xref: /linux/include/linux/pid.h (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PID_H
3 #define _LINUX_PID_H
4 
5 #include <linux/pid_types.h>
6 #include <linux/rculist.h>
7 #include <linux/rcupdate.h>
8 #include <linux/refcount.h>
9 #include <linux/sched.h>
10 #include <linux/wait.h>
11 
12 /*
13  * What is struct pid?
14  *
15  * A struct pid is the kernel's internal notion of a process identifier.
16  * It refers to individual tasks, process groups, and sessions.  While
17  * there are processes attached to it the struct pid lives in a hash
18  * table, so it and then the processes that it refers to can be found
19  * quickly from the numeric pid value.  The attached processes may be
20  * quickly accessed by following pointers from struct pid.
21  *
22  * Storing pid_t values in the kernel and referring to them later has a
23  * problem.  The process originally with that pid may have exited and the
24  * pid allocator wrapped, and another process could have come along
25  * and been assigned that pid.
26  *
27  * Referring to user space processes by holding a reference to struct
28  * task_struct has a problem.  When the user space process exits
29  * the now useless task_struct is still kept.  A task_struct plus a
30  * stack consumes around 10K of low kernel memory.  More precisely
31  * this is THREAD_SIZE + sizeof(struct task_struct).  By comparison
32  * a struct pid is about 64 bytes.
33  *
34  * Holding a reference to struct pid solves both of these problems.
35  * It is small so holding a reference does not consume a lot of
36  * resources, and since a new struct pid is allocated when the numeric pid
37  * value is reused (when pids wrap around) we don't mistakenly refer to new
38  * processes.
39  */
40 
41 
42 /*
43  * struct upid is used to get the id of the struct pid, as it is
44  * seen in particular namespace. Later the struct pid is found with
45  * find_pid_ns() using the int nr and struct pid_namespace *ns.
46  */
47 
48 #define RESERVED_PIDS 300
49 
50 struct pidfs_attr;
51 
52 struct upid {
53 	int nr;
54 	struct pid_namespace *ns;
55 };
56 
57 struct pid {
58 	refcount_t count;
59 	unsigned int level;
60 	spinlock_t lock;
61 	struct {
62 		u64 ino;
63 		struct rb_node pidfs_node;
64 		struct dentry *stashed;
65 		struct pidfs_attr *attr;
66 	};
67 	/* lists of tasks that use this pid */
68 	struct hlist_head tasks[PIDTYPE_MAX];
69 	struct hlist_head inodes;
70 	/* wait queue for pidfd notifications */
71 	wait_queue_head_t wait_pidfd;
72 	struct rcu_head rcu;
73 	struct upid numbers[];
74 };
75 
76 extern seqcount_spinlock_t pidmap_lock_seq;
77 extern struct pid init_struct_pid;
78 
79 struct file;
80 
81 struct pid *pidfd_pid(const struct file *file);
82 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags);
83 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags);
84 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file);
85 void do_notify_pidfd(struct task_struct *task);
86 
get_pid(struct pid * pid)87 static inline struct pid *get_pid(struct pid *pid)
88 {
89 	if (pid)
90 		refcount_inc(&pid->count);
91 	return pid;
92 }
93 
94 extern void put_pid(struct pid *pid);
95 extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
pid_has_task(struct pid * pid,enum pid_type type)96 static inline bool pid_has_task(struct pid *pid, enum pid_type type)
97 {
98 	return !hlist_empty(&pid->tasks[type]);
99 }
100 extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
101 
102 extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
103 
104 /*
105  * these helpers must be called with the tasklist_lock write-held.
106  */
107 extern void attach_pid(struct task_struct *task, enum pid_type);
108 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type);
109 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type,
110 		struct pid *pid);
111 extern void exchange_tids(struct task_struct *task, struct task_struct *old);
112 extern void transfer_pid(struct task_struct *old, struct task_struct *new,
113 			 enum pid_type);
114 
115 /*
116  * look up a PID in the hash table. Must be called with the tasklist_lock
117  * or rcu_read_lock() held.
118  *
119  * find_pid_ns() finds the pid in the namespace specified
120  * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
121  *
122  * see also find_task_by_vpid() set in include/linux/sched.h
123  */
124 extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
125 extern struct pid *find_vpid(int nr);
126 
127 /*
128  * Lookup a PID in the hash table, and return with it's count elevated.
129  */
130 extern struct pid *find_get_pid(int nr);
131 extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
132 
133 extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
134 			     size_t set_tid_size);
135 extern void free_pid(struct pid *pid);
136 void free_pids(struct pid **pids);
137 extern void disable_pid_allocation(struct pid_namespace *ns);
138 
139 /*
140  * ns_of_pid() returns the pid namespace in which the specified pid was
141  * allocated.
142  *
143  * NOTE:
144  * 	ns_of_pid() is expected to be called for a process (task) that has
145  * 	an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
146  * 	is expected to be non-NULL. If @pid is NULL, caller should handle
147  * 	the resulting NULL pid-ns.
148  */
ns_of_pid(struct pid * pid)149 static inline struct pid_namespace *ns_of_pid(struct pid *pid)
150 {
151 	struct pid_namespace *ns = NULL;
152 	if (pid)
153 		ns = pid->numbers[pid->level].ns;
154 	return ns;
155 }
156 
157 /*
158  * is_child_reaper returns true if the pid is the init process
159  * of the current namespace. As this one could be checked before
160  * pid_ns->child_reaper is assigned in copy_process, we check
161  * with the pid number.
162  */
is_child_reaper(struct pid * pid)163 static inline bool is_child_reaper(struct pid *pid)
164 {
165 	return pid->numbers[pid->level].nr == 1;
166 }
167 
168 /*
169  * the helpers to get the pid's id seen from different namespaces
170  *
171  * pid_nr()    : global id, i.e. the id seen from the init namespace;
172  * pid_vnr()   : virtual id, i.e. the id seen from the pid namespace of
173  *               current.
174  * pid_nr_ns() : id seen from the ns specified.
175  *
176  * see also task_xid_nr() etc in include/linux/sched.h
177  */
178 
pid_nr(struct pid * pid)179 static inline pid_t pid_nr(struct pid *pid)
180 {
181 	pid_t nr = 0;
182 	if (pid)
183 		nr = pid->numbers[0].nr;
184 	return nr;
185 }
186 
187 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
188 pid_t pid_vnr(struct pid *pid);
189 
190 #define do_each_pid_task(pid, type, task)				\
191 	do {								\
192 		if ((pid) != NULL)					\
193 			hlist_for_each_entry_rcu((task),		\
194 				&(pid)->tasks[type], pid_links[type]) {
195 
196 			/*
197 			 * Both old and new leaders may be attached to
198 			 * the same pid in the middle of de_thread().
199 			 */
200 #define while_each_pid_task(pid, type, task)				\
201 				if (type == PIDTYPE_PID)		\
202 					break;				\
203 			}						\
204 	} while (0)
205 
206 #define do_each_pid_thread(pid, type, task)				\
207 	do_each_pid_task(pid, type, task) {				\
208 		struct task_struct *tg___ = task;			\
209 		for_each_thread(tg___, task) {
210 
211 #define while_each_pid_thread(pid, type, task)				\
212 		}							\
213 		task = tg___;						\
214 	} while_each_pid_task(pid, type, task)
215 
task_pid(struct task_struct * task)216 static inline struct pid *task_pid(struct task_struct *task)
217 {
218 	return task->thread_pid;
219 }
220 
221 /*
222  * the helpers to get the task's different pids as they are seen
223  * from various namespaces
224  *
225  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
226  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
227  *                     current.
228  * task_xid_nr_ns()  : id seen from the ns specified;
229  *
230  * see also pid_nr() etc in include/linux/pid.h
231  */
232 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
233 
task_pid_nr(struct task_struct * tsk)234 static inline pid_t task_pid_nr(struct task_struct *tsk)
235 {
236 	return tsk->pid;
237 }
238 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)239 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
240 {
241 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
242 }
243 
task_pid_vnr(struct task_struct * tsk)244 static inline pid_t task_pid_vnr(struct task_struct *tsk)
245 {
246 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
247 }
248 
249 
task_tgid_nr(struct task_struct * tsk)250 static inline pid_t task_tgid_nr(struct task_struct *tsk)
251 {
252 	return tsk->tgid;
253 }
254 
255 /**
256  * pid_alive - check that a task structure is not stale
257  * @p: Task structure to be checked.
258  *
259  * Test if a process is not yet dead (at most zombie state)
260  * If pid_alive fails, then pointers within the task structure
261  * can be stale and must not be dereferenced.
262  *
263  * Return: 1 if the process is alive. 0 otherwise.
264  */
pid_alive(const struct task_struct * p)265 static inline int pid_alive(const struct task_struct *p)
266 {
267 	return p->thread_pid != NULL;
268 }
269 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)270 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
271 {
272 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
273 }
274 
task_pgrp_vnr(struct task_struct * tsk)275 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
276 {
277 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
278 }
279 
280 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)281 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
282 {
283 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
284 }
285 
task_session_vnr(struct task_struct * tsk)286 static inline pid_t task_session_vnr(struct task_struct *tsk)
287 {
288 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
289 }
290 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)291 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
292 {
293 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
294 }
295 
task_tgid_vnr(struct task_struct * tsk)296 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
297 {
298 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
299 }
300 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)301 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
302 {
303 	pid_t pid = 0;
304 
305 	rcu_read_lock();
306 	if (pid_alive(tsk))
307 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
308 	rcu_read_unlock();
309 
310 	return pid;
311 }
312 
task_ppid_nr(const struct task_struct * tsk)313 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
314 {
315 	return task_ppid_nr_ns(tsk, &init_pid_ns);
316 }
317 
318 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)319 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
320 {
321 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
322 }
323 
324 /**
325  * is_global_init - check if a task structure is init. Since init
326  * is free to have sub-threads we need to check tgid.
327  * @tsk: Task structure to be checked.
328  *
329  * Check if a task structure is the first user space task the kernel created.
330  *
331  * Return: 1 if the task structure is init. 0 otherwise.
332  */
is_global_init(struct task_struct * tsk)333 static inline int is_global_init(struct task_struct *tsk)
334 {
335 	return task_tgid_nr(tsk) == 1;
336 }
337 
338 #endif /* _LINUX_PID_H */
339