xref: /qemu/target/mips/tcg/system/tlb_helper.c (revision 84307cd6027c4602913177ff09aeefa4743b7234)
1 /*
2  * MIPS TLB (Translation lookaside buffer) helpers.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 
22 #include "cpu.h"
23 #include "internal.h"
24 #include "exec/cputlb.h"
25 #include "exec/page-protection.h"
26 #include "exec/target_page.h"
27 #include "accel/tcg/cpu-ldst.h"
28 #include "exec/log.h"
29 #include "exec/helper-proto.h"
30 
31 /* TLB management */
r4k_mips_tlb_flush_extra(CPUMIPSState * env,int first)32 static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
33 {
34     /* Discard entries from env->tlb[first] onwards.  */
35     while (env->tlb->tlb_in_use > first) {
36         r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
37     }
38 }
39 
get_tlb_pfn_from_entrylo(uint64_t entrylo)40 static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
41 {
42 #if defined(TARGET_MIPS64)
43     return extract64(entrylo, 6, 54);
44 #else
45     return extract64(entrylo, 6, 24) | /* PFN */
46            (extract64(entrylo, 32, 32) << 24); /* PFNX */
47 #endif
48 }
49 
r4k_fill_tlb(CPUMIPSState * env,int idx)50 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
51 {
52     r4k_tlb_t *tlb;
53     uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
54 
55     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
56     tlb = &env->tlb->mmu.r4k.tlb[idx];
57     if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
58         tlb->EHINV = 1;
59         return;
60     }
61     tlb->EHINV = 0;
62     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
63 #if defined(TARGET_MIPS64)
64     tlb->VPN &= env->SEGMask;
65 #endif
66     tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
67     tlb->MMID = env->CP0_MemoryMapID;
68     tlb->PageMask = env->CP0_PageMask;
69     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
70     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
71     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
72     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
73     tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
74     tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
75     tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
76     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
77     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
78     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
79     tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
80     tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
81     tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
82 }
83 
r4k_helper_tlbinv(CPUMIPSState * env)84 static void r4k_helper_tlbinv(CPUMIPSState *env)
85 {
86     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
87     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
88     uint32_t MMID = env->CP0_MemoryMapID;
89     uint32_t tlb_mmid;
90     r4k_tlb_t *tlb;
91     int idx;
92 
93     MMID = mi ? MMID : (uint32_t) ASID;
94     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
95         tlb = &env->tlb->mmu.r4k.tlb[idx];
96         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
97         if (!tlb->G && tlb_mmid == MMID) {
98             tlb->EHINV = 1;
99         }
100     }
101     cpu_mips_tlb_flush(env);
102 }
103 
r4k_helper_tlbinvf(CPUMIPSState * env)104 static void r4k_helper_tlbinvf(CPUMIPSState *env)
105 {
106     int idx;
107 
108     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
109         env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
110     }
111     cpu_mips_tlb_flush(env);
112 }
113 
r4k_helper_tlbwi(CPUMIPSState * env)114 static void r4k_helper_tlbwi(CPUMIPSState *env)
115 {
116     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
117     target_ulong VPN;
118     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
119     uint32_t MMID = env->CP0_MemoryMapID;
120     uint32_t tlb_mmid;
121     bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
122     r4k_tlb_t *tlb;
123     int idx;
124 
125     MMID = mi ? MMID : (uint32_t) ASID;
126 
127     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
128     tlb = &env->tlb->mmu.r4k.tlb[idx];
129     VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
130 #if defined(TARGET_MIPS64)
131     VPN &= env->SEGMask;
132 #endif
133     EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
134     G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
135     V0 = (env->CP0_EntryLo0 & 2) != 0;
136     D0 = (env->CP0_EntryLo0 & 4) != 0;
137     XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
138     RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
139     V1 = (env->CP0_EntryLo1 & 2) != 0;
140     D1 = (env->CP0_EntryLo1 & 4) != 0;
141     XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
142     RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
143 
144     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
145     /*
146      * Discard cached TLB entries, unless tlbwi is just upgrading access
147      * permissions on the current entry.
148      */
149     if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
150         (!tlb->EHINV && EHINV) ||
151         (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
152         (!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
153         (tlb->V1 && !V1) || (tlb->D1 && !D1) ||
154         (!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
155         r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
156     }
157 
158     r4k_invalidate_tlb(env, idx, 0);
159     r4k_fill_tlb(env, idx);
160 }
161 
r4k_helper_tlbwr(CPUMIPSState * env)162 static void r4k_helper_tlbwr(CPUMIPSState *env)
163 {
164     int r = cpu_mips_get_random(env);
165 
166     r4k_invalidate_tlb(env, r, 1);
167     r4k_fill_tlb(env, r);
168 }
169 
r4k_helper_tlbp(CPUMIPSState * env)170 static void r4k_helper_tlbp(CPUMIPSState *env)
171 {
172     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
173     r4k_tlb_t *tlb;
174     target_ulong mask;
175     target_ulong tag;
176     target_ulong VPN;
177     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
178     uint32_t MMID = env->CP0_MemoryMapID;
179     uint32_t tlb_mmid;
180     int i;
181 
182     MMID = mi ? MMID : (uint32_t) ASID;
183     for (i = 0; i < env->tlb->nb_tlb; i++) {
184         tlb = &env->tlb->mmu.r4k.tlb[i];
185         /* 1k pages are not supported. */
186         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
187         tag = env->CP0_EntryHi & ~mask;
188         VPN = tlb->VPN & ~mask;
189 #if defined(TARGET_MIPS64)
190         tag &= env->SEGMask;
191 #endif
192         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
193         /* Check ASID/MMID, virtual page number & size */
194         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
195             /* TLB match */
196             env->CP0_Index = i;
197             break;
198         }
199     }
200     if (i == env->tlb->nb_tlb) {
201         /* No match.  Discard any shadow entries, if any of them match.  */
202         for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
203             tlb = &env->tlb->mmu.r4k.tlb[i];
204             /* 1k pages are not supported. */
205             mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
206             tag = env->CP0_EntryHi & ~mask;
207             VPN = tlb->VPN & ~mask;
208 #if defined(TARGET_MIPS64)
209             tag &= env->SEGMask;
210 #endif
211             tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
212             /* Check ASID/MMID, virtual page number & size */
213             if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
214                 r4k_mips_tlb_flush_extra(env, i);
215                 break;
216             }
217         }
218 
219         env->CP0_Index |= 0x80000000;
220     }
221 }
222 
get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)223 static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
224 {
225 #if defined(TARGET_MIPS64)
226     return tlb_pfn << 6;
227 #else
228     return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
229            (extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
230 #endif
231 }
232 
r4k_helper_tlbr(CPUMIPSState * env)233 static void r4k_helper_tlbr(CPUMIPSState *env)
234 {
235     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
236     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
237     uint32_t MMID = env->CP0_MemoryMapID;
238     uint32_t tlb_mmid;
239     r4k_tlb_t *tlb;
240     int idx;
241 
242     MMID = mi ? MMID : (uint32_t) ASID;
243     idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
244     tlb = &env->tlb->mmu.r4k.tlb[idx];
245 
246     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
247     /* If this will change the current ASID/MMID, flush qemu's TLB.  */
248     if (MMID != tlb_mmid) {
249         cpu_mips_tlb_flush(env);
250     }
251 
252     r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
253 
254     if (tlb->EHINV) {
255         env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
256         env->CP0_PageMask = 0;
257         env->CP0_EntryLo0 = 0;
258         env->CP0_EntryLo1 = 0;
259     } else {
260         env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
261         env->CP0_MemoryMapID = tlb->MMID;
262         env->CP0_PageMask = tlb->PageMask;
263         env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
264                         ((uint64_t)tlb->RI0 << CP0EnLo_RI) |
265                         ((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
266                         get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
267         env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
268                         ((uint64_t)tlb->RI1 << CP0EnLo_RI) |
269                         ((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
270                         get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
271     }
272 }
273 
helper_tlbwi(CPUMIPSState * env)274 void helper_tlbwi(CPUMIPSState *env)
275 {
276     env->tlb->helper_tlbwi(env);
277 }
278 
helper_tlbwr(CPUMIPSState * env)279 void helper_tlbwr(CPUMIPSState *env)
280 {
281     env->tlb->helper_tlbwr(env);
282 }
283 
helper_tlbp(CPUMIPSState * env)284 void helper_tlbp(CPUMIPSState *env)
285 {
286     env->tlb->helper_tlbp(env);
287 }
288 
helper_tlbr(CPUMIPSState * env)289 void helper_tlbr(CPUMIPSState *env)
290 {
291     env->tlb->helper_tlbr(env);
292 }
293 
helper_tlbinv(CPUMIPSState * env)294 void helper_tlbinv(CPUMIPSState *env)
295 {
296     env->tlb->helper_tlbinv(env);
297 }
298 
helper_tlbinvf(CPUMIPSState * env)299 void helper_tlbinvf(CPUMIPSState *env)
300 {
301     env->tlb->helper_tlbinvf(env);
302 }
303 
global_invalidate_tlb(CPUMIPSState * env,uint32_t invMsgVPN2,uint8_t invMsgR,uint32_t invMsgMMid,bool invAll,bool invVAMMid,bool invMMid,bool invVA)304 static void global_invalidate_tlb(CPUMIPSState *env,
305                            uint32_t invMsgVPN2,
306                            uint8_t invMsgR,
307                            uint32_t invMsgMMid,
308                            bool invAll,
309                            bool invVAMMid,
310                            bool invMMid,
311                            bool invVA)
312 {
313 
314     int idx;
315     r4k_tlb_t *tlb;
316     bool VAMatch;
317     bool MMidMatch;
318 
319     for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
320         tlb = &env->tlb->mmu.r4k.tlb[idx];
321         VAMatch =
322             (((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
323 #ifdef TARGET_MIPS64
324             &&
325             (extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
326 #endif
327             );
328         MMidMatch = tlb->MMID == invMsgMMid;
329         if ((invAll && (idx > env->CP0_Wired)) ||
330             (VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
331             (VAMatch && invVA) ||
332             (MMidMatch && !(tlb->G) && invMMid)) {
333             tlb->EHINV = 1;
334         }
335     }
336     cpu_mips_tlb_flush(env);
337 }
338 
helper_ginvt(CPUMIPSState * env,target_ulong arg,uint32_t type)339 void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
340 {
341     bool invAll = type == 0;
342     bool invVA = type == 1;
343     bool invMMid = type == 2;
344     bool invVAMMid = type == 3;
345     uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
346     uint8_t invMsgR = 0;
347     uint32_t invMsgMMid = env->CP0_MemoryMapID;
348     CPUState *other_cs = first_cpu;
349 
350 #ifdef TARGET_MIPS64
351     invMsgR = extract64(arg, 62, 2);
352 #endif
353 
354     CPU_FOREACH(other_cs) {
355         MIPSCPU *other_cpu = MIPS_CPU(other_cs);
356         global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
357                               invAll, invVAMMid, invMMid, invVA);
358     }
359 }
360 
361 /* no MMU emulation */
no_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,MMUAccessType access_type)362 static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
363                               target_ulong address, MMUAccessType access_type)
364 {
365     *physical = address;
366     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
367     return TLBRET_MATCH;
368 }
369 
370 /* fixed mapping MMU emulation */
fixed_mmu_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,MMUAccessType access_type)371 static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
372                                  int *prot, target_ulong address,
373                                  MMUAccessType access_type)
374 {
375     if (address <= (int32_t)0x7FFFFFFFUL) {
376         if (!(env->CP0_Status & (1 << CP0St_ERL))) {
377             *physical = address + 0x40000000UL;
378         } else {
379             *physical = address;
380         }
381     } else if (address <= (int32_t)0xBFFFFFFFUL) {
382         *physical = address & 0x1FFFFFFF;
383     } else {
384         *physical = address;
385     }
386 
387     *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
388     return TLBRET_MATCH;
389 }
390 
391 /* MIPS32/MIPS64 R4000-style MMU emulation */
r4k_map_address(CPUMIPSState * env,hwaddr * physical,int * prot,target_ulong address,MMUAccessType access_type)392 static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
393                            target_ulong address, MMUAccessType access_type)
394 {
395     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
396     uint32_t MMID = env->CP0_MemoryMapID;
397     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
398     uint32_t tlb_mmid;
399     int i;
400 
401     MMID = mi ? MMID : (uint32_t) ASID;
402 
403     for (i = 0; i < env->tlb->tlb_in_use; i++) {
404         r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
405         /* 1k pages are not supported. */
406         target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
407         target_ulong tag = address & ~mask;
408         target_ulong VPN = tlb->VPN & ~mask;
409 #if defined(TARGET_MIPS64)
410         tag &= env->SEGMask;
411 #endif
412 
413         /* Check ASID/MMID, virtual page number & size */
414         tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
415         if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
416             /* TLB match */
417             int n = !!(address & mask & ~(mask >> 1));
418             /* Check access rights */
419             if (!(n ? tlb->V1 : tlb->V0)) {
420                 return TLBRET_INVALID;
421             }
422             if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
423                 return TLBRET_XI;
424             }
425             if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
426                 return TLBRET_RI;
427             }
428             if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
429                 *physical = tlb->PFN[n] | (address & (mask >> 1));
430                 *prot = PAGE_READ;
431                 if (n ? tlb->D1 : tlb->D0) {
432                     *prot |= PAGE_WRITE;
433                 }
434                 if (!(n ? tlb->XI1 : tlb->XI0)) {
435                     *prot |= PAGE_EXEC;
436                 }
437                 return TLBRET_MATCH;
438             }
439             return TLBRET_DIRTY;
440         }
441     }
442     return TLBRET_NOMATCH;
443 }
444 
no_mmu_init(CPUMIPSState * env,const mips_def_t * def)445 static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
446 {
447     env->tlb->nb_tlb = 1;
448     env->tlb->map_address = &no_mmu_map_address;
449 }
450 
fixed_mmu_init(CPUMIPSState * env,const mips_def_t * def)451 static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
452 {
453     env->tlb->nb_tlb = 1;
454     env->tlb->map_address = &fixed_mmu_map_address;
455 }
456 
r4k_mmu_init(CPUMIPSState * env,const mips_def_t * def)457 static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
458 {
459     env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
460     env->tlb->map_address = &r4k_map_address;
461     env->tlb->helper_tlbwi = r4k_helper_tlbwi;
462     env->tlb->helper_tlbwr = r4k_helper_tlbwr;
463     env->tlb->helper_tlbp = r4k_helper_tlbp;
464     env->tlb->helper_tlbr = r4k_helper_tlbr;
465     env->tlb->helper_tlbinv = r4k_helper_tlbinv;
466     env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
467 }
468 
mmu_init(CPUMIPSState * env,const mips_def_t * def)469 void mmu_init(CPUMIPSState *env, const mips_def_t *def)
470 {
471     env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
472 
473     switch (def->mmu_type) {
474     case MMU_TYPE_NONE:
475         no_mmu_init(env, def);
476         break;
477     case MMU_TYPE_R4000:
478         r4k_mmu_init(env, def);
479         break;
480     case MMU_TYPE_FMT:
481         fixed_mmu_init(env, def);
482         break;
483     case MMU_TYPE_R3000:
484     case MMU_TYPE_R6000:
485     case MMU_TYPE_R8000:
486     default:
487         cpu_abort(env_cpu(env), "MMU type not supported\n");
488     }
489 }
490 
cpu_mips_tlb_flush(CPUMIPSState * env)491 void cpu_mips_tlb_flush(CPUMIPSState *env)
492 {
493     /* Flush qemu's TLB and discard all shadowed entries.  */
494     tlb_flush(env_cpu(env));
495     env->tlb->tlb_in_use = env->tlb->nb_tlb;
496 }
497 
raise_mmu_exception(CPUMIPSState * env,target_ulong address,MMUAccessType access_type,int tlb_error)498 static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
499                                 MMUAccessType access_type, int tlb_error)
500 {
501     CPUState *cs = env_cpu(env);
502     int exception = 0, error_code = 0;
503 
504     if (access_type == MMU_INST_FETCH) {
505         error_code |= EXCP_INST_NOTAVAIL;
506     }
507 
508     switch (tlb_error) {
509     default:
510     case TLBRET_BADADDR:
511         /* Reference to kernel address from user mode or supervisor mode */
512         /* Reference to supervisor address from user mode */
513         if (access_type == MMU_DATA_STORE) {
514             exception = EXCP_AdES;
515         } else {
516             exception = EXCP_AdEL;
517         }
518         break;
519     case TLBRET_NOMATCH:
520         /* No TLB match for a mapped address */
521         if (access_type == MMU_DATA_STORE) {
522             exception = EXCP_TLBS;
523         } else {
524             exception = EXCP_TLBL;
525         }
526         error_code |= EXCP_TLB_NOMATCH;
527         break;
528     case TLBRET_INVALID:
529         /* TLB match with no valid bit */
530         if (access_type == MMU_DATA_STORE) {
531             exception = EXCP_TLBS;
532         } else {
533             exception = EXCP_TLBL;
534         }
535         break;
536     case TLBRET_DIRTY:
537         /* TLB match but 'D' bit is cleared */
538         exception = EXCP_LTLBL;
539         break;
540     case TLBRET_XI:
541         /* Execute-Inhibit Exception */
542         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
543             exception = EXCP_TLBXI;
544         } else {
545             exception = EXCP_TLBL;
546         }
547         break;
548     case TLBRET_RI:
549         /* Read-Inhibit Exception */
550         if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
551             exception = EXCP_TLBRI;
552         } else {
553             exception = EXCP_TLBL;
554         }
555         break;
556     }
557     /* Raise exception */
558     if (!(env->hflags & MIPS_HFLAG_DM)) {
559         env->CP0_BadVAddr = address;
560     }
561     env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
562                        ((address >> 9) & 0x007ffff0);
563     env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
564                        (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
565                        (address & (TARGET_PAGE_MASK << 1));
566 #if defined(TARGET_MIPS64)
567     env->CP0_EntryHi &= env->SEGMask;
568     env->CP0_XContext =
569         (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
570         (extract64(address, 62, 2) << (env->SEGBITS - 9)) |     /* R       */
571         (extract64(address, 13, env->SEGBITS - 13) << 4);       /* BadVPN2 */
572 #endif
573     cs->exception_index = exception;
574     env->error_code = error_code;
575 }
576 
577 #if !defined(TARGET_MIPS64)
578 
579 /*
580  * Perform hardware page table walk
581  *
582  * Memory accesses are performed using the KERNEL privilege level.
583  * Synchronous exceptions detected on memory accesses cause a silent exit
584  * from page table walking, resulting in a TLB or XTLB Refill exception.
585  *
586  * Implementations are not required to support page table walk memory
587  * accesses from mapped memory regions. When an unsupported access is
588  * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
589  * exception.
590  *
591  * Note that if an exception is caused by AddressTranslation or LoadMemory
592  * functions, the exception is not taken, a silent exit is taken,
593  * resulting in a TLB or XTLB Refill exception.
594  */
595 
get_pte(CPUMIPSState * env,uint64_t vaddr,MemOp op,uint64_t * pte,unsigned ptw_mmu_idx)596 static bool get_pte(CPUMIPSState *env, uint64_t vaddr, MemOp op,
597                     uint64_t *pte, unsigned ptw_mmu_idx)
598 {
599     MemOpIdx oi;
600 
601     if ((vaddr & (memop_size(op) - 1)) != 0) {
602         return false;
603     }
604 
605     oi = make_memop_idx(op | mo_endian_env(env), ptw_mmu_idx);
606     if (op == MO_64) {
607         *pte = cpu_ldq_mmu(env, vaddr, oi, 0);
608     } else {
609         *pte = cpu_ldl_mmu(env, vaddr, oi, 0);
610     }
611 
612     return true;
613 }
614 
get_tlb_entry_layout(CPUMIPSState * env,uint64_t entry,MemOp op,int ptei)615 static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
616                                      MemOp op, int ptei)
617 {
618     unsigned entry_size = memop_size(op) << 3;
619     uint64_t result = entry;
620     uint64_t rixi;
621     if (ptei > entry_size) {
622         ptei -= 32;
623     }
624     result >>= (ptei - 2);
625     rixi = result & 3;
626     result >>= 2;
627     result |= rixi << CP0EnLo_XI;
628     return result;
629 }
630 
walk_directory(CPUMIPSState * env,uint64_t * vaddr,int directory_index,bool * huge_page,bool * hgpg_directory_hit,uint64_t * pw_entrylo0,uint64_t * pw_entrylo1,MemOp directory_mop,MemOp leaf_mop,int ptw_mmu_idx)631 static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
632         int directory_index, bool *huge_page, bool *hgpg_directory_hit,
633         uint64_t *pw_entrylo0, uint64_t *pw_entrylo1,
634         MemOp directory_mop, MemOp leaf_mop, int ptw_mmu_idx)
635 {
636     int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
637     int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
638     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
639     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
640     uint64_t entry;
641     uint64_t paddr;
642     int prot;
643     uint64_t lsb = 0;
644     uint64_t w = 0;
645 
646     if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
647                              ptw_mmu_idx) != TLBRET_MATCH) {
648         /* wrong base address */
649         return 0;
650     }
651     if (!get_pte(env, *vaddr, directory_mop, &entry, ptw_mmu_idx)) {
652         return 0;
653     }
654 
655     if ((entry & (1 << psn)) && hugepg) {
656         *huge_page = true;
657         *hgpg_directory_hit = true;
658         entry = get_tlb_entry_layout(env, entry, leaf_mop, pf_ptew);
659         w = directory_index - 1;
660         if (directory_index & 0x1) {
661             /* Generate adjacent page from same PTE for odd TLB page */
662             lsb = BIT_ULL(w) >> 6;
663             *pw_entrylo0 = entry & ~lsb; /* even page */
664             *pw_entrylo1 = entry | lsb; /* odd page */
665         } else if (dph) {
666             int oddpagebit = 1 << leaf_mop;
667             uint64_t vaddr2 = *vaddr ^ oddpagebit;
668             if (*vaddr & oddpagebit) {
669                 *pw_entrylo1 = entry;
670             } else {
671                 *pw_entrylo0 = entry;
672             }
673             if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
674                                      ptw_mmu_idx) != TLBRET_MATCH) {
675                 return 0;
676             }
677             if (!get_pte(env, vaddr2, leaf_mop, &entry, ptw_mmu_idx)) {
678                 return 0;
679             }
680             entry = get_tlb_entry_layout(env, entry, leaf_mop, pf_ptew);
681             if (*vaddr & oddpagebit) {
682                 *pw_entrylo0 = entry;
683             } else {
684                 *pw_entrylo1 = entry;
685             }
686         } else {
687             return 0;
688         }
689         return 1;
690     } else {
691         *vaddr = entry;
692         return 2;
693     }
694 }
695 
page_table_walk_refill(CPUMIPSState * env,vaddr address,int ptw_mmu_idx)696 static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
697                                    int ptw_mmu_idx)
698 {
699     int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
700     int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
701     int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
702     int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
703     int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
704 
705     /* Initial values */
706     bool huge_page = false;
707     bool hgpg_bdhit = false;
708     bool hgpg_gdhit = false;
709     bool hgpg_udhit = false;
710     bool hgpg_mdhit = false;
711 
712     int32_t pw_pagemask = 0;
713     target_ulong pw_entryhi = 0;
714     uint64_t pw_entrylo0 = 0;
715     uint64_t pw_entrylo1 = 0;
716 
717     /* Native pointer size */
718     /*For the 32-bit architectures, this bit is fixed to 0.*/
719     MemOp native_op = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? MO_32 : MO_64;
720 
721     /* Indices from PWField */
722     int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
723     int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
724     int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
725     int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
726     int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
727 
728     /* Indices computed from faulting address */
729     int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
730     int uindex = (address >> pf_udw) & ((1 << udw) - 1);
731     int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
732     int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
733 
734     /* Other HTW configs */
735     int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
736     MemOp directory_mop, leaf_mop;
737 
738     /* Offsets into tables */
739     unsigned goffset, uoffset, moffset, ptoffset0, ptoffset1;
740 
741     /* Starting address - Page Table Base */
742     uint64_t vaddr = env->CP0_PWBase;
743 
744     uint64_t dir_entry;
745     uint64_t paddr;
746     int prot;
747     int m;
748 
749     if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
750         /* walker is unimplemented */
751         return false;
752     }
753     if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
754         /* walker is disabled */
755         return false;
756     }
757     if (!(gdw > 0 || udw > 0 || mdw > 0)) {
758         /* no structure to walk */
759         return false;
760     }
761     if (ptew > 1) {
762         return false;
763     }
764 
765     /* HTW Shift values (depend on entry size) */
766     directory_mop = (hugepg && (ptew == 1)) ? native_op + 1 : native_op;
767     leaf_mop = (ptew == 1) ? native_op + 1 : native_op;
768 
769     goffset = gindex << directory_mop;
770     uoffset = uindex << directory_mop;
771     moffset = mindex << directory_mop;
772     ptoffset0 = (ptindex >> 1) << (leaf_mop + 1);
773     ptoffset1 = ptoffset0 | (1 << (leaf_mop));
774 
775     /* Global Directory */
776     if (gdw > 0) {
777         vaddr |= goffset;
778         switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
779                                &pw_entrylo0, &pw_entrylo1,
780                                directory_mop, leaf_mop, ptw_mmu_idx))
781         {
782         case 0:
783             return false;
784         case 1:
785             goto refill;
786         case 2:
787         default:
788             break;
789         }
790     }
791 
792     /* Upper directory */
793     if (udw > 0) {
794         vaddr |= uoffset;
795         switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
796                                &pw_entrylo0, &pw_entrylo1,
797                                directory_mop, leaf_mop, ptw_mmu_idx))
798         {
799         case 0:
800             return false;
801         case 1:
802             goto refill;
803         case 2:
804         default:
805             break;
806         }
807     }
808 
809     /* Middle directory */
810     if (mdw > 0) {
811         vaddr |= moffset;
812         switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
813                                &pw_entrylo0, &pw_entrylo1,
814                                directory_mop, leaf_mop, ptw_mmu_idx))
815         {
816         case 0:
817             return false;
818         case 1:
819             goto refill;
820         case 2:
821         default:
822             break;
823         }
824     }
825 
826     /* Leaf Level Page Table - First half of PTE pair */
827     vaddr |= ptoffset0;
828     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
829                              ptw_mmu_idx) != TLBRET_MATCH) {
830         return false;
831     }
832     if (!get_pte(env, vaddr, leaf_mop, &dir_entry, ptw_mmu_idx)) {
833         return false;
834     }
835     dir_entry = get_tlb_entry_layout(env, dir_entry, leaf_mop, pf_ptew);
836     pw_entrylo0 = dir_entry;
837 
838     /* Leaf Level Page Table - Second half of PTE pair */
839     vaddr |= ptoffset1;
840     if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
841                              ptw_mmu_idx) != TLBRET_MATCH) {
842         return false;
843     }
844     if (!get_pte(env, vaddr, leaf_mop, &dir_entry, ptw_mmu_idx)) {
845         return false;
846     }
847     dir_entry = get_tlb_entry_layout(env, dir_entry, leaf_mop, pf_ptew);
848     pw_entrylo1 = dir_entry;
849 
850 refill:
851 
852     m = (1 << pf_ptw) - 1;
853 
854     if (huge_page) {
855         switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
856                 hgpg_mdhit)
857         {
858         case 4:
859             m = (1 << pf_gdw) - 1;
860             if (pf_gdw & 1) {
861                 m >>= 1;
862             }
863             break;
864         case 2:
865             m = (1 << pf_udw) - 1;
866             if (pf_udw & 1) {
867                 m >>= 1;
868             }
869             break;
870         case 1:
871             m = (1 << pf_mdw) - 1;
872             if (pf_mdw & 1) {
873                 m >>= 1;
874             }
875             break;
876         }
877     }
878     pw_pagemask = m >> TARGET_PAGE_BITS;
879     pw_pagemask = compute_pagemask(pw_pagemask << CP0PM_MASK);
880     pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
881     {
882         target_ulong tmp_entryhi = env->CP0_EntryHi;
883         int32_t tmp_pagemask = env->CP0_PageMask;
884         uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
885         uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
886 
887         env->CP0_EntryHi = pw_entryhi;
888         env->CP0_PageMask = pw_pagemask;
889         env->CP0_EntryLo0 = pw_entrylo0;
890         env->CP0_EntryLo1 = pw_entrylo1;
891 
892         /*
893          * The hardware page walker inserts a page into the TLB in a manner
894          * identical to a TLBWR instruction as executed by the software refill
895          * handler.
896          */
897         r4k_helper_tlbwr(env);
898 
899         env->CP0_EntryHi = tmp_entryhi;
900         env->CP0_PageMask = tmp_pagemask;
901         env->CP0_EntryLo0 = tmp_entrylo0;
902         env->CP0_EntryLo1 = tmp_entrylo1;
903     }
904     return true;
905 }
906 #endif
907 
mips_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)908 bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
909                        MMUAccessType access_type, int mmu_idx,
910                        bool probe, uintptr_t retaddr)
911 {
912     CPUMIPSState *env = cpu_env(cs);
913     hwaddr physical;
914     int prot;
915     int ret = TLBRET_BADADDR;
916 
917     /* data access */
918     /* XXX: put correct access by using cpu_restore_state() correctly */
919     ret = get_physical_address(env, &physical, &prot, address,
920                                access_type, mmu_idx);
921     switch (ret) {
922     case TLBRET_MATCH:
923         qemu_log_mask(CPU_LOG_MMU,
924                       "%s address=%" VADDR_PRIx " physical " HWADDR_FMT_plx
925                       " prot %d\n", __func__, address, physical, prot);
926         break;
927     default:
928         qemu_log_mask(CPU_LOG_MMU,
929                       "%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
930                       ret);
931         break;
932     }
933     if (ret == TLBRET_MATCH) {
934         tlb_set_page(cs, address & TARGET_PAGE_MASK,
935                      physical & TARGET_PAGE_MASK, prot,
936                      mmu_idx, TARGET_PAGE_SIZE);
937         return true;
938     }
939 #if !defined(TARGET_MIPS64)
940     if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
941         /*
942          * Memory reads during hardware page table walking are performed
943          * as if they were kernel-mode load instructions.
944          */
945         int ptw_mmu_idx = (env->hflags & MIPS_HFLAG_ERL ?
946                            MMU_ERL_IDX : MMU_KERNEL_IDX);
947 
948         if (page_table_walk_refill(env, address, ptw_mmu_idx)) {
949             ret = get_physical_address(env, &physical, &prot, address,
950                                        access_type, mmu_idx);
951             if (ret == TLBRET_MATCH) {
952                 tlb_set_page(cs, address & TARGET_PAGE_MASK,
953                              physical & TARGET_PAGE_MASK, prot,
954                              mmu_idx, TARGET_PAGE_SIZE);
955                 return true;
956             }
957         }
958     }
959 #endif
960     if (probe) {
961         return false;
962     }
963 
964     raise_mmu_exception(env, address, access_type, ret);
965     do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
966 }
967 
cpu_mips_translate_address(CPUMIPSState * env,target_ulong address,MMUAccessType access_type,uintptr_t retaddr)968 hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
969                                   MMUAccessType access_type, uintptr_t retaddr)
970 {
971     hwaddr physical;
972     int prot;
973     int ret = 0;
974     CPUState *cs = env_cpu(env);
975 
976     /* data access */
977     ret = get_physical_address(env, &physical, &prot, address, access_type,
978                                mips_env_mmu_index(env));
979     if (ret == TLBRET_MATCH) {
980         return physical;
981     }
982 
983     raise_mmu_exception(env, address, access_type, ret);
984     cpu_loop_exit_restore(cs, retaddr);
985 }
986 
set_hflags_for_handler(CPUMIPSState * env)987 static void set_hflags_for_handler(CPUMIPSState *env)
988 {
989     /* Exception handlers are entered in 32-bit mode.  */
990     env->hflags &= ~(MIPS_HFLAG_M16);
991     /* ...except that microMIPS lets you choose.  */
992     if (env->insn_flags & ASE_MICROMIPS) {
993         env->hflags |= (!!(env->CP0_Config3 &
994                            (1 << CP0C3_ISA_ON_EXC))
995                         << MIPS_HFLAG_M16_SHIFT);
996     }
997 }
998 
set_badinstr_registers(CPUMIPSState * env)999 static inline void set_badinstr_registers(CPUMIPSState *env)
1000 {
1001     if (env->insn_flags & ISA_NANOMIPS32) {
1002         if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1003             uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
1004             if ((instr & 0x10000000) == 0) {
1005                 instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
1006             }
1007             env->CP0_BadInstr = instr;
1008 
1009             if ((instr & 0xFC000000) == 0x60000000) {
1010                 instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
1011                 env->CP0_BadInstrX = instr;
1012             }
1013         }
1014         return;
1015     }
1016 
1017     if (env->hflags & MIPS_HFLAG_M16) {
1018         /* TODO: add BadInstr support for microMIPS */
1019         return;
1020     }
1021     if (env->CP0_Config3 & (1 << CP0C3_BI)) {
1022         env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
1023     }
1024     if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
1025         (env->hflags & MIPS_HFLAG_BMASK)) {
1026         env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
1027     }
1028 }
1029 
mips_cpu_do_interrupt(CPUState * cs)1030 void mips_cpu_do_interrupt(CPUState *cs)
1031 {
1032     MIPSCPU *cpu = MIPS_CPU(cs);
1033     CPUMIPSState *env = &cpu->env;
1034     bool update_badinstr = 0;
1035     target_ulong offset;
1036     int cause = -1;
1037 
1038     if (qemu_loglevel_mask(CPU_LOG_INT)
1039         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1040         qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
1041                  " %s exception\n",
1042                  __func__, env->active_tc.PC, env->CP0_EPC,
1043                  mips_exception_name(cs->exception_index));
1044     }
1045     if (cs->exception_index == EXCP_EXT_INTERRUPT &&
1046         (env->hflags & MIPS_HFLAG_DM)) {
1047         cs->exception_index = EXCP_DINT;
1048     }
1049     offset = 0x180;
1050     switch (cs->exception_index) {
1051     case EXCP_SEMIHOST:
1052         cs->exception_index = EXCP_NONE;
1053         mips_semihosting(env);
1054         env->active_tc.PC += env->error_code;
1055         return;
1056     case EXCP_DSS:
1057         env->CP0_Debug |= 1 << CP0DB_DSS;
1058         /*
1059          * Debug single step cannot be raised inside a delay slot and
1060          * resume will always occur on the next instruction
1061          * (but we assume the pc has always been updated during
1062          * code translation).
1063          */
1064         env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
1065         goto enter_debug_mode;
1066     case EXCP_DINT:
1067         env->CP0_Debug |= 1 << CP0DB_DINT;
1068         goto set_DEPC;
1069     case EXCP_DIB:
1070         env->CP0_Debug |= 1 << CP0DB_DIB;
1071         goto set_DEPC;
1072     case EXCP_DBp:
1073         env->CP0_Debug |= 1 << CP0DB_DBp;
1074         /* Setup DExcCode - SDBBP instruction */
1075         env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
1076                          (9 << CP0DB_DEC);
1077         goto set_DEPC;
1078     case EXCP_DDBS:
1079         env->CP0_Debug |= 1 << CP0DB_DDBS;
1080         goto set_DEPC;
1081     case EXCP_DDBL:
1082         env->CP0_Debug |= 1 << CP0DB_DDBL;
1083     set_DEPC:
1084         env->CP0_DEPC = exception_resume_pc(env);
1085         env->hflags &= ~MIPS_HFLAG_BMASK;
1086  enter_debug_mode:
1087         if (env->insn_flags & ISA_MIPS3) {
1088             env->hflags |= MIPS_HFLAG_64;
1089             if (!(env->insn_flags & ISA_MIPS_R6) ||
1090                 env->CP0_Status & (1 << CP0St_KX)) {
1091                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1092             }
1093         }
1094         env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
1095         env->hflags &= ~(MIPS_HFLAG_KSU);
1096         /* EJTAG probe trap enable is not implemented... */
1097         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1098             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1099         }
1100         env->active_tc.PC = env->exception_base + 0x480;
1101         set_hflags_for_handler(env);
1102         break;
1103     case EXCP_RESET:
1104         cpu_reset(CPU(cpu));
1105         break;
1106     case EXCP_SRESET:
1107         env->CP0_Status |= (1 << CP0St_SR);
1108         memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
1109         goto set_error_EPC;
1110     case EXCP_NMI:
1111         env->CP0_Status |= (1 << CP0St_NMI);
1112  set_error_EPC:
1113         env->CP0_ErrorEPC = exception_resume_pc(env);
1114         env->hflags &= ~MIPS_HFLAG_BMASK;
1115         env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
1116         if (env->insn_flags & ISA_MIPS3) {
1117             env->hflags |= MIPS_HFLAG_64;
1118             if (!(env->insn_flags & ISA_MIPS_R6) ||
1119                 env->CP0_Status & (1 << CP0St_KX)) {
1120                 env->hflags &= ~MIPS_HFLAG_AWRAP;
1121             }
1122         }
1123         env->hflags |= MIPS_HFLAG_CP0;
1124         env->hflags &= ~(MIPS_HFLAG_KSU);
1125         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1126             env->CP0_Cause &= ~(1U << CP0Ca_BD);
1127         }
1128         env->active_tc.PC = env->exception_base;
1129         set_hflags_for_handler(env);
1130         break;
1131     case EXCP_EXT_INTERRUPT:
1132         cause = 0;
1133         if (env->CP0_Cause & (1 << CP0Ca_IV)) {
1134             uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
1135 
1136             if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
1137                 offset = 0x200;
1138             } else {
1139                 uint32_t vector = 0;
1140                 uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
1141 
1142                 if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
1143                     /*
1144                      * For VEIC mode, the external interrupt controller feeds
1145                      * the vector through the CP0Cause IP lines.
1146                      */
1147                     vector = pending;
1148                 } else {
1149                     /*
1150                      * Vectored Interrupts
1151                      * Mask with Status.IM7-IM0 to get enabled interrupts.
1152                      */
1153                     pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
1154                     /* Find the highest-priority interrupt. */
1155                     while (pending >>= 1) {
1156                         vector++;
1157                     }
1158                 }
1159                 offset = 0x200 + (vector * (spacing << 5));
1160             }
1161         }
1162         goto set_EPC;
1163     case EXCP_LTLBL:
1164         cause = 1;
1165         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1166         goto set_EPC;
1167     case EXCP_TLBL:
1168         cause = 2;
1169         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1170         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1171             !(env->CP0_Status & (1 << CP0St_EXL))) {
1172 #if defined(TARGET_MIPS64)
1173             int R = env->CP0_BadVAddr >> 62;
1174             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1175             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1176 
1177             if ((R != 0 || UX) && (R != 3 || KX) &&
1178                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1179                 offset = 0x080;
1180             } else {
1181 #endif
1182                 offset = 0x000;
1183 #if defined(TARGET_MIPS64)
1184             }
1185 #endif
1186         }
1187         goto set_EPC;
1188     case EXCP_TLBS:
1189         cause = 3;
1190         update_badinstr = 1;
1191         if ((env->error_code & EXCP_TLB_NOMATCH) &&
1192             !(env->CP0_Status & (1 << CP0St_EXL))) {
1193 #if defined(TARGET_MIPS64)
1194             int R = env->CP0_BadVAddr >> 62;
1195             int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
1196             int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
1197 
1198             if ((R != 0 || UX) && (R != 3 || KX) &&
1199                 (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
1200                 offset = 0x080;
1201             } else {
1202 #endif
1203                 offset = 0x000;
1204 #if defined(TARGET_MIPS64)
1205             }
1206 #endif
1207         }
1208         goto set_EPC;
1209     case EXCP_AdEL:
1210         cause = 4;
1211         update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
1212         goto set_EPC;
1213     case EXCP_AdES:
1214         cause = 5;
1215         update_badinstr = 1;
1216         goto set_EPC;
1217     case EXCP_IBE:
1218         cause = 6;
1219         goto set_EPC;
1220     case EXCP_DBE:
1221         cause = 7;
1222         goto set_EPC;
1223     case EXCP_SYSCALL:
1224         cause = 8;
1225         update_badinstr = 1;
1226         goto set_EPC;
1227     case EXCP_BREAK:
1228         cause = 9;
1229         update_badinstr = 1;
1230         goto set_EPC;
1231     case EXCP_RI:
1232         cause = 10;
1233         update_badinstr = 1;
1234         goto set_EPC;
1235     case EXCP_CpU:
1236         cause = 11;
1237         update_badinstr = 1;
1238         env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
1239                          (env->error_code << CP0Ca_CE);
1240         goto set_EPC;
1241     case EXCP_OVERFLOW:
1242         cause = 12;
1243         update_badinstr = 1;
1244         goto set_EPC;
1245     case EXCP_TRAP:
1246         cause = 13;
1247         update_badinstr = 1;
1248         goto set_EPC;
1249     case EXCP_MSAFPE:
1250         cause = 14;
1251         update_badinstr = 1;
1252         goto set_EPC;
1253     case EXCP_FPE:
1254         cause = 15;
1255         update_badinstr = 1;
1256         goto set_EPC;
1257     case EXCP_C2E:
1258         cause = 18;
1259         goto set_EPC;
1260     case EXCP_TLBRI:
1261         cause = 19;
1262         update_badinstr = 1;
1263         goto set_EPC;
1264     case EXCP_TLBXI:
1265         cause = 20;
1266         goto set_EPC;
1267     case EXCP_MSADIS:
1268         cause = 21;
1269         update_badinstr = 1;
1270         goto set_EPC;
1271     case EXCP_MDMX:
1272         cause = 22;
1273         goto set_EPC;
1274     case EXCP_DWATCH:
1275         cause = 23;
1276         /* XXX: TODO: manage deferred watch exceptions */
1277         goto set_EPC;
1278     case EXCP_MCHECK:
1279         cause = 24;
1280         goto set_EPC;
1281     case EXCP_THREAD:
1282         cause = 25;
1283         goto set_EPC;
1284     case EXCP_DSPDIS:
1285         cause = 26;
1286         goto set_EPC;
1287     case EXCP_CACHE:
1288         cause = 30;
1289         offset = 0x100;
1290  set_EPC:
1291         if (!(env->CP0_Status & (1 << CP0St_EXL))) {
1292             env->CP0_EPC = exception_resume_pc(env);
1293             if (update_badinstr) {
1294                 set_badinstr_registers(env);
1295             }
1296             if (env->hflags & MIPS_HFLAG_BMASK) {
1297                 env->CP0_Cause |= (1U << CP0Ca_BD);
1298             } else {
1299                 env->CP0_Cause &= ~(1U << CP0Ca_BD);
1300             }
1301             env->CP0_Status |= (1 << CP0St_EXL);
1302             if (env->insn_flags & ISA_MIPS3) {
1303                 env->hflags |= MIPS_HFLAG_64;
1304                 if (!(env->insn_flags & ISA_MIPS_R6) ||
1305                     env->CP0_Status & (1 << CP0St_KX)) {
1306                     env->hflags &= ~MIPS_HFLAG_AWRAP;
1307                 }
1308             }
1309             env->hflags |= MIPS_HFLAG_CP0;
1310             env->hflags &= ~(MIPS_HFLAG_KSU);
1311         }
1312         env->hflags &= ~MIPS_HFLAG_BMASK;
1313         if (env->CP0_Status & (1 << CP0St_BEV)) {
1314             env->active_tc.PC = env->exception_base + 0x200;
1315         } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
1316                                     env->CP0_Config5 & (1 << CP0C5_CV))) {
1317             /* Force KSeg1 for cache errors */
1318             env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
1319         } else {
1320             env->active_tc.PC = env->CP0_EBase & ~0xfff;
1321         }
1322 
1323         env->active_tc.PC += offset;
1324         set_hflags_for_handler(env);
1325         env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
1326                          (cause << CP0Ca_EC);
1327         break;
1328     default:
1329         abort();
1330     }
1331     if (qemu_loglevel_mask(CPU_LOG_INT)
1332         && cs->exception_index != EXCP_EXT_INTERRUPT) {
1333         qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
1334                  "    S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
1335                  __func__, env->active_tc.PC, env->CP0_EPC, cause,
1336                  env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
1337                  env->CP0_DEPC);
1338     }
1339     cs->exception_index = EXCP_NONE;
1340 }
1341 
mips_cpu_exec_interrupt(CPUState * cs,int interrupt_request)1342 bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
1343 {
1344     if (interrupt_request & CPU_INTERRUPT_HARD) {
1345         CPUMIPSState *env = cpu_env(cs);
1346 
1347         if (cpu_mips_hw_interrupts_enabled(env) &&
1348             cpu_mips_hw_interrupts_pending(env)) {
1349             /* Raise it */
1350             cs->exception_index = EXCP_EXT_INTERRUPT;
1351             env->error_code = 0;
1352             mips_cpu_do_interrupt(cs);
1353             return true;
1354         }
1355     }
1356     return false;
1357 }
1358 
r4k_invalidate_tlb(CPUMIPSState * env,int idx,int use_extra)1359 void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
1360 {
1361     CPUState *cs = env_cpu(env);
1362     r4k_tlb_t *tlb;
1363     target_ulong addr;
1364     target_ulong end;
1365     uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
1366     uint32_t MMID = env->CP0_MemoryMapID;
1367     bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
1368     uint32_t tlb_mmid;
1369     target_ulong mask;
1370 
1371     MMID = mi ? MMID : (uint32_t) ASID;
1372 
1373     tlb = &env->tlb->mmu.r4k.tlb[idx];
1374     /*
1375      * The qemu TLB is flushed when the ASID/MMID changes, so no need to
1376      * flush these entries again.
1377      */
1378     tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
1379     if (tlb->G == 0 && tlb_mmid != MMID) {
1380         return;
1381     }
1382 
1383     if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
1384         /*
1385          * For tlbwr, we can shadow the discarded entry into
1386          * a new (fake) TLB entry, as long as the guest can not
1387          * tell that it's there.
1388          */
1389         env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
1390         env->tlb->tlb_in_use++;
1391         return;
1392     }
1393 
1394     /* 1k pages are not supported. */
1395     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1396     if (tlb->V0) {
1397         addr = tlb->VPN & ~mask;
1398 #if defined(TARGET_MIPS64)
1399         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1400             addr |= 0x3FFFFF0000000000ULL;
1401         }
1402 #endif
1403         end = addr | (mask >> 1);
1404         while (addr < end) {
1405             tlb_flush_page(cs, addr);
1406             addr += TARGET_PAGE_SIZE;
1407         }
1408     }
1409     if (tlb->V1) {
1410         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1411 #if defined(TARGET_MIPS64)
1412         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1413             addr |= 0x3FFFFF0000000000ULL;
1414         }
1415 #endif
1416         end = addr | mask;
1417         while (addr - 1 < end) {
1418             tlb_flush_page(cs, addr);
1419             addr += TARGET_PAGE_SIZE;
1420         }
1421     }
1422 }
1423