32u_i64(d, d);
7650     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7651 }
7652 
7653 static void gen_sqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7654 {
7655     gen_sshr_d(d, s, i);
7656     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7657 }
7658 
7659 static void gen_uqshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7660 {
7661     tcg_gen_shri_i64(d, s, i);
7662     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7663 }
7664 
7665 static void gen_uqshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7666 {
7667     tcg_gen_shri_i64(d, s, i);
7668     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7669 }
7670 
7671 static void gen_uqshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7672 {
7673     gen_ushr_d(d, s, i);
7674     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7675 }
7676 
7677 static void gen_sqshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7678 {
7679     tcg_gen_sari_i64(d, s, i);
7680     tcg_gen_ext16u_i64(d, d);
7681     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7682 }
7683 
7684 static void gen_sqshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7685 {
7686     tcg_gen_sari_i64(d, s, i);
7687     tcg_gen_ext32u_i64(d, d);
7688     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7689 }
7690 
7691 static void gen_sqshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7692 {
7693     gen_sshr_d(d, s, i);
7694     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7695 }
7696 
7697 static void gen_sqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7698 {
7699     gen_srshr_bhs(d, s, i);
7700     tcg_gen_ext16u_i64(d, d);
7701     gen_helper_neon_narrow_sat_s8(d, tcg_env, d);
7702 }
7703 
7704 static void gen_sqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7705 {
7706     gen_srshr_bhs(d, s, i);
7707     tcg_gen_ext32u_i64(d, d);
7708     gen_helper_neon_narrow_sat_s16(d, tcg_env, d);
7709 }
7710 
7711 static void gen_sqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7712 {
7713     gen_srshr_d(d, s, i);
7714     gen_helper_neon_narrow_sat_s32(d, tcg_env, d);
7715 }
7716 
7717 static void gen_uqrshrn_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7718 {
7719     gen_urshr_bhs(d, s, i);
7720     gen_helper_neon_narrow_sat_u8(d, tcg_env, d);
7721 }
7722 
7723 static void gen_uqrshrn_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7724 {
7725     gen_urshr_bhs(d, s, i);
7726     gen_helper_neon_narrow_sat_u16(d, tcg_env, d);
7727 }
7728 
7729 static void gen_uqrshrn_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7730 {
7731     gen_urshr_d(d, s, i);
7732     gen_helper_neon_narrow_sat_u32(d, tcg_env, d);
7733 }
7734 
7735 static void gen_sqrshrun_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7736 {
7737     gen_srshr_bhs(d, s, i);
7738     tcg_gen_ext16u_i64(d, d);
7739     gen_helper_neon_unarrow_sat8(d, tcg_env, d);
7740 }
7741 
7742 static void gen_sqrshrun_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7743 {
7744     gen_srshr_bhs(d, s, i);
7745     tcg_gen_ext32u_i64(d, d);
7746     gen_helper_neon_unarrow_sat16(d, tcg_env, d);
7747 }
7748 
7749 static void gen_sqrshrun_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7750 {
7751     gen_srshr_d(d, s, i);
7752     gen_helper_neon_unarrow_sat32(d, tcg_env, d);
7753 }
7754 
7755 static WideShiftImmFn * const shrn_fns[] = {
7756     tcg_gen_shri_i64,
7757     tcg_gen_shri_i64,
7758     gen_ushr_d,
7759 };
7760 TRANS(SHRN_v, do_vec_shift_imm_narrow, a, shrn_fns, 0)
7761 
7762 static WideShiftImmFn * const rshrn_fns[] = {
7763     gen_urshr_bhs,
7764     gen_urshr_bhs,
7765     gen_urshr_d,
7766 };
7767 TRANS(RSHRN_v, do_vec_shift_imm_narrow, a, rshrn_fns, 0)
7768 
7769 static WideShiftImmFn * const sqshrn_fns[] = {
7770     gen_sqshrn_b,
7771     gen_sqshrn_h,
7772     gen_sqshrn_s,
7773 };
7774 TRANS(SQSHRN_v, do_vec_shift_imm_narrow, a, sqshrn_fns, MO_SIGN)
7775 
7776 static WideShiftImmFn * const uqshrn_fns[] = {
7777     gen_uqshrn_b,
7778     gen_uqshrn_h,
7779     gen_uqshrn_s,
7780 };
7781 TRANS(UQSHRN_v, do_vec_shift_imm_narrow, a, uqshrn_fns, 0)
7782 
7783 static WideShiftImmFn * const sqshrun_fns[] = {
7784     gen_sqshrun_b,
7785     gen_sqshrun_h,
7786     gen_sqshrun_s,
7787 };
7788 TRANS(SQSHRUN_v, do_vec_shift_imm_narrow, a, sqshrun_fns, MO_SIGN)
7789 
7790 static WideShiftImmFn * const sqrshrn_fns[] = {
7791     gen_sqrshrn_b,
7792     gen_sqrshrn_h,
7793     gen_sqrshrn_s,
7794 };
7795 TRANS(SQRSHRN_v, do_vec_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN)
7796 
7797 static WideShiftImmFn * const uqrshrn_fns[] = {
7798     gen_uqrshrn_b,
7799     gen_uqrshrn_h,
7800     gen_uqrshrn_s,
7801 };
7802 TRANS(UQRSHRN_v, do_vec_shift_imm_narrow, a, uqrshrn_fns, 0)
7803 
7804 static WideShiftImmFn * const sqrshrun_fns[] = {
7805     gen_sqrshrun_b,
7806     gen_sqrshrun_h,
7807     gen_sqrshrun_s,
7808 };
7809 TRANS(SQRSHRUN_v, do_vec_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN)
7810 
7811 /*
7812  * Advanced SIMD Scalar Shift by Immediate
7813  */
7814 
7815 static bool do_scalar_shift_imm(DisasContext *s, arg_rri_e *a,
7816                                 WideShiftImmFn *fn, bool accumulate,
7817                                 MemOp sign)
7818 {
7819     if (fp_access_check(s)) {
7820         TCGv_i64 rd = tcg_temp_new_i64();
7821         TCGv_i64 rn = tcg_temp_new_i64();
7822 
7823         read_vec_element(s, rn, a->rn, 0, a->esz | sign);
7824         if (accumulate) {
7825             read_vec_element(s, rd, a->rd, 0, a->esz | sign);
7826         }
7827         fn(rd, rn, a->imm);
7828         write_fp_dreg(s, a->rd, rd);
7829     }
7830     return true;
7831 }
7832 
7833 TRANS(SSHR_s, do_scalar_shift_imm, a, gen_sshr_d, false, 0)
7834 TRANS(USHR_s, do_scalar_shift_imm, a, gen_ushr_d, false, 0)
7835 TRANS(SSRA_s, do_scalar_shift_imm, a, gen_ssra_d, true, 0)
7836 TRANS(USRA_s, do_scalar_shift_imm, a, gen_usra_d, true, 0)
7837 TRANS(SRSHR_s, do_scalar_shift_imm, a, gen_srshr_d, false, 0)
7838 TRANS(URSHR_s, do_scalar_shift_imm, a, gen_urshr_d, false, 0)
7839 TRANS(SRSRA_s, do_scalar_shift_imm, a, gen_srsra_d, true, 0)
7840 TRANS(URSRA_s, do_scalar_shift_imm, a, gen_ursra_d, true, 0)
7841 TRANS(SRI_s, do_scalar_shift_imm, a, gen_sri_d, true, 0)
7842 
7843 TRANS(SHL_s, do_scalar_shift_imm, a, tcg_gen_shli_i64, false, 0)
7844 TRANS(SLI_s, do_scalar_shift_imm, a, gen_sli_d, true, 0)
7845 
7846 static void trunc_i64_env_imm(TCGv_i64 d, TCGv_i64 s, int64_t i,
7847                               NeonGenTwoOpEnvFn *fn)
7848 {
7849     TCGv_i32 t = tcg_temp_new_i32();
7850     tcg_gen_extrl_i64_i32(t, s);
7851     fn(t, tcg_env, t, tcg_constant_i32(i));
7852     tcg_gen_extu_i32_i64(d, t);
7853 }
7854 
7855 static void gen_sqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7856 {
7857     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s8);
7858 }
7859 
7860 static void gen_sqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7861 {
7862     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s16);
7863 }
7864 
7865 static void gen_sqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7866 {
7867     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_s32);
7868 }
7869 
7870 static void gen_sqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7871 {
7872     gen_helper_neon_qshl_s64(d, tcg_env, s, tcg_constant_i64(i));
7873 }
7874 
7875 static void gen_uqshli_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7876 {
7877     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u8);
7878 }
7879 
7880 static void gen_uqshli_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7881 {
7882     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u16);
7883 }
7884 
7885 static void gen_uqshli_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7886 {
7887     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshl_u32);
7888 }
7889 
7890 static void gen_uqshli_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7891 {
7892     gen_helper_neon_qshl_u64(d, tcg_env, s, tcg_constant_i64(i));
7893 }
7894 
7895 static void gen_sqshlui_b(TCGv_i64 d, TCGv_i64 s, int64_t i)
7896 {
7897     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s8);
7898 }
7899 
7900 static void gen_sqshlui_h(TCGv_i64 d, TCGv_i64 s, int64_t i)
7901 {
7902     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s16);
7903 }
7904 
7905 static void gen_sqshlui_s(TCGv_i64 d, TCGv_i64 s, int64_t i)
7906 {
7907     trunc_i64_env_imm(d, s, i, gen_helper_neon_qshlu_s32);
7908 }
7909 
7910 static void gen_sqshlui_d(TCGv_i64 d, TCGv_i64 s, int64_t i)
7911 {
7912     gen_helper_neon_qshlu_s64(d, tcg_env, s, tcg_constant_i64(i));
7913 }
7914 
7915 static WideShiftImmFn * const f_scalar_sqshli[] = {
7916     gen_sqshli_b, gen_sqshli_h, gen_sqshli_s, gen_sqshli_d
7917 };
7918 
7919 static WideShiftImmFn * const f_scalar_uqshli[] = {
7920     gen_uqshli_b, gen_uqshli_h, gen_uqshli_s, gen_uqshli_d
7921 };
7922 
7923 static WideShiftImmFn * const f_scalar_sqshlui[] = {
7924     gen_sqshlui_b, gen_sqshlui_h, gen_sqshlui_s, gen_sqshlui_d
7925 };
7926 
7927 /* Note that the helpers sign-extend their inputs, so don't do it here. */
7928 TRANS(SQSHL_si, do_scalar_shift_imm, a, f_scalar_sqshli[a->esz], false, 0)
7929 TRANS(UQSHL_si, do_scalar_shift_imm, a, f_scalar_uqshli[a->esz], false, 0)
7930 TRANS(SQSHLU_si, do_scalar_shift_imm, a, f_scalar_sqshlui[a->esz], false, 0)
7931 
7932 static bool do_scalar_shift_imm_narrow(DisasContext *s, arg_rri_e *a,
7933                                        WideShiftImmFn * const fns[3],
7934                                        MemOp sign, bool zext)
7935 {
7936     MemOp esz = a->esz;
7937 
7938     tcg_debug_assert(esz >= MO_8 && esz <= MO_32);
7939 
7940     if (fp_access_check(s)) {
7941         TCGv_i64 rd = tcg_temp_new_i64();
7942         TCGv_i64 rn = tcg_temp_new_i64();
7943 
7944         read_vec_element(s, rn, a->rn, 0, (esz + 1) | sign);
7945         fns[esz](rd, rn, a->imm);
7946         if (zext) {
7947             tcg_gen_ext_i64(rd, rd, esz);
7948         }
7949         write_fp_dreg(s, a->rd, rd);
7950     }
7951     return true;
7952 }
7953 
7954 TRANS(SQSHRN_si, do_scalar_shift_imm_narrow, a, sqshrn_fns, MO_SIGN, true)
7955 TRANS(SQRSHRN_si, do_scalar_shift_imm_narrow, a, sqrshrn_fns, MO_SIGN, true)
7956 TRANS(UQSHRN_si, do_scalar_shift_imm_narrow, a, uqshrn_fns, 0, false)
7957 TRANS(UQRSHRN_si, do_scalar_shift_imm_narrow, a, uqrshrn_fns, 0, false)
7958 TRANS(SQSHRUN_si, do_scalar_shift_imm_narrow, a, sqshrun_fns, MO_SIGN, false)
7959 TRANS(SQRSHRUN_si, do_scalar_shift_imm_narrow, a, sqrshrun_fns, MO_SIGN, false)
7960 
7961 static bool do_div(DisasContext *s, arg_rrr_sf *a, bool is_signed)
7962 {
7963     TCGv_i64 tcg_n, tcg_m, tcg_rd;
7964     tcg_rd = cpu_reg(s, a->rd);
7965 
7966     if (!a->sf && is_signed) {
7967         tcg_n = tcg_temp_new_i64();
7968         tcg_m = tcg_temp_new_i64();
7969         tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, a->rn));
7970         tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, a->rm));
7971     } else {
7972         tcg_n = read_cpu_reg(s, a->rn, a->sf);
7973         tcg_m = read_cpu_reg(s, a->rm, a->sf);
7974     }
7975 
7976     if (is_signed) {
7977         gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
7978     } else {
7979         gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
7980     }
7981 
7982     if (!a->sf) { /* zero extend final result */
7983         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
7984     }
7985     return true;
7986 }
7987 
7988 TRANS(SDIV, do_div, a, true)
7989 TRANS(UDIV, do_div, a, false)
7990 
7991 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
7992  * Note that it is the caller's responsibility to ensure that the
7993  * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
7994  * mandated semantics for out of range shifts.
7995  */
7996 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
7997                       enum a64_shift_type shift_type, TCGv_i64 shift_amount)
7998 {
7999     switch (shift_type) {
8000     case A64_SHIFT_TYPE_LSL:
8001         tcg_gen_shl_i64(dst, src, shift_amount);
8002         break;
8003     case A64_SHIFT_TYPE_LSR:
8004         tcg_gen_shr_i64(dst, src, shift_amount);
8005         break;
8006     case A64_SHIFT_TYPE_ASR:
8007         if (!sf) {
8008             tcg_gen_ext32s_i64(dst, src);
8009         }
8010         tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
8011         break;
8012     case A64_SHIFT_TYPE_ROR:
8013         if (sf) {
8014             tcg_gen_rotr_i64(dst, src, shift_amount);
8015         } else {
8016             TCGv_i32 t0, t1;
8017             t0 = tcg_temp_new_i32();
8018             t1 = tcg_temp_new_i32();
8019             tcg_gen_extrl_i64_i32(t0, src);
8020             tcg_gen_extrl_i64_i32(t1, shift_amount);
8021             tcg_gen_rotr_i32(t0, t0, t1);
8022             tcg_gen_extu_i32_i64(dst, t0);
8023         }
8024         break;
8025     default:
8026         assert(FALSE); /* all shift types should be handled */
8027         break;
8028     }
8029 
8030     if (!sf) { /* zero extend final result */
8031         tcg_gen_ext32u_i64(dst, dst);
8032     }
8033 }
8034 
8035 /* Shift a TCGv src by immediate, put result in dst.
8036  * The shift amount must be in range (this should always be true as the
8037  * relevant instructions will UNDEF on bad shift immediates).
8038  */
8039 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
8040                           enum a64_shift_type shift_type, unsigned int shift_i)
8041 {
8042     assert(shift_i < (sf ? 64 : 32));
8043 
8044     if (shift_i == 0) {
8045         tcg_gen_mov_i64(dst, src);
8046     } else {
8047         shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
8048     }
8049 }
8050 
8051 static bool do_shift_reg(DisasContext *s, arg_rrr_sf *a,
8052                          enum a64_shift_type shift_type)
8053 {
8054     TCGv_i64 tcg_shift = tcg_temp_new_i64();
8055     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8056     TCGv_i64 tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8057 
8058     tcg_gen_andi_i64(tcg_shift, cpu_reg(s, a->rm), a->sf ? 63 : 31);
8059     shift_reg(tcg_rd, tcg_rn, a->sf, shift_type, tcg_shift);
8060     return true;
8061 }
8062 
8063 TRANS(LSLV, do_shift_reg, a, A64_SHIFT_TYPE_LSL)
8064 TRANS(LSRV, do_shift_reg, a, A64_SHIFT_TYPE_LSR)
8065 TRANS(ASRV, do_shift_reg, a, A64_SHIFT_TYPE_ASR)
8066 TRANS(RORV, do_shift_reg, a, A64_SHIFT_TYPE_ROR)
8067 
8068 static bool do_crc32(DisasContext *s, arg_rrr_e *a, bool crc32c)
8069 {
8070     TCGv_i64 tcg_acc, tcg_val, tcg_rd;
8071     TCGv_i32 tcg_bytes;
8072 
8073     switch (a->esz) {
8074     case MO_8:
8075     case MO_16:
8076     case MO_32:
8077         tcg_val = tcg_temp_new_i64();
8078         tcg_gen_extract_i64(tcg_val, cpu_reg(s, a->rm), 0, 8 << a->esz);
8079         break;
8080     case MO_64:
8081         tcg_val = cpu_reg(s, a->rm);
8082         break;
8083     default:
8084         g_assert_not_reached();
8085     }
8086     tcg_acc = cpu_reg(s, a->rn);
8087     tcg_bytes = tcg_constant_i32(1 << a->esz);
8088     tcg_rd = cpu_reg(s, a->rd);
8089 
8090     if (crc32c) {
8091         gen_helper_crc32c_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8092     } else {
8093         gen_helper_crc32_64(tcg_rd, tcg_acc, tcg_val, tcg_bytes);
8094     }
8095     return true;
8096 }
8097 
8098 TRANS_FEAT(CRC32, aa64_crc32, do_crc32, a, false)
8099 TRANS_FEAT(CRC32C, aa64_crc32, do_crc32, a, true)
8100 
8101 static bool do_subp(DisasContext *s, arg_rrr *a, bool setflag)
8102 {
8103     TCGv_i64 tcg_n = read_cpu_reg_sp(s, a->rn, true);
8104     TCGv_i64 tcg_m = read_cpu_reg_sp(s, a->rm, true);
8105     TCGv_i64 tcg_d = cpu_reg(s, a->rd);
8106 
8107     tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
8108     tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
8109 
8110     if (setflag) {
8111         gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
8112     } else {
8113         tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
8114     }
8115     return true;
8116 }
8117 
8118 TRANS_FEAT(SUBP, aa64_mte_insn_reg, do_subp, a, false)
8119 TRANS_FEAT(SUBPS, aa64_mte_insn_reg, do_subp, a, true)
8120 
8121 static bool trans_IRG(DisasContext *s, arg_rrr *a)
8122 {
8123     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8124         TCGv_i64 tcg_rd = cpu_reg_sp(s, a->rd);
8125         TCGv_i64 tcg_rn = cpu_reg_sp(s, a->rn);
8126 
8127         if (s->ata[0]) {
8128             gen_helper_irg(tcg_rd, tcg_env, tcg_rn, cpu_reg(s, a->rm));
8129         } else {
8130             gen_address_with_allocation_tag0(tcg_rd, tcg_rn);
8131         }
8132         return true;
8133     }
8134     return false;
8135 }
8136 
8137 static bool trans_GMI(DisasContext *s, arg_rrr *a)
8138 {
8139     if (dc_isar_feature(aa64_mte_insn_reg, s)) {
8140         TCGv_i64 t = tcg_temp_new_i64();
8141 
8142         tcg_gen_extract_i64(t, cpu_reg_sp(s, a->rn), 56, 4);
8143         tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
8144         tcg_gen_or_i64(cpu_reg(s, a->rd), cpu_reg(s, a->rm), t);
8145         return true;
8146     }
8147     return false;
8148 }
8149 
8150 static bool trans_PACGA(DisasContext *s, arg_rrr *a)
8151 {
8152     if (dc_isar_feature(aa64_pauth, s)) {
8153         gen_helper_pacga(cpu_reg(s, a->rd), tcg_env,
8154                          cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm));
8155         return true;
8156     }
8157     return false;
8158 }
8159 
8160 typedef void ArithOneOp(TCGv_i64, TCGv_i64);
8161 
8162 static bool gen_rr(DisasContext *s, int rd, int rn, ArithOneOp fn)
8163 {
8164     fn(cpu_reg(s, rd), cpu_reg(s, rn));
8165     return true;
8166 }
8167 
8168 static void gen_rbit32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8169 {
8170     TCGv_i32 t32 = tcg_temp_new_i32();
8171 
8172     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8173     gen_helper_rbit(t32, t32);
8174     tcg_gen_extu_i32_i64(tcg_rd, t32);
8175 }
8176 
8177 static void gen_rev16_xx(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 mask)
8178 {
8179     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8180 
8181     tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
8182     tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
8183     tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
8184     tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
8185     tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
8186 }
8187 
8188 static void gen_rev16_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8189 {
8190     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff));
8191 }
8192 
8193 static void gen_rev16_64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8194 {
8195     gen_rev16_xx(tcg_rd, tcg_rn, tcg_constant_i64(0x00ff00ff00ff00ffull));
8196 }
8197 
8198 static void gen_rev_32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8199 {
8200     tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
8201 }
8202 
8203 static void gen_rev32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8204 {
8205     tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
8206     tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
8207 }
8208 
8209 TRANS(RBIT, gen_rr, a->rd, a->rn, a->sf ? gen_helper_rbit64 : gen_rbit32)
8210 TRANS(REV16, gen_rr, a->rd, a->rn, a->sf ? gen_rev16_64 : gen_rev16_32)
8211 TRANS(REV32, gen_rr, a->rd, a->rn, a->sf ? gen_rev32 : gen_rev_32)
8212 TRANS(REV64, gen_rr, a->rd, a->rn, tcg_gen_bswap64_i64)
8213 
8214 static void gen_clz32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8215 {
8216     TCGv_i32 t32 = tcg_temp_new_i32();
8217 
8218     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8219     tcg_gen_clzi_i32(t32, t32, 32);
8220     tcg_gen_extu_i32_i64(tcg_rd, t32);
8221 }
8222 
8223 static void gen_clz64(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8224 {
8225     tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
8226 }
8227 
8228 static void gen_cls32(TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
8229 {
8230     TCGv_i32 t32 = tcg_temp_new_i32();
8231 
8232     tcg_gen_extrl_i64_i32(t32, tcg_rn);
8233     tcg_gen_clrsb_i32(t32, t32);
8234     tcg_gen_extu_i32_i64(tcg_rd, t32);
8235 }
8236 
8237 TRANS(CLZ, gen_rr, a->rd, a->rn, a->sf ? gen_clz64 : gen_clz32)
8238 TRANS(CLS, gen_rr, a->rd, a->rn, a->sf ? tcg_gen_clrsb_i64 : gen_cls32)
8239 
8240 static bool gen_pacaut(DisasContext *s, arg_pacaut *a, NeonGenTwo64OpEnvFn fn)
8241 {
8242     TCGv_i64 tcg_rd, tcg_rn;
8243 
8244     if (a->z) {
8245         if (a->rn != 31) {
8246             return false;
8247         }
8248         tcg_rn = tcg_constant_i64(0);
8249     } else {
8250         tcg_rn = cpu_reg_sp(s, a->rn);
8251     }
8252     if (s->pauth_active) {
8253         tcg_rd = cpu_reg(s, a->rd);
8254         fn(tcg_rd, tcg_env, tcg_rd, tcg_rn);
8255     }
8256     return true;
8257 }
8258 
8259 TRANS_FEAT(PACIA, aa64_pauth, gen_pacaut, a, gen_helper_pacia)
8260 TRANS_FEAT(PACIB, aa64_pauth, gen_pacaut, a, gen_helper_pacib)
8261 TRANS_FEAT(PACDA, aa64_pauth, gen_pacaut, a, gen_helper_pacda)
8262 TRANS_FEAT(PACDB, aa64_pauth, gen_pacaut, a, gen_helper_pacdb)
8263 
8264 TRANS_FEAT(AUTIA, aa64_pauth, gen_pacaut, a, gen_helper_autia)
8265 TRANS_FEAT(AUTIB, aa64_pauth, gen_pacaut, a, gen_helper_autib)
8266 TRANS_FEAT(AUTDA, aa64_pauth, gen_pacaut, a, gen_helper_autda)
8267 TRANS_FEAT(AUTDB, aa64_pauth, gen_pacaut, a, gen_helper_autdb)
8268 
8269 static bool do_xpac(DisasContext *s, int rd, NeonGenOne64OpEnvFn *fn)
8270 {
8271     if (s->pauth_active) {
8272         TCGv_i64 tcg_rd = cpu_reg(s, rd);
8273         fn(tcg_rd, tcg_env, tcg_rd);
8274     }
8275     return true;
8276 }
8277 
8278 TRANS_FEAT(XPACI, aa64_pauth, do_xpac, a->rd, gen_helper_xpaci)
8279 TRANS_FEAT(XPACD, aa64_pauth, do_xpac, a->rd, gen_helper_xpacd)
8280 
8281 static bool do_logic_reg(DisasContext *s, arg_logic_shift *a,
8282                          ArithTwoOp *fn, ArithTwoOp *inv_fn, bool setflags)
8283 {
8284     TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
8285 
8286     if (!a->sf && (a->sa & (1 << 5))) {
8287         return false;
8288     }
8289 
8290     tcg_rd = cpu_reg(s, a->rd);
8291     tcg_rn = cpu_reg(s, a->rn);
8292 
8293     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8294     if (a->sa) {
8295         shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8296     }
8297 
8298     (a->n ? inv_fn : fn)(tcg_rd, tcg_rn, tcg_rm);
8299     if (!a->sf) {
8300         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8301     }
8302     if (setflags) {
8303         gen_logic_CC(a->sf, tcg_rd);
8304     }
8305     return true;
8306 }
8307 
8308 static bool trans_ORR_r(DisasContext *s, arg_logic_shift *a)
8309 {
8310     /*
8311      * Unshifted ORR and ORN with WZR/XZR is the standard encoding for
8312      * register-register MOV and MVN, so it is worth special casing.
8313      */
8314     if (a->sa == 0 && a->st == 0 && a->rn == 31) {
8315         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8316         TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8317 
8318         if (a->n) {
8319             tcg_gen_not_i64(tcg_rd, tcg_rm);
8320             if (!a->sf) {
8321                 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8322             }
8323         } else {
8324             if (a->sf) {
8325                 tcg_gen_mov_i64(tcg_rd, tcg_rm);
8326             } else {
8327                 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
8328             }
8329         }
8330         return true;
8331     }
8332 
8333     return do_logic_reg(s, a, tcg_gen_or_i64, tcg_gen_orc_i64, false);
8334 }
8335 
8336 TRANS(AND_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, false)
8337 TRANS(ANDS_r, do_logic_reg, a, tcg_gen_and_i64, tcg_gen_andc_i64, true)
8338 TRANS(EOR_r, do_logic_reg, a, tcg_gen_xor_i64, tcg_gen_eqv_i64, false)
8339 
8340 static bool do_addsub_ext(DisasContext *s, arg_addsub_ext *a,
8341                           bool sub_op, bool setflags)
8342 {
8343     TCGv_i64 tcg_rm, tcg_rn, tcg_rd, tcg_result;
8344 
8345     if (a->sa > 4) {
8346         return false;
8347     }
8348 
8349     /* non-flag setting ops may use SP */
8350     if (!setflags) {
8351         tcg_rd = cpu_reg_sp(s, a->rd);
8352     } else {
8353         tcg_rd = cpu_reg(s, a->rd);
8354     }
8355     tcg_rn = read_cpu_reg_sp(s, a->rn, a->sf);
8356 
8357     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8358     ext_and_shift_reg(tcg_rm, tcg_rm, a->st, a->sa);
8359 
8360     tcg_result = tcg_temp_new_i64();
8361     if (!setflags) {
8362         if (sub_op) {
8363             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8364         } else {
8365             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8366         }
8367     } else {
8368         if (sub_op) {
8369             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8370         } else {
8371             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8372         }
8373     }
8374 
8375     if (a->sf) {
8376         tcg_gen_mov_i64(tcg_rd, tcg_result);
8377     } else {
8378         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8379     }
8380     return true;
8381 }
8382 
8383 TRANS(ADD_ext, do_addsub_ext, a, false, false)
8384 TRANS(SUB_ext, do_addsub_ext, a, true, false)
8385 TRANS(ADDS_ext, do_addsub_ext, a, false, true)
8386 TRANS(SUBS_ext, do_addsub_ext, a, true, true)
8387 
8388 static bool do_addsub_reg(DisasContext *s, arg_addsub_shift *a,
8389                           bool sub_op, bool setflags)
8390 {
8391     TCGv_i64 tcg_rd, tcg_rn, tcg_rm, tcg_result;
8392 
8393     if (a->st == 3 || (!a->sf && (a->sa & 32))) {
8394         return false;
8395     }
8396 
8397     tcg_rd = cpu_reg(s, a->rd);
8398     tcg_rn = read_cpu_reg(s, a->rn, a->sf);
8399     tcg_rm = read_cpu_reg(s, a->rm, a->sf);
8400 
8401     shift_reg_imm(tcg_rm, tcg_rm, a->sf, a->st, a->sa);
8402 
8403     tcg_result = tcg_temp_new_i64();
8404     if (!setflags) {
8405         if (sub_op) {
8406             tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
8407         } else {
8408             tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
8409         }
8410     } else {
8411         if (sub_op) {
8412             gen_sub_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8413         } else {
8414             gen_add_CC(a->sf, tcg_result, tcg_rn, tcg_rm);
8415         }
8416     }
8417 
8418     if (a->sf) {
8419         tcg_gen_mov_i64(tcg_rd, tcg_result);
8420     } else {
8421         tcg_gen_ext32u_i64(tcg_rd, tcg_result);
8422     }
8423     return true;
8424 }
8425 
8426 TRANS(ADD_r, do_addsub_reg, a, false, false)
8427 TRANS(SUB_r, do_addsub_reg, a, true, false)
8428 TRANS(ADDS_r, do_addsub_reg, a, false, true)
8429 TRANS(SUBS_r, do_addsub_reg, a, true, true)
8430 
8431 static bool do_mulh(DisasContext *s, arg_rrr *a,
8432                     void (*fn)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
8433 {
8434     TCGv_i64 discard = tcg_temp_new_i64();
8435     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8436     TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
8437     TCGv_i64 tcg_rm = cpu_reg(s, a->rm);
8438 
8439     fn(discard, tcg_rd, tcg_rn, tcg_rm);
8440     return true;
8441 }
8442 
8443 TRANS(SMULH, do_mulh, a, tcg_gen_muls2_i64)
8444 TRANS(UMULH, do_mulh, a, tcg_gen_mulu2_i64)
8445 
8446 static bool do_muladd(DisasContext *s, arg_rrrr *a,
8447                       bool sf, bool is_sub, MemOp mop)
8448 {
8449     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8450     TCGv_i64 tcg_op1, tcg_op2;
8451 
8452     if (mop == MO_64) {
8453         tcg_op1 = cpu_reg(s, a->rn);
8454         tcg_op2 = cpu_reg(s, a->rm);
8455     } else {
8456         tcg_op1 = tcg_temp_new_i64();
8457         tcg_op2 = tcg_temp_new_i64();
8458         tcg_gen_ext_i64(tcg_op1, cpu_reg(s, a->rn), mop);
8459         tcg_gen_ext_i64(tcg_op2, cpu_reg(s, a->rm), mop);
8460     }
8461 
8462     if (a->ra == 31 && !is_sub) {
8463         /* Special-case MADD with rA == XZR; it is the standard MUL alias */
8464         tcg_gen_mul_i64(tcg_rd, tcg_op1, tcg_op2);
8465     } else {
8466         TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8467         TCGv_i64 tcg_ra = cpu_reg(s, a->ra);
8468 
8469         tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
8470         if (is_sub) {
8471             tcg_gen_sub_i64(tcg_rd, tcg_ra, tcg_tmp);
8472         } else {
8473             tcg_gen_add_i64(tcg_rd, tcg_ra, tcg_tmp);
8474         }
8475     }
8476 
8477     if (!sf) {
8478         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8479     }
8480     return true;
8481 }
8482 
8483 TRANS(MADD_w, do_muladd, a, false, false, MO_64)
8484 TRANS(MSUB_w, do_muladd, a, false, true, MO_64)
8485 TRANS(MADD_x, do_muladd, a, true, false, MO_64)
8486 TRANS(MSUB_x, do_muladd, a, true, true, MO_64)
8487 
8488 TRANS(SMADDL, do_muladd, a, true, false, MO_SL)
8489 TRANS(SMSUBL, do_muladd, a, true, true, MO_SL)
8490 TRANS(UMADDL, do_muladd, a, true, false, MO_UL)
8491 TRANS(UMSUBL, do_muladd, a, true, true, MO_UL)
8492 
8493 static bool do_adc_sbc(DisasContext *s, arg_rrr_sf *a,
8494                        bool is_sub, bool setflags)
8495 {
8496     TCGv_i64 tcg_y, tcg_rn, tcg_rd;
8497 
8498     tcg_rd = cpu_reg(s, a->rd);
8499     tcg_rn = cpu_reg(s, a->rn);
8500 
8501     if (is_sub) {
8502         tcg_y = tcg_temp_new_i64();
8503         tcg_gen_not_i64(tcg_y, cpu_reg(s, a->rm));
8504     } else {
8505         tcg_y = cpu_reg(s, a->rm);
8506     }
8507 
8508     if (setflags) {
8509         gen_adc_CC(a->sf, tcg_rd, tcg_rn, tcg_y);
8510     } else {
8511         gen_adc(a->sf, tcg_rd, tcg_rn, tcg_y);
8512     }
8513     return true;
8514 }
8515 
8516 TRANS(ADC, do_adc_sbc, a, false, false)
8517 TRANS(SBC, do_adc_sbc, a, true, false)
8518 TRANS(ADCS, do_adc_sbc, a, false, true)
8519 TRANS(SBCS, do_adc_sbc, a, true, true)
8520 
8521 static bool trans_RMIF(DisasContext *s, arg_RMIF *a)
8522 {
8523     int mask = a->mask;
8524     TCGv_i64 tcg_rn;
8525     TCGv_i32 nzcv;
8526 
8527     if (!dc_isar_feature(aa64_condm_4, s)) {
8528         return false;
8529     }
8530 
8531     tcg_rn = read_cpu_reg(s, a->rn, 1);
8532     tcg_gen_rotri_i64(tcg_rn, tcg_rn, a->imm);
8533 
8534     nzcv = tcg_temp_new_i32();
8535     tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
8536 
8537     if (mask & 8) { /* N */
8538         tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
8539     }
8540     if (mask & 4) { /* Z */
8541         tcg_gen_not_i32(cpu_ZF, nzcv);
8542         tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
8543     }
8544     if (mask & 2) { /* C */
8545         tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
8546     }
8547     if (mask & 1) { /* V */
8548         tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
8549     }
8550     return true;
8551 }
8552 
8553 static bool do_setf(DisasContext *s, int rn, int shift)
8554 {
8555     TCGv_i32 tmp = tcg_temp_new_i32();
8556 
8557     tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
8558     tcg_gen_shli_i32(cpu_NF, tmp, shift);
8559     tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
8560     tcg_gen_mov_i32(cpu_ZF, cpu_NF);
8561     tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
8562     return true;
8563 }
8564 
8565 TRANS_FEAT(SETF8, aa64_condm_4, do_setf, a->rn, 24)
8566 TRANS_FEAT(SETF16, aa64_condm_4, do_setf, a->rn, 16)
8567 
8568 /* CCMP, CCMN */
8569 static bool trans_CCMP(DisasContext *s, arg_CCMP *a)
8570 {
8571     TCGv_i32 tcg_t0 = tcg_temp_new_i32();
8572     TCGv_i32 tcg_t1 = tcg_temp_new_i32();
8573     TCGv_i32 tcg_t2 = tcg_temp_new_i32();
8574     TCGv_i64 tcg_tmp = tcg_temp_new_i64();
8575     TCGv_i64 tcg_rn, tcg_y;
8576     DisasCompare c;
8577     unsigned nzcv;
8578     bool has_andc;
8579 
8580     /* Set T0 = !COND.  */
8581     arm_test_cc(&c, a->cond);
8582     tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
8583 
8584     /* Load the arguments for the new comparison.  */
8585     if (a->imm) {
8586         tcg_y = tcg_constant_i64(a->y);
8587     } else {
8588         tcg_y = cpu_reg(s, a->y);
8589     }
8590     tcg_rn = cpu_reg(s, a->rn);
8591 
8592     /* Set the flags for the new comparison.  */
8593     if (a->op) {
8594         gen_sub_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8595     } else {
8596         gen_add_CC(a->sf, tcg_tmp, tcg_rn, tcg_y);
8597     }
8598 
8599     /*
8600      * If COND was false, force the flags to #nzcv.  Compute two masks
8601      * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
8602      * For tcg hosts that support ANDC, we can make do with just T1.
8603      * In either case, allow the tcg optimizer to delete any unused mask.
8604      */
8605     tcg_gen_neg_i32(tcg_t1, tcg_t0);
8606     tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
8607 
8608     nzcv = a->nzcv;
8609     has_andc = tcg_op_supported(INDEX_op_andc, TCG_TYPE_I32, 0);
8610     if (nzcv & 8) { /* N */
8611         tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
8612     } else {
8613         if (has_andc) {
8614             tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
8615         } else {
8616             tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
8617         }
8618     }
8619     if (nzcv & 4) { /* Z */
8620         if (has_andc) {
8621             tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
8622         } else {
8623             tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
8624         }
8625     } else {
8626         tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
8627     }
8628     if (nzcv & 2) { /* C */
8629         tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
8630     } else {
8631         if (has_andc) {
8632             tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
8633         } else {
8634             tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
8635         }
8636     }
8637     if (nzcv & 1) { /* V */
8638         tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
8639     } else {
8640         if (has_andc) {
8641             tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
8642         } else {
8643             tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
8644         }
8645     }
8646     return true;
8647 }
8648 
8649 static bool trans_CSEL(DisasContext *s, arg_CSEL *a)
8650 {
8651     TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
8652     TCGv_i64 zero = tcg_constant_i64(0);
8653     DisasCompare64 c;
8654 
8655     a64_test_cc(&c, a->cond);
8656 
8657     if (a->rn == 31 && a->rm == 31 && (a->else_inc ^ a->else_inv)) {
8658         /* CSET & CSETM.  */
8659         if (a->else_inv) {
8660             tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
8661                                    tcg_rd, c.value, zero);
8662         } else {
8663             tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
8664                                 tcg_rd, c.value, zero);
8665         }
8666     } else {
8667         TCGv_i64 t_true = cpu_reg(s, a->rn);
8668         TCGv_i64 t_false = read_cpu_reg(s, a->rm, 1);
8669 
8670         if (a->else_inv && a->else_inc) {
8671             tcg_gen_neg_i64(t_false, t_false);
8672         } else if (a->else_inv) {
8673             tcg_gen_not_i64(t_false, t_false);
8674         } else if (a->else_inc) {
8675             tcg_gen_addi_i64(t_false, t_false, 1);
8676         }
8677         tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
8678     }
8679 
8680     if (!a->sf) {
8681         tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8682     }
8683     return true;
8684 }
8685 
8686 typedef struct FPScalar1Int {
8687     void (*gen_h)(TCGv_i32, TCGv_i32);
8688     void (*gen_s)(TCGv_i32, TCGv_i32);
8689     void (*gen_d)(TCGv_i64, TCGv_i64);
8690 } FPScalar1Int;
8691 
8692 static bool do_fp1_scalar_int(DisasContext *s, arg_rr_e *a,
8693                               const FPScalar1Int *f,
8694                               bool merging)
8695 {
8696     switch (a->esz) {
8697     case MO_64:
8698         if (fp_access_check(s)) {
8699             TCGv_i64 t = read_fp_dreg(s, a->rn);
8700             f->gen_d(t, t);
8701             if (merging) {
8702                 write_fp_dreg_merging(s, a->rd, a->rd, t);
8703             } else {
8704                 write_fp_dreg(s, a->rd, t);
8705             }
8706         }
8707         break;
8708     case MO_32:
8709         if (fp_access_check(s)) {
8710             TCGv_i32 t = read_fp_sreg(s, a->rn);
8711             f->gen_s(t, t);
8712             if (merging) {
8713                 write_fp_sreg_merging(s, a->rd, a->rd, t);
8714             } else {
8715                 write_fp_sreg(s, a->rd, t);
8716             }
8717         }
8718         break;
8719     case MO_16:
8720         if (!dc_isar_feature(aa64_fp16, s)) {
8721             return false;
8722         }
8723         if (fp_access_check(s)) {
8724             TCGv_i32 t = read_fp_hreg(s, a->rn);
8725             f->gen_h(t, t);
8726             if (merging) {
8727                 write_fp_hreg_merging(s, a->rd, a->rd, t);
8728             } else {
8729                 write_fp_sreg(s, a->rd, t);
8730             }
8731         }
8732         break;
8733     default:
8734         return false;
8735     }
8736     return true;
8737 }
8738 
8739 static bool do_fp1_scalar_int_2fn(DisasContext *s, arg_rr_e *a,
8740                                   const FPScalar1Int *fnormal,
8741                                   const FPScalar1Int *fah)
8742 {
8743     return do_fp1_scalar_int(s, a, s->fpcr_ah ? fah : fnormal, true);
8744 }
8745 
8746 static const FPScalar1Int f_scalar_fmov = {
8747     tcg_gen_mov_i32,
8748     tcg_gen_mov_i32,
8749     tcg_gen_mov_i64,
8750 };
8751 TRANS(FMOV_s, do_fp1_scalar_int, a, &f_scalar_fmov, false)
8752 
8753 static const FPScalar1Int f_scalar_fabs = {
8754     gen_vfp_absh,
8755     gen_vfp_abss,
8756     gen_vfp_absd,
8757 };
8758 static const FPScalar1Int f_scalar_ah_fabs = {
8759     gen_vfp_ah_absh,
8760     gen_vfp_ah_abss,
8761     gen_vfp_ah_absd,
8762 };
8763 TRANS(FABS_s, do_fp1_scalar_int_2fn, a, &f_scalar_fabs, &f_scalar_ah_fabs)
8764 
8765 static const FPScalar1Int f_scalar_fneg = {
8766     gen_vfp_negh,
8767     gen_vfp_negs,
8768     gen_vfp_negd,
8769 };
8770 static const FPScalar1Int f_scalar_ah_fneg = {
8771     gen_vfp_ah_negh,
8772     gen_vfp_ah_negs,
8773     gen_vfp_ah_negd,
8774 };
8775 TRANS(FNEG_s, do_fp1_scalar_int_2fn, a, &f_scalar_fneg, &f_scalar_ah_fneg)
8776 
8777 typedef struct FPScalar1 {
8778     void (*gen_h)(TCGv_i32, TCGv_i32, TCGv_ptr);
8779     void (*gen_s)(TCGv_i32, TCGv_i32, TCGv_ptr);
8780     void (*gen_d)(TCGv_i64, TCGv_i64, TCGv_ptr);
8781 } FPScalar1;
8782 
8783 static bool do_fp1_scalar_with_fpsttype(DisasContext *s, arg_rr_e *a,
8784                                         const FPScalar1 *f, int rmode,
8785                                         ARMFPStatusFlavour fpsttype)
8786 {
8787     TCGv_i32 tcg_rmode = NULL;
8788     TCGv_ptr fpst;
8789     TCGv_i64 t64;
8790     TCGv_i32 t32;
8791     int check = fp_access_check_scalar_hsd(s, a->esz);
8792 
8793     if (check <= 0) {
8794         return check == 0;
8795     }
8796 
8797     fpst = fpstatus_ptr(fpsttype);
8798     if (rmode >= 0) {
8799         tcg_rmode = gen_set_rmode(rmode, fpst);
8800     }
8801 
8802     switch (a->esz) {
8803     case MO_64:
8804         t64 = read_fp_dreg(s, a->rn);
8805         f->gen_d(t64, t64, fpst);
8806         write_fp_dreg_merging(s, a->rd, a->rd, t64);
8807         break;
8808     case MO_32:
8809         t32 = read_fp_sreg(s, a->rn);
8810         f->gen_s(t32, t32, fpst);
8811         write_fp_sreg_merging(s, a->rd, a->rd, t32);
8812         break;
8813     case MO_16:
8814         t32 = read_fp_hreg(s, a->rn);
8815         f->gen_h(t32, t32, fpst);
8816         write_fp_hreg_merging(s, a->rd, a->rd, t32);
8817         break;
8818     default:
8819         g_assert_not_reached();
8820     }
8821 
8822     if (rmode >= 0) {
8823         gen_restore_rmode(tcg_rmode, fpst);
8824     }
8825     return true;
8826 }
8827 
8828 static bool do_fp1_scalar(DisasContext *s, arg_rr_e *a,
8829                           const FPScalar1 *f, int rmode)
8830 {
8831     return do_fp1_scalar_with_fpsttype(s, a, f, rmode,
8832                                        a->esz == MO_16 ?
8833                                        FPST_A64_F16 : FPST_A64);
8834 }
8835 
8836 static bool do_fp1_scalar_ah(DisasContext *s, arg_rr_e *a,
8837                              const FPScalar1 *f, int rmode)
8838 {
8839     return do_fp1_scalar_with_fpsttype(s, a, f, rmode, select_ah_fpst(s, a->esz));
8840 }
8841 
8842 static const FPScalar1 f_scalar_fsqrt = {
8843     gen_helper_vfp_sqrth,
8844     gen_helper_vfp_sqrts,
8845     gen_helper_vfp_sqrtd,
8846 };
8847 TRANS(FSQRT_s, do_fp1_scalar, a, &f_scalar_fsqrt, -1)
8848 
8849 static const FPScalar1 f_scalar_frint = {
8850     gen_helper_advsimd_rinth,
8851     gen_helper_rints,
8852     gen_helper_rintd,
8853 };
8854 TRANS(FRINTN_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
8855 TRANS(FRINTP_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_POSINF)
8856 TRANS(FRINTM_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_NEGINF)
8857 TRANS(FRINTZ_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_ZERO)
8858 TRANS(FRINTA_s, do_fp1_scalar, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
8859 TRANS(FRINTI_s, do_fp1_scalar, a, &f_scalar_frint, -1)
8860 
8861 static const FPScalar1 f_scalar_frintx = {
8862     gen_helper_advsimd_rinth_exact,
8863     gen_helper_rints_exact,
8864     gen_helper_rintd_exact,
8865 };
8866 TRANS(FRINTX_s, do_fp1_scalar, a, &f_scalar_frintx, -1)
8867 
8868 static bool trans_BFCVT_s(DisasContext *s, arg_rr_e *a)
8869 {
8870     ARMFPStatusFlavour fpsttype = s->fpcr_ah ? FPST_AH : FPST_A64;
8871     TCGv_i32 t32;
8872     int check;
8873 
8874     if (!dc_isar_feature(aa64_bf16, s)) {
8875         return false;
8876     }
8877 
8878     check = fp_access_check_scalar_hsd(s, a->esz);
8879 
8880     if (check <= 0) {
8881         return check == 0;
8882     }
8883 
8884     t32 = read_fp_sreg(s, a->rn);
8885     gen_helper_bfcvt(t32, t32, fpstatus_ptr(fpsttype));
8886     write_fp_hreg_merging(s, a->rd, a->rd, t32);
8887     return true;
8888 }
8889 
8890 static const FPScalar1 f_scalar_frint32 = {
8891     NULL,
8892     gen_helper_frint32_s,
8893     gen_helper_frint32_d,
8894 };
8895 TRANS_FEAT(FRINT32Z_s, aa64_frint, do_fp1_scalar, a,
8896            &f_scalar_frint32, FPROUNDING_ZERO)
8897 TRANS_FEAT(FRINT32X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint32, -1)
8898 
8899 static const FPScalar1 f_scalar_frint64 = {
8900     NULL,
8901     gen_helper_frint64_s,
8902     gen_helper_frint64_d,
8903 };
8904 TRANS_FEAT(FRINT64Z_s, aa64_frint, do_fp1_scalar, a,
8905            &f_scalar_frint64, FPROUNDING_ZERO)
8906 TRANS_FEAT(FRINT64X_s, aa64_frint, do_fp1_scalar, a, &f_scalar_frint64, -1)
8907 
8908 static const FPScalar1 f_scalar_frecpe = {
8909     gen_helper_recpe_f16,
8910     gen_helper_recpe_f32,
8911     gen_helper_recpe_f64,
8912 };
8913 static const FPScalar1 f_scalar_frecpe_rpres = {
8914     gen_helper_recpe_f16,
8915     gen_helper_recpe_rpres_f32,
8916     gen_helper_recpe_f64,
8917 };
8918 TRANS(FRECPE_s, do_fp1_scalar_ah, a,
8919       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8920       &f_scalar_frecpe_rpres : &f_scalar_frecpe, -1)
8921 
8922 static const FPScalar1 f_scalar_frecpx = {
8923     gen_helper_frecpx_f16,
8924     gen_helper_frecpx_f32,
8925     gen_helper_frecpx_f64,
8926 };
8927 TRANS(FRECPX_s, do_fp1_scalar_ah, a, &f_scalar_frecpx, -1)
8928 
8929 static const FPScalar1 f_scalar_frsqrte = {
8930     gen_helper_rsqrte_f16,
8931     gen_helper_rsqrte_f32,
8932     gen_helper_rsqrte_f64,
8933 };
8934 static const FPScalar1 f_scalar_frsqrte_rpres = {
8935     gen_helper_rsqrte_f16,
8936     gen_helper_rsqrte_rpres_f32,
8937     gen_helper_rsqrte_f64,
8938 };
8939 TRANS(FRSQRTE_s, do_fp1_scalar_ah, a,
8940       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ?
8941       &f_scalar_frsqrte_rpres : &f_scalar_frsqrte, -1)
8942 
8943 static bool trans_FCVT_s_ds(DisasContext *s, arg_rr *a)
8944 {
8945     if (fp_access_check(s)) {
8946         TCGv_i32 tcg_rn = read_fp_sreg(s, a->rn);
8947         TCGv_i64 tcg_rd = tcg_temp_new_i64();
8948         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8949 
8950         gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, fpst);
8951         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
8952     }
8953     return true;
8954 }
8955 
8956 static bool trans_FCVT_s_hs(DisasContext *s, arg_rr *a)
8957 {
8958     if (fp_access_check(s)) {
8959         TCGv_i32 tmp = read_fp_sreg(s, a->rn);
8960         TCGv_i32 ahp = get_ahp_flag();
8961         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8962 
8963         gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp);
8964         /* write_fp_hreg_merging is OK here because top half of result is zero */
8965         write_fp_hreg_merging(s, a->rd, a->rd, tmp);
8966     }
8967     return true;
8968 }
8969 
8970 static bool trans_FCVT_s_sd(DisasContext *s, arg_rr *a)
8971 {
8972     if (fp_access_check(s)) {
8973         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8974         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8975         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8976 
8977         gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, fpst);
8978         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
8979     }
8980     return true;
8981 }
8982 
8983 static bool trans_FCVT_s_hd(DisasContext *s, arg_rr *a)
8984 {
8985     if (fp_access_check(s)) {
8986         TCGv_i64 tcg_rn = read_fp_dreg(s, a->rn);
8987         TCGv_i32 tcg_rd = tcg_temp_new_i32();
8988         TCGv_i32 ahp = get_ahp_flag();
8989         TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
8990 
8991         gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
8992         /* write_fp_hreg_merging is OK here because top half of tcg_rd is zero */
8993         write_fp_hreg_merging(s, a->rd, a->rd, tcg_rd);
8994     }
8995     return true;
8996 }
8997 
8998 static bool trans_FCVT_s_sh(DisasContext *s, arg_rr *a)
8999 {
9000     if (fp_access_check(s)) {
9001         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9002         TCGv_i32 tcg_rd = tcg_temp_new_i32();
9003         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9004         TCGv_i32 tcg_ahp = get_ahp_flag();
9005 
9006         gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9007         write_fp_sreg_merging(s, a->rd, a->rd, tcg_rd);
9008     }
9009     return true;
9010 }
9011 
9012 static bool trans_FCVT_s_dh(DisasContext *s, arg_rr *a)
9013 {
9014     if (fp_access_check(s)) {
9015         TCGv_i32 tcg_rn = read_fp_hreg(s, a->rn);
9016         TCGv_i64 tcg_rd = tcg_temp_new_i64();
9017         TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_A64_F16);
9018         TCGv_i32 tcg_ahp = get_ahp_flag();
9019 
9020         gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
9021         write_fp_dreg_merging(s, a->rd, a->rd, tcg_rd);
9022     }
9023     return true;
9024 }
9025 
9026 static bool do_cvtf_scalar(DisasContext *s, MemOp esz, int rd, int shift,
9027                            TCGv_i64 tcg_int, bool is_signed)
9028 {
9029     TCGv_ptr tcg_fpstatus;
9030     TCGv_i32 tcg_shift, tcg_single;
9031     TCGv_i64 tcg_double;
9032 
9033     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9034     tcg_shift = tcg_constant_i32(shift);
9035 
9036     switch (esz) {
9037     case MO_64:
9038         tcg_double = tcg_temp_new_i64();
9039         if (is_signed) {
9040             gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9041         } else {
9042             gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus);
9043         }
9044         write_fp_dreg_merging(s, rd, rd, tcg_double);
9045         break;
9046 
9047     case MO_32:
9048         tcg_single = tcg_temp_new_i32();
9049         if (is_signed) {
9050             gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9051         } else {
9052             gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9053         }
9054         write_fp_sreg_merging(s, rd, rd, tcg_single);
9055         break;
9056 
9057     case MO_16:
9058         tcg_single = tcg_temp_new_i32();
9059         if (is_signed) {
9060             gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9061         } else {
9062             gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus);
9063         }
9064         write_fp_hreg_merging(s, rd, rd, tcg_single);
9065         break;
9066 
9067     default:
9068         g_assert_not_reached();
9069     }
9070     return true;
9071 }
9072 
9073 static bool do_cvtf_g(DisasContext *s, arg_fcvt *a, bool is_signed)
9074 {
9075     TCGv_i64 tcg_int;
9076     int check = fp_access_check_scalar_hsd(s, a->esz);
9077 
9078     if (check <= 0) {
9079         return check == 0;
9080     }
9081 
9082     if (a->sf) {
9083         tcg_int = cpu_reg(s, a->rn);
9084     } else {
9085         tcg_int = read_cpu_reg(s, a->rn, true);
9086         if (is_signed) {
9087             tcg_gen_ext32s_i64(tcg_int, tcg_int);
9088         } else {
9089             tcg_gen_ext32u_i64(tcg_int, tcg_int);
9090         }
9091     }
9092     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9093 }
9094 
9095 TRANS(SCVTF_g, do_cvtf_g, a, true)
9096 TRANS(UCVTF_g, do_cvtf_g, a, false)
9097 
9098 /*
9099  * [US]CVTF (vector), scalar version.
9100  * Which sounds weird, but really just means input from fp register
9101  * instead of input from general register.  Input and output element
9102  * size are always equal.
9103  */
9104 static bool do_cvtf_f(DisasContext *s, arg_fcvt *a, bool is_signed)
9105 {
9106     TCGv_i64 tcg_int;
9107     int check = fp_access_check_scalar_hsd(s, a->esz);
9108 
9109     if (check <= 0) {
9110         return check == 0;
9111     }
9112 
9113     tcg_int = tcg_temp_new_i64();
9114     read_vec_element(s, tcg_int, a->rn, 0, a->esz | (is_signed ? MO_SIGN : 0));
9115     return do_cvtf_scalar(s, a->esz, a->rd, a->shift, tcg_int, is_signed);
9116 }
9117 
9118 TRANS(SCVTF_f, do_cvtf_f, a, true)
9119 TRANS(UCVTF_f, do_cvtf_f, a, false)
9120 
9121 static void do_fcvt_scalar(DisasContext *s, MemOp out, MemOp esz,
9122                            TCGv_i64 tcg_out, int shift, int rn,
9123                            ARMFPRounding rmode)
9124 {
9125     TCGv_ptr tcg_fpstatus;
9126     TCGv_i32 tcg_shift, tcg_rmode, tcg_single;
9127 
9128     tcg_fpstatus = fpstatus_ptr(esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9129     tcg_shift = tcg_constant_i32(shift);
9130     tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
9131 
9132     switch (esz) {
9133     case MO_64:
9134         read_vec_element(s, tcg_out, rn, 0, MO_64);
9135         switch (out) {
9136         case MO_64 | MO_SIGN:
9137             gen_helper_vfp_tosqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9138             break;
9139         case MO_64:
9140             gen_helper_vfp_touqd(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9141             break;
9142         case MO_32 | MO_SIGN:
9143             gen_helper_vfp_tosld(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9144             break;
9145         case MO_32:
9146             gen_helper_vfp_tould(tcg_out, tcg_out, tcg_shift, tcg_fpstatus);
9147             break;
9148         default:
9149             g_assert_not_reached();
9150         }
9151         break;
9152 
9153     case MO_32:
9154         tcg_single = read_fp_sreg(s, rn);
9155         switch (out) {
9156         case MO_64 | MO_SIGN:
9157             gen_helper_vfp_tosqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9158             break;
9159         case MO_64:
9160             gen_helper_vfp_touqs(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9161             break;
9162         case MO_32 | MO_SIGN:
9163             gen_helper_vfp_tosls(tcg_single, tcg_single,
9164                                  tcg_shift, tcg_fpstatus);
9165             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9166             break;
9167         case MO_32:
9168             gen_helper_vfp_touls(tcg_single, tcg_single,
9169                                  tcg_shift, tcg_fpstatus);
9170             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9171             break;
9172         default:
9173             g_assert_not_reached();
9174         }
9175         break;
9176 
9177     case MO_16:
9178         tcg_single = read_fp_hreg(s, rn);
9179         switch (out) {
9180         case MO_64 | MO_SIGN:
9181             gen_helper_vfp_tosqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9182             break;
9183         case MO_64:
9184             gen_helper_vfp_touqh(tcg_out, tcg_single, tcg_shift, tcg_fpstatus);
9185             break;
9186         case MO_32 | MO_SIGN:
9187             gen_helper_vfp_toslh(tcg_single, tcg_single,
9188                                  tcg_shift, tcg_fpstatus);
9189             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9190             break;
9191         case MO_32:
9192             gen_helper_vfp_toulh(tcg_single, tcg_single,
9193                                  tcg_shift, tcg_fpstatus);
9194             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9195             break;
9196         case MO_16 | MO_SIGN:
9197             gen_helper_vfp_toshh(tcg_single, tcg_single,
9198                                  tcg_shift, tcg_fpstatus);
9199             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9200             break;
9201         case MO_16:
9202             gen_helper_vfp_touhh(tcg_single, tcg_single,
9203                                  tcg_shift, tcg_fpstatus);
9204             tcg_gen_extu_i32_i64(tcg_out, tcg_single);
9205             break;
9206         default:
9207             g_assert_not_reached();
9208         }
9209         break;
9210 
9211     default:
9212         g_assert_not_reached();
9213     }
9214 
9215     gen_restore_rmode(tcg_rmode, tcg_fpstatus);
9216 }
9217 
9218 static bool do_fcvt_g(DisasContext *s, arg_fcvt *a,
9219                       ARMFPRounding rmode, bool is_signed)
9220 {
9221     TCGv_i64 tcg_int;
9222     int check = fp_access_check_scalar_hsd(s, a->esz);
9223 
9224     if (check <= 0) {
9225         return check == 0;
9226     }
9227 
9228     tcg_int = cpu_reg(s, a->rd);
9229     do_fcvt_scalar(s, (a->sf ? MO_64 : MO_32) | (is_signed ? MO_SIGN : 0),
9230                    a->esz, tcg_int, a->shift, a->rn, rmode);
9231 
9232     if (!a->sf) {
9233         tcg_gen_ext32u_i64(tcg_int, tcg_int);
9234     }
9235     return true;
9236 }
9237 
9238 TRANS(FCVTNS_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, true)
9239 TRANS(FCVTNU_g, do_fcvt_g, a, FPROUNDING_TIEEVEN, false)
9240 TRANS(FCVTPS_g, do_fcvt_g, a, FPROUNDING_POSINF, true)
9241 TRANS(FCVTPU_g, do_fcvt_g, a, FPROUNDING_POSINF, false)
9242 TRANS(FCVTMS_g, do_fcvt_g, a, FPROUNDING_NEGINF, true)
9243 TRANS(FCVTMU_g, do_fcvt_g, a, FPROUNDING_NEGINF, false)
9244 TRANS(FCVTZS_g, do_fcvt_g, a, FPROUNDING_ZERO, true)
9245 TRANS(FCVTZU_g, do_fcvt_g, a, FPROUNDING_ZERO, false)
9246 TRANS(FCVTAS_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, true)
9247 TRANS(FCVTAU_g, do_fcvt_g, a, FPROUNDING_TIEAWAY, false)
9248 
9249 /*
9250  * FCVT* (vector), scalar version.
9251  * Which sounds weird, but really just means output to fp register
9252  * instead of output to general register.  Input and output element
9253  * size are always equal.
9254  */
9255 static bool do_fcvt_f(DisasContext *s, arg_fcvt *a,
9256                       ARMFPRounding rmode, bool is_signed)
9257 {
9258     TCGv_i64 tcg_int;
9259     int check = fp_access_check_scalar_hsd(s, a->esz);
9260 
9261     if (check <= 0) {
9262         return check == 0;
9263     }
9264 
9265     tcg_int = tcg_temp_new_i64();
9266     do_fcvt_scalar(s, a->esz | (is_signed ? MO_SIGN : 0),
9267                    a->esz, tcg_int, a->shift, a->rn, rmode);
9268 
9269     if (!s->fpcr_nep) {
9270         clear_vec(s, a->rd);
9271     }
9272     write_vec_element(s, tcg_int, a->rd, 0, a->esz);
9273     return true;
9274 }
9275 
9276 TRANS(FCVTNS_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, true)
9277 TRANS(FCVTNU_f, do_fcvt_f, a, FPROUNDING_TIEEVEN, false)
9278 TRANS(FCVTPS_f, do_fcvt_f, a, FPROUNDING_POSINF, true)
9279 TRANS(FCVTPU_f, do_fcvt_f, a, FPROUNDING_POSINF, false)
9280 TRANS(FCVTMS_f, do_fcvt_f, a, FPROUNDING_NEGINF, true)
9281 TRANS(FCVTMU_f, do_fcvt_f, a, FPROUNDING_NEGINF, false)
9282 TRANS(FCVTZS_f, do_fcvt_f, a, FPROUNDING_ZERO, true)
9283 TRANS(FCVTZU_f, do_fcvt_f, a, FPROUNDING_ZERO, false)
9284 TRANS(FCVTAS_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, true)
9285 TRANS(FCVTAU_f, do_fcvt_f, a, FPROUNDING_TIEAWAY, false)
9286 
9287 static bool trans_FJCVTZS(DisasContext *s, arg_FJCVTZS *a)
9288 {
9289     if (!dc_isar_feature(aa64_jscvt, s)) {
9290         return false;
9291     }
9292     if (fp_access_check(s)) {
9293         TCGv_i64 t = read_fp_dreg(s, a->rn);
9294         TCGv_ptr fpstatus = fpstatus_ptr(FPST_A64);
9295 
9296         gen_helper_fjcvtzs(t, t, fpstatus);
9297 
9298         tcg_gen_ext32u_i64(cpu_reg(s, a->rd), t);
9299         tcg_gen_extrh_i64_i32(cpu_ZF, t);
9300         tcg_gen_movi_i32(cpu_CF, 0);
9301         tcg_gen_movi_i32(cpu_NF, 0);
9302         tcg_gen_movi_i32(cpu_VF, 0);
9303     }
9304     return true;
9305 }
9306 
9307 static bool trans_FMOV_hx(DisasContext *s, arg_rr *a)
9308 {
9309     if (!dc_isar_feature(aa64_fp16, s)) {
9310         return false;
9311     }
9312     if (fp_access_check(s)) {
9313         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9314         TCGv_i64 tmp = tcg_temp_new_i64();
9315         tcg_gen_ext16u_i64(tmp, tcg_rn);
9316         write_fp_dreg(s, a->rd, tmp);
9317     }
9318     return true;
9319 }
9320 
9321 static bool trans_FMOV_sw(DisasContext *s, arg_rr *a)
9322 {
9323     if (fp_access_check(s)) {
9324         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9325         TCGv_i64 tmp = tcg_temp_new_i64();
9326         tcg_gen_ext32u_i64(tmp, tcg_rn);
9327         write_fp_dreg(s, a->rd, tmp);
9328     }
9329     return true;
9330 }
9331 
9332 static bool trans_FMOV_dx(DisasContext *s, arg_rr *a)
9333 {
9334     if (fp_access_check(s)) {
9335         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9336         write_fp_dreg(s, a->rd, tcg_rn);
9337     }
9338     return true;
9339 }
9340 
9341 static bool trans_FMOV_ux(DisasContext *s, arg_rr *a)
9342 {
9343     if (fp_access_check(s)) {
9344         TCGv_i64 tcg_rn = cpu_reg(s, a->rn);
9345         tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, a->rd));
9346         clear_vec_high(s, true, a->rd);
9347     }
9348     return true;
9349 }
9350 
9351 static bool trans_FMOV_xh(DisasContext *s, arg_rr *a)
9352 {
9353     if (!dc_isar_feature(aa64_fp16, s)) {
9354         return false;
9355     }
9356     if (fp_access_check(s)) {
9357         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9358         tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_16));
9359     }
9360     return true;
9361 }
9362 
9363 static bool trans_FMOV_ws(DisasContext *s, arg_rr *a)
9364 {
9365     if (fp_access_check(s)) {
9366         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9367         tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_32));
9368     }
9369     return true;
9370 }
9371 
9372 static bool trans_FMOV_xd(DisasContext *s, arg_rr *a)
9373 {
9374     if (fp_access_check(s)) {
9375         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9376         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, a->rn, MO_64));
9377     }
9378     return true;
9379 }
9380 
9381 static bool trans_FMOV_xu(DisasContext *s, arg_rr *a)
9382 {
9383     if (fp_access_check(s)) {
9384         TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
9385         tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, a->rn));
9386     }
9387     return true;
9388 }
9389 
9390 typedef struct ENVScalar1 {
9391     NeonGenOneOpEnvFn *gen_bhs[3];
9392     NeonGenOne64OpEnvFn *gen_d;
9393 } ENVScalar1;
9394 
9395 static bool do_env_scalar1(DisasContext *s, arg_rr_e *a, const ENVScalar1 *f)
9396 {
9397     if (!fp_access_check(s)) {
9398         return true;
9399     }
9400     if (a->esz == MO_64) {
9401         TCGv_i64 t = read_fp_dreg(s, a->rn);
9402         f->gen_d(t, tcg_env, t);
9403         write_fp_dreg(s, a->rd, t);
9404     } else {
9405         TCGv_i32 t = tcg_temp_new_i32();
9406 
9407         read_vec_element_i32(s, t, a->rn, 0, a->esz);
9408         f->gen_bhs[a->esz](t, tcg_env, t);
9409         write_fp_sreg(s, a->rd, t);
9410     }
9411     return true;
9412 }
9413 
9414 static bool do_env_vector1(DisasContext *s, arg_qrr_e *a, const ENVScalar1 *f)
9415 {
9416     if (a->esz == MO_64 && !a->q) {
9417         return false;
9418     }
9419     if (!fp_access_check(s)) {
9420         return true;
9421     }
9422     if (a->esz == MO_64) {
9423         TCGv_i64 t = tcg_temp_new_i64();
9424 
9425         for (int i = 0; i < 2; ++i) {
9426             read_vec_element(s, t, a->rn, i, MO_64);
9427             f->gen_d(t, tcg_env, t);
9428             write_vec_element(s, t, a->rd, i, MO_64);
9429         }
9430     } else {
9431         TCGv_i32 t = tcg_temp_new_i32();
9432         int n = (a->q ? 16 : 8) >> a->esz;
9433 
9434         for (int i = 0; i < n; ++i) {
9435             read_vec_element_i32(s, t, a->rn, i, a->esz);
9436             f->gen_bhs[a->esz](t, tcg_env, t);
9437             write_vec_element_i32(s, t, a->rd, i, a->esz);
9438         }
9439     }
9440     clear_vec_high(s, a->q, a->rd);
9441     return true;
9442 }
9443 
9444 static const ENVScalar1 f_scalar_sqabs = {
9445     { gen_helper_neon_qabs_s8,
9446       gen_helper_neon_qabs_s16,
9447       gen_helper_neon_qabs_s32 },
9448     gen_helper_neon_qabs_s64,
9449 };
9450 TRANS(SQABS_s, do_env_scalar1, a, &f_scalar_sqabs)
9451 TRANS(SQABS_v, do_env_vector1, a, &f_scalar_sqabs)
9452 
9453 static const ENVScalar1 f_scalar_sqneg = {
9454     { gen_helper_neon_qneg_s8,
9455       gen_helper_neon_qneg_s16,
9456       gen_helper_neon_qneg_s32 },
9457     gen_helper_neon_qneg_s64,
9458 };
9459 TRANS(SQNEG_s, do_env_scalar1, a, &f_scalar_sqneg)
9460 TRANS(SQNEG_v, do_env_vector1, a, &f_scalar_sqneg)
9461 
9462 static bool do_scalar1_d(DisasContext *s, arg_rr *a, ArithOneOp *f)
9463 {
9464     if (fp_access_check(s)) {
9465         TCGv_i64 t = read_fp_dreg(s, a->rn);
9466         f(t, t);
9467         write_fp_dreg(s, a->rd, t);
9468     }
9469     return true;
9470 }
9471 
9472 TRANS(ABS_s, do_scalar1_d, a, tcg_gen_abs_i64)
9473 TRANS(NEG_s, do_scalar1_d, a, tcg_gen_neg_i64)
9474 
9475 static bool do_cmop0_d(DisasContext *s, arg_rr *a, TCGCond cond)
9476 {
9477     if (fp_access_check(s)) {
9478         TCGv_i64 t = read_fp_dreg(s, a->rn);
9479         tcg_gen_negsetcond_i64(cond, t, t, tcg_constant_i64(0));
9480         write_fp_dreg(s, a->rd, t);
9481     }
9482     return true;
9483 }
9484 
9485 TRANS(CMGT0_s, do_cmop0_d, a, TCG_COND_GT)
9486 TRANS(CMGE0_s, do_cmop0_d, a, TCG_COND_GE)
9487 TRANS(CMLE0_s, do_cmop0_d, a, TCG_COND_LE)
9488 TRANS(CMLT0_s, do_cmop0_d, a, TCG_COND_LT)
9489 TRANS(CMEQ0_s, do_cmop0_d, a, TCG_COND_EQ)
9490 
9491 static bool do_2misc_narrow_scalar(DisasContext *s, arg_rr_e *a,
9492                                    ArithOneOp * const fn[3])
9493 {
9494     if (a->esz == MO_64) {
9495         return false;
9496     }
9497     if (fp_access_check(s)) {
9498         TCGv_i64 t = tcg_temp_new_i64();
9499 
9500         read_vec_element(s, t, a->rn, 0, a->esz + 1);
9501         fn[a->esz](t, t);
9502         clear_vec(s, a->rd);
9503         write_vec_element(s, t, a->rd, 0, a->esz);
9504     }
9505     return true;
9506 }
9507 
9508 #define WRAP_ENV(NAME) \
9509     static void gen_##NAME(TCGv_i64 d, TCGv_i64 n) \
9510     { gen_helper_##NAME(d, tcg_env, n); }
9511 
9512 WRAP_ENV(neon_unarrow_sat8)
9513 WRAP_ENV(neon_unarrow_sat16)
9514 WRAP_ENV(neon_unarrow_sat32)
9515 
9516 static ArithOneOp * const f_scalar_sqxtun[] = {
9517     gen_neon_unarrow_sat8,
9518     gen_neon_unarrow_sat16,
9519     gen_neon_unarrow_sat32,
9520 };
9521 TRANS(SQXTUN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtun)
9522 
9523 WRAP_ENV(neon_narrow_sat_s8)
9524 WRAP_ENV(neon_narrow_sat_s16)
9525 WRAP_ENV(neon_narrow_sat_s32)
9526 
9527 static ArithOneOp * const f_scalar_sqxtn[] = {
9528     gen_neon_narrow_sat_s8,
9529     gen_neon_narrow_sat_s16,
9530     gen_neon_narrow_sat_s32,
9531 };
9532 TRANS(SQXTN_s, do_2misc_narrow_scalar, a, f_scalar_sqxtn)
9533 
9534 WRAP_ENV(neon_narrow_sat_u8)
9535 WRAP_ENV(neon_narrow_sat_u16)
9536 WRAP_ENV(neon_narrow_sat_u32)
9537 
9538 static ArithOneOp * const f_scalar_uqxtn[] = {
9539     gen_neon_narrow_sat_u8,
9540     gen_neon_narrow_sat_u16,
9541     gen_neon_narrow_sat_u32,
9542 };
9543 TRANS(UQXTN_s, do_2misc_narrow_scalar, a, f_scalar_uqxtn)
9544 
9545 static bool trans_FCVTXN_s(DisasContext *s, arg_rr_e *a)
9546 {
9547     if (fp_access_check(s)) {
9548         /*
9549          * 64 bit to 32 bit float conversion
9550          * with von Neumann rounding (round to odd)
9551          */
9552         TCGv_i64 src = read_fp_dreg(s, a->rn);
9553         TCGv_i32 dst = tcg_temp_new_i32();
9554         gen_helper_fcvtx_f64_to_f32(dst, src, fpstatus_ptr(FPST_A64));
9555         write_fp_sreg_merging(s, a->rd, a->rd, dst);
9556     }
9557     return true;
9558 }
9559 
9560 #undef WRAP_ENV
9561 
9562 static bool do_gvec_fn2(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9563 {
9564     if (!a->q && a->esz == MO_64) {
9565         return false;
9566     }
9567     if (fp_access_check(s)) {
9568         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9569     }
9570     return true;
9571 }
9572 
9573 TRANS(ABS_v, do_gvec_fn2, a, tcg_gen_gvec_abs)
9574 TRANS(NEG_v, do_gvec_fn2, a, tcg_gen_gvec_neg)
9575 TRANS(NOT_v, do_gvec_fn2, a, tcg_gen_gvec_not)
9576 TRANS(CNT_v, do_gvec_fn2, a, gen_gvec_cnt)
9577 TRANS(RBIT_v, do_gvec_fn2, a, gen_gvec_rbit)
9578 TRANS(CMGT0_v, do_gvec_fn2, a, gen_gvec_cgt0)
9579 TRANS(CMGE0_v, do_gvec_fn2, a, gen_gvec_cge0)
9580 TRANS(CMLT0_v, do_gvec_fn2, a, gen_gvec_clt0)
9581 TRANS(CMLE0_v, do_gvec_fn2, a, gen_gvec_cle0)
9582 TRANS(CMEQ0_v, do_gvec_fn2, a, gen_gvec_ceq0)
9583 TRANS(REV16_v, do_gvec_fn2, a, gen_gvec_rev16)
9584 TRANS(REV32_v, do_gvec_fn2, a, gen_gvec_rev32)
9585 TRANS(URECPE_v, do_gvec_fn2, a, gen_gvec_urecpe)
9586 TRANS(URSQRTE_v, do_gvec_fn2, a, gen_gvec_ursqrte)
9587 
9588 static bool do_gvec_fn2_bhs(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9589 {
9590     if (a->esz == MO_64) {
9591         return false;
9592     }
9593     if (fp_access_check(s)) {
9594         gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9595     }
9596     return true;
9597 }
9598 
9599 TRANS(CLS_v, do_gvec_fn2_bhs, a, gen_gvec_cls)
9600 TRANS(CLZ_v, do_gvec_fn2_bhs, a, gen_gvec_clz)
9601 TRANS(REV64_v, do_gvec_fn2_bhs, a, gen_gvec_rev64)
9602 TRANS(SADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_saddlp)
9603 TRANS(UADDLP_v, do_gvec_fn2_bhs, a, gen_gvec_uaddlp)
9604 TRANS(SADALP_v, do_gvec_fn2_bhs, a, gen_gvec_sadalp)
9605 TRANS(UADALP_v, do_gvec_fn2_bhs, a, gen_gvec_uadalp)
9606 
9607 static bool do_2misc_narrow_vector(DisasContext *s, arg_qrr_e *a,
9608                                    ArithOneOp * const fn[3])
9609 {
9610     if (a->esz == MO_64) {
9611         return false;
9612     }
9613     if (fp_access_check(s)) {
9614         TCGv_i64 t0 = tcg_temp_new_i64();
9615         TCGv_i64 t1 = tcg_temp_new_i64();
9616 
9617         read_vec_element(s, t0, a->rn, 0, MO_64);
9618         read_vec_element(s, t1, a->rn, 1, MO_64);
9619         fn[a->esz](t0, t0);
9620         fn[a->esz](t1, t1);
9621         write_vec_element(s, t0, a->rd, a->q ? 2 : 0, MO_32);
9622         write_vec_element(s, t1, a->rd, a->q ? 3 : 1, MO_32);
9623         clear_vec_high(s, a->q, a->rd);
9624     }
9625     return true;
9626 }
9627 
9628 static ArithOneOp * const f_scalar_xtn[] = {
9629     gen_helper_neon_narrow_u8,
9630     gen_helper_neon_narrow_u16,
9631     tcg_gen_ext32u_i64,
9632 };
9633 TRANS(XTN, do_2misc_narrow_vector, a, f_scalar_xtn)
9634 TRANS(SQXTUN_v, do_2misc_narrow_vector, a, f_scalar_sqxtun)
9635 TRANS(SQXTN_v, do_2misc_narrow_vector, a, f_scalar_sqxtn)
9636 TRANS(UQXTN_v, do_2misc_narrow_vector, a, f_scalar_uqxtn)
9637 
9638 static void gen_fcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9639 {
9640     TCGv_i32 tcg_lo = tcg_temp_new_i32();
9641     TCGv_i32 tcg_hi = tcg_temp_new_i32();
9642     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9643     TCGv_i32 ahp = get_ahp_flag();
9644 
9645     tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, n);
9646     gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
9647     gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
9648     tcg_gen_deposit_i32(tcg_lo, tcg_lo, tcg_hi, 16, 16);
9649     tcg_gen_extu_i32_i64(d, tcg_lo);
9650 }
9651 
9652 static void gen_fcvtn_sd(TCGv_i64 d, TCGv_i64 n)
9653 {
9654     TCGv_i32 tmp = tcg_temp_new_i32();
9655     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9656 
9657     gen_helper_vfp_fcvtsd(tmp, n, fpst);
9658     tcg_gen_extu_i32_i64(d, tmp);
9659 }
9660 
9661 static void gen_fcvtxn_sd(TCGv_i64 d, TCGv_i64 n)
9662 {
9663     /*
9664      * 64 bit to 32 bit float conversion
9665      * with von Neumann rounding (round to odd)
9666      */
9667     TCGv_i32 tmp = tcg_temp_new_i32();
9668     gen_helper_fcvtx_f64_to_f32(tmp, n, fpstatus_ptr(FPST_A64));
9669     tcg_gen_extu_i32_i64(d, tmp);
9670 }
9671 
9672 static ArithOneOp * const f_vector_fcvtn[] = {
9673     NULL,
9674     gen_fcvtn_hs,
9675     gen_fcvtn_sd,
9676 };
9677 static ArithOneOp * const f_scalar_fcvtxn[] = {
9678     NULL,
9679     NULL,
9680     gen_fcvtxn_sd,
9681 };
9682 TRANS(FCVTN_v, do_2misc_narrow_vector, a, f_vector_fcvtn)
9683 TRANS(FCVTXN_v, do_2misc_narrow_vector, a, f_scalar_fcvtxn)
9684 
9685 static void gen_bfcvtn_hs(TCGv_i64 d, TCGv_i64 n)
9686 {
9687     TCGv_ptr fpst = fpstatus_ptr(FPST_A64);
9688     TCGv_i32 tmp = tcg_temp_new_i32();
9689     gen_helper_bfcvt_pair(tmp, n, fpst);
9690     tcg_gen_extu_i32_i64(d, tmp);
9691 }
9692 
9693 static void gen_bfcvtn_ah_hs(TCGv_i64 d, TCGv_i64 n)
9694 {
9695     TCGv_ptr fpst = fpstatus_ptr(FPST_AH);
9696     TCGv_i32 tmp = tcg_temp_new_i32();
9697     gen_helper_bfcvt_pair(tmp, n, fpst);
9698     tcg_gen_extu_i32_i64(d, tmp);
9699 }
9700 
9701 static ArithOneOp * const f_vector_bfcvtn[2][3] = {
9702     {
9703         NULL,
9704         gen_bfcvtn_hs,
9705         NULL,
9706     }, {
9707         NULL,
9708         gen_bfcvtn_ah_hs,
9709         NULL,
9710     }
9711 };
9712 TRANS_FEAT(BFCVTN_v, aa64_bf16, do_2misc_narrow_vector, a,
9713            f_vector_bfcvtn[s->fpcr_ah])
9714 
9715 static bool trans_SHLL_v(DisasContext *s, arg_qrr_e *a)
9716 {
9717     static NeonGenWidenFn * const widenfns[3] = {
9718         gen_helper_neon_widen_u8,
9719         gen_helper_neon_widen_u16,
9720         tcg_gen_extu_i32_i64,
9721     };
9722     NeonGenWidenFn *widenfn;
9723     TCGv_i64 tcg_res[2];
9724     TCGv_i32 tcg_op;
9725     int part, pass;
9726 
9727     if (a->esz == MO_64) {
9728         return false;
9729     }
9730     if (!fp_access_check(s)) {
9731         return true;
9732     }
9733 
9734     tcg_op = tcg_temp_new_i32();
9735     widenfn = widenfns[a->esz];
9736     part = a->q ? 2 : 0;
9737 
9738     for (pass = 0; pass < 2; pass++) {
9739         read_vec_element_i32(s, tcg_op, a->rn, part + pass, MO_32);
9740         tcg_res[pass] = tcg_temp_new_i64();
9741         widenfn(tcg_res[pass], tcg_op);
9742         tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << a->esz);
9743     }
9744 
9745     for (pass = 0; pass < 2; pass++) {
9746         write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
9747     }
9748     return true;
9749 }
9750 
9751 static bool do_fabs_fneg_v(DisasContext *s, arg_qrr_e *a, GVecGen2Fn *fn)
9752 {
9753     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9754 
9755     if (check <= 0) {
9756         return check == 0;
9757     }
9758 
9759     gen_gvec_fn2(s, a->q, a->rd, a->rn, fn, a->esz);
9760     return true;
9761 }
9762 
9763 TRANS(FABS_v, do_fabs_fneg_v, a, gen_gvec_fabs)
9764 TRANS(FNEG_v, do_fabs_fneg_v, a, gen_gvec_fneg)
9765 
9766 static bool do_fp1_vector(DisasContext *s, arg_qrr_e *a,
9767                           const FPScalar1 *f, int rmode)
9768 {
9769     TCGv_i32 tcg_rmode = NULL;
9770     TCGv_ptr fpst;
9771     int check = fp_access_check_vector_hsd(s, a->q, a->esz);
9772 
9773     if (check <= 0) {
9774         return check == 0;
9775     }
9776 
9777     fpst = fpstatus_ptr(a->esz == MO_16 ? FPST_A64_F16 : FPST_A64);
9778     if (rmode >= 0) {
9779         tcg_rmode = gen_set_rmode(rmode, fpst);
9780     }
9781 
9782     if (a->esz == MO_64) {
9783         TCGv_i64 t64 = tcg_temp_new_i64();
9784 
9785         for (int pass = 0; pass < 2; ++pass) {
9786             read_vec_element(s, t64, a->rn, pass, MO_64);
9787             f->gen_d(t64, t64, fpst);
9788             write_vec_element(s, t64, a->rd, pass, MO_64);
9789         }
9790     } else {
9791         TCGv_i32 t32 = tcg_temp_new_i32();
9792         void (*gen)(TCGv_i32, TCGv_i32, TCGv_ptr)
9793             = (a->esz == MO_16 ? f->gen_h : f->gen_s);
9794 
9795         for (int pass = 0, n = (a->q ? 16 : 8) >> a->esz; pass < n; ++pass) {
9796             read_vec_element_i32(s, t32, a->rn, pass, a->esz);
9797             gen(t32, t32, fpst);
9798             write_vec_element_i32(s, t32, a->rd, pass, a->esz);
9799         }
9800     }
9801     clear_vec_high(s, a->q, a->rd);
9802 
9803     if (rmode >= 0) {
9804         gen_restore_rmode(tcg_rmode, fpst);
9805     }
9806     return true;
9807 }
9808 
9809 TRANS(FSQRT_v, do_fp1_vector, a, &f_scalar_fsqrt, -1)
9810 
9811 TRANS(FRINTN_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEEVEN)
9812 TRANS(FRINTP_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_POSINF)
9813 TRANS(FRINTM_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_NEGINF)
9814 TRANS(FRINTZ_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_ZERO)
9815 TRANS(FRINTA_v, do_fp1_vector, a, &f_scalar_frint, FPROUNDING_TIEAWAY)
9816 TRANS(FRINTI_v, do_fp1_vector, a, &f_scalar_frint, -1)
9817 TRANS(FRINTX_v, do_fp1_vector, a, &f_scalar_frintx, -1)
9818 
9819 TRANS_FEAT(FRINT32Z_v, aa64_frint, do_fp1_vector, a,
9820            &f_scalar_frint32, FPROUNDING_ZERO)
9821 TRANS_FEAT(FRINT32X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint32, -1)
9822 TRANS_FEAT(FRINT64Z_v, aa64_frint, do_fp1_vector, a,
9823            &f_scalar_frint64, FPROUNDING_ZERO)
9824 TRANS_FEAT(FRINT64X_v, aa64_frint, do_fp1_vector, a, &f_scalar_frint64, -1)
9825 
9826 static bool do_gvec_op2_fpst_with_fpsttype(DisasContext *s, MemOp esz,
9827                                            bool is_q, int rd, int rn, int data,
9828                                            gen_helper_gvec_2_ptr * const fns[3],
9829                                            ARMFPStatusFlavour fpsttype)
9830 {
9831     int check = fp_access_check_vector_hsd(s, is_q, esz);
9832     TCGv_ptr fpst;
9833 
9834     if (check <= 0) {
9835         return check == 0;
9836     }
9837 
9838     fpst = fpstatus_ptr(fpsttype);
9839     tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
9840                        vec_full_reg_offset(s, rn), fpst,
9841                        is_q ? 16 : 8, vec_full_reg_size(s),
9842                        data, fns[esz - 1]);
9843     return true;
9844 }
9845 
9846 static bool do_gvec_op2_fpst(DisasContext *s, MemOp esz, bool is_q,
9847                              int rd, int rn, int data,
9848                              gen_helper_gvec_2_ptr * const fns[3])
9849 {
9850     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data, fns,
9851                                           esz == MO_16 ? FPST_A64_F16 :
9852                                           FPST_A64);
9853 }
9854 
9855 static bool do_gvec_op2_ah_fpst(DisasContext *s, MemOp esz, bool is_q,
9856                                 int rd, int rn, int data,
9857                                 gen_helper_gvec_2_ptr * const fns[3])
9858 {
9859     return do_gvec_op2_fpst_with_fpsttype(s, esz, is_q, rd, rn, data,
9860                                           fns, select_ah_fpst(s, esz));
9861 }
9862 
9863 static gen_helper_gvec_2_ptr * const f_scvtf_v[] = {
9864     gen_helper_gvec_vcvt_sh,
9865     gen_helper_gvec_vcvt_sf,
9866     gen_helper_gvec_vcvt_sd,
9867 };
9868 TRANS(SCVTF_vi, do_gvec_op2_fpst,
9869       a->esz, a->q, a->rd, a->rn, 0, f_scvtf_v)
9870 TRANS(SCVTF_vf, do_gvec_op2_fpst,
9871       a->esz, a->q, a->rd, a->rn, a->shift, f_scvtf_v)
9872 
9873 static gen_helper_gvec_2_ptr * const f_ucvtf_v[] = {
9874     gen_helper_gvec_vcvt_uh,
9875     gen_helper_gvec_vcvt_uf,
9876     gen_helper_gvec_vcvt_ud,
9877 };
9878 TRANS(UCVTF_vi, do_gvec_op2_fpst,
9879       a->esz, a->q, a->rd, a->rn, 0, f_ucvtf_v)
9880 TRANS(UCVTF_vf, do_gvec_op2_fpst,
9881       a->esz, a->q, a->rd, a->rn, a->shift, f_ucvtf_v)
9882 
9883 static gen_helper_gvec_2_ptr * const f_fcvtzs_vf[] = {
9884     gen_helper_gvec_vcvt_rz_hs,
9885     gen_helper_gvec_vcvt_rz_fs,
9886     gen_helper_gvec_vcvt_rz_ds,
9887 };
9888 TRANS(FCVTZS_vf, do_gvec_op2_fpst,
9889       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzs_vf)
9890 
9891 static gen_helper_gvec_2_ptr * const f_fcvtzu_vf[] = {
9892     gen_helper_gvec_vcvt_rz_hu,
9893     gen_helper_gvec_vcvt_rz_fu,
9894     gen_helper_gvec_vcvt_rz_du,
9895 };
9896 TRANS(FCVTZU_vf, do_gvec_op2_fpst,
9897       a->esz, a->q, a->rd, a->rn, a->shift, f_fcvtzu_vf)
9898 
9899 static gen_helper_gvec_2_ptr * const f_fcvt_s_vi[] = {
9900     gen_helper_gvec_vcvt_rm_sh,
9901     gen_helper_gvec_vcvt_rm_ss,
9902     gen_helper_gvec_vcvt_rm_sd,
9903 };
9904 
9905 static gen_helper_gvec_2_ptr * const f_fcvt_u_vi[] = {
9906     gen_helper_gvec_vcvt_rm_uh,
9907     gen_helper_gvec_vcvt_rm_us,
9908     gen_helper_gvec_vcvt_rm_ud,
9909 };
9910 
9911 TRANS(FCVTNS_vi, do_gvec_op2_fpst,
9912       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_s_vi)
9913 TRANS(FCVTNU_vi, do_gvec_op2_fpst,
9914       a->esz, a->q, a->rd, a->rn, float_round_nearest_even, f_fcvt_u_vi)
9915 TRANS(FCVTPS_vi, do_gvec_op2_fpst,
9916       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_s_vi)
9917 TRANS(FCVTPU_vi, do_gvec_op2_fpst,
9918       a->esz, a->q, a->rd, a->rn, float_round_up, f_fcvt_u_vi)
9919 TRANS(FCVTMS_vi, do_gvec_op2_fpst,
9920       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_s_vi)
9921 TRANS(FCVTMU_vi, do_gvec_op2_fpst,
9922       a->esz, a->q, a->rd, a->rn, float_round_down, f_fcvt_u_vi)
9923 TRANS(FCVTZS_vi, do_gvec_op2_fpst,
9924       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_s_vi)
9925 TRANS(FCVTZU_vi, do_gvec_op2_fpst,
9926       a->esz, a->q, a->rd, a->rn, float_round_to_zero, f_fcvt_u_vi)
9927 TRANS(FCVTAS_vi, do_gvec_op2_fpst,
9928       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_s_vi)
9929 TRANS(FCVTAU_vi, do_gvec_op2_fpst,
9930       a->esz, a->q, a->rd, a->rn, float_round_ties_away, f_fcvt_u_vi)
9931 
9932 static gen_helper_gvec_2_ptr * const f_fceq0[] = {
9933     gen_helper_gvec_fceq0_h,
9934     gen_helper_gvec_fceq0_s,
9935     gen_helper_gvec_fceq0_d,
9936 };
9937 TRANS(FCMEQ0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fceq0)
9938 
9939 static gen_helper_gvec_2_ptr * const f_fcgt0[] = {
9940     gen_helper_gvec_fcgt0_h,
9941     gen_helper_gvec_fcgt0_s,
9942     gen_helper_gvec_fcgt0_d,
9943 };
9944 TRANS(FCMGT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcgt0)
9945 
9946 static gen_helper_gvec_2_ptr * const f_fcge0[] = {
9947     gen_helper_gvec_fcge0_h,
9948     gen_helper_gvec_fcge0_s,
9949     gen_helper_gvec_fcge0_d,
9950 };
9951 TRANS(FCMGE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcge0)
9952 
9953 static gen_helper_gvec_2_ptr * const f_fclt0[] = {
9954     gen_helper_gvec_fclt0_h,
9955     gen_helper_gvec_fclt0_s,
9956     gen_helper_gvec_fclt0_d,
9957 };
9958 TRANS(FCMLT0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fclt0)
9959 
9960 static gen_helper_gvec_2_ptr * const f_fcle0[] = {
9961     gen_helper_gvec_fcle0_h,
9962     gen_helper_gvec_fcle0_s,
9963     gen_helper_gvec_fcle0_d,
9964 };
9965 TRANS(FCMLE0_v, do_gvec_op2_fpst, a->esz, a->q, a->rd, a->rn, 0, f_fcle0)
9966 
9967 static gen_helper_gvec_2_ptr * const f_frecpe[] = {
9968     gen_helper_gvec_frecpe_h,
9969     gen_helper_gvec_frecpe_s,
9970     gen_helper_gvec_frecpe_d,
9971 };
9972 static gen_helper_gvec_2_ptr * const f_frecpe_rpres[] = {
9973     gen_helper_gvec_frecpe_h,
9974     gen_helper_gvec_frecpe_rpres_s,
9975     gen_helper_gvec_frecpe_d,
9976 };
9977 TRANS(FRECPE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9978       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frecpe_rpres : f_frecpe)
9979 
9980 static gen_helper_gvec_2_ptr * const f_frsqrte[] = {
9981     gen_helper_gvec_frsqrte_h,
9982     gen_helper_gvec_frsqrte_s,
9983     gen_helper_gvec_frsqrte_d,
9984 };
9985 static gen_helper_gvec_2_ptr * const f_frsqrte_rpres[] = {
9986     gen_helper_gvec_frsqrte_h,
9987     gen_helper_gvec_frsqrte_rpres_s,
9988     gen_helper_gvec_frsqrte_d,
9989 };
9990 TRANS(FRSQRTE_v, do_gvec_op2_ah_fpst, a->esz, a->q, a->rd, a->rn, 0,
9991       s->fpcr_ah && dc_isar_feature(aa64_rpres, s) ? f_frsqrte_rpres : f_frsqrte)
9992 
9993 static bool trans_FCVTL_v(DisasContext *s, arg_qrr_e *a)
9994 {
9995     /* Handle 2-reg-misc ops which are widening (so each size element
9996      * in the source becomes a 2*size element in the destination.
9997      * The only instruction like this is FCVTL.
9998      */
9999     int pass;
10000     TCGv_ptr fpst;
10001 
10002     if (!fp_access_check(s)) {
10003         return true;
10004     }
10005 
10006     if (a->esz == MO_64) {
10007         /* 32 -> 64 bit fp conversion */
10008         TCGv_i64 tcg_res[2];
10009         TCGv_i32 tcg_op = tcg_temp_new_i32();
10010         int srcelt = a->q ? 2 : 0;
10011 
10012         fpst = fpstatus_ptr(FPST_A64);
10013 
10014         for (pass = 0; pass < 2; pass++) {
10015             tcg_res[pass] = tcg_temp_new_i64();
10016             read_vec_element_i32(s, tcg_op, a->rn, srcelt + pass, MO_32);
10017             gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, fpst);
10018         }
10019         for (pass = 0; pass < 2; pass++) {
10020             write_vec_element(s, tcg_res[pass], a->rd, pass, MO_64);
10021         }
10022     } else {
10023         /* 16 -> 32 bit fp conversion */
10024         int srcelt = a->q ? 4 : 0;
10025         TCGv_i32 tcg_res[4];
10026         TCGv_i32 ahp = get_ahp_flag();
10027 
10028         fpst = fpstatus_ptr(FPST_A64_F16);
10029 
10030         for (pass = 0; pass < 4; pass++) {
10031             tcg_res[pass] = tcg_temp_new_i32();
10032             read_vec_element_i32(s, tcg_res[pass], a->rn, srcelt + pass, MO_16);
10033             gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
10034                                            fpst, ahp);
10035         }
10036         for (pass = 0; pass < 4; pass++) {
10037             write_vec_element_i32(s, tcg_res[pass], a->rd, pass, MO_32);
10038         }
10039     }
10040     clear_vec_high(s, true, a->rd);
10041     return true;
10042 }
10043 
10044 static bool trans_OK(DisasContext *s, arg_OK *a)
10045 {
10046     return true;
10047 }
10048 
10049 static bool trans_FAIL(DisasContext *s, arg_OK *a)
10050 {
10051     s->is_nonstreaming = true;
10052     return true;
10053 }
10054 
10055 /**
10056  * btype_destination_ok:
10057  * @insn: The instruction at the branch destination
10058  * @bt: SCTLR_ELx.BT
10059  * @btype: PSTATE.BTYPE, and is non-zero
10060  *
10061  * On a guarded page, there are a limited number of insns
10062  * that may be present at the branch target:
10063  *   - branch target identifiers,
10064  *   - paciasp, pacibsp,
10065  *   - BRK insn
10066  *   - HLT insn
10067  * Anything else causes a Branch Target Exception.
10068  *
10069  * Return true if the branch is compatible, false to raise BTITRAP.
10070  */
10071 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
10072 {
10073     if ((insn & 0xfffff01fu) == 0xd503201fu) {
10074         /* HINT space */
10075         switch (extract32(insn, 5, 7)) {
10076         case 0b011001: /* PACIASP */
10077         case 0b011011: /* PACIBSP */
10078             /*
10079              * If SCTLR_ELx.BT, then PACI*SP are not compatible
10080              * with btype == 3.  Otherwise all btype are ok.
10081              */
10082             return !bt || btype != 3;
10083         case 0b100000: /* BTI */
10084             /* Not compatible with any btype.  */
10085             return false;
10086         case 0b100010: /* BTI c */
10087             /* Not compatible with btype == 3 */
10088             return btype != 3;
10089         case 0b100100: /* BTI j */
10090             /* Not compatible with btype == 2 */
10091             return btype != 2;
10092         case 0b100110: /* BTI jc */
10093             /* Compatible with any btype.  */
10094             return true;
10095         }
10096     } else {
10097         switch (insn & 0xffe0001fu) {
10098         case 0xd4200000u: /* BRK */
10099         case 0xd4400000u: /* HLT */
10100             /* Give priority to the breakpoint exception.  */
10101             return true;
10102         }
10103     }
10104     return false;
10105 }
10106 
10107 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
10108                                           CPUState *cpu)
10109 {
10110     DisasContext *dc = container_of(dcbase, DisasContext, base);
10111     CPUARMState *env = cpu_env(cpu);
10112     ARMCPU *arm_cpu = env_archcpu(env);
10113     CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
10114     int bound, core_mmu_idx;
10115 
10116     dc->isar = &arm_cpu->isar;
10117     dc->condjmp = 0;
10118     dc->pc_save = dc->base.pc_first;
10119     dc->aarch64 = true;
10120     dc->thumb = false;
10121     dc->sctlr_b = 0;
10122     dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
10123     dc->condexec_mask = 0;
10124     dc->condexec_cond = 0;
10125     core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
10126     dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
10127     dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
10128     dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
10129     dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
10130     dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
10131 #if !defined(CONFIG_USER_ONLY)
10132     dc->user = (dc->current_el == 0);
10133 #endif
10134     dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
10135     dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
10136     dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
10137     dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
10138     dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
10139     dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
10140     dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
10141     dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
10142     dc->zt0_excp_el = EX_TBFLAG_A64(tb_flags, ZT0EXC_EL);
10143     dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
10144     dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
10145     dc->max_svl = arm_cpu->sme_max_vq * 16;
10146     dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
10147     dc->bt = EX_TBFLAG_A64(tb_flags, BT);
10148     dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
10149     dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
10150     dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
10151     dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
10152     dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
10153     dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
10154     dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
10155     dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
10156     dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
10157     dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
10158     dc->nv = EX_TBFLAG_A64(tb_flags, NV);
10159     dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
10160     dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
10161     dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
10162     dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
10163     dc->fpcr_ah = EX_TBFLAG_A64(tb_flags, AH);
10164     dc->fpcr_nep = EX_TBFLAG_A64(tb_flags, NEP);
10165     dc->vec_len = 0;
10166     dc->vec_stride = 0;
10167     dc->cp_regs = arm_cpu->cp_regs;
10168     dc->features = env->features;
10169     dc->dcz_blocksize = arm_cpu->dcz_blocksize;
10170     dc->gm_blocksize = arm_cpu->gm_blocksize;
10171 
10172 #ifdef CONFIG_USER_ONLY
10173     /* In sve_probe_page, we assume TBI is enabled. */
10174     tcg_debug_assert(dc->tbid & 1);
10175 #endif
10176 
10177     dc->lse2 = dc_isar_feature(aa64_lse2, dc);
10178 
10179     /* Single step state. The code-generation logic here is:
10180      *  SS_ACTIVE == 0:
10181      *   generate code with no special handling for single-stepping (except
10182      *   that anything that can make us go to SS_ACTIVE == 1 must end the TB;
10183      *   this happens anyway because those changes are all system register or
10184      *   PSTATE writes).
10185      *  SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
10186      *   emit code for one insn
10187      *   emit code to clear PSTATE.SS
10188      *   emit code to generate software step exception for completed step
10189      *   end TB (as usual for having generated an exception)
10190      *  SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
10191      *   emit code to generate a software step exception
10192      *   end the TB
10193      */
10194     dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
10195     dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
10196     dc->is_ldex = false;
10197 
10198     /* Bound the number of insns to execute to those left on the page.  */
10199     bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
10200 
10201     /* If architectural single step active, limit to 1.  */
10202     if (dc->ss_active) {
10203         bound = 1;
10204     }
10205     dc->base.max_insns = MIN(dc->base.max_insns, bound);
10206 }
10207 
10208 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
10209 {
10210 }
10211 
10212 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
10213 {
10214     DisasContext *dc = container_of(dcbase, DisasContext, base);
10215     target_ulong pc_arg = dc->base.pc_next;
10216 
10217     if (tb_cflags(dcbase->tb) & CF_PCREL) {
10218         pc_arg &= ~TARGET_PAGE_MASK;
10219     }
10220     tcg_gen_insn_start(pc_arg, 0, 0);
10221     dc->insn_start_updated = false;
10222 }
10223 
10224 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
10225 {
10226     DisasContext *s = container_of(dcbase, DisasContext, base);
10227     CPUARMState *env = cpu_env(cpu);
10228     uint64_t pc = s->base.pc_next;
10229     uint32_t insn;
10230 
10231     /* Singlestep exceptions have the highest priority. */
10232     if (s->ss_active && !s->pstate_ss) {
10233         /* Singlestep state is Active-pending.
10234          * If we're in this state at the start of a TB then either
10235          *  a) we just took an exception to an EL which is being debugged
10236          *     and this is the first insn in the exception handler
10237          *  b) debug exceptions were masked and we just unmasked them
10238          *     without changing EL (eg by clearing PSTATE.D)
10239          * In either case we're going to take a swstep exception in the
10240          * "did not step an insn" case, and so the syndrome ISV and EX
10241          * bits should be zero.
10242          */
10243         assert(s->base.num_insns == 1);
10244         gen_swstep_exception(s, 0, 0);
10245         s->base.is_jmp = DISAS_NORETURN;
10246         s->base.pc_next = pc + 4;
10247         return;
10248     }
10249 
10250     if (pc & 3) {
10251         /*
10252          * PC alignment fault.  This has priority over the instruction abort
10253          * that we would receive from a translation fault via arm_ldl_code.
10254          * This should only be possible after an indirect branch, at the
10255          * start of the TB.
10256          */
10257         assert(s->base.num_insns == 1);
10258         gen_helper_exception_pc_alignment(tcg_env, tcg_constant_vaddr(pc));
10259         s->base.is_jmp = DISAS_NORETURN;
10260         s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
10261         return;
10262     }
10263 
10264     s->pc_curr = pc;
10265     insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
10266     s->insn = insn;
10267     s->base.pc_next = pc + 4;
10268 
10269     s->fp_access_checked = 0;
10270     s->sve_access_checked = 0;
10271 
10272     if (s->pstate_il) {
10273         /*
10274          * Illegal execution state. This has priority over BTI
10275          * exceptions, but comes after instruction abort exceptions.
10276          */
10277         gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
10278         return;
10279     }
10280 
10281     if (dc_isar_feature(aa64_bti, s)) {
10282         if (s->base.num_insns == 1) {
10283             /* First insn can have btype set to non-zero.  */
10284             tcg_debug_assert(s->btype >= 0);
10285 
10286             /*
10287              * Note that the Branch Target Exception has fairly high
10288              * priority -- below debugging exceptions but above most
10289              * everything else.  This allows us to handle this now
10290              * instead of waiting until the insn is otherwise decoded.
10291              *
10292              * We can check all but the guarded page check here;
10293              * defer the latter to a helper.
10294              */
10295             if (s->btype != 0
10296                 && !btype_destination_ok(insn, s->bt, s->btype)) {
10297                 gen_helper_guarded_page_check(tcg_env);
10298             }
10299         } else {
10300             /* Not the first insn: btype must be 0.  */
10301             tcg_debug_assert(s->btype == 0);
10302         }
10303     }
10304 
10305     s->is_nonstreaming = false;
10306     if (s->sme_trap_nonstreaming) {
10307         disas_sme_fa64(s, insn);
10308     }
10309 
10310     if (!disas_a64(s, insn) &&
10311         !disas_sme(s, insn) &&
10312         !disas_sve(s, insn)) {
10313         unallocated_encoding(s);
10314     }
10315 
10316     /*
10317      * After execution of most insns, btype is reset to 0.
10318      * Note that we set btype == -1 when the insn sets btype.
10319      */
10320     if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
10321         reset_btype(s);
10322     }
10323 }
10324 
10325 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
10326 {
10327     DisasContext *dc = container_of(dcbase, DisasContext, base);
10328 
10329     if (unlikely(dc->ss_active)) {
10330         /* Note that this means single stepping WFI doesn't halt the CPU.
10331          * For conditional branch insns this is harmless unreachable code as
10332          * gen_goto_tb() has already handled emitting the debug exception
10333          * (and thus a tb-jump is not possible when singlestepping).
10334          */
10335         switch (dc->base.is_jmp) {
10336         default:
10337             gen_a64_update_pc(dc, 4);
10338             /* fall through */
10339         case DISAS_EXIT:
10340         case DISAS_JUMP:
10341             gen_step_complete_exception(dc);
10342             break;
10343         case DISAS_NORETURN:
10344             break;
10345         }
10346     } else {
10347         switch (dc->base.is_jmp) {
10348         case DISAS_NEXT:
10349         case DISAS_TOO_MANY:
10350             gen_goto_tb(dc, 1, 4);
10351             break;
10352         default:
10353         case DISAS_UPDATE_EXIT:
10354             gen_a64_update_pc(dc, 4);
10355             /* fall through */
10356         case DISAS_EXIT:
10357             tcg_gen_exit_tb(NULL, 0);
10358             break;
10359         case DISAS_UPDATE_NOCHAIN:
10360             gen_a64_update_pc(dc, 4);
10361             /* fall through */
10362         case DISAS_JUMP:
10363             tcg_gen_lookup_and_goto_ptr();
10364             break;
10365         case DISAS_NORETURN:
10366         case DISAS_SWI:
10367             break;
10368         case DISAS_WFE:
10369             gen_a64_update_pc(dc, 4);
10370             gen_helper_wfe(tcg_env);
10371             break;
10372         case DISAS_YIELD:
10373             gen_a64_update_pc(dc, 4);
10374             gen_helper_yield(tcg_env);
10375             break;
10376         case DISAS_WFI:
10377             /*
10378              * This is a special case because we don't want to just halt
10379              * the CPU if trying to debug across a WFI.
10380              */
10381             gen_a64_update_pc(dc, 4);
10382             gen_helper_wfi(tcg_env, tcg_constant_i32(4));
10383             /*
10384              * The helper doesn't necessarily throw an exception, but we
10385              * must go back to the main loop to check for interrupts anyway.
10386              */
10387             tcg_gen_exit_tb(NULL, 0);
10388             break;
10389         }
10390     }
10391 }
10392 
10393 const TranslatorOps aarch64_translator_ops = {
10394     .init_disas_context = aarch64_tr_init_disas_context,
10395     .tb_start           = aarch64_tr_tb_start,
10396     .insn_start         = aarch64_tr_insn_start,
10397     .translate_insn     = aarch64_tr_translate_insn,
10398     .tb_stop            = aarch64_tr_tb_stop,
10399 };
10400