1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4  *
5  * Copyright (c) 2019, Ericsson AB
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the names of the copyright holders nor the names of its
17  *    contributors may be used to endorse or promote products derived from
18  *    this software without specific prior written permission.
19  *
20  * Alternatively, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") version 2 as published by the Free
22  * Software Foundation.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43 
44 #define TIPC_TX_GRACE_PERIOD	msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME	msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM	msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM	msecs_to_jiffies(15000) /* 15s */
48 
49 #define TIPC_MAX_TFMS_DEF	10
50 #define TIPC_MAX_TFMS_LIM	1000
51 
52 #define TIPC_REKEYING_INTV_DEF	(60 * 24) /* default: 1 day */
53 
54 /*
55  * TIPC Key ids
56  */
57 enum {
58 	KEY_MASTER = 0,
59 	KEY_MIN = KEY_MASTER,
60 	KEY_1 = 1,
61 	KEY_2,
62 	KEY_3,
63 	KEY_MAX = KEY_3,
64 };
65 
66 /*
67  * TIPC Crypto statistics
68  */
69 enum {
70 	STAT_OK,
71 	STAT_NOK,
72 	STAT_ASYNC,
73 	STAT_ASYNC_OK,
74 	STAT_ASYNC_NOK,
75 	STAT_BADKEYS, /* tx only */
76 	STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 	STAT_NOKEYS,
78 	STAT_SWITCHES,
79 
80 	MAX_STATS,
81 };
82 
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 					"async_nok", "badmsgs", "nokeys",
86 					"switches"};
87 
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92 
93 /*
94  * struct tipc_key - TIPC keys' status indicator
95  *
96  *         7     6     5     4     3     2     1     0
97  *      +-----+-----+-----+-----+-----+-----+-----+-----+
98  * key: | (reserved)|passive idx| active idx|pending idx|
99  *      +-----+-----+-----+-----+-----+-----+-----+-----+
100  */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 	union {
105 		struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 			u8 pending:2,
108 			   active:2,
109 			   passive:2, /* rx only */
110 			   reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 			u8 reserved:2,
113 			   passive:2, /* rx only */
114 			   active:2,
115 			   pending:2;
116 #else
117 #error  "Please fix <asm/byteorder.h>"
118 #endif
119 		} __packed;
120 		u8 keys;
121 	};
122 };
123 
124 /**
125  * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126  * @tfm: cipher handle/key
127  * @list: linked list of TFMs
128  */
129 struct tipc_tfm {
130 	struct crypto_aead *tfm;
131 	struct list_head list;
132 };
133 
134 /**
135  * struct tipc_aead - TIPC AEAD key structure
136  * @tfm_entry: per-cpu pointer to one entry in TFM list
137  * @crypto: TIPC crypto owns this key
138  * @cloned: reference to the source key in case cloning
139  * @users: the number of the key users (TX/RX)
140  * @salt: the key's SALT value
141  * @authsize: authentication tag size (max = 16)
142  * @mode: crypto mode is applied to the key
143  * @hint: a hint for user key
144  * @rcu: struct rcu_head
145  * @key: the aead key
146  * @gen: the key's generation
147  * @seqno: the key seqno (cluster scope)
148  * @refcnt: the key reference counter
149  */
150 struct tipc_aead {
151 #define TIPC_AEAD_HINT_LEN (5)
152 	struct tipc_tfm * __percpu *tfm_entry;
153 	struct tipc_crypto *crypto;
154 	struct tipc_aead *cloned;
155 	atomic_t users;
156 	u32 salt;
157 	u8 authsize;
158 	u8 mode;
159 	char hint[2 * TIPC_AEAD_HINT_LEN + 1];
160 	struct rcu_head rcu;
161 	struct tipc_aead_key *key;
162 	u16 gen;
163 
164 	atomic64_t seqno ____cacheline_aligned;
165 	refcount_t refcnt ____cacheline_aligned;
166 
167 } ____cacheline_aligned;
168 
169 /**
170  * struct tipc_crypto_stats - TIPC Crypto statistics
171  * @stat: array of crypto statistics
172  */
173 struct tipc_crypto_stats {
174 	unsigned int stat[MAX_STATS];
175 };
176 
177 /**
178  * struct tipc_crypto - TIPC TX/RX crypto structure
179  * @net: struct net
180  * @node: TIPC node (RX)
181  * @aead: array of pointers to AEAD keys for encryption/decryption
182  * @peer_rx_active: replicated peer RX active key index
183  * @key_gen: TX/RX key generation
184  * @key: the key states
185  * @skey_mode: session key's mode
186  * @skey: received session key
187  * @wq: common workqueue on TX crypto
188  * @work: delayed work sched for TX/RX
189  * @key_distr: key distributing state
190  * @rekeying_intv: rekeying interval (in minutes)
191  * @stats: the crypto statistics
192  * @name: the crypto name
193  * @sndnxt: the per-peer sndnxt (TX)
194  * @timer1: general timer 1 (jiffies)
195  * @timer2: general timer 2 (jiffies)
196  * @working: the crypto is working or not
197  * @key_master: flag indicates if master key exists
198  * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
199  * @nokey: no key indication
200  * @flags: combined flags field
201  * @lock: tipc_key lock
202  */
203 struct tipc_crypto {
204 	struct net *net;
205 	struct tipc_node *node;
206 	struct tipc_aead __rcu *aead[KEY_MAX + 1];
207 	atomic_t peer_rx_active;
208 	u16 key_gen;
209 	struct tipc_key key;
210 	u8 skey_mode;
211 	struct tipc_aead_key *skey;
212 	struct workqueue_struct *wq;
213 	struct delayed_work work;
214 #define KEY_DISTR_SCHED		1
215 #define KEY_DISTR_COMPL		2
216 	atomic_t key_distr;
217 	u32 rekeying_intv;
218 
219 	struct tipc_crypto_stats __percpu *stats;
220 	char name[48];
221 
222 	atomic64_t sndnxt ____cacheline_aligned;
223 	unsigned long timer1;
224 	unsigned long timer2;
225 	union {
226 		struct {
227 			u8 working:1;
228 			u8 key_master:1;
229 			u8 legacy_user:1;
230 			u8 nokey: 1;
231 		};
232 		u8 flags;
233 	};
234 	spinlock_t lock; /* crypto lock */
235 
236 } ____cacheline_aligned;
237 
238 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
239 struct tipc_crypto_tx_ctx {
240 	struct tipc_aead *aead;
241 	struct tipc_bearer *bearer;
242 	struct tipc_media_addr dst;
243 };
244 
245 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
246 struct tipc_crypto_rx_ctx {
247 	struct tipc_aead *aead;
248 	struct tipc_bearer *bearer;
249 };
250 
251 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
252 static inline void tipc_aead_put(struct tipc_aead *aead);
253 static void tipc_aead_free(struct rcu_head *rp);
254 static int tipc_aead_users(struct tipc_aead __rcu *aead);
255 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
256 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
257 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
258 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
259 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
260 			  u8 mode);
261 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
262 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
263 				 unsigned int crypto_ctx_size,
264 				 u8 **iv, struct aead_request **req,
265 				 struct scatterlist **sg, int nsg);
266 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
267 			     struct tipc_bearer *b,
268 			     struct tipc_media_addr *dst,
269 			     struct tipc_node *__dnode);
270 static void tipc_aead_encrypt_done(void *data, int err);
271 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
272 			     struct sk_buff *skb, struct tipc_bearer *b);
273 static void tipc_aead_decrypt_done(void *data, int err);
274 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
275 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
276 			   u8 tx_key, struct sk_buff *skb,
277 			   struct tipc_crypto *__rx);
278 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
279 					     u8 new_passive,
280 					     u8 new_active,
281 					     u8 new_pending);
282 static int tipc_crypto_key_attach(struct tipc_crypto *c,
283 				  struct tipc_aead *aead, u8 pos,
284 				  bool master_key);
285 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
286 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
287 						 struct tipc_crypto *rx,
288 						 struct sk_buff *skb,
289 						 u8 tx_key);
290 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
291 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
292 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
293 					 struct tipc_bearer *b,
294 					 struct tipc_media_addr *dst,
295 					 struct tipc_node *__dnode, u8 type);
296 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
297 				     struct tipc_bearer *b,
298 				     struct sk_buff **skb, int err);
299 static void tipc_crypto_do_cmd(struct net *net, int cmd);
300 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
301 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
302 				  char *buf);
303 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
304 				u16 gen, u8 mode, u32 dnode);
305 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
306 static void tipc_crypto_work_tx(struct work_struct *work);
307 static void tipc_crypto_work_rx(struct work_struct *work);
308 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
309 
310 #define is_tx(crypto) (!(crypto)->node)
311 #define is_rx(crypto) (!is_tx(crypto))
312 
313 #define key_next(cur) ((cur) % KEY_MAX + 1)
314 
315 #define tipc_aead_rcu_ptr(rcu_ptr, lock)				\
316 	rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
317 
318 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock)			\
319 do {									\
320 	struct tipc_aead *__tmp = rcu_dereference_protected((rcu_ptr),	\
321 						lockdep_is_held(lock));	\
322 	rcu_assign_pointer((rcu_ptr), (ptr));				\
323 	tipc_aead_put(__tmp);						\
324 } while (0)
325 
326 #define tipc_crypto_key_detach(rcu_ptr, lock)				\
327 	tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
328 
329 /**
330  * tipc_aead_key_validate - Validate a AEAD user key
331  * @ukey: pointer to user key data
332  * @info: netlink info pointer
333  */
tipc_aead_key_validate(struct tipc_aead_key * ukey,struct genl_info * info)334 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
335 {
336 	int keylen;
337 
338 	/* Check if algorithm exists */
339 	if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
340 		GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
341 		return -ENODEV;
342 	}
343 
344 	/* Currently, we only support the "gcm(aes)" cipher algorithm */
345 	if (strcmp(ukey->alg_name, "gcm(aes)")) {
346 		GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
347 		return -ENOTSUPP;
348 	}
349 
350 	/* Check if key size is correct */
351 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
352 	if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
353 		     keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
354 		     keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
355 		GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
356 		return -EKEYREJECTED;
357 	}
358 
359 	return 0;
360 }
361 
362 /**
363  * tipc_aead_key_generate - Generate new session key
364  * @skey: input/output key with new content
365  *
366  * Return: 0 in case of success, otherwise < 0
367  */
tipc_aead_key_generate(struct tipc_aead_key * skey)368 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
369 {
370 	int rc = 0;
371 
372 	/* Fill the key's content with a random value via RNG cipher */
373 	rc = crypto_get_default_rng();
374 	if (likely(!rc)) {
375 		rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
376 					  skey->keylen);
377 		crypto_put_default_rng();
378 	}
379 
380 	return rc;
381 }
382 
tipc_aead_get(struct tipc_aead __rcu * aead)383 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
384 {
385 	struct tipc_aead *tmp;
386 
387 	rcu_read_lock();
388 	tmp = rcu_dereference(aead);
389 	if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
390 		tmp = NULL;
391 	rcu_read_unlock();
392 
393 	return tmp;
394 }
395 
tipc_aead_put(struct tipc_aead * aead)396 static inline void tipc_aead_put(struct tipc_aead *aead)
397 {
398 	if (aead && refcount_dec_and_test(&aead->refcnt))
399 		call_rcu(&aead->rcu, tipc_aead_free);
400 }
401 
402 /**
403  * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
404  * @rp: rcu head pointer
405  */
tipc_aead_free(struct rcu_head * rp)406 static void tipc_aead_free(struct rcu_head *rp)
407 {
408 	struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
409 	struct tipc_tfm *tfm_entry, *head, *tmp;
410 
411 	if (aead->cloned) {
412 		tipc_aead_put(aead->cloned);
413 	} else {
414 		head = *get_cpu_ptr(aead->tfm_entry);
415 		put_cpu_ptr(aead->tfm_entry);
416 		list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
417 			crypto_free_aead(tfm_entry->tfm);
418 			list_del(&tfm_entry->list);
419 			kfree(tfm_entry);
420 		}
421 		/* Free the head */
422 		crypto_free_aead(head->tfm);
423 		list_del(&head->list);
424 		kfree(head);
425 	}
426 	free_percpu(aead->tfm_entry);
427 	kfree_sensitive(aead->key);
428 	kfree(aead);
429 }
430 
tipc_aead_users(struct tipc_aead __rcu * aead)431 static int tipc_aead_users(struct tipc_aead __rcu *aead)
432 {
433 	struct tipc_aead *tmp;
434 	int users = 0;
435 
436 	rcu_read_lock();
437 	tmp = rcu_dereference(aead);
438 	if (tmp)
439 		users = atomic_read(&tmp->users);
440 	rcu_read_unlock();
441 
442 	return users;
443 }
444 
tipc_aead_users_inc(struct tipc_aead __rcu * aead,int lim)445 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
446 {
447 	struct tipc_aead *tmp;
448 
449 	rcu_read_lock();
450 	tmp = rcu_dereference(aead);
451 	if (tmp)
452 		atomic_add_unless(&tmp->users, 1, lim);
453 	rcu_read_unlock();
454 }
455 
tipc_aead_users_dec(struct tipc_aead __rcu * aead,int lim)456 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
457 {
458 	struct tipc_aead *tmp;
459 
460 	rcu_read_lock();
461 	tmp = rcu_dereference(aead);
462 	if (tmp)
463 		atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
464 	rcu_read_unlock();
465 }
466 
tipc_aead_users_set(struct tipc_aead __rcu * aead,int val)467 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
468 {
469 	struct tipc_aead *tmp;
470 	int cur;
471 
472 	rcu_read_lock();
473 	tmp = rcu_dereference(aead);
474 	if (tmp) {
475 		do {
476 			cur = atomic_read(&tmp->users);
477 			if (cur == val)
478 				break;
479 		} while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
480 	}
481 	rcu_read_unlock();
482 }
483 
484 /**
485  * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
486  * @aead: the AEAD key pointer
487  */
tipc_aead_tfm_next(struct tipc_aead * aead)488 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
489 {
490 	struct tipc_tfm **tfm_entry;
491 	struct crypto_aead *tfm;
492 
493 	tfm_entry = get_cpu_ptr(aead->tfm_entry);
494 	*tfm_entry = list_next_entry(*tfm_entry, list);
495 	tfm = (*tfm_entry)->tfm;
496 	put_cpu_ptr(tfm_entry);
497 
498 	return tfm;
499 }
500 
501 /**
502  * tipc_aead_init - Initiate TIPC AEAD
503  * @aead: returned new TIPC AEAD key handle pointer
504  * @ukey: pointer to user key data
505  * @mode: the key mode
506  *
507  * Allocate a (list of) new cipher transformation (TFM) with the specific user
508  * key data if valid. The number of the allocated TFMs can be set via the sysfs
509  * "net/tipc/max_tfms" first.
510  * Also, all the other AEAD data are also initialized.
511  *
512  * Return: 0 if the initiation is successful, otherwise: < 0
513  */
tipc_aead_init(struct tipc_aead ** aead,struct tipc_aead_key * ukey,u8 mode)514 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
515 			  u8 mode)
516 {
517 	struct tipc_tfm *tfm_entry, *head;
518 	struct crypto_aead *tfm;
519 	struct tipc_aead *tmp;
520 	int keylen, err, cpu;
521 	int tfm_cnt = 0;
522 
523 	if (unlikely(*aead))
524 		return -EEXIST;
525 
526 	/* Allocate a new AEAD */
527 	tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
528 	if (unlikely(!tmp))
529 		return -ENOMEM;
530 
531 	/* The key consists of two parts: [AES-KEY][SALT] */
532 	keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
533 
534 	/* Allocate per-cpu TFM entry pointer */
535 	tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
536 	if (!tmp->tfm_entry) {
537 		kfree_sensitive(tmp);
538 		return -ENOMEM;
539 	}
540 
541 	/* Make a list of TFMs with the user key data */
542 	do {
543 		tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
544 		if (IS_ERR(tfm)) {
545 			err = PTR_ERR(tfm);
546 			break;
547 		}
548 
549 		if (unlikely(!tfm_cnt &&
550 			     crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
551 			crypto_free_aead(tfm);
552 			err = -ENOTSUPP;
553 			break;
554 		}
555 
556 		err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
557 		err |= crypto_aead_setkey(tfm, ukey->key, keylen);
558 		if (unlikely(err)) {
559 			crypto_free_aead(tfm);
560 			break;
561 		}
562 
563 		tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
564 		if (unlikely(!tfm_entry)) {
565 			crypto_free_aead(tfm);
566 			err = -ENOMEM;
567 			break;
568 		}
569 		INIT_LIST_HEAD(&tfm_entry->list);
570 		tfm_entry->tfm = tfm;
571 
572 		/* First entry? */
573 		if (!tfm_cnt) {
574 			head = tfm_entry;
575 			for_each_possible_cpu(cpu) {
576 				*per_cpu_ptr(tmp->tfm_entry, cpu) = head;
577 			}
578 		} else {
579 			list_add_tail(&tfm_entry->list, &head->list);
580 		}
581 
582 	} while (++tfm_cnt < sysctl_tipc_max_tfms);
583 
584 	/* Not any TFM is allocated? */
585 	if (!tfm_cnt) {
586 		free_percpu(tmp->tfm_entry);
587 		kfree_sensitive(tmp);
588 		return err;
589 	}
590 
591 	/* Form a hex string of some last bytes as the key's hint */
592 	bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
593 		TIPC_AEAD_HINT_LEN);
594 
595 	/* Initialize the other data */
596 	tmp->mode = mode;
597 	tmp->cloned = NULL;
598 	tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
599 	tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
600 	if (!tmp->key) {
601 		tipc_aead_free(&tmp->rcu);
602 		return -ENOMEM;
603 	}
604 	memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
605 	atomic_set(&tmp->users, 0);
606 	atomic64_set(&tmp->seqno, 0);
607 	refcount_set(&tmp->refcnt, 1);
608 
609 	*aead = tmp;
610 	return 0;
611 }
612 
613 /**
614  * tipc_aead_clone - Clone a TIPC AEAD key
615  * @dst: dest key for the cloning
616  * @src: source key to clone from
617  *
618  * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
619  * common for the keys.
620  * A reference to the source is hold in the "cloned" pointer for the later
621  * freeing purposes.
622  *
623  * Note: this must be done in cluster-key mode only!
624  * Return: 0 in case of success, otherwise < 0
625  */
tipc_aead_clone(struct tipc_aead ** dst,struct tipc_aead * src)626 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
627 {
628 	struct tipc_aead *aead;
629 	int cpu;
630 
631 	if (!src)
632 		return -ENOKEY;
633 
634 	if (src->mode != CLUSTER_KEY)
635 		return -EINVAL;
636 
637 	if (unlikely(*dst))
638 		return -EEXIST;
639 
640 	aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
641 	if (unlikely(!aead))
642 		return -ENOMEM;
643 
644 	aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
645 	if (unlikely(!aead->tfm_entry)) {
646 		kfree_sensitive(aead);
647 		return -ENOMEM;
648 	}
649 
650 	for_each_possible_cpu(cpu) {
651 		*per_cpu_ptr(aead->tfm_entry, cpu) =
652 				*per_cpu_ptr(src->tfm_entry, cpu);
653 	}
654 
655 	memcpy(aead->hint, src->hint, sizeof(src->hint));
656 	aead->mode = src->mode;
657 	aead->salt = src->salt;
658 	aead->authsize = src->authsize;
659 	atomic_set(&aead->users, 0);
660 	atomic64_set(&aead->seqno, 0);
661 	refcount_set(&aead->refcnt, 1);
662 
663 	WARN_ON(!refcount_inc_not_zero(&src->refcnt));
664 	aead->cloned = src;
665 
666 	*dst = aead;
667 	return 0;
668 }
669 
670 /**
671  * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
672  * @tfm: cipher handle to be registered with the request
673  * @crypto_ctx_size: size of crypto context for callback
674  * @iv: returned pointer to IV data
675  * @req: returned pointer to AEAD request data
676  * @sg: returned pointer to SG lists
677  * @nsg: number of SG lists to be allocated
678  *
679  * Allocate memory to store the crypto context data, AEAD request, IV and SG
680  * lists, the memory layout is as follows:
681  * crypto_ctx || iv || aead_req || sg[]
682  *
683  * Return: the pointer to the memory areas in case of success, otherwise NULL
684  */
tipc_aead_mem_alloc(struct crypto_aead * tfm,unsigned int crypto_ctx_size,u8 ** iv,struct aead_request ** req,struct scatterlist ** sg,int nsg)685 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
686 				 unsigned int crypto_ctx_size,
687 				 u8 **iv, struct aead_request **req,
688 				 struct scatterlist **sg, int nsg)
689 {
690 	unsigned int iv_size, req_size;
691 	unsigned int len;
692 	u8 *mem;
693 
694 	iv_size = crypto_aead_ivsize(tfm);
695 	req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
696 
697 	len = crypto_ctx_size;
698 	len += iv_size;
699 	len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
700 	len = ALIGN(len, crypto_tfm_ctx_alignment());
701 	len += req_size;
702 	len = ALIGN(len, __alignof__(struct scatterlist));
703 	len += nsg * sizeof(**sg);
704 
705 	mem = kmalloc(len, GFP_ATOMIC);
706 	if (!mem)
707 		return NULL;
708 
709 	*iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
710 			      crypto_aead_alignmask(tfm) + 1);
711 	*req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
712 						crypto_tfm_ctx_alignment());
713 	*sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
714 					      __alignof__(struct scatterlist));
715 
716 	return (void *)mem;
717 }
718 
719 /**
720  * tipc_aead_encrypt - Encrypt a message
721  * @aead: TIPC AEAD key for the message encryption
722  * @skb: the input/output skb
723  * @b: TIPC bearer where the message will be delivered after the encryption
724  * @dst: the destination media address
725  * @__dnode: TIPC dest node if "known"
726  *
727  * Return:
728  * * 0                   : if the encryption has completed
729  * * -EINPROGRESS/-EBUSY : if a callback will be performed
730  * * < 0                 : the encryption has failed
731  */
tipc_aead_encrypt(struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)732 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
733 			     struct tipc_bearer *b,
734 			     struct tipc_media_addr *dst,
735 			     struct tipc_node *__dnode)
736 {
737 	struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
738 	struct tipc_crypto_tx_ctx *tx_ctx;
739 	struct aead_request *req;
740 	struct sk_buff *trailer;
741 	struct scatterlist *sg;
742 	struct tipc_ehdr *ehdr;
743 	int ehsz, len, tailen, nsg, rc;
744 	void *ctx;
745 	u32 salt;
746 	u8 *iv;
747 
748 	/* Make sure message len at least 4-byte aligned */
749 	len = ALIGN(skb->len, 4);
750 	tailen = len - skb->len + aead->authsize;
751 
752 	/* Expand skb tail for authentication tag:
753 	 * As for simplicity, we'd have made sure skb having enough tailroom
754 	 * for authentication tag @skb allocation. Even when skb is nonlinear
755 	 * but there is no frag_list, it should be still fine!
756 	 * Otherwise, we must cow it to be a writable buffer with the tailroom.
757 	 */
758 	SKB_LINEAR_ASSERT(skb);
759 	if (tailen > skb_tailroom(skb)) {
760 		pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
761 			 skb_tailroom(skb), tailen);
762 	}
763 
764 	nsg = skb_cow_data(skb, tailen, &trailer);
765 	if (unlikely(nsg < 0)) {
766 		pr_err("TX: skb_cow_data() returned %d\n", nsg);
767 		return nsg;
768 	}
769 
770 	pskb_put(skb, trailer, tailen);
771 
772 	/* Allocate memory for the AEAD operation */
773 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774 	if (unlikely(!ctx))
775 		return -ENOMEM;
776 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777 
778 	/* Map skb to the sg lists */
779 	sg_init_table(sg, nsg);
780 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
781 	if (unlikely(rc < 0)) {
782 		pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783 		goto exit;
784 	}
785 
786 	/* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787 	 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788 	 * the source address (or w0 of id), otherwise with the dest address
789 	 * if dest is known.
790 	 */
791 	ehdr = (struct tipc_ehdr *)skb->data;
792 	salt = aead->salt;
793 	if (aead->mode == CLUSTER_KEY)
794 		salt ^= __be32_to_cpu(ehdr->addr);
795 	else if (__dnode)
796 		salt ^= tipc_node_get_addr(__dnode);
797 	memcpy(iv, &salt, 4);
798 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799 
800 	/* Prepare request */
801 	ehsz = tipc_ehdr_size(ehdr);
802 	aead_request_set_tfm(req, tfm);
803 	aead_request_set_ad(req, ehsz);
804 	aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805 
806 	/* Set callback function & data */
807 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808 				  tipc_aead_encrypt_done, skb);
809 	tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810 	tx_ctx->aead = aead;
811 	tx_ctx->bearer = b;
812 	memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813 
814 	/* Hold bearer */
815 	if (unlikely(!tipc_bearer_hold(b))) {
816 		rc = -ENODEV;
817 		goto exit;
818 	}
819 
820 	/* Get net to avoid freed tipc_crypto when delete namespace */
821 	get_net(aead->crypto->net);
822 
823 	/* Now, do encrypt */
824 	rc = crypto_aead_encrypt(req);
825 	if (rc == -EINPROGRESS || rc == -EBUSY)
826 		return rc;
827 
828 	tipc_bearer_put(b);
829 	put_net(aead->crypto->net);
830 
831 exit:
832 	kfree(ctx);
833 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
834 	return rc;
835 }
836 
tipc_aead_encrypt_done(void * data,int err)837 static void tipc_aead_encrypt_done(void *data, int err)
838 {
839 	struct sk_buff *skb = data;
840 	struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
841 	struct tipc_bearer *b = tx_ctx->bearer;
842 	struct tipc_aead *aead = tx_ctx->aead;
843 	struct tipc_crypto *tx = aead->crypto;
844 	struct net *net = tx->net;
845 
846 	switch (err) {
847 	case 0:
848 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
849 		rcu_read_lock();
850 		if (likely(test_bit(0, &b->up)))
851 			b->media->send_msg(net, skb, b, &tx_ctx->dst);
852 		else
853 			kfree_skb(skb);
854 		rcu_read_unlock();
855 		break;
856 	case -EINPROGRESS:
857 		return;
858 	default:
859 		this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
860 		kfree_skb(skb);
861 		break;
862 	}
863 
864 	kfree(tx_ctx);
865 	tipc_bearer_put(b);
866 	tipc_aead_put(aead);
867 	put_net(net);
868 }
869 
870 /**
871  * tipc_aead_decrypt - Decrypt an encrypted message
872  * @net: struct net
873  * @aead: TIPC AEAD for the message decryption
874  * @skb: the input/output skb
875  * @b: TIPC bearer where the message has been received
876  *
877  * Return:
878  * * 0                   : if the decryption has completed
879  * * -EINPROGRESS/-EBUSY : if a callback will be performed
880  * * < 0                 : the decryption has failed
881  */
tipc_aead_decrypt(struct net * net,struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b)882 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
883 			     struct sk_buff *skb, struct tipc_bearer *b)
884 {
885 	struct tipc_crypto_rx_ctx *rx_ctx;
886 	struct aead_request *req;
887 	struct crypto_aead *tfm;
888 	struct sk_buff *unused;
889 	struct scatterlist *sg;
890 	struct tipc_ehdr *ehdr;
891 	int ehsz, nsg, rc;
892 	void *ctx;
893 	u32 salt;
894 	u8 *iv;
895 
896 	if (unlikely(!aead))
897 		return -ENOKEY;
898 
899 	nsg = skb_cow_data(skb, 0, &unused);
900 	if (unlikely(nsg < 0)) {
901 		pr_err("RX: skb_cow_data() returned %d\n", nsg);
902 		return nsg;
903 	}
904 
905 	/* Allocate memory for the AEAD operation */
906 	tfm = tipc_aead_tfm_next(aead);
907 	ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
908 	if (unlikely(!ctx))
909 		return -ENOMEM;
910 	TIPC_SKB_CB(skb)->crypto_ctx = ctx;
911 
912 	/* Map skb to the sg lists */
913 	sg_init_table(sg, nsg);
914 	rc = skb_to_sgvec(skb, sg, 0, skb->len);
915 	if (unlikely(rc < 0)) {
916 		pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
917 		goto exit;
918 	}
919 
920 	/* Reconstruct IV: */
921 	ehdr = (struct tipc_ehdr *)skb->data;
922 	salt = aead->salt;
923 	if (aead->mode == CLUSTER_KEY)
924 		salt ^= __be32_to_cpu(ehdr->addr);
925 	else if (ehdr->destined)
926 		salt ^= tipc_own_addr(net);
927 	memcpy(iv, &salt, 4);
928 	memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
929 
930 	/* Prepare request */
931 	ehsz = tipc_ehdr_size(ehdr);
932 	aead_request_set_tfm(req, tfm);
933 	aead_request_set_ad(req, ehsz);
934 	aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
935 
936 	/* Set callback function & data */
937 	aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
938 				  tipc_aead_decrypt_done, skb);
939 	rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
940 	rx_ctx->aead = aead;
941 	rx_ctx->bearer = b;
942 
943 	/* Hold bearer */
944 	if (unlikely(!tipc_bearer_hold(b))) {
945 		rc = -ENODEV;
946 		goto exit;
947 	}
948 
949 	/* Now, do decrypt */
950 	rc = crypto_aead_decrypt(req);
951 	if (rc == -EINPROGRESS || rc == -EBUSY)
952 		return rc;
953 
954 	tipc_bearer_put(b);
955 
956 exit:
957 	kfree(ctx);
958 	TIPC_SKB_CB(skb)->crypto_ctx = NULL;
959 	return rc;
960 }
961 
tipc_aead_decrypt_done(void * data,int err)962 static void tipc_aead_decrypt_done(void *data, int err)
963 {
964 	struct sk_buff *skb = data;
965 	struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
966 	struct tipc_bearer *b = rx_ctx->bearer;
967 	struct tipc_aead *aead = rx_ctx->aead;
968 	struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
969 	struct net *net = aead->crypto->net;
970 
971 	switch (err) {
972 	case 0:
973 		this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
974 		break;
975 	case -EINPROGRESS:
976 		return;
977 	default:
978 		this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
979 		break;
980 	}
981 
982 	kfree(rx_ctx);
983 	tipc_crypto_rcv_complete(net, aead, b, &skb, err);
984 	if (likely(skb)) {
985 		if (likely(test_bit(0, &b->up)))
986 			tipc_rcv(net, skb, b);
987 		else
988 			kfree_skb(skb);
989 	}
990 
991 	tipc_bearer_put(b);
992 }
993 
tipc_ehdr_size(struct tipc_ehdr * ehdr)994 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
995 {
996 	return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
997 }
998 
999 /**
1000  * tipc_ehdr_validate - Validate an encryption message
1001  * @skb: the message buffer
1002  *
1003  * Return: "true" if this is a valid encryption message, otherwise "false"
1004  */
tipc_ehdr_validate(struct sk_buff * skb)1005 bool tipc_ehdr_validate(struct sk_buff *skb)
1006 {
1007 	struct tipc_ehdr *ehdr;
1008 	int ehsz;
1009 
1010 	if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1011 		return false;
1012 
1013 	ehdr = (struct tipc_ehdr *)skb->data;
1014 	if (unlikely(ehdr->version != TIPC_EVERSION))
1015 		return false;
1016 	ehsz = tipc_ehdr_size(ehdr);
1017 	if (unlikely(!pskb_may_pull(skb, ehsz)))
1018 		return false;
1019 	if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1020 		return false;
1021 
1022 	return true;
1023 }
1024 
1025 /**
1026  * tipc_ehdr_build - Build TIPC encryption message header
1027  * @net: struct net
1028  * @aead: TX AEAD key to be used for the message encryption
1029  * @tx_key: key id used for the message encryption
1030  * @skb: input/output message skb
1031  * @__rx: RX crypto handle if dest is "known"
1032  *
1033  * Return: the header size if the building is successful, otherwise < 0
1034  */
tipc_ehdr_build(struct net * net,struct tipc_aead * aead,u8 tx_key,struct sk_buff * skb,struct tipc_crypto * __rx)1035 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1036 			   u8 tx_key, struct sk_buff *skb,
1037 			   struct tipc_crypto *__rx)
1038 {
1039 	struct tipc_msg *hdr = buf_msg(skb);
1040 	struct tipc_ehdr *ehdr;
1041 	u32 user = msg_user(hdr);
1042 	u64 seqno;
1043 	int ehsz;
1044 
1045 	/* Make room for encryption header */
1046 	ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1047 	WARN_ON(skb_headroom(skb) < ehsz);
1048 	ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1049 
1050 	/* Obtain a seqno first:
1051 	 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1052 	 * cluster key mode, otherwise it's better for a per-peer seqno!
1053 	 */
1054 	if (!__rx || aead->mode == CLUSTER_KEY)
1055 		seqno = atomic64_inc_return(&aead->seqno);
1056 	else
1057 		seqno = atomic64_inc_return(&__rx->sndnxt);
1058 
1059 	/* Revoke the key if seqno is wrapped around */
1060 	if (unlikely(!seqno))
1061 		return tipc_crypto_key_revoke(net, tx_key);
1062 
1063 	/* Word 1-2 */
1064 	ehdr->seqno = cpu_to_be64(seqno);
1065 
1066 	/* Words 0, 3- */
1067 	ehdr->version = TIPC_EVERSION;
1068 	ehdr->user = 0;
1069 	ehdr->keepalive = 0;
1070 	ehdr->tx_key = tx_key;
1071 	ehdr->destined = (__rx) ? 1 : 0;
1072 	ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1073 	ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1074 	ehdr->master_key = aead->crypto->key_master;
1075 	ehdr->reserved_1 = 0;
1076 	ehdr->reserved_2 = 0;
1077 
1078 	switch (user) {
1079 	case LINK_CONFIG:
1080 		ehdr->user = LINK_CONFIG;
1081 		memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1082 		break;
1083 	default:
1084 		if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1085 			ehdr->user = LINK_PROTOCOL;
1086 			ehdr->keepalive = msg_is_keepalive(hdr);
1087 		}
1088 		ehdr->addr = hdr->hdr[3];
1089 		break;
1090 	}
1091 
1092 	return ehsz;
1093 }
1094 
tipc_crypto_key_set_state(struct tipc_crypto * c,u8 new_passive,u8 new_active,u8 new_pending)1095 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1096 					     u8 new_passive,
1097 					     u8 new_active,
1098 					     u8 new_pending)
1099 {
1100 	struct tipc_key old = c->key;
1101 	char buf[32];
1102 
1103 	c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1104 		      ((new_active  & KEY_MASK) << (KEY_BITS)) |
1105 		      ((new_pending & KEY_MASK));
1106 
1107 	pr_debug("%s: key changing %s ::%pS\n", c->name,
1108 		 tipc_key_change_dump(old, c->key, buf),
1109 		 __builtin_return_address(0));
1110 }
1111 
1112 /**
1113  * tipc_crypto_key_init - Initiate a new user / AEAD key
1114  * @c: TIPC crypto to which new key is attached
1115  * @ukey: the user key
1116  * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1117  * @master_key: specify this is a cluster master key
1118  *
1119  * A new TIPC AEAD key will be allocated and initiated with the specified user
1120  * key, then attached to the TIPC crypto.
1121  *
1122  * Return: new key id in case of success, otherwise: < 0
1123  */
tipc_crypto_key_init(struct tipc_crypto * c,struct tipc_aead_key * ukey,u8 mode,bool master_key)1124 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1125 			 u8 mode, bool master_key)
1126 {
1127 	struct tipc_aead *aead = NULL;
1128 	int rc = 0;
1129 
1130 	/* Initiate with the new user key */
1131 	rc = tipc_aead_init(&aead, ukey, mode);
1132 
1133 	/* Attach it to the crypto */
1134 	if (likely(!rc)) {
1135 		rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1136 		if (rc < 0)
1137 			tipc_aead_free(&aead->rcu);
1138 	}
1139 
1140 	return rc;
1141 }
1142 
1143 /**
1144  * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1145  * @c: TIPC crypto to which the new AEAD key is attached
1146  * @aead: the new AEAD key pointer
1147  * @pos: desired slot in the crypto key array, = 0 if any!
1148  * @master_key: specify this is a cluster master key
1149  *
1150  * Return: new key id in case of success, otherwise: -EBUSY
1151  */
tipc_crypto_key_attach(struct tipc_crypto * c,struct tipc_aead * aead,u8 pos,bool master_key)1152 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1153 				  struct tipc_aead *aead, u8 pos,
1154 				  bool master_key)
1155 {
1156 	struct tipc_key key;
1157 	int rc = -EBUSY;
1158 	u8 new_key;
1159 
1160 	spin_lock_bh(&c->lock);
1161 	key = c->key;
1162 	if (master_key) {
1163 		new_key = KEY_MASTER;
1164 		goto attach;
1165 	}
1166 	if (key.active && key.passive)
1167 		goto exit;
1168 	if (key.pending) {
1169 		if (tipc_aead_users(c->aead[key.pending]) > 0)
1170 			goto exit;
1171 		/* if (pos): ok with replacing, will be aligned when needed */
1172 		/* Replace it */
1173 		new_key = key.pending;
1174 	} else {
1175 		if (pos) {
1176 			if (key.active && pos != key_next(key.active)) {
1177 				key.passive = pos;
1178 				new_key = pos;
1179 				goto attach;
1180 			} else if (!key.active && !key.passive) {
1181 				key.pending = pos;
1182 				new_key = pos;
1183 				goto attach;
1184 			}
1185 		}
1186 		key.pending = key_next(key.active ?: key.passive);
1187 		new_key = key.pending;
1188 	}
1189 
1190 attach:
1191 	aead->crypto = c;
1192 	aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1193 	tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1194 	if (likely(c->key.keys != key.keys))
1195 		tipc_crypto_key_set_state(c, key.passive, key.active,
1196 					  key.pending);
1197 	c->working = 1;
1198 	c->nokey = 0;
1199 	c->key_master |= master_key;
1200 	rc = new_key;
1201 
1202 exit:
1203 	spin_unlock_bh(&c->lock);
1204 	return rc;
1205 }
1206 
tipc_crypto_key_flush(struct tipc_crypto * c)1207 void tipc_crypto_key_flush(struct tipc_crypto *c)
1208 {
1209 	struct tipc_crypto *tx, *rx;
1210 	int k;
1211 
1212 	spin_lock_bh(&c->lock);
1213 	if (is_rx(c)) {
1214 		/* Try to cancel pending work */
1215 		rx = c;
1216 		tx = tipc_net(rx->net)->crypto_tx;
1217 		if (cancel_delayed_work(&rx->work)) {
1218 			kfree(rx->skey);
1219 			rx->skey = NULL;
1220 			atomic_xchg(&rx->key_distr, 0);
1221 			tipc_node_put(rx->node);
1222 		}
1223 		/* RX stopping => decrease TX key users if any */
1224 		k = atomic_xchg(&rx->peer_rx_active, 0);
1225 		if (k) {
1226 			tipc_aead_users_dec(tx->aead[k], 0);
1227 			/* Mark the point TX key users changed */
1228 			tx->timer1 = jiffies;
1229 		}
1230 	}
1231 
1232 	c->flags = 0;
1233 	tipc_crypto_key_set_state(c, 0, 0, 0);
1234 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1235 		tipc_crypto_key_detach(c->aead[k], &c->lock);
1236 	atomic64_set(&c->sndnxt, 0);
1237 	spin_unlock_bh(&c->lock);
1238 }
1239 
1240 /**
1241  * tipc_crypto_key_try_align - Align RX keys if possible
1242  * @rx: RX crypto handle
1243  * @new_pending: new pending slot if aligned (= TX key from peer)
1244  *
1245  * Peer has used an unknown key slot, this only happens when peer has left and
1246  * rejoned, or we are newcomer.
1247  * That means, there must be no active key but a pending key at unaligned slot.
1248  * If so, we try to move the pending key to the new slot.
1249  * Note: A potential passive key can exist, it will be shifted correspondingly!
1250  *
1251  * Return: "true" if key is successfully aligned, otherwise "false"
1252  */
tipc_crypto_key_try_align(struct tipc_crypto * rx,u8 new_pending)1253 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1254 {
1255 	struct tipc_aead *tmp1, *tmp2 = NULL;
1256 	struct tipc_key key;
1257 	bool aligned = false;
1258 	u8 new_passive = 0;
1259 	int x;
1260 
1261 	spin_lock(&rx->lock);
1262 	key = rx->key;
1263 	if (key.pending == new_pending) {
1264 		aligned = true;
1265 		goto exit;
1266 	}
1267 	if (key.active)
1268 		goto exit;
1269 	if (!key.pending)
1270 		goto exit;
1271 	if (tipc_aead_users(rx->aead[key.pending]) > 0)
1272 		goto exit;
1273 
1274 	/* Try to "isolate" this pending key first */
1275 	tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1276 	if (!refcount_dec_if_one(&tmp1->refcnt))
1277 		goto exit;
1278 	rcu_assign_pointer(rx->aead[key.pending], NULL);
1279 
1280 	/* Move passive key if any */
1281 	if (key.passive) {
1282 		tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1283 		x = (key.passive - key.pending + new_pending) % KEY_MAX;
1284 		new_passive = (x <= 0) ? x + KEY_MAX : x;
1285 	}
1286 
1287 	/* Re-allocate the key(s) */
1288 	tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1289 	rcu_assign_pointer(rx->aead[new_pending], tmp1);
1290 	if (new_passive)
1291 		rcu_assign_pointer(rx->aead[new_passive], tmp2);
1292 	refcount_set(&tmp1->refcnt, 1);
1293 	aligned = true;
1294 	pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1295 			    new_pending);
1296 
1297 exit:
1298 	spin_unlock(&rx->lock);
1299 	return aligned;
1300 }
1301 
1302 /**
1303  * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1304  * @tx: TX crypto handle
1305  * @rx: RX crypto handle (can be NULL)
1306  * @skb: the message skb which will be decrypted later
1307  * @tx_key: peer TX key id
1308  *
1309  * This function looks up the existing TX keys and pick one which is suitable
1310  * for the message decryption, that must be a cluster key and not used before
1311  * on the same message (i.e. recursive).
1312  *
1313  * Return: the TX AEAD key handle in case of success, otherwise NULL
1314  */
tipc_crypto_key_pick_tx(struct tipc_crypto * tx,struct tipc_crypto * rx,struct sk_buff * skb,u8 tx_key)1315 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1316 						 struct tipc_crypto *rx,
1317 						 struct sk_buff *skb,
1318 						 u8 tx_key)
1319 {
1320 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1321 	struct tipc_aead *aead = NULL;
1322 	struct tipc_key key = tx->key;
1323 	u8 k, i = 0;
1324 
1325 	/* Initialize data if not yet */
1326 	if (!skb_cb->tx_clone_deferred) {
1327 		skb_cb->tx_clone_deferred = 1;
1328 		memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1329 	}
1330 
1331 	skb_cb->tx_clone_ctx.rx = rx;
1332 	if (++skb_cb->tx_clone_ctx.recurs > 2)
1333 		return NULL;
1334 
1335 	/* Pick one TX key */
1336 	spin_lock(&tx->lock);
1337 	if (tx_key == KEY_MASTER) {
1338 		aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1339 		goto done;
1340 	}
1341 	do {
1342 		k = (i == 0) ? key.pending :
1343 			((i == 1) ? key.active : key.passive);
1344 		if (!k)
1345 			continue;
1346 		aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1347 		if (!aead)
1348 			continue;
1349 		if (aead->mode != CLUSTER_KEY ||
1350 		    aead == skb_cb->tx_clone_ctx.last) {
1351 			aead = NULL;
1352 			continue;
1353 		}
1354 		/* Ok, found one cluster key */
1355 		skb_cb->tx_clone_ctx.last = aead;
1356 		WARN_ON(skb->next);
1357 		skb->next = skb_clone(skb, GFP_ATOMIC);
1358 		if (unlikely(!skb->next))
1359 			pr_warn("Failed to clone skb for next round if any\n");
1360 		break;
1361 	} while (++i < 3);
1362 
1363 done:
1364 	if (likely(aead))
1365 		WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1366 	spin_unlock(&tx->lock);
1367 
1368 	return aead;
1369 }
1370 
1371 /**
1372  * tipc_crypto_key_synch: Synch own key data according to peer key status
1373  * @rx: RX crypto handle
1374  * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1375  *
1376  * This function updates the peer node related data as the peer RX active key
1377  * has changed, so the number of TX keys' users on this node are increased and
1378  * decreased correspondingly.
1379  *
1380  * It also considers if peer has no key, then we need to make own master key
1381  * (if any) taking over i.e. starting grace period and also trigger key
1382  * distributing process.
1383  *
1384  * The "per-peer" sndnxt is also reset when the peer key has switched.
1385  */
tipc_crypto_key_synch(struct tipc_crypto * rx,struct sk_buff * skb)1386 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1387 {
1388 	struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1389 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1390 	struct tipc_msg *hdr = buf_msg(skb);
1391 	u32 self = tipc_own_addr(rx->net);
1392 	u8 cur, new;
1393 	unsigned long delay;
1394 
1395 	/* Update RX 'key_master' flag according to peer, also mark "legacy" if
1396 	 * a peer has no master key.
1397 	 */
1398 	rx->key_master = ehdr->master_key;
1399 	if (!rx->key_master)
1400 		tx->legacy_user = 1;
1401 
1402 	/* For later cases, apply only if message is destined to this node */
1403 	if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1404 		return;
1405 
1406 	/* Case 1: Peer has no keys, let's make master key take over */
1407 	if (ehdr->rx_nokey) {
1408 		/* Set or extend grace period */
1409 		tx->timer2 = jiffies;
1410 		/* Schedule key distributing for the peer if not yet */
1411 		if (tx->key.keys &&
1412 		    !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1413 			get_random_bytes(&delay, 2);
1414 			delay %= 5;
1415 			delay = msecs_to_jiffies(500 * ++delay);
1416 			if (queue_delayed_work(tx->wq, &rx->work, delay))
1417 				tipc_node_get(rx->node);
1418 		}
1419 	} else {
1420 		/* Cancel a pending key distributing if any */
1421 		atomic_xchg(&rx->key_distr, 0);
1422 	}
1423 
1424 	/* Case 2: Peer RX active key has changed, let's update own TX users */
1425 	cur = atomic_read(&rx->peer_rx_active);
1426 	new = ehdr->rx_key_active;
1427 	if (tx->key.keys &&
1428 	    cur != new &&
1429 	    atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1430 		if (new)
1431 			tipc_aead_users_inc(tx->aead[new], INT_MAX);
1432 		if (cur)
1433 			tipc_aead_users_dec(tx->aead[cur], 0);
1434 
1435 		atomic64_set(&rx->sndnxt, 0);
1436 		/* Mark the point TX key users changed */
1437 		tx->timer1 = jiffies;
1438 
1439 		pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1440 			 tx->name, cur, new, rx->name);
1441 	}
1442 }
1443 
tipc_crypto_key_revoke(struct net * net,u8 tx_key)1444 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1445 {
1446 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1447 	struct tipc_key key;
1448 
1449 	spin_lock_bh(&tx->lock);
1450 	key = tx->key;
1451 	WARN_ON(!key.active || tx_key != key.active);
1452 
1453 	/* Free the active key */
1454 	tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1455 	tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1456 	spin_unlock_bh(&tx->lock);
1457 
1458 	pr_warn("%s: key is revoked\n", tx->name);
1459 	return -EKEYREVOKED;
1460 }
1461 
tipc_crypto_start(struct tipc_crypto ** crypto,struct net * net,struct tipc_node * node)1462 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1463 		      struct tipc_node *node)
1464 {
1465 	struct tipc_crypto *c;
1466 
1467 	if (*crypto)
1468 		return -EEXIST;
1469 
1470 	/* Allocate crypto */
1471 	c = kzalloc(sizeof(*c), GFP_ATOMIC);
1472 	if (!c)
1473 		return -ENOMEM;
1474 
1475 	/* Allocate workqueue on TX */
1476 	if (!node) {
1477 		c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1478 		if (!c->wq) {
1479 			kfree(c);
1480 			return -ENOMEM;
1481 		}
1482 	}
1483 
1484 	/* Allocate statistic structure */
1485 	c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1486 	if (!c->stats) {
1487 		if (c->wq)
1488 			destroy_workqueue(c->wq);
1489 		kfree_sensitive(c);
1490 		return -ENOMEM;
1491 	}
1492 
1493 	c->flags = 0;
1494 	c->net = net;
1495 	c->node = node;
1496 	get_random_bytes(&c->key_gen, 2);
1497 	tipc_crypto_key_set_state(c, 0, 0, 0);
1498 	atomic_set(&c->key_distr, 0);
1499 	atomic_set(&c->peer_rx_active, 0);
1500 	atomic64_set(&c->sndnxt, 0);
1501 	c->timer1 = jiffies;
1502 	c->timer2 = jiffies;
1503 	c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1504 	spin_lock_init(&c->lock);
1505 	scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1506 		  (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1507 			       tipc_own_id_string(c->net));
1508 
1509 	if (is_rx(c))
1510 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1511 	else
1512 		INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1513 
1514 	*crypto = c;
1515 	return 0;
1516 }
1517 
tipc_crypto_stop(struct tipc_crypto ** crypto)1518 void tipc_crypto_stop(struct tipc_crypto **crypto)
1519 {
1520 	struct tipc_crypto *c = *crypto;
1521 	u8 k;
1522 
1523 	if (!c)
1524 		return;
1525 
1526 	/* Flush any queued works & destroy wq */
1527 	if (is_tx(c)) {
1528 		c->rekeying_intv = 0;
1529 		cancel_delayed_work_sync(&c->work);
1530 		destroy_workqueue(c->wq);
1531 	}
1532 
1533 	/* Release AEAD keys */
1534 	rcu_read_lock();
1535 	for (k = KEY_MIN; k <= KEY_MAX; k++)
1536 		tipc_aead_put(rcu_dereference(c->aead[k]));
1537 	rcu_read_unlock();
1538 	pr_debug("%s: has been stopped\n", c->name);
1539 
1540 	/* Free this crypto statistics */
1541 	free_percpu(c->stats);
1542 
1543 	*crypto = NULL;
1544 	kfree_sensitive(c);
1545 }
1546 
tipc_crypto_timeout(struct tipc_crypto * rx)1547 void tipc_crypto_timeout(struct tipc_crypto *rx)
1548 {
1549 	struct tipc_net *tn = tipc_net(rx->net);
1550 	struct tipc_crypto *tx = tn->crypto_tx;
1551 	struct tipc_key key;
1552 	int cmd;
1553 
1554 	/* TX pending: taking all users & stable -> active */
1555 	spin_lock(&tx->lock);
1556 	key = tx->key;
1557 	if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1558 		goto s1;
1559 	if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1560 		goto s1;
1561 	if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1562 		goto s1;
1563 
1564 	tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1565 	if (key.active)
1566 		tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1567 	this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1568 	pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1569 
1570 s1:
1571 	spin_unlock(&tx->lock);
1572 
1573 	/* RX pending: having user -> active */
1574 	spin_lock(&rx->lock);
1575 	key = rx->key;
1576 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1577 		goto s2;
1578 
1579 	if (key.active)
1580 		key.passive = key.active;
1581 	key.active = key.pending;
1582 	rx->timer2 = jiffies;
1583 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1584 	this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1585 	pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1586 	goto s5;
1587 
1588 s2:
1589 	/* RX pending: not working -> remove */
1590 	if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1591 		goto s3;
1592 
1593 	tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1594 	tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1595 	pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1596 	goto s5;
1597 
1598 s3:
1599 	/* RX active: timed out or no user -> pending */
1600 	if (!key.active)
1601 		goto s4;
1602 	if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1603 	    tipc_aead_users(rx->aead[key.active]) > 0)
1604 		goto s4;
1605 
1606 	if (key.pending)
1607 		key.passive = key.active;
1608 	else
1609 		key.pending = key.active;
1610 	rx->timer2 = jiffies;
1611 	tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1612 	tipc_aead_users_set(rx->aead[key.pending], 0);
1613 	pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1614 	goto s5;
1615 
1616 s4:
1617 	/* RX passive: outdated or not working -> free */
1618 	if (!key.passive)
1619 		goto s5;
1620 	if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1621 	    tipc_aead_users(rx->aead[key.passive]) > -10)
1622 		goto s5;
1623 
1624 	tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1625 	tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1626 	pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1627 
1628 s5:
1629 	spin_unlock(&rx->lock);
1630 
1631 	/* Relax it here, the flag will be set again if it really is, but only
1632 	 * when we are not in grace period for safety!
1633 	 */
1634 	if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1635 		tx->legacy_user = 0;
1636 
1637 	/* Limit max_tfms & do debug commands if needed */
1638 	if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1639 		return;
1640 
1641 	cmd = sysctl_tipc_max_tfms;
1642 	sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1643 	tipc_crypto_do_cmd(rx->net, cmd);
1644 }
1645 
tipc_crypto_clone_msg(struct net * net,struct sk_buff * _skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode,u8 type)1646 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1647 					 struct tipc_bearer *b,
1648 					 struct tipc_media_addr *dst,
1649 					 struct tipc_node *__dnode, u8 type)
1650 {
1651 	struct sk_buff *skb;
1652 
1653 	skb = skb_clone(_skb, GFP_ATOMIC);
1654 	if (skb) {
1655 		TIPC_SKB_CB(skb)->xmit_type = type;
1656 		tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1657 		if (skb)
1658 			b->media->send_msg(net, skb, b, dst);
1659 	}
1660 }
1661 
1662 /**
1663  * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1664  * @net: struct net
1665  * @skb: input/output message skb pointer
1666  * @b: bearer used for xmit later
1667  * @dst: destination media address
1668  * @__dnode: destination node for reference if any
1669  *
1670  * First, build an encryption message header on the top of the message, then
1671  * encrypt the original TIPC message by using the pending, master or active
1672  * key with this preference order.
1673  * If the encryption is successful, the encrypted skb is returned directly or
1674  * via the callback.
1675  * Otherwise, the skb is freed!
1676  *
1677  * Return:
1678  * * 0                   : the encryption has succeeded (or no encryption)
1679  * * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1680  * * -ENOKEK             : the encryption has failed due to no key
1681  * * -EKEYREVOKED        : the encryption has failed due to key revoked
1682  * * -ENOMEM             : the encryption has failed due to no memory
1683  * * < 0                 : the encryption has failed due to other reasons
1684  */
tipc_crypto_xmit(struct net * net,struct sk_buff ** skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)1685 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1686 		     struct tipc_bearer *b, struct tipc_media_addr *dst,
1687 		     struct tipc_node *__dnode)
1688 {
1689 	struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1690 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1691 	struct tipc_crypto_stats __percpu *stats = tx->stats;
1692 	struct tipc_msg *hdr = buf_msg(*skb);
1693 	struct tipc_key key = tx->key;
1694 	struct tipc_aead *aead = NULL;
1695 	u32 user = msg_user(hdr);
1696 	u32 type = msg_type(hdr);
1697 	int rc = -ENOKEY;
1698 	u8 tx_key = 0;
1699 
1700 	/* No encryption? */
1701 	if (!tx->working)
1702 		return 0;
1703 
1704 	/* Pending key if peer has active on it or probing time */
1705 	if (unlikely(key.pending)) {
1706 		tx_key = key.pending;
1707 		if (!tx->key_master && !key.active)
1708 			goto encrypt;
1709 		if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1710 			goto encrypt;
1711 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1712 			pr_debug("%s: probing for key[%d]\n", tx->name,
1713 				 key.pending);
1714 			goto encrypt;
1715 		}
1716 		if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1717 			tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1718 					      SKB_PROBING);
1719 	}
1720 
1721 	/* Master key if this is a *vital* message or in grace period */
1722 	if (tx->key_master) {
1723 		tx_key = KEY_MASTER;
1724 		if (!key.active)
1725 			goto encrypt;
1726 		if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1727 			pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1728 				 user, type);
1729 			goto encrypt;
1730 		}
1731 		if (user == LINK_CONFIG ||
1732 		    (user == LINK_PROTOCOL && type == RESET_MSG) ||
1733 		    (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1734 		    time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1735 			if (__rx && __rx->key_master &&
1736 			    !atomic_read(&__rx->peer_rx_active))
1737 				goto encrypt;
1738 			if (!__rx) {
1739 				if (likely(!tx->legacy_user))
1740 					goto encrypt;
1741 				tipc_crypto_clone_msg(net, *skb, b, dst,
1742 						      __dnode, SKB_GRACING);
1743 			}
1744 		}
1745 	}
1746 
1747 	/* Else, use the active key if any */
1748 	if (likely(key.active)) {
1749 		tx_key = key.active;
1750 		goto encrypt;
1751 	}
1752 
1753 	goto exit;
1754 
1755 encrypt:
1756 	aead = tipc_aead_get(tx->aead[tx_key]);
1757 	if (unlikely(!aead))
1758 		goto exit;
1759 	rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1760 	if (likely(rc > 0))
1761 		rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1762 
1763 exit:
1764 	switch (rc) {
1765 	case 0:
1766 		this_cpu_inc(stats->stat[STAT_OK]);
1767 		break;
1768 	case -EINPROGRESS:
1769 	case -EBUSY:
1770 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1771 		*skb = NULL;
1772 		return rc;
1773 	default:
1774 		this_cpu_inc(stats->stat[STAT_NOK]);
1775 		if (rc == -ENOKEY)
1776 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1777 		else if (rc == -EKEYREVOKED)
1778 			this_cpu_inc(stats->stat[STAT_BADKEYS]);
1779 		kfree_skb(*skb);
1780 		*skb = NULL;
1781 		break;
1782 	}
1783 
1784 	tipc_aead_put(aead);
1785 	return rc;
1786 }
1787 
1788 /**
1789  * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1790  * @net: struct net
1791  * @rx: RX crypto handle
1792  * @skb: input/output message skb pointer
1793  * @b: bearer where the message has been received
1794  *
1795  * If the decryption is successful, the decrypted skb is returned directly or
1796  * as the callback, the encryption header and auth tag will be trimed out
1797  * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1798  * Otherwise, the skb will be freed!
1799  * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1800  * cluster key(s) can be taken for decryption (- recursive).
1801  *
1802  * Return:
1803  * * 0                   : the decryption has successfully completed
1804  * * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1805  * * -ENOKEY             : the decryption has failed due to no key
1806  * * -EBADMSG            : the decryption has failed due to bad message
1807  * * -ENOMEM             : the decryption has failed due to no memory
1808  * * < 0                 : the decryption has failed due to other reasons
1809  */
tipc_crypto_rcv(struct net * net,struct tipc_crypto * rx,struct sk_buff ** skb,struct tipc_bearer * b)1810 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1811 		    struct sk_buff **skb, struct tipc_bearer *b)
1812 {
1813 	struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1814 	struct tipc_crypto_stats __percpu *stats;
1815 	struct tipc_aead *aead = NULL;
1816 	struct tipc_key key;
1817 	int rc = -ENOKEY;
1818 	u8 tx_key, n;
1819 
1820 	tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1821 
1822 	/* New peer?
1823 	 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1824 	 */
1825 	if (unlikely(!rx || tx_key == KEY_MASTER))
1826 		goto pick_tx;
1827 
1828 	/* Pick RX key according to TX key if any */
1829 	key = rx->key;
1830 	if (tx_key == key.active || tx_key == key.pending ||
1831 	    tx_key == key.passive)
1832 		goto decrypt;
1833 
1834 	/* Unknown key, let's try to align RX key(s) */
1835 	if (tipc_crypto_key_try_align(rx, tx_key))
1836 		goto decrypt;
1837 
1838 pick_tx:
1839 	/* No key suitable? Try to pick one from TX... */
1840 	aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1841 	if (aead)
1842 		goto decrypt;
1843 	goto exit;
1844 
1845 decrypt:
1846 	rcu_read_lock();
1847 	if (!aead)
1848 		aead = tipc_aead_get(rx->aead[tx_key]);
1849 	rc = tipc_aead_decrypt(net, aead, *skb, b);
1850 	rcu_read_unlock();
1851 
1852 exit:
1853 	stats = ((rx) ?: tx)->stats;
1854 	switch (rc) {
1855 	case 0:
1856 		this_cpu_inc(stats->stat[STAT_OK]);
1857 		break;
1858 	case -EINPROGRESS:
1859 	case -EBUSY:
1860 		this_cpu_inc(stats->stat[STAT_ASYNC]);
1861 		*skb = NULL;
1862 		return rc;
1863 	default:
1864 		this_cpu_inc(stats->stat[STAT_NOK]);
1865 		if (rc == -ENOKEY) {
1866 			kfree_skb(*skb);
1867 			*skb = NULL;
1868 			if (rx) {
1869 				/* Mark rx->nokey only if we dont have a
1870 				 * pending received session key, nor a newer
1871 				 * one i.e. in the next slot.
1872 				 */
1873 				n = key_next(tx_key);
1874 				rx->nokey = !(rx->skey ||
1875 					      rcu_access_pointer(rx->aead[n]));
1876 				pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1877 						     rx->name, rx->nokey,
1878 						     tx_key, rx->key.keys);
1879 				tipc_node_put(rx->node);
1880 			}
1881 			this_cpu_inc(stats->stat[STAT_NOKEYS]);
1882 			return rc;
1883 		} else if (rc == -EBADMSG) {
1884 			this_cpu_inc(stats->stat[STAT_BADMSGS]);
1885 		}
1886 		break;
1887 	}
1888 
1889 	tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1890 	return rc;
1891 }
1892 
tipc_crypto_rcv_complete(struct net * net,struct tipc_aead * aead,struct tipc_bearer * b,struct sk_buff ** skb,int err)1893 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1894 				     struct tipc_bearer *b,
1895 				     struct sk_buff **skb, int err)
1896 {
1897 	struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1898 	struct tipc_crypto *rx = aead->crypto;
1899 	struct tipc_aead *tmp = NULL;
1900 	struct tipc_ehdr *ehdr;
1901 	struct tipc_node *n;
1902 
1903 	/* Is this completed by TX? */
1904 	if (unlikely(is_tx(aead->crypto))) {
1905 		rx = skb_cb->tx_clone_ctx.rx;
1906 		pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1907 			 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1908 			 (*skb)->next, skb_cb->flags);
1909 		pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1910 			 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1911 			 aead->crypto->aead[1], aead->crypto->aead[2],
1912 			 aead->crypto->aead[3]);
1913 		if (unlikely(err)) {
1914 			if (err == -EBADMSG && (*skb)->next)
1915 				tipc_rcv(net, (*skb)->next, b);
1916 			goto free_skb;
1917 		}
1918 
1919 		if (likely((*skb)->next)) {
1920 			kfree_skb((*skb)->next);
1921 			(*skb)->next = NULL;
1922 		}
1923 		ehdr = (struct tipc_ehdr *)(*skb)->data;
1924 		if (!rx) {
1925 			WARN_ON(ehdr->user != LINK_CONFIG);
1926 			n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1927 					     true);
1928 			rx = tipc_node_crypto_rx(n);
1929 			if (unlikely(!rx))
1930 				goto free_skb;
1931 		}
1932 
1933 		/* Ignore cloning if it was TX master key */
1934 		if (ehdr->tx_key == KEY_MASTER)
1935 			goto rcv;
1936 		if (tipc_aead_clone(&tmp, aead) < 0)
1937 			goto rcv;
1938 		WARN_ON(!refcount_inc_not_zero(&tmp->refcnt));
1939 		if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1940 			tipc_aead_free(&tmp->rcu);
1941 			goto rcv;
1942 		}
1943 		tipc_aead_put(aead);
1944 		aead = tmp;
1945 	}
1946 
1947 	if (unlikely(err)) {
1948 		tipc_aead_users_dec((struct tipc_aead __force __rcu *)aead, INT_MIN);
1949 		goto free_skb;
1950 	}
1951 
1952 	/* Set the RX key's user */
1953 	tipc_aead_users_set((struct tipc_aead __force __rcu *)aead, 1);
1954 
1955 	/* Mark this point, RX works */
1956 	rx->timer1 = jiffies;
1957 
1958 rcv:
1959 	/* Remove ehdr & auth. tag prior to tipc_rcv() */
1960 	ehdr = (struct tipc_ehdr *)(*skb)->data;
1961 
1962 	/* Mark this point, RX passive still works */
1963 	if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1964 		rx->timer2 = jiffies;
1965 
1966 	skb_reset_network_header(*skb);
1967 	skb_pull(*skb, tipc_ehdr_size(ehdr));
1968 	if (pskb_trim(*skb, (*skb)->len - aead->authsize))
1969 		goto free_skb;
1970 
1971 	/* Validate TIPCv2 message */
1972 	if (unlikely(!tipc_msg_validate(skb))) {
1973 		pr_err_ratelimited("Packet dropped after decryption!\n");
1974 		goto free_skb;
1975 	}
1976 
1977 	/* Ok, everything's fine, try to synch own keys according to peers' */
1978 	tipc_crypto_key_synch(rx, *skb);
1979 
1980 	/* Re-fetch skb cb as skb might be changed in tipc_msg_validate */
1981 	skb_cb = TIPC_SKB_CB(*skb);
1982 
1983 	/* Mark skb decrypted */
1984 	skb_cb->decrypted = 1;
1985 
1986 	/* Clear clone cxt if any */
1987 	if (likely(!skb_cb->tx_clone_deferred))
1988 		goto exit;
1989 	skb_cb->tx_clone_deferred = 0;
1990 	memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1991 	goto exit;
1992 
1993 free_skb:
1994 	kfree_skb(*skb);
1995 	*skb = NULL;
1996 
1997 exit:
1998 	tipc_aead_put(aead);
1999 	if (rx)
2000 		tipc_node_put(rx->node);
2001 }
2002 
tipc_crypto_do_cmd(struct net * net,int cmd)2003 static void tipc_crypto_do_cmd(struct net *net, int cmd)
2004 {
2005 	struct tipc_net *tn = tipc_net(net);
2006 	struct tipc_crypto *tx = tn->crypto_tx, *rx;
2007 	struct list_head *p;
2008 	unsigned int stat;
2009 	int i, j, cpu;
2010 	char buf[200];
2011 
2012 	/* Currently only one command is supported */
2013 	switch (cmd) {
2014 	case 0xfff1:
2015 		goto print_stats;
2016 	default:
2017 		return;
2018 	}
2019 
2020 print_stats:
2021 	/* Print a header */
2022 	pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2023 
2024 	/* Print key status */
2025 	pr_info("Key status:\n");
2026 	pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2027 		tipc_crypto_key_dump(tx, buf));
2028 
2029 	rcu_read_lock();
2030 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2031 		rx = tipc_node_crypto_rx_by_list(p);
2032 		pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2033 			tipc_crypto_key_dump(rx, buf));
2034 	}
2035 	rcu_read_unlock();
2036 
2037 	/* Print crypto statistics */
2038 	for (i = 0, j = 0; i < MAX_STATS; i++)
2039 		j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2040 	pr_info("Counter     %s", buf);
2041 
2042 	memset(buf, '-', 115);
2043 	buf[115] = '\0';
2044 	pr_info("%s\n", buf);
2045 
2046 	j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2047 	for_each_possible_cpu(cpu) {
2048 		for (i = 0; i < MAX_STATS; i++) {
2049 			stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2050 			j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2051 		}
2052 		pr_info("%s", buf);
2053 		j = scnprintf(buf, 200, "%12s", " ");
2054 	}
2055 
2056 	rcu_read_lock();
2057 	for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2058 		rx = tipc_node_crypto_rx_by_list(p);
2059 		j = scnprintf(buf, 200, "RX(%7.7s) ",
2060 			      tipc_node_get_id_str(rx->node));
2061 		for_each_possible_cpu(cpu) {
2062 			for (i = 0; i < MAX_STATS; i++) {
2063 				stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2064 				j += scnprintf(buf + j, 200 - j, "|%11d ",
2065 					       stat);
2066 			}
2067 			pr_info("%s", buf);
2068 			j = scnprintf(buf, 200, "%12s", " ");
2069 		}
2070 	}
2071 	rcu_read_unlock();
2072 
2073 	pr_info("\n======================== Done ========================\n");
2074 }
2075 
tipc_crypto_key_dump(struct tipc_crypto * c,char * buf)2076 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2077 {
2078 	struct tipc_key key = c->key;
2079 	struct tipc_aead *aead;
2080 	int k, i = 0;
2081 	char *s;
2082 
2083 	for (k = KEY_MIN; k <= KEY_MAX; k++) {
2084 		if (k == KEY_MASTER) {
2085 			if (is_rx(c))
2086 				continue;
2087 			if (time_before(jiffies,
2088 					c->timer2 + TIPC_TX_GRACE_PERIOD))
2089 				s = "ACT";
2090 			else
2091 				s = "PAS";
2092 		} else {
2093 			if (k == key.passive)
2094 				s = "PAS";
2095 			else if (k == key.active)
2096 				s = "ACT";
2097 			else if (k == key.pending)
2098 				s = "PEN";
2099 			else
2100 				s = "-";
2101 		}
2102 		i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2103 
2104 		rcu_read_lock();
2105 		aead = rcu_dereference(c->aead[k]);
2106 		if (aead)
2107 			i += scnprintf(buf + i, 200 - i,
2108 				       "{\"0x...%s\", \"%s\"}/%d:%d",
2109 				       aead->hint,
2110 				       (aead->mode == CLUSTER_KEY) ? "c" : "p",
2111 				       atomic_read(&aead->users),
2112 				       refcount_read(&aead->refcnt));
2113 		rcu_read_unlock();
2114 		i += scnprintf(buf + i, 200 - i, "\n");
2115 	}
2116 
2117 	if (is_rx(c))
2118 		i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2119 			       atomic_read(&c->peer_rx_active));
2120 
2121 	return buf;
2122 }
2123 
tipc_key_change_dump(struct tipc_key old,struct tipc_key new,char * buf)2124 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2125 				  char *buf)
2126 {
2127 	struct tipc_key *key = &old;
2128 	int k, i = 0;
2129 	char *s;
2130 
2131 	/* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2132 again:
2133 	i += scnprintf(buf + i, 32 - i, "[");
2134 	for (k = KEY_1; k <= KEY_3; k++) {
2135 		if (k == key->passive)
2136 			s = "pas";
2137 		else if (k == key->active)
2138 			s = "act";
2139 		else if (k == key->pending)
2140 			s = "pen";
2141 		else
2142 			s = "-";
2143 		i += scnprintf(buf + i, 32 - i,
2144 			       (k != KEY_3) ? "%s " : "%s", s);
2145 	}
2146 	if (key != &new) {
2147 		i += scnprintf(buf + i, 32 - i, "] -> ");
2148 		key = &new;
2149 		goto again;
2150 	}
2151 	i += scnprintf(buf + i, 32 - i, "]");
2152 	return buf;
2153 }
2154 
2155 /**
2156  * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2157  * @net: the struct net
2158  * @skb: the receiving message buffer
2159  */
tipc_crypto_msg_rcv(struct net * net,struct sk_buff * skb)2160 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2161 {
2162 	struct tipc_crypto *rx;
2163 	struct tipc_msg *hdr;
2164 
2165 	if (unlikely(skb_linearize(skb)))
2166 		goto exit;
2167 
2168 	hdr = buf_msg(skb);
2169 	rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2170 	if (unlikely(!rx))
2171 		goto exit;
2172 
2173 	switch (msg_type(hdr)) {
2174 	case KEY_DISTR_MSG:
2175 		if (tipc_crypto_key_rcv(rx, hdr))
2176 			goto exit;
2177 		break;
2178 	default:
2179 		break;
2180 	}
2181 
2182 	tipc_node_put(rx->node);
2183 
2184 exit:
2185 	kfree_skb(skb);
2186 }
2187 
2188 /**
2189  * tipc_crypto_key_distr - Distribute a TX key
2190  * @tx: the TX crypto
2191  * @key: the key's index
2192  * @dest: the destination tipc node, = NULL if distributing to all nodes
2193  *
2194  * Return: 0 in case of success, otherwise < 0
2195  */
tipc_crypto_key_distr(struct tipc_crypto * tx,u8 key,struct tipc_node * dest)2196 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2197 			  struct tipc_node *dest)
2198 {
2199 	struct tipc_aead *aead;
2200 	u32 dnode = tipc_node_get_addr(dest);
2201 	int rc = -ENOKEY;
2202 
2203 	if (!sysctl_tipc_key_exchange_enabled)
2204 		return 0;
2205 
2206 	if (key) {
2207 		rcu_read_lock();
2208 		aead = tipc_aead_get(tx->aead[key]);
2209 		if (likely(aead)) {
2210 			rc = tipc_crypto_key_xmit(tx->net, aead->key,
2211 						  aead->gen, aead->mode,
2212 						  dnode);
2213 			tipc_aead_put(aead);
2214 		}
2215 		rcu_read_unlock();
2216 	}
2217 
2218 	return rc;
2219 }
2220 
2221 /**
2222  * tipc_crypto_key_xmit - Send a session key
2223  * @net: the struct net
2224  * @skey: the session key to be sent
2225  * @gen: the key's generation
2226  * @mode: the key's mode
2227  * @dnode: the destination node address, = 0 if broadcasting to all nodes
2228  *
2229  * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2230  * as its data section, then xmit-ed through the uc/bc link.
2231  *
2232  * Return: 0 in case of success, otherwise < 0
2233  */
tipc_crypto_key_xmit(struct net * net,struct tipc_aead_key * skey,u16 gen,u8 mode,u32 dnode)2234 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2235 				u16 gen, u8 mode, u32 dnode)
2236 {
2237 	struct sk_buff_head pkts;
2238 	struct tipc_msg *hdr;
2239 	struct sk_buff *skb;
2240 	u16 size, cong_link_cnt;
2241 	u8 *data;
2242 	int rc;
2243 
2244 	size = tipc_aead_key_size(skey);
2245 	skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2246 	if (!skb)
2247 		return -ENOMEM;
2248 
2249 	hdr = buf_msg(skb);
2250 	tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2251 		      INT_H_SIZE, dnode);
2252 	msg_set_size(hdr, INT_H_SIZE + size);
2253 	msg_set_key_gen(hdr, gen);
2254 	msg_set_key_mode(hdr, mode);
2255 
2256 	data = msg_data(hdr);
2257 	*((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2258 	memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2259 	memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2260 	       skey->keylen);
2261 
2262 	__skb_queue_head_init(&pkts);
2263 	__skb_queue_tail(&pkts, skb);
2264 	if (dnode)
2265 		rc = tipc_node_xmit(net, &pkts, dnode, 0);
2266 	else
2267 		rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2268 
2269 	return rc;
2270 }
2271 
2272 /**
2273  * tipc_crypto_key_rcv - Receive a session key
2274  * @rx: the RX crypto
2275  * @hdr: the TIPC v2 message incl. the receiving session key in its data
2276  *
2277  * This function retrieves the session key in the message from peer, then
2278  * schedules a RX work to attach the key to the corresponding RX crypto.
2279  *
2280  * Return: "true" if the key has been scheduled for attaching, otherwise
2281  * "false".
2282  */
tipc_crypto_key_rcv(struct tipc_crypto * rx,struct tipc_msg * hdr)2283 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2284 {
2285 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2286 	struct tipc_aead_key *skey = NULL;
2287 	u16 key_gen = msg_key_gen(hdr);
2288 	u32 size = msg_data_sz(hdr);
2289 	u8 *data = msg_data(hdr);
2290 	unsigned int keylen;
2291 
2292 	/* Verify whether the size can exist in the packet */
2293 	if (unlikely(size < sizeof(struct tipc_aead_key) + TIPC_AEAD_KEYLEN_MIN)) {
2294 		pr_debug("%s: message data size is too small\n", rx->name);
2295 		goto exit;
2296 	}
2297 
2298 	keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2299 
2300 	/* Verify the supplied size values */
2301 	if (unlikely(keylen > TIPC_AEAD_KEY_SIZE_MAX ||
2302 		     size != keylen + sizeof(struct tipc_aead_key))) {
2303 		pr_debug("%s: invalid MSG_CRYPTO key size\n", rx->name);
2304 		goto exit;
2305 	}
2306 
2307 	spin_lock(&rx->lock);
2308 	if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2309 		pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2310 		       rx->skey, key_gen, rx->key_gen);
2311 		goto exit_unlock;
2312 	}
2313 
2314 	/* Allocate memory for the key */
2315 	skey = kmalloc(size, GFP_ATOMIC);
2316 	if (unlikely(!skey)) {
2317 		pr_err("%s: unable to allocate memory for skey\n", rx->name);
2318 		goto exit_unlock;
2319 	}
2320 
2321 	/* Copy key from msg data */
2322 	skey->keylen = keylen;
2323 	memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2324 	memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2325 	       skey->keylen);
2326 
2327 	rx->key_gen = key_gen;
2328 	rx->skey_mode = msg_key_mode(hdr);
2329 	rx->skey = skey;
2330 	rx->nokey = 0;
2331 	mb(); /* for nokey flag */
2332 
2333 exit_unlock:
2334 	spin_unlock(&rx->lock);
2335 
2336 exit:
2337 	/* Schedule the key attaching on this crypto */
2338 	if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2339 		return true;
2340 
2341 	return false;
2342 }
2343 
2344 /**
2345  * tipc_crypto_work_rx - Scheduled RX works handler
2346  * @work: the struct RX work
2347  *
2348  * The function processes the previous scheduled works i.e. distributing TX key
2349  * or attaching a received session key on RX crypto.
2350  */
tipc_crypto_work_rx(struct work_struct * work)2351 static void tipc_crypto_work_rx(struct work_struct *work)
2352 {
2353 	struct delayed_work *dwork = to_delayed_work(work);
2354 	struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2355 	struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2356 	unsigned long delay = msecs_to_jiffies(5000);
2357 	bool resched = false;
2358 	u8 key;
2359 	int rc;
2360 
2361 	/* Case 1: Distribute TX key to peer if scheduled */
2362 	if (atomic_cmpxchg(&rx->key_distr,
2363 			   KEY_DISTR_SCHED,
2364 			   KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2365 		/* Always pick the newest one for distributing */
2366 		key = tx->key.pending ?: tx->key.active;
2367 		rc = tipc_crypto_key_distr(tx, key, rx->node);
2368 		if (unlikely(rc))
2369 			pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2370 				tx->name, key, tipc_node_get_id_str(rx->node),
2371 				rc);
2372 
2373 		/* Sched for key_distr releasing */
2374 		resched = true;
2375 	} else {
2376 		atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2377 	}
2378 
2379 	/* Case 2: Attach a pending received session key from peer if any */
2380 	if (rx->skey) {
2381 		rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2382 		if (unlikely(rc < 0))
2383 			pr_warn("%s: unable to attach received skey, err %d\n",
2384 				rx->name, rc);
2385 		switch (rc) {
2386 		case -EBUSY:
2387 		case -ENOMEM:
2388 			/* Resched the key attaching */
2389 			resched = true;
2390 			break;
2391 		default:
2392 			synchronize_rcu();
2393 			kfree(rx->skey);
2394 			rx->skey = NULL;
2395 			break;
2396 		}
2397 	}
2398 
2399 	if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2400 		return;
2401 
2402 	tipc_node_put(rx->node);
2403 }
2404 
2405 /**
2406  * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2407  * @tx: TX crypto
2408  * @changed: if the rekeying needs to be rescheduled with new interval
2409  * @new_intv: new rekeying interval (when "changed" = true)
2410  */
tipc_crypto_rekeying_sched(struct tipc_crypto * tx,bool changed,u32 new_intv)2411 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2412 				u32 new_intv)
2413 {
2414 	unsigned long delay;
2415 	bool now = false;
2416 
2417 	if (changed) {
2418 		if (new_intv == TIPC_REKEYING_NOW)
2419 			now = true;
2420 		else
2421 			tx->rekeying_intv = new_intv;
2422 		cancel_delayed_work_sync(&tx->work);
2423 	}
2424 
2425 	if (tx->rekeying_intv || now) {
2426 		delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2427 		queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2428 	}
2429 }
2430 
2431 /**
2432  * tipc_crypto_work_tx - Scheduled TX works handler
2433  * @work: the struct TX work
2434  *
2435  * The function processes the previous scheduled work, i.e. key rekeying, by
2436  * generating a new session key based on current one, then attaching it to the
2437  * TX crypto and finally distributing it to peers. It also re-schedules the
2438  * rekeying if needed.
2439  */
tipc_crypto_work_tx(struct work_struct * work)2440 static void tipc_crypto_work_tx(struct work_struct *work)
2441 {
2442 	struct delayed_work *dwork = to_delayed_work(work);
2443 	struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2444 	struct tipc_aead_key *skey = NULL;
2445 	struct tipc_key key = tx->key;
2446 	struct tipc_aead *aead;
2447 	int rc = -ENOMEM;
2448 
2449 	if (unlikely(key.pending))
2450 		goto resched;
2451 
2452 	/* Take current key as a template */
2453 	rcu_read_lock();
2454 	aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2455 	if (unlikely(!aead)) {
2456 		rcu_read_unlock();
2457 		/* At least one key should exist for securing */
2458 		return;
2459 	}
2460 
2461 	/* Lets duplicate it first */
2462 	skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2463 	rcu_read_unlock();
2464 
2465 	/* Now, generate new key, initiate & distribute it */
2466 	if (likely(skey)) {
2467 		rc = tipc_aead_key_generate(skey) ?:
2468 		     tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2469 		if (likely(rc > 0))
2470 			rc = tipc_crypto_key_distr(tx, rc, NULL);
2471 		kfree_sensitive(skey);
2472 	}
2473 
2474 	if (unlikely(rc))
2475 		pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2476 
2477 resched:
2478 	/* Re-schedule rekeying if any */
2479 	tipc_crypto_rekeying_sched(tx, false, 0);
2480 }
2481