1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-ops.h"
32 #include "accel/tcg/iommu.h"
33 #endif /* CONFIG_TCG */
34
35 #include "exec/cputlb.h"
36 #include "exec/page-protection.h"
37 #include "exec/target_page.h"
38 #include "exec/translation-block.h"
39 #include "hw/qdev-core.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/boards.h"
42 #include "system/xen.h"
43 #include "system/kvm.h"
44 #include "system/tcg.h"
45 #include "system/qtest.h"
46 #include "qemu/timer.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qemu/qemu-print.h"
50 #include "qemu/log.h"
51 #include "qemu/memalign.h"
52 #include "qemu/memfd.h"
53 #include "system/memory.h"
54 #include "system/ioport.h"
55 #include "system/dma.h"
56 #include "system/hostmem.h"
57 #include "system/hw_accel.h"
58 #include "system/xen-mapcache.h"
59 #include "trace.h"
60
61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
62 #include <linux/falloc.h>
63 #endif
64
65 #include "qemu/rcu_queue.h"
66 #include "qemu/main-loop.h"
67 #include "system/replay.h"
68
69 #include "system/ram_addr.h"
70
71 #include "qemu/pmem.h"
72
73 #include "qapi/qapi-types-migration.h"
74 #include "migration/blocker.h"
75 #include "migration/cpr.h"
76 #include "migration/options.h"
77 #include "migration/vmstate.h"
78
79 #include "qemu/range.h"
80 #ifndef _WIN32
81 #include "qemu/mmap-alloc.h"
82 #endif
83
84 #include "monitor/monitor.h"
85
86 #ifdef CONFIG_LIBDAXCTL
87 #include <daxctl/libdaxctl.h>
88 #endif
89
90 #include "memory-internal.h"
91
92 //#define DEBUG_SUBPAGE
93
94 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
95 * are protected by the ramlist lock.
96 */
97 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
98
99 static MemoryRegion *system_memory;
100 static MemoryRegion *system_io;
101
102 AddressSpace address_space_io;
103 AddressSpace address_space_memory;
104
105 static MemoryRegion io_mem_unassigned;
106
107 typedef struct PhysPageEntry PhysPageEntry;
108
109 struct PhysPageEntry {
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111 uint32_t skip : 6;
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113 uint32_t ptr : 26;
114 };
115
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
120
121 #define P_L2_BITS 9
122 #define P_L2_SIZE (1 << P_L2_BITS)
123
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125
126 typedef PhysPageEntry Node[P_L2_SIZE];
127
128 typedef struct PhysPageMap {
129 struct rcu_head rcu;
130
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137 } PhysPageMap;
138
139 struct AddressSpaceDispatch {
140 MemoryRegionSection *mru_section;
141 /* This is a multi-level map on the physical address space.
142 * The bottom level has pointers to MemoryRegionSections.
143 */
144 PhysPageEntry phys_map;
145 PhysPageMap map;
146 };
147
148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149 typedef struct subpage_t {
150 MemoryRegion iomem;
151 FlatView *fv;
152 hwaddr base;
153 uint16_t sub_section[];
154 } subpage_t;
155
156 #define PHYS_SECTION_UNASSIGNED 0
157
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_log_global_after_sync(MemoryListener *listener);
161 static void tcg_commit(MemoryListener *listener);
162 static bool ram_is_cpr_compatible(RAMBlock *rb);
163
164 /**
165 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
166 * @cpu: the CPU whose AddressSpace this is
167 * @as: the AddressSpace itself
168 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
169 * @tcg_as_listener: listener for tracking changes to the AddressSpace
170 */
171 typedef struct CPUAddressSpace {
172 CPUState *cpu;
173 AddressSpace *as;
174 struct AddressSpaceDispatch *memory_dispatch;
175 MemoryListener tcg_as_listener;
176 } CPUAddressSpace;
177
178 struct DirtyBitmapSnapshot {
179 ram_addr_t start;
180 ram_addr_t end;
181 unsigned long dirty[];
182 };
183
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186 static unsigned alloc_hint = 16;
187 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
188 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190 alloc_hint = map->nodes_nb_alloc;
191 }
192 }
193
phys_map_node_alloc(PhysPageMap * map,bool leaf)194 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
195 {
196 unsigned i;
197 uint32_t ret;
198 PhysPageEntry e;
199 PhysPageEntry *p;
200
201 ret = map->nodes_nb++;
202 p = map->nodes[ret];
203 assert(ret != PHYS_MAP_NODE_NIL);
204 assert(ret != map->nodes_nb_alloc);
205
206 e.skip = leaf ? 0 : 1;
207 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
208 for (i = 0; i < P_L2_SIZE; ++i) {
209 memcpy(&p[i], &e, sizeof(e));
210 }
211 return ret;
212 }
213
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)214 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
215 hwaddr *index, uint64_t *nb, uint16_t leaf,
216 int level)
217 {
218 PhysPageEntry *p;
219 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
220
221 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
222 lp->ptr = phys_map_node_alloc(map, level == 0);
223 }
224 p = map->nodes[lp->ptr];
225 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
226
227 while (*nb && lp < &p[P_L2_SIZE]) {
228 if ((*index & (step - 1)) == 0 && *nb >= step) {
229 lp->skip = 0;
230 lp->ptr = leaf;
231 *index += step;
232 *nb -= step;
233 } else {
234 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
235 }
236 ++lp;
237 }
238 }
239
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)240 static void phys_page_set(AddressSpaceDispatch *d,
241 hwaddr index, uint64_t nb,
242 uint16_t leaf)
243 {
244 /* Wildly overreserve - it doesn't matter much. */
245 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
246
247 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 }
249
250 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
251 * and update our entry so we can skip it and go directly to the destination.
252 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)253 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
254 {
255 unsigned valid_ptr = P_L2_SIZE;
256 int valid = 0;
257 PhysPageEntry *p;
258 int i;
259
260 if (lp->ptr == PHYS_MAP_NODE_NIL) {
261 return;
262 }
263
264 p = nodes[lp->ptr];
265 for (i = 0; i < P_L2_SIZE; i++) {
266 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
267 continue;
268 }
269
270 valid_ptr = i;
271 valid++;
272 if (p[i].skip) {
273 phys_page_compact(&p[i], nodes);
274 }
275 }
276
277 /* We can only compress if there's only one child. */
278 if (valid != 1) {
279 return;
280 }
281
282 assert(valid_ptr < P_L2_SIZE);
283
284 /* Don't compress if it won't fit in the # of bits we have. */
285 if (P_L2_LEVELS >= (1 << 6) &&
286 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
287 return;
288 }
289
290 lp->ptr = p[valid_ptr].ptr;
291 if (!p[valid_ptr].skip) {
292 /* If our only child is a leaf, make this a leaf. */
293 /* By design, we should have made this node a leaf to begin with so we
294 * should never reach here.
295 * But since it's so simple to handle this, let's do it just in case we
296 * change this rule.
297 */
298 lp->skip = 0;
299 } else {
300 lp->skip += p[valid_ptr].skip;
301 }
302 }
303
address_space_dispatch_compact(AddressSpaceDispatch * d)304 void address_space_dispatch_compact(AddressSpaceDispatch *d)
305 {
306 if (d->phys_map.skip) {
307 phys_page_compact(&d->phys_map, d->map.nodes);
308 }
309 }
310
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)311 static inline bool section_covers_addr(const MemoryRegionSection *section,
312 hwaddr addr)
313 {
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
316 */
317 return int128_gethi(section->size) ||
318 range_covers_byte(section->offset_within_address_space,
319 int128_getlo(section->size), addr);
320 }
321
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)322 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
323 {
324 PhysPageEntry lp = d->phys_map, *p;
325 Node *nodes = d->map.nodes;
326 MemoryRegionSection *sections = d->map.sections;
327 hwaddr index = addr >> TARGET_PAGE_BITS;
328 int i;
329
330 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
331 if (lp.ptr == PHYS_MAP_NODE_NIL) {
332 return §ions[PHYS_SECTION_UNASSIGNED];
333 }
334 p = nodes[lp.ptr];
335 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
336 }
337
338 if (section_covers_addr(§ions[lp.ptr], addr)) {
339 return §ions[lp.ptr];
340 } else {
341 return §ions[PHYS_SECTION_UNASSIGNED];
342 }
343 }
344
345 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)346 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
347 hwaddr addr,
348 bool resolve_subpage)
349 {
350 MemoryRegionSection *section = qatomic_read(&d->mru_section);
351 subpage_t *subpage;
352
353 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
354 !section_covers_addr(section, addr)) {
355 section = phys_page_find(d, addr);
356 qatomic_set(&d->mru_section, section);
357 }
358 if (resolve_subpage && section->mr->subpage) {
359 subpage = container_of(section->mr, subpage_t, iomem);
360 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
361 }
362 return section;
363 }
364
365 /* Called from RCU critical section */
366 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)367 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
368 hwaddr *plen, bool resolve_subpage)
369 {
370 MemoryRegionSection *section;
371 MemoryRegion *mr;
372 Int128 diff;
373
374 section = address_space_lookup_region(d, addr, resolve_subpage);
375 /* Compute offset within MemoryRegionSection */
376 addr -= section->offset_within_address_space;
377
378 /* Compute offset within MemoryRegion */
379 *xlat = addr + section->offset_within_region;
380
381 mr = section->mr;
382
383 /* MMIO registers can be expected to perform full-width accesses based only
384 * on their address, without considering adjacent registers that could
385 * decode to completely different MemoryRegions. When such registers
386 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
387 * regions overlap wildly. For this reason we cannot clamp the accesses
388 * here.
389 *
390 * If the length is small (as is the case for address_space_ldl/stl),
391 * everything works fine. If the incoming length is large, however,
392 * the caller really has to do the clamping through memory_access_size.
393 */
394 if (memory_region_is_ram(mr)) {
395 diff = int128_sub(section->size, int128_make64(addr));
396 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
397 }
398 return section;
399 }
400
401 /**
402 * address_space_translate_iommu - translate an address through an IOMMU
403 * memory region and then through the target address space.
404 *
405 * @iommu_mr: the IOMMU memory region that we start the translation from
406 * @addr: the address to be translated through the MMU
407 * @xlat: the translated address offset within the destination memory region.
408 * It cannot be %NULL.
409 * @plen_out: valid read/write length of the translated address. It
410 * cannot be %NULL.
411 * @page_mask_out: page mask for the translated address. This
412 * should only be meaningful for IOMMU translated
413 * addresses, since there may be huge pages that this bit
414 * would tell. It can be %NULL if we don't care about it.
415 * @is_write: whether the translation operation is for write
416 * @is_mmio: whether this can be MMIO, set true if it can
417 * @target_as: the address space targeted by the IOMMU
418 * @attrs: transaction attributes
419 *
420 * This function is called from RCU critical section. It is the common
421 * part of flatview_do_translate and address_space_translate_cached.
422 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)423 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
424 hwaddr *xlat,
425 hwaddr *plen_out,
426 hwaddr *page_mask_out,
427 bool is_write,
428 bool is_mmio,
429 AddressSpace **target_as,
430 MemTxAttrs attrs)
431 {
432 MemoryRegionSection *section;
433 hwaddr page_mask = (hwaddr)-1;
434
435 do {
436 hwaddr addr = *xlat;
437 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
438 int iommu_idx = 0;
439 IOMMUTLBEntry iotlb;
440
441 if (imrc->attrs_to_index) {
442 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
443 }
444
445 iotlb = imrc->translate(iommu_mr, addr, is_write ?
446 IOMMU_WO : IOMMU_RO, iommu_idx);
447
448 if (!(iotlb.perm & (1 << is_write))) {
449 goto unassigned;
450 }
451
452 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
453 | (addr & iotlb.addr_mask));
454 page_mask &= iotlb.addr_mask;
455 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
456 *target_as = iotlb.target_as;
457
458 section = address_space_translate_internal(
459 address_space_to_dispatch(iotlb.target_as), addr, xlat,
460 plen_out, is_mmio);
461
462 iommu_mr = memory_region_get_iommu(section->mr);
463 } while (unlikely(iommu_mr));
464
465 if (page_mask_out) {
466 *page_mask_out = page_mask;
467 }
468 return *section;
469
470 unassigned:
471 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
472 }
473
474 /**
475 * flatview_do_translate - translate an address in FlatView
476 *
477 * @fv: the flat view that we want to translate on
478 * @addr: the address to be translated in above address space
479 * @xlat: the translated address offset within memory region. It
480 * cannot be @NULL.
481 * @plen_out: valid read/write length of the translated address. It
482 * can be @NULL when we don't care about it.
483 * @page_mask_out: page mask for the translated address. This
484 * should only be meaningful for IOMMU translated
485 * addresses, since there may be huge pages that this bit
486 * would tell. It can be @NULL if we don't care about it.
487 * @is_write: whether the translation operation is for write
488 * @is_mmio: whether this can be MMIO, set true if it can
489 * @target_as: the address space targeted by the IOMMU
490 * @attrs: memory transaction attributes
491 *
492 * This function is called from RCU critical section
493 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)494 static MemoryRegionSection flatview_do_translate(FlatView *fv,
495 hwaddr addr,
496 hwaddr *xlat,
497 hwaddr *plen_out,
498 hwaddr *page_mask_out,
499 bool is_write,
500 bool is_mmio,
501 AddressSpace **target_as,
502 MemTxAttrs attrs)
503 {
504 MemoryRegionSection *section;
505 IOMMUMemoryRegion *iommu_mr;
506 hwaddr plen = (hwaddr)(-1);
507
508 if (!plen_out) {
509 plen_out = &plen;
510 }
511
512 section = address_space_translate_internal(
513 flatview_to_dispatch(fv), addr, xlat,
514 plen_out, is_mmio);
515
516 iommu_mr = memory_region_get_iommu(section->mr);
517 if (unlikely(iommu_mr)) {
518 return address_space_translate_iommu(iommu_mr, xlat,
519 plen_out, page_mask_out,
520 is_write, is_mmio,
521 target_as, attrs);
522 }
523 if (page_mask_out) {
524 /* Not behind an IOMMU, use default page size. */
525 *page_mask_out = ~TARGET_PAGE_MASK;
526 }
527
528 return *section;
529 }
530
531 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)532 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
533 bool is_write, MemTxAttrs attrs)
534 {
535 MemoryRegionSection section;
536 hwaddr xlat, page_mask;
537
538 /*
539 * This can never be MMIO, and we don't really care about plen,
540 * but page mask.
541 */
542 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
543 NULL, &page_mask, is_write, false, &as,
544 attrs);
545
546 /* Illegal translation */
547 if (section.mr == &io_mem_unassigned) {
548 goto iotlb_fail;
549 }
550
551 /* Convert memory region offset into address space offset */
552 xlat += section.offset_within_address_space -
553 section.offset_within_region;
554
555 return (IOMMUTLBEntry) {
556 .target_as = as,
557 .iova = addr & ~page_mask,
558 .translated_addr = xlat & ~page_mask,
559 .addr_mask = page_mask,
560 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
561 .perm = IOMMU_RW,
562 };
563
564 iotlb_fail:
565 return (IOMMUTLBEntry) {0};
566 }
567
568 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)569 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
570 hwaddr *plen, bool is_write,
571 MemTxAttrs attrs)
572 {
573 MemoryRegion *mr;
574 MemoryRegionSection section;
575 AddressSpace *as = NULL;
576
577 /* This can be MMIO, so setup MMIO bit. */
578 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
579 is_write, true, &as, attrs);
580 mr = section.mr;
581
582 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) {
583 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
584 *plen = MIN(page, *plen);
585 }
586
587 return mr;
588 }
589
590 #ifdef CONFIG_TCG
591
592 typedef struct TCGIOMMUNotifier {
593 IOMMUNotifier n;
594 MemoryRegion *mr;
595 CPUState *cpu;
596 int iommu_idx;
597 bool active;
598 } TCGIOMMUNotifier;
599
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)600 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
601 {
602 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
603
604 if (!notifier->active) {
605 return;
606 }
607 tlb_flush(notifier->cpu);
608 notifier->active = false;
609 /* We leave the notifier struct on the list to avoid reallocating it later.
610 * Generally the number of IOMMUs a CPU deals with will be small.
611 * In any case we can't unregister the iommu notifier from a notify
612 * callback.
613 */
614 }
615
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)616 static void tcg_register_iommu_notifier(CPUState *cpu,
617 IOMMUMemoryRegion *iommu_mr,
618 int iommu_idx)
619 {
620 /* Make sure this CPU has an IOMMU notifier registered for this
621 * IOMMU/IOMMU index combination, so that we can flush its TLB
622 * when the IOMMU tells us the mappings we've cached have changed.
623 */
624 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
625 TCGIOMMUNotifier *notifier = NULL;
626 int i;
627
628 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
629 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
630 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
631 break;
632 }
633 }
634 if (i == cpu->iommu_notifiers->len) {
635 /* Not found, add a new entry at the end of the array */
636 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
637 notifier = g_new0(TCGIOMMUNotifier, 1);
638 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
639
640 notifier->mr = mr;
641 notifier->iommu_idx = iommu_idx;
642 notifier->cpu = cpu;
643 /* Rather than trying to register interest in the specific part
644 * of the iommu's address space that we've accessed and then
645 * expand it later as subsequent accesses touch more of it, we
646 * just register interest in the whole thing, on the assumption
647 * that iommu reconfiguration will be rare.
648 */
649 iommu_notifier_init(¬ifier->n,
650 tcg_iommu_unmap_notify,
651 IOMMU_NOTIFIER_UNMAP,
652 0,
653 HWADDR_MAX,
654 iommu_idx);
655 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
656 &error_fatal);
657 }
658
659 if (!notifier->active) {
660 notifier->active = true;
661 }
662 }
663
tcg_iommu_free_notifier_list(CPUState * cpu)664 void tcg_iommu_free_notifier_list(CPUState *cpu)
665 {
666 /* Destroy the CPU's notifier list */
667 int i;
668 TCGIOMMUNotifier *notifier;
669
670 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
673 g_free(notifier);
674 }
675 g_array_free(cpu->iommu_notifiers, true);
676 }
677
tcg_iommu_init_notifier_list(CPUState * cpu)678 void tcg_iommu_init_notifier_list(CPUState *cpu)
679 {
680 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
681 }
682
683 /* Called from RCU critical section */
684 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)685 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
686 hwaddr *xlat, hwaddr *plen,
687 MemTxAttrs attrs, int *prot)
688 {
689 MemoryRegionSection *section;
690 IOMMUMemoryRegion *iommu_mr;
691 IOMMUMemoryRegionClass *imrc;
692 IOMMUTLBEntry iotlb;
693 int iommu_idx;
694 hwaddr addr = orig_addr;
695 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
696
697 for (;;) {
698 section = address_space_translate_internal(d, addr, &addr, plen, false);
699
700 iommu_mr = memory_region_get_iommu(section->mr);
701 if (!iommu_mr) {
702 break;
703 }
704
705 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
706
707 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
708 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
709 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
710 * doesn't short-cut its translation table walk.
711 */
712 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
713 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
714 | (addr & iotlb.addr_mask));
715 /* Update the caller's prot bits to remove permissions the IOMMU
716 * is giving us a failure response for. If we get down to no
717 * permissions left at all we can give up now.
718 */
719 if (!(iotlb.perm & IOMMU_RO)) {
720 *prot &= ~(PAGE_READ | PAGE_EXEC);
721 }
722 if (!(iotlb.perm & IOMMU_WO)) {
723 *prot &= ~PAGE_WRITE;
724 }
725
726 if (!*prot) {
727 goto translate_fail;
728 }
729
730 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
731 }
732
733 assert(!memory_region_is_iommu(section->mr));
734 *xlat = addr;
735 return section;
736
737 translate_fail:
738 /*
739 * We should be given a page-aligned address -- certainly
740 * tlb_set_page_with_attrs() does so. The page offset of xlat
741 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
742 * The page portion of xlat will be logged by memory_region_access_valid()
743 * when this memory access is rejected, so use the original untranslated
744 * physical address.
745 */
746 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
747 *xlat = orig_addr;
748 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
749 }
750
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)751 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
752 hwaddr index, MemTxAttrs attrs)
753 {
754 int asidx = cpu_asidx_from_attrs(cpu, attrs);
755 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
756 AddressSpaceDispatch *d = cpuas->memory_dispatch;
757 int section_index = index & ~TARGET_PAGE_MASK;
758 MemoryRegionSection *ret;
759
760 assert(section_index < d->map.sections_nb);
761 ret = d->map.sections + section_index;
762 assert(ret->mr);
763 assert(ret->mr->ops);
764
765 return ret;
766 }
767
768 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)769 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
770 MemoryRegionSection *section)
771 {
772 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
773 return section - d->map.sections;
774 }
775
776 #endif /* CONFIG_TCG */
777
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)778 void cpu_address_space_init(CPUState *cpu, int asidx,
779 const char *prefix, MemoryRegion *mr)
780 {
781 CPUAddressSpace *newas;
782 AddressSpace *as = g_new0(AddressSpace, 1);
783 char *as_name;
784
785 assert(mr);
786 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
787 address_space_init(as, mr, as_name);
788 g_free(as_name);
789
790 /* Target code should have set num_ases before calling us */
791 assert(asidx < cpu->num_ases);
792
793 if (asidx == 0) {
794 /* address space 0 gets the convenience alias */
795 cpu->as = as;
796 }
797
798 /* KVM cannot currently support multiple address spaces. */
799 assert(asidx == 0 || !kvm_enabled());
800
801 if (!cpu->cpu_ases) {
802 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
803 cpu->cpu_ases_count = cpu->num_ases;
804 }
805
806 newas = &cpu->cpu_ases[asidx];
807 newas->cpu = cpu;
808 newas->as = as;
809 if (tcg_enabled()) {
810 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
811 newas->tcg_as_listener.commit = tcg_commit;
812 newas->tcg_as_listener.name = "tcg";
813 memory_listener_register(&newas->tcg_as_listener, as);
814 }
815 }
816
cpu_address_space_destroy(CPUState * cpu,int asidx)817 void cpu_address_space_destroy(CPUState *cpu, int asidx)
818 {
819 CPUAddressSpace *cpuas;
820
821 assert(cpu->cpu_ases);
822 assert(asidx >= 0 && asidx < cpu->num_ases);
823 /* KVM cannot currently support multiple address spaces. */
824 assert(asidx == 0 || !kvm_enabled());
825
826 cpuas = &cpu->cpu_ases[asidx];
827 if (tcg_enabled()) {
828 memory_listener_unregister(&cpuas->tcg_as_listener);
829 }
830
831 address_space_destroy(cpuas->as);
832 g_free_rcu(cpuas->as, rcu);
833
834 if (asidx == 0) {
835 /* reset the convenience alias for address space 0 */
836 cpu->as = NULL;
837 }
838
839 if (--cpu->cpu_ases_count == 0) {
840 g_free(cpu->cpu_ases);
841 cpu->cpu_ases = NULL;
842 }
843 }
844
cpu_get_address_space(CPUState * cpu,int asidx)845 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
846 {
847 /* Return the AddressSpace corresponding to the specified index */
848 return cpu->cpu_ases[asidx].as;
849 }
850
851 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)852 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
853 {
854 RAMBlock *block;
855
856 block = qatomic_rcu_read(&ram_list.mru_block);
857 if (block && addr - block->offset < block->max_length) {
858 return block;
859 }
860 RAMBLOCK_FOREACH(block) {
861 if (addr - block->offset < block->max_length) {
862 goto found;
863 }
864 }
865
866 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
867 abort();
868
869 found:
870 /* It is safe to write mru_block outside the BQL. This
871 * is what happens:
872 *
873 * mru_block = xxx
874 * rcu_read_unlock()
875 * xxx removed from list
876 * rcu_read_lock()
877 * read mru_block
878 * mru_block = NULL;
879 * call_rcu(reclaim_ramblock, xxx);
880 * rcu_read_unlock()
881 *
882 * qatomic_rcu_set is not needed here. The block was already published
883 * when it was placed into the list. Here we're just making an extra
884 * copy of the pointer.
885 */
886 ram_list.mru_block = block;
887 return block;
888 }
889
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)890 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
891 {
892 CPUState *cpu;
893 ram_addr_t start1;
894 RAMBlock *block;
895 ram_addr_t end;
896
897 assert(tcg_enabled());
898 end = TARGET_PAGE_ALIGN(start + length);
899 start &= TARGET_PAGE_MASK;
900
901 RCU_READ_LOCK_GUARD();
902 block = qemu_get_ram_block(start);
903 assert(block == qemu_get_ram_block(end - 1));
904 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
905 CPU_FOREACH(cpu) {
906 tlb_reset_dirty(cpu, start1, length);
907 }
908 }
909
910 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)911 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
912 ram_addr_t length,
913 unsigned client)
914 {
915 DirtyMemoryBlocks *blocks;
916 unsigned long end, page, start_page;
917 bool dirty = false;
918 RAMBlock *ramblock;
919 uint64_t mr_offset, mr_size;
920
921 if (length == 0) {
922 return false;
923 }
924
925 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926 start_page = start >> TARGET_PAGE_BITS;
927 page = start_page;
928
929 WITH_RCU_READ_LOCK_GUARD() {
930 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
931 ramblock = qemu_get_ram_block(start);
932 /* Range sanity check on the ramblock */
933 assert(start >= ramblock->offset &&
934 start + length <= ramblock->offset + ramblock->used_length);
935
936 while (page < end) {
937 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
938 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
939 unsigned long num = MIN(end - page,
940 DIRTY_MEMORY_BLOCK_SIZE - offset);
941
942 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
943 offset, num);
944 page += num;
945 }
946
947 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
948 mr_size = (end - start_page) << TARGET_PAGE_BITS;
949 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
950 }
951
952 if (dirty) {
953 cpu_physical_memory_dirty_bits_cleared(start, length);
954 }
955
956 return dirty;
957 }
958
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)959 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
960 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
961 {
962 DirtyMemoryBlocks *blocks;
963 ram_addr_t start, first, last;
964 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
965 DirtyBitmapSnapshot *snap;
966 unsigned long page, end, dest;
967
968 start = memory_region_get_ram_addr(mr);
969 /* We know we're only called for RAM MemoryRegions */
970 assert(start != RAM_ADDR_INVALID);
971 start += offset;
972
973 first = QEMU_ALIGN_DOWN(start, align);
974 last = QEMU_ALIGN_UP(start + length, align);
975
976 snap = g_malloc0(sizeof(*snap) +
977 ((last - first) >> (TARGET_PAGE_BITS + 3)));
978 snap->start = first;
979 snap->end = last;
980
981 page = first >> TARGET_PAGE_BITS;
982 end = last >> TARGET_PAGE_BITS;
983 dest = 0;
984
985 WITH_RCU_READ_LOCK_GUARD() {
986 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
987
988 while (page < end) {
989 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
990 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
991 unsigned long num = MIN(end - page,
992 DIRTY_MEMORY_BLOCK_SIZE - ofs);
993
994 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
995 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
996 ofs >>= BITS_PER_LEVEL;
997
998 bitmap_copy_and_clear_atomic(snap->dirty + dest,
999 blocks->blocks[idx] + ofs,
1000 num);
1001 page += num;
1002 dest += num >> BITS_PER_LEVEL;
1003 }
1004 }
1005
1006 cpu_physical_memory_dirty_bits_cleared(start, length);
1007
1008 memory_region_clear_dirty_bitmap(mr, offset, length);
1009
1010 return snap;
1011 }
1012
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)1013 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1014 ram_addr_t start,
1015 ram_addr_t length)
1016 {
1017 unsigned long page, end;
1018
1019 assert(start >= snap->start);
1020 assert(start + length <= snap->end);
1021
1022 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1023 page = (start - snap->start) >> TARGET_PAGE_BITS;
1024
1025 while (page < end) {
1026 if (test_bit(page, snap->dirty)) {
1027 return true;
1028 }
1029 page++;
1030 }
1031 return false;
1032 }
1033
1034 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1035 uint16_t section);
1036 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1037
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1038 static uint16_t phys_section_add(PhysPageMap *map,
1039 MemoryRegionSection *section)
1040 {
1041 /* The physical section number is ORed with a page-aligned
1042 * pointer to produce the iotlb entries. Thus it should
1043 * never overflow into the page-aligned value.
1044 */
1045 assert(map->sections_nb < TARGET_PAGE_SIZE);
1046
1047 if (map->sections_nb == map->sections_nb_alloc) {
1048 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1049 map->sections = g_renew(MemoryRegionSection, map->sections,
1050 map->sections_nb_alloc);
1051 }
1052 map->sections[map->sections_nb] = *section;
1053 memory_region_ref(section->mr);
1054 return map->sections_nb++;
1055 }
1056
phys_section_destroy(MemoryRegion * mr)1057 static void phys_section_destroy(MemoryRegion *mr)
1058 {
1059 bool have_sub_page = mr->subpage;
1060
1061 memory_region_unref(mr);
1062
1063 if (have_sub_page) {
1064 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1065 object_unref(OBJECT(&subpage->iomem));
1066 g_free(subpage);
1067 }
1068 }
1069
phys_sections_free(PhysPageMap * map)1070 static void phys_sections_free(PhysPageMap *map)
1071 {
1072 while (map->sections_nb > 0) {
1073 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1074 phys_section_destroy(section->mr);
1075 }
1076 g_free(map->sections);
1077 g_free(map->nodes);
1078 }
1079
register_subpage(FlatView * fv,MemoryRegionSection * section)1080 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1081 {
1082 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1083 subpage_t *subpage;
1084 hwaddr base = section->offset_within_address_space
1085 & TARGET_PAGE_MASK;
1086 MemoryRegionSection *existing = phys_page_find(d, base);
1087 MemoryRegionSection subsection = {
1088 .offset_within_address_space = base,
1089 .size = int128_make64(TARGET_PAGE_SIZE),
1090 };
1091 hwaddr start, end;
1092
1093 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1094
1095 if (!(existing->mr->subpage)) {
1096 subpage = subpage_init(fv, base);
1097 subsection.fv = fv;
1098 subsection.mr = &subpage->iomem;
1099 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1100 phys_section_add(&d->map, &subsection));
1101 } else {
1102 subpage = container_of(existing->mr, subpage_t, iomem);
1103 }
1104 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1105 end = start + int128_get64(section->size) - 1;
1106 subpage_register(subpage, start, end,
1107 phys_section_add(&d->map, section));
1108 }
1109
1110
register_multipage(FlatView * fv,MemoryRegionSection * section)1111 static void register_multipage(FlatView *fv,
1112 MemoryRegionSection *section)
1113 {
1114 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1115 hwaddr start_addr = section->offset_within_address_space;
1116 uint16_t section_index = phys_section_add(&d->map, section);
1117 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1118 TARGET_PAGE_BITS));
1119
1120 assert(num_pages);
1121 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1122 }
1123
1124 /*
1125 * The range in *section* may look like this:
1126 *
1127 * |s|PPPPPPP|s|
1128 *
1129 * where s stands for subpage and P for page.
1130 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1131 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1132 {
1133 MemoryRegionSection remain = *section;
1134 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1135
1136 /* register first subpage */
1137 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1138 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1139 - remain.offset_within_address_space;
1140
1141 MemoryRegionSection now = remain;
1142 now.size = int128_min(int128_make64(left), now.size);
1143 register_subpage(fv, &now);
1144 if (int128_eq(remain.size, now.size)) {
1145 return;
1146 }
1147 remain.size = int128_sub(remain.size, now.size);
1148 remain.offset_within_address_space += int128_get64(now.size);
1149 remain.offset_within_region += int128_get64(now.size);
1150 }
1151
1152 /* register whole pages */
1153 if (int128_ge(remain.size, page_size)) {
1154 MemoryRegionSection now = remain;
1155 now.size = int128_and(now.size, int128_neg(page_size));
1156 register_multipage(fv, &now);
1157 if (int128_eq(remain.size, now.size)) {
1158 return;
1159 }
1160 remain.size = int128_sub(remain.size, now.size);
1161 remain.offset_within_address_space += int128_get64(now.size);
1162 remain.offset_within_region += int128_get64(now.size);
1163 }
1164
1165 /* register last subpage */
1166 register_subpage(fv, &remain);
1167 }
1168
qemu_flush_coalesced_mmio_buffer(void)1169 void qemu_flush_coalesced_mmio_buffer(void)
1170 {
1171 if (kvm_enabled())
1172 kvm_flush_coalesced_mmio_buffer();
1173 }
1174
qemu_mutex_lock_ramlist(void)1175 void qemu_mutex_lock_ramlist(void)
1176 {
1177 qemu_mutex_lock(&ram_list.mutex);
1178 }
1179
qemu_mutex_unlock_ramlist(void)1180 void qemu_mutex_unlock_ramlist(void)
1181 {
1182 qemu_mutex_unlock(&ram_list.mutex);
1183 }
1184
ram_block_format(void)1185 GString *ram_block_format(void)
1186 {
1187 RAMBlock *block;
1188 char *psize;
1189 GString *buf = g_string_new("");
1190
1191 RCU_READ_LOCK_GUARD();
1192 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1193 "Block Name", "PSize", "Offset", "Used", "Total",
1194 "HVA", "RO");
1195
1196 RAMBLOCK_FOREACH(block) {
1197 psize = size_to_str(block->page_size);
1198 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1199 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1200 block->idstr, psize,
1201 (uint64_t)block->offset,
1202 (uint64_t)block->used_length,
1203 (uint64_t)block->max_length,
1204 (uint64_t)(uintptr_t)block->host,
1205 block->mr->readonly ? "ro" : "rw");
1206
1207 g_free(psize);
1208 }
1209
1210 return buf;
1211 }
1212
find_min_backend_pagesize(Object * obj,void * opaque)1213 static int find_min_backend_pagesize(Object *obj, void *opaque)
1214 {
1215 long *hpsize_min = opaque;
1216
1217 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1218 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1219 long hpsize = host_memory_backend_pagesize(backend);
1220
1221 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1222 *hpsize_min = hpsize;
1223 }
1224 }
1225
1226 return 0;
1227 }
1228
find_max_backend_pagesize(Object * obj,void * opaque)1229 static int find_max_backend_pagesize(Object *obj, void *opaque)
1230 {
1231 long *hpsize_max = opaque;
1232
1233 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1234 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1235 long hpsize = host_memory_backend_pagesize(backend);
1236
1237 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1238 *hpsize_max = hpsize;
1239 }
1240 }
1241
1242 return 0;
1243 }
1244
1245 /*
1246 * TODO: We assume right now that all mapped host memory backends are
1247 * used as RAM, however some might be used for different purposes.
1248 */
qemu_minrampagesize(void)1249 long qemu_minrampagesize(void)
1250 {
1251 long hpsize = LONG_MAX;
1252 Object *memdev_root = object_resolve_path("/objects", NULL);
1253
1254 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1255 return hpsize;
1256 }
1257
qemu_maxrampagesize(void)1258 long qemu_maxrampagesize(void)
1259 {
1260 long pagesize = 0;
1261 Object *memdev_root = object_resolve_path("/objects", NULL);
1262
1263 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1264 return pagesize;
1265 }
1266
1267 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
get_file_size(int fd)1268 static int64_t get_file_size(int fd)
1269 {
1270 int64_t size;
1271 #if defined(__linux__)
1272 struct stat st;
1273
1274 if (fstat(fd, &st) < 0) {
1275 return -errno;
1276 }
1277
1278 /* Special handling for devdax character devices */
1279 if (S_ISCHR(st.st_mode)) {
1280 g_autofree char *subsystem_path = NULL;
1281 g_autofree char *subsystem = NULL;
1282
1283 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1284 major(st.st_rdev), minor(st.st_rdev));
1285 subsystem = g_file_read_link(subsystem_path, NULL);
1286
1287 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1288 g_autofree char *size_path = NULL;
1289 g_autofree char *size_str = NULL;
1290
1291 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1292 major(st.st_rdev), minor(st.st_rdev));
1293
1294 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1295 return g_ascii_strtoll(size_str, NULL, 0);
1296 }
1297 }
1298 }
1299 #endif /* defined(__linux__) */
1300
1301 /* st.st_size may be zero for special files yet lseek(2) works */
1302 size = lseek(fd, 0, SEEK_END);
1303 if (size < 0) {
1304 return -errno;
1305 }
1306 return size;
1307 }
1308
get_file_align(int fd)1309 static int64_t get_file_align(int fd)
1310 {
1311 int64_t align = -1;
1312 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1313 struct stat st;
1314
1315 if (fstat(fd, &st) < 0) {
1316 return -errno;
1317 }
1318
1319 /* Special handling for devdax character devices */
1320 if (S_ISCHR(st.st_mode)) {
1321 g_autofree char *path = NULL;
1322 g_autofree char *rpath = NULL;
1323 struct daxctl_ctx *ctx;
1324 struct daxctl_region *region;
1325 int rc = 0;
1326
1327 path = g_strdup_printf("/sys/dev/char/%d:%d",
1328 major(st.st_rdev), minor(st.st_rdev));
1329 rpath = realpath(path, NULL);
1330 if (!rpath) {
1331 return -errno;
1332 }
1333
1334 rc = daxctl_new(&ctx);
1335 if (rc) {
1336 return -1;
1337 }
1338
1339 daxctl_region_foreach(ctx, region) {
1340 if (strstr(rpath, daxctl_region_get_path(region))) {
1341 align = daxctl_region_get_align(region);
1342 break;
1343 }
1344 }
1345 daxctl_unref(ctx);
1346 }
1347 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1348
1349 return align;
1350 }
1351
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1352 static int file_ram_open(const char *path,
1353 const char *region_name,
1354 bool readonly,
1355 bool *created)
1356 {
1357 char *filename;
1358 char *sanitized_name;
1359 char *c;
1360 int fd = -1;
1361
1362 *created = false;
1363 for (;;) {
1364 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1365 if (fd >= 0) {
1366 /*
1367 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1368 * opened a directory and fail similarly to how we fail ENOENT
1369 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1370 */
1371 if (readonly) {
1372 struct stat file_stat;
1373
1374 if (fstat(fd, &file_stat)) {
1375 close(fd);
1376 if (errno == EINTR) {
1377 continue;
1378 }
1379 return -errno;
1380 } else if (S_ISDIR(file_stat.st_mode)) {
1381 close(fd);
1382 return -EISDIR;
1383 }
1384 }
1385 /* @path names an existing file, use it */
1386 break;
1387 }
1388 if (errno == ENOENT) {
1389 if (readonly) {
1390 /* Refuse to create new, readonly files. */
1391 return -ENOENT;
1392 }
1393 /* @path names a file that doesn't exist, create it */
1394 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1395 if (fd >= 0) {
1396 *created = true;
1397 break;
1398 }
1399 } else if (errno == EISDIR) {
1400 /* @path names a directory, create a file there */
1401 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1402 sanitized_name = g_strdup(region_name);
1403 for (c = sanitized_name; *c != '\0'; c++) {
1404 if (*c == '/') {
1405 *c = '_';
1406 }
1407 }
1408
1409 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1410 sanitized_name);
1411 g_free(sanitized_name);
1412
1413 fd = mkstemp(filename);
1414 if (fd >= 0) {
1415 unlink(filename);
1416 g_free(filename);
1417 break;
1418 }
1419 g_free(filename);
1420 }
1421 if (errno != EEXIST && errno != EINTR) {
1422 return -errno;
1423 }
1424 /*
1425 * Try again on EINTR and EEXIST. The latter happens when
1426 * something else creates the file between our two open().
1427 */
1428 }
1429
1430 return fd;
1431 }
1432
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1433 static void *file_ram_alloc(RAMBlock *block,
1434 ram_addr_t memory,
1435 int fd,
1436 bool truncate,
1437 off_t offset,
1438 Error **errp)
1439 {
1440 uint32_t qemu_map_flags;
1441 void *area;
1442
1443 block->page_size = qemu_fd_getpagesize(fd);
1444 if (block->mr->align % block->page_size) {
1445 error_setg(errp, "alignment 0x%" PRIx64
1446 " must be multiples of page size 0x%zx",
1447 block->mr->align, block->page_size);
1448 return NULL;
1449 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1450 error_setg(errp, "alignment 0x%" PRIx64
1451 " must be a power of two", block->mr->align);
1452 return NULL;
1453 } else if (offset % block->page_size) {
1454 error_setg(errp, "offset 0x%" PRIx64
1455 " must be multiples of page size 0x%zx",
1456 offset, block->page_size);
1457 return NULL;
1458 }
1459 block->mr->align = MAX(block->page_size, block->mr->align);
1460 #if defined(__s390x__)
1461 if (kvm_enabled()) {
1462 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1463 }
1464 #endif
1465
1466 if (memory < block->page_size) {
1467 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1468 "or larger than page size 0x%zx",
1469 memory, block->page_size);
1470 return NULL;
1471 }
1472
1473 memory = ROUND_UP(memory, block->page_size);
1474
1475 /*
1476 * ftruncate is not supported by hugetlbfs in older
1477 * hosts, so don't bother bailing out on errors.
1478 * If anything goes wrong with it under other filesystems,
1479 * mmap will fail.
1480 *
1481 * Do not truncate the non-empty backend file to avoid corrupting
1482 * the existing data in the file. Disabling shrinking is not
1483 * enough. For example, the current vNVDIMM implementation stores
1484 * the guest NVDIMM labels at the end of the backend file. If the
1485 * backend file is later extended, QEMU will not be able to find
1486 * those labels. Therefore, extending the non-empty backend file
1487 * is disabled as well.
1488 */
1489 if (truncate && ftruncate(fd, offset + memory)) {
1490 perror("ftruncate");
1491 }
1492
1493 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1494 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1495 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1496 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1497 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1498 if (area == MAP_FAILED) {
1499 error_setg_errno(errp, errno,
1500 "unable to map backing store for guest RAM");
1501 return NULL;
1502 }
1503
1504 block->fd = fd;
1505 block->fd_offset = offset;
1506 return area;
1507 }
1508 #endif
1509
1510 /* Allocate space within the ram_addr_t space that governs the
1511 * dirty bitmaps.
1512 * Called with the ramlist lock held.
1513 */
find_ram_offset(ram_addr_t size)1514 static ram_addr_t find_ram_offset(ram_addr_t size)
1515 {
1516 RAMBlock *block, *next_block;
1517 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1518
1519 assert(size != 0); /* it would hand out same offset multiple times */
1520
1521 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1522 return 0;
1523 }
1524
1525 RAMBLOCK_FOREACH(block) {
1526 ram_addr_t candidate, next = RAM_ADDR_MAX;
1527
1528 /* Align blocks to start on a 'long' in the bitmap
1529 * which makes the bitmap sync'ing take the fast path.
1530 */
1531 candidate = block->offset + block->max_length;
1532 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1533
1534 /* Search for the closest following block
1535 * and find the gap.
1536 */
1537 RAMBLOCK_FOREACH(next_block) {
1538 if (next_block->offset >= candidate) {
1539 next = MIN(next, next_block->offset);
1540 }
1541 }
1542
1543 /* If it fits remember our place and remember the size
1544 * of gap, but keep going so that we might find a smaller
1545 * gap to fill so avoiding fragmentation.
1546 */
1547 if (next - candidate >= size && next - candidate < mingap) {
1548 offset = candidate;
1549 mingap = next - candidate;
1550 }
1551
1552 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1553 }
1554
1555 if (offset == RAM_ADDR_MAX) {
1556 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1557 (uint64_t)size);
1558 abort();
1559 }
1560
1561 trace_find_ram_offset(size, offset);
1562
1563 return offset;
1564 }
1565
qemu_ram_setup_dump(void * addr,ram_addr_t size)1566 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1567 {
1568 int ret;
1569
1570 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1571 if (!machine_dump_guest_core(current_machine)) {
1572 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1573 if (ret) {
1574 perror("qemu_madvise");
1575 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1576 "but dump-guest-core=off specified\n");
1577 }
1578 }
1579 }
1580
qemu_ram_get_idstr(RAMBlock * rb)1581 const char *qemu_ram_get_idstr(RAMBlock *rb)
1582 {
1583 return rb->idstr;
1584 }
1585
qemu_ram_get_host_addr(RAMBlock * rb)1586 void *qemu_ram_get_host_addr(RAMBlock *rb)
1587 {
1588 return rb->host;
1589 }
1590
qemu_ram_get_offset(RAMBlock * rb)1591 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1592 {
1593 return rb->offset;
1594 }
1595
qemu_ram_get_used_length(RAMBlock * rb)1596 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1597 {
1598 return rb->used_length;
1599 }
1600
qemu_ram_get_max_length(RAMBlock * rb)1601 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1602 {
1603 return rb->max_length;
1604 }
1605
qemu_ram_is_shared(RAMBlock * rb)1606 bool qemu_ram_is_shared(RAMBlock *rb)
1607 {
1608 return rb->flags & RAM_SHARED;
1609 }
1610
qemu_ram_is_noreserve(RAMBlock * rb)1611 bool qemu_ram_is_noreserve(RAMBlock *rb)
1612 {
1613 return rb->flags & RAM_NORESERVE;
1614 }
1615
1616 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1617 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1618 {
1619 return rb->flags & RAM_UF_ZEROPAGE;
1620 }
1621
qemu_ram_set_uf_zeroable(RAMBlock * rb)1622 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1623 {
1624 rb->flags |= RAM_UF_ZEROPAGE;
1625 }
1626
qemu_ram_is_migratable(RAMBlock * rb)1627 bool qemu_ram_is_migratable(RAMBlock *rb)
1628 {
1629 return rb->flags & RAM_MIGRATABLE;
1630 }
1631
qemu_ram_set_migratable(RAMBlock * rb)1632 void qemu_ram_set_migratable(RAMBlock *rb)
1633 {
1634 rb->flags |= RAM_MIGRATABLE;
1635 }
1636
qemu_ram_unset_migratable(RAMBlock * rb)1637 void qemu_ram_unset_migratable(RAMBlock *rb)
1638 {
1639 rb->flags &= ~RAM_MIGRATABLE;
1640 }
1641
qemu_ram_is_named_file(RAMBlock * rb)1642 bool qemu_ram_is_named_file(RAMBlock *rb)
1643 {
1644 return rb->flags & RAM_NAMED_FILE;
1645 }
1646
qemu_ram_get_fd(RAMBlock * rb)1647 int qemu_ram_get_fd(RAMBlock *rb)
1648 {
1649 return rb->fd;
1650 }
1651
1652 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1653 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1654 {
1655 RAMBlock *block;
1656
1657 assert(new_block);
1658 assert(!new_block->idstr[0]);
1659
1660 if (dev) {
1661 char *id = qdev_get_dev_path(dev);
1662 if (id) {
1663 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1664 g_free(id);
1665 }
1666 }
1667 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1668
1669 RCU_READ_LOCK_GUARD();
1670 RAMBLOCK_FOREACH(block) {
1671 if (block != new_block &&
1672 !strcmp(block->idstr, new_block->idstr)) {
1673 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1674 new_block->idstr);
1675 abort();
1676 }
1677 }
1678 }
1679
1680 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1681 void qemu_ram_unset_idstr(RAMBlock *block)
1682 {
1683 /* FIXME: arch_init.c assumes that this is not called throughout
1684 * migration. Ignore the problem since hot-unplug during migration
1685 * does not work anyway.
1686 */
1687 if (block) {
1688 memset(block->idstr, 0, sizeof(block->idstr));
1689 }
1690 }
1691
cpr_name(MemoryRegion * mr)1692 static char *cpr_name(MemoryRegion *mr)
1693 {
1694 const char *mr_name = memory_region_name(mr);
1695 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL;
1696
1697 if (id) {
1698 return g_strdup_printf("%s/%s", id, mr_name);
1699 } else {
1700 return g_strdup(mr_name);
1701 }
1702 }
1703
qemu_ram_pagesize(RAMBlock * rb)1704 size_t qemu_ram_pagesize(RAMBlock *rb)
1705 {
1706 return rb->page_size;
1707 }
1708
1709 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1710 size_t qemu_ram_pagesize_largest(void)
1711 {
1712 RAMBlock *block;
1713 size_t largest = 0;
1714
1715 RAMBLOCK_FOREACH(block) {
1716 largest = MAX(largest, qemu_ram_pagesize(block));
1717 }
1718
1719 return largest;
1720 }
1721
memory_try_enable_merging(void * addr,size_t len)1722 static int memory_try_enable_merging(void *addr, size_t len)
1723 {
1724 if (!machine_mem_merge(current_machine)) {
1725 /* disabled by the user */
1726 return 0;
1727 }
1728
1729 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1730 }
1731
1732 /*
1733 * Resizing RAM while migrating can result in the migration being canceled.
1734 * Care has to be taken if the guest might have already detected the memory.
1735 *
1736 * As memory core doesn't know how is memory accessed, it is up to
1737 * resize callback to update device state and/or add assertions to detect
1738 * misuse, if necessary.
1739 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1740 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1741 {
1742 const ram_addr_t oldsize = block->used_length;
1743 const ram_addr_t unaligned_size = newsize;
1744
1745 assert(block);
1746
1747 newsize = TARGET_PAGE_ALIGN(newsize);
1748 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1749
1750 if (block->used_length == newsize) {
1751 /*
1752 * We don't have to resize the ram block (which only knows aligned
1753 * sizes), however, we have to notify if the unaligned size changed.
1754 */
1755 if (unaligned_size != memory_region_size(block->mr)) {
1756 memory_region_set_size(block->mr, unaligned_size);
1757 if (block->resized) {
1758 block->resized(block->idstr, unaligned_size, block->host);
1759 }
1760 }
1761 return 0;
1762 }
1763
1764 if (!(block->flags & RAM_RESIZEABLE)) {
1765 error_setg_errno(errp, EINVAL,
1766 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1767 " != 0x" RAM_ADDR_FMT, block->idstr,
1768 newsize, block->used_length);
1769 return -EINVAL;
1770 }
1771
1772 if (block->max_length < newsize) {
1773 error_setg_errno(errp, EINVAL,
1774 "Size too large: %s: 0x" RAM_ADDR_FMT
1775 " > 0x" RAM_ADDR_FMT, block->idstr,
1776 newsize, block->max_length);
1777 return -EINVAL;
1778 }
1779
1780 /* Notify before modifying the ram block and touching the bitmaps. */
1781 if (block->host) {
1782 ram_block_notify_resize(block->host, oldsize, newsize);
1783 }
1784
1785 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1786 block->used_length = newsize;
1787 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1788 DIRTY_CLIENTS_ALL);
1789 memory_region_set_size(block->mr, unaligned_size);
1790 if (block->resized) {
1791 block->resized(block->idstr, unaligned_size, block->host);
1792 }
1793 return 0;
1794 }
1795
1796 /*
1797 * Trigger sync on the given ram block for range [start, start + length]
1798 * with the backing store if one is available.
1799 * Otherwise no-op.
1800 * @Note: this is supposed to be a synchronous op.
1801 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1802 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1803 {
1804 /* The requested range should fit in within the block range */
1805 g_assert((start + length) <= block->used_length);
1806
1807 #ifdef CONFIG_LIBPMEM
1808 /* The lack of support for pmem should not block the sync */
1809 if (ramblock_is_pmem(block)) {
1810 void *addr = ramblock_ptr(block, start);
1811 pmem_persist(addr, length);
1812 return;
1813 }
1814 #endif
1815 if (block->fd >= 0) {
1816 /**
1817 * Case there is no support for PMEM or the memory has not been
1818 * specified as persistent (or is not one) - use the msync.
1819 * Less optimal but still achieves the same goal
1820 */
1821 void *addr = ramblock_ptr(block, start);
1822 if (qemu_msync(addr, length, block->fd)) {
1823 warn_report("%s: failed to sync memory range: start: "
1824 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1825 __func__, start, length);
1826 }
1827 }
1828 }
1829
1830 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1831 static void dirty_memory_extend(ram_addr_t new_ram_size)
1832 {
1833 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1834 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1835 DIRTY_MEMORY_BLOCK_SIZE);
1836 int i;
1837
1838 /* Only need to extend if block count increased */
1839 if (new_num_blocks <= old_num_blocks) {
1840 return;
1841 }
1842
1843 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1844 DirtyMemoryBlocks *old_blocks;
1845 DirtyMemoryBlocks *new_blocks;
1846 int j;
1847
1848 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1849 new_blocks = g_malloc(sizeof(*new_blocks) +
1850 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1851
1852 if (old_num_blocks) {
1853 memcpy(new_blocks->blocks, old_blocks->blocks,
1854 old_num_blocks * sizeof(old_blocks->blocks[0]));
1855 }
1856
1857 for (j = old_num_blocks; j < new_num_blocks; j++) {
1858 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1859 }
1860
1861 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1862
1863 if (old_blocks) {
1864 g_free_rcu(old_blocks, rcu);
1865 }
1866 }
1867
1868 ram_list.num_dirty_blocks = new_num_blocks;
1869 }
1870
ram_block_add(RAMBlock * new_block,Error ** errp)1871 static void ram_block_add(RAMBlock *new_block, Error **errp)
1872 {
1873 const bool noreserve = qemu_ram_is_noreserve(new_block);
1874 const bool shared = qemu_ram_is_shared(new_block);
1875 RAMBlock *block;
1876 RAMBlock *last_block = NULL;
1877 bool free_on_error = false;
1878 ram_addr_t ram_size;
1879 Error *err = NULL;
1880
1881 qemu_mutex_lock_ramlist();
1882 new_block->offset = find_ram_offset(new_block->max_length);
1883
1884 if (!new_block->host) {
1885 if (xen_enabled()) {
1886 xen_ram_alloc(new_block->offset, new_block->max_length,
1887 new_block->mr, &err);
1888 if (err) {
1889 error_propagate(errp, err);
1890 qemu_mutex_unlock_ramlist();
1891 return;
1892 }
1893 } else {
1894 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1895 &new_block->mr->align,
1896 shared, noreserve);
1897 if (!new_block->host) {
1898 error_setg_errno(errp, errno,
1899 "cannot set up guest memory '%s'",
1900 memory_region_name(new_block->mr));
1901 qemu_mutex_unlock_ramlist();
1902 return;
1903 }
1904 memory_try_enable_merging(new_block->host, new_block->max_length);
1905 free_on_error = true;
1906 }
1907 }
1908
1909 if (new_block->flags & RAM_GUEST_MEMFD) {
1910 int ret;
1911
1912 if (!kvm_enabled()) {
1913 error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1914 object_get_typename(OBJECT(current_machine->cgs)));
1915 goto out_free;
1916 }
1917 assert(new_block->guest_memfd < 0);
1918
1919 ret = ram_block_coordinated_discard_require(true);
1920 if (ret < 0) {
1921 error_setg_errno(errp, -ret,
1922 "cannot set up private guest memory: discard currently blocked");
1923 error_append_hint(errp, "Are you using assigned devices?\n");
1924 goto out_free;
1925 }
1926
1927 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1928 0, errp);
1929 if (new_block->guest_memfd < 0) {
1930 qemu_mutex_unlock_ramlist();
1931 goto out_free;
1932 }
1933
1934 /*
1935 * The attribute bitmap of the RamBlockAttributes is default to
1936 * discarded, which mimics the behavior of kvm_set_phys_mem() when it
1937 * calls kvm_set_memory_attributes_private(). This leads to a brief
1938 * period of inconsistency between the creation of the RAMBlock and its
1939 * mapping into the physical address space. However, this is not
1940 * problematic, as no users rely on the attribute status to perform
1941 * any actions during this interval.
1942 */
1943 new_block->attributes = ram_block_attributes_create(new_block);
1944 if (!new_block->attributes) {
1945 error_setg(errp, "Failed to create ram block attribute");
1946 close(new_block->guest_memfd);
1947 ram_block_coordinated_discard_require(false);
1948 qemu_mutex_unlock_ramlist();
1949 goto out_free;
1950 }
1951
1952 /*
1953 * Add a specific guest_memfd blocker if a generic one would not be
1954 * added by ram_block_add_cpr_blocker.
1955 */
1956 if (ram_is_cpr_compatible(new_block)) {
1957 error_setg(&new_block->cpr_blocker,
1958 "Memory region %s uses guest_memfd, "
1959 "which is not supported with CPR.",
1960 memory_region_name(new_block->mr));
1961 migrate_add_blocker_modes(&new_block->cpr_blocker, errp,
1962 MIG_MODE_CPR_TRANSFER, -1);
1963 }
1964 }
1965
1966 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1967 dirty_memory_extend(ram_size);
1968 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1969 * QLIST (which has an RCU-friendly variant) does not have insertion at
1970 * tail, so save the last element in last_block.
1971 */
1972 RAMBLOCK_FOREACH(block) {
1973 last_block = block;
1974 if (block->max_length < new_block->max_length) {
1975 break;
1976 }
1977 }
1978 if (block) {
1979 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1980 } else if (last_block) {
1981 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1982 } else { /* list is empty */
1983 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1984 }
1985 ram_list.mru_block = NULL;
1986
1987 /* Write list before version */
1988 smp_wmb();
1989 ram_list.version++;
1990 qemu_mutex_unlock_ramlist();
1991
1992 cpu_physical_memory_set_dirty_range(new_block->offset,
1993 new_block->used_length,
1994 DIRTY_CLIENTS_ALL);
1995
1996 if (new_block->host) {
1997 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1998 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1999 /*
2000 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2001 * Configure it unless the machine is a qtest server, in which case
2002 * KVM is not used and it may be forked (eg for fuzzing purposes).
2003 */
2004 if (!qtest_enabled()) {
2005 qemu_madvise(new_block->host, new_block->max_length,
2006 QEMU_MADV_DONTFORK);
2007 }
2008 ram_block_notify_add(new_block->host, new_block->used_length,
2009 new_block->max_length);
2010 }
2011 return;
2012
2013 out_free:
2014 if (free_on_error) {
2015 qemu_anon_ram_free(new_block->host, new_block->max_length);
2016 new_block->host = NULL;
2017 }
2018 }
2019
2020 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
qemu_ram_alloc_from_fd(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,bool grow,Error ** errp)2021 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
2022 qemu_ram_resize_cb resized, MemoryRegion *mr,
2023 uint32_t ram_flags, int fd, off_t offset,
2024 bool grow,
2025 Error **errp)
2026 {
2027 ERRP_GUARD();
2028 RAMBlock *new_block;
2029 Error *local_err = NULL;
2030 int64_t file_size, file_align, share_flags;
2031
2032 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2033 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2034 ram_flags &= ~RAM_PRIVATE;
2035
2036 /* Just support these ram flags by now. */
2037 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2038 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
2039 RAM_READONLY_FD | RAM_GUEST_MEMFD |
2040 RAM_RESIZEABLE)) == 0);
2041 assert(max_size >= size);
2042
2043 if (xen_enabled()) {
2044 error_setg(errp, "-mem-path not supported with Xen");
2045 return NULL;
2046 }
2047
2048 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2049 error_setg(errp,
2050 "host lacks kvm mmu notifiers, -mem-path unsupported");
2051 return NULL;
2052 }
2053
2054 size = TARGET_PAGE_ALIGN(size);
2055 size = REAL_HOST_PAGE_ALIGN(size);
2056 max_size = TARGET_PAGE_ALIGN(max_size);
2057 max_size = REAL_HOST_PAGE_ALIGN(max_size);
2058
2059 file_size = get_file_size(fd);
2060 if (file_size && file_size < offset + max_size && !grow) {
2061 error_setg(errp, "%s backing store size 0x%" PRIx64
2062 " is too small for 'size' option 0x" RAM_ADDR_FMT
2063 " plus 'offset' option 0x%" PRIx64,
2064 memory_region_name(mr), file_size, max_size,
2065 (uint64_t)offset);
2066 return NULL;
2067 }
2068
2069 file_align = get_file_align(fd);
2070 if (file_align > 0 && file_align > mr->align) {
2071 error_setg(errp, "backing store align 0x%" PRIx64
2072 " is larger than 'align' option 0x%" PRIx64,
2073 file_align, mr->align);
2074 return NULL;
2075 }
2076
2077 new_block = g_malloc0(sizeof(*new_block));
2078 new_block->mr = mr;
2079 new_block->used_length = size;
2080 new_block->max_length = max_size;
2081 new_block->resized = resized;
2082 new_block->flags = ram_flags;
2083 new_block->guest_memfd = -1;
2084 new_block->host = file_ram_alloc(new_block, max_size, fd,
2085 file_size < offset + max_size,
2086 offset, errp);
2087 if (!new_block->host) {
2088 g_free(new_block);
2089 return NULL;
2090 }
2091
2092 ram_block_add(new_block, &local_err);
2093 if (local_err) {
2094 g_free(new_block);
2095 error_propagate(errp, local_err);
2096 return NULL;
2097 }
2098 return new_block;
2099
2100 }
2101
2102
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2103 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2104 uint32_t ram_flags, const char *mem_path,
2105 off_t offset, Error **errp)
2106 {
2107 int fd;
2108 bool created;
2109 RAMBlock *block;
2110
2111 fd = file_ram_open(mem_path, memory_region_name(mr),
2112 !!(ram_flags & RAM_READONLY_FD), &created);
2113 if (fd < 0) {
2114 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2115 mem_path);
2116 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2117 fd == -EACCES) {
2118 /*
2119 * If we can open the file R/O (note: will never create a new file)
2120 * and we are dealing with a private mapping, there are still ways
2121 * to consume such files and get RAM instead of ROM.
2122 */
2123 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2124 &created);
2125 if (fd < 0) {
2126 return NULL;
2127 }
2128 assert(!created);
2129 close(fd);
2130 error_append_hint(errp, "Consider opening the backing store"
2131 " read-only but still creating writable RAM using"
2132 " '-object memory-backend-file,readonly=on,rom=off...'"
2133 " (see \"VM templating\" documentation)\n");
2134 }
2135 return NULL;
2136 }
2137
2138 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset,
2139 false, errp);
2140 if (!block) {
2141 if (created) {
2142 unlink(mem_path);
2143 }
2144 close(fd);
2145 return NULL;
2146 }
2147
2148 return block;
2149 }
2150 #endif
2151
2152 #ifdef CONFIG_POSIX
2153 /*
2154 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be
2155 * shared with another process if CPR is being used. Use memfd if available
2156 * because it has no size limits, else use POSIX shm.
2157 */
qemu_ram_get_shared_fd(const char * name,bool * reused,Error ** errp)2158 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp)
2159 {
2160 int fd = cpr_find_fd(name, 0);
2161
2162 if (fd >= 0) {
2163 *reused = true;
2164 return fd;
2165 }
2166
2167 if (qemu_memfd_check(0)) {
2168 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp);
2169 } else {
2170 fd = qemu_shm_alloc(0, errp);
2171 }
2172
2173 if (fd >= 0) {
2174 cpr_save_fd(name, 0, fd);
2175 }
2176 *reused = false;
2177 return fd;
2178 }
2179 #endif
2180
2181 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2182 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2183 qemu_ram_resize_cb resized,
2184 void *host, uint32_t ram_flags,
2185 MemoryRegion *mr, Error **errp)
2186 {
2187 RAMBlock *new_block;
2188 Error *local_err = NULL;
2189 int align, share_flags;
2190
2191 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2192 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2193 ram_flags &= ~RAM_PRIVATE;
2194
2195 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2196 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2197 assert(!host ^ (ram_flags & RAM_PREALLOC));
2198 assert(max_size >= size);
2199
2200 /* ignore RAM_SHARED for Windows and emscripten*/
2201 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
2202 if (!host) {
2203 if (!share_flags && current_machine->aux_ram_share) {
2204 ram_flags |= RAM_SHARED;
2205 }
2206 if (ram_flags & RAM_SHARED) {
2207 bool reused;
2208 g_autofree char *name = cpr_name(mr);
2209 int fd = qemu_ram_get_shared_fd(name, &reused, errp);
2210
2211 if (fd < 0) {
2212 return NULL;
2213 }
2214
2215 /* Use same alignment as qemu_anon_ram_alloc */
2216 mr->align = QEMU_VMALLOC_ALIGN;
2217
2218 /*
2219 * This can fail if the shm mount size is too small, or alloc from
2220 * fd is not supported, but previous QEMU versions that called
2221 * qemu_anon_ram_alloc for anonymous shared memory could have
2222 * succeeded. Quietly fail and fall back.
2223 *
2224 * After cpr-transfer, new QEMU could create a memory region
2225 * with a larger max size than old, so pass reused to grow the
2226 * region if necessary. The extra space will be usable after a
2227 * guest reset.
2228 */
2229 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr,
2230 ram_flags, fd, 0, reused, NULL);
2231 if (new_block) {
2232 trace_qemu_ram_alloc_shared(name, new_block->used_length,
2233 new_block->max_length, fd,
2234 new_block->host);
2235 return new_block;
2236 }
2237
2238 cpr_delete_fd(name, 0);
2239 close(fd);
2240 /* fall back to anon allocation */
2241 }
2242 }
2243 #endif
2244
2245 align = qemu_real_host_page_size();
2246 align = MAX(align, TARGET_PAGE_SIZE);
2247 size = ROUND_UP(size, align);
2248 max_size = ROUND_UP(max_size, align);
2249
2250 new_block = g_malloc0(sizeof(*new_block));
2251 new_block->mr = mr;
2252 new_block->resized = resized;
2253 new_block->used_length = size;
2254 new_block->max_length = max_size;
2255 new_block->fd = -1;
2256 new_block->guest_memfd = -1;
2257 new_block->page_size = qemu_real_host_page_size();
2258 new_block->host = host;
2259 new_block->flags = ram_flags;
2260 ram_block_add(new_block, &local_err);
2261 if (local_err) {
2262 g_free(new_block);
2263 error_propagate(errp, local_err);
2264 return NULL;
2265 }
2266 return new_block;
2267 }
2268
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2269 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2270 MemoryRegion *mr, Error **errp)
2271 {
2272 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2273 errp);
2274 }
2275
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2276 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2277 MemoryRegion *mr, Error **errp)
2278 {
2279 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD |
2280 RAM_PRIVATE)) == 0);
2281 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2282 }
2283
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,qemu_ram_resize_cb resized,MemoryRegion * mr,Error ** errp)2284 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2285 qemu_ram_resize_cb resized,
2286 MemoryRegion *mr, Error **errp)
2287 {
2288 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2289 RAM_RESIZEABLE, mr, errp);
2290 }
2291
reclaim_ramblock(RAMBlock * block)2292 static void reclaim_ramblock(RAMBlock *block)
2293 {
2294 if (block->flags & RAM_PREALLOC) {
2295 ;
2296 } else if (xen_enabled()) {
2297 xen_invalidate_map_cache_entry(block->host);
2298 #if !defined(_WIN32) && !defined(EMSCRIPTEN)
2299 } else if (block->fd >= 0) {
2300 qemu_ram_munmap(block->fd, block->host, block->max_length);
2301 close(block->fd);
2302 #endif
2303 } else {
2304 qemu_anon_ram_free(block->host, block->max_length);
2305 }
2306
2307 if (block->guest_memfd >= 0) {
2308 ram_block_attributes_destroy(block->attributes);
2309 close(block->guest_memfd);
2310 ram_block_coordinated_discard_require(false);
2311 }
2312
2313 g_free(block);
2314 }
2315
qemu_ram_free(RAMBlock * block)2316 void qemu_ram_free(RAMBlock *block)
2317 {
2318 g_autofree char *name = NULL;
2319
2320 if (!block) {
2321 return;
2322 }
2323
2324 if (block->host) {
2325 ram_block_notify_remove(block->host, block->used_length,
2326 block->max_length);
2327 }
2328
2329 qemu_mutex_lock_ramlist();
2330 name = cpr_name(block->mr);
2331 cpr_delete_fd(name, 0);
2332 QLIST_REMOVE_RCU(block, next);
2333 ram_list.mru_block = NULL;
2334 /* Write list before version */
2335 smp_wmb();
2336 ram_list.version++;
2337 call_rcu(block, reclaim_ramblock, rcu);
2338 qemu_mutex_unlock_ramlist();
2339 }
2340
2341 #ifndef _WIN32
2342 /* Simply remap the given VM memory location from start to start+length */
qemu_ram_remap_mmap(RAMBlock * block,uint64_t start,size_t length)2343 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length)
2344 {
2345 int flags, prot;
2346 void *area;
2347 void *host_startaddr = block->host + start;
2348
2349 assert(block->fd < 0);
2350 flags = MAP_FIXED | MAP_ANONYMOUS;
2351 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE;
2352 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2353 prot = PROT_READ;
2354 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2355 area = mmap(host_startaddr, length, prot, flags, -1, 0);
2356 return area != host_startaddr ? -errno : 0;
2357 }
2358
2359 /*
2360 * qemu_ram_remap - remap a single RAM page
2361 *
2362 * @addr: address in ram_addr_t address space.
2363 *
2364 * This function will try remapping a single page of guest RAM identified by
2365 * @addr, essentially discarding memory to recover from previously poisoned
2366 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr
2367 * does not have to point at the start of the page.
2368 *
2369 * This function is only to be used during system resets; it will kill the
2370 * VM if remapping failed.
2371 */
qemu_ram_remap(ram_addr_t addr)2372 void qemu_ram_remap(ram_addr_t addr)
2373 {
2374 RAMBlock *block;
2375 uint64_t offset;
2376 void *vaddr;
2377 size_t page_size;
2378
2379 RAMBLOCK_FOREACH(block) {
2380 offset = addr - block->offset;
2381 if (offset < block->max_length) {
2382 /* Respect the pagesize of our RAMBlock */
2383 page_size = qemu_ram_pagesize(block);
2384 offset = QEMU_ALIGN_DOWN(offset, page_size);
2385
2386 vaddr = ramblock_ptr(block, offset);
2387 if (block->flags & RAM_PREALLOC) {
2388 ;
2389 } else if (xen_enabled()) {
2390 abort();
2391 } else {
2392 if (ram_block_discard_range(block, offset, page_size) != 0) {
2393 /*
2394 * Fall back to using mmap() only for anonymous mapping,
2395 * as if a backing file is associated we may not be able
2396 * to recover the memory in all cases.
2397 * So don't take the risk of using only mmap and fail now.
2398 */
2399 if (block->fd >= 0) {
2400 error_report("Could not remap RAM %s:%" PRIx64 "+%"
2401 PRIx64 " +%zx", block->idstr, offset,
2402 block->fd_offset, page_size);
2403 exit(1);
2404 }
2405 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) {
2406 error_report("Could not remap RAM %s:%" PRIx64 " +%zx",
2407 block->idstr, offset, page_size);
2408 exit(1);
2409 }
2410 }
2411 memory_try_enable_merging(vaddr, page_size);
2412 qemu_ram_setup_dump(vaddr, page_size);
2413 }
2414
2415 break;
2416 }
2417 }
2418 }
2419 #endif /* !_WIN32 */
2420
2421 /*
2422 * Return a host pointer to guest's ram.
2423 * For Xen, foreign mappings get created if they don't already exist.
2424 *
2425 * @block: block for the RAM to lookup (optional and may be NULL).
2426 * @addr: address within the memory region.
2427 * @size: pointer to requested size (optional and may be NULL).
2428 * size may get modified and return a value smaller than
2429 * what was requested.
2430 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2431 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2432 * (optional and may always be set to true).
2433 *
2434 * Called within RCU critical section.
2435 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2436 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2437 hwaddr *size, bool lock,
2438 bool is_write)
2439 {
2440 hwaddr len = 0;
2441
2442 if (size && *size == 0) {
2443 return NULL;
2444 }
2445
2446 if (block == NULL) {
2447 block = qemu_get_ram_block(addr);
2448 addr -= block->offset;
2449 }
2450 if (size) {
2451 *size = MIN(*size, block->max_length - addr);
2452 len = *size;
2453 }
2454
2455 if (xen_enabled() && block->host == NULL) {
2456 /* We need to check if the requested address is in the RAM
2457 * because we don't want to map the entire memory in QEMU.
2458 * In that case just map the requested area.
2459 */
2460 if (xen_mr_is_memory(block->mr)) {
2461 return xen_map_cache(block->mr, block->offset + addr,
2462 len, block->offset,
2463 lock, lock, is_write);
2464 }
2465
2466 block->host = xen_map_cache(block->mr, block->offset,
2467 block->max_length,
2468 block->offset,
2469 1, lock, is_write);
2470 }
2471
2472 return ramblock_ptr(block, addr);
2473 }
2474
2475 /*
2476 * Return a host pointer to ram allocated with qemu_ram_alloc.
2477 * This should not be used for general purpose DMA. Use address_space_map
2478 * or address_space_rw instead. For local memory (e.g. video ram) that the
2479 * device owns, use memory_region_get_ram_ptr.
2480 *
2481 * Called within RCU critical section.
2482 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2483 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2484 {
2485 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2486 }
2487
2488 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2489 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2490 {
2491 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2492 assert((uintptr_t)host >= (uintptr_t)rb->host);
2493 assert(res < rb->max_length);
2494
2495 return res;
2496 }
2497
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2498 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2499 ram_addr_t *offset)
2500 {
2501 RAMBlock *block;
2502 uint8_t *host = ptr;
2503
2504 if (xen_enabled()) {
2505 ram_addr_t ram_addr;
2506 RCU_READ_LOCK_GUARD();
2507 ram_addr = xen_ram_addr_from_mapcache(ptr);
2508 if (ram_addr == RAM_ADDR_INVALID) {
2509 return NULL;
2510 }
2511
2512 block = qemu_get_ram_block(ram_addr);
2513 if (block) {
2514 *offset = ram_addr - block->offset;
2515 }
2516 return block;
2517 }
2518
2519 RCU_READ_LOCK_GUARD();
2520 block = qatomic_rcu_read(&ram_list.mru_block);
2521 if (block && block->host && host - block->host < block->max_length) {
2522 goto found;
2523 }
2524
2525 RAMBLOCK_FOREACH(block) {
2526 /* This case append when the block is not mapped. */
2527 if (block->host == NULL) {
2528 continue;
2529 }
2530 if (host - block->host < block->max_length) {
2531 goto found;
2532 }
2533 }
2534
2535 return NULL;
2536
2537 found:
2538 *offset = (host - block->host);
2539 if (round_offset) {
2540 *offset &= TARGET_PAGE_MASK;
2541 }
2542 return block;
2543 }
2544
2545 /*
2546 * Finds the named RAMBlock
2547 *
2548 * name: The name of RAMBlock to find
2549 *
2550 * Returns: RAMBlock (or NULL if not found)
2551 */
qemu_ram_block_by_name(const char * name)2552 RAMBlock *qemu_ram_block_by_name(const char *name)
2553 {
2554 RAMBlock *block;
2555
2556 RAMBLOCK_FOREACH(block) {
2557 if (!strcmp(name, block->idstr)) {
2558 return block;
2559 }
2560 }
2561
2562 return NULL;
2563 }
2564
2565 /*
2566 * Some of the system routines need to translate from a host pointer
2567 * (typically a TLB entry) back to a ram offset.
2568 */
qemu_ram_addr_from_host(void * ptr)2569 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2570 {
2571 RAMBlock *block;
2572 ram_addr_t offset;
2573
2574 block = qemu_ram_block_from_host(ptr, false, &offset);
2575 if (!block) {
2576 return RAM_ADDR_INVALID;
2577 }
2578
2579 return block->offset + offset;
2580 }
2581
qemu_ram_addr_from_host_nofail(void * ptr)2582 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2583 {
2584 ram_addr_t ram_addr;
2585
2586 ram_addr = qemu_ram_addr_from_host(ptr);
2587 if (ram_addr == RAM_ADDR_INVALID) {
2588 error_report("Bad ram pointer %p", ptr);
2589 abort();
2590 }
2591 return ram_addr;
2592 }
2593
2594 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2595 MemTxAttrs attrs, void *buf, hwaddr len);
2596 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2597 const void *buf, hwaddr len);
2598 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2599 bool is_write, MemTxAttrs attrs);
2600
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2601 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2602 unsigned len, MemTxAttrs attrs)
2603 {
2604 subpage_t *subpage = opaque;
2605 uint8_t buf[8];
2606 MemTxResult res;
2607
2608 #if defined(DEBUG_SUBPAGE)
2609 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2610 subpage, len, addr);
2611 #endif
2612 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2613 if (res) {
2614 return res;
2615 }
2616 *data = ldn_p(buf, len);
2617 return MEMTX_OK;
2618 }
2619
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2620 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2621 uint64_t value, unsigned len, MemTxAttrs attrs)
2622 {
2623 subpage_t *subpage = opaque;
2624 uint8_t buf[8];
2625
2626 #if defined(DEBUG_SUBPAGE)
2627 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2628 " value %"PRIx64"\n",
2629 __func__, subpage, len, addr, value);
2630 #endif
2631 stn_p(buf, len, value);
2632 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2633 }
2634
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2635 static bool subpage_accepts(void *opaque, hwaddr addr,
2636 unsigned len, bool is_write,
2637 MemTxAttrs attrs)
2638 {
2639 subpage_t *subpage = opaque;
2640 #if defined(DEBUG_SUBPAGE)
2641 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2642 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2643 #endif
2644
2645 return flatview_access_valid(subpage->fv, addr + subpage->base,
2646 len, is_write, attrs);
2647 }
2648
2649 static const MemoryRegionOps subpage_ops = {
2650 .read_with_attrs = subpage_read,
2651 .write_with_attrs = subpage_write,
2652 .impl.min_access_size = 1,
2653 .impl.max_access_size = 8,
2654 .valid.min_access_size = 1,
2655 .valid.max_access_size = 8,
2656 .valid.accepts = subpage_accepts,
2657 .endianness = DEVICE_NATIVE_ENDIAN,
2658 };
2659
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2660 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2661 uint16_t section)
2662 {
2663 int idx, eidx;
2664
2665 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2666 return -1;
2667 idx = SUBPAGE_IDX(start);
2668 eidx = SUBPAGE_IDX(end);
2669 #if defined(DEBUG_SUBPAGE)
2670 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2671 __func__, mmio, start, end, idx, eidx, section);
2672 #endif
2673 for (; idx <= eidx; idx++) {
2674 mmio->sub_section[idx] = section;
2675 }
2676
2677 return 0;
2678 }
2679
subpage_init(FlatView * fv,hwaddr base)2680 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2681 {
2682 subpage_t *mmio;
2683
2684 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2685 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2686 mmio->fv = fv;
2687 mmio->base = base;
2688 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2689 NULL, TARGET_PAGE_SIZE);
2690 mmio->iomem.subpage = true;
2691 #if defined(DEBUG_SUBPAGE)
2692 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2693 mmio, base, TARGET_PAGE_SIZE);
2694 #endif
2695
2696 return mmio;
2697 }
2698
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2699 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2700 {
2701 assert(fv);
2702 MemoryRegionSection section = {
2703 .fv = fv,
2704 .mr = mr,
2705 .offset_within_address_space = 0,
2706 .offset_within_region = 0,
2707 .size = int128_2_64(),
2708 };
2709
2710 return phys_section_add(map, §ion);
2711 }
2712
io_mem_init(void)2713 static void io_mem_init(void)
2714 {
2715 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2716 NULL, UINT64_MAX);
2717 }
2718
address_space_dispatch_new(FlatView * fv)2719 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2720 {
2721 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2722 uint16_t n;
2723
2724 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2725 assert(n == PHYS_SECTION_UNASSIGNED);
2726
2727 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2728
2729 return d;
2730 }
2731
address_space_dispatch_free(AddressSpaceDispatch * d)2732 void address_space_dispatch_free(AddressSpaceDispatch *d)
2733 {
2734 phys_sections_free(&d->map);
2735 g_free(d);
2736 }
2737
do_nothing(CPUState * cpu,run_on_cpu_data d)2738 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2739 {
2740 }
2741
tcg_log_global_after_sync(MemoryListener * listener)2742 static void tcg_log_global_after_sync(MemoryListener *listener)
2743 {
2744 CPUAddressSpace *cpuas;
2745
2746 /* Wait for the CPU to end the current TB. This avoids the following
2747 * incorrect race:
2748 *
2749 * vCPU migration
2750 * ---------------------- -------------------------
2751 * TLB check -> slow path
2752 * notdirty_mem_write
2753 * write to RAM
2754 * mark dirty
2755 * clear dirty flag
2756 * TLB check -> fast path
2757 * read memory
2758 * write to RAM
2759 *
2760 * by pushing the migration thread's memory read after the vCPU thread has
2761 * written the memory.
2762 */
2763 if (replay_mode == REPLAY_MODE_NONE) {
2764 /*
2765 * VGA can make calls to this function while updating the screen.
2766 * In record/replay mode this causes a deadlock, because
2767 * run_on_cpu waits for rr mutex. Therefore no races are possible
2768 * in this case and no need for making run_on_cpu when
2769 * record/replay is enabled.
2770 */
2771 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2772 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2773 }
2774 }
2775
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2776 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2777 {
2778 CPUAddressSpace *cpuas = data.host_ptr;
2779
2780 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2781 tlb_flush(cpu);
2782 }
2783
tcg_commit(MemoryListener * listener)2784 static void tcg_commit(MemoryListener *listener)
2785 {
2786 CPUAddressSpace *cpuas;
2787 CPUState *cpu;
2788
2789 assert(tcg_enabled());
2790 /* since each CPU stores ram addresses in its TLB cache, we must
2791 reset the modified entries */
2792 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2793 cpu = cpuas->cpu;
2794
2795 /*
2796 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2797 * Otherwise we race between (1) other cpu threads and (2) ongoing
2798 * i/o for the current cpu thread, with data cached by mmu_lookup().
2799 *
2800 * In addition, queueing the work function will kick the cpu back to
2801 * the main loop, which will end the RCU critical section and reclaim
2802 * the memory data structures.
2803 *
2804 * That said, the listener is also called during realize, before
2805 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2806 */
2807 if (cpu->halt_cond) {
2808 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2809 } else {
2810 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2811 }
2812 }
2813
memory_map_init(void)2814 static void memory_map_init(void)
2815 {
2816 system_memory = g_malloc(sizeof(*system_memory));
2817
2818 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2819 address_space_init(&address_space_memory, system_memory, "memory");
2820
2821 system_io = g_malloc(sizeof(*system_io));
2822 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2823 65536);
2824 address_space_init(&address_space_io, system_io, "I/O");
2825 }
2826
get_system_memory(void)2827 MemoryRegion *get_system_memory(void)
2828 {
2829 return system_memory;
2830 }
2831
get_system_io(void)2832 MemoryRegion *get_system_io(void)
2833 {
2834 return system_io;
2835 }
2836
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2837 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2838 hwaddr length)
2839 {
2840 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2841 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2842
2843 /* We know we're only called for RAM MemoryRegions */
2844 assert(ramaddr != RAM_ADDR_INVALID);
2845 addr += ramaddr;
2846
2847 /* No early return if dirty_log_mask is or becomes 0, because
2848 * cpu_physical_memory_set_dirty_range will still call
2849 * xen_modified_memory.
2850 */
2851 if (dirty_log_mask) {
2852 dirty_log_mask =
2853 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2854 }
2855 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2856 assert(tcg_enabled());
2857 tb_invalidate_phys_range(NULL, addr, addr + length - 1);
2858 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2859 }
2860 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2861 }
2862
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2863 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2864 {
2865 /*
2866 * In principle this function would work on other memory region types too,
2867 * but the ROM device use case is the only one where this operation is
2868 * necessary. Other memory regions should use the
2869 * address_space_read/write() APIs.
2870 */
2871 assert(memory_region_is_romd(mr));
2872
2873 invalidate_and_set_dirty(mr, addr, size);
2874 }
2875
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2876 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2877 {
2878 unsigned access_size_max = mr->ops->valid.max_access_size;
2879
2880 /* Regions are assumed to support 1-4 byte accesses unless
2881 otherwise specified. */
2882 if (access_size_max == 0) {
2883 access_size_max = 4;
2884 }
2885
2886 /* Bound the maximum access by the alignment of the address. */
2887 if (!mr->ops->impl.unaligned) {
2888 unsigned align_size_max = addr & -addr;
2889 if (align_size_max != 0 && align_size_max < access_size_max) {
2890 access_size_max = align_size_max;
2891 }
2892 }
2893
2894 /* Don't attempt accesses larger than the maximum. */
2895 if (l > access_size_max) {
2896 l = access_size_max;
2897 }
2898 l = pow2floor(l);
2899
2900 return l;
2901 }
2902
prepare_mmio_access(MemoryRegion * mr)2903 bool prepare_mmio_access(MemoryRegion *mr)
2904 {
2905 bool release_lock = false;
2906
2907 if (!bql_locked()) {
2908 bql_lock();
2909 release_lock = true;
2910 }
2911 if (mr->flush_coalesced_mmio) {
2912 qemu_flush_coalesced_mmio_buffer();
2913 }
2914
2915 return release_lock;
2916 }
2917
2918 /**
2919 * flatview_access_allowed
2920 * @mr: #MemoryRegion to be accessed
2921 * @attrs: memory transaction attributes
2922 * @addr: address within that memory region
2923 * @len: the number of bytes to access
2924 *
2925 * Check if a memory transaction is allowed.
2926 *
2927 * Returns: true if transaction is allowed, false if denied.
2928 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2929 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2930 hwaddr addr, hwaddr len)
2931 {
2932 if (likely(!attrs.memory)) {
2933 return true;
2934 }
2935 if (memory_region_is_ram(mr)) {
2936 return true;
2937 }
2938 qemu_log_mask(LOG_INVALID_MEM,
2939 "Invalid access to non-RAM device at "
2940 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2941 "region '%s'\n", addr, len, memory_region_name(mr));
2942 return false;
2943 }
2944
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2945 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2946 const uint8_t *buf,
2947 hwaddr len, hwaddr mr_addr,
2948 hwaddr *l, MemoryRegion *mr)
2949 {
2950 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2951 return MEMTX_ACCESS_ERROR;
2952 }
2953
2954 if (!memory_access_is_direct(mr, true, attrs)) {
2955 uint64_t val;
2956 MemTxResult result;
2957 bool release_lock = prepare_mmio_access(mr);
2958
2959 *l = memory_access_size(mr, *l, mr_addr);
2960 /*
2961 * XXX: could force current_cpu to NULL to avoid
2962 * potential bugs
2963 */
2964
2965 /*
2966 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2967 * the buffer by following ldn_he_p().
2968 */
2969 #ifdef QEMU_STATIC_ANALYSIS
2970 assert((*l == 1 && len >= 1) ||
2971 (*l == 2 && len >= 2) ||
2972 (*l == 4 && len >= 4) ||
2973 (*l == 8 && len >= 8));
2974 #endif
2975 val = ldn_he_p(buf, *l);
2976 result = memory_region_dispatch_write(mr, mr_addr, val,
2977 size_memop(*l), attrs);
2978 if (release_lock) {
2979 bql_unlock();
2980 }
2981
2982 return result;
2983 } else {
2984 /* RAM case */
2985 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2986 false, true);
2987
2988 memmove(ram_ptr, buf, *l);
2989 invalidate_and_set_dirty(mr, mr_addr, *l);
2990
2991 return MEMTX_OK;
2992 }
2993 }
2994
2995 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2996 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2997 MemTxAttrs attrs,
2998 const void *ptr,
2999 hwaddr len, hwaddr mr_addr,
3000 hwaddr l, MemoryRegion *mr)
3001 {
3002 MemTxResult result = MEMTX_OK;
3003 const uint8_t *buf = ptr;
3004
3005 for (;;) {
3006 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3007 mr);
3008
3009 len -= l;
3010 buf += l;
3011 addr += l;
3012
3013 if (!len) {
3014 break;
3015 }
3016
3017 l = len;
3018 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3019 }
3020
3021 return result;
3022 }
3023
3024 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3025 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3026 const void *buf, hwaddr len)
3027 {
3028 hwaddr l;
3029 hwaddr mr_addr;
3030 MemoryRegion *mr;
3031
3032 l = len;
3033 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3034 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3035 return MEMTX_ACCESS_ERROR;
3036 }
3037 return flatview_write_continue(fv, addr, attrs, buf, len,
3038 mr_addr, l, mr);
3039 }
3040
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)3041 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
3042 hwaddr len, hwaddr mr_addr,
3043 hwaddr *l,
3044 MemoryRegion *mr)
3045 {
3046 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
3047 return MEMTX_ACCESS_ERROR;
3048 }
3049
3050 if (!memory_access_is_direct(mr, false, attrs)) {
3051 /* I/O case */
3052 uint64_t val;
3053 MemTxResult result;
3054 bool release_lock = prepare_mmio_access(mr);
3055
3056 *l = memory_access_size(mr, *l, mr_addr);
3057 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
3058 attrs);
3059
3060 /*
3061 * Assure Coverity (and ourselves) that we are not going to OVERRUN
3062 * the buffer by following stn_he_p().
3063 */
3064 #ifdef QEMU_STATIC_ANALYSIS
3065 assert((*l == 1 && len >= 1) ||
3066 (*l == 2 && len >= 2) ||
3067 (*l == 4 && len >= 4) ||
3068 (*l == 8 && len >= 8));
3069 #endif
3070 stn_he_p(buf, *l, val);
3071
3072 if (release_lock) {
3073 bql_unlock();
3074 }
3075 return result;
3076 } else {
3077 /* RAM case */
3078 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
3079 false, false);
3080
3081 memcpy(buf, ram_ptr, *l);
3082
3083 return MEMTX_OK;
3084 }
3085 }
3086
3087 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3088 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3089 MemTxAttrs attrs, void *ptr,
3090 hwaddr len, hwaddr mr_addr, hwaddr l,
3091 MemoryRegion *mr)
3092 {
3093 MemTxResult result = MEMTX_OK;
3094 uint8_t *buf = ptr;
3095
3096 fuzz_dma_read_cb(addr, len, mr);
3097 for (;;) {
3098 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3099
3100 len -= l;
3101 buf += l;
3102 addr += l;
3103
3104 if (!len) {
3105 break;
3106 }
3107
3108 l = len;
3109 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3110 }
3111
3112 return result;
3113 }
3114
3115 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3116 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3117 MemTxAttrs attrs, void *buf, hwaddr len)
3118 {
3119 hwaddr l;
3120 hwaddr mr_addr;
3121 MemoryRegion *mr;
3122
3123 l = len;
3124 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3125 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3126 return MEMTX_ACCESS_ERROR;
3127 }
3128 return flatview_read_continue(fv, addr, attrs, buf, len,
3129 mr_addr, l, mr);
3130 }
3131
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3132 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3133 MemTxAttrs attrs, void *buf, hwaddr len)
3134 {
3135 MemTxResult result = MEMTX_OK;
3136 FlatView *fv;
3137
3138 if (len > 0) {
3139 RCU_READ_LOCK_GUARD();
3140 fv = address_space_to_flatview(as);
3141 result = flatview_read(fv, addr, attrs, buf, len);
3142 }
3143
3144 return result;
3145 }
3146
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3147 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3148 MemTxAttrs attrs,
3149 const void *buf, hwaddr len)
3150 {
3151 MemTxResult result = MEMTX_OK;
3152 FlatView *fv;
3153
3154 if (len > 0) {
3155 RCU_READ_LOCK_GUARD();
3156 fv = address_space_to_flatview(as);
3157 result = flatview_write(fv, addr, attrs, buf, len);
3158 }
3159
3160 return result;
3161 }
3162
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)3163 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3164 void *buf, hwaddr len, bool is_write)
3165 {
3166 if (is_write) {
3167 return address_space_write(as, addr, attrs, buf, len);
3168 } else {
3169 return address_space_read_full(as, addr, attrs, buf, len);
3170 }
3171 }
3172
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)3173 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3174 uint8_t c, hwaddr len, MemTxAttrs attrs)
3175 {
3176 #define FILLBUF_SIZE 512
3177 uint8_t fillbuf[FILLBUF_SIZE];
3178 int l;
3179 MemTxResult error = MEMTX_OK;
3180
3181 memset(fillbuf, c, FILLBUF_SIZE);
3182 while (len > 0) {
3183 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3184 error |= address_space_write(as, addr, attrs, fillbuf, l);
3185 len -= l;
3186 addr += l;
3187 }
3188
3189 return error;
3190 }
3191
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3192 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3193 hwaddr len, bool is_write)
3194 {
3195 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3196 buf, len, is_write);
3197 }
3198
3199 enum write_rom_type {
3200 WRITE_DATA,
3201 FLUSH_CACHE,
3202 };
3203
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3204 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3205 hwaddr addr,
3206 MemTxAttrs attrs,
3207 const void *ptr,
3208 hwaddr len,
3209 enum write_rom_type type)
3210 {
3211 hwaddr l;
3212 uint8_t *ram_ptr;
3213 hwaddr addr1;
3214 MemoryRegion *mr;
3215 const uint8_t *buf = ptr;
3216
3217 RCU_READ_LOCK_GUARD();
3218 while (len > 0) {
3219 l = len;
3220 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3221
3222 if (!memory_region_supports_direct_access(mr)) {
3223 l = memory_access_size(mr, l, addr1);
3224 } else {
3225 /* ROM/RAM case */
3226 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3227 switch (type) {
3228 case WRITE_DATA:
3229 memcpy(ram_ptr, buf, l);
3230 invalidate_and_set_dirty(mr, addr1, l);
3231 break;
3232 case FLUSH_CACHE:
3233 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3234 break;
3235 }
3236 }
3237 len -= l;
3238 buf += l;
3239 addr += l;
3240 }
3241 return MEMTX_OK;
3242 }
3243
3244 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3245 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3246 MemTxAttrs attrs,
3247 const void *buf, hwaddr len)
3248 {
3249 return address_space_write_rom_internal(as, addr, attrs,
3250 buf, len, WRITE_DATA);
3251 }
3252
cpu_flush_icache_range(hwaddr start,hwaddr len)3253 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3254 {
3255 /*
3256 * This function should do the same thing as an icache flush that was
3257 * triggered from within the guest. For TCG we are always cache coherent,
3258 * so there is no need to flush anything. For KVM / Xen we need to flush
3259 * the host's instruction cache at least.
3260 */
3261 if (tcg_enabled()) {
3262 return;
3263 }
3264
3265 address_space_write_rom_internal(&address_space_memory,
3266 start, MEMTXATTRS_UNSPECIFIED,
3267 NULL, len, FLUSH_CACHE);
3268 }
3269
3270 /*
3271 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3272 * to detect illegal pointers passed to address_space_unmap.
3273 */
3274 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3275
3276 typedef struct {
3277 uint64_t magic;
3278 MemoryRegion *mr;
3279 hwaddr addr;
3280 size_t len;
3281 uint8_t buffer[];
3282 } BounceBuffer;
3283
3284 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3285 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3286 {
3287 QLIST_REMOVE(client, link);
3288 g_free(client);
3289 }
3290
address_space_notify_map_clients_locked(AddressSpace * as)3291 static void address_space_notify_map_clients_locked(AddressSpace *as)
3292 {
3293 AddressSpaceMapClient *client;
3294
3295 while (!QLIST_EMPTY(&as->map_client_list)) {
3296 client = QLIST_FIRST(&as->map_client_list);
3297 qemu_bh_schedule(client->bh);
3298 address_space_unregister_map_client_do(client);
3299 }
3300 }
3301
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3302 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3303 {
3304 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3305
3306 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3307 client->bh = bh;
3308 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3309 /* Write map_client_list before reading bounce_buffer_size. */
3310 smp_mb();
3311 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3312 address_space_notify_map_clients_locked(as);
3313 }
3314 }
3315
cpu_exec_init_all(void)3316 void cpu_exec_init_all(void)
3317 {
3318 qemu_mutex_init(&ram_list.mutex);
3319 /* The data structures we set up here depend on knowing the page size,
3320 * so no more changes can be made after this point.
3321 * In an ideal world, nothing we did before we had finished the
3322 * machine setup would care about the target page size, and we could
3323 * do this much later, rather than requiring board models to state
3324 * up front what their requirements are.
3325 */
3326 finalize_target_page_bits();
3327 io_mem_init();
3328 memory_map_init();
3329 }
3330
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3331 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3332 {
3333 AddressSpaceMapClient *client;
3334
3335 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3336 QLIST_FOREACH(client, &as->map_client_list, link) {
3337 if (client->bh == bh) {
3338 address_space_unregister_map_client_do(client);
3339 break;
3340 }
3341 }
3342 }
3343
address_space_notify_map_clients(AddressSpace * as)3344 static void address_space_notify_map_clients(AddressSpace *as)
3345 {
3346 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3347 address_space_notify_map_clients_locked(as);
3348 }
3349
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3350 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3351 bool is_write, MemTxAttrs attrs)
3352 {
3353 MemoryRegion *mr;
3354 hwaddr l, xlat;
3355
3356 while (len > 0) {
3357 l = len;
3358 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3359 if (!memory_access_is_direct(mr, is_write, attrs)) {
3360 l = memory_access_size(mr, l, addr);
3361 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3362 return false;
3363 }
3364 }
3365
3366 len -= l;
3367 addr += l;
3368 }
3369 return true;
3370 }
3371
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3372 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3373 hwaddr len, bool is_write,
3374 MemTxAttrs attrs)
3375 {
3376 FlatView *fv;
3377
3378 RCU_READ_LOCK_GUARD();
3379 fv = address_space_to_flatview(as);
3380 return flatview_access_valid(fv, addr, len, is_write, attrs);
3381 }
3382
3383 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3384 flatview_extend_translation(FlatView *fv, hwaddr addr,
3385 hwaddr target_len,
3386 MemoryRegion *mr, hwaddr base, hwaddr len,
3387 bool is_write, MemTxAttrs attrs)
3388 {
3389 hwaddr done = 0;
3390 hwaddr xlat;
3391 MemoryRegion *this_mr;
3392
3393 for (;;) {
3394 target_len -= len;
3395 addr += len;
3396 done += len;
3397 if (target_len == 0) {
3398 return done;
3399 }
3400
3401 len = target_len;
3402 this_mr = flatview_translate(fv, addr, &xlat,
3403 &len, is_write, attrs);
3404 if (this_mr != mr || xlat != base + done) {
3405 return done;
3406 }
3407 }
3408 }
3409
3410 /* Map a physical memory region into a host virtual address.
3411 * May map a subset of the requested range, given by and returned in *plen.
3412 * May return NULL if resources needed to perform the mapping are exhausted.
3413 * Use only for reads OR writes - not for read-modify-write operations.
3414 * Use address_space_register_map_client() to know when retrying the map
3415 * operation is likely to succeed.
3416 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3417 void *address_space_map(AddressSpace *as,
3418 hwaddr addr,
3419 hwaddr *plen,
3420 bool is_write,
3421 MemTxAttrs attrs)
3422 {
3423 hwaddr len = *plen;
3424 hwaddr l, xlat;
3425 MemoryRegion *mr;
3426 FlatView *fv;
3427
3428 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3429
3430 if (len == 0) {
3431 return NULL;
3432 }
3433
3434 l = len;
3435 RCU_READ_LOCK_GUARD();
3436 fv = address_space_to_flatview(as);
3437 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3438
3439 if (!memory_access_is_direct(mr, is_write, attrs)) {
3440 size_t used = qatomic_read(&as->bounce_buffer_size);
3441 for (;;) {
3442 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3443 size_t new_size = used + alloc;
3444 size_t actual =
3445 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3446 if (actual == used) {
3447 l = alloc;
3448 break;
3449 }
3450 used = actual;
3451 }
3452
3453 if (l == 0) {
3454 *plen = 0;
3455 return NULL;
3456 }
3457
3458 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3459 bounce->magic = BOUNCE_BUFFER_MAGIC;
3460 memory_region_ref(mr);
3461 bounce->mr = mr;
3462 bounce->addr = addr;
3463 bounce->len = l;
3464
3465 if (!is_write) {
3466 flatview_read(fv, addr, attrs,
3467 bounce->buffer, l);
3468 }
3469
3470 *plen = l;
3471 return bounce->buffer;
3472 }
3473
3474 memory_region_ref(mr);
3475 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3476 l, is_write, attrs);
3477 fuzz_dma_read_cb(addr, *plen, mr);
3478 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3479 }
3480
3481 /* Unmaps a memory region previously mapped by address_space_map().
3482 * Will also mark the memory as dirty if is_write is true. access_len gives
3483 * the amount of memory that was actually read or written by the caller.
3484 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3485 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3486 bool is_write, hwaddr access_len)
3487 {
3488 MemoryRegion *mr;
3489 ram_addr_t addr1;
3490
3491 mr = memory_region_from_host(buffer, &addr1);
3492 if (mr != NULL) {
3493 if (is_write) {
3494 invalidate_and_set_dirty(mr, addr1, access_len);
3495 }
3496 if (xen_enabled()) {
3497 xen_invalidate_map_cache_entry(buffer);
3498 }
3499 memory_region_unref(mr);
3500 return;
3501 }
3502
3503
3504 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3505 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3506
3507 if (is_write) {
3508 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3509 bounce->buffer, access_len);
3510 }
3511
3512 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3513 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3514 memory_region_unref(bounce->mr);
3515 g_free(bounce);
3516 /* Write bounce_buffer_size before reading map_client_list. */
3517 smp_mb();
3518 address_space_notify_map_clients(as);
3519 }
3520
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3521 void *cpu_physical_memory_map(hwaddr addr,
3522 hwaddr *plen,
3523 bool is_write)
3524 {
3525 return address_space_map(&address_space_memory, addr, plen, is_write,
3526 MEMTXATTRS_UNSPECIFIED);
3527 }
3528
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3529 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3530 bool is_write, hwaddr access_len)
3531 {
3532 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3533 }
3534
3535 #define ARG1_DECL AddressSpace *as
3536 #define ARG1 as
3537 #define SUFFIX
3538 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3539 #define RCU_READ_LOCK(...) rcu_read_lock()
3540 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3541 #include "memory_ldst.c.inc"
3542
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3543 int64_t address_space_cache_init(MemoryRegionCache *cache,
3544 AddressSpace *as,
3545 hwaddr addr,
3546 hwaddr len,
3547 bool is_write)
3548 {
3549 AddressSpaceDispatch *d;
3550 hwaddr l;
3551 MemoryRegion *mr;
3552 Int128 diff;
3553
3554 assert(len > 0);
3555
3556 l = len;
3557 cache->fv = address_space_get_flatview(as);
3558 d = flatview_to_dispatch(cache->fv);
3559 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3560
3561 /*
3562 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3563 * Take that into account to compute how many bytes are there between
3564 * cache->xlat and the end of the section.
3565 */
3566 diff = int128_sub(cache->mrs.size,
3567 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3568 l = int128_get64(int128_min(diff, int128_make64(l)));
3569
3570 mr = cache->mrs.mr;
3571 memory_region_ref(mr);
3572 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) {
3573 /* We don't care about the memory attributes here as we're only
3574 * doing this if we found actual RAM, which behaves the same
3575 * regardless of attributes; so UNSPECIFIED is fine.
3576 */
3577 l = flatview_extend_translation(cache->fv, addr, len, mr,
3578 cache->xlat, l, is_write,
3579 MEMTXATTRS_UNSPECIFIED);
3580 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3581 is_write);
3582 } else {
3583 cache->ptr = NULL;
3584 }
3585
3586 cache->len = l;
3587 cache->is_write = is_write;
3588 return l;
3589 }
3590
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3591 void address_space_cache_invalidate(MemoryRegionCache *cache,
3592 hwaddr addr,
3593 hwaddr access_len)
3594 {
3595 assert(cache->is_write);
3596 if (likely(cache->ptr)) {
3597 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3598 }
3599 }
3600
address_space_cache_destroy(MemoryRegionCache * cache)3601 void address_space_cache_destroy(MemoryRegionCache *cache)
3602 {
3603 if (!cache->mrs.mr) {
3604 return;
3605 }
3606
3607 if (xen_enabled()) {
3608 xen_invalidate_map_cache_entry(cache->ptr);
3609 }
3610 memory_region_unref(cache->mrs.mr);
3611 flatview_unref(cache->fv);
3612 cache->mrs.mr = NULL;
3613 cache->fv = NULL;
3614 }
3615
3616 /* Called from RCU critical section. This function has the same
3617 * semantics as address_space_translate, but it only works on a
3618 * predefined range of a MemoryRegion that was mapped with
3619 * address_space_cache_init.
3620 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3621 static inline MemoryRegion *address_space_translate_cached(
3622 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3623 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3624 {
3625 MemoryRegionSection section;
3626 MemoryRegion *mr;
3627 IOMMUMemoryRegion *iommu_mr;
3628 AddressSpace *target_as;
3629
3630 assert(!cache->ptr);
3631 *xlat = addr + cache->xlat;
3632
3633 mr = cache->mrs.mr;
3634 iommu_mr = memory_region_get_iommu(mr);
3635 if (!iommu_mr) {
3636 /* MMIO region. */
3637 return mr;
3638 }
3639
3640 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3641 NULL, is_write, true,
3642 &target_as, attrs);
3643 return section.mr;
3644 }
3645
3646 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3647 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3648 const void *ptr,
3649 hwaddr len,
3650 hwaddr mr_addr,
3651 hwaddr l,
3652 MemoryRegion *mr)
3653 {
3654 MemTxResult result = MEMTX_OK;
3655 const uint8_t *buf = ptr;
3656
3657 for (;;) {
3658 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3659 mr);
3660
3661 len -= l;
3662 buf += l;
3663 mr_addr += l;
3664
3665 if (!len) {
3666 break;
3667 }
3668
3669 l = len;
3670 }
3671
3672 return result;
3673 }
3674
3675 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3676 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3677 void *ptr, hwaddr len,
3678 hwaddr mr_addr, hwaddr l,
3679 MemoryRegion *mr)
3680 {
3681 MemTxResult result = MEMTX_OK;
3682 uint8_t *buf = ptr;
3683
3684 for (;;) {
3685 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3686 len -= l;
3687 buf += l;
3688 mr_addr += l;
3689
3690 if (!len) {
3691 break;
3692 }
3693 l = len;
3694 }
3695
3696 return result;
3697 }
3698
3699 /* Called from RCU critical section. address_space_read_cached uses this
3700 * out of line function when the target is an MMIO or IOMMU region.
3701 */
3702 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3703 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3704 void *buf, hwaddr len)
3705 {
3706 hwaddr mr_addr, l;
3707 MemoryRegion *mr;
3708
3709 l = len;
3710 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3711 MEMTXATTRS_UNSPECIFIED);
3712 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3713 buf, len, mr_addr, l, mr);
3714 }
3715
3716 /* Called from RCU critical section. address_space_write_cached uses this
3717 * out of line function when the target is an MMIO or IOMMU region.
3718 */
3719 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3720 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3721 const void *buf, hwaddr len)
3722 {
3723 hwaddr mr_addr, l;
3724 MemoryRegion *mr;
3725
3726 l = len;
3727 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3728 MEMTXATTRS_UNSPECIFIED);
3729 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3730 buf, len, mr_addr, l, mr);
3731 }
3732
3733 #define ARG1_DECL MemoryRegionCache *cache
3734 #define ARG1 cache
3735 #define SUFFIX _cached_slow
3736 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3737 #define RCU_READ_LOCK() ((void)0)
3738 #define RCU_READ_UNLOCK() ((void)0)
3739 #include "memory_ldst.c.inc"
3740
3741 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3742 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3743 void *ptr, size_t len, bool is_write)
3744 {
3745 hwaddr phys_addr;
3746 vaddr l, page;
3747 uint8_t *buf = ptr;
3748
3749 cpu_synchronize_state(cpu);
3750 while (len > 0) {
3751 int asidx;
3752 MemTxAttrs attrs;
3753 MemTxResult res;
3754
3755 page = addr & TARGET_PAGE_MASK;
3756 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3757 asidx = cpu_asidx_from_attrs(cpu, attrs);
3758 /* if no physical page mapped, return an error */
3759 if (phys_addr == -1)
3760 return -1;
3761 l = (page + TARGET_PAGE_SIZE) - addr;
3762 if (l > len)
3763 l = len;
3764 phys_addr += (addr & ~TARGET_PAGE_MASK);
3765 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3766 l, is_write);
3767 if (res != MEMTX_OK) {
3768 return -1;
3769 }
3770 len -= l;
3771 buf += l;
3772 addr += l;
3773 }
3774 return 0;
3775 }
3776
cpu_physical_memory_is_io(hwaddr phys_addr)3777 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3778 {
3779 MemoryRegion*mr;
3780 hwaddr l = 1;
3781
3782 RCU_READ_LOCK_GUARD();
3783 mr = address_space_translate(&address_space_memory,
3784 phys_addr, &phys_addr, &l, false,
3785 MEMTXATTRS_UNSPECIFIED);
3786
3787 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3788 }
3789
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3790 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3791 {
3792 RAMBlock *block;
3793 int ret = 0;
3794
3795 RCU_READ_LOCK_GUARD();
3796 RAMBLOCK_FOREACH(block) {
3797 ret = func(block, opaque);
3798 if (ret) {
3799 break;
3800 }
3801 }
3802 return ret;
3803 }
3804
3805 /*
3806 * Unmap pages of memory from start to start+length such that
3807 * they a) read as 0, b) Trigger whatever fault mechanism
3808 * the OS provides for postcopy.
3809 * The pages must be unmapped by the end of the function.
3810 * Returns: 0 on success, none-0 on failure
3811 *
3812 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3813 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3814 {
3815 int ret = -1;
3816
3817 uint8_t *host_startaddr = rb->host + start;
3818
3819 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3820 error_report("%s: Unaligned start address: %p",
3821 __func__, host_startaddr);
3822 goto err;
3823 }
3824
3825 if ((start + length) <= rb->max_length) {
3826 bool need_madvise, need_fallocate;
3827 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3828 error_report("%s: Unaligned length: %zx", __func__, length);
3829 goto err;
3830 }
3831
3832 errno = ENOTSUP; /* If we are missing MADVISE etc */
3833
3834 /* The logic here is messy;
3835 * madvise DONTNEED fails for hugepages
3836 * fallocate works on hugepages and shmem
3837 * shared anonymous memory requires madvise REMOVE
3838 */
3839 need_madvise = (rb->page_size == qemu_real_host_page_size());
3840 need_fallocate = rb->fd != -1;
3841 if (need_fallocate) {
3842 /* For a file, this causes the area of the file to be zero'd
3843 * if read, and for hugetlbfs also causes it to be unmapped
3844 * so a userfault will trigger.
3845 */
3846 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3847 /*
3848 * fallocate() will fail with readonly files. Let's print a
3849 * proper error message.
3850 */
3851 if (rb->flags & RAM_READONLY_FD) {
3852 error_report("%s: Discarding RAM with readonly files is not"
3853 " supported", __func__);
3854 goto err;
3855
3856 }
3857 /*
3858 * We'll discard data from the actual file, even though we only
3859 * have a MAP_PRIVATE mapping, possibly messing with other
3860 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3861 * change that behavior whithout violating the promised
3862 * semantics of ram_block_discard_range().
3863 *
3864 * Only warn, because it works as long as nobody else uses that
3865 * file.
3866 */
3867 if (!qemu_ram_is_shared(rb)) {
3868 warn_report_once("%s: Discarding RAM"
3869 " in private file mappings is possibly"
3870 " dangerous, because it will modify the"
3871 " underlying file and will affect other"
3872 " users of the file", __func__);
3873 }
3874
3875 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3876 start + rb->fd_offset, length);
3877 if (ret) {
3878 ret = -errno;
3879 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64
3880 " +%zx (%d)", __func__, rb->idstr, start,
3881 rb->fd_offset, length, ret);
3882 goto err;
3883 }
3884 #else
3885 ret = -ENOSYS;
3886 error_report("%s: fallocate not available/file"
3887 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__,
3888 rb->idstr, start, rb->fd_offset, length, ret);
3889 goto err;
3890 #endif
3891 }
3892 if (need_madvise) {
3893 /* For normal RAM this causes it to be unmapped,
3894 * for shared memory it causes the local mapping to disappear
3895 * and to fall back on the file contents (which we just
3896 * fallocate'd away).
3897 */
3898 #if defined(CONFIG_MADVISE)
3899 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3900 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3901 } else {
3902 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3903 }
3904 if (ret) {
3905 ret = -errno;
3906 error_report("%s: Failed to discard range "
3907 "%s:%" PRIx64 " +%zx (%d)",
3908 __func__, rb->idstr, start, length, ret);
3909 goto err;
3910 }
3911 #else
3912 ret = -ENOSYS;
3913 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3914 __func__, rb->idstr, start, length, ret);
3915 goto err;
3916 #endif
3917 }
3918 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3919 need_madvise, need_fallocate, ret);
3920 } else {
3921 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3922 __func__, rb->idstr, start, length, rb->max_length);
3923 }
3924
3925 err:
3926 return ret;
3927 }
3928
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3929 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3930 size_t length)
3931 {
3932 int ret = -1;
3933
3934 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3935 /* ignore fd_offset with guest_memfd */
3936 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3937 start, length);
3938
3939 if (ret) {
3940 ret = -errno;
3941 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3942 __func__, rb->idstr, start, length, ret);
3943 }
3944 #else
3945 ret = -ENOSYS;
3946 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3947 __func__, rb->idstr, start, length, ret);
3948 #endif
3949
3950 return ret;
3951 }
3952
ramblock_is_pmem(RAMBlock * rb)3953 bool ramblock_is_pmem(RAMBlock *rb)
3954 {
3955 return rb->flags & RAM_PMEM;
3956 }
3957
mtree_print_phys_entries(int start,int end,int skip,int ptr)3958 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3959 {
3960 if (start == end - 1) {
3961 qemu_printf("\t%3d ", start);
3962 } else {
3963 qemu_printf("\t%3d..%-3d ", start, end - 1);
3964 }
3965 qemu_printf(" skip=%d ", skip);
3966 if (ptr == PHYS_MAP_NODE_NIL) {
3967 qemu_printf(" ptr=NIL");
3968 } else if (!skip) {
3969 qemu_printf(" ptr=#%d", ptr);
3970 } else {
3971 qemu_printf(" ptr=[%d]", ptr);
3972 }
3973 qemu_printf("\n");
3974 }
3975
3976 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3977 int128_sub((size), int128_one())) : 0)
3978
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3979 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3980 {
3981 int i;
3982
3983 qemu_printf(" Dispatch\n");
3984 qemu_printf(" Physical sections\n");
3985
3986 for (i = 0; i < d->map.sections_nb; ++i) {
3987 MemoryRegionSection *s = d->map.sections + i;
3988 const char *names[] = { " [unassigned]", " [not dirty]",
3989 " [ROM]", " [watch]" };
3990
3991 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3992 " %s%s%s%s%s",
3993 i,
3994 s->offset_within_address_space,
3995 s->offset_within_address_space + MR_SIZE(s->size),
3996 s->mr->name ? s->mr->name : "(noname)",
3997 i < ARRAY_SIZE(names) ? names[i] : "",
3998 s->mr == root ? " [ROOT]" : "",
3999 s == d->mru_section ? " [MRU]" : "",
4000 s->mr->is_iommu ? " [iommu]" : "");
4001
4002 if (s->mr->alias) {
4003 qemu_printf(" alias=%s", s->mr->alias->name ?
4004 s->mr->alias->name : "noname");
4005 }
4006 qemu_printf("\n");
4007 }
4008
4009 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4010 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4011 for (i = 0; i < d->map.nodes_nb; ++i) {
4012 int j, jprev;
4013 PhysPageEntry prev;
4014 Node *n = d->map.nodes + i;
4015
4016 qemu_printf(" [%d]\n", i);
4017
4018 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4019 PhysPageEntry *pe = *n + j;
4020
4021 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4022 continue;
4023 }
4024
4025 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4026
4027 jprev = j;
4028 prev = *pe;
4029 }
4030
4031 if (jprev != ARRAY_SIZE(*n)) {
4032 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4033 }
4034 }
4035 }
4036
4037 /* Require any discards to work. */
4038 static unsigned int ram_block_discard_required_cnt;
4039 /* Require only coordinated discards to work. */
4040 static unsigned int ram_block_coordinated_discard_required_cnt;
4041 /* Disable any discards. */
4042 static unsigned int ram_block_discard_disabled_cnt;
4043 /* Disable only uncoordinated discards. */
4044 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
4045 static QemuMutex ram_block_discard_disable_mutex;
4046
ram_block_discard_disable_mutex_lock(void)4047 static void ram_block_discard_disable_mutex_lock(void)
4048 {
4049 static gsize initialized;
4050
4051 if (g_once_init_enter(&initialized)) {
4052 qemu_mutex_init(&ram_block_discard_disable_mutex);
4053 g_once_init_leave(&initialized, 1);
4054 }
4055 qemu_mutex_lock(&ram_block_discard_disable_mutex);
4056 }
4057
ram_block_discard_disable_mutex_unlock(void)4058 static void ram_block_discard_disable_mutex_unlock(void)
4059 {
4060 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
4061 }
4062
ram_block_discard_disable(bool state)4063 int ram_block_discard_disable(bool state)
4064 {
4065 int ret = 0;
4066
4067 ram_block_discard_disable_mutex_lock();
4068 if (!state) {
4069 ram_block_discard_disabled_cnt--;
4070 } else if (ram_block_discard_required_cnt ||
4071 ram_block_coordinated_discard_required_cnt) {
4072 ret = -EBUSY;
4073 } else {
4074 ram_block_discard_disabled_cnt++;
4075 }
4076 ram_block_discard_disable_mutex_unlock();
4077 return ret;
4078 }
4079
ram_block_uncoordinated_discard_disable(bool state)4080 int ram_block_uncoordinated_discard_disable(bool state)
4081 {
4082 int ret = 0;
4083
4084 ram_block_discard_disable_mutex_lock();
4085 if (!state) {
4086 ram_block_uncoordinated_discard_disabled_cnt--;
4087 } else if (ram_block_discard_required_cnt) {
4088 ret = -EBUSY;
4089 } else {
4090 ram_block_uncoordinated_discard_disabled_cnt++;
4091 }
4092 ram_block_discard_disable_mutex_unlock();
4093 return ret;
4094 }
4095
ram_block_discard_require(bool state)4096 int ram_block_discard_require(bool state)
4097 {
4098 int ret = 0;
4099
4100 ram_block_discard_disable_mutex_lock();
4101 if (!state) {
4102 ram_block_discard_required_cnt--;
4103 } else if (ram_block_discard_disabled_cnt ||
4104 ram_block_uncoordinated_discard_disabled_cnt) {
4105 ret = -EBUSY;
4106 } else {
4107 ram_block_discard_required_cnt++;
4108 }
4109 ram_block_discard_disable_mutex_unlock();
4110 return ret;
4111 }
4112
ram_block_coordinated_discard_require(bool state)4113 int ram_block_coordinated_discard_require(bool state)
4114 {
4115 int ret = 0;
4116
4117 ram_block_discard_disable_mutex_lock();
4118 if (!state) {
4119 ram_block_coordinated_discard_required_cnt--;
4120 } else if (ram_block_discard_disabled_cnt) {
4121 ret = -EBUSY;
4122 } else {
4123 ram_block_coordinated_discard_required_cnt++;
4124 }
4125 ram_block_discard_disable_mutex_unlock();
4126 return ret;
4127 }
4128
ram_block_discard_is_disabled(void)4129 bool ram_block_discard_is_disabled(void)
4130 {
4131 return qatomic_read(&ram_block_discard_disabled_cnt) ||
4132 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
4133 }
4134
ram_block_discard_is_required(void)4135 bool ram_block_discard_is_required(void)
4136 {
4137 return qatomic_read(&ram_block_discard_required_cnt) ||
4138 qatomic_read(&ram_block_coordinated_discard_required_cnt);
4139 }
4140
4141 /*
4142 * Return true if ram is compatible with CPR. Do not exclude rom,
4143 * because the rom file could change in new QEMU.
4144 */
ram_is_cpr_compatible(RAMBlock * rb)4145 static bool ram_is_cpr_compatible(RAMBlock *rb)
4146 {
4147 MemoryRegion *mr = rb->mr;
4148
4149 if (!mr || !memory_region_is_ram(mr)) {
4150 return true;
4151 }
4152
4153 /* Ram device is remapped in new QEMU */
4154 if (memory_region_is_ram_device(mr)) {
4155 return true;
4156 }
4157
4158 /*
4159 * A file descriptor is passed to new QEMU and remapped, or its backing
4160 * file is reopened and mapped. It must be shared to avoid COW.
4161 */
4162 if (rb->fd >= 0 && qemu_ram_is_shared(rb)) {
4163 return true;
4164 }
4165
4166 return false;
4167 }
4168
4169 /*
4170 * Add a blocker for each volatile ram block. This function should only be
4171 * called after we know that the block is migratable. Non-migratable blocks
4172 * are either re-created in new QEMU, or are handled specially, or are covered
4173 * by a device-level CPR blocker.
4174 */
ram_block_add_cpr_blocker(RAMBlock * rb,Error ** errp)4175 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp)
4176 {
4177 assert(qemu_ram_is_migratable(rb));
4178
4179 if (ram_is_cpr_compatible(rb)) {
4180 return;
4181 }
4182
4183 error_setg(&rb->cpr_blocker,
4184 "Memory region %s is not compatible with CPR. share=on is "
4185 "required for memory-backend objects, and aux-ram-share=on is "
4186 "required.", memory_region_name(rb->mr));
4187 migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER,
4188 -1);
4189 }
4190
ram_block_del_cpr_blocker(RAMBlock * rb)4191 void ram_block_del_cpr_blocker(RAMBlock *rb)
4192 {
4193 migrate_del_blocker(&rb->cpr_blocker);
4194 }
4195