1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2016 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/atomic.h>
8 #include <linux/coresight.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/iommu.h>
11 #include <linux/idr.h>
12 #include <linux/mutex.h>
13 #include <linux/refcount.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/vmalloc.h>
17 #include "coresight-catu.h"
18 #include "coresight-etm-perf.h"
19 #include "coresight-priv.h"
20 #include "coresight-tmc.h"
21
22 struct etr_flat_buf {
23 struct device *dev;
24 dma_addr_t daddr;
25 void *vaddr;
26 size_t size;
27 };
28
29 /*
30 * etr_perf_buffer - Perf buffer used for ETR
31 * @drvdata - The ETR drvdaga this buffer has been allocated for.
32 * @etr_buf - Actual buffer used by the ETR
33 * @pid - The PID this etr_perf_buffer belongs to.
34 * @snaphost - Perf session mode
35 * @head - handle->head at the beginning of the session.
36 * @nr_pages - Number of pages in the ring buffer.
37 * @pages - Array of Pages in the ring buffer.
38 */
39 struct etr_perf_buffer {
40 struct tmc_drvdata *drvdata;
41 struct etr_buf *etr_buf;
42 pid_t pid;
43 bool snapshot;
44 unsigned long head;
45 int nr_pages;
46 void **pages;
47 };
48
49 /* Convert the perf index to an offset within the ETR buffer */
50 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT))
51
52 /* Lower limit for ETR hardware buffer */
53 #define TMC_ETR_PERF_MIN_BUF_SIZE SZ_1M
54
55 /*
56 * The TMC ETR SG has a page size of 4K. The SG table contains pointers
57 * to 4KB buffers. However, the OS may use a PAGE_SIZE different from
58 * 4K (i.e, 16KB or 64KB). This implies that a single OS page could
59 * contain more than one SG buffer and tables.
60 *
61 * A table entry has the following format:
62 *
63 * ---Bit31------------Bit4-------Bit1-----Bit0--
64 * | Address[39:12] | SBZ | Entry Type |
65 * ----------------------------------------------
66 *
67 * Address: Bits [39:12] of a physical page address. Bits [11:0] are
68 * always zero.
69 *
70 * Entry type:
71 * b00 - Reserved.
72 * b01 - Last entry in the tables, points to 4K page buffer.
73 * b10 - Normal entry, points to 4K page buffer.
74 * b11 - Link. The address points to the base of next table.
75 */
76
77 typedef u32 sgte_t;
78
79 #define ETR_SG_PAGE_SHIFT 12
80 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT)
81 #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE)
82 #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t))
83 #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t))
84
85 #define ETR_SG_ET_MASK 0x3
86 #define ETR_SG_ET_LAST 0x1
87 #define ETR_SG_ET_NORMAL 0x2
88 #define ETR_SG_ET_LINK 0x3
89
90 #define ETR_SG_ADDR_SHIFT 4
91
92 #define ETR_SG_ENTRY(addr, type) \
93 (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \
94 (type & ETR_SG_ET_MASK))
95
96 #define ETR_SG_ADDR(entry) \
97 (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT)
98 #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK)
99
100 /*
101 * struct etr_sg_table : ETR SG Table
102 * @sg_table: Generic SG Table holding the data/table pages.
103 * @hwaddr: hwaddress used by the TMC, which is the base
104 * address of the table.
105 */
106 struct etr_sg_table {
107 struct tmc_sg_table *sg_table;
108 dma_addr_t hwaddr;
109 };
110
111 /*
112 * tmc_etr_sg_table_entries: Total number of table entries required to map
113 * @nr_pages system pages.
114 *
115 * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages.
116 * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers,
117 * with the last entry pointing to another page of table entries.
118 * If we spill over to a new page for mapping 1 entry, we could as
119 * well replace the link entry of the previous page with the last entry.
120 */
121 static inline unsigned long __attribute_const__
tmc_etr_sg_table_entries(int nr_pages)122 tmc_etr_sg_table_entries(int nr_pages)
123 {
124 unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE;
125 unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1);
126 /*
127 * If we spill over to a new page for 1 entry, we could as well
128 * make it the LAST entry in the previous page, skipping the Link
129 * address.
130 */
131 if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2))
132 nr_sglinks--;
133 return nr_sgpages + nr_sglinks;
134 }
135
136 /*
137 * tmc_pages_get_offset: Go through all the pages in the tmc_pages
138 * and map the device address @addr to an offset within the virtual
139 * contiguous buffer.
140 */
141 static long
tmc_pages_get_offset(struct tmc_pages * tmc_pages,dma_addr_t addr)142 tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr)
143 {
144 int i;
145 dma_addr_t page_start;
146
147 for (i = 0; i < tmc_pages->nr_pages; i++) {
148 page_start = tmc_pages->daddrs[i];
149 if (addr >= page_start && addr < (page_start + PAGE_SIZE))
150 return i * PAGE_SIZE + (addr - page_start);
151 }
152
153 return -EINVAL;
154 }
155
156 /*
157 * tmc_pages_free : Unmap and free the pages used by tmc_pages.
158 * If the pages were not allocated in tmc_pages_alloc(), we would
159 * simply drop the refcount.
160 */
tmc_pages_free(struct tmc_pages * tmc_pages,struct device * dev,enum dma_data_direction dir)161 static void tmc_pages_free(struct tmc_pages *tmc_pages,
162 struct device *dev, enum dma_data_direction dir)
163 {
164 int i;
165 struct device *real_dev = dev->parent;
166
167 for (i = 0; i < tmc_pages->nr_pages; i++) {
168 if (tmc_pages->daddrs && tmc_pages->daddrs[i])
169 dma_unmap_page(real_dev, tmc_pages->daddrs[i],
170 PAGE_SIZE, dir);
171 if (tmc_pages->pages && tmc_pages->pages[i])
172 __free_page(tmc_pages->pages[i]);
173 }
174
175 kfree(tmc_pages->pages);
176 kfree(tmc_pages->daddrs);
177 tmc_pages->pages = NULL;
178 tmc_pages->daddrs = NULL;
179 tmc_pages->nr_pages = 0;
180 }
181
182 /*
183 * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages.
184 * If @pages is not NULL, the list of page virtual addresses are
185 * used as the data pages. The pages are then dma_map'ed for @dev
186 * with dma_direction @dir.
187 *
188 * Returns 0 upon success, else the error number.
189 */
tmc_pages_alloc(struct tmc_pages * tmc_pages,struct device * dev,int node,enum dma_data_direction dir,void ** pages)190 static int tmc_pages_alloc(struct tmc_pages *tmc_pages,
191 struct device *dev, int node,
192 enum dma_data_direction dir, void **pages)
193 {
194 int i, nr_pages;
195 dma_addr_t paddr;
196 struct page *page;
197 struct device *real_dev = dev->parent;
198
199 nr_pages = tmc_pages->nr_pages;
200 tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs),
201 GFP_KERNEL);
202 if (!tmc_pages->daddrs)
203 return -ENOMEM;
204 tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages),
205 GFP_KERNEL);
206 if (!tmc_pages->pages) {
207 kfree(tmc_pages->daddrs);
208 tmc_pages->daddrs = NULL;
209 return -ENOMEM;
210 }
211
212 for (i = 0; i < nr_pages; i++) {
213 if (pages && pages[i]) {
214 page = virt_to_page(pages[i]);
215 /* Hold a refcount on the page */
216 get_page(page);
217 } else {
218 page = alloc_pages_node(node,
219 GFP_KERNEL | __GFP_ZERO, 0);
220 }
221 paddr = dma_map_page(real_dev, page, 0, PAGE_SIZE, dir);
222 if (dma_mapping_error(real_dev, paddr))
223 goto err;
224 tmc_pages->daddrs[i] = paddr;
225 tmc_pages->pages[i] = page;
226 }
227 return 0;
228 err:
229 tmc_pages_free(tmc_pages, dev, dir);
230 return -ENOMEM;
231 }
232
233 static inline long
tmc_sg_get_data_page_offset(struct tmc_sg_table * sg_table,dma_addr_t addr)234 tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr)
235 {
236 return tmc_pages_get_offset(&sg_table->data_pages, addr);
237 }
238
tmc_free_table_pages(struct tmc_sg_table * sg_table)239 static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table)
240 {
241 if (sg_table->table_vaddr)
242 vunmap(sg_table->table_vaddr);
243 tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE);
244 }
245
tmc_free_data_pages(struct tmc_sg_table * sg_table)246 static void tmc_free_data_pages(struct tmc_sg_table *sg_table)
247 {
248 if (sg_table->data_vaddr)
249 vunmap(sg_table->data_vaddr);
250 tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE);
251 }
252
tmc_free_sg_table(struct tmc_sg_table * sg_table)253 void tmc_free_sg_table(struct tmc_sg_table *sg_table)
254 {
255 tmc_free_table_pages(sg_table);
256 tmc_free_data_pages(sg_table);
257 }
258 EXPORT_SYMBOL_GPL(tmc_free_sg_table);
259
260 /*
261 * Alloc pages for the table. Since this will be used by the device,
262 * allocate the pages closer to the device (i.e, dev_to_node(dev)
263 * rather than the CPU node).
264 */
tmc_alloc_table_pages(struct tmc_sg_table * sg_table)265 static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table)
266 {
267 int rc;
268 struct tmc_pages *table_pages = &sg_table->table_pages;
269
270 rc = tmc_pages_alloc(table_pages, sg_table->dev,
271 dev_to_node(sg_table->dev),
272 DMA_TO_DEVICE, NULL);
273 if (rc)
274 return rc;
275 sg_table->table_vaddr = vmap(table_pages->pages,
276 table_pages->nr_pages,
277 VM_MAP,
278 PAGE_KERNEL);
279 if (!sg_table->table_vaddr)
280 rc = -ENOMEM;
281 else
282 sg_table->table_daddr = table_pages->daddrs[0];
283 return rc;
284 }
285
tmc_alloc_data_pages(struct tmc_sg_table * sg_table,void ** pages)286 static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages)
287 {
288 int rc;
289
290 /* Allocate data pages on the node requested by the caller */
291 rc = tmc_pages_alloc(&sg_table->data_pages,
292 sg_table->dev, sg_table->node,
293 DMA_FROM_DEVICE, pages);
294 if (!rc) {
295 sg_table->data_vaddr = vmap(sg_table->data_pages.pages,
296 sg_table->data_pages.nr_pages,
297 VM_MAP,
298 PAGE_KERNEL);
299 if (!sg_table->data_vaddr)
300 rc = -ENOMEM;
301 }
302 return rc;
303 }
304
305 /*
306 * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table
307 * and data buffers. TMC writes to the data buffers and reads from the SG
308 * Table pages.
309 *
310 * @dev - Coresight device to which page should be DMA mapped.
311 * @node - Numa node for mem allocations
312 * @nr_tpages - Number of pages for the table entries.
313 * @nr_dpages - Number of pages for Data buffer.
314 * @pages - Optional list of virtual address of pages.
315 */
tmc_alloc_sg_table(struct device * dev,int node,int nr_tpages,int nr_dpages,void ** pages)316 struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev,
317 int node,
318 int nr_tpages,
319 int nr_dpages,
320 void **pages)
321 {
322 long rc;
323 struct tmc_sg_table *sg_table;
324
325 sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL);
326 if (!sg_table)
327 return ERR_PTR(-ENOMEM);
328 sg_table->data_pages.nr_pages = nr_dpages;
329 sg_table->table_pages.nr_pages = nr_tpages;
330 sg_table->node = node;
331 sg_table->dev = dev;
332
333 rc = tmc_alloc_data_pages(sg_table, pages);
334 if (!rc)
335 rc = tmc_alloc_table_pages(sg_table);
336 if (rc) {
337 tmc_free_sg_table(sg_table);
338 kfree(sg_table);
339 return ERR_PTR(rc);
340 }
341
342 return sg_table;
343 }
344 EXPORT_SYMBOL_GPL(tmc_alloc_sg_table);
345
346 /*
347 * tmc_sg_table_sync_data_range: Sync the data buffer written
348 * by the device from @offset upto a @size bytes.
349 */
tmc_sg_table_sync_data_range(struct tmc_sg_table * table,u64 offset,u64 size)350 void tmc_sg_table_sync_data_range(struct tmc_sg_table *table,
351 u64 offset, u64 size)
352 {
353 int i, index, start;
354 int npages = DIV_ROUND_UP(size, PAGE_SIZE);
355 struct device *real_dev = table->dev->parent;
356 struct tmc_pages *data = &table->data_pages;
357
358 start = offset >> PAGE_SHIFT;
359 for (i = start; i < (start + npages); i++) {
360 index = i % data->nr_pages;
361 dma_sync_single_for_cpu(real_dev, data->daddrs[index],
362 PAGE_SIZE, DMA_FROM_DEVICE);
363 }
364 }
365 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_data_range);
366
367 /* tmc_sg_sync_table: Sync the page table */
tmc_sg_table_sync_table(struct tmc_sg_table * sg_table)368 void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table)
369 {
370 int i;
371 struct device *real_dev = sg_table->dev->parent;
372 struct tmc_pages *table_pages = &sg_table->table_pages;
373
374 for (i = 0; i < table_pages->nr_pages; i++)
375 dma_sync_single_for_device(real_dev, table_pages->daddrs[i],
376 PAGE_SIZE, DMA_TO_DEVICE);
377 }
378 EXPORT_SYMBOL_GPL(tmc_sg_table_sync_table);
379
380 /*
381 * tmc_sg_table_get_data: Get the buffer pointer for data @offset
382 * in the SG buffer. The @bufpp is updated to point to the buffer.
383 * Returns :
384 * the length of linear data available at @offset.
385 * or
386 * <= 0 if no data is available.
387 */
tmc_sg_table_get_data(struct tmc_sg_table * sg_table,u64 offset,size_t len,char ** bufpp)388 ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table,
389 u64 offset, size_t len, char **bufpp)
390 {
391 size_t size;
392 int pg_idx = offset >> PAGE_SHIFT;
393 int pg_offset = offset & (PAGE_SIZE - 1);
394 struct tmc_pages *data_pages = &sg_table->data_pages;
395
396 size = tmc_sg_table_buf_size(sg_table);
397 if (offset >= size)
398 return -EINVAL;
399
400 /* Make sure we don't go beyond the end */
401 len = (len < (size - offset)) ? len : size - offset;
402 /* Respect the page boundaries */
403 len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset);
404 if (len > 0)
405 *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset;
406 return len;
407 }
408 EXPORT_SYMBOL_GPL(tmc_sg_table_get_data);
409
410 #ifdef ETR_SG_DEBUG
411 /* Map a dma address to virtual address */
412 static unsigned long
tmc_sg_daddr_to_vaddr(struct tmc_sg_table * sg_table,dma_addr_t addr,bool table)413 tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table,
414 dma_addr_t addr, bool table)
415 {
416 long offset;
417 unsigned long base;
418 struct tmc_pages *tmc_pages;
419
420 if (table) {
421 tmc_pages = &sg_table->table_pages;
422 base = (unsigned long)sg_table->table_vaddr;
423 } else {
424 tmc_pages = &sg_table->data_pages;
425 base = (unsigned long)sg_table->data_vaddr;
426 }
427
428 offset = tmc_pages_get_offset(tmc_pages, addr);
429 if (offset < 0)
430 return 0;
431 return base + offset;
432 }
433
434 /* Dump the given sg_table */
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)435 static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table)
436 {
437 sgte_t *ptr;
438 int i = 0;
439 dma_addr_t addr;
440 struct tmc_sg_table *sg_table = etr_table->sg_table;
441
442 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
443 etr_table->hwaddr, true);
444 while (ptr) {
445 addr = ETR_SG_ADDR(*ptr);
446 switch (ETR_SG_ET(*ptr)) {
447 case ETR_SG_ET_NORMAL:
448 dev_dbg(sg_table->dev,
449 "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr);
450 ptr++;
451 break;
452 case ETR_SG_ET_LINK:
453 dev_dbg(sg_table->dev,
454 "%05d: *** %p\t:{L} 0x%llx ***\n",
455 i, ptr, addr);
456 ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table,
457 addr, true);
458 break;
459 case ETR_SG_ET_LAST:
460 dev_dbg(sg_table->dev,
461 "%05d: ### %p\t:[L] 0x%llx ###\n",
462 i, ptr, addr);
463 return;
464 default:
465 dev_dbg(sg_table->dev,
466 "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n",
467 i, ptr, addr);
468 return;
469 }
470 i++;
471 }
472 dev_dbg(sg_table->dev, "******* End of Table *****\n");
473 }
474 #else
tmc_etr_sg_table_dump(struct etr_sg_table * etr_table)475 static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {}
476 #endif
477
478 /*
479 * Populate the SG Table page table entries from table/data
480 * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages.
481 * So does a Table page. So we keep track of indices of the tables
482 * in each system page and move the pointers accordingly.
483 */
484 #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size))
tmc_etr_sg_table_populate(struct etr_sg_table * etr_table)485 static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table)
486 {
487 dma_addr_t paddr;
488 int i, type, nr_entries;
489 int tpidx = 0; /* index to the current system table_page */
490 int sgtidx = 0; /* index to the sg_table within the current syspage */
491 int sgtentry = 0; /* the entry within the sg_table */
492 int dpidx = 0; /* index to the current system data_page */
493 int spidx = 0; /* index to the SG page within the current data page */
494 sgte_t *ptr; /* pointer to the table entry to fill */
495 struct tmc_sg_table *sg_table = etr_table->sg_table;
496 dma_addr_t *table_daddrs = sg_table->table_pages.daddrs;
497 dma_addr_t *data_daddrs = sg_table->data_pages.daddrs;
498
499 nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages);
500 /*
501 * Use the contiguous virtual address of the table to update entries.
502 */
503 ptr = sg_table->table_vaddr;
504 /*
505 * Fill all the entries, except the last entry to avoid special
506 * checks within the loop.
507 */
508 for (i = 0; i < nr_entries - 1; i++) {
509 if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) {
510 /*
511 * Last entry in a sg_table page is a link address to
512 * the next table page. If this sg_table is the last
513 * one in the system page, it links to the first
514 * sg_table in the next system page. Otherwise, it
515 * links to the next sg_table page within the system
516 * page.
517 */
518 if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) {
519 paddr = table_daddrs[tpidx + 1];
520 } else {
521 paddr = table_daddrs[tpidx] +
522 (ETR_SG_PAGE_SIZE * (sgtidx + 1));
523 }
524 type = ETR_SG_ET_LINK;
525 } else {
526 /*
527 * Update the indices to the data_pages to point to the
528 * next sg_page in the data buffer.
529 */
530 type = ETR_SG_ET_NORMAL;
531 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
532 if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE))
533 dpidx++;
534 }
535 *ptr++ = ETR_SG_ENTRY(paddr, type);
536 /*
537 * Move to the next table pointer, moving the table page index
538 * if necessary
539 */
540 if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) {
541 if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE))
542 tpidx++;
543 }
544 }
545
546 /* Set up the last entry, which is always a data pointer */
547 paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE;
548 *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST);
549 }
550
551 /*
552 * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and
553 * populate the table.
554 *
555 * @dev - Device pointer for the TMC
556 * @node - NUMA node where the memory should be allocated
557 * @size - Total size of the data buffer
558 * @pages - Optional list of page virtual address
559 */
560 static struct etr_sg_table *
tmc_init_etr_sg_table(struct device * dev,int node,unsigned long size,void ** pages)561 tmc_init_etr_sg_table(struct device *dev, int node,
562 unsigned long size, void **pages)
563 {
564 int nr_entries, nr_tpages;
565 int nr_dpages = size >> PAGE_SHIFT;
566 struct tmc_sg_table *sg_table;
567 struct etr_sg_table *etr_table;
568
569 etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL);
570 if (!etr_table)
571 return ERR_PTR(-ENOMEM);
572 nr_entries = tmc_etr_sg_table_entries(nr_dpages);
573 nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE);
574
575 sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages);
576 if (IS_ERR(sg_table)) {
577 kfree(etr_table);
578 return ERR_CAST(sg_table);
579 }
580
581 etr_table->sg_table = sg_table;
582 /* TMC should use table base address for DBA */
583 etr_table->hwaddr = sg_table->table_daddr;
584 tmc_etr_sg_table_populate(etr_table);
585 /* Sync the table pages for the HW */
586 tmc_sg_table_sync_table(sg_table);
587 tmc_etr_sg_table_dump(etr_table);
588
589 return etr_table;
590 }
591
592 /*
593 * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer.
594 */
tmc_etr_alloc_flat_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)595 static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata,
596 struct etr_buf *etr_buf, int node,
597 void **pages)
598 {
599 struct etr_flat_buf *flat_buf;
600 struct device *real_dev = drvdata->csdev->dev.parent;
601
602 /* We cannot reuse existing pages for flat buf */
603 if (pages)
604 return -EINVAL;
605
606 flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL);
607 if (!flat_buf)
608 return -ENOMEM;
609
610 flat_buf->vaddr = dma_alloc_coherent(real_dev, etr_buf->size,
611 &flat_buf->daddr, GFP_KERNEL);
612 if (!flat_buf->vaddr) {
613 kfree(flat_buf);
614 return -ENOMEM;
615 }
616
617 flat_buf->size = etr_buf->size;
618 flat_buf->dev = &drvdata->csdev->dev;
619 etr_buf->hwaddr = flat_buf->daddr;
620 etr_buf->mode = ETR_MODE_FLAT;
621 etr_buf->private = flat_buf;
622 return 0;
623 }
624
tmc_etr_free_flat_buf(struct etr_buf * etr_buf)625 static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf)
626 {
627 struct etr_flat_buf *flat_buf = etr_buf->private;
628
629 if (flat_buf && flat_buf->daddr) {
630 struct device *real_dev = flat_buf->dev->parent;
631
632 dma_free_coherent(real_dev, flat_buf->size,
633 flat_buf->vaddr, flat_buf->daddr);
634 }
635 kfree(flat_buf);
636 }
637
tmc_etr_sync_flat_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)638 static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
639 {
640 /*
641 * Adjust the buffer to point to the beginning of the trace data
642 * and update the available trace data.
643 */
644 etr_buf->offset = rrp - etr_buf->hwaddr;
645 if (etr_buf->full)
646 etr_buf->len = etr_buf->size;
647 else
648 etr_buf->len = rwp - rrp;
649 }
650
tmc_etr_get_data_flat_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)651 static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf,
652 u64 offset, size_t len, char **bufpp)
653 {
654 struct etr_flat_buf *flat_buf = etr_buf->private;
655
656 *bufpp = (char *)flat_buf->vaddr + offset;
657 /*
658 * tmc_etr_buf_get_data already adjusts the length to handle
659 * buffer wrapping around.
660 */
661 return len;
662 }
663
664 static const struct etr_buf_operations etr_flat_buf_ops = {
665 .alloc = tmc_etr_alloc_flat_buf,
666 .free = tmc_etr_free_flat_buf,
667 .sync = tmc_etr_sync_flat_buf,
668 .get_data = tmc_etr_get_data_flat_buf,
669 };
670
671 /*
672 * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters
673 * appropriately.
674 */
tmc_etr_alloc_sg_buf(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)675 static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata,
676 struct etr_buf *etr_buf, int node,
677 void **pages)
678 {
679 struct etr_sg_table *etr_table;
680 struct device *dev = &drvdata->csdev->dev;
681
682 etr_table = tmc_init_etr_sg_table(dev, node,
683 etr_buf->size, pages);
684 if (IS_ERR(etr_table))
685 return -ENOMEM;
686 etr_buf->hwaddr = etr_table->hwaddr;
687 etr_buf->mode = ETR_MODE_ETR_SG;
688 etr_buf->private = etr_table;
689 return 0;
690 }
691
tmc_etr_free_sg_buf(struct etr_buf * etr_buf)692 static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf)
693 {
694 struct etr_sg_table *etr_table = etr_buf->private;
695
696 if (etr_table) {
697 tmc_free_sg_table(etr_table->sg_table);
698 kfree(etr_table);
699 }
700 }
701
tmc_etr_get_data_sg_buf(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)702 static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset,
703 size_t len, char **bufpp)
704 {
705 struct etr_sg_table *etr_table = etr_buf->private;
706
707 return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp);
708 }
709
tmc_etr_sync_sg_buf(struct etr_buf * etr_buf,u64 rrp,u64 rwp)710 static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp)
711 {
712 long r_offset, w_offset;
713 struct etr_sg_table *etr_table = etr_buf->private;
714 struct tmc_sg_table *table = etr_table->sg_table;
715
716 /* Convert hw address to offset in the buffer */
717 r_offset = tmc_sg_get_data_page_offset(table, rrp);
718 if (r_offset < 0) {
719 dev_warn(table->dev,
720 "Unable to map RRP %llx to offset\n", rrp);
721 etr_buf->len = 0;
722 return;
723 }
724
725 w_offset = tmc_sg_get_data_page_offset(table, rwp);
726 if (w_offset < 0) {
727 dev_warn(table->dev,
728 "Unable to map RWP %llx to offset\n", rwp);
729 etr_buf->len = 0;
730 return;
731 }
732
733 etr_buf->offset = r_offset;
734 if (etr_buf->full)
735 etr_buf->len = etr_buf->size;
736 else
737 etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) +
738 w_offset - r_offset;
739 tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len);
740 }
741
742 static const struct etr_buf_operations etr_sg_buf_ops = {
743 .alloc = tmc_etr_alloc_sg_buf,
744 .free = tmc_etr_free_sg_buf,
745 .sync = tmc_etr_sync_sg_buf,
746 .get_data = tmc_etr_get_data_sg_buf,
747 };
748
749 /*
750 * TMC ETR could be connected to a CATU device, which can provide address
751 * translation service. This is represented by the Output port of the TMC
752 * (ETR) connected to the input port of the CATU.
753 *
754 * Returns : coresight_device ptr for the CATU device if a CATU is found.
755 * : NULL otherwise.
756 */
757 struct coresight_device *
tmc_etr_get_catu_device(struct tmc_drvdata * drvdata)758 tmc_etr_get_catu_device(struct tmc_drvdata *drvdata)
759 {
760 int i;
761 struct coresight_device *tmp, *etr = drvdata->csdev;
762
763 if (!IS_ENABLED(CONFIG_CORESIGHT_CATU))
764 return NULL;
765
766 for (i = 0; i < etr->pdata->nr_outport; i++) {
767 tmp = etr->pdata->conns[i].child_dev;
768 if (tmp && coresight_is_catu_device(tmp))
769 return tmp;
770 }
771
772 return NULL;
773 }
774 EXPORT_SYMBOL_GPL(tmc_etr_get_catu_device);
775
tmc_etr_enable_catu(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)776 static inline int tmc_etr_enable_catu(struct tmc_drvdata *drvdata,
777 struct etr_buf *etr_buf)
778 {
779 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
780
781 if (catu && helper_ops(catu)->enable)
782 return helper_ops(catu)->enable(catu, etr_buf);
783 return 0;
784 }
785
tmc_etr_disable_catu(struct tmc_drvdata * drvdata)786 static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata)
787 {
788 struct coresight_device *catu = tmc_etr_get_catu_device(drvdata);
789
790 if (catu && helper_ops(catu)->disable)
791 helper_ops(catu)->disable(catu, drvdata->etr_buf);
792 }
793
794 static const struct etr_buf_operations *etr_buf_ops[] = {
795 [ETR_MODE_FLAT] = &etr_flat_buf_ops,
796 [ETR_MODE_ETR_SG] = &etr_sg_buf_ops,
797 [ETR_MODE_CATU] = NULL,
798 };
799
tmc_etr_set_catu_ops(const struct etr_buf_operations * catu)800 void tmc_etr_set_catu_ops(const struct etr_buf_operations *catu)
801 {
802 etr_buf_ops[ETR_MODE_CATU] = catu;
803 }
804 EXPORT_SYMBOL_GPL(tmc_etr_set_catu_ops);
805
tmc_etr_remove_catu_ops(void)806 void tmc_etr_remove_catu_ops(void)
807 {
808 etr_buf_ops[ETR_MODE_CATU] = NULL;
809 }
810 EXPORT_SYMBOL_GPL(tmc_etr_remove_catu_ops);
811
tmc_etr_mode_alloc_buf(int mode,struct tmc_drvdata * drvdata,struct etr_buf * etr_buf,int node,void ** pages)812 static inline int tmc_etr_mode_alloc_buf(int mode,
813 struct tmc_drvdata *drvdata,
814 struct etr_buf *etr_buf, int node,
815 void **pages)
816 {
817 int rc = -EINVAL;
818
819 switch (mode) {
820 case ETR_MODE_FLAT:
821 case ETR_MODE_ETR_SG:
822 case ETR_MODE_CATU:
823 if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc)
824 rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf,
825 node, pages);
826 if (!rc)
827 etr_buf->ops = etr_buf_ops[mode];
828 return rc;
829 default:
830 return -EINVAL;
831 }
832 }
833
834 /*
835 * tmc_alloc_etr_buf: Allocate a buffer use by ETR.
836 * @drvdata : ETR device details.
837 * @size : size of the requested buffer.
838 * @flags : Required properties for the buffer.
839 * @node : Node for memory allocations.
840 * @pages : An optional list of pages.
841 */
tmc_alloc_etr_buf(struct tmc_drvdata * drvdata,ssize_t size,int flags,int node,void ** pages)842 static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata,
843 ssize_t size, int flags,
844 int node, void **pages)
845 {
846 int rc = -ENOMEM;
847 bool has_etr_sg, has_iommu;
848 bool has_sg, has_catu;
849 struct etr_buf *etr_buf;
850 struct device *dev = &drvdata->csdev->dev;
851
852 has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG);
853 has_iommu = iommu_get_domain_for_dev(dev->parent);
854 has_catu = !!tmc_etr_get_catu_device(drvdata);
855
856 has_sg = has_catu || has_etr_sg;
857
858 etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL);
859 if (!etr_buf)
860 return ERR_PTR(-ENOMEM);
861
862 etr_buf->size = size;
863
864 /*
865 * If we have to use an existing list of pages, we cannot reliably
866 * use a contiguous DMA memory (even if we have an IOMMU). Otherwise,
867 * we use the contiguous DMA memory if at least one of the following
868 * conditions is true:
869 * a) The ETR cannot use Scatter-Gather.
870 * b) we have a backing IOMMU
871 * c) The requested memory size is smaller (< 1M).
872 *
873 * Fallback to available mechanisms.
874 *
875 */
876 if (!pages &&
877 (!has_sg || has_iommu || size < SZ_1M))
878 rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata,
879 etr_buf, node, pages);
880 if (rc && has_etr_sg)
881 rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata,
882 etr_buf, node, pages);
883 if (rc && has_catu)
884 rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata,
885 etr_buf, node, pages);
886 if (rc) {
887 kfree(etr_buf);
888 return ERR_PTR(rc);
889 }
890
891 refcount_set(&etr_buf->refcount, 1);
892 dev_dbg(dev, "allocated buffer of size %ldKB in mode %d\n",
893 (unsigned long)size >> 10, etr_buf->mode);
894 return etr_buf;
895 }
896
tmc_free_etr_buf(struct etr_buf * etr_buf)897 static void tmc_free_etr_buf(struct etr_buf *etr_buf)
898 {
899 WARN_ON(!etr_buf->ops || !etr_buf->ops->free);
900 etr_buf->ops->free(etr_buf);
901 kfree(etr_buf);
902 }
903
904 /*
905 * tmc_etr_buf_get_data: Get the pointer the trace data at @offset
906 * with a maximum of @len bytes.
907 * Returns: The size of the linear data available @pos, with *bufpp
908 * updated to point to the buffer.
909 */
tmc_etr_buf_get_data(struct etr_buf * etr_buf,u64 offset,size_t len,char ** bufpp)910 static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf,
911 u64 offset, size_t len, char **bufpp)
912 {
913 /* Adjust the length to limit this transaction to end of buffer */
914 len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset;
915
916 return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp);
917 }
918
919 static inline s64
tmc_etr_buf_insert_barrier_packet(struct etr_buf * etr_buf,u64 offset)920 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset)
921 {
922 ssize_t len;
923 char *bufp;
924
925 len = tmc_etr_buf_get_data(etr_buf, offset,
926 CORESIGHT_BARRIER_PKT_SIZE, &bufp);
927 if (WARN_ON(len < CORESIGHT_BARRIER_PKT_SIZE))
928 return -EINVAL;
929 coresight_insert_barrier_packet(bufp);
930 return offset + CORESIGHT_BARRIER_PKT_SIZE;
931 }
932
933 /*
934 * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata.
935 * Makes sure the trace data is synced to the memory for consumption.
936 * @etr_buf->offset will hold the offset to the beginning of the trace data
937 * within the buffer, with @etr_buf->len bytes to consume.
938 */
tmc_sync_etr_buf(struct tmc_drvdata * drvdata)939 static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata)
940 {
941 struct etr_buf *etr_buf = drvdata->etr_buf;
942 u64 rrp, rwp;
943 u32 status;
944
945 rrp = tmc_read_rrp(drvdata);
946 rwp = tmc_read_rwp(drvdata);
947 status = readl_relaxed(drvdata->base + TMC_STS);
948
949 /*
950 * If there were memory errors in the session, truncate the
951 * buffer.
952 */
953 if (WARN_ON_ONCE(status & TMC_STS_MEMERR)) {
954 dev_dbg(&drvdata->csdev->dev,
955 "tmc memory error detected, truncating buffer\n");
956 etr_buf->len = 0;
957 etr_buf->full = 0;
958 return;
959 }
960
961 etr_buf->full = status & TMC_STS_FULL;
962
963 WARN_ON(!etr_buf->ops || !etr_buf->ops->sync);
964
965 etr_buf->ops->sync(etr_buf, rrp, rwp);
966 }
967
__tmc_etr_enable_hw(struct tmc_drvdata * drvdata)968 static void __tmc_etr_enable_hw(struct tmc_drvdata *drvdata)
969 {
970 u32 axictl, sts;
971 struct etr_buf *etr_buf = drvdata->etr_buf;
972
973 CS_UNLOCK(drvdata->base);
974
975 /* Wait for TMCSReady bit to be set */
976 tmc_wait_for_tmcready(drvdata);
977
978 writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ);
979 writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE);
980
981 axictl = readl_relaxed(drvdata->base + TMC_AXICTL);
982 axictl &= ~TMC_AXICTL_CLEAR_MASK;
983 axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16);
984 axictl |= TMC_AXICTL_AXCACHE_OS;
985
986 if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) {
987 axictl &= ~TMC_AXICTL_ARCACHE_MASK;
988 axictl |= TMC_AXICTL_ARCACHE_OS;
989 }
990
991 if (etr_buf->mode == ETR_MODE_ETR_SG)
992 axictl |= TMC_AXICTL_SCT_GAT_MODE;
993
994 writel_relaxed(axictl, drvdata->base + TMC_AXICTL);
995 tmc_write_dba(drvdata, etr_buf->hwaddr);
996 /*
997 * If the TMC pointers must be programmed before the session,
998 * we have to set it properly (i.e, RRP/RWP to base address and
999 * STS to "not full").
1000 */
1001 if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) {
1002 tmc_write_rrp(drvdata, etr_buf->hwaddr);
1003 tmc_write_rwp(drvdata, etr_buf->hwaddr);
1004 sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL;
1005 writel_relaxed(sts, drvdata->base + TMC_STS);
1006 }
1007
1008 writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI |
1009 TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT |
1010 TMC_FFCR_TRIGON_TRIGIN,
1011 drvdata->base + TMC_FFCR);
1012 writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG);
1013 tmc_enable_hw(drvdata);
1014
1015 CS_LOCK(drvdata->base);
1016 }
1017
tmc_etr_enable_hw(struct tmc_drvdata * drvdata,struct etr_buf * etr_buf)1018 static int tmc_etr_enable_hw(struct tmc_drvdata *drvdata,
1019 struct etr_buf *etr_buf)
1020 {
1021 int rc;
1022
1023 /* Callers should provide an appropriate buffer for use */
1024 if (WARN_ON(!etr_buf))
1025 return -EINVAL;
1026
1027 if ((etr_buf->mode == ETR_MODE_ETR_SG) &&
1028 WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG)))
1029 return -EINVAL;
1030
1031 if (WARN_ON(drvdata->etr_buf))
1032 return -EBUSY;
1033
1034 /*
1035 * If this ETR is connected to a CATU, enable it before we turn
1036 * this on.
1037 */
1038 rc = tmc_etr_enable_catu(drvdata, etr_buf);
1039 if (rc)
1040 return rc;
1041 rc = coresight_claim_device(drvdata->base);
1042 if (!rc) {
1043 drvdata->etr_buf = etr_buf;
1044 __tmc_etr_enable_hw(drvdata);
1045 }
1046
1047 return rc;
1048 }
1049
1050 /*
1051 * Return the available trace data in the buffer (starts at etr_buf->offset,
1052 * limited by etr_buf->len) from @pos, with a maximum limit of @len,
1053 * also updating the @bufpp on where to find it. Since the trace data
1054 * starts at anywhere in the buffer, depending on the RRP, we adjust the
1055 * @len returned to handle buffer wrapping around.
1056 *
1057 * We are protected here by drvdata->reading != 0, which ensures the
1058 * sysfs_buf stays alive.
1059 */
tmc_etr_get_sysfs_trace(struct tmc_drvdata * drvdata,loff_t pos,size_t len,char ** bufpp)1060 ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata,
1061 loff_t pos, size_t len, char **bufpp)
1062 {
1063 s64 offset;
1064 ssize_t actual = len;
1065 struct etr_buf *etr_buf = drvdata->sysfs_buf;
1066
1067 if (pos + actual > etr_buf->len)
1068 actual = etr_buf->len - pos;
1069 if (actual <= 0)
1070 return actual;
1071
1072 /* Compute the offset from which we read the data */
1073 offset = etr_buf->offset + pos;
1074 if (offset >= etr_buf->size)
1075 offset -= etr_buf->size;
1076 return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp);
1077 }
1078
1079 static struct etr_buf *
tmc_etr_setup_sysfs_buf(struct tmc_drvdata * drvdata)1080 tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata)
1081 {
1082 return tmc_alloc_etr_buf(drvdata, drvdata->size,
1083 0, cpu_to_node(0), NULL);
1084 }
1085
1086 static void
tmc_etr_free_sysfs_buf(struct etr_buf * buf)1087 tmc_etr_free_sysfs_buf(struct etr_buf *buf)
1088 {
1089 if (buf)
1090 tmc_free_etr_buf(buf);
1091 }
1092
tmc_etr_sync_sysfs_buf(struct tmc_drvdata * drvdata)1093 static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata)
1094 {
1095 struct etr_buf *etr_buf = drvdata->etr_buf;
1096
1097 if (WARN_ON(drvdata->sysfs_buf != etr_buf)) {
1098 tmc_etr_free_sysfs_buf(drvdata->sysfs_buf);
1099 drvdata->sysfs_buf = NULL;
1100 } else {
1101 tmc_sync_etr_buf(drvdata);
1102 /*
1103 * Insert barrier packets at the beginning, if there was
1104 * an overflow.
1105 */
1106 if (etr_buf->full)
1107 tmc_etr_buf_insert_barrier_packet(etr_buf,
1108 etr_buf->offset);
1109 }
1110 }
1111
__tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1112 static void __tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1113 {
1114 CS_UNLOCK(drvdata->base);
1115
1116 tmc_flush_and_stop(drvdata);
1117 /*
1118 * When operating in sysFS mode the content of the buffer needs to be
1119 * read before the TMC is disabled.
1120 */
1121 if (drvdata->mode == CS_MODE_SYSFS)
1122 tmc_etr_sync_sysfs_buf(drvdata);
1123
1124 tmc_disable_hw(drvdata);
1125
1126 CS_LOCK(drvdata->base);
1127
1128 }
1129
tmc_etr_disable_hw(struct tmc_drvdata * drvdata)1130 void tmc_etr_disable_hw(struct tmc_drvdata *drvdata)
1131 {
1132 __tmc_etr_disable_hw(drvdata);
1133 /* Disable CATU device if this ETR is connected to one */
1134 tmc_etr_disable_catu(drvdata);
1135 coresight_disclaim_device(drvdata->base);
1136 /* Reset the ETR buf used by hardware */
1137 drvdata->etr_buf = NULL;
1138 }
1139
tmc_enable_etr_sink_sysfs(struct coresight_device * csdev)1140 static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev)
1141 {
1142 int ret = 0;
1143 unsigned long flags;
1144 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1145 struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL;
1146
1147 /*
1148 * If we are enabling the ETR from disabled state, we need to make
1149 * sure we have a buffer with the right size. The etr_buf is not reset
1150 * immediately after we stop the tracing in SYSFS mode as we wait for
1151 * the user to collect the data. We may be able to reuse the existing
1152 * buffer, provided the size matches. Any allocation has to be done
1153 * with the lock released.
1154 */
1155 spin_lock_irqsave(&drvdata->spinlock, flags);
1156 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1157 if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) {
1158 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1159
1160 /* Allocate memory with the locks released */
1161 free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata);
1162 if (IS_ERR(new_buf))
1163 return PTR_ERR(new_buf);
1164
1165 /* Let's try again */
1166 spin_lock_irqsave(&drvdata->spinlock, flags);
1167 }
1168
1169 if (drvdata->reading || drvdata->mode == CS_MODE_PERF) {
1170 ret = -EBUSY;
1171 goto out;
1172 }
1173
1174 /*
1175 * In sysFS mode we can have multiple writers per sink. Since this
1176 * sink is already enabled no memory is needed and the HW need not be
1177 * touched, even if the buffer size has changed.
1178 */
1179 if (drvdata->mode == CS_MODE_SYSFS) {
1180 atomic_inc(csdev->refcnt);
1181 goto out;
1182 }
1183
1184 /*
1185 * If we don't have a buffer or it doesn't match the requested size,
1186 * use the buffer allocated above. Otherwise reuse the existing buffer.
1187 */
1188 sysfs_buf = READ_ONCE(drvdata->sysfs_buf);
1189 if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) {
1190 free_buf = sysfs_buf;
1191 drvdata->sysfs_buf = new_buf;
1192 }
1193
1194 ret = tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf);
1195 if (!ret) {
1196 drvdata->mode = CS_MODE_SYSFS;
1197 atomic_inc(csdev->refcnt);
1198 }
1199 out:
1200 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1201
1202 /* Free memory outside the spinlock if need be */
1203 if (free_buf)
1204 tmc_etr_free_sysfs_buf(free_buf);
1205
1206 if (!ret)
1207 dev_dbg(&csdev->dev, "TMC-ETR enabled\n");
1208
1209 return ret;
1210 }
1211
1212 /*
1213 * alloc_etr_buf: Allocate ETR buffer for use by perf.
1214 * The size of the hardware buffer is dependent on the size configured
1215 * via sysfs and the perf ring buffer size. We prefer to allocate the
1216 * largest possible size, scaling down the size by half until it
1217 * reaches a minimum limit (1M), beyond which we give up.
1218 */
1219 static struct etr_buf *
alloc_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1220 alloc_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1221 int nr_pages, void **pages, bool snapshot)
1222 {
1223 int node;
1224 struct etr_buf *etr_buf;
1225 unsigned long size;
1226
1227 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1228 /*
1229 * Try to match the perf ring buffer size if it is larger
1230 * than the size requested via sysfs.
1231 */
1232 if ((nr_pages << PAGE_SHIFT) > drvdata->size) {
1233 etr_buf = tmc_alloc_etr_buf(drvdata, (nr_pages << PAGE_SHIFT),
1234 0, node, NULL);
1235 if (!IS_ERR(etr_buf))
1236 goto done;
1237 }
1238
1239 /*
1240 * Else switch to configured size for this ETR
1241 * and scale down until we hit the minimum limit.
1242 */
1243 size = drvdata->size;
1244 do {
1245 etr_buf = tmc_alloc_etr_buf(drvdata, size, 0, node, NULL);
1246 if (!IS_ERR(etr_buf))
1247 goto done;
1248 size /= 2;
1249 } while (size >= TMC_ETR_PERF_MIN_BUF_SIZE);
1250
1251 return ERR_PTR(-ENOMEM);
1252
1253 done:
1254 return etr_buf;
1255 }
1256
1257 static struct etr_buf *
get_perf_etr_buf_cpu_wide(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1258 get_perf_etr_buf_cpu_wide(struct tmc_drvdata *drvdata,
1259 struct perf_event *event, int nr_pages,
1260 void **pages, bool snapshot)
1261 {
1262 int ret;
1263 pid_t pid = task_pid_nr(event->owner);
1264 struct etr_buf *etr_buf;
1265
1266 retry:
1267 /*
1268 * An etr_perf_buffer is associated with an event and holds a reference
1269 * to the AUX ring buffer that was created for that event. In CPU-wide
1270 * N:1 mode multiple events (one per CPU), each with its own AUX ring
1271 * buffer, share a sink. As such an etr_perf_buffer is created for each
1272 * event but a single etr_buf associated with the ETR is shared between
1273 * them. The last event in a trace session will copy the content of the
1274 * etr_buf to its AUX ring buffer. Ring buffer associated to other
1275 * events are simply not used an freed as events are destoyed. We still
1276 * need to allocate a ring buffer for each event since we don't know
1277 * which event will be last.
1278 */
1279
1280 /*
1281 * The first thing to do here is check if an etr_buf has already been
1282 * allocated for this session. If so it is shared with this event,
1283 * otherwise it is created.
1284 */
1285 mutex_lock(&drvdata->idr_mutex);
1286 etr_buf = idr_find(&drvdata->idr, pid);
1287 if (etr_buf) {
1288 refcount_inc(&etr_buf->refcount);
1289 mutex_unlock(&drvdata->idr_mutex);
1290 return etr_buf;
1291 }
1292
1293 /* If we made it here no buffer has been allocated, do so now. */
1294 mutex_unlock(&drvdata->idr_mutex);
1295
1296 etr_buf = alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1297 if (IS_ERR(etr_buf))
1298 return etr_buf;
1299
1300 /* Now that we have a buffer, add it to the IDR. */
1301 mutex_lock(&drvdata->idr_mutex);
1302 ret = idr_alloc(&drvdata->idr, etr_buf, pid, pid + 1, GFP_KERNEL);
1303 mutex_unlock(&drvdata->idr_mutex);
1304
1305 /* Another event with this session ID has allocated this buffer. */
1306 if (ret == -ENOSPC) {
1307 tmc_free_etr_buf(etr_buf);
1308 goto retry;
1309 }
1310
1311 /* The IDR can't allocate room for a new session, abandon ship. */
1312 if (ret == -ENOMEM) {
1313 tmc_free_etr_buf(etr_buf);
1314 return ERR_PTR(ret);
1315 }
1316
1317
1318 return etr_buf;
1319 }
1320
1321 static struct etr_buf *
get_perf_etr_buf_per_thread(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1322 get_perf_etr_buf_per_thread(struct tmc_drvdata *drvdata,
1323 struct perf_event *event, int nr_pages,
1324 void **pages, bool snapshot)
1325 {
1326 /*
1327 * In per-thread mode the etr_buf isn't shared, so just go ahead
1328 * with memory allocation.
1329 */
1330 return alloc_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1331 }
1332
1333 static struct etr_buf *
get_perf_etr_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1334 get_perf_etr_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1335 int nr_pages, void **pages, bool snapshot)
1336 {
1337 if (event->cpu == -1)
1338 return get_perf_etr_buf_per_thread(drvdata, event, nr_pages,
1339 pages, snapshot);
1340
1341 return get_perf_etr_buf_cpu_wide(drvdata, event, nr_pages,
1342 pages, snapshot);
1343 }
1344
1345 static struct etr_perf_buffer *
tmc_etr_setup_perf_buf(struct tmc_drvdata * drvdata,struct perf_event * event,int nr_pages,void ** pages,bool snapshot)1346 tmc_etr_setup_perf_buf(struct tmc_drvdata *drvdata, struct perf_event *event,
1347 int nr_pages, void **pages, bool snapshot)
1348 {
1349 int node;
1350 struct etr_buf *etr_buf;
1351 struct etr_perf_buffer *etr_perf;
1352
1353 node = (event->cpu == -1) ? NUMA_NO_NODE : cpu_to_node(event->cpu);
1354
1355 etr_perf = kzalloc_node(sizeof(*etr_perf), GFP_KERNEL, node);
1356 if (!etr_perf)
1357 return ERR_PTR(-ENOMEM);
1358
1359 etr_buf = get_perf_etr_buf(drvdata, event, nr_pages, pages, snapshot);
1360 if (!IS_ERR(etr_buf))
1361 goto done;
1362
1363 kfree(etr_perf);
1364 return ERR_PTR(-ENOMEM);
1365
1366 done:
1367 /*
1368 * Keep a reference to the ETR this buffer has been allocated for
1369 * in order to have access to the IDR in tmc_free_etr_buffer().
1370 */
1371 etr_perf->drvdata = drvdata;
1372 etr_perf->etr_buf = etr_buf;
1373
1374 return etr_perf;
1375 }
1376
1377
tmc_alloc_etr_buffer(struct coresight_device * csdev,struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1378 static void *tmc_alloc_etr_buffer(struct coresight_device *csdev,
1379 struct perf_event *event, void **pages,
1380 int nr_pages, bool snapshot)
1381 {
1382 struct etr_perf_buffer *etr_perf;
1383 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1384
1385 etr_perf = tmc_etr_setup_perf_buf(drvdata, event,
1386 nr_pages, pages, snapshot);
1387 if (IS_ERR(etr_perf)) {
1388 dev_dbg(&csdev->dev, "Unable to allocate ETR buffer\n");
1389 return NULL;
1390 }
1391
1392 etr_perf->pid = task_pid_nr(event->owner);
1393 etr_perf->snapshot = snapshot;
1394 etr_perf->nr_pages = nr_pages;
1395 etr_perf->pages = pages;
1396
1397 return etr_perf;
1398 }
1399
tmc_free_etr_buffer(void * config)1400 static void tmc_free_etr_buffer(void *config)
1401 {
1402 struct etr_perf_buffer *etr_perf = config;
1403 struct tmc_drvdata *drvdata = etr_perf->drvdata;
1404 struct etr_buf *buf, *etr_buf = etr_perf->etr_buf;
1405
1406 if (!etr_buf)
1407 goto free_etr_perf_buffer;
1408
1409 mutex_lock(&drvdata->idr_mutex);
1410 /* If we are not the last one to use the buffer, don't touch it. */
1411 if (!refcount_dec_and_test(&etr_buf->refcount)) {
1412 mutex_unlock(&drvdata->idr_mutex);
1413 goto free_etr_perf_buffer;
1414 }
1415
1416 /* We are the last one, remove from the IDR and free the buffer. */
1417 buf = idr_remove(&drvdata->idr, etr_perf->pid);
1418 mutex_unlock(&drvdata->idr_mutex);
1419
1420 /*
1421 * Something went very wrong if the buffer associated with this ID
1422 * is not the same in the IDR. Leak to avoid use after free.
1423 */
1424 if (buf && WARN_ON(buf != etr_buf))
1425 goto free_etr_perf_buffer;
1426
1427 tmc_free_etr_buf(etr_perf->etr_buf);
1428
1429 free_etr_perf_buffer:
1430 kfree(etr_perf);
1431 }
1432
1433 /*
1434 * tmc_etr_sync_perf_buffer: Copy the actual trace data from the hardware
1435 * buffer to the perf ring buffer.
1436 */
tmc_etr_sync_perf_buffer(struct etr_perf_buffer * etr_perf,unsigned long src_offset,unsigned long to_copy)1437 static void tmc_etr_sync_perf_buffer(struct etr_perf_buffer *etr_perf,
1438 unsigned long src_offset,
1439 unsigned long to_copy)
1440 {
1441 long bytes;
1442 long pg_idx, pg_offset;
1443 unsigned long head = etr_perf->head;
1444 char **dst_pages, *src_buf;
1445 struct etr_buf *etr_buf = etr_perf->etr_buf;
1446
1447 head = etr_perf->head;
1448 pg_idx = head >> PAGE_SHIFT;
1449 pg_offset = head & (PAGE_SIZE - 1);
1450 dst_pages = (char **)etr_perf->pages;
1451
1452 while (to_copy > 0) {
1453 /*
1454 * In one iteration, we can copy minimum of :
1455 * 1) what is available in the source buffer,
1456 * 2) what is available in the source buffer, before it
1457 * wraps around.
1458 * 3) what is available in the destination page.
1459 * in one iteration.
1460 */
1461 if (src_offset >= etr_buf->size)
1462 src_offset -= etr_buf->size;
1463 bytes = tmc_etr_buf_get_data(etr_buf, src_offset, to_copy,
1464 &src_buf);
1465 if (WARN_ON_ONCE(bytes <= 0))
1466 break;
1467 bytes = min(bytes, (long)(PAGE_SIZE - pg_offset));
1468
1469 memcpy(dst_pages[pg_idx] + pg_offset, src_buf, bytes);
1470
1471 to_copy -= bytes;
1472
1473 /* Move destination pointers */
1474 pg_offset += bytes;
1475 if (pg_offset == PAGE_SIZE) {
1476 pg_offset = 0;
1477 if (++pg_idx == etr_perf->nr_pages)
1478 pg_idx = 0;
1479 }
1480
1481 /* Move source pointers */
1482 src_offset += bytes;
1483 }
1484 }
1485
1486 /*
1487 * tmc_update_etr_buffer : Update the perf ring buffer with the
1488 * available trace data. We use software double buffering at the moment.
1489 *
1490 * TODO: Add support for reusing the perf ring buffer.
1491 */
1492 static unsigned long
tmc_update_etr_buffer(struct coresight_device * csdev,struct perf_output_handle * handle,void * config)1493 tmc_update_etr_buffer(struct coresight_device *csdev,
1494 struct perf_output_handle *handle,
1495 void *config)
1496 {
1497 bool lost = false;
1498 unsigned long flags, offset, size = 0;
1499 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1500 struct etr_perf_buffer *etr_perf = config;
1501 struct etr_buf *etr_buf = etr_perf->etr_buf;
1502
1503 spin_lock_irqsave(&drvdata->spinlock, flags);
1504
1505 /* Don't do anything if another tracer is using this sink */
1506 if (atomic_read(csdev->refcnt) != 1) {
1507 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1508 goto out;
1509 }
1510
1511 if (WARN_ON(drvdata->perf_buf != etr_buf)) {
1512 lost = true;
1513 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1514 goto out;
1515 }
1516
1517 CS_UNLOCK(drvdata->base);
1518
1519 tmc_flush_and_stop(drvdata);
1520 tmc_sync_etr_buf(drvdata);
1521
1522 CS_LOCK(drvdata->base);
1523 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1524
1525 lost = etr_buf->full;
1526 offset = etr_buf->offset;
1527 size = etr_buf->len;
1528
1529 /*
1530 * The ETR buffer may be bigger than the space available in the
1531 * perf ring buffer (handle->size). If so advance the offset so that we
1532 * get the latest trace data. In snapshot mode none of that matters
1533 * since we are expected to clobber stale data in favour of the latest
1534 * traces.
1535 */
1536 if (!etr_perf->snapshot && size > handle->size) {
1537 u32 mask = tmc_get_memwidth_mask(drvdata);
1538
1539 /*
1540 * Make sure the new size is aligned in accordance with the
1541 * requirement explained in function tmc_get_memwidth_mask().
1542 */
1543 size = handle->size & mask;
1544 offset = etr_buf->offset + etr_buf->len - size;
1545
1546 if (offset >= etr_buf->size)
1547 offset -= etr_buf->size;
1548 lost = true;
1549 }
1550
1551 /* Insert barrier packets at the beginning, if there was an overflow */
1552 if (lost)
1553 tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset);
1554 tmc_etr_sync_perf_buffer(etr_perf, offset, size);
1555
1556 /*
1557 * In snapshot mode we simply increment the head by the number of byte
1558 * that were written. User space function cs_etm_find_snapshot() will
1559 * figure out how many bytes to get from the AUX buffer based on the
1560 * position of the head.
1561 */
1562 if (etr_perf->snapshot)
1563 handle->head += size;
1564 out:
1565 /*
1566 * Don't set the TRUNCATED flag in snapshot mode because 1) the
1567 * captured buffer is expected to be truncated and 2) a full buffer
1568 * prevents the event from being re-enabled by the perf core,
1569 * resulting in stale data being send to user space.
1570 */
1571 if (!etr_perf->snapshot && lost)
1572 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1573 return size;
1574 }
1575
tmc_enable_etr_sink_perf(struct coresight_device * csdev,void * data)1576 static int tmc_enable_etr_sink_perf(struct coresight_device *csdev, void *data)
1577 {
1578 int rc = 0;
1579 pid_t pid;
1580 unsigned long flags;
1581 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1582 struct perf_output_handle *handle = data;
1583 struct etr_perf_buffer *etr_perf = etm_perf_sink_config(handle);
1584
1585 spin_lock_irqsave(&drvdata->spinlock, flags);
1586 /* Don't use this sink if it is already claimed by sysFS */
1587 if (drvdata->mode == CS_MODE_SYSFS) {
1588 rc = -EBUSY;
1589 goto unlock_out;
1590 }
1591
1592 if (WARN_ON(!etr_perf || !etr_perf->etr_buf)) {
1593 rc = -EINVAL;
1594 goto unlock_out;
1595 }
1596
1597 /* Get a handle on the pid of the process to monitor */
1598 pid = etr_perf->pid;
1599
1600 /* Do not proceed if this device is associated with another session */
1601 if (drvdata->pid != -1 && drvdata->pid != pid) {
1602 rc = -EBUSY;
1603 goto unlock_out;
1604 }
1605
1606 etr_perf->head = PERF_IDX2OFF(handle->head, etr_perf);
1607
1608 /*
1609 * No HW configuration is needed if the sink is already in
1610 * use for this session.
1611 */
1612 if (drvdata->pid == pid) {
1613 atomic_inc(csdev->refcnt);
1614 goto unlock_out;
1615 }
1616
1617 rc = tmc_etr_enable_hw(drvdata, etr_perf->etr_buf);
1618 if (!rc) {
1619 /* Associate with monitored process. */
1620 drvdata->pid = pid;
1621 drvdata->mode = CS_MODE_PERF;
1622 drvdata->perf_buf = etr_perf->etr_buf;
1623 atomic_inc(csdev->refcnt);
1624 }
1625
1626 unlock_out:
1627 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1628 return rc;
1629 }
1630
tmc_enable_etr_sink(struct coresight_device * csdev,u32 mode,void * data)1631 static int tmc_enable_etr_sink(struct coresight_device *csdev,
1632 u32 mode, void *data)
1633 {
1634 switch (mode) {
1635 case CS_MODE_SYSFS:
1636 return tmc_enable_etr_sink_sysfs(csdev);
1637 case CS_MODE_PERF:
1638 return tmc_enable_etr_sink_perf(csdev, data);
1639 }
1640
1641 /* We shouldn't be here */
1642 return -EINVAL;
1643 }
1644
tmc_disable_etr_sink(struct coresight_device * csdev)1645 static int tmc_disable_etr_sink(struct coresight_device *csdev)
1646 {
1647 unsigned long flags;
1648 struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
1649
1650 spin_lock_irqsave(&drvdata->spinlock, flags);
1651
1652 if (drvdata->reading) {
1653 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1654 return -EBUSY;
1655 }
1656
1657 if (atomic_dec_return(csdev->refcnt)) {
1658 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1659 return -EBUSY;
1660 }
1661
1662 /* Complain if we (somehow) got out of sync */
1663 WARN_ON_ONCE(drvdata->mode == CS_MODE_DISABLED);
1664 tmc_etr_disable_hw(drvdata);
1665 /* Dissociate from monitored process. */
1666 drvdata->pid = -1;
1667 drvdata->mode = CS_MODE_DISABLED;
1668 /* Reset perf specific data */
1669 drvdata->perf_buf = NULL;
1670
1671 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1672
1673 dev_dbg(&csdev->dev, "TMC-ETR disabled\n");
1674 return 0;
1675 }
1676
1677 static const struct coresight_ops_sink tmc_etr_sink_ops = {
1678 .enable = tmc_enable_etr_sink,
1679 .disable = tmc_disable_etr_sink,
1680 .alloc_buffer = tmc_alloc_etr_buffer,
1681 .update_buffer = tmc_update_etr_buffer,
1682 .free_buffer = tmc_free_etr_buffer,
1683 };
1684
1685 const struct coresight_ops tmc_etr_cs_ops = {
1686 .sink_ops = &tmc_etr_sink_ops,
1687 };
1688
tmc_read_prepare_etr(struct tmc_drvdata * drvdata)1689 int tmc_read_prepare_etr(struct tmc_drvdata *drvdata)
1690 {
1691 int ret = 0;
1692 unsigned long flags;
1693
1694 /* config types are set a boot time and never change */
1695 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1696 return -EINVAL;
1697
1698 spin_lock_irqsave(&drvdata->spinlock, flags);
1699 if (drvdata->reading) {
1700 ret = -EBUSY;
1701 goto out;
1702 }
1703
1704 /*
1705 * We can safely allow reads even if the ETR is operating in PERF mode,
1706 * since the sysfs session is captured in mode specific data.
1707 * If drvdata::sysfs_data is NULL the trace data has been read already.
1708 */
1709 if (!drvdata->sysfs_buf) {
1710 ret = -EINVAL;
1711 goto out;
1712 }
1713
1714 /* Disable the TMC if we are trying to read from a running session. */
1715 if (drvdata->mode == CS_MODE_SYSFS)
1716 __tmc_etr_disable_hw(drvdata);
1717
1718 drvdata->reading = true;
1719 out:
1720 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1721
1722 return ret;
1723 }
1724
tmc_read_unprepare_etr(struct tmc_drvdata * drvdata)1725 int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata)
1726 {
1727 unsigned long flags;
1728 struct etr_buf *sysfs_buf = NULL;
1729
1730 /* config types are set a boot time and never change */
1731 if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR))
1732 return -EINVAL;
1733
1734 spin_lock_irqsave(&drvdata->spinlock, flags);
1735
1736 /* RE-enable the TMC if need be */
1737 if (drvdata->mode == CS_MODE_SYSFS) {
1738 /*
1739 * The trace run will continue with the same allocated trace
1740 * buffer. Since the tracer is still enabled drvdata::buf can't
1741 * be NULL.
1742 */
1743 __tmc_etr_enable_hw(drvdata);
1744 } else {
1745 /*
1746 * The ETR is not tracing and the buffer was just read.
1747 * As such prepare to free the trace buffer.
1748 */
1749 sysfs_buf = drvdata->sysfs_buf;
1750 drvdata->sysfs_buf = NULL;
1751 }
1752
1753 drvdata->reading = false;
1754 spin_unlock_irqrestore(&drvdata->spinlock, flags);
1755
1756 /* Free allocated memory out side of the spinlock */
1757 if (sysfs_buf)
1758 tmc_etr_free_sysfs_buf(sysfs_buf);
1759
1760 return 0;
1761 }
1762