1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66
67 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69 /* let's not notify more than 100 times per second */
70 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71
72 /*
73 * To avoid confusing the compiler (and generating warnings) with code
74 * that attempts to access what would be a 0-element array (i.e. sized
75 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
76 * constant expression can be added.
77 */
78 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
79
80 /*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_lock protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90 DEFINE_MUTEX(cgroup_mutex);
91 DEFINE_SPINLOCK(css_set_lock);
92
93 #if (defined CONFIG_PROVE_RCU || defined CONFIG_LOCKDEP)
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #endif
97
98 DEFINE_SPINLOCK(trace_cgroup_path_lock);
99 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
100 static bool cgroup_debug __read_mostly;
101
102 /*
103 * Protects cgroup_idr and css_idr so that IDs can be released without
104 * grabbing cgroup_mutex.
105 */
106 static DEFINE_SPINLOCK(cgroup_idr_lock);
107
108 /*
109 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
110 * against file removal/re-creation across css hiding.
111 */
112 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
113
114 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
115
116 #define cgroup_assert_mutex_or_rcu_locked() \
117 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
118 !lockdep_is_held(&cgroup_mutex), \
119 "cgroup_mutex or RCU read lock required");
120
121 /*
122 * cgroup destruction makes heavy use of work items and there can be a lot
123 * of concurrent destructions. Use a separate workqueue so that cgroup
124 * destruction work items don't end up filling up max_active of system_wq
125 * which may lead to deadlock.
126 */
127 static struct workqueue_struct *cgroup_destroy_wq;
128
129 /* generate an array of cgroup subsystem pointers */
130 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
131 struct cgroup_subsys *cgroup_subsys[] = {
132 #include <linux/cgroup_subsys.h>
133 };
134 #undef SUBSYS
135
136 /* array of cgroup subsystem names */
137 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
138 static const char *cgroup_subsys_name[] = {
139 #include <linux/cgroup_subsys.h>
140 };
141 #undef SUBSYS
142
143 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
144 #define SUBSYS(_x) \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
146 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
148 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
149 #include <linux/cgroup_subsys.h>
150 #undef SUBSYS
151
152 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
153 static struct static_key_true *cgroup_subsys_enabled_key[] = {
154 #include <linux/cgroup_subsys.h>
155 };
156 #undef SUBSYS
157
158 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
159 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
160 #include <linux/cgroup_subsys.h>
161 };
162 #undef SUBSYS
163
164 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
165
166 /* the default hierarchy */
167 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
169
170 /*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174 bool cgrp_dfl_visible;
175
176 /* some controllers are not supported in the default hierarchy */
177 static u16 cgrp_dfl_inhibit_ss_mask;
178
179 /* some controllers are implicitly enabled on the default hierarchy */
180 static u16 cgrp_dfl_implicit_ss_mask;
181
182 /* some controllers can be threaded on the default hierarchy */
183 static u16 cgrp_dfl_threaded_ss_mask;
184
185 /* The list of hierarchy roots */
186 LIST_HEAD(cgroup_roots);
187 static int cgroup_root_count;
188
189 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
190 static DEFINE_IDR(cgroup_hierarchy_idr);
191
192 /*
193 * Assign a monotonically increasing serial number to csses. It guarantees
194 * cgroups with bigger numbers are newer than those with smaller numbers.
195 * Also, as csses are always appended to the parent's ->children list, it
196 * guarantees that sibling csses are always sorted in the ascending serial
197 * number order on the list. Protected by cgroup_mutex.
198 */
199 static u64 css_serial_nr_next = 1;
200
201 /*
202 * These bitmasks identify subsystems with specific features to avoid
203 * having to do iterative checks repeatedly.
204 */
205 static u16 have_fork_callback __read_mostly;
206 static u16 have_exit_callback __read_mostly;
207 static u16 have_release_callback __read_mostly;
208 static u16 have_canfork_callback __read_mostly;
209
210 static bool have_favordynmods __ro_after_init = IS_ENABLED(CONFIG_CGROUP_FAVOR_DYNMODS);
211
212 /* cgroup namespace for init task */
213 struct cgroup_namespace init_cgroup_ns = {
214 .ns.count = REFCOUNT_INIT(2),
215 .user_ns = &init_user_ns,
216 .ns.ops = &cgroupns_operations,
217 .ns.inum = PROC_CGROUP_INIT_INO,
218 .root_cset = &init_css_set,
219 };
220
221 static struct file_system_type cgroup2_fs_type;
222 static struct cftype cgroup_base_files[];
223 static struct cftype cgroup_psi_files[];
224
225 /* cgroup optional features */
226 enum cgroup_opt_features {
227 #ifdef CONFIG_PSI
228 OPT_FEATURE_PRESSURE,
229 #endif
230 OPT_FEATURE_COUNT
231 };
232
233 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
234 #ifdef CONFIG_PSI
235 "pressure",
236 #endif
237 };
238
239 static u16 cgroup_feature_disable_mask __read_mostly;
240
241 static int cgroup_apply_control(struct cgroup *cgrp);
242 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
243 static void css_task_iter_skip(struct css_task_iter *it,
244 struct task_struct *task);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254 #ifdef CONFIG_DEBUG_CGROUP_REF
255 #define CGROUP_REF_FN_ATTRS noinline
256 #define CGROUP_REF_EXPORT(fn) EXPORT_SYMBOL_GPL(fn);
257 #include <linux/cgroup_refcnt.h>
258 #endif
259
260 /**
261 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
262 * @ssid: subsys ID of interest
263 *
264 * cgroup_subsys_enabled() can only be used with literal subsys names which
265 * is fine for individual subsystems but unsuitable for cgroup core. This
266 * is slower static_key_enabled() based test indexed by @ssid.
267 */
cgroup_ssid_enabled(int ssid)268 bool cgroup_ssid_enabled(int ssid)
269 {
270 if (!CGROUP_HAS_SUBSYS_CONFIG)
271 return false;
272
273 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
274 }
275
276 /**
277 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
278 * @cgrp: the cgroup of interest
279 *
280 * The default hierarchy is the v2 interface of cgroup and this function
281 * can be used to test whether a cgroup is on the default hierarchy for
282 * cases where a subsystem should behave differently depending on the
283 * interface version.
284 *
285 * List of changed behaviors:
286 *
287 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
288 * and "name" are disallowed.
289 *
290 * - When mounting an existing superblock, mount options should match.
291 *
292 * - rename(2) is disallowed.
293 *
294 * - "tasks" is removed. Everything should be at process granularity. Use
295 * "cgroup.procs" instead.
296 *
297 * - "cgroup.procs" is not sorted. pids will be unique unless they got
298 * recycled in-between reads.
299 *
300 * - "release_agent" and "notify_on_release" are removed. Replacement
301 * notification mechanism will be implemented.
302 *
303 * - "cgroup.clone_children" is removed.
304 *
305 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
306 * and its descendants contain no task; otherwise, 1. The file also
307 * generates kernfs notification which can be monitored through poll and
308 * [di]notify when the value of the file changes.
309 *
310 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
311 * take masks of ancestors with non-empty cpus/mems, instead of being
312 * moved to an ancestor.
313 *
314 * - cpuset: a task can be moved into an empty cpuset, and again it takes
315 * masks of ancestors.
316 *
317 * - blkcg: blk-throttle becomes properly hierarchical.
318 */
cgroup_on_dfl(const struct cgroup * cgrp)319 bool cgroup_on_dfl(const struct cgroup *cgrp)
320 {
321 return cgrp->root == &cgrp_dfl_root;
322 }
323
324 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)325 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
326 gfp_t gfp_mask)
327 {
328 int ret;
329
330 idr_preload(gfp_mask);
331 spin_lock_bh(&cgroup_idr_lock);
332 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
333 spin_unlock_bh(&cgroup_idr_lock);
334 idr_preload_end();
335 return ret;
336 }
337
cgroup_idr_replace(struct idr * idr,void * ptr,int id)338 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
339 {
340 void *ret;
341
342 spin_lock_bh(&cgroup_idr_lock);
343 ret = idr_replace(idr, ptr, id);
344 spin_unlock_bh(&cgroup_idr_lock);
345 return ret;
346 }
347
cgroup_idr_remove(struct idr * idr,int id)348 static void cgroup_idr_remove(struct idr *idr, int id)
349 {
350 spin_lock_bh(&cgroup_idr_lock);
351 idr_remove(idr, id);
352 spin_unlock_bh(&cgroup_idr_lock);
353 }
354
cgroup_has_tasks(struct cgroup * cgrp)355 static bool cgroup_has_tasks(struct cgroup *cgrp)
356 {
357 return cgrp->nr_populated_csets;
358 }
359
cgroup_is_threaded(struct cgroup * cgrp)360 static bool cgroup_is_threaded(struct cgroup *cgrp)
361 {
362 return cgrp->dom_cgrp != cgrp;
363 }
364
365 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)366 static bool cgroup_is_mixable(struct cgroup *cgrp)
367 {
368 /*
369 * Root isn't under domain level resource control exempting it from
370 * the no-internal-process constraint, so it can serve as a thread
371 * root and a parent of resource domains at the same time.
372 */
373 return !cgroup_parent(cgrp);
374 }
375
376 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)377 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
378 {
379 /* mixables don't care */
380 if (cgroup_is_mixable(cgrp))
381 return true;
382
383 /* domain roots can't be nested under threaded */
384 if (cgroup_is_threaded(cgrp))
385 return false;
386
387 /* can only have either domain or threaded children */
388 if (cgrp->nr_populated_domain_children)
389 return false;
390
391 /* and no domain controllers can be enabled */
392 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
393 return false;
394
395 return true;
396 }
397
398 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)399 static bool cgroup_is_thread_root(struct cgroup *cgrp)
400 {
401 /* thread root should be a domain */
402 if (cgroup_is_threaded(cgrp))
403 return false;
404
405 /* a domain w/ threaded children is a thread root */
406 if (cgrp->nr_threaded_children)
407 return true;
408
409 /*
410 * A domain which has tasks and explicit threaded controllers
411 * enabled is a thread root.
412 */
413 if (cgroup_has_tasks(cgrp) &&
414 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
415 return true;
416
417 return false;
418 }
419
420 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)421 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
422 {
423 /* the cgroup itself can be a thread root */
424 if (cgroup_is_threaded(cgrp))
425 return false;
426
427 /* but the ancestors can't be unless mixable */
428 while ((cgrp = cgroup_parent(cgrp))) {
429 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
430 return false;
431 if (cgroup_is_threaded(cgrp))
432 return false;
433 }
434
435 return true;
436 }
437
438 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)439 static u16 cgroup_control(struct cgroup *cgrp)
440 {
441 struct cgroup *parent = cgroup_parent(cgrp);
442 u16 root_ss_mask = cgrp->root->subsys_mask;
443
444 if (parent) {
445 u16 ss_mask = parent->subtree_control;
446
447 /* threaded cgroups can only have threaded controllers */
448 if (cgroup_is_threaded(cgrp))
449 ss_mask &= cgrp_dfl_threaded_ss_mask;
450 return ss_mask;
451 }
452
453 if (cgroup_on_dfl(cgrp))
454 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
455 cgrp_dfl_implicit_ss_mask);
456 return root_ss_mask;
457 }
458
459 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)460 static u16 cgroup_ss_mask(struct cgroup *cgrp)
461 {
462 struct cgroup *parent = cgroup_parent(cgrp);
463
464 if (parent) {
465 u16 ss_mask = parent->subtree_ss_mask;
466
467 /* threaded cgroups can only have threaded controllers */
468 if (cgroup_is_threaded(cgrp))
469 ss_mask &= cgrp_dfl_threaded_ss_mask;
470 return ss_mask;
471 }
472
473 return cgrp->root->subsys_mask;
474 }
475
476 /**
477 * cgroup_css - obtain a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
480 *
481 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
482 * function must be called either under cgroup_mutex or rcu_read_lock() and
483 * the caller is responsible for pinning the returned css if it wants to
484 * keep accessing it outside the said locks. This function may return
485 * %NULL if @cgrp doesn't have @subsys_id enabled.
486 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)487 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
488 struct cgroup_subsys *ss)
489 {
490 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
491 return rcu_dereference_check(cgrp->subsys[ss->id],
492 lockdep_is_held(&cgroup_mutex));
493 else
494 return &cgrp->self;
495 }
496
497 /**
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
501 *
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
506 */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
509 {
510 lockdep_assert_held(&cgroup_mutex);
511
512 if (!ss)
513 return &cgrp->self;
514
515 /*
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
518 */
519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 cgrp = cgroup_parent(cgrp);
521 if (!cgrp)
522 return NULL;
523 }
524
525 return cgroup_css(cgrp, ss);
526 }
527
528 /**
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
532 *
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
537 *
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsibility to try get a reference for it.
540 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
543 {
544 struct cgroup_subsys_state *css;
545
546 if (!CGROUP_HAS_SUBSYS_CONFIG)
547 return NULL;
548
549 do {
550 css = cgroup_css(cgrp, ss);
551
552 if (css)
553 return css;
554 cgrp = cgroup_parent(cgrp);
555 } while (cgrp);
556
557 return init_css_set.subsys[ss->id];
558 }
559
560 /**
561 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
562 * @cgrp: the cgroup of interest
563 * @ss: the subsystem of interest
564 *
565 * Find and get the effective css of @cgrp for @ss. The effective css is
566 * defined as the matching css of the nearest ancestor including self which
567 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
568 * the root css is returned, so this function always returns a valid css.
569 * The returned css must be put using css_put().
570 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)571 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
572 struct cgroup_subsys *ss)
573 {
574 struct cgroup_subsys_state *css;
575
576 if (!CGROUP_HAS_SUBSYS_CONFIG)
577 return NULL;
578
579 rcu_read_lock();
580
581 do {
582 css = cgroup_css(cgrp, ss);
583
584 if (css && css_tryget_online(css))
585 goto out_unlock;
586 cgrp = cgroup_parent(cgrp);
587 } while (cgrp);
588
589 css = init_css_set.subsys[ss->id];
590 css_get(css);
591 out_unlock:
592 rcu_read_unlock();
593 return css;
594 }
595 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
596
cgroup_get_live(struct cgroup * cgrp)597 static void cgroup_get_live(struct cgroup *cgrp)
598 {
599 WARN_ON_ONCE(cgroup_is_dead(cgrp));
600 cgroup_get(cgrp);
601 }
602
603 /**
604 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
605 * is responsible for taking the css_set_lock.
606 * @cgrp: the cgroup in question
607 */
__cgroup_task_count(const struct cgroup * cgrp)608 int __cgroup_task_count(const struct cgroup *cgrp)
609 {
610 int count = 0;
611 struct cgrp_cset_link *link;
612
613 lockdep_assert_held(&css_set_lock);
614
615 list_for_each_entry(link, &cgrp->cset_links, cset_link)
616 count += link->cset->nr_tasks;
617
618 return count;
619 }
620
621 /**
622 * cgroup_task_count - count the number of tasks in a cgroup.
623 * @cgrp: the cgroup in question
624 */
cgroup_task_count(const struct cgroup * cgrp)625 int cgroup_task_count(const struct cgroup *cgrp)
626 {
627 int count;
628
629 spin_lock_irq(&css_set_lock);
630 count = __cgroup_task_count(cgrp);
631 spin_unlock_irq(&css_set_lock);
632
633 return count;
634 }
635
kn_priv(struct kernfs_node * kn)636 static struct cgroup *kn_priv(struct kernfs_node *kn)
637 {
638 struct kernfs_node *parent;
639 /*
640 * The parent can not be replaced due to KERNFS_ROOT_INVARIANT_PARENT.
641 * Therefore it is always safe to dereference this pointer outside of a
642 * RCU section.
643 */
644 parent = rcu_dereference_check(kn->__parent,
645 kernfs_root_flags(kn) & KERNFS_ROOT_INVARIANT_PARENT);
646 return parent->priv;
647 }
648
of_css(struct kernfs_open_file * of)649 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
650 {
651 struct cgroup *cgrp = kn_priv(of->kn);
652 struct cftype *cft = of_cft(of);
653
654 /*
655 * This is open and unprotected implementation of cgroup_css().
656 * seq_css() is only called from a kernfs file operation which has
657 * an active reference on the file. Because all the subsystem
658 * files are drained before a css is disassociated with a cgroup,
659 * the matching css from the cgroup's subsys table is guaranteed to
660 * be and stay valid until the enclosing operation is complete.
661 */
662 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
663 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
664 else
665 return &cgrp->self;
666 }
667 EXPORT_SYMBOL_GPL(of_css);
668
669 /**
670 * for_each_css - iterate all css's of a cgroup
671 * @css: the iteration cursor
672 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
673 * @cgrp: the target cgroup to iterate css's of
674 *
675 * Should be called under cgroup_mutex.
676 */
677 #define for_each_css(css, ssid, cgrp) \
678 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
679 if (!((css) = rcu_dereference_check( \
680 (cgrp)->subsys[(ssid)], \
681 lockdep_is_held(&cgroup_mutex)))) { } \
682 else
683
684 /**
685 * do_each_subsys_mask - filter for_each_subsys with a bitmask
686 * @ss: the iteration cursor
687 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
688 * @ss_mask: the bitmask
689 *
690 * The block will only run for cases where the ssid-th bit (1 << ssid) of
691 * @ss_mask is set.
692 */
693 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
694 unsigned long __ss_mask = (ss_mask); \
695 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
696 (ssid) = 0; \
697 break; \
698 } \
699 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
700 (ss) = cgroup_subsys[ssid]; \
701 {
702
703 #define while_each_subsys_mask() \
704 } \
705 } \
706 } while (false)
707
708 /* iterate over child cgrps, lock should be held throughout iteration */
709 #define cgroup_for_each_live_child(child, cgrp) \
710 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
711 if (({ lockdep_assert_held(&cgroup_mutex); \
712 cgroup_is_dead(child); })) \
713 ; \
714 else
715
716 /* walk live descendants in pre order */
717 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
718 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
719 if (({ lockdep_assert_held(&cgroup_mutex); \
720 (dsct) = (d_css)->cgroup; \
721 cgroup_is_dead(dsct); })) \
722 ; \
723 else
724
725 /* walk live descendants in postorder */
726 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
727 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 (dsct) = (d_css)->cgroup; \
730 cgroup_is_dead(dsct); })) \
731 ; \
732 else
733
734 /*
735 * The default css_set - used by init and its children prior to any
736 * hierarchies being mounted. It contains a pointer to the root state
737 * for each subsystem. Also used to anchor the list of css_sets. Not
738 * reference-counted, to improve performance when child cgroups
739 * haven't been created.
740 */
741 struct css_set init_css_set = {
742 .refcount = REFCOUNT_INIT(1),
743 .dom_cset = &init_css_set,
744 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
745 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
746 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
747 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
748 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
749 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
750 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
751 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
752 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
753
754 /*
755 * The following field is re-initialized when this cset gets linked
756 * in cgroup_init(). However, let's initialize the field
757 * statically too so that the default cgroup can be accessed safely
758 * early during boot.
759 */
760 .dfl_cgrp = &cgrp_dfl_root.cgrp,
761 };
762
763 static int css_set_count = 1; /* 1 for init_css_set */
764
css_set_threaded(struct css_set * cset)765 static bool css_set_threaded(struct css_set *cset)
766 {
767 return cset->dom_cset != cset;
768 }
769
770 /**
771 * css_set_populated - does a css_set contain any tasks?
772 * @cset: target css_set
773 *
774 * css_set_populated() should be the same as !!cset->nr_tasks at steady
775 * state. However, css_set_populated() can be called while a task is being
776 * added to or removed from the linked list before the nr_tasks is
777 * properly updated. Hence, we can't just look at ->nr_tasks here.
778 */
css_set_populated(struct css_set * cset)779 static bool css_set_populated(struct css_set *cset)
780 {
781 lockdep_assert_held(&css_set_lock);
782
783 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
784 }
785
786 /**
787 * cgroup_update_populated - update the populated count of a cgroup
788 * @cgrp: the target cgroup
789 * @populated: inc or dec populated count
790 *
791 * One of the css_sets associated with @cgrp is either getting its first
792 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
793 * count is propagated towards root so that a given cgroup's
794 * nr_populated_children is zero iff none of its descendants contain any
795 * tasks.
796 *
797 * @cgrp's interface file "cgroup.populated" is zero if both
798 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
799 * 1 otherwise. When the sum changes from or to zero, userland is notified
800 * that the content of the interface file has changed. This can be used to
801 * detect when @cgrp and its descendants become populated or empty.
802 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)803 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
804 {
805 struct cgroup *child = NULL;
806 int adj = populated ? 1 : -1;
807
808 lockdep_assert_held(&css_set_lock);
809
810 do {
811 bool was_populated = cgroup_is_populated(cgrp);
812
813 if (!child) {
814 cgrp->nr_populated_csets += adj;
815 } else {
816 if (cgroup_is_threaded(child))
817 cgrp->nr_populated_threaded_children += adj;
818 else
819 cgrp->nr_populated_domain_children += adj;
820 }
821
822 if (was_populated == cgroup_is_populated(cgrp))
823 break;
824
825 cgroup1_check_for_release(cgrp);
826 TRACE_CGROUP_PATH(notify_populated, cgrp,
827 cgroup_is_populated(cgrp));
828 cgroup_file_notify(&cgrp->events_file);
829
830 child = cgrp;
831 cgrp = cgroup_parent(cgrp);
832 } while (cgrp);
833 }
834
835 /**
836 * css_set_update_populated - update populated state of a css_set
837 * @cset: target css_set
838 * @populated: whether @cset is populated or depopulated
839 *
840 * @cset is either getting the first task or losing the last. Update the
841 * populated counters of all associated cgroups accordingly.
842 */
css_set_update_populated(struct css_set * cset,bool populated)843 static void css_set_update_populated(struct css_set *cset, bool populated)
844 {
845 struct cgrp_cset_link *link;
846
847 lockdep_assert_held(&css_set_lock);
848
849 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
850 cgroup_update_populated(link->cgrp, populated);
851 }
852
853 /*
854 * @task is leaving, advance task iterators which are pointing to it so
855 * that they can resume at the next position. Advancing an iterator might
856 * remove it from the list, use safe walk. See css_task_iter_skip() for
857 * details.
858 */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)859 static void css_set_skip_task_iters(struct css_set *cset,
860 struct task_struct *task)
861 {
862 struct css_task_iter *it, *pos;
863
864 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
865 css_task_iter_skip(it, task);
866 }
867
868 /**
869 * css_set_move_task - move a task from one css_set to another
870 * @task: task being moved
871 * @from_cset: css_set @task currently belongs to (may be NULL)
872 * @to_cset: new css_set @task is being moved to (may be NULL)
873 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
874 *
875 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
876 * css_set, @from_cset can be NULL. If @task is being disassociated
877 * instead of moved, @to_cset can be NULL.
878 *
879 * This function automatically handles populated counter updates and
880 * css_task_iter adjustments but the caller is responsible for managing
881 * @from_cset and @to_cset's reference counts.
882 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)883 static void css_set_move_task(struct task_struct *task,
884 struct css_set *from_cset, struct css_set *to_cset,
885 bool use_mg_tasks)
886 {
887 lockdep_assert_held(&css_set_lock);
888
889 if (to_cset && !css_set_populated(to_cset))
890 css_set_update_populated(to_cset, true);
891
892 if (from_cset) {
893 WARN_ON_ONCE(list_empty(&task->cg_list));
894
895 css_set_skip_task_iters(from_cset, task);
896 list_del_init(&task->cg_list);
897 if (!css_set_populated(from_cset))
898 css_set_update_populated(from_cset, false);
899 } else {
900 WARN_ON_ONCE(!list_empty(&task->cg_list));
901 }
902
903 if (to_cset) {
904 /*
905 * We are synchronized through cgroup_threadgroup_rwsem
906 * against PF_EXITING setting such that we can't race
907 * against cgroup_exit()/cgroup_free() dropping the css_set.
908 */
909 WARN_ON_ONCE(task->flags & PF_EXITING);
910
911 cgroup_move_task(task, to_cset);
912 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
913 &to_cset->tasks);
914 }
915 }
916
917 /*
918 * hash table for cgroup groups. This improves the performance to find
919 * an existing css_set. This hash doesn't (currently) take into
920 * account cgroups in empty hierarchies.
921 */
922 #define CSS_SET_HASH_BITS 7
923 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
924
css_set_hash(struct cgroup_subsys_state ** css)925 static unsigned long css_set_hash(struct cgroup_subsys_state **css)
926 {
927 unsigned long key = 0UL;
928 struct cgroup_subsys *ss;
929 int i;
930
931 for_each_subsys(ss, i)
932 key += (unsigned long)css[i];
933 key = (key >> 16) ^ key;
934
935 return key;
936 }
937
put_css_set_locked(struct css_set * cset)938 void put_css_set_locked(struct css_set *cset)
939 {
940 struct cgrp_cset_link *link, *tmp_link;
941 struct cgroup_subsys *ss;
942 int ssid;
943
944 lockdep_assert_held(&css_set_lock);
945
946 if (!refcount_dec_and_test(&cset->refcount))
947 return;
948
949 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
950
951 /* This css_set is dead. Unlink it and release cgroup and css refs */
952 for_each_subsys(ss, ssid) {
953 list_del(&cset->e_cset_node[ssid]);
954 css_put(cset->subsys[ssid]);
955 }
956 hash_del(&cset->hlist);
957 css_set_count--;
958
959 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
960 list_del(&link->cset_link);
961 list_del(&link->cgrp_link);
962 if (cgroup_parent(link->cgrp))
963 cgroup_put(link->cgrp);
964 kfree(link);
965 }
966
967 if (css_set_threaded(cset)) {
968 list_del(&cset->threaded_csets_node);
969 put_css_set_locked(cset->dom_cset);
970 }
971
972 kfree_rcu(cset, rcu_head);
973 }
974
975 /**
976 * compare_css_sets - helper function for find_existing_css_set().
977 * @cset: candidate css_set being tested
978 * @old_cset: existing css_set for a task
979 * @new_cgrp: cgroup that's being entered by the task
980 * @template: desired set of css pointers in css_set (pre-calculated)
981 *
982 * Returns true if "cset" matches "old_cset" except for the hierarchy
983 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
984 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])985 static bool compare_css_sets(struct css_set *cset,
986 struct css_set *old_cset,
987 struct cgroup *new_cgrp,
988 struct cgroup_subsys_state *template[])
989 {
990 struct cgroup *new_dfl_cgrp;
991 struct list_head *l1, *l2;
992
993 /*
994 * On the default hierarchy, there can be csets which are
995 * associated with the same set of cgroups but different csses.
996 * Let's first ensure that csses match.
997 */
998 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
999 return false;
1000
1001
1002 /* @cset's domain should match the default cgroup's */
1003 if (cgroup_on_dfl(new_cgrp))
1004 new_dfl_cgrp = new_cgrp;
1005 else
1006 new_dfl_cgrp = old_cset->dfl_cgrp;
1007
1008 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1009 return false;
1010
1011 /*
1012 * Compare cgroup pointers in order to distinguish between
1013 * different cgroups in hierarchies. As different cgroups may
1014 * share the same effective css, this comparison is always
1015 * necessary.
1016 */
1017 l1 = &cset->cgrp_links;
1018 l2 = &old_cset->cgrp_links;
1019 while (1) {
1020 struct cgrp_cset_link *link1, *link2;
1021 struct cgroup *cgrp1, *cgrp2;
1022
1023 l1 = l1->next;
1024 l2 = l2->next;
1025 /* See if we reached the end - both lists are equal length. */
1026 if (l1 == &cset->cgrp_links) {
1027 BUG_ON(l2 != &old_cset->cgrp_links);
1028 break;
1029 } else {
1030 BUG_ON(l2 == &old_cset->cgrp_links);
1031 }
1032 /* Locate the cgroups associated with these links. */
1033 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1034 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1035 cgrp1 = link1->cgrp;
1036 cgrp2 = link2->cgrp;
1037 /* Hierarchies should be linked in the same order. */
1038 BUG_ON(cgrp1->root != cgrp2->root);
1039
1040 /*
1041 * If this hierarchy is the hierarchy of the cgroup
1042 * that's changing, then we need to check that this
1043 * css_set points to the new cgroup; if it's any other
1044 * hierarchy, then this css_set should point to the
1045 * same cgroup as the old css_set.
1046 */
1047 if (cgrp1->root == new_cgrp->root) {
1048 if (cgrp1 != new_cgrp)
1049 return false;
1050 } else {
1051 if (cgrp1 != cgrp2)
1052 return false;
1053 }
1054 }
1055 return true;
1056 }
1057
1058 /**
1059 * find_existing_css_set - init css array and find the matching css_set
1060 * @old_cset: the css_set that we're using before the cgroup transition
1061 * @cgrp: the cgroup that we're moving into
1062 * @template: out param for the new set of csses, should be clear on entry
1063 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state ** template)1064 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1065 struct cgroup *cgrp,
1066 struct cgroup_subsys_state **template)
1067 {
1068 struct cgroup_root *root = cgrp->root;
1069 struct cgroup_subsys *ss;
1070 struct css_set *cset;
1071 unsigned long key;
1072 int i;
1073
1074 /*
1075 * Build the set of subsystem state objects that we want to see in the
1076 * new css_set. While subsystems can change globally, the entries here
1077 * won't change, so no need for locking.
1078 */
1079 for_each_subsys(ss, i) {
1080 if (root->subsys_mask & (1UL << i)) {
1081 /*
1082 * @ss is in this hierarchy, so we want the
1083 * effective css from @cgrp.
1084 */
1085 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1086 } else {
1087 /*
1088 * @ss is not in this hierarchy, so we don't want
1089 * to change the css.
1090 */
1091 template[i] = old_cset->subsys[i];
1092 }
1093 }
1094
1095 key = css_set_hash(template);
1096 hash_for_each_possible(css_set_table, cset, hlist, key) {
1097 if (!compare_css_sets(cset, old_cset, cgrp, template))
1098 continue;
1099
1100 /* This css_set matches what we need */
1101 return cset;
1102 }
1103
1104 /* No existing cgroup group matched */
1105 return NULL;
1106 }
1107
free_cgrp_cset_links(struct list_head * links_to_free)1108 static void free_cgrp_cset_links(struct list_head *links_to_free)
1109 {
1110 struct cgrp_cset_link *link, *tmp_link;
1111
1112 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1113 list_del(&link->cset_link);
1114 kfree(link);
1115 }
1116 }
1117
1118 /**
1119 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1120 * @count: the number of links to allocate
1121 * @tmp_links: list_head the allocated links are put on
1122 *
1123 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1124 * through ->cset_link. Returns 0 on success or -errno.
1125 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1126 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1127 {
1128 struct cgrp_cset_link *link;
1129 int i;
1130
1131 INIT_LIST_HEAD(tmp_links);
1132
1133 for (i = 0; i < count; i++) {
1134 link = kzalloc(sizeof(*link), GFP_KERNEL);
1135 if (!link) {
1136 free_cgrp_cset_links(tmp_links);
1137 return -ENOMEM;
1138 }
1139 list_add(&link->cset_link, tmp_links);
1140 }
1141 return 0;
1142 }
1143
1144 /**
1145 * link_css_set - a helper function to link a css_set to a cgroup
1146 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1147 * @cset: the css_set to be linked
1148 * @cgrp: the destination cgroup
1149 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1150 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1151 struct cgroup *cgrp)
1152 {
1153 struct cgrp_cset_link *link;
1154
1155 BUG_ON(list_empty(tmp_links));
1156
1157 if (cgroup_on_dfl(cgrp))
1158 cset->dfl_cgrp = cgrp;
1159
1160 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1161 link->cset = cset;
1162 link->cgrp = cgrp;
1163
1164 /*
1165 * Always add links to the tail of the lists so that the lists are
1166 * in chronological order.
1167 */
1168 list_move_tail(&link->cset_link, &cgrp->cset_links);
1169 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1170
1171 if (cgroup_parent(cgrp))
1172 cgroup_get_live(cgrp);
1173 }
1174
1175 /**
1176 * find_css_set - return a new css_set with one cgroup updated
1177 * @old_cset: the baseline css_set
1178 * @cgrp: the cgroup to be updated
1179 *
1180 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1181 * substituted into the appropriate hierarchy.
1182 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1183 static struct css_set *find_css_set(struct css_set *old_cset,
1184 struct cgroup *cgrp)
1185 {
1186 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1187 struct css_set *cset;
1188 struct list_head tmp_links;
1189 struct cgrp_cset_link *link;
1190 struct cgroup_subsys *ss;
1191 unsigned long key;
1192 int ssid;
1193
1194 lockdep_assert_held(&cgroup_mutex);
1195
1196 /* First see if we already have a cgroup group that matches
1197 * the desired set */
1198 spin_lock_irq(&css_set_lock);
1199 cset = find_existing_css_set(old_cset, cgrp, template);
1200 if (cset)
1201 get_css_set(cset);
1202 spin_unlock_irq(&css_set_lock);
1203
1204 if (cset)
1205 return cset;
1206
1207 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1208 if (!cset)
1209 return NULL;
1210
1211 /* Allocate all the cgrp_cset_link objects that we'll need */
1212 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1213 kfree(cset);
1214 return NULL;
1215 }
1216
1217 refcount_set(&cset->refcount, 1);
1218 cset->dom_cset = cset;
1219 INIT_LIST_HEAD(&cset->tasks);
1220 INIT_LIST_HEAD(&cset->mg_tasks);
1221 INIT_LIST_HEAD(&cset->dying_tasks);
1222 INIT_LIST_HEAD(&cset->task_iters);
1223 INIT_LIST_HEAD(&cset->threaded_csets);
1224 INIT_HLIST_NODE(&cset->hlist);
1225 INIT_LIST_HEAD(&cset->cgrp_links);
1226 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1227 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1228 INIT_LIST_HEAD(&cset->mg_node);
1229
1230 /* Copy the set of subsystem state objects generated in
1231 * find_existing_css_set() */
1232 memcpy(cset->subsys, template, sizeof(cset->subsys));
1233
1234 spin_lock_irq(&css_set_lock);
1235 /* Add reference counts and links from the new css_set. */
1236 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1237 struct cgroup *c = link->cgrp;
1238
1239 if (c->root == cgrp->root)
1240 c = cgrp;
1241 link_css_set(&tmp_links, cset, c);
1242 }
1243
1244 BUG_ON(!list_empty(&tmp_links));
1245
1246 css_set_count++;
1247
1248 /* Add @cset to the hash table */
1249 key = css_set_hash(cset->subsys);
1250 hash_add(css_set_table, &cset->hlist, key);
1251
1252 for_each_subsys(ss, ssid) {
1253 struct cgroup_subsys_state *css = cset->subsys[ssid];
1254
1255 list_add_tail(&cset->e_cset_node[ssid],
1256 &css->cgroup->e_csets[ssid]);
1257 css_get(css);
1258 }
1259
1260 spin_unlock_irq(&css_set_lock);
1261
1262 /*
1263 * If @cset should be threaded, look up the matching dom_cset and
1264 * link them up. We first fully initialize @cset then look for the
1265 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1266 * to stay empty until we return.
1267 */
1268 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1269 struct css_set *dcset;
1270
1271 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1272 if (!dcset) {
1273 put_css_set(cset);
1274 return NULL;
1275 }
1276
1277 spin_lock_irq(&css_set_lock);
1278 cset->dom_cset = dcset;
1279 list_add_tail(&cset->threaded_csets_node,
1280 &dcset->threaded_csets);
1281 spin_unlock_irq(&css_set_lock);
1282 }
1283
1284 return cset;
1285 }
1286
cgroup_root_from_kf(struct kernfs_root * kf_root)1287 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1288 {
1289 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1290
1291 return root_cgrp->root;
1292 }
1293
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1294 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1295 {
1296 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1297
1298 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1299 if (favor && !favoring) {
1300 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1301 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1302 } else if (!favor && favoring) {
1303 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1304 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1305 }
1306 }
1307
cgroup_init_root_id(struct cgroup_root * root)1308 static int cgroup_init_root_id(struct cgroup_root *root)
1309 {
1310 int id;
1311
1312 lockdep_assert_held(&cgroup_mutex);
1313
1314 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1315 if (id < 0)
1316 return id;
1317
1318 root->hierarchy_id = id;
1319 return 0;
1320 }
1321
cgroup_exit_root_id(struct cgroup_root * root)1322 static void cgroup_exit_root_id(struct cgroup_root *root)
1323 {
1324 lockdep_assert_held(&cgroup_mutex);
1325
1326 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1327 }
1328
cgroup_free_root(struct cgroup_root * root)1329 void cgroup_free_root(struct cgroup_root *root)
1330 {
1331 kfree_rcu(root, rcu);
1332 }
1333
cgroup_destroy_root(struct cgroup_root * root)1334 static void cgroup_destroy_root(struct cgroup_root *root)
1335 {
1336 struct cgroup *cgrp = &root->cgrp;
1337 struct cgrp_cset_link *link, *tmp_link;
1338
1339 trace_cgroup_destroy_root(root);
1340
1341 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1342
1343 BUG_ON(atomic_read(&root->nr_cgrps));
1344 BUG_ON(!list_empty(&cgrp->self.children));
1345
1346 /* Rebind all subsystems back to the default hierarchy */
1347 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1348
1349 /*
1350 * Release all the links from cset_links to this hierarchy's
1351 * root cgroup
1352 */
1353 spin_lock_irq(&css_set_lock);
1354
1355 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1356 list_del(&link->cset_link);
1357 list_del(&link->cgrp_link);
1358 kfree(link);
1359 }
1360
1361 spin_unlock_irq(&css_set_lock);
1362
1363 WARN_ON_ONCE(list_empty(&root->root_list));
1364 list_del_rcu(&root->root_list);
1365 cgroup_root_count--;
1366
1367 if (!have_favordynmods)
1368 cgroup_favor_dynmods(root, false);
1369
1370 cgroup_exit_root_id(root);
1371
1372 cgroup_unlock();
1373
1374 cgroup_rstat_exit(cgrp);
1375 kernfs_destroy_root(root->kf_root);
1376 cgroup_free_root(root);
1377 }
1378
1379 /*
1380 * Returned cgroup is without refcount but it's valid as long as cset pins it.
1381 */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1382 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1383 struct cgroup_root *root)
1384 {
1385 struct cgroup *res_cgroup = NULL;
1386
1387 if (cset == &init_css_set) {
1388 res_cgroup = &root->cgrp;
1389 } else if (root == &cgrp_dfl_root) {
1390 res_cgroup = cset->dfl_cgrp;
1391 } else {
1392 struct cgrp_cset_link *link;
1393 lockdep_assert_held(&css_set_lock);
1394
1395 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1396 struct cgroup *c = link->cgrp;
1397
1398 if (c->root == root) {
1399 res_cgroup = c;
1400 break;
1401 }
1402 }
1403 }
1404
1405 /*
1406 * If cgroup_mutex is not held, the cgrp_cset_link will be freed
1407 * before we remove the cgroup root from the root_list. Consequently,
1408 * when accessing a cgroup root, the cset_link may have already been
1409 * freed, resulting in a NULL res_cgroup. However, by holding the
1410 * cgroup_mutex, we ensure that res_cgroup can't be NULL.
1411 * If we don't hold cgroup_mutex in the caller, we must do the NULL
1412 * check.
1413 */
1414 return res_cgroup;
1415 }
1416
1417 /*
1418 * look up cgroup associated with current task's cgroup namespace on the
1419 * specified hierarchy
1420 */
1421 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1422 current_cgns_cgroup_from_root(struct cgroup_root *root)
1423 {
1424 struct cgroup *res = NULL;
1425 struct css_set *cset;
1426
1427 lockdep_assert_held(&css_set_lock);
1428
1429 rcu_read_lock();
1430
1431 cset = current->nsproxy->cgroup_ns->root_cset;
1432 res = __cset_cgroup_from_root(cset, root);
1433
1434 rcu_read_unlock();
1435
1436 /*
1437 * The namespace_sem is held by current, so the root cgroup can't
1438 * be umounted. Therefore, we can ensure that the res is non-NULL.
1439 */
1440 WARN_ON_ONCE(!res);
1441 return res;
1442 }
1443
1444 /*
1445 * Look up cgroup associated with current task's cgroup namespace on the default
1446 * hierarchy.
1447 *
1448 * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1449 * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1450 * pointers.
1451 * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1452 * - As a bonus returned cgrp is pinned with the current because it cannot
1453 * switch cgroup_ns asynchronously.
1454 */
current_cgns_cgroup_dfl(void)1455 static struct cgroup *current_cgns_cgroup_dfl(void)
1456 {
1457 struct css_set *cset;
1458
1459 if (current->nsproxy) {
1460 cset = current->nsproxy->cgroup_ns->root_cset;
1461 return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1462 } else {
1463 /*
1464 * NOTE: This function may be called from bpf_cgroup_from_id()
1465 * on a task which has already passed exit_task_namespaces() and
1466 * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all
1467 * cgroups visible for lookups.
1468 */
1469 return &cgrp_dfl_root.cgrp;
1470 }
1471 }
1472
1473 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1474 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1475 struct cgroup_root *root)
1476 {
1477 lockdep_assert_held(&css_set_lock);
1478
1479 return __cset_cgroup_from_root(cset, root);
1480 }
1481
1482 /*
1483 * Return the cgroup for "task" from the given hierarchy. Must be
1484 * called with css_set_lock held to prevent task's groups from being modified.
1485 * Must be called with either cgroup_mutex or rcu read lock to prevent the
1486 * cgroup root from being destroyed.
1487 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1488 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1489 struct cgroup_root *root)
1490 {
1491 /*
1492 * No need to lock the task - since we hold css_set_lock the
1493 * task can't change groups.
1494 */
1495 return cset_cgroup_from_root(task_css_set(task), root);
1496 }
1497
1498 /*
1499 * A task must hold cgroup_mutex to modify cgroups.
1500 *
1501 * Any task can increment and decrement the count field without lock.
1502 * So in general, code holding cgroup_mutex can't rely on the count
1503 * field not changing. However, if the count goes to zero, then only
1504 * cgroup_attach_task() can increment it again. Because a count of zero
1505 * means that no tasks are currently attached, therefore there is no
1506 * way a task attached to that cgroup can fork (the other way to
1507 * increment the count). So code holding cgroup_mutex can safely
1508 * assume that if the count is zero, it will stay zero. Similarly, if
1509 * a task holds cgroup_mutex on a cgroup with zero count, it
1510 * knows that the cgroup won't be removed, as cgroup_rmdir()
1511 * needs that mutex.
1512 *
1513 * A cgroup can only be deleted if both its 'count' of using tasks
1514 * is zero, and its list of 'children' cgroups is empty. Since all
1515 * tasks in the system use _some_ cgroup, and since there is always at
1516 * least one task in the system (init, pid == 1), therefore, root cgroup
1517 * always has either children cgroups and/or using tasks. So we don't
1518 * need a special hack to ensure that root cgroup cannot be deleted.
1519 *
1520 * P.S. One more locking exception. RCU is used to guard the
1521 * update of a tasks cgroup pointer by cgroup_attach_task()
1522 */
1523
1524 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1525
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1526 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1527 char *buf)
1528 {
1529 struct cgroup_subsys *ss = cft->ss;
1530
1531 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1532 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1533 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1534
1535 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1536 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1537 cft->name);
1538 } else {
1539 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1540 }
1541 return buf;
1542 }
1543
1544 /**
1545 * cgroup_file_mode - deduce file mode of a control file
1546 * @cft: the control file in question
1547 *
1548 * S_IRUGO for read, S_IWUSR for write.
1549 */
cgroup_file_mode(const struct cftype * cft)1550 static umode_t cgroup_file_mode(const struct cftype *cft)
1551 {
1552 umode_t mode = 0;
1553
1554 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1555 mode |= S_IRUGO;
1556
1557 if (cft->write_u64 || cft->write_s64 || cft->write) {
1558 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1559 mode |= S_IWUGO;
1560 else
1561 mode |= S_IWUSR;
1562 }
1563
1564 return mode;
1565 }
1566
1567 /**
1568 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1569 * @subtree_control: the new subtree_control mask to consider
1570 * @this_ss_mask: available subsystems
1571 *
1572 * On the default hierarchy, a subsystem may request other subsystems to be
1573 * enabled together through its ->depends_on mask. In such cases, more
1574 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1575 *
1576 * This function calculates which subsystems need to be enabled if
1577 * @subtree_control is to be applied while restricted to @this_ss_mask.
1578 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1579 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1580 {
1581 u16 cur_ss_mask = subtree_control;
1582 struct cgroup_subsys *ss;
1583 int ssid;
1584
1585 lockdep_assert_held(&cgroup_mutex);
1586
1587 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1588
1589 while (true) {
1590 u16 new_ss_mask = cur_ss_mask;
1591
1592 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1593 new_ss_mask |= ss->depends_on;
1594 } while_each_subsys_mask();
1595
1596 /*
1597 * Mask out subsystems which aren't available. This can
1598 * happen only if some depended-upon subsystems were bound
1599 * to non-default hierarchies.
1600 */
1601 new_ss_mask &= this_ss_mask;
1602
1603 if (new_ss_mask == cur_ss_mask)
1604 break;
1605 cur_ss_mask = new_ss_mask;
1606 }
1607
1608 return cur_ss_mask;
1609 }
1610
1611 /**
1612 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1613 * @kn: the kernfs_node being serviced
1614 *
1615 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1616 * the method finishes if locking succeeded. Note that once this function
1617 * returns the cgroup returned by cgroup_kn_lock_live() may become
1618 * inaccessible any time. If the caller intends to continue to access the
1619 * cgroup, it should pin it before invoking this function.
1620 */
cgroup_kn_unlock(struct kernfs_node * kn)1621 void cgroup_kn_unlock(struct kernfs_node *kn)
1622 {
1623 struct cgroup *cgrp;
1624
1625 if (kernfs_type(kn) == KERNFS_DIR)
1626 cgrp = kn->priv;
1627 else
1628 cgrp = kn_priv(kn);
1629
1630 cgroup_unlock();
1631
1632 kernfs_unbreak_active_protection(kn);
1633 cgroup_put(cgrp);
1634 }
1635
1636 /**
1637 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1638 * @kn: the kernfs_node being serviced
1639 * @drain_offline: perform offline draining on the cgroup
1640 *
1641 * This helper is to be used by a cgroup kernfs method currently servicing
1642 * @kn. It breaks the active protection, performs cgroup locking and
1643 * verifies that the associated cgroup is alive. Returns the cgroup if
1644 * alive; otherwise, %NULL. A successful return should be undone by a
1645 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1646 * cgroup is drained of offlining csses before return.
1647 *
1648 * Any cgroup kernfs method implementation which requires locking the
1649 * associated cgroup should use this helper. It avoids nesting cgroup
1650 * locking under kernfs active protection and allows all kernfs operations
1651 * including self-removal.
1652 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1653 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1654 {
1655 struct cgroup *cgrp;
1656
1657 if (kernfs_type(kn) == KERNFS_DIR)
1658 cgrp = kn->priv;
1659 else
1660 cgrp = kn_priv(kn);
1661
1662 /*
1663 * We're gonna grab cgroup_mutex which nests outside kernfs
1664 * active_ref. cgroup liveliness check alone provides enough
1665 * protection against removal. Ensure @cgrp stays accessible and
1666 * break the active_ref protection.
1667 */
1668 if (!cgroup_tryget(cgrp))
1669 return NULL;
1670 kernfs_break_active_protection(kn);
1671
1672 if (drain_offline)
1673 cgroup_lock_and_drain_offline(cgrp);
1674 else
1675 cgroup_lock();
1676
1677 if (!cgroup_is_dead(cgrp))
1678 return cgrp;
1679
1680 cgroup_kn_unlock(kn);
1681 return NULL;
1682 }
1683
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1684 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1685 {
1686 char name[CGROUP_FILE_NAME_MAX];
1687
1688 lockdep_assert_held(&cgroup_mutex);
1689
1690 if (cft->file_offset) {
1691 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1692 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1693
1694 spin_lock_irq(&cgroup_file_kn_lock);
1695 cfile->kn = NULL;
1696 spin_unlock_irq(&cgroup_file_kn_lock);
1697
1698 timer_delete_sync(&cfile->notify_timer);
1699 }
1700
1701 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1702 }
1703
1704 /**
1705 * css_clear_dir - remove subsys files in a cgroup directory
1706 * @css: target css
1707 */
css_clear_dir(struct cgroup_subsys_state * css)1708 static void css_clear_dir(struct cgroup_subsys_state *css)
1709 {
1710 struct cgroup *cgrp = css->cgroup;
1711 struct cftype *cfts;
1712
1713 if (!(css->flags & CSS_VISIBLE))
1714 return;
1715
1716 css->flags &= ~CSS_VISIBLE;
1717
1718 if (!css->ss) {
1719 if (cgroup_on_dfl(cgrp)) {
1720 cgroup_addrm_files(css, cgrp,
1721 cgroup_base_files, false);
1722 if (cgroup_psi_enabled())
1723 cgroup_addrm_files(css, cgrp,
1724 cgroup_psi_files, false);
1725 } else {
1726 cgroup_addrm_files(css, cgrp,
1727 cgroup1_base_files, false);
1728 }
1729 } else {
1730 list_for_each_entry(cfts, &css->ss->cfts, node)
1731 cgroup_addrm_files(css, cgrp, cfts, false);
1732 }
1733 }
1734
1735 /**
1736 * css_populate_dir - create subsys files in a cgroup directory
1737 * @css: target css
1738 *
1739 * On failure, no file is added.
1740 */
css_populate_dir(struct cgroup_subsys_state * css)1741 static int css_populate_dir(struct cgroup_subsys_state *css)
1742 {
1743 struct cgroup *cgrp = css->cgroup;
1744 struct cftype *cfts, *failed_cfts;
1745 int ret;
1746
1747 if (css->flags & CSS_VISIBLE)
1748 return 0;
1749
1750 if (!css->ss) {
1751 if (cgroup_on_dfl(cgrp)) {
1752 ret = cgroup_addrm_files(css, cgrp,
1753 cgroup_base_files, true);
1754 if (ret < 0)
1755 return ret;
1756
1757 if (cgroup_psi_enabled()) {
1758 ret = cgroup_addrm_files(css, cgrp,
1759 cgroup_psi_files, true);
1760 if (ret < 0) {
1761 cgroup_addrm_files(css, cgrp,
1762 cgroup_base_files, false);
1763 return ret;
1764 }
1765 }
1766 } else {
1767 ret = cgroup_addrm_files(css, cgrp,
1768 cgroup1_base_files, true);
1769 if (ret < 0)
1770 return ret;
1771 }
1772 } else {
1773 list_for_each_entry(cfts, &css->ss->cfts, node) {
1774 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1775 if (ret < 0) {
1776 failed_cfts = cfts;
1777 goto err;
1778 }
1779 }
1780 }
1781
1782 css->flags |= CSS_VISIBLE;
1783
1784 return 0;
1785 err:
1786 list_for_each_entry(cfts, &css->ss->cfts, node) {
1787 if (cfts == failed_cfts)
1788 break;
1789 cgroup_addrm_files(css, cgrp, cfts, false);
1790 }
1791 return ret;
1792 }
1793
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1794 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1795 {
1796 struct cgroup *dcgrp = &dst_root->cgrp;
1797 struct cgroup_subsys *ss;
1798 int ssid, ret;
1799 u16 dfl_disable_ss_mask = 0;
1800
1801 lockdep_assert_held(&cgroup_mutex);
1802
1803 do_each_subsys_mask(ss, ssid, ss_mask) {
1804 /*
1805 * If @ss has non-root csses attached to it, can't move.
1806 * If @ss is an implicit controller, it is exempt from this
1807 * rule and can be stolen.
1808 */
1809 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1810 !ss->implicit_on_dfl)
1811 return -EBUSY;
1812
1813 /* can't move between two non-dummy roots either */
1814 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1815 return -EBUSY;
1816
1817 /*
1818 * Collect ssid's that need to be disabled from default
1819 * hierarchy.
1820 */
1821 if (ss->root == &cgrp_dfl_root)
1822 dfl_disable_ss_mask |= 1 << ssid;
1823
1824 } while_each_subsys_mask();
1825
1826 if (dfl_disable_ss_mask) {
1827 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1828
1829 /*
1830 * Controllers from default hierarchy that need to be rebound
1831 * are all disabled together in one go.
1832 */
1833 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1834 WARN_ON(cgroup_apply_control(scgrp));
1835 cgroup_finalize_control(scgrp, 0);
1836 }
1837
1838 do_each_subsys_mask(ss, ssid, ss_mask) {
1839 struct cgroup_root *src_root = ss->root;
1840 struct cgroup *scgrp = &src_root->cgrp;
1841 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1842 struct css_set *cset, *cset_pos;
1843 struct css_task_iter *it;
1844
1845 WARN_ON(!css || cgroup_css(dcgrp, ss));
1846
1847 if (src_root != &cgrp_dfl_root) {
1848 /* disable from the source */
1849 src_root->subsys_mask &= ~(1 << ssid);
1850 WARN_ON(cgroup_apply_control(scgrp));
1851 cgroup_finalize_control(scgrp, 0);
1852 }
1853
1854 /* rebind */
1855 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1856 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1857 ss->root = dst_root;
1858
1859 spin_lock_irq(&css_set_lock);
1860 css->cgroup = dcgrp;
1861 WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1862 list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1863 e_cset_node[ss->id]) {
1864 list_move_tail(&cset->e_cset_node[ss->id],
1865 &dcgrp->e_csets[ss->id]);
1866 /*
1867 * all css_sets of scgrp together in same order to dcgrp,
1868 * patch in-flight iterators to preserve correct iteration.
1869 * since the iterator is always advanced right away and
1870 * finished when it->cset_pos meets it->cset_head, so only
1871 * update it->cset_head is enough here.
1872 */
1873 list_for_each_entry(it, &cset->task_iters, iters_node)
1874 if (it->cset_head == &scgrp->e_csets[ss->id])
1875 it->cset_head = &dcgrp->e_csets[ss->id];
1876 }
1877 spin_unlock_irq(&css_set_lock);
1878
1879 if (ss->css_rstat_flush) {
1880 list_del_rcu(&css->rstat_css_node);
1881 synchronize_rcu();
1882 list_add_rcu(&css->rstat_css_node,
1883 &dcgrp->rstat_css_list);
1884 }
1885
1886 /* default hierarchy doesn't enable controllers by default */
1887 dst_root->subsys_mask |= 1 << ssid;
1888 if (dst_root == &cgrp_dfl_root) {
1889 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1890 } else {
1891 dcgrp->subtree_control |= 1 << ssid;
1892 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1893 }
1894
1895 ret = cgroup_apply_control(dcgrp);
1896 if (ret)
1897 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1898 ss->name, ret);
1899
1900 if (ss->bind)
1901 ss->bind(css);
1902 } while_each_subsys_mask();
1903
1904 kernfs_activate(dcgrp->kn);
1905 return 0;
1906 }
1907
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1908 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1909 struct kernfs_root *kf_root)
1910 {
1911 int len = 0;
1912 char *buf = NULL;
1913 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1914 struct cgroup *ns_cgroup;
1915
1916 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1917 if (!buf)
1918 return -ENOMEM;
1919
1920 spin_lock_irq(&css_set_lock);
1921 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1922 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1923 spin_unlock_irq(&css_set_lock);
1924
1925 if (len == -E2BIG)
1926 len = -ERANGE;
1927 else if (len > 0) {
1928 seq_escape(sf, buf, " \t\n\\");
1929 len = 0;
1930 }
1931 kfree(buf);
1932 return len;
1933 }
1934
1935 enum cgroup2_param {
1936 Opt_nsdelegate,
1937 Opt_favordynmods,
1938 Opt_memory_localevents,
1939 Opt_memory_recursiveprot,
1940 Opt_memory_hugetlb_accounting,
1941 Opt_pids_localevents,
1942 nr__cgroup2_params
1943 };
1944
1945 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1946 fsparam_flag("nsdelegate", Opt_nsdelegate),
1947 fsparam_flag("favordynmods", Opt_favordynmods),
1948 fsparam_flag("memory_localevents", Opt_memory_localevents),
1949 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1950 fsparam_flag("memory_hugetlb_accounting", Opt_memory_hugetlb_accounting),
1951 fsparam_flag("pids_localevents", Opt_pids_localevents),
1952 {}
1953 };
1954
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1955 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1956 {
1957 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1958 struct fs_parse_result result;
1959 int opt;
1960
1961 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1962 if (opt < 0)
1963 return opt;
1964
1965 switch (opt) {
1966 case Opt_nsdelegate:
1967 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1968 return 0;
1969 case Opt_favordynmods:
1970 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1971 return 0;
1972 case Opt_memory_localevents:
1973 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1974 return 0;
1975 case Opt_memory_recursiveprot:
1976 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1977 return 0;
1978 case Opt_memory_hugetlb_accounting:
1979 ctx->flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1980 return 0;
1981 case Opt_pids_localevents:
1982 ctx->flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
1983 return 0;
1984 }
1985 return -EINVAL;
1986 }
1987
of_peak(struct kernfs_open_file * of)1988 struct cgroup_of_peak *of_peak(struct kernfs_open_file *of)
1989 {
1990 struct cgroup_file_ctx *ctx = of->priv;
1991
1992 return &ctx->peak;
1993 }
1994
apply_cgroup_root_flags(unsigned int root_flags)1995 static void apply_cgroup_root_flags(unsigned int root_flags)
1996 {
1997 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1998 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1999 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
2000 else
2001 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
2002
2003 cgroup_favor_dynmods(&cgrp_dfl_root,
2004 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
2005
2006 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2007 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2008 else
2009 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
2010
2011 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2012 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2013 else
2014 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
2015
2016 if (root_flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2017 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2018 else
2019 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
2020
2021 if (root_flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2022 cgrp_dfl_root.flags |= CGRP_ROOT_PIDS_LOCAL_EVENTS;
2023 else
2024 cgrp_dfl_root.flags &= ~CGRP_ROOT_PIDS_LOCAL_EVENTS;
2025 }
2026 }
2027
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)2028 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
2029 {
2030 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
2031 seq_puts(seq, ",nsdelegate");
2032 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
2033 seq_puts(seq, ",favordynmods");
2034 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2035 seq_puts(seq, ",memory_localevents");
2036 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2037 seq_puts(seq, ",memory_recursiveprot");
2038 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING)
2039 seq_puts(seq, ",memory_hugetlb_accounting");
2040 if (cgrp_dfl_root.flags & CGRP_ROOT_PIDS_LOCAL_EVENTS)
2041 seq_puts(seq, ",pids_localevents");
2042 return 0;
2043 }
2044
cgroup_reconfigure(struct fs_context * fc)2045 static int cgroup_reconfigure(struct fs_context *fc)
2046 {
2047 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2048
2049 apply_cgroup_root_flags(ctx->flags);
2050 return 0;
2051 }
2052
init_cgroup_housekeeping(struct cgroup * cgrp)2053 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2054 {
2055 struct cgroup_subsys *ss;
2056 int ssid;
2057
2058 INIT_LIST_HEAD(&cgrp->self.sibling);
2059 INIT_LIST_HEAD(&cgrp->self.children);
2060 INIT_LIST_HEAD(&cgrp->cset_links);
2061 INIT_LIST_HEAD(&cgrp->pidlists);
2062 mutex_init(&cgrp->pidlist_mutex);
2063 cgrp->self.cgroup = cgrp;
2064 cgrp->self.flags |= CSS_ONLINE;
2065 cgrp->dom_cgrp = cgrp;
2066 cgrp->max_descendants = INT_MAX;
2067 cgrp->max_depth = INT_MAX;
2068 INIT_LIST_HEAD(&cgrp->rstat_css_list);
2069 prev_cputime_init(&cgrp->prev_cputime);
2070
2071 for_each_subsys(ss, ssid)
2072 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2073
2074 init_waitqueue_head(&cgrp->offline_waitq);
2075 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2076 }
2077
init_cgroup_root(struct cgroup_fs_context * ctx)2078 void init_cgroup_root(struct cgroup_fs_context *ctx)
2079 {
2080 struct cgroup_root *root = ctx->root;
2081 struct cgroup *cgrp = &root->cgrp;
2082
2083 INIT_LIST_HEAD_RCU(&root->root_list);
2084 atomic_set(&root->nr_cgrps, 1);
2085 cgrp->root = root;
2086 init_cgroup_housekeeping(cgrp);
2087
2088 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2089 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2090 if (ctx->release_agent)
2091 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2092 if (ctx->name)
2093 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2094 if (ctx->cpuset_clone_children)
2095 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2096 }
2097
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2098 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2099 {
2100 LIST_HEAD(tmp_links);
2101 struct cgroup *root_cgrp = &root->cgrp;
2102 struct kernfs_syscall_ops *kf_sops;
2103 struct css_set *cset;
2104 int i, ret;
2105
2106 lockdep_assert_held(&cgroup_mutex);
2107
2108 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2109 0, GFP_KERNEL);
2110 if (ret)
2111 goto out;
2112
2113 /*
2114 * We're accessing css_set_count without locking css_set_lock here,
2115 * but that's OK - it can only be increased by someone holding
2116 * cgroup_lock, and that's us. Later rebinding may disable
2117 * controllers on the default hierarchy and thus create new csets,
2118 * which can't be more than the existing ones. Allocate 2x.
2119 */
2120 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2121 if (ret)
2122 goto cancel_ref;
2123
2124 ret = cgroup_init_root_id(root);
2125 if (ret)
2126 goto cancel_ref;
2127
2128 kf_sops = root == &cgrp_dfl_root ?
2129 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2130
2131 root->kf_root = kernfs_create_root(kf_sops,
2132 KERNFS_ROOT_CREATE_DEACTIVATED |
2133 KERNFS_ROOT_SUPPORT_EXPORTOP |
2134 KERNFS_ROOT_SUPPORT_USER_XATTR |
2135 KERNFS_ROOT_INVARIANT_PARENT,
2136 root_cgrp);
2137 if (IS_ERR(root->kf_root)) {
2138 ret = PTR_ERR(root->kf_root);
2139 goto exit_root_id;
2140 }
2141 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2142 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2143 root_cgrp->ancestors[0] = root_cgrp;
2144
2145 ret = css_populate_dir(&root_cgrp->self);
2146 if (ret)
2147 goto destroy_root;
2148
2149 ret = cgroup_rstat_init(root_cgrp);
2150 if (ret)
2151 goto destroy_root;
2152
2153 ret = rebind_subsystems(root, ss_mask);
2154 if (ret)
2155 goto exit_stats;
2156
2157 if (root == &cgrp_dfl_root) {
2158 ret = cgroup_bpf_inherit(root_cgrp);
2159 WARN_ON_ONCE(ret);
2160 }
2161
2162 trace_cgroup_setup_root(root);
2163
2164 /*
2165 * There must be no failure case after here, since rebinding takes
2166 * care of subsystems' refcounts, which are explicitly dropped in
2167 * the failure exit path.
2168 */
2169 list_add_rcu(&root->root_list, &cgroup_roots);
2170 cgroup_root_count++;
2171
2172 /*
2173 * Link the root cgroup in this hierarchy into all the css_set
2174 * objects.
2175 */
2176 spin_lock_irq(&css_set_lock);
2177 hash_for_each(css_set_table, i, cset, hlist) {
2178 link_css_set(&tmp_links, cset, root_cgrp);
2179 if (css_set_populated(cset))
2180 cgroup_update_populated(root_cgrp, true);
2181 }
2182 spin_unlock_irq(&css_set_lock);
2183
2184 BUG_ON(!list_empty(&root_cgrp->self.children));
2185 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2186
2187 ret = 0;
2188 goto out;
2189
2190 exit_stats:
2191 cgroup_rstat_exit(root_cgrp);
2192 destroy_root:
2193 kernfs_destroy_root(root->kf_root);
2194 root->kf_root = NULL;
2195 exit_root_id:
2196 cgroup_exit_root_id(root);
2197 cancel_ref:
2198 percpu_ref_exit(&root_cgrp->self.refcnt);
2199 out:
2200 free_cgrp_cset_links(&tmp_links);
2201 return ret;
2202 }
2203
cgroup_do_get_tree(struct fs_context * fc)2204 int cgroup_do_get_tree(struct fs_context *fc)
2205 {
2206 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2207 int ret;
2208
2209 ctx->kfc.root = ctx->root->kf_root;
2210 if (fc->fs_type == &cgroup2_fs_type)
2211 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2212 else
2213 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2214 ret = kernfs_get_tree(fc);
2215
2216 /*
2217 * In non-init cgroup namespace, instead of root cgroup's dentry,
2218 * we return the dentry corresponding to the cgroupns->root_cgrp.
2219 */
2220 if (!ret && ctx->ns != &init_cgroup_ns) {
2221 struct dentry *nsdentry;
2222 struct super_block *sb = fc->root->d_sb;
2223 struct cgroup *cgrp;
2224
2225 cgroup_lock();
2226 spin_lock_irq(&css_set_lock);
2227
2228 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2229
2230 spin_unlock_irq(&css_set_lock);
2231 cgroup_unlock();
2232
2233 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2234 dput(fc->root);
2235 if (IS_ERR(nsdentry)) {
2236 deactivate_locked_super(sb);
2237 ret = PTR_ERR(nsdentry);
2238 nsdentry = NULL;
2239 }
2240 fc->root = nsdentry;
2241 }
2242
2243 if (!ctx->kfc.new_sb_created)
2244 cgroup_put(&ctx->root->cgrp);
2245
2246 return ret;
2247 }
2248
2249 /*
2250 * Destroy a cgroup filesystem context.
2251 */
cgroup_fs_context_free(struct fs_context * fc)2252 static void cgroup_fs_context_free(struct fs_context *fc)
2253 {
2254 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2255
2256 kfree(ctx->name);
2257 kfree(ctx->release_agent);
2258 put_cgroup_ns(ctx->ns);
2259 kernfs_free_fs_context(fc);
2260 kfree(ctx);
2261 }
2262
cgroup_get_tree(struct fs_context * fc)2263 static int cgroup_get_tree(struct fs_context *fc)
2264 {
2265 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2266 int ret;
2267
2268 WRITE_ONCE(cgrp_dfl_visible, true);
2269 cgroup_get_live(&cgrp_dfl_root.cgrp);
2270 ctx->root = &cgrp_dfl_root;
2271
2272 ret = cgroup_do_get_tree(fc);
2273 if (!ret)
2274 apply_cgroup_root_flags(ctx->flags);
2275 return ret;
2276 }
2277
2278 static const struct fs_context_operations cgroup_fs_context_ops = {
2279 .free = cgroup_fs_context_free,
2280 .parse_param = cgroup2_parse_param,
2281 .get_tree = cgroup_get_tree,
2282 .reconfigure = cgroup_reconfigure,
2283 };
2284
2285 static const struct fs_context_operations cgroup1_fs_context_ops = {
2286 .free = cgroup_fs_context_free,
2287 .parse_param = cgroup1_parse_param,
2288 .get_tree = cgroup1_get_tree,
2289 .reconfigure = cgroup1_reconfigure,
2290 };
2291
2292 /*
2293 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2294 * we select the namespace we're going to use.
2295 */
cgroup_init_fs_context(struct fs_context * fc)2296 static int cgroup_init_fs_context(struct fs_context *fc)
2297 {
2298 struct cgroup_fs_context *ctx;
2299
2300 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2301 if (!ctx)
2302 return -ENOMEM;
2303
2304 ctx->ns = current->nsproxy->cgroup_ns;
2305 get_cgroup_ns(ctx->ns);
2306 fc->fs_private = &ctx->kfc;
2307 if (fc->fs_type == &cgroup2_fs_type)
2308 fc->ops = &cgroup_fs_context_ops;
2309 else
2310 fc->ops = &cgroup1_fs_context_ops;
2311 put_user_ns(fc->user_ns);
2312 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2313 fc->global = true;
2314
2315 if (have_favordynmods)
2316 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2317
2318 return 0;
2319 }
2320
cgroup_kill_sb(struct super_block * sb)2321 static void cgroup_kill_sb(struct super_block *sb)
2322 {
2323 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2324 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2325
2326 /*
2327 * If @root doesn't have any children, start killing it.
2328 * This prevents new mounts by disabling percpu_ref_tryget_live().
2329 *
2330 * And don't kill the default root.
2331 */
2332 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2333 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2334 percpu_ref_kill(&root->cgrp.self.refcnt);
2335 cgroup_put(&root->cgrp);
2336 kernfs_kill_sb(sb);
2337 }
2338
2339 struct file_system_type cgroup_fs_type = {
2340 .name = "cgroup",
2341 .init_fs_context = cgroup_init_fs_context,
2342 .parameters = cgroup1_fs_parameters,
2343 .kill_sb = cgroup_kill_sb,
2344 .fs_flags = FS_USERNS_MOUNT,
2345 };
2346
2347 static struct file_system_type cgroup2_fs_type = {
2348 .name = "cgroup2",
2349 .init_fs_context = cgroup_init_fs_context,
2350 .parameters = cgroup2_fs_parameters,
2351 .kill_sb = cgroup_kill_sb,
2352 .fs_flags = FS_USERNS_MOUNT,
2353 };
2354
2355 #ifdef CONFIG_CPUSETS_V1
2356 enum cpuset_param {
2357 Opt_cpuset_v2_mode,
2358 };
2359
2360 static const struct fs_parameter_spec cpuset_fs_parameters[] = {
2361 fsparam_flag ("cpuset_v2_mode", Opt_cpuset_v2_mode),
2362 {}
2363 };
2364
cpuset_parse_param(struct fs_context * fc,struct fs_parameter * param)2365 static int cpuset_parse_param(struct fs_context *fc, struct fs_parameter *param)
2366 {
2367 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2368 struct fs_parse_result result;
2369 int opt;
2370
2371 opt = fs_parse(fc, cpuset_fs_parameters, param, &result);
2372 if (opt < 0)
2373 return opt;
2374
2375 switch (opt) {
2376 case Opt_cpuset_v2_mode:
2377 ctx->flags |= CGRP_ROOT_CPUSET_V2_MODE;
2378 return 0;
2379 }
2380 return -EINVAL;
2381 }
2382
2383 static const struct fs_context_operations cpuset_fs_context_ops = {
2384 .get_tree = cgroup1_get_tree,
2385 .free = cgroup_fs_context_free,
2386 .parse_param = cpuset_parse_param,
2387 };
2388
2389 /*
2390 * This is ugly, but preserves the userspace API for existing cpuset
2391 * users. If someone tries to mount the "cpuset" filesystem, we
2392 * silently switch it to mount "cgroup" instead
2393 */
cpuset_init_fs_context(struct fs_context * fc)2394 static int cpuset_init_fs_context(struct fs_context *fc)
2395 {
2396 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2397 struct cgroup_fs_context *ctx;
2398 int err;
2399
2400 err = cgroup_init_fs_context(fc);
2401 if (err) {
2402 kfree(agent);
2403 return err;
2404 }
2405
2406 fc->ops = &cpuset_fs_context_ops;
2407
2408 ctx = cgroup_fc2context(fc);
2409 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2410 ctx->flags |= CGRP_ROOT_NOPREFIX;
2411 ctx->release_agent = agent;
2412
2413 get_filesystem(&cgroup_fs_type);
2414 put_filesystem(fc->fs_type);
2415 fc->fs_type = &cgroup_fs_type;
2416
2417 return 0;
2418 }
2419
2420 static struct file_system_type cpuset_fs_type = {
2421 .name = "cpuset",
2422 .init_fs_context = cpuset_init_fs_context,
2423 .parameters = cpuset_fs_parameters,
2424 .fs_flags = FS_USERNS_MOUNT,
2425 };
2426 #endif
2427
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2428 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2429 struct cgroup_namespace *ns)
2430 {
2431 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2432
2433 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2434 }
2435
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2436 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2437 struct cgroup_namespace *ns)
2438 {
2439 int ret;
2440
2441 cgroup_lock();
2442 spin_lock_irq(&css_set_lock);
2443
2444 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2445
2446 spin_unlock_irq(&css_set_lock);
2447 cgroup_unlock();
2448
2449 return ret;
2450 }
2451 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2452
2453 /**
2454 * cgroup_attach_lock - Lock for ->attach()
2455 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2456 *
2457 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2458 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2459 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2460 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2461 * lead to deadlocks.
2462 *
2463 * Bringing up a CPU may involve creating and destroying tasks which requires
2464 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2465 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2466 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2467 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2468 * the threadgroup_rwsem to be released to create new tasks. For more details:
2469 *
2470 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2471 *
2472 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2473 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2474 * CPU hotplug is disabled on entry.
2475 */
cgroup_attach_lock(bool lock_threadgroup)2476 void cgroup_attach_lock(bool lock_threadgroup)
2477 {
2478 cpus_read_lock();
2479 if (lock_threadgroup)
2480 percpu_down_write(&cgroup_threadgroup_rwsem);
2481 }
2482
2483 /**
2484 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2485 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2486 */
cgroup_attach_unlock(bool lock_threadgroup)2487 void cgroup_attach_unlock(bool lock_threadgroup)
2488 {
2489 if (lock_threadgroup)
2490 percpu_up_write(&cgroup_threadgroup_rwsem);
2491 cpus_read_unlock();
2492 }
2493
2494 /**
2495 * cgroup_migrate_add_task - add a migration target task to a migration context
2496 * @task: target task
2497 * @mgctx: target migration context
2498 *
2499 * Add @task, which is a migration target, to @mgctx->tset. This function
2500 * becomes noop if @task doesn't need to be migrated. @task's css_set
2501 * should have been added as a migration source and @task->cg_list will be
2502 * moved from the css_set's tasks list to mg_tasks one.
2503 */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2504 static void cgroup_migrate_add_task(struct task_struct *task,
2505 struct cgroup_mgctx *mgctx)
2506 {
2507 struct css_set *cset;
2508
2509 lockdep_assert_held(&css_set_lock);
2510
2511 /* @task either already exited or can't exit until the end */
2512 if (task->flags & PF_EXITING)
2513 return;
2514
2515 /* cgroup_threadgroup_rwsem protects racing against forks */
2516 WARN_ON_ONCE(list_empty(&task->cg_list));
2517
2518 cset = task_css_set(task);
2519 if (!cset->mg_src_cgrp)
2520 return;
2521
2522 mgctx->tset.nr_tasks++;
2523
2524 list_move_tail(&task->cg_list, &cset->mg_tasks);
2525 if (list_empty(&cset->mg_node))
2526 list_add_tail(&cset->mg_node,
2527 &mgctx->tset.src_csets);
2528 if (list_empty(&cset->mg_dst_cset->mg_node))
2529 list_add_tail(&cset->mg_dst_cset->mg_node,
2530 &mgctx->tset.dst_csets);
2531 }
2532
2533 /**
2534 * cgroup_taskset_first - reset taskset and return the first task
2535 * @tset: taskset of interest
2536 * @dst_cssp: output variable for the destination css
2537 *
2538 * @tset iteration is initialized and the first task is returned.
2539 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2540 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2541 struct cgroup_subsys_state **dst_cssp)
2542 {
2543 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2544 tset->cur_task = NULL;
2545
2546 return cgroup_taskset_next(tset, dst_cssp);
2547 }
2548
2549 /**
2550 * cgroup_taskset_next - iterate to the next task in taskset
2551 * @tset: taskset of interest
2552 * @dst_cssp: output variable for the destination css
2553 *
2554 * Return the next task in @tset. Iteration must have been initialized
2555 * with cgroup_taskset_first().
2556 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2557 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2558 struct cgroup_subsys_state **dst_cssp)
2559 {
2560 struct css_set *cset = tset->cur_cset;
2561 struct task_struct *task = tset->cur_task;
2562
2563 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2564 if (!task)
2565 task = list_first_entry(&cset->mg_tasks,
2566 struct task_struct, cg_list);
2567 else
2568 task = list_next_entry(task, cg_list);
2569
2570 if (&task->cg_list != &cset->mg_tasks) {
2571 tset->cur_cset = cset;
2572 tset->cur_task = task;
2573
2574 /*
2575 * This function may be called both before and
2576 * after cgroup_migrate_execute(). The two cases
2577 * can be distinguished by looking at whether @cset
2578 * has its ->mg_dst_cset set.
2579 */
2580 if (cset->mg_dst_cset)
2581 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2582 else
2583 *dst_cssp = cset->subsys[tset->ssid];
2584
2585 return task;
2586 }
2587
2588 cset = list_next_entry(cset, mg_node);
2589 task = NULL;
2590 }
2591
2592 return NULL;
2593 }
2594
2595 /**
2596 * cgroup_migrate_execute - migrate a taskset
2597 * @mgctx: migration context
2598 *
2599 * Migrate tasks in @mgctx as setup by migration preparation functions.
2600 * This function fails iff one of the ->can_attach callbacks fails and
2601 * guarantees that either all or none of the tasks in @mgctx are migrated.
2602 * @mgctx is consumed regardless of success.
2603 */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2604 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2605 {
2606 struct cgroup_taskset *tset = &mgctx->tset;
2607 struct cgroup_subsys *ss;
2608 struct task_struct *task, *tmp_task;
2609 struct css_set *cset, *tmp_cset;
2610 int ssid, failed_ssid, ret;
2611
2612 /* check that we can legitimately attach to the cgroup */
2613 if (tset->nr_tasks) {
2614 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2615 if (ss->can_attach) {
2616 tset->ssid = ssid;
2617 ret = ss->can_attach(tset);
2618 if (ret) {
2619 failed_ssid = ssid;
2620 goto out_cancel_attach;
2621 }
2622 }
2623 } while_each_subsys_mask();
2624 }
2625
2626 /*
2627 * Now that we're guaranteed success, proceed to move all tasks to
2628 * the new cgroup. There are no failure cases after here, so this
2629 * is the commit point.
2630 */
2631 spin_lock_irq(&css_set_lock);
2632 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2633 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2634 struct css_set *from_cset = task_css_set(task);
2635 struct css_set *to_cset = cset->mg_dst_cset;
2636
2637 get_css_set(to_cset);
2638 to_cset->nr_tasks++;
2639 css_set_move_task(task, from_cset, to_cset, true);
2640 from_cset->nr_tasks--;
2641 /*
2642 * If the source or destination cgroup is frozen,
2643 * the task might require to change its state.
2644 */
2645 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2646 to_cset->dfl_cgrp);
2647 put_css_set_locked(from_cset);
2648
2649 }
2650 }
2651 spin_unlock_irq(&css_set_lock);
2652
2653 /*
2654 * Migration is committed, all target tasks are now on dst_csets.
2655 * Nothing is sensitive to fork() after this point. Notify
2656 * controllers that migration is complete.
2657 */
2658 tset->csets = &tset->dst_csets;
2659
2660 if (tset->nr_tasks) {
2661 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2662 if (ss->attach) {
2663 tset->ssid = ssid;
2664 ss->attach(tset);
2665 }
2666 } while_each_subsys_mask();
2667 }
2668
2669 ret = 0;
2670 goto out_release_tset;
2671
2672 out_cancel_attach:
2673 if (tset->nr_tasks) {
2674 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2675 if (ssid == failed_ssid)
2676 break;
2677 if (ss->cancel_attach) {
2678 tset->ssid = ssid;
2679 ss->cancel_attach(tset);
2680 }
2681 } while_each_subsys_mask();
2682 }
2683 out_release_tset:
2684 spin_lock_irq(&css_set_lock);
2685 list_splice_init(&tset->dst_csets, &tset->src_csets);
2686 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2687 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2688 list_del_init(&cset->mg_node);
2689 }
2690 spin_unlock_irq(&css_set_lock);
2691
2692 /*
2693 * Re-initialize the cgroup_taskset structure in case it is reused
2694 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2695 * iteration.
2696 */
2697 tset->nr_tasks = 0;
2698 tset->csets = &tset->src_csets;
2699 return ret;
2700 }
2701
2702 /**
2703 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2704 * @dst_cgrp: destination cgroup to test
2705 *
2706 * On the default hierarchy, except for the mixable, (possible) thread root
2707 * and threaded cgroups, subtree_control must be zero for migration
2708 * destination cgroups with tasks so that child cgroups don't compete
2709 * against tasks.
2710 */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2711 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2712 {
2713 /* v1 doesn't have any restriction */
2714 if (!cgroup_on_dfl(dst_cgrp))
2715 return 0;
2716
2717 /* verify @dst_cgrp can host resources */
2718 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2719 return -EOPNOTSUPP;
2720
2721 /*
2722 * If @dst_cgrp is already or can become a thread root or is
2723 * threaded, it doesn't matter.
2724 */
2725 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2726 return 0;
2727
2728 /* apply no-internal-process constraint */
2729 if (dst_cgrp->subtree_control)
2730 return -EBUSY;
2731
2732 return 0;
2733 }
2734
2735 /**
2736 * cgroup_migrate_finish - cleanup after attach
2737 * @mgctx: migration context
2738 *
2739 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2740 * those functions for details.
2741 */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2742 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2743 {
2744 struct css_set *cset, *tmp_cset;
2745
2746 lockdep_assert_held(&cgroup_mutex);
2747
2748 spin_lock_irq(&css_set_lock);
2749
2750 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2751 mg_src_preload_node) {
2752 cset->mg_src_cgrp = NULL;
2753 cset->mg_dst_cgrp = NULL;
2754 cset->mg_dst_cset = NULL;
2755 list_del_init(&cset->mg_src_preload_node);
2756 put_css_set_locked(cset);
2757 }
2758
2759 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2760 mg_dst_preload_node) {
2761 cset->mg_src_cgrp = NULL;
2762 cset->mg_dst_cgrp = NULL;
2763 cset->mg_dst_cset = NULL;
2764 list_del_init(&cset->mg_dst_preload_node);
2765 put_css_set_locked(cset);
2766 }
2767
2768 spin_unlock_irq(&css_set_lock);
2769 }
2770
2771 /**
2772 * cgroup_migrate_add_src - add a migration source css_set
2773 * @src_cset: the source css_set to add
2774 * @dst_cgrp: the destination cgroup
2775 * @mgctx: migration context
2776 *
2777 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2778 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2779 * up by cgroup_migrate_finish().
2780 *
2781 * This function may be called without holding cgroup_threadgroup_rwsem
2782 * even if the target is a process. Threads may be created and destroyed
2783 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2784 * into play and the preloaded css_sets are guaranteed to cover all
2785 * migrations.
2786 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2787 void cgroup_migrate_add_src(struct css_set *src_cset,
2788 struct cgroup *dst_cgrp,
2789 struct cgroup_mgctx *mgctx)
2790 {
2791 struct cgroup *src_cgrp;
2792
2793 lockdep_assert_held(&cgroup_mutex);
2794 lockdep_assert_held(&css_set_lock);
2795
2796 /*
2797 * If ->dead, @src_set is associated with one or more dead cgroups
2798 * and doesn't contain any migratable tasks. Ignore it early so
2799 * that the rest of migration path doesn't get confused by it.
2800 */
2801 if (src_cset->dead)
2802 return;
2803
2804 if (!list_empty(&src_cset->mg_src_preload_node))
2805 return;
2806
2807 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2808
2809 WARN_ON(src_cset->mg_src_cgrp);
2810 WARN_ON(src_cset->mg_dst_cgrp);
2811 WARN_ON(!list_empty(&src_cset->mg_tasks));
2812 WARN_ON(!list_empty(&src_cset->mg_node));
2813
2814 src_cset->mg_src_cgrp = src_cgrp;
2815 src_cset->mg_dst_cgrp = dst_cgrp;
2816 get_css_set(src_cset);
2817 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2818 }
2819
2820 /**
2821 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2822 * @mgctx: migration context
2823 *
2824 * Tasks are about to be moved and all the source css_sets have been
2825 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2826 * pins all destination css_sets, links each to its source, and append them
2827 * to @mgctx->preloaded_dst_csets.
2828 *
2829 * This function must be called after cgroup_migrate_add_src() has been
2830 * called on each migration source css_set. After migration is performed
2831 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2832 * @mgctx.
2833 */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2834 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2835 {
2836 struct css_set *src_cset, *tmp_cset;
2837
2838 lockdep_assert_held(&cgroup_mutex);
2839
2840 /* look up the dst cset for each src cset and link it to src */
2841 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2842 mg_src_preload_node) {
2843 struct css_set *dst_cset;
2844 struct cgroup_subsys *ss;
2845 int ssid;
2846
2847 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2848 if (!dst_cset)
2849 return -ENOMEM;
2850
2851 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2852
2853 /*
2854 * If src cset equals dst, it's noop. Drop the src.
2855 * cgroup_migrate() will skip the cset too. Note that we
2856 * can't handle src == dst as some nodes are used by both.
2857 */
2858 if (src_cset == dst_cset) {
2859 src_cset->mg_src_cgrp = NULL;
2860 src_cset->mg_dst_cgrp = NULL;
2861 list_del_init(&src_cset->mg_src_preload_node);
2862 put_css_set(src_cset);
2863 put_css_set(dst_cset);
2864 continue;
2865 }
2866
2867 src_cset->mg_dst_cset = dst_cset;
2868
2869 if (list_empty(&dst_cset->mg_dst_preload_node))
2870 list_add_tail(&dst_cset->mg_dst_preload_node,
2871 &mgctx->preloaded_dst_csets);
2872 else
2873 put_css_set(dst_cset);
2874
2875 for_each_subsys(ss, ssid)
2876 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2877 mgctx->ss_mask |= 1 << ssid;
2878 }
2879
2880 return 0;
2881 }
2882
2883 /**
2884 * cgroup_migrate - migrate a process or task to a cgroup
2885 * @leader: the leader of the process or the task to migrate
2886 * @threadgroup: whether @leader points to the whole process or a single task
2887 * @mgctx: migration context
2888 *
2889 * Migrate a process or task denoted by @leader. If migrating a process,
2890 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2891 * responsible for invoking cgroup_migrate_add_src() and
2892 * cgroup_migrate_prepare_dst() on the targets before invoking this
2893 * function and following up with cgroup_migrate_finish().
2894 *
2895 * As long as a controller's ->can_attach() doesn't fail, this function is
2896 * guaranteed to succeed. This means that, excluding ->can_attach()
2897 * failure, when migrating multiple targets, the success or failure can be
2898 * decided for all targets by invoking group_migrate_prepare_dst() before
2899 * actually starting migrating.
2900 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2901 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2902 struct cgroup_mgctx *mgctx)
2903 {
2904 struct task_struct *task;
2905
2906 /*
2907 * The following thread iteration should be inside an RCU critical
2908 * section to prevent tasks from being freed while taking the snapshot.
2909 * spin_lock_irq() implies RCU critical section here.
2910 */
2911 spin_lock_irq(&css_set_lock);
2912 task = leader;
2913 do {
2914 cgroup_migrate_add_task(task, mgctx);
2915 if (!threadgroup)
2916 break;
2917 } while_each_thread(leader, task);
2918 spin_unlock_irq(&css_set_lock);
2919
2920 return cgroup_migrate_execute(mgctx);
2921 }
2922
2923 /**
2924 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2925 * @dst_cgrp: the cgroup to attach to
2926 * @leader: the task or the leader of the threadgroup to be attached
2927 * @threadgroup: attach the whole threadgroup?
2928 *
2929 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2930 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2931 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2932 bool threadgroup)
2933 {
2934 DEFINE_CGROUP_MGCTX(mgctx);
2935 struct task_struct *task;
2936 int ret = 0;
2937
2938 /* look up all src csets */
2939 spin_lock_irq(&css_set_lock);
2940 rcu_read_lock();
2941 task = leader;
2942 do {
2943 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2944 if (!threadgroup)
2945 break;
2946 } while_each_thread(leader, task);
2947 rcu_read_unlock();
2948 spin_unlock_irq(&css_set_lock);
2949
2950 /* prepare dst csets and commit */
2951 ret = cgroup_migrate_prepare_dst(&mgctx);
2952 if (!ret)
2953 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2954
2955 cgroup_migrate_finish(&mgctx);
2956
2957 if (!ret)
2958 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2959
2960 return ret;
2961 }
2962
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked)2963 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2964 bool *threadgroup_locked)
2965 {
2966 struct task_struct *tsk;
2967 pid_t pid;
2968
2969 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2970 return ERR_PTR(-EINVAL);
2971
2972 /*
2973 * If we migrate a single thread, we don't care about threadgroup
2974 * stability. If the thread is `current`, it won't exit(2) under our
2975 * hands or change PID through exec(2). We exclude
2976 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2977 * callers by cgroup_mutex.
2978 * Therefore, we can skip the global lock.
2979 */
2980 lockdep_assert_held(&cgroup_mutex);
2981 *threadgroup_locked = pid || threadgroup;
2982 cgroup_attach_lock(*threadgroup_locked);
2983
2984 rcu_read_lock();
2985 if (pid) {
2986 tsk = find_task_by_vpid(pid);
2987 if (!tsk) {
2988 tsk = ERR_PTR(-ESRCH);
2989 goto out_unlock_threadgroup;
2990 }
2991 } else {
2992 tsk = current;
2993 }
2994
2995 if (threadgroup)
2996 tsk = tsk->group_leader;
2997
2998 /*
2999 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
3000 * If userland migrates such a kthread to a non-root cgroup, it can
3001 * become trapped in a cpuset, or RT kthread may be born in a
3002 * cgroup with no rt_runtime allocated. Just say no.
3003 */
3004 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
3005 tsk = ERR_PTR(-EINVAL);
3006 goto out_unlock_threadgroup;
3007 }
3008
3009 get_task_struct(tsk);
3010 goto out_unlock_rcu;
3011
3012 out_unlock_threadgroup:
3013 cgroup_attach_unlock(*threadgroup_locked);
3014 *threadgroup_locked = false;
3015 out_unlock_rcu:
3016 rcu_read_unlock();
3017 return tsk;
3018 }
3019
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)3020 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
3021 {
3022 struct cgroup_subsys *ss;
3023 int ssid;
3024
3025 /* release reference from cgroup_procs_write_start() */
3026 put_task_struct(task);
3027
3028 cgroup_attach_unlock(threadgroup_locked);
3029
3030 for_each_subsys(ss, ssid)
3031 if (ss->post_attach)
3032 ss->post_attach();
3033 }
3034
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3035 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3036 {
3037 struct cgroup_subsys *ss;
3038 bool printed = false;
3039 int ssid;
3040
3041 do_each_subsys_mask(ss, ssid, ss_mask) {
3042 if (printed)
3043 seq_putc(seq, ' ');
3044 seq_puts(seq, ss->name);
3045 printed = true;
3046 } while_each_subsys_mask();
3047 if (printed)
3048 seq_putc(seq, '\n');
3049 }
3050
3051 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3052 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3053 {
3054 struct cgroup *cgrp = seq_css(seq)->cgroup;
3055
3056 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3057 return 0;
3058 }
3059
3060 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3061 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3062 {
3063 struct cgroup *cgrp = seq_css(seq)->cgroup;
3064
3065 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3066 return 0;
3067 }
3068
3069 /**
3070 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3071 * @cgrp: root of the subtree to update csses for
3072 *
3073 * @cgrp's control masks have changed and its subtree's css associations
3074 * need to be updated accordingly. This function looks up all css_sets
3075 * which are attached to the subtree, creates the matching updated css_sets
3076 * and migrates the tasks to the new ones.
3077 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3078 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3079 {
3080 DEFINE_CGROUP_MGCTX(mgctx);
3081 struct cgroup_subsys_state *d_css;
3082 struct cgroup *dsct;
3083 struct css_set *src_cset;
3084 bool has_tasks;
3085 int ret;
3086
3087 lockdep_assert_held(&cgroup_mutex);
3088
3089 /* look up all csses currently attached to @cgrp's subtree */
3090 spin_lock_irq(&css_set_lock);
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 struct cgrp_cset_link *link;
3093
3094 /*
3095 * As cgroup_update_dfl_csses() is only called by
3096 * cgroup_apply_control(). The csses associated with the
3097 * given cgrp will not be affected by changes made to
3098 * its subtree_control file. We can skip them.
3099 */
3100 if (dsct == cgrp)
3101 continue;
3102
3103 list_for_each_entry(link, &dsct->cset_links, cset_link)
3104 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3105 }
3106 spin_unlock_irq(&css_set_lock);
3107
3108 /*
3109 * We need to write-lock threadgroup_rwsem while migrating tasks.
3110 * However, if there are no source csets for @cgrp, changing its
3111 * controllers isn't gonna produce any task migrations and the
3112 * write-locking can be skipped safely.
3113 */
3114 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3115 cgroup_attach_lock(has_tasks);
3116
3117 /* NULL dst indicates self on default hierarchy */
3118 ret = cgroup_migrate_prepare_dst(&mgctx);
3119 if (ret)
3120 goto out_finish;
3121
3122 spin_lock_irq(&css_set_lock);
3123 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3124 mg_src_preload_node) {
3125 struct task_struct *task, *ntask;
3126
3127 /* all tasks in src_csets need to be migrated */
3128 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3129 cgroup_migrate_add_task(task, &mgctx);
3130 }
3131 spin_unlock_irq(&css_set_lock);
3132
3133 ret = cgroup_migrate_execute(&mgctx);
3134 out_finish:
3135 cgroup_migrate_finish(&mgctx);
3136 cgroup_attach_unlock(has_tasks);
3137 return ret;
3138 }
3139
3140 /**
3141 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3142 * @cgrp: root of the target subtree
3143 *
3144 * Because css offlining is asynchronous, userland may try to re-enable a
3145 * controller while the previous css is still around. This function grabs
3146 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3147 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3148 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3149 __acquires(&cgroup_mutex)
3150 {
3151 struct cgroup *dsct;
3152 struct cgroup_subsys_state *d_css;
3153 struct cgroup_subsys *ss;
3154 int ssid;
3155
3156 restart:
3157 cgroup_lock();
3158
3159 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3160 for_each_subsys(ss, ssid) {
3161 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3162 DEFINE_WAIT(wait);
3163
3164 if (!css || !percpu_ref_is_dying(&css->refcnt))
3165 continue;
3166
3167 cgroup_get_live(dsct);
3168 prepare_to_wait(&dsct->offline_waitq, &wait,
3169 TASK_UNINTERRUPTIBLE);
3170
3171 cgroup_unlock();
3172 schedule();
3173 finish_wait(&dsct->offline_waitq, &wait);
3174
3175 cgroup_put(dsct);
3176 goto restart;
3177 }
3178 }
3179 }
3180
3181 /**
3182 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3183 * @cgrp: root of the target subtree
3184 *
3185 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3186 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3187 * itself.
3188 */
cgroup_save_control(struct cgroup * cgrp)3189 static void cgroup_save_control(struct cgroup *cgrp)
3190 {
3191 struct cgroup *dsct;
3192 struct cgroup_subsys_state *d_css;
3193
3194 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3195 dsct->old_subtree_control = dsct->subtree_control;
3196 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3197 dsct->old_dom_cgrp = dsct->dom_cgrp;
3198 }
3199 }
3200
3201 /**
3202 * cgroup_propagate_control - refresh control masks of a subtree
3203 * @cgrp: root of the target subtree
3204 *
3205 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3206 * ->subtree_control and propagate controller availability through the
3207 * subtree so that descendants don't have unavailable controllers enabled.
3208 */
cgroup_propagate_control(struct cgroup * cgrp)3209 static void cgroup_propagate_control(struct cgroup *cgrp)
3210 {
3211 struct cgroup *dsct;
3212 struct cgroup_subsys_state *d_css;
3213
3214 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3215 dsct->subtree_control &= cgroup_control(dsct);
3216 dsct->subtree_ss_mask =
3217 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3218 cgroup_ss_mask(dsct));
3219 }
3220 }
3221
3222 /**
3223 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3224 * @cgrp: root of the target subtree
3225 *
3226 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3227 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3228 * itself.
3229 */
cgroup_restore_control(struct cgroup * cgrp)3230 static void cgroup_restore_control(struct cgroup *cgrp)
3231 {
3232 struct cgroup *dsct;
3233 struct cgroup_subsys_state *d_css;
3234
3235 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3236 dsct->subtree_control = dsct->old_subtree_control;
3237 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3238 dsct->dom_cgrp = dsct->old_dom_cgrp;
3239 }
3240 }
3241
css_visible(struct cgroup_subsys_state * css)3242 static bool css_visible(struct cgroup_subsys_state *css)
3243 {
3244 struct cgroup_subsys *ss = css->ss;
3245 struct cgroup *cgrp = css->cgroup;
3246
3247 if (cgroup_control(cgrp) & (1 << ss->id))
3248 return true;
3249 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3250 return false;
3251 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3252 }
3253
3254 /**
3255 * cgroup_apply_control_enable - enable or show csses according to control
3256 * @cgrp: root of the target subtree
3257 *
3258 * Walk @cgrp's subtree and create new csses or make the existing ones
3259 * visible. A css is created invisible if it's being implicitly enabled
3260 * through dependency. An invisible css is made visible when the userland
3261 * explicitly enables it.
3262 *
3263 * Returns 0 on success, -errno on failure. On failure, csses which have
3264 * been processed already aren't cleaned up. The caller is responsible for
3265 * cleaning up with cgroup_apply_control_disable().
3266 */
cgroup_apply_control_enable(struct cgroup * cgrp)3267 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3268 {
3269 struct cgroup *dsct;
3270 struct cgroup_subsys_state *d_css;
3271 struct cgroup_subsys *ss;
3272 int ssid, ret;
3273
3274 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3275 for_each_subsys(ss, ssid) {
3276 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3277
3278 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3279 continue;
3280
3281 if (!css) {
3282 css = css_create(dsct, ss);
3283 if (IS_ERR(css))
3284 return PTR_ERR(css);
3285 }
3286
3287 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3288
3289 if (css_visible(css)) {
3290 ret = css_populate_dir(css);
3291 if (ret)
3292 return ret;
3293 }
3294 }
3295 }
3296
3297 return 0;
3298 }
3299
3300 /**
3301 * cgroup_apply_control_disable - kill or hide csses according to control
3302 * @cgrp: root of the target subtree
3303 *
3304 * Walk @cgrp's subtree and kill and hide csses so that they match
3305 * cgroup_ss_mask() and cgroup_visible_mask().
3306 *
3307 * A css is hidden when the userland requests it to be disabled while other
3308 * subsystems are still depending on it. The css must not actively control
3309 * resources and be in the vanilla state if it's made visible again later.
3310 * Controllers which may be depended upon should provide ->css_reset() for
3311 * this purpose.
3312 */
cgroup_apply_control_disable(struct cgroup * cgrp)3313 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3314 {
3315 struct cgroup *dsct;
3316 struct cgroup_subsys_state *d_css;
3317 struct cgroup_subsys *ss;
3318 int ssid;
3319
3320 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3321 for_each_subsys(ss, ssid) {
3322 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3323
3324 if (!css)
3325 continue;
3326
3327 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3328
3329 if (css->parent &&
3330 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3331 kill_css(css);
3332 } else if (!css_visible(css)) {
3333 css_clear_dir(css);
3334 if (ss->css_reset)
3335 ss->css_reset(css);
3336 }
3337 }
3338 }
3339 }
3340
3341 /**
3342 * cgroup_apply_control - apply control mask updates to the subtree
3343 * @cgrp: root of the target subtree
3344 *
3345 * subsystems can be enabled and disabled in a subtree using the following
3346 * steps.
3347 *
3348 * 1. Call cgroup_save_control() to stash the current state.
3349 * 2. Update ->subtree_control masks in the subtree as desired.
3350 * 3. Call cgroup_apply_control() to apply the changes.
3351 * 4. Optionally perform other related operations.
3352 * 5. Call cgroup_finalize_control() to finish up.
3353 *
3354 * This function implements step 3 and propagates the mask changes
3355 * throughout @cgrp's subtree, updates csses accordingly and perform
3356 * process migrations.
3357 */
cgroup_apply_control(struct cgroup * cgrp)3358 static int cgroup_apply_control(struct cgroup *cgrp)
3359 {
3360 int ret;
3361
3362 cgroup_propagate_control(cgrp);
3363
3364 ret = cgroup_apply_control_enable(cgrp);
3365 if (ret)
3366 return ret;
3367
3368 /*
3369 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3370 * making the following cgroup_update_dfl_csses() properly update
3371 * css associations of all tasks in the subtree.
3372 */
3373 return cgroup_update_dfl_csses(cgrp);
3374 }
3375
3376 /**
3377 * cgroup_finalize_control - finalize control mask update
3378 * @cgrp: root of the target subtree
3379 * @ret: the result of the update
3380 *
3381 * Finalize control mask update. See cgroup_apply_control() for more info.
3382 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3383 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3384 {
3385 if (ret) {
3386 cgroup_restore_control(cgrp);
3387 cgroup_propagate_control(cgrp);
3388 }
3389
3390 cgroup_apply_control_disable(cgrp);
3391 }
3392
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3393 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3394 {
3395 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3396
3397 /* if nothing is getting enabled, nothing to worry about */
3398 if (!enable)
3399 return 0;
3400
3401 /* can @cgrp host any resources? */
3402 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3403 return -EOPNOTSUPP;
3404
3405 /* mixables don't care */
3406 if (cgroup_is_mixable(cgrp))
3407 return 0;
3408
3409 if (domain_enable) {
3410 /* can't enable domain controllers inside a thread subtree */
3411 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3412 return -EOPNOTSUPP;
3413 } else {
3414 /*
3415 * Threaded controllers can handle internal competitions
3416 * and are always allowed inside a (prospective) thread
3417 * subtree.
3418 */
3419 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3420 return 0;
3421 }
3422
3423 /*
3424 * Controllers can't be enabled for a cgroup with tasks to avoid
3425 * child cgroups competing against tasks.
3426 */
3427 if (cgroup_has_tasks(cgrp))
3428 return -EBUSY;
3429
3430 return 0;
3431 }
3432
3433 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3434 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3435 char *buf, size_t nbytes,
3436 loff_t off)
3437 {
3438 u16 enable = 0, disable = 0;
3439 struct cgroup *cgrp, *child;
3440 struct cgroup_subsys *ss;
3441 char *tok;
3442 int ssid, ret;
3443
3444 /*
3445 * Parse input - space separated list of subsystem names prefixed
3446 * with either + or -.
3447 */
3448 buf = strstrip(buf);
3449 while ((tok = strsep(&buf, " "))) {
3450 if (tok[0] == '\0')
3451 continue;
3452 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3453 if (!cgroup_ssid_enabled(ssid) ||
3454 strcmp(tok + 1, ss->name))
3455 continue;
3456
3457 if (*tok == '+') {
3458 enable |= 1 << ssid;
3459 disable &= ~(1 << ssid);
3460 } else if (*tok == '-') {
3461 disable |= 1 << ssid;
3462 enable &= ~(1 << ssid);
3463 } else {
3464 return -EINVAL;
3465 }
3466 break;
3467 } while_each_subsys_mask();
3468 if (ssid == CGROUP_SUBSYS_COUNT)
3469 return -EINVAL;
3470 }
3471
3472 cgrp = cgroup_kn_lock_live(of->kn, true);
3473 if (!cgrp)
3474 return -ENODEV;
3475
3476 for_each_subsys(ss, ssid) {
3477 if (enable & (1 << ssid)) {
3478 if (cgrp->subtree_control & (1 << ssid)) {
3479 enable &= ~(1 << ssid);
3480 continue;
3481 }
3482
3483 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3484 ret = -ENOENT;
3485 goto out_unlock;
3486 }
3487 } else if (disable & (1 << ssid)) {
3488 if (!(cgrp->subtree_control & (1 << ssid))) {
3489 disable &= ~(1 << ssid);
3490 continue;
3491 }
3492
3493 /* a child has it enabled? */
3494 cgroup_for_each_live_child(child, cgrp) {
3495 if (child->subtree_control & (1 << ssid)) {
3496 ret = -EBUSY;
3497 goto out_unlock;
3498 }
3499 }
3500 }
3501 }
3502
3503 if (!enable && !disable) {
3504 ret = 0;
3505 goto out_unlock;
3506 }
3507
3508 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3509 if (ret)
3510 goto out_unlock;
3511
3512 /* save and update control masks and prepare csses */
3513 cgroup_save_control(cgrp);
3514
3515 cgrp->subtree_control |= enable;
3516 cgrp->subtree_control &= ~disable;
3517
3518 ret = cgroup_apply_control(cgrp);
3519 cgroup_finalize_control(cgrp, ret);
3520 if (ret)
3521 goto out_unlock;
3522
3523 kernfs_activate(cgrp->kn);
3524 out_unlock:
3525 cgroup_kn_unlock(of->kn);
3526 return ret ?: nbytes;
3527 }
3528
3529 /**
3530 * cgroup_enable_threaded - make @cgrp threaded
3531 * @cgrp: the target cgroup
3532 *
3533 * Called when "threaded" is written to the cgroup.type interface file and
3534 * tries to make @cgrp threaded and join the parent's resource domain.
3535 * This function is never called on the root cgroup as cgroup.type doesn't
3536 * exist on it.
3537 */
cgroup_enable_threaded(struct cgroup * cgrp)3538 static int cgroup_enable_threaded(struct cgroup *cgrp)
3539 {
3540 struct cgroup *parent = cgroup_parent(cgrp);
3541 struct cgroup *dom_cgrp = parent->dom_cgrp;
3542 struct cgroup *dsct;
3543 struct cgroup_subsys_state *d_css;
3544 int ret;
3545
3546 lockdep_assert_held(&cgroup_mutex);
3547
3548 /* noop if already threaded */
3549 if (cgroup_is_threaded(cgrp))
3550 return 0;
3551
3552 /*
3553 * If @cgroup is populated or has domain controllers enabled, it
3554 * can't be switched. While the below cgroup_can_be_thread_root()
3555 * test can catch the same conditions, that's only when @parent is
3556 * not mixable, so let's check it explicitly.
3557 */
3558 if (cgroup_is_populated(cgrp) ||
3559 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3560 return -EOPNOTSUPP;
3561
3562 /* we're joining the parent's domain, ensure its validity */
3563 if (!cgroup_is_valid_domain(dom_cgrp) ||
3564 !cgroup_can_be_thread_root(dom_cgrp))
3565 return -EOPNOTSUPP;
3566
3567 /*
3568 * The following shouldn't cause actual migrations and should
3569 * always succeed.
3570 */
3571 cgroup_save_control(cgrp);
3572
3573 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3574 if (dsct == cgrp || cgroup_is_threaded(dsct))
3575 dsct->dom_cgrp = dom_cgrp;
3576
3577 ret = cgroup_apply_control(cgrp);
3578 if (!ret)
3579 parent->nr_threaded_children++;
3580
3581 cgroup_finalize_control(cgrp, ret);
3582 return ret;
3583 }
3584
cgroup_type_show(struct seq_file * seq,void * v)3585 static int cgroup_type_show(struct seq_file *seq, void *v)
3586 {
3587 struct cgroup *cgrp = seq_css(seq)->cgroup;
3588
3589 if (cgroup_is_threaded(cgrp))
3590 seq_puts(seq, "threaded\n");
3591 else if (!cgroup_is_valid_domain(cgrp))
3592 seq_puts(seq, "domain invalid\n");
3593 else if (cgroup_is_thread_root(cgrp))
3594 seq_puts(seq, "domain threaded\n");
3595 else
3596 seq_puts(seq, "domain\n");
3597
3598 return 0;
3599 }
3600
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3601 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3602 size_t nbytes, loff_t off)
3603 {
3604 struct cgroup *cgrp;
3605 int ret;
3606
3607 /* only switching to threaded mode is supported */
3608 if (strcmp(strstrip(buf), "threaded"))
3609 return -EINVAL;
3610
3611 /* drain dying csses before we re-apply (threaded) subtree control */
3612 cgrp = cgroup_kn_lock_live(of->kn, true);
3613 if (!cgrp)
3614 return -ENOENT;
3615
3616 /* threaded can only be enabled */
3617 ret = cgroup_enable_threaded(cgrp);
3618
3619 cgroup_kn_unlock(of->kn);
3620 return ret ?: nbytes;
3621 }
3622
cgroup_max_descendants_show(struct seq_file * seq,void * v)3623 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3624 {
3625 struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 int descendants = READ_ONCE(cgrp->max_descendants);
3627
3628 if (descendants == INT_MAX)
3629 seq_puts(seq, "max\n");
3630 else
3631 seq_printf(seq, "%d\n", descendants);
3632
3633 return 0;
3634 }
3635
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3636 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3637 char *buf, size_t nbytes, loff_t off)
3638 {
3639 struct cgroup *cgrp;
3640 int descendants;
3641 ssize_t ret;
3642
3643 buf = strstrip(buf);
3644 if (!strcmp(buf, "max")) {
3645 descendants = INT_MAX;
3646 } else {
3647 ret = kstrtoint(buf, 0, &descendants);
3648 if (ret)
3649 return ret;
3650 }
3651
3652 if (descendants < 0)
3653 return -ERANGE;
3654
3655 cgrp = cgroup_kn_lock_live(of->kn, false);
3656 if (!cgrp)
3657 return -ENOENT;
3658
3659 cgrp->max_descendants = descendants;
3660
3661 cgroup_kn_unlock(of->kn);
3662
3663 return nbytes;
3664 }
3665
cgroup_max_depth_show(struct seq_file * seq,void * v)3666 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3667 {
3668 struct cgroup *cgrp = seq_css(seq)->cgroup;
3669 int depth = READ_ONCE(cgrp->max_depth);
3670
3671 if (depth == INT_MAX)
3672 seq_puts(seq, "max\n");
3673 else
3674 seq_printf(seq, "%d\n", depth);
3675
3676 return 0;
3677 }
3678
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3679 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3680 char *buf, size_t nbytes, loff_t off)
3681 {
3682 struct cgroup *cgrp;
3683 ssize_t ret;
3684 int depth;
3685
3686 buf = strstrip(buf);
3687 if (!strcmp(buf, "max")) {
3688 depth = INT_MAX;
3689 } else {
3690 ret = kstrtoint(buf, 0, &depth);
3691 if (ret)
3692 return ret;
3693 }
3694
3695 if (depth < 0)
3696 return -ERANGE;
3697
3698 cgrp = cgroup_kn_lock_live(of->kn, false);
3699 if (!cgrp)
3700 return -ENOENT;
3701
3702 cgrp->max_depth = depth;
3703
3704 cgroup_kn_unlock(of->kn);
3705
3706 return nbytes;
3707 }
3708
cgroup_events_show(struct seq_file * seq,void * v)3709 static int cgroup_events_show(struct seq_file *seq, void *v)
3710 {
3711 struct cgroup *cgrp = seq_css(seq)->cgroup;
3712
3713 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3714 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3715
3716 return 0;
3717 }
3718
cgroup_stat_show(struct seq_file * seq,void * v)3719 static int cgroup_stat_show(struct seq_file *seq, void *v)
3720 {
3721 struct cgroup *cgroup = seq_css(seq)->cgroup;
3722 struct cgroup_subsys_state *css;
3723 int dying_cnt[CGROUP_SUBSYS_COUNT];
3724 int ssid;
3725
3726 seq_printf(seq, "nr_descendants %d\n",
3727 cgroup->nr_descendants);
3728
3729 /*
3730 * Show the number of live and dying csses associated with each of
3731 * non-inhibited cgroup subsystems that is bound to cgroup v2.
3732 *
3733 * Without proper lock protection, racing is possible. So the
3734 * numbers may not be consistent when that happens.
3735 */
3736 rcu_read_lock();
3737 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3738 dying_cnt[ssid] = -1;
3739 if ((BIT(ssid) & cgrp_dfl_inhibit_ss_mask) ||
3740 (cgroup_subsys[ssid]->root != &cgrp_dfl_root))
3741 continue;
3742 css = rcu_dereference_raw(cgroup->subsys[ssid]);
3743 dying_cnt[ssid] = cgroup->nr_dying_subsys[ssid];
3744 seq_printf(seq, "nr_subsys_%s %d\n", cgroup_subsys[ssid]->name,
3745 css ? (css->nr_descendants + 1) : 0);
3746 }
3747
3748 seq_printf(seq, "nr_dying_descendants %d\n",
3749 cgroup->nr_dying_descendants);
3750 for (ssid = 0; ssid < CGROUP_SUBSYS_COUNT; ssid++) {
3751 if (dying_cnt[ssid] >= 0)
3752 seq_printf(seq, "nr_dying_subsys_%s %d\n",
3753 cgroup_subsys[ssid]->name, dying_cnt[ssid]);
3754 }
3755 rcu_read_unlock();
3756 return 0;
3757 }
3758
3759 #ifdef CONFIG_CGROUP_SCHED
3760 /**
3761 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
3762 * @cgrp: the cgroup of interest
3763 * @ss: the subsystem of interest
3764 *
3765 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
3766 * or is offline, %NULL is returned.
3767 */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)3768 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
3769 struct cgroup_subsys *ss)
3770 {
3771 struct cgroup_subsys_state *css;
3772
3773 rcu_read_lock();
3774 css = cgroup_css(cgrp, ss);
3775 if (css && !css_tryget_online(css))
3776 css = NULL;
3777 rcu_read_unlock();
3778
3779 return css;
3780 }
3781
cgroup_extra_stat_show(struct seq_file * seq,int ssid)3782 static int cgroup_extra_stat_show(struct seq_file *seq, int ssid)
3783 {
3784 struct cgroup *cgrp = seq_css(seq)->cgroup;
3785 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3786 struct cgroup_subsys_state *css;
3787 int ret;
3788
3789 if (!ss->css_extra_stat_show)
3790 return 0;
3791
3792 css = cgroup_tryget_css(cgrp, ss);
3793 if (!css)
3794 return 0;
3795
3796 ret = ss->css_extra_stat_show(seq, css);
3797 css_put(css);
3798 return ret;
3799 }
3800
cgroup_local_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3801 static int cgroup_local_stat_show(struct seq_file *seq,
3802 struct cgroup *cgrp, int ssid)
3803 {
3804 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3805 struct cgroup_subsys_state *css;
3806 int ret;
3807
3808 if (!ss->css_local_stat_show)
3809 return 0;
3810
3811 css = cgroup_tryget_css(cgrp, ss);
3812 if (!css)
3813 return 0;
3814
3815 ret = ss->css_local_stat_show(seq, css);
3816 css_put(css);
3817 return ret;
3818 }
3819 #endif
3820
cpu_stat_show(struct seq_file * seq,void * v)3821 static int cpu_stat_show(struct seq_file *seq, void *v)
3822 {
3823 int ret = 0;
3824
3825 cgroup_base_stat_cputime_show(seq);
3826 #ifdef CONFIG_CGROUP_SCHED
3827 ret = cgroup_extra_stat_show(seq, cpu_cgrp_id);
3828 #endif
3829 return ret;
3830 }
3831
cpu_local_stat_show(struct seq_file * seq,void * v)3832 static int cpu_local_stat_show(struct seq_file *seq, void *v)
3833 {
3834 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3835 int ret = 0;
3836
3837 #ifdef CONFIG_CGROUP_SCHED
3838 ret = cgroup_local_stat_show(seq, cgrp, cpu_cgrp_id);
3839 #endif
3840 return ret;
3841 }
3842
3843 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3844 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3845 {
3846 struct cgroup *cgrp = seq_css(seq)->cgroup;
3847 struct psi_group *psi = cgroup_psi(cgrp);
3848
3849 return psi_show(seq, psi, PSI_IO);
3850 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3851 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3852 {
3853 struct cgroup *cgrp = seq_css(seq)->cgroup;
3854 struct psi_group *psi = cgroup_psi(cgrp);
3855
3856 return psi_show(seq, psi, PSI_MEM);
3857 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3858 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3859 {
3860 struct cgroup *cgrp = seq_css(seq)->cgroup;
3861 struct psi_group *psi = cgroup_psi(cgrp);
3862
3863 return psi_show(seq, psi, PSI_CPU);
3864 }
3865
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3866 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3867 size_t nbytes, enum psi_res res)
3868 {
3869 struct cgroup_file_ctx *ctx = of->priv;
3870 struct psi_trigger *new;
3871 struct cgroup *cgrp;
3872 struct psi_group *psi;
3873
3874 cgrp = cgroup_kn_lock_live(of->kn, false);
3875 if (!cgrp)
3876 return -ENODEV;
3877
3878 cgroup_get(cgrp);
3879 cgroup_kn_unlock(of->kn);
3880
3881 /* Allow only one trigger per file descriptor */
3882 if (ctx->psi.trigger) {
3883 cgroup_put(cgrp);
3884 return -EBUSY;
3885 }
3886
3887 psi = cgroup_psi(cgrp);
3888 new = psi_trigger_create(psi, buf, res, of->file, of);
3889 if (IS_ERR(new)) {
3890 cgroup_put(cgrp);
3891 return PTR_ERR(new);
3892 }
3893
3894 smp_store_release(&ctx->psi.trigger, new);
3895 cgroup_put(cgrp);
3896
3897 return nbytes;
3898 }
3899
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3900 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3901 char *buf, size_t nbytes,
3902 loff_t off)
3903 {
3904 return pressure_write(of, buf, nbytes, PSI_IO);
3905 }
3906
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3907 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3908 char *buf, size_t nbytes,
3909 loff_t off)
3910 {
3911 return pressure_write(of, buf, nbytes, PSI_MEM);
3912 }
3913
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3914 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3915 char *buf, size_t nbytes,
3916 loff_t off)
3917 {
3918 return pressure_write(of, buf, nbytes, PSI_CPU);
3919 }
3920
3921 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3922 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3923 {
3924 struct cgroup *cgrp = seq_css(seq)->cgroup;
3925 struct psi_group *psi = cgroup_psi(cgrp);
3926
3927 return psi_show(seq, psi, PSI_IRQ);
3928 }
3929
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3930 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3931 char *buf, size_t nbytes,
3932 loff_t off)
3933 {
3934 return pressure_write(of, buf, nbytes, PSI_IRQ);
3935 }
3936 #endif
3937
cgroup_pressure_show(struct seq_file * seq,void * v)3938 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3939 {
3940 struct cgroup *cgrp = seq_css(seq)->cgroup;
3941 struct psi_group *psi = cgroup_psi(cgrp);
3942
3943 seq_printf(seq, "%d\n", psi->enabled);
3944
3945 return 0;
3946 }
3947
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3948 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3949 char *buf, size_t nbytes,
3950 loff_t off)
3951 {
3952 ssize_t ret;
3953 int enable;
3954 struct cgroup *cgrp;
3955 struct psi_group *psi;
3956
3957 ret = kstrtoint(strstrip(buf), 0, &enable);
3958 if (ret)
3959 return ret;
3960
3961 if (enable < 0 || enable > 1)
3962 return -ERANGE;
3963
3964 cgrp = cgroup_kn_lock_live(of->kn, false);
3965 if (!cgrp)
3966 return -ENOENT;
3967
3968 psi = cgroup_psi(cgrp);
3969 if (psi->enabled != enable) {
3970 int i;
3971
3972 /* show or hide {cpu,memory,io,irq}.pressure files */
3973 for (i = 0; i < NR_PSI_RESOURCES; i++)
3974 cgroup_file_show(&cgrp->psi_files[i], enable);
3975
3976 psi->enabled = enable;
3977 if (enable)
3978 psi_cgroup_restart(psi);
3979 }
3980
3981 cgroup_kn_unlock(of->kn);
3982
3983 return nbytes;
3984 }
3985
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3986 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3987 poll_table *pt)
3988 {
3989 struct cgroup_file_ctx *ctx = of->priv;
3990
3991 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3992 }
3993
cgroup_pressure_release(struct kernfs_open_file * of)3994 static void cgroup_pressure_release(struct kernfs_open_file *of)
3995 {
3996 struct cgroup_file_ctx *ctx = of->priv;
3997
3998 psi_trigger_destroy(ctx->psi.trigger);
3999 }
4000
cgroup_psi_enabled(void)4001 bool cgroup_psi_enabled(void)
4002 {
4003 if (static_branch_likely(&psi_disabled))
4004 return false;
4005
4006 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
4007 }
4008
4009 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)4010 bool cgroup_psi_enabled(void)
4011 {
4012 return false;
4013 }
4014
4015 #endif /* CONFIG_PSI */
4016
cgroup_freeze_show(struct seq_file * seq,void * v)4017 static int cgroup_freeze_show(struct seq_file *seq, void *v)
4018 {
4019 struct cgroup *cgrp = seq_css(seq)->cgroup;
4020
4021 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
4022
4023 return 0;
4024 }
4025
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4026 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
4027 char *buf, size_t nbytes, loff_t off)
4028 {
4029 struct cgroup *cgrp;
4030 ssize_t ret;
4031 int freeze;
4032
4033 ret = kstrtoint(strstrip(buf), 0, &freeze);
4034 if (ret)
4035 return ret;
4036
4037 if (freeze < 0 || freeze > 1)
4038 return -ERANGE;
4039
4040 cgrp = cgroup_kn_lock_live(of->kn, false);
4041 if (!cgrp)
4042 return -ENOENT;
4043
4044 cgroup_freeze(cgrp, freeze);
4045
4046 cgroup_kn_unlock(of->kn);
4047
4048 return nbytes;
4049 }
4050
__cgroup_kill(struct cgroup * cgrp)4051 static void __cgroup_kill(struct cgroup *cgrp)
4052 {
4053 struct css_task_iter it;
4054 struct task_struct *task;
4055
4056 lockdep_assert_held(&cgroup_mutex);
4057
4058 spin_lock_irq(&css_set_lock);
4059 cgrp->kill_seq++;
4060 spin_unlock_irq(&css_set_lock);
4061
4062 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
4063 while ((task = css_task_iter_next(&it))) {
4064 /* Ignore kernel threads here. */
4065 if (task->flags & PF_KTHREAD)
4066 continue;
4067
4068 /* Skip tasks that are already dying. */
4069 if (__fatal_signal_pending(task))
4070 continue;
4071
4072 send_sig(SIGKILL, task, 0);
4073 }
4074 css_task_iter_end(&it);
4075 }
4076
cgroup_kill(struct cgroup * cgrp)4077 static void cgroup_kill(struct cgroup *cgrp)
4078 {
4079 struct cgroup_subsys_state *css;
4080 struct cgroup *dsct;
4081
4082 lockdep_assert_held(&cgroup_mutex);
4083
4084 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
4085 __cgroup_kill(dsct);
4086 }
4087
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4088 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
4089 size_t nbytes, loff_t off)
4090 {
4091 ssize_t ret = 0;
4092 int kill;
4093 struct cgroup *cgrp;
4094
4095 ret = kstrtoint(strstrip(buf), 0, &kill);
4096 if (ret)
4097 return ret;
4098
4099 if (kill != 1)
4100 return -ERANGE;
4101
4102 cgrp = cgroup_kn_lock_live(of->kn, false);
4103 if (!cgrp)
4104 return -ENOENT;
4105
4106 /*
4107 * Killing is a process directed operation, i.e. the whole thread-group
4108 * is taken down so act like we do for cgroup.procs and only make this
4109 * writable in non-threaded cgroups.
4110 */
4111 if (cgroup_is_threaded(cgrp))
4112 ret = -EOPNOTSUPP;
4113 else
4114 cgroup_kill(cgrp);
4115
4116 cgroup_kn_unlock(of->kn);
4117
4118 return ret ?: nbytes;
4119 }
4120
cgroup_file_open(struct kernfs_open_file * of)4121 static int cgroup_file_open(struct kernfs_open_file *of)
4122 {
4123 struct cftype *cft = of_cft(of);
4124 struct cgroup_file_ctx *ctx;
4125 int ret;
4126
4127 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4128 if (!ctx)
4129 return -ENOMEM;
4130
4131 ctx->ns = current->nsproxy->cgroup_ns;
4132 get_cgroup_ns(ctx->ns);
4133 of->priv = ctx;
4134
4135 if (!cft->open)
4136 return 0;
4137
4138 ret = cft->open(of);
4139 if (ret) {
4140 put_cgroup_ns(ctx->ns);
4141 kfree(ctx);
4142 }
4143 return ret;
4144 }
4145
cgroup_file_release(struct kernfs_open_file * of)4146 static void cgroup_file_release(struct kernfs_open_file *of)
4147 {
4148 struct cftype *cft = of_cft(of);
4149 struct cgroup_file_ctx *ctx = of->priv;
4150
4151 if (cft->release)
4152 cft->release(of);
4153 put_cgroup_ns(ctx->ns);
4154 kfree(ctx);
4155 }
4156
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4157 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4158 size_t nbytes, loff_t off)
4159 {
4160 struct cgroup_file_ctx *ctx = of->priv;
4161 struct cgroup *cgrp = kn_priv(of->kn);
4162 struct cftype *cft = of_cft(of);
4163 struct cgroup_subsys_state *css;
4164 int ret;
4165
4166 if (!nbytes)
4167 return 0;
4168
4169 /*
4170 * If namespaces are delegation boundaries, disallow writes to
4171 * files in an non-init namespace root from inside the namespace
4172 * except for the files explicitly marked delegatable -
4173 * eg. cgroup.procs, cgroup.threads and cgroup.subtree_control.
4174 */
4175 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4176 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4177 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4178 return -EPERM;
4179
4180 if (cft->write)
4181 return cft->write(of, buf, nbytes, off);
4182
4183 /*
4184 * kernfs guarantees that a file isn't deleted with operations in
4185 * flight, which means that the matching css is and stays alive and
4186 * doesn't need to be pinned. The RCU locking is not necessary
4187 * either. It's just for the convenience of using cgroup_css().
4188 */
4189 rcu_read_lock();
4190 css = cgroup_css(cgrp, cft->ss);
4191 rcu_read_unlock();
4192
4193 if (cft->write_u64) {
4194 unsigned long long v;
4195 ret = kstrtoull(buf, 0, &v);
4196 if (!ret)
4197 ret = cft->write_u64(css, cft, v);
4198 } else if (cft->write_s64) {
4199 long long v;
4200 ret = kstrtoll(buf, 0, &v);
4201 if (!ret)
4202 ret = cft->write_s64(css, cft, v);
4203 } else {
4204 ret = -EINVAL;
4205 }
4206
4207 return ret ?: nbytes;
4208 }
4209
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4210 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4211 {
4212 struct cftype *cft = of_cft(of);
4213
4214 if (cft->poll)
4215 return cft->poll(of, pt);
4216
4217 return kernfs_generic_poll(of, pt);
4218 }
4219
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4220 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4221 {
4222 return seq_cft(seq)->seq_start(seq, ppos);
4223 }
4224
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4225 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4226 {
4227 return seq_cft(seq)->seq_next(seq, v, ppos);
4228 }
4229
cgroup_seqfile_stop(struct seq_file * seq,void * v)4230 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4231 {
4232 if (seq_cft(seq)->seq_stop)
4233 seq_cft(seq)->seq_stop(seq, v);
4234 }
4235
cgroup_seqfile_show(struct seq_file * m,void * arg)4236 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4237 {
4238 struct cftype *cft = seq_cft(m);
4239 struct cgroup_subsys_state *css = seq_css(m);
4240
4241 if (cft->seq_show)
4242 return cft->seq_show(m, arg);
4243
4244 if (cft->read_u64)
4245 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4246 else if (cft->read_s64)
4247 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4248 else
4249 return -EINVAL;
4250 return 0;
4251 }
4252
4253 static struct kernfs_ops cgroup_kf_single_ops = {
4254 .atomic_write_len = PAGE_SIZE,
4255 .open = cgroup_file_open,
4256 .release = cgroup_file_release,
4257 .write = cgroup_file_write,
4258 .poll = cgroup_file_poll,
4259 .seq_show = cgroup_seqfile_show,
4260 };
4261
4262 static struct kernfs_ops cgroup_kf_ops = {
4263 .atomic_write_len = PAGE_SIZE,
4264 .open = cgroup_file_open,
4265 .release = cgroup_file_release,
4266 .write = cgroup_file_write,
4267 .poll = cgroup_file_poll,
4268 .seq_start = cgroup_seqfile_start,
4269 .seq_next = cgroup_seqfile_next,
4270 .seq_stop = cgroup_seqfile_stop,
4271 .seq_show = cgroup_seqfile_show,
4272 };
4273
cgroup_file_notify_timer(struct timer_list * timer)4274 static void cgroup_file_notify_timer(struct timer_list *timer)
4275 {
4276 cgroup_file_notify(container_of(timer, struct cgroup_file,
4277 notify_timer));
4278 }
4279
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4280 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4281 struct cftype *cft)
4282 {
4283 char name[CGROUP_FILE_NAME_MAX];
4284 struct kernfs_node *kn;
4285 struct lock_class_key *key = NULL;
4286
4287 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4288 key = &cft->lockdep_key;
4289 #endif
4290 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4291 cgroup_file_mode(cft),
4292 current_fsuid(), current_fsgid(),
4293 0, cft->kf_ops, cft,
4294 NULL, key);
4295 if (IS_ERR(kn))
4296 return PTR_ERR(kn);
4297
4298 if (cft->file_offset) {
4299 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4300
4301 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4302
4303 spin_lock_irq(&cgroup_file_kn_lock);
4304 cfile->kn = kn;
4305 spin_unlock_irq(&cgroup_file_kn_lock);
4306 }
4307
4308 return 0;
4309 }
4310
4311 /**
4312 * cgroup_addrm_files - add or remove files to a cgroup directory
4313 * @css: the target css
4314 * @cgrp: the target cgroup (usually css->cgroup)
4315 * @cfts: array of cftypes to be added
4316 * @is_add: whether to add or remove
4317 *
4318 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4319 * For removals, this function never fails.
4320 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4321 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4322 struct cgroup *cgrp, struct cftype cfts[],
4323 bool is_add)
4324 {
4325 struct cftype *cft, *cft_end = NULL;
4326 int ret = 0;
4327
4328 lockdep_assert_held(&cgroup_mutex);
4329
4330 restart:
4331 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4332 /* does cft->flags tell us to skip this file on @cgrp? */
4333 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4334 continue;
4335 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4336 continue;
4337 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4338 continue;
4339 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4340 continue;
4341 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4342 continue;
4343 if (is_add) {
4344 ret = cgroup_add_file(css, cgrp, cft);
4345 if (ret) {
4346 pr_warn("%s: failed to add %s, err=%d\n",
4347 __func__, cft->name, ret);
4348 cft_end = cft;
4349 is_add = false;
4350 goto restart;
4351 }
4352 } else {
4353 cgroup_rm_file(cgrp, cft);
4354 }
4355 }
4356 return ret;
4357 }
4358
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4359 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4360 {
4361 struct cgroup_subsys *ss = cfts[0].ss;
4362 struct cgroup *root = &ss->root->cgrp;
4363 struct cgroup_subsys_state *css;
4364 int ret = 0;
4365
4366 lockdep_assert_held(&cgroup_mutex);
4367
4368 /* add/rm files for all cgroups created before */
4369 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4370 struct cgroup *cgrp = css->cgroup;
4371
4372 if (!(css->flags & CSS_VISIBLE))
4373 continue;
4374
4375 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4376 if (ret)
4377 break;
4378 }
4379
4380 if (is_add && !ret)
4381 kernfs_activate(root->kn);
4382 return ret;
4383 }
4384
cgroup_exit_cftypes(struct cftype * cfts)4385 static void cgroup_exit_cftypes(struct cftype *cfts)
4386 {
4387 struct cftype *cft;
4388
4389 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4390 /* free copy for custom atomic_write_len, see init_cftypes() */
4391 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4392 kfree(cft->kf_ops);
4393 cft->kf_ops = NULL;
4394 cft->ss = NULL;
4395
4396 /* revert flags set by cgroup core while adding @cfts */
4397 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4398 __CFTYPE_ADDED);
4399 }
4400 }
4401
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4402 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4403 {
4404 struct cftype *cft;
4405 int ret = 0;
4406
4407 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4408 struct kernfs_ops *kf_ops;
4409
4410 WARN_ON(cft->ss || cft->kf_ops);
4411
4412 if (cft->flags & __CFTYPE_ADDED) {
4413 ret = -EBUSY;
4414 break;
4415 }
4416
4417 if (cft->seq_start)
4418 kf_ops = &cgroup_kf_ops;
4419 else
4420 kf_ops = &cgroup_kf_single_ops;
4421
4422 /*
4423 * Ugh... if @cft wants a custom max_write_len, we need to
4424 * make a copy of kf_ops to set its atomic_write_len.
4425 */
4426 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4427 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4428 if (!kf_ops) {
4429 ret = -ENOMEM;
4430 break;
4431 }
4432 kf_ops->atomic_write_len = cft->max_write_len;
4433 }
4434
4435 cft->kf_ops = kf_ops;
4436 cft->ss = ss;
4437 cft->flags |= __CFTYPE_ADDED;
4438 }
4439
4440 if (ret)
4441 cgroup_exit_cftypes(cfts);
4442 return ret;
4443 }
4444
cgroup_rm_cftypes_locked(struct cftype * cfts)4445 static void cgroup_rm_cftypes_locked(struct cftype *cfts)
4446 {
4447 lockdep_assert_held(&cgroup_mutex);
4448
4449 list_del(&cfts->node);
4450 cgroup_apply_cftypes(cfts, false);
4451 cgroup_exit_cftypes(cfts);
4452 }
4453
4454 /**
4455 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4456 * @cfts: zero-length name terminated array of cftypes
4457 *
4458 * Unregister @cfts. Files described by @cfts are removed from all
4459 * existing cgroups and all future cgroups won't have them either. This
4460 * function can be called anytime whether @cfts' subsys is attached or not.
4461 *
4462 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4463 * registered.
4464 */
cgroup_rm_cftypes(struct cftype * cfts)4465 int cgroup_rm_cftypes(struct cftype *cfts)
4466 {
4467 if (!cfts || cfts[0].name[0] == '\0')
4468 return 0;
4469
4470 if (!(cfts[0].flags & __CFTYPE_ADDED))
4471 return -ENOENT;
4472
4473 cgroup_lock();
4474 cgroup_rm_cftypes_locked(cfts);
4475 cgroup_unlock();
4476 return 0;
4477 }
4478
4479 /**
4480 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4481 * @ss: target cgroup subsystem
4482 * @cfts: zero-length name terminated array of cftypes
4483 *
4484 * Register @cfts to @ss. Files described by @cfts are created for all
4485 * existing cgroups to which @ss is attached and all future cgroups will
4486 * have them too. This function can be called anytime whether @ss is
4487 * attached or not.
4488 *
4489 * Returns 0 on successful registration, -errno on failure. Note that this
4490 * function currently returns 0 as long as @cfts registration is successful
4491 * even if some file creation attempts on existing cgroups fail.
4492 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4493 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4494 {
4495 int ret;
4496
4497 if (!cgroup_ssid_enabled(ss->id))
4498 return 0;
4499
4500 if (!cfts || cfts[0].name[0] == '\0')
4501 return 0;
4502
4503 ret = cgroup_init_cftypes(ss, cfts);
4504 if (ret)
4505 return ret;
4506
4507 cgroup_lock();
4508
4509 list_add_tail(&cfts->node, &ss->cfts);
4510 ret = cgroup_apply_cftypes(cfts, true);
4511 if (ret)
4512 cgroup_rm_cftypes_locked(cfts);
4513
4514 cgroup_unlock();
4515 return ret;
4516 }
4517
4518 /**
4519 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4520 * @ss: target cgroup subsystem
4521 * @cfts: zero-length name terminated array of cftypes
4522 *
4523 * Similar to cgroup_add_cftypes() but the added files are only used for
4524 * the default hierarchy.
4525 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4526 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4527 {
4528 struct cftype *cft;
4529
4530 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4531 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4532 return cgroup_add_cftypes(ss, cfts);
4533 }
4534
4535 /**
4536 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4537 * @ss: target cgroup subsystem
4538 * @cfts: zero-length name terminated array of cftypes
4539 *
4540 * Similar to cgroup_add_cftypes() but the added files are only used for
4541 * the legacy hierarchies.
4542 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4543 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4544 {
4545 struct cftype *cft;
4546
4547 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4548 cft->flags |= __CFTYPE_NOT_ON_DFL;
4549 return cgroup_add_cftypes(ss, cfts);
4550 }
4551
4552 /**
4553 * cgroup_file_notify - generate a file modified event for a cgroup_file
4554 * @cfile: target cgroup_file
4555 *
4556 * @cfile must have been obtained by setting cftype->file_offset.
4557 */
cgroup_file_notify(struct cgroup_file * cfile)4558 void cgroup_file_notify(struct cgroup_file *cfile)
4559 {
4560 unsigned long flags;
4561
4562 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4563 if (cfile->kn) {
4564 unsigned long last = cfile->notified_at;
4565 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4566
4567 if (time_in_range(jiffies, last, next)) {
4568 timer_reduce(&cfile->notify_timer, next);
4569 } else {
4570 kernfs_notify(cfile->kn);
4571 cfile->notified_at = jiffies;
4572 }
4573 }
4574 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4575 }
4576
4577 /**
4578 * cgroup_file_show - show or hide a hidden cgroup file
4579 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4580 * @show: whether to show or hide
4581 */
cgroup_file_show(struct cgroup_file * cfile,bool show)4582 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4583 {
4584 struct kernfs_node *kn;
4585
4586 spin_lock_irq(&cgroup_file_kn_lock);
4587 kn = cfile->kn;
4588 kernfs_get(kn);
4589 spin_unlock_irq(&cgroup_file_kn_lock);
4590
4591 if (kn)
4592 kernfs_show(kn, show);
4593
4594 kernfs_put(kn);
4595 }
4596
4597 /**
4598 * css_next_child - find the next child of a given css
4599 * @pos: the current position (%NULL to initiate traversal)
4600 * @parent: css whose children to walk
4601 *
4602 * This function returns the next child of @parent and should be called
4603 * under either cgroup_mutex or RCU read lock. The only requirement is
4604 * that @parent and @pos are accessible. The next sibling is guaranteed to
4605 * be returned regardless of their states.
4606 *
4607 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4608 * css which finished ->css_online() is guaranteed to be visible in the
4609 * future iterations and will stay visible until the last reference is put.
4610 * A css which hasn't finished ->css_online() or already finished
4611 * ->css_offline() may show up during traversal. It's each subsystem's
4612 * responsibility to synchronize against on/offlining.
4613 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4614 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4615 struct cgroup_subsys_state *parent)
4616 {
4617 struct cgroup_subsys_state *next;
4618
4619 cgroup_assert_mutex_or_rcu_locked();
4620
4621 /*
4622 * @pos could already have been unlinked from the sibling list.
4623 * Once a cgroup is removed, its ->sibling.next is no longer
4624 * updated when its next sibling changes. CSS_RELEASED is set when
4625 * @pos is taken off list, at which time its next pointer is valid,
4626 * and, as releases are serialized, the one pointed to by the next
4627 * pointer is guaranteed to not have started release yet. This
4628 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4629 * critical section, the one pointed to by its next pointer is
4630 * guaranteed to not have finished its RCU grace period even if we
4631 * have dropped rcu_read_lock() in-between iterations.
4632 *
4633 * If @pos has CSS_RELEASED set, its next pointer can't be
4634 * dereferenced; however, as each css is given a monotonically
4635 * increasing unique serial number and always appended to the
4636 * sibling list, the next one can be found by walking the parent's
4637 * children until the first css with higher serial number than
4638 * @pos's. While this path can be slower, it happens iff iteration
4639 * races against release and the race window is very small.
4640 */
4641 if (!pos) {
4642 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4643 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4644 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4645 } else {
4646 list_for_each_entry_rcu(next, &parent->children, sibling,
4647 lockdep_is_held(&cgroup_mutex))
4648 if (next->serial_nr > pos->serial_nr)
4649 break;
4650 }
4651
4652 /*
4653 * @next, if not pointing to the head, can be dereferenced and is
4654 * the next sibling.
4655 */
4656 if (&next->sibling != &parent->children)
4657 return next;
4658 return NULL;
4659 }
4660
4661 /**
4662 * css_next_descendant_pre - find the next descendant for pre-order walk
4663 * @pos: the current position (%NULL to initiate traversal)
4664 * @root: css whose descendants to walk
4665 *
4666 * To be used by css_for_each_descendant_pre(). Find the next descendant
4667 * to visit for pre-order traversal of @root's descendants. @root is
4668 * included in the iteration and the first node to be visited.
4669 *
4670 * While this function requires cgroup_mutex or RCU read locking, it
4671 * doesn't require the whole traversal to be contained in a single critical
4672 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4673 * This function will return the correct next descendant as long as both @pos
4674 * and @root are accessible and @pos is a descendant of @root.
4675 *
4676 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4677 * css which finished ->css_online() is guaranteed to be visible in the
4678 * future iterations and will stay visible until the last reference is put.
4679 * A css which hasn't finished ->css_online() or already finished
4680 * ->css_offline() may show up during traversal. It's each subsystem's
4681 * responsibility to synchronize against on/offlining.
4682 */
4683 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4684 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4685 struct cgroup_subsys_state *root)
4686 {
4687 struct cgroup_subsys_state *next;
4688
4689 cgroup_assert_mutex_or_rcu_locked();
4690
4691 /* if first iteration, visit @root */
4692 if (!pos)
4693 return root;
4694
4695 /* visit the first child if exists */
4696 next = css_next_child(NULL, pos);
4697 if (next)
4698 return next;
4699
4700 /* no child, visit my or the closest ancestor's next sibling */
4701 while (pos != root) {
4702 next = css_next_child(pos, pos->parent);
4703 if (next)
4704 return next;
4705 pos = pos->parent;
4706 }
4707
4708 return NULL;
4709 }
4710 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4711
4712 /**
4713 * css_rightmost_descendant - return the rightmost descendant of a css
4714 * @pos: css of interest
4715 *
4716 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4717 * is returned. This can be used during pre-order traversal to skip
4718 * subtree of @pos.
4719 *
4720 * While this function requires cgroup_mutex or RCU read locking, it
4721 * doesn't require the whole traversal to be contained in a single critical
4722 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4723 * This function will return the correct rightmost descendant as long as @pos
4724 * is accessible.
4725 */
4726 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4727 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4728 {
4729 struct cgroup_subsys_state *last, *tmp;
4730
4731 cgroup_assert_mutex_or_rcu_locked();
4732
4733 do {
4734 last = pos;
4735 /* ->prev isn't RCU safe, walk ->next till the end */
4736 pos = NULL;
4737 css_for_each_child(tmp, last)
4738 pos = tmp;
4739 } while (pos);
4740
4741 return last;
4742 }
4743
4744 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4745 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4746 {
4747 struct cgroup_subsys_state *last;
4748
4749 do {
4750 last = pos;
4751 pos = css_next_child(NULL, pos);
4752 } while (pos);
4753
4754 return last;
4755 }
4756
4757 /**
4758 * css_next_descendant_post - find the next descendant for post-order walk
4759 * @pos: the current position (%NULL to initiate traversal)
4760 * @root: css whose descendants to walk
4761 *
4762 * To be used by css_for_each_descendant_post(). Find the next descendant
4763 * to visit for post-order traversal of @root's descendants. @root is
4764 * included in the iteration and the last node to be visited.
4765 *
4766 * While this function requires cgroup_mutex or RCU read locking, it
4767 * doesn't require the whole traversal to be contained in a single critical
4768 * section. Additionally, it isn't necessary to hold onto a reference to @pos.
4769 * This function will return the correct next descendant as long as both @pos
4770 * and @cgroup are accessible and @pos is a descendant of @cgroup.
4771 *
4772 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4773 * css which finished ->css_online() is guaranteed to be visible in the
4774 * future iterations and will stay visible until the last reference is put.
4775 * A css which hasn't finished ->css_online() or already finished
4776 * ->css_offline() may show up during traversal. It's each subsystem's
4777 * responsibility to synchronize against on/offlining.
4778 */
4779 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4780 css_next_descendant_post(struct cgroup_subsys_state *pos,
4781 struct cgroup_subsys_state *root)
4782 {
4783 struct cgroup_subsys_state *next;
4784
4785 cgroup_assert_mutex_or_rcu_locked();
4786
4787 /* if first iteration, visit leftmost descendant which may be @root */
4788 if (!pos)
4789 return css_leftmost_descendant(root);
4790
4791 /* if we visited @root, we're done */
4792 if (pos == root)
4793 return NULL;
4794
4795 /* if there's an unvisited sibling, visit its leftmost descendant */
4796 next = css_next_child(pos, pos->parent);
4797 if (next)
4798 return css_leftmost_descendant(next);
4799
4800 /* no sibling left, visit parent */
4801 return pos->parent;
4802 }
4803
4804 /**
4805 * css_has_online_children - does a css have online children
4806 * @css: the target css
4807 *
4808 * Returns %true if @css has any online children; otherwise, %false. This
4809 * function can be called from any context but the caller is responsible
4810 * for synchronizing against on/offlining as necessary.
4811 */
css_has_online_children(struct cgroup_subsys_state * css)4812 bool css_has_online_children(struct cgroup_subsys_state *css)
4813 {
4814 struct cgroup_subsys_state *child;
4815 bool ret = false;
4816
4817 rcu_read_lock();
4818 css_for_each_child(child, css) {
4819 if (child->flags & CSS_ONLINE) {
4820 ret = true;
4821 break;
4822 }
4823 }
4824 rcu_read_unlock();
4825 return ret;
4826 }
4827
css_task_iter_next_css_set(struct css_task_iter * it)4828 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4829 {
4830 struct list_head *l;
4831 struct cgrp_cset_link *link;
4832 struct css_set *cset;
4833
4834 lockdep_assert_held(&css_set_lock);
4835
4836 /* find the next threaded cset */
4837 if (it->tcset_pos) {
4838 l = it->tcset_pos->next;
4839
4840 if (l != it->tcset_head) {
4841 it->tcset_pos = l;
4842 return container_of(l, struct css_set,
4843 threaded_csets_node);
4844 }
4845
4846 it->tcset_pos = NULL;
4847 }
4848
4849 /* find the next cset */
4850 l = it->cset_pos;
4851 l = l->next;
4852 if (l == it->cset_head) {
4853 it->cset_pos = NULL;
4854 return NULL;
4855 }
4856
4857 if (it->ss) {
4858 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4859 } else {
4860 link = list_entry(l, struct cgrp_cset_link, cset_link);
4861 cset = link->cset;
4862 }
4863
4864 it->cset_pos = l;
4865
4866 /* initialize threaded css_set walking */
4867 if (it->flags & CSS_TASK_ITER_THREADED) {
4868 if (it->cur_dcset)
4869 put_css_set_locked(it->cur_dcset);
4870 it->cur_dcset = cset;
4871 get_css_set(cset);
4872
4873 it->tcset_head = &cset->threaded_csets;
4874 it->tcset_pos = &cset->threaded_csets;
4875 }
4876
4877 return cset;
4878 }
4879
4880 /**
4881 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4882 * @it: the iterator to advance
4883 *
4884 * Advance @it to the next css_set to walk.
4885 */
css_task_iter_advance_css_set(struct css_task_iter * it)4886 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4887 {
4888 struct css_set *cset;
4889
4890 lockdep_assert_held(&css_set_lock);
4891
4892 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4893 while ((cset = css_task_iter_next_css_set(it))) {
4894 if (!list_empty(&cset->tasks)) {
4895 it->cur_tasks_head = &cset->tasks;
4896 break;
4897 } else if (!list_empty(&cset->mg_tasks)) {
4898 it->cur_tasks_head = &cset->mg_tasks;
4899 break;
4900 } else if (!list_empty(&cset->dying_tasks)) {
4901 it->cur_tasks_head = &cset->dying_tasks;
4902 break;
4903 }
4904 }
4905 if (!cset) {
4906 it->task_pos = NULL;
4907 return;
4908 }
4909 it->task_pos = it->cur_tasks_head->next;
4910
4911 /*
4912 * We don't keep css_sets locked across iteration steps and thus
4913 * need to take steps to ensure that iteration can be resumed after
4914 * the lock is re-acquired. Iteration is performed at two levels -
4915 * css_sets and tasks in them.
4916 *
4917 * Once created, a css_set never leaves its cgroup lists, so a
4918 * pinned css_set is guaranteed to stay put and we can resume
4919 * iteration afterwards.
4920 *
4921 * Tasks may leave @cset across iteration steps. This is resolved
4922 * by registering each iterator with the css_set currently being
4923 * walked and making css_set_move_task() advance iterators whose
4924 * next task is leaving.
4925 */
4926 if (it->cur_cset) {
4927 list_del(&it->iters_node);
4928 put_css_set_locked(it->cur_cset);
4929 }
4930 get_css_set(cset);
4931 it->cur_cset = cset;
4932 list_add(&it->iters_node, &cset->task_iters);
4933 }
4934
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4935 static void css_task_iter_skip(struct css_task_iter *it,
4936 struct task_struct *task)
4937 {
4938 lockdep_assert_held(&css_set_lock);
4939
4940 if (it->task_pos == &task->cg_list) {
4941 it->task_pos = it->task_pos->next;
4942 it->flags |= CSS_TASK_ITER_SKIPPED;
4943 }
4944 }
4945
css_task_iter_advance(struct css_task_iter * it)4946 static void css_task_iter_advance(struct css_task_iter *it)
4947 {
4948 struct task_struct *task;
4949
4950 lockdep_assert_held(&css_set_lock);
4951 repeat:
4952 if (it->task_pos) {
4953 /*
4954 * Advance iterator to find next entry. We go through cset
4955 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4956 * the next cset.
4957 */
4958 if (it->flags & CSS_TASK_ITER_SKIPPED)
4959 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4960 else
4961 it->task_pos = it->task_pos->next;
4962
4963 if (it->task_pos == &it->cur_cset->tasks) {
4964 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4965 it->task_pos = it->cur_tasks_head->next;
4966 }
4967 if (it->task_pos == &it->cur_cset->mg_tasks) {
4968 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4969 it->task_pos = it->cur_tasks_head->next;
4970 }
4971 if (it->task_pos == &it->cur_cset->dying_tasks)
4972 css_task_iter_advance_css_set(it);
4973 } else {
4974 /* called from start, proceed to the first cset */
4975 css_task_iter_advance_css_set(it);
4976 }
4977
4978 if (!it->task_pos)
4979 return;
4980
4981 task = list_entry(it->task_pos, struct task_struct, cg_list);
4982
4983 if (it->flags & CSS_TASK_ITER_PROCS) {
4984 /* if PROCS, skip over tasks which aren't group leaders */
4985 if (!thread_group_leader(task))
4986 goto repeat;
4987
4988 /* and dying leaders w/o live member threads */
4989 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4990 !atomic_read(&task->signal->live))
4991 goto repeat;
4992 } else {
4993 /* skip all dying ones */
4994 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4995 goto repeat;
4996 }
4997 }
4998
4999 /**
5000 * css_task_iter_start - initiate task iteration
5001 * @css: the css to walk tasks of
5002 * @flags: CSS_TASK_ITER_* flags
5003 * @it: the task iterator to use
5004 *
5005 * Initiate iteration through the tasks of @css. The caller can call
5006 * css_task_iter_next() to walk through the tasks until the function
5007 * returns NULL. On completion of iteration, css_task_iter_end() must be
5008 * called.
5009 */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)5010 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
5011 struct css_task_iter *it)
5012 {
5013 unsigned long irqflags;
5014
5015 memset(it, 0, sizeof(*it));
5016
5017 spin_lock_irqsave(&css_set_lock, irqflags);
5018
5019 it->ss = css->ss;
5020 it->flags = flags;
5021
5022 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
5023 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
5024 else
5025 it->cset_pos = &css->cgroup->cset_links;
5026
5027 it->cset_head = it->cset_pos;
5028
5029 css_task_iter_advance(it);
5030
5031 spin_unlock_irqrestore(&css_set_lock, irqflags);
5032 }
5033
5034 /**
5035 * css_task_iter_next - return the next task for the iterator
5036 * @it: the task iterator being iterated
5037 *
5038 * The "next" function for task iteration. @it should have been
5039 * initialized via css_task_iter_start(). Returns NULL when the iteration
5040 * reaches the end.
5041 */
css_task_iter_next(struct css_task_iter * it)5042 struct task_struct *css_task_iter_next(struct css_task_iter *it)
5043 {
5044 unsigned long irqflags;
5045
5046 if (it->cur_task) {
5047 put_task_struct(it->cur_task);
5048 it->cur_task = NULL;
5049 }
5050
5051 spin_lock_irqsave(&css_set_lock, irqflags);
5052
5053 /* @it may be half-advanced by skips, finish advancing */
5054 if (it->flags & CSS_TASK_ITER_SKIPPED)
5055 css_task_iter_advance(it);
5056
5057 if (it->task_pos) {
5058 it->cur_task = list_entry(it->task_pos, struct task_struct,
5059 cg_list);
5060 get_task_struct(it->cur_task);
5061 css_task_iter_advance(it);
5062 }
5063
5064 spin_unlock_irqrestore(&css_set_lock, irqflags);
5065
5066 return it->cur_task;
5067 }
5068
5069 /**
5070 * css_task_iter_end - finish task iteration
5071 * @it: the task iterator to finish
5072 *
5073 * Finish task iteration started by css_task_iter_start().
5074 */
css_task_iter_end(struct css_task_iter * it)5075 void css_task_iter_end(struct css_task_iter *it)
5076 {
5077 unsigned long irqflags;
5078
5079 if (it->cur_cset) {
5080 spin_lock_irqsave(&css_set_lock, irqflags);
5081 list_del(&it->iters_node);
5082 put_css_set_locked(it->cur_cset);
5083 spin_unlock_irqrestore(&css_set_lock, irqflags);
5084 }
5085
5086 if (it->cur_dcset)
5087 put_css_set(it->cur_dcset);
5088
5089 if (it->cur_task)
5090 put_task_struct(it->cur_task);
5091 }
5092
cgroup_procs_release(struct kernfs_open_file * of)5093 static void cgroup_procs_release(struct kernfs_open_file *of)
5094 {
5095 struct cgroup_file_ctx *ctx = of->priv;
5096
5097 if (ctx->procs.started)
5098 css_task_iter_end(&ctx->procs.iter);
5099 }
5100
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5101 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5102 {
5103 struct kernfs_open_file *of = s->private;
5104 struct cgroup_file_ctx *ctx = of->priv;
5105
5106 if (pos)
5107 (*pos)++;
5108
5109 return css_task_iter_next(&ctx->procs.iter);
5110 }
5111
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5112 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5113 unsigned int iter_flags)
5114 {
5115 struct kernfs_open_file *of = s->private;
5116 struct cgroup *cgrp = seq_css(s)->cgroup;
5117 struct cgroup_file_ctx *ctx = of->priv;
5118 struct css_task_iter *it = &ctx->procs.iter;
5119
5120 /*
5121 * When a seq_file is seeked, it's always traversed sequentially
5122 * from position 0, so we can simply keep iterating on !0 *pos.
5123 */
5124 if (!ctx->procs.started) {
5125 if (WARN_ON_ONCE((*pos)))
5126 return ERR_PTR(-EINVAL);
5127 css_task_iter_start(&cgrp->self, iter_flags, it);
5128 ctx->procs.started = true;
5129 } else if (!(*pos)) {
5130 css_task_iter_end(it);
5131 css_task_iter_start(&cgrp->self, iter_flags, it);
5132 } else
5133 return it->cur_task;
5134
5135 return cgroup_procs_next(s, NULL, NULL);
5136 }
5137
cgroup_procs_start(struct seq_file * s,loff_t * pos)5138 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5139 {
5140 struct cgroup *cgrp = seq_css(s)->cgroup;
5141
5142 /*
5143 * All processes of a threaded subtree belong to the domain cgroup
5144 * of the subtree. Only threads can be distributed across the
5145 * subtree. Reject reads on cgroup.procs in the subtree proper.
5146 * They're always empty anyway.
5147 */
5148 if (cgroup_is_threaded(cgrp))
5149 return ERR_PTR(-EOPNOTSUPP);
5150
5151 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5152 CSS_TASK_ITER_THREADED);
5153 }
5154
cgroup_procs_show(struct seq_file * s,void * v)5155 static int cgroup_procs_show(struct seq_file *s, void *v)
5156 {
5157 seq_printf(s, "%d\n", task_pid_vnr(v));
5158 return 0;
5159 }
5160
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5161 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5162 {
5163 int ret;
5164 struct inode *inode;
5165
5166 lockdep_assert_held(&cgroup_mutex);
5167
5168 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5169 if (!inode)
5170 return -ENOMEM;
5171
5172 ret = inode_permission(&nop_mnt_idmap, inode, MAY_WRITE);
5173 iput(inode);
5174 return ret;
5175 }
5176
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5177 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5178 struct cgroup *dst_cgrp,
5179 struct super_block *sb,
5180 struct cgroup_namespace *ns)
5181 {
5182 struct cgroup *com_cgrp = src_cgrp;
5183 int ret;
5184
5185 lockdep_assert_held(&cgroup_mutex);
5186
5187 /* find the common ancestor */
5188 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5189 com_cgrp = cgroup_parent(com_cgrp);
5190
5191 /* %current should be authorized to migrate to the common ancestor */
5192 ret = cgroup_may_write(com_cgrp, sb);
5193 if (ret)
5194 return ret;
5195
5196 /*
5197 * If namespaces are delegation boundaries, %current must be able
5198 * to see both source and destination cgroups from its namespace.
5199 */
5200 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5201 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5202 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5203 return -ENOENT;
5204
5205 return 0;
5206 }
5207
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5208 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5209 struct cgroup *dst_cgrp,
5210 struct super_block *sb, bool threadgroup,
5211 struct cgroup_namespace *ns)
5212 {
5213 int ret = 0;
5214
5215 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5216 if (ret)
5217 return ret;
5218
5219 ret = cgroup_migrate_vet_dst(dst_cgrp);
5220 if (ret)
5221 return ret;
5222
5223 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5224 ret = -EOPNOTSUPP;
5225
5226 return ret;
5227 }
5228
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5229 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5230 bool threadgroup)
5231 {
5232 struct cgroup_file_ctx *ctx = of->priv;
5233 struct cgroup *src_cgrp, *dst_cgrp;
5234 struct task_struct *task;
5235 const struct cred *saved_cred;
5236 ssize_t ret;
5237 bool threadgroup_locked;
5238
5239 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5240 if (!dst_cgrp)
5241 return -ENODEV;
5242
5243 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5244 ret = PTR_ERR_OR_ZERO(task);
5245 if (ret)
5246 goto out_unlock;
5247
5248 /* find the source cgroup */
5249 spin_lock_irq(&css_set_lock);
5250 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5251 spin_unlock_irq(&css_set_lock);
5252
5253 /*
5254 * Process and thread migrations follow same delegation rule. Check
5255 * permissions using the credentials from file open to protect against
5256 * inherited fd attacks.
5257 */
5258 saved_cred = override_creds(of->file->f_cred);
5259 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5260 of->file->f_path.dentry->d_sb,
5261 threadgroup, ctx->ns);
5262 revert_creds(saved_cred);
5263 if (ret)
5264 goto out_finish;
5265
5266 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5267
5268 out_finish:
5269 cgroup_procs_write_finish(task, threadgroup_locked);
5270 out_unlock:
5271 cgroup_kn_unlock(of->kn);
5272
5273 return ret;
5274 }
5275
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5276 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5277 char *buf, size_t nbytes, loff_t off)
5278 {
5279 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5280 }
5281
cgroup_threads_start(struct seq_file * s,loff_t * pos)5282 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5283 {
5284 return __cgroup_procs_start(s, pos, 0);
5285 }
5286
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5287 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5288 char *buf, size_t nbytes, loff_t off)
5289 {
5290 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5291 }
5292
5293 /* cgroup core interface files for the default hierarchy */
5294 static struct cftype cgroup_base_files[] = {
5295 {
5296 .name = "cgroup.type",
5297 .flags = CFTYPE_NOT_ON_ROOT,
5298 .seq_show = cgroup_type_show,
5299 .write = cgroup_type_write,
5300 },
5301 {
5302 .name = "cgroup.procs",
5303 .flags = CFTYPE_NS_DELEGATABLE,
5304 .file_offset = offsetof(struct cgroup, procs_file),
5305 .release = cgroup_procs_release,
5306 .seq_start = cgroup_procs_start,
5307 .seq_next = cgroup_procs_next,
5308 .seq_show = cgroup_procs_show,
5309 .write = cgroup_procs_write,
5310 },
5311 {
5312 .name = "cgroup.threads",
5313 .flags = CFTYPE_NS_DELEGATABLE,
5314 .release = cgroup_procs_release,
5315 .seq_start = cgroup_threads_start,
5316 .seq_next = cgroup_procs_next,
5317 .seq_show = cgroup_procs_show,
5318 .write = cgroup_threads_write,
5319 },
5320 {
5321 .name = "cgroup.controllers",
5322 .seq_show = cgroup_controllers_show,
5323 },
5324 {
5325 .name = "cgroup.subtree_control",
5326 .flags = CFTYPE_NS_DELEGATABLE,
5327 .seq_show = cgroup_subtree_control_show,
5328 .write = cgroup_subtree_control_write,
5329 },
5330 {
5331 .name = "cgroup.events",
5332 .flags = CFTYPE_NOT_ON_ROOT,
5333 .file_offset = offsetof(struct cgroup, events_file),
5334 .seq_show = cgroup_events_show,
5335 },
5336 {
5337 .name = "cgroup.max.descendants",
5338 .seq_show = cgroup_max_descendants_show,
5339 .write = cgroup_max_descendants_write,
5340 },
5341 {
5342 .name = "cgroup.max.depth",
5343 .seq_show = cgroup_max_depth_show,
5344 .write = cgroup_max_depth_write,
5345 },
5346 {
5347 .name = "cgroup.stat",
5348 .seq_show = cgroup_stat_show,
5349 },
5350 {
5351 .name = "cgroup.freeze",
5352 .flags = CFTYPE_NOT_ON_ROOT,
5353 .seq_show = cgroup_freeze_show,
5354 .write = cgroup_freeze_write,
5355 },
5356 {
5357 .name = "cgroup.kill",
5358 .flags = CFTYPE_NOT_ON_ROOT,
5359 .write = cgroup_kill_write,
5360 },
5361 {
5362 .name = "cpu.stat",
5363 .seq_show = cpu_stat_show,
5364 },
5365 {
5366 .name = "cpu.stat.local",
5367 .seq_show = cpu_local_stat_show,
5368 },
5369 { } /* terminate */
5370 };
5371
5372 static struct cftype cgroup_psi_files[] = {
5373 #ifdef CONFIG_PSI
5374 {
5375 .name = "io.pressure",
5376 .file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5377 .seq_show = cgroup_io_pressure_show,
5378 .write = cgroup_io_pressure_write,
5379 .poll = cgroup_pressure_poll,
5380 .release = cgroup_pressure_release,
5381 },
5382 {
5383 .name = "memory.pressure",
5384 .file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5385 .seq_show = cgroup_memory_pressure_show,
5386 .write = cgroup_memory_pressure_write,
5387 .poll = cgroup_pressure_poll,
5388 .release = cgroup_pressure_release,
5389 },
5390 {
5391 .name = "cpu.pressure",
5392 .file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5393 .seq_show = cgroup_cpu_pressure_show,
5394 .write = cgroup_cpu_pressure_write,
5395 .poll = cgroup_pressure_poll,
5396 .release = cgroup_pressure_release,
5397 },
5398 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5399 {
5400 .name = "irq.pressure",
5401 .file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5402 .seq_show = cgroup_irq_pressure_show,
5403 .write = cgroup_irq_pressure_write,
5404 .poll = cgroup_pressure_poll,
5405 .release = cgroup_pressure_release,
5406 },
5407 #endif
5408 {
5409 .name = "cgroup.pressure",
5410 .seq_show = cgroup_pressure_show,
5411 .write = cgroup_pressure_write,
5412 },
5413 #endif /* CONFIG_PSI */
5414 { } /* terminate */
5415 };
5416
5417 /*
5418 * css destruction is four-stage process.
5419 *
5420 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5421 * Implemented in kill_css().
5422 *
5423 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5424 * and thus css_tryget_online() is guaranteed to fail, the css can be
5425 * offlined by invoking offline_css(). After offlining, the base ref is
5426 * put. Implemented in css_killed_work_fn().
5427 *
5428 * 3. When the percpu_ref reaches zero, the only possible remaining
5429 * accessors are inside RCU read sections. css_release() schedules the
5430 * RCU callback.
5431 *
5432 * 4. After the grace period, the css can be freed. Implemented in
5433 * css_free_rwork_fn().
5434 *
5435 * It is actually hairier because both step 2 and 4 require process context
5436 * and thus involve punting to css->destroy_work adding two additional
5437 * steps to the already complex sequence.
5438 */
css_free_rwork_fn(struct work_struct * work)5439 static void css_free_rwork_fn(struct work_struct *work)
5440 {
5441 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5442 struct cgroup_subsys_state, destroy_rwork);
5443 struct cgroup_subsys *ss = css->ss;
5444 struct cgroup *cgrp = css->cgroup;
5445
5446 percpu_ref_exit(&css->refcnt);
5447
5448 if (ss) {
5449 /* css free path */
5450 struct cgroup_subsys_state *parent = css->parent;
5451 int id = css->id;
5452
5453 ss->css_free(css);
5454 cgroup_idr_remove(&ss->css_idr, id);
5455 cgroup_put(cgrp);
5456
5457 if (parent)
5458 css_put(parent);
5459 } else {
5460 /* cgroup free path */
5461 atomic_dec(&cgrp->root->nr_cgrps);
5462 if (!cgroup_on_dfl(cgrp))
5463 cgroup1_pidlist_destroy_all(cgrp);
5464 cancel_work_sync(&cgrp->release_agent_work);
5465 bpf_cgrp_storage_free(cgrp);
5466
5467 if (cgroup_parent(cgrp)) {
5468 /*
5469 * We get a ref to the parent, and put the ref when
5470 * this cgroup is being freed, so it's guaranteed
5471 * that the parent won't be destroyed before its
5472 * children.
5473 */
5474 cgroup_put(cgroup_parent(cgrp));
5475 kernfs_put(cgrp->kn);
5476 psi_cgroup_free(cgrp);
5477 cgroup_rstat_exit(cgrp);
5478 kfree(cgrp);
5479 } else {
5480 /*
5481 * This is root cgroup's refcnt reaching zero,
5482 * which indicates that the root should be
5483 * released.
5484 */
5485 cgroup_destroy_root(cgrp->root);
5486 }
5487 }
5488 }
5489
css_release_work_fn(struct work_struct * work)5490 static void css_release_work_fn(struct work_struct *work)
5491 {
5492 struct cgroup_subsys_state *css =
5493 container_of(work, struct cgroup_subsys_state, destroy_work);
5494 struct cgroup_subsys *ss = css->ss;
5495 struct cgroup *cgrp = css->cgroup;
5496
5497 cgroup_lock();
5498
5499 css->flags |= CSS_RELEASED;
5500 list_del_rcu(&css->sibling);
5501
5502 if (ss) {
5503 struct cgroup *parent_cgrp;
5504
5505 /* css release path */
5506 if (!list_empty(&css->rstat_css_node)) {
5507 cgroup_rstat_flush(cgrp);
5508 list_del_rcu(&css->rstat_css_node);
5509 }
5510
5511 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5512 if (ss->css_released)
5513 ss->css_released(css);
5514
5515 cgrp->nr_dying_subsys[ss->id]--;
5516 /*
5517 * When a css is released and ready to be freed, its
5518 * nr_descendants must be zero. However, the corresponding
5519 * cgrp->nr_dying_subsys[ss->id] may not be 0 if a subsystem
5520 * is activated and deactivated multiple times with one or
5521 * more of its previous activation leaving behind dying csses.
5522 */
5523 WARN_ON_ONCE(css->nr_descendants);
5524 parent_cgrp = cgroup_parent(cgrp);
5525 while (parent_cgrp) {
5526 parent_cgrp->nr_dying_subsys[ss->id]--;
5527 parent_cgrp = cgroup_parent(parent_cgrp);
5528 }
5529 } else {
5530 struct cgroup *tcgrp;
5531
5532 /* cgroup release path */
5533 TRACE_CGROUP_PATH(release, cgrp);
5534
5535 cgroup_rstat_flush(cgrp);
5536
5537 spin_lock_irq(&css_set_lock);
5538 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5539 tcgrp = cgroup_parent(tcgrp))
5540 tcgrp->nr_dying_descendants--;
5541 spin_unlock_irq(&css_set_lock);
5542
5543 /*
5544 * There are two control paths which try to determine
5545 * cgroup from dentry without going through kernfs -
5546 * cgroupstats_build() and css_tryget_online_from_dir().
5547 * Those are supported by RCU protecting clearing of
5548 * cgrp->kn->priv backpointer.
5549 */
5550 if (cgrp->kn)
5551 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5552 NULL);
5553 }
5554
5555 cgroup_unlock();
5556
5557 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5558 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5559 }
5560
css_release(struct percpu_ref * ref)5561 static void css_release(struct percpu_ref *ref)
5562 {
5563 struct cgroup_subsys_state *css =
5564 container_of(ref, struct cgroup_subsys_state, refcnt);
5565
5566 INIT_WORK(&css->destroy_work, css_release_work_fn);
5567 queue_work(cgroup_destroy_wq, &css->destroy_work);
5568 }
5569
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5570 static void init_and_link_css(struct cgroup_subsys_state *css,
5571 struct cgroup_subsys *ss, struct cgroup *cgrp)
5572 {
5573 lockdep_assert_held(&cgroup_mutex);
5574
5575 cgroup_get_live(cgrp);
5576
5577 memset(css, 0, sizeof(*css));
5578 css->cgroup = cgrp;
5579 css->ss = ss;
5580 css->id = -1;
5581 INIT_LIST_HEAD(&css->sibling);
5582 INIT_LIST_HEAD(&css->children);
5583 INIT_LIST_HEAD(&css->rstat_css_node);
5584 css->serial_nr = css_serial_nr_next++;
5585 atomic_set(&css->online_cnt, 0);
5586
5587 if (cgroup_parent(cgrp)) {
5588 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5589 css_get(css->parent);
5590 }
5591
5592 if (ss->css_rstat_flush)
5593 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5594
5595 BUG_ON(cgroup_css(cgrp, ss));
5596 }
5597
5598 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5599 static int online_css(struct cgroup_subsys_state *css)
5600 {
5601 struct cgroup_subsys *ss = css->ss;
5602 int ret = 0;
5603
5604 lockdep_assert_held(&cgroup_mutex);
5605
5606 if (ss->css_online)
5607 ret = ss->css_online(css);
5608 if (!ret) {
5609 css->flags |= CSS_ONLINE;
5610 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5611
5612 atomic_inc(&css->online_cnt);
5613 if (css->parent) {
5614 atomic_inc(&css->parent->online_cnt);
5615 while ((css = css->parent))
5616 css->nr_descendants++;
5617 }
5618 }
5619 return ret;
5620 }
5621
5622 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5623 static void offline_css(struct cgroup_subsys_state *css)
5624 {
5625 struct cgroup_subsys *ss = css->ss;
5626
5627 lockdep_assert_held(&cgroup_mutex);
5628
5629 if (!(css->flags & CSS_ONLINE))
5630 return;
5631
5632 if (ss->css_offline)
5633 ss->css_offline(css);
5634
5635 css->flags &= ~CSS_ONLINE;
5636 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5637
5638 wake_up_all(&css->cgroup->offline_waitq);
5639
5640 css->cgroup->nr_dying_subsys[ss->id]++;
5641 /*
5642 * Parent css and cgroup cannot be freed until after the freeing
5643 * of child css, see css_free_rwork_fn().
5644 */
5645 while ((css = css->parent)) {
5646 css->nr_descendants--;
5647 css->cgroup->nr_dying_subsys[ss->id]++;
5648 }
5649 }
5650
5651 /**
5652 * css_create - create a cgroup_subsys_state
5653 * @cgrp: the cgroup new css will be associated with
5654 * @ss: the subsys of new css
5655 *
5656 * Create a new css associated with @cgrp - @ss pair. On success, the new
5657 * css is online and installed in @cgrp. This function doesn't create the
5658 * interface files. Returns 0 on success, -errno on failure.
5659 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5660 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5661 struct cgroup_subsys *ss)
5662 {
5663 struct cgroup *parent = cgroup_parent(cgrp);
5664 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5665 struct cgroup_subsys_state *css;
5666 int err;
5667
5668 lockdep_assert_held(&cgroup_mutex);
5669
5670 css = ss->css_alloc(parent_css);
5671 if (!css)
5672 css = ERR_PTR(-ENOMEM);
5673 if (IS_ERR(css))
5674 return css;
5675
5676 init_and_link_css(css, ss, cgrp);
5677
5678 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5679 if (err)
5680 goto err_free_css;
5681
5682 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5683 if (err < 0)
5684 goto err_free_css;
5685 css->id = err;
5686
5687 /* @css is ready to be brought online now, make it visible */
5688 list_add_tail_rcu(&css->sibling, &parent_css->children);
5689 cgroup_idr_replace(&ss->css_idr, css, css->id);
5690
5691 err = online_css(css);
5692 if (err)
5693 goto err_list_del;
5694
5695 return css;
5696
5697 err_list_del:
5698 list_del_rcu(&css->sibling);
5699 err_free_css:
5700 list_del_rcu(&css->rstat_css_node);
5701 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5702 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5703 return ERR_PTR(err);
5704 }
5705
5706 /*
5707 * The returned cgroup is fully initialized including its control mask, but
5708 * it doesn't have the control mask applied.
5709 */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5710 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5711 umode_t mode)
5712 {
5713 struct cgroup_root *root = parent->root;
5714 struct cgroup *cgrp, *tcgrp;
5715 struct kernfs_node *kn;
5716 int level = parent->level + 1;
5717 int ret;
5718
5719 /* allocate the cgroup and its ID, 0 is reserved for the root */
5720 cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5721 if (!cgrp)
5722 return ERR_PTR(-ENOMEM);
5723
5724 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5725 if (ret)
5726 goto out_free_cgrp;
5727
5728 ret = cgroup_rstat_init(cgrp);
5729 if (ret)
5730 goto out_cancel_ref;
5731
5732 /* create the directory */
5733 kn = kernfs_create_dir_ns(parent->kn, name, mode,
5734 current_fsuid(), current_fsgid(),
5735 cgrp, NULL);
5736 if (IS_ERR(kn)) {
5737 ret = PTR_ERR(kn);
5738 goto out_stat_exit;
5739 }
5740 cgrp->kn = kn;
5741
5742 init_cgroup_housekeeping(cgrp);
5743
5744 cgrp->self.parent = &parent->self;
5745 cgrp->root = root;
5746 cgrp->level = level;
5747
5748 ret = psi_cgroup_alloc(cgrp);
5749 if (ret)
5750 goto out_kernfs_remove;
5751
5752 if (cgrp->root == &cgrp_dfl_root) {
5753 ret = cgroup_bpf_inherit(cgrp);
5754 if (ret)
5755 goto out_psi_free;
5756 }
5757
5758 /*
5759 * New cgroup inherits effective freeze counter, and
5760 * if the parent has to be frozen, the child has too.
5761 */
5762 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5763 if (cgrp->freezer.e_freeze) {
5764 /*
5765 * Set the CGRP_FREEZE flag, so when a process will be
5766 * attached to the child cgroup, it will become frozen.
5767 * At this point the new cgroup is unpopulated, so we can
5768 * consider it frozen immediately.
5769 */
5770 set_bit(CGRP_FREEZE, &cgrp->flags);
5771 set_bit(CGRP_FROZEN, &cgrp->flags);
5772 }
5773
5774 spin_lock_irq(&css_set_lock);
5775 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5776 cgrp->ancestors[tcgrp->level] = tcgrp;
5777
5778 if (tcgrp != cgrp) {
5779 tcgrp->nr_descendants++;
5780
5781 /*
5782 * If the new cgroup is frozen, all ancestor cgroups
5783 * get a new frozen descendant, but their state can't
5784 * change because of this.
5785 */
5786 if (cgrp->freezer.e_freeze)
5787 tcgrp->freezer.nr_frozen_descendants++;
5788 }
5789 }
5790 spin_unlock_irq(&css_set_lock);
5791
5792 if (notify_on_release(parent))
5793 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5794
5795 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5796 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5797
5798 cgrp->self.serial_nr = css_serial_nr_next++;
5799
5800 /* allocation complete, commit to creation */
5801 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5802 atomic_inc(&root->nr_cgrps);
5803 cgroup_get_live(parent);
5804
5805 /*
5806 * On the default hierarchy, a child doesn't automatically inherit
5807 * subtree_control from the parent. Each is configured manually.
5808 */
5809 if (!cgroup_on_dfl(cgrp))
5810 cgrp->subtree_control = cgroup_control(cgrp);
5811
5812 cgroup_propagate_control(cgrp);
5813
5814 return cgrp;
5815
5816 out_psi_free:
5817 psi_cgroup_free(cgrp);
5818 out_kernfs_remove:
5819 kernfs_remove(cgrp->kn);
5820 out_stat_exit:
5821 cgroup_rstat_exit(cgrp);
5822 out_cancel_ref:
5823 percpu_ref_exit(&cgrp->self.refcnt);
5824 out_free_cgrp:
5825 kfree(cgrp);
5826 return ERR_PTR(ret);
5827 }
5828
cgroup_check_hierarchy_limits(struct cgroup * parent)5829 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5830 {
5831 struct cgroup *cgroup;
5832 int ret = false;
5833 int level = 0;
5834
5835 lockdep_assert_held(&cgroup_mutex);
5836
5837 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5838 if (cgroup->nr_descendants >= cgroup->max_descendants)
5839 goto fail;
5840
5841 if (level >= cgroup->max_depth)
5842 goto fail;
5843
5844 level++;
5845 }
5846
5847 ret = true;
5848 fail:
5849 return ret;
5850 }
5851
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5852 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5853 {
5854 struct cgroup *parent, *cgrp;
5855 int ret;
5856
5857 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5858 if (strchr(name, '\n'))
5859 return -EINVAL;
5860
5861 parent = cgroup_kn_lock_live(parent_kn, false);
5862 if (!parent)
5863 return -ENODEV;
5864
5865 if (!cgroup_check_hierarchy_limits(parent)) {
5866 ret = -EAGAIN;
5867 goto out_unlock;
5868 }
5869
5870 cgrp = cgroup_create(parent, name, mode);
5871 if (IS_ERR(cgrp)) {
5872 ret = PTR_ERR(cgrp);
5873 goto out_unlock;
5874 }
5875
5876 /*
5877 * This extra ref will be put in css_free_rwork_fn() and guarantees
5878 * that @cgrp->kn is always accessible.
5879 */
5880 kernfs_get(cgrp->kn);
5881
5882 ret = css_populate_dir(&cgrp->self);
5883 if (ret)
5884 goto out_destroy;
5885
5886 ret = cgroup_apply_control_enable(cgrp);
5887 if (ret)
5888 goto out_destroy;
5889
5890 TRACE_CGROUP_PATH(mkdir, cgrp);
5891
5892 /* let's create and online css's */
5893 kernfs_activate(cgrp->kn);
5894
5895 ret = 0;
5896 goto out_unlock;
5897
5898 out_destroy:
5899 cgroup_destroy_locked(cgrp);
5900 out_unlock:
5901 cgroup_kn_unlock(parent_kn);
5902 return ret;
5903 }
5904
5905 /*
5906 * This is called when the refcnt of a css is confirmed to be killed.
5907 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5908 * initiate destruction and put the css ref from kill_css().
5909 */
css_killed_work_fn(struct work_struct * work)5910 static void css_killed_work_fn(struct work_struct *work)
5911 {
5912 struct cgroup_subsys_state *css =
5913 container_of(work, struct cgroup_subsys_state, destroy_work);
5914
5915 cgroup_lock();
5916
5917 do {
5918 offline_css(css);
5919 css_put(css);
5920 /* @css can't go away while we're holding cgroup_mutex */
5921 css = css->parent;
5922 } while (css && atomic_dec_and_test(&css->online_cnt));
5923
5924 cgroup_unlock();
5925 }
5926
5927 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5928 static void css_killed_ref_fn(struct percpu_ref *ref)
5929 {
5930 struct cgroup_subsys_state *css =
5931 container_of(ref, struct cgroup_subsys_state, refcnt);
5932
5933 if (atomic_dec_and_test(&css->online_cnt)) {
5934 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5935 queue_work(cgroup_destroy_wq, &css->destroy_work);
5936 }
5937 }
5938
5939 /**
5940 * kill_css - destroy a css
5941 * @css: css to destroy
5942 *
5943 * This function initiates destruction of @css by removing cgroup interface
5944 * files and putting its base reference. ->css_offline() will be invoked
5945 * asynchronously once css_tryget_online() is guaranteed to fail and when
5946 * the reference count reaches zero, @css will be released.
5947 */
kill_css(struct cgroup_subsys_state * css)5948 static void kill_css(struct cgroup_subsys_state *css)
5949 {
5950 lockdep_assert_held(&cgroup_mutex);
5951
5952 if (css->flags & CSS_DYING)
5953 return;
5954
5955 /*
5956 * Call css_killed(), if defined, before setting the CSS_DYING flag
5957 */
5958 if (css->ss->css_killed)
5959 css->ss->css_killed(css);
5960
5961 css->flags |= CSS_DYING;
5962
5963 /*
5964 * This must happen before css is disassociated with its cgroup.
5965 * See seq_css() for details.
5966 */
5967 css_clear_dir(css);
5968
5969 /*
5970 * Killing would put the base ref, but we need to keep it alive
5971 * until after ->css_offline().
5972 */
5973 css_get(css);
5974
5975 /*
5976 * cgroup core guarantees that, by the time ->css_offline() is
5977 * invoked, no new css reference will be given out via
5978 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5979 * proceed to offlining css's because percpu_ref_kill() doesn't
5980 * guarantee that the ref is seen as killed on all CPUs on return.
5981 *
5982 * Use percpu_ref_kill_and_confirm() to get notifications as each
5983 * css is confirmed to be seen as killed on all CPUs.
5984 */
5985 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5986 }
5987
5988 /**
5989 * cgroup_destroy_locked - the first stage of cgroup destruction
5990 * @cgrp: cgroup to be destroyed
5991 *
5992 * css's make use of percpu refcnts whose killing latency shouldn't be
5993 * exposed to userland and are RCU protected. Also, cgroup core needs to
5994 * guarantee that css_tryget_online() won't succeed by the time
5995 * ->css_offline() is invoked. To satisfy all the requirements,
5996 * destruction is implemented in the following two steps.
5997 *
5998 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5999 * userland visible parts and start killing the percpu refcnts of
6000 * css's. Set up so that the next stage will be kicked off once all
6001 * the percpu refcnts are confirmed to be killed.
6002 *
6003 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
6004 * rest of destruction. Once all cgroup references are gone, the
6005 * cgroup is RCU-freed.
6006 *
6007 * This function implements s1. After this step, @cgrp is gone as far as
6008 * the userland is concerned and a new cgroup with the same name may be
6009 * created. As cgroup doesn't care about the names internally, this
6010 * doesn't cause any problem.
6011 */
cgroup_destroy_locked(struct cgroup * cgrp)6012 static int cgroup_destroy_locked(struct cgroup *cgrp)
6013 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
6014 {
6015 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
6016 struct cgroup_subsys_state *css;
6017 struct cgrp_cset_link *link;
6018 int ssid;
6019
6020 lockdep_assert_held(&cgroup_mutex);
6021
6022 /*
6023 * Only migration can raise populated from zero and we're already
6024 * holding cgroup_mutex.
6025 */
6026 if (cgroup_is_populated(cgrp))
6027 return -EBUSY;
6028
6029 /*
6030 * Make sure there's no live children. We can't test emptiness of
6031 * ->self.children as dead children linger on it while being
6032 * drained; otherwise, "rmdir parent/child parent" may fail.
6033 */
6034 if (css_has_online_children(&cgrp->self))
6035 return -EBUSY;
6036
6037 /*
6038 * Mark @cgrp and the associated csets dead. The former prevents
6039 * further task migration and child creation by disabling
6040 * cgroup_kn_lock_live(). The latter makes the csets ignored by
6041 * the migration path.
6042 */
6043 cgrp->self.flags &= ~CSS_ONLINE;
6044
6045 spin_lock_irq(&css_set_lock);
6046 list_for_each_entry(link, &cgrp->cset_links, cset_link)
6047 link->cset->dead = true;
6048 spin_unlock_irq(&css_set_lock);
6049
6050 /* initiate massacre of all css's */
6051 for_each_css(css, ssid, cgrp)
6052 kill_css(css);
6053
6054 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
6055 css_clear_dir(&cgrp->self);
6056 kernfs_remove(cgrp->kn);
6057
6058 if (cgroup_is_threaded(cgrp))
6059 parent->nr_threaded_children--;
6060
6061 spin_lock_irq(&css_set_lock);
6062 for (tcgrp = parent; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
6063 tcgrp->nr_descendants--;
6064 tcgrp->nr_dying_descendants++;
6065 /*
6066 * If the dying cgroup is frozen, decrease frozen descendants
6067 * counters of ancestor cgroups.
6068 */
6069 if (test_bit(CGRP_FROZEN, &cgrp->flags))
6070 tcgrp->freezer.nr_frozen_descendants--;
6071 }
6072 spin_unlock_irq(&css_set_lock);
6073
6074 cgroup1_check_for_release(parent);
6075
6076 if (cgrp->root == &cgrp_dfl_root)
6077 cgroup_bpf_offline(cgrp);
6078
6079 /* put the base reference */
6080 percpu_ref_kill(&cgrp->self.refcnt);
6081
6082 return 0;
6083 };
6084
cgroup_rmdir(struct kernfs_node * kn)6085 int cgroup_rmdir(struct kernfs_node *kn)
6086 {
6087 struct cgroup *cgrp;
6088 int ret = 0;
6089
6090 cgrp = cgroup_kn_lock_live(kn, false);
6091 if (!cgrp)
6092 return 0;
6093
6094 ret = cgroup_destroy_locked(cgrp);
6095 if (!ret)
6096 TRACE_CGROUP_PATH(rmdir, cgrp);
6097
6098 cgroup_kn_unlock(kn);
6099 return ret;
6100 }
6101
6102 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
6103 .show_options = cgroup_show_options,
6104 .mkdir = cgroup_mkdir,
6105 .rmdir = cgroup_rmdir,
6106 .show_path = cgroup_show_path,
6107 };
6108
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)6109 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6110 {
6111 struct cgroup_subsys_state *css;
6112
6113 pr_debug("Initializing cgroup subsys %s\n", ss->name);
6114
6115 cgroup_lock();
6116
6117 idr_init(&ss->css_idr);
6118 INIT_LIST_HEAD(&ss->cfts);
6119
6120 /* Create the root cgroup state for this subsystem */
6121 ss->root = &cgrp_dfl_root;
6122 css = ss->css_alloc(NULL);
6123 /* We don't handle early failures gracefully */
6124 BUG_ON(IS_ERR(css));
6125 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6126
6127 /*
6128 * Root csses are never destroyed and we can't initialize
6129 * percpu_ref during early init. Disable refcnting.
6130 */
6131 css->flags |= CSS_NO_REF;
6132
6133 if (early) {
6134 /* allocation can't be done safely during early init */
6135 css->id = 1;
6136 } else {
6137 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6138 BUG_ON(css->id < 0);
6139 }
6140
6141 /* Update the init_css_set to contain a subsys
6142 * pointer to this state - since the subsystem is
6143 * newly registered, all tasks and hence the
6144 * init_css_set is in the subsystem's root cgroup. */
6145 init_css_set.subsys[ss->id] = css;
6146
6147 have_fork_callback |= (bool)ss->fork << ss->id;
6148 have_exit_callback |= (bool)ss->exit << ss->id;
6149 have_release_callback |= (bool)ss->release << ss->id;
6150 have_canfork_callback |= (bool)ss->can_fork << ss->id;
6151
6152 /* At system boot, before all subsystems have been
6153 * registered, no tasks have been forked, so we don't
6154 * need to invoke fork callbacks here. */
6155 BUG_ON(!list_empty(&init_task.tasks));
6156
6157 BUG_ON(online_css(css));
6158
6159 cgroup_unlock();
6160 }
6161
6162 /**
6163 * cgroup_init_early - cgroup initialization at system boot
6164 *
6165 * Initialize cgroups at system boot, and initialize any
6166 * subsystems that request early init.
6167 */
cgroup_init_early(void)6168 int __init cgroup_init_early(void)
6169 {
6170 static struct cgroup_fs_context __initdata ctx;
6171 struct cgroup_subsys *ss;
6172 int i;
6173
6174 ctx.root = &cgrp_dfl_root;
6175 init_cgroup_root(&ctx);
6176 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6177
6178 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6179
6180 for_each_subsys(ss, i) {
6181 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6182 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6183 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6184 ss->id, ss->name);
6185 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6186 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6187
6188 ss->id = i;
6189 ss->name = cgroup_subsys_name[i];
6190 if (!ss->legacy_name)
6191 ss->legacy_name = cgroup_subsys_name[i];
6192
6193 if (ss->early_init)
6194 cgroup_init_subsys(ss, true);
6195 }
6196 return 0;
6197 }
6198
6199 /**
6200 * cgroup_init - cgroup initialization
6201 *
6202 * Register cgroup filesystem and /proc file, and initialize
6203 * any subsystems that didn't request early init.
6204 */
cgroup_init(void)6205 int __init cgroup_init(void)
6206 {
6207 struct cgroup_subsys *ss;
6208 int ssid;
6209
6210 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6211 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6212 BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6213 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6214
6215 cgroup_rstat_boot();
6216
6217 get_user_ns(init_cgroup_ns.user_ns);
6218
6219 cgroup_lock();
6220
6221 /*
6222 * Add init_css_set to the hash table so that dfl_root can link to
6223 * it during init.
6224 */
6225 hash_add(css_set_table, &init_css_set.hlist,
6226 css_set_hash(init_css_set.subsys));
6227
6228 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6229
6230 cgroup_unlock();
6231
6232 for_each_subsys(ss, ssid) {
6233 if (ss->early_init) {
6234 struct cgroup_subsys_state *css =
6235 init_css_set.subsys[ss->id];
6236
6237 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6238 GFP_KERNEL);
6239 BUG_ON(css->id < 0);
6240 } else {
6241 cgroup_init_subsys(ss, false);
6242 }
6243
6244 list_add_tail(&init_css_set.e_cset_node[ssid],
6245 &cgrp_dfl_root.cgrp.e_csets[ssid]);
6246
6247 /*
6248 * Setting dfl_root subsys_mask needs to consider the
6249 * disabled flag and cftype registration needs kmalloc,
6250 * both of which aren't available during early_init.
6251 */
6252 if (!cgroup_ssid_enabled(ssid))
6253 continue;
6254
6255 if (cgroup1_ssid_disabled(ssid))
6256 pr_info("Disabling %s control group subsystem in v1 mounts\n",
6257 ss->legacy_name);
6258
6259 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6260
6261 /* implicit controllers must be threaded too */
6262 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6263
6264 if (ss->implicit_on_dfl)
6265 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6266 else if (!ss->dfl_cftypes)
6267 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6268
6269 if (ss->threaded)
6270 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6271
6272 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6273 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6274 } else {
6275 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6276 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6277 }
6278
6279 if (ss->bind)
6280 ss->bind(init_css_set.subsys[ssid]);
6281
6282 cgroup_lock();
6283 css_populate_dir(init_css_set.subsys[ssid]);
6284 cgroup_unlock();
6285 }
6286
6287 /* init_css_set.subsys[] has been updated, re-hash */
6288 hash_del(&init_css_set.hlist);
6289 hash_add(css_set_table, &init_css_set.hlist,
6290 css_set_hash(init_css_set.subsys));
6291
6292 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6293 WARN_ON(register_filesystem(&cgroup_fs_type));
6294 WARN_ON(register_filesystem(&cgroup2_fs_type));
6295 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6296 #ifdef CONFIG_CPUSETS_V1
6297 WARN_ON(register_filesystem(&cpuset_fs_type));
6298 #endif
6299
6300 return 0;
6301 }
6302
cgroup_wq_init(void)6303 static int __init cgroup_wq_init(void)
6304 {
6305 /*
6306 * There isn't much point in executing destruction path in
6307 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6308 * Use 1 for @max_active.
6309 *
6310 * We would prefer to do this in cgroup_init() above, but that
6311 * is called before init_workqueues(): so leave this until after.
6312 */
6313 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6314 BUG_ON(!cgroup_destroy_wq);
6315 return 0;
6316 }
6317 core_initcall(cgroup_wq_init);
6318
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6319 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6320 {
6321 struct kernfs_node *kn;
6322
6323 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6324 if (!kn)
6325 return;
6326 kernfs_path(kn, buf, buflen);
6327 kernfs_put(kn);
6328 }
6329
6330 /*
6331 * cgroup_get_from_id : get the cgroup associated with cgroup id
6332 * @id: cgroup id
6333 * On success return the cgrp or ERR_PTR on failure
6334 * Only cgroups within current task's cgroup NS are valid.
6335 */
cgroup_get_from_id(u64 id)6336 struct cgroup *cgroup_get_from_id(u64 id)
6337 {
6338 struct kernfs_node *kn;
6339 struct cgroup *cgrp, *root_cgrp;
6340
6341 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6342 if (!kn)
6343 return ERR_PTR(-ENOENT);
6344
6345 if (kernfs_type(kn) != KERNFS_DIR) {
6346 kernfs_put(kn);
6347 return ERR_PTR(-ENOENT);
6348 }
6349
6350 rcu_read_lock();
6351
6352 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6353 if (cgrp && !cgroup_tryget(cgrp))
6354 cgrp = NULL;
6355
6356 rcu_read_unlock();
6357 kernfs_put(kn);
6358
6359 if (!cgrp)
6360 return ERR_PTR(-ENOENT);
6361
6362 root_cgrp = current_cgns_cgroup_dfl();
6363 if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6364 cgroup_put(cgrp);
6365 return ERR_PTR(-ENOENT);
6366 }
6367
6368 return cgrp;
6369 }
6370 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6371
6372 /*
6373 * proc_cgroup_show()
6374 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6375 * - Used for /proc/<pid>/cgroup.
6376 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6377 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6378 struct pid *pid, struct task_struct *tsk)
6379 {
6380 char *buf;
6381 int retval;
6382 struct cgroup_root *root;
6383
6384 retval = -ENOMEM;
6385 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6386 if (!buf)
6387 goto out;
6388
6389 rcu_read_lock();
6390 spin_lock_irq(&css_set_lock);
6391
6392 for_each_root(root) {
6393 struct cgroup_subsys *ss;
6394 struct cgroup *cgrp;
6395 int ssid, count = 0;
6396
6397 if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6398 continue;
6399
6400 cgrp = task_cgroup_from_root(tsk, root);
6401 /* The root has already been unmounted. */
6402 if (!cgrp)
6403 continue;
6404
6405 seq_printf(m, "%d:", root->hierarchy_id);
6406 if (root != &cgrp_dfl_root)
6407 for_each_subsys(ss, ssid)
6408 if (root->subsys_mask & (1 << ssid))
6409 seq_printf(m, "%s%s", count++ ? "," : "",
6410 ss->legacy_name);
6411 if (strlen(root->name))
6412 seq_printf(m, "%sname=%s", count ? "," : "",
6413 root->name);
6414 seq_putc(m, ':');
6415 /*
6416 * On traditional hierarchies, all zombie tasks show up as
6417 * belonging to the root cgroup. On the default hierarchy,
6418 * while a zombie doesn't show up in "cgroup.procs" and
6419 * thus can't be migrated, its /proc/PID/cgroup keeps
6420 * reporting the cgroup it belonged to before exiting. If
6421 * the cgroup is removed before the zombie is reaped,
6422 * " (deleted)" is appended to the cgroup path.
6423 */
6424 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6425 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6426 current->nsproxy->cgroup_ns);
6427 if (retval == -E2BIG)
6428 retval = -ENAMETOOLONG;
6429 if (retval < 0)
6430 goto out_unlock;
6431
6432 seq_puts(m, buf);
6433 } else {
6434 seq_puts(m, "/");
6435 }
6436
6437 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6438 seq_puts(m, " (deleted)\n");
6439 else
6440 seq_putc(m, '\n');
6441 }
6442
6443 retval = 0;
6444 out_unlock:
6445 spin_unlock_irq(&css_set_lock);
6446 rcu_read_unlock();
6447 kfree(buf);
6448 out:
6449 return retval;
6450 }
6451
6452 /**
6453 * cgroup_fork - initialize cgroup related fields during copy_process()
6454 * @child: pointer to task_struct of forking parent process.
6455 *
6456 * A task is associated with the init_css_set until cgroup_post_fork()
6457 * attaches it to the target css_set.
6458 */
cgroup_fork(struct task_struct * child)6459 void cgroup_fork(struct task_struct *child)
6460 {
6461 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6462 INIT_LIST_HEAD(&child->cg_list);
6463 }
6464
6465 /**
6466 * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6467 * @f: file corresponding to cgroup_dir
6468 *
6469 * Find the cgroup from a file pointer associated with a cgroup directory.
6470 * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6471 * cgroup cannot be found.
6472 */
cgroup_v1v2_get_from_file(struct file * f)6473 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6474 {
6475 struct cgroup_subsys_state *css;
6476
6477 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6478 if (IS_ERR(css))
6479 return ERR_CAST(css);
6480
6481 return css->cgroup;
6482 }
6483
6484 /**
6485 * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6486 * cgroup2.
6487 * @f: file corresponding to cgroup2_dir
6488 */
cgroup_get_from_file(struct file * f)6489 static struct cgroup *cgroup_get_from_file(struct file *f)
6490 {
6491 struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6492
6493 if (IS_ERR(cgrp))
6494 return ERR_CAST(cgrp);
6495
6496 if (!cgroup_on_dfl(cgrp)) {
6497 cgroup_put(cgrp);
6498 return ERR_PTR(-EBADF);
6499 }
6500
6501 return cgrp;
6502 }
6503
6504 /**
6505 * cgroup_css_set_fork - find or create a css_set for a child process
6506 * @kargs: the arguments passed to create the child process
6507 *
6508 * This functions finds or creates a new css_set which the child
6509 * process will be attached to in cgroup_post_fork(). By default,
6510 * the child process will be given the same css_set as its parent.
6511 *
6512 * If CLONE_INTO_CGROUP is specified this function will try to find an
6513 * existing css_set which includes the requested cgroup and if not create
6514 * a new css_set that the child will be attached to later. If this function
6515 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6516 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6517 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6518 * to the target cgroup.
6519 */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6520 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6521 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6522 {
6523 int ret;
6524 struct cgroup *dst_cgrp = NULL;
6525 struct css_set *cset;
6526 struct super_block *sb;
6527
6528 if (kargs->flags & CLONE_INTO_CGROUP)
6529 cgroup_lock();
6530
6531 cgroup_threadgroup_change_begin(current);
6532
6533 spin_lock_irq(&css_set_lock);
6534 cset = task_css_set(current);
6535 get_css_set(cset);
6536 if (kargs->cgrp)
6537 kargs->kill_seq = kargs->cgrp->kill_seq;
6538 else
6539 kargs->kill_seq = cset->dfl_cgrp->kill_seq;
6540 spin_unlock_irq(&css_set_lock);
6541
6542 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6543 kargs->cset = cset;
6544 return 0;
6545 }
6546
6547 CLASS(fd_raw, f)(kargs->cgroup);
6548 if (fd_empty(f)) {
6549 ret = -EBADF;
6550 goto err;
6551 }
6552 sb = fd_file(f)->f_path.dentry->d_sb;
6553
6554 dst_cgrp = cgroup_get_from_file(fd_file(f));
6555 if (IS_ERR(dst_cgrp)) {
6556 ret = PTR_ERR(dst_cgrp);
6557 dst_cgrp = NULL;
6558 goto err;
6559 }
6560
6561 if (cgroup_is_dead(dst_cgrp)) {
6562 ret = -ENODEV;
6563 goto err;
6564 }
6565
6566 /*
6567 * Verify that we the target cgroup is writable for us. This is
6568 * usually done by the vfs layer but since we're not going through
6569 * the vfs layer here we need to do it "manually".
6570 */
6571 ret = cgroup_may_write(dst_cgrp, sb);
6572 if (ret)
6573 goto err;
6574
6575 /*
6576 * Spawning a task directly into a cgroup works by passing a file
6577 * descriptor to the target cgroup directory. This can even be an O_PATH
6578 * file descriptor. But it can never be a cgroup.procs file descriptor.
6579 * This was done on purpose so spawning into a cgroup could be
6580 * conceptualized as an atomic
6581 *
6582 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6583 * write(fd, <child-pid>, ...);
6584 *
6585 * sequence, i.e. it's a shorthand for the caller opening and writing
6586 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6587 * to always use the caller's credentials.
6588 */
6589 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6590 !(kargs->flags & CLONE_THREAD),
6591 current->nsproxy->cgroup_ns);
6592 if (ret)
6593 goto err;
6594
6595 kargs->cset = find_css_set(cset, dst_cgrp);
6596 if (!kargs->cset) {
6597 ret = -ENOMEM;
6598 goto err;
6599 }
6600
6601 put_css_set(cset);
6602 kargs->cgrp = dst_cgrp;
6603 return ret;
6604
6605 err:
6606 cgroup_threadgroup_change_end(current);
6607 cgroup_unlock();
6608 if (dst_cgrp)
6609 cgroup_put(dst_cgrp);
6610 put_css_set(cset);
6611 if (kargs->cset)
6612 put_css_set(kargs->cset);
6613 return ret;
6614 }
6615
6616 /**
6617 * cgroup_css_set_put_fork - drop references we took during fork
6618 * @kargs: the arguments passed to create the child process
6619 *
6620 * Drop references to the prepared css_set and target cgroup if
6621 * CLONE_INTO_CGROUP was requested.
6622 */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6623 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6624 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6625 {
6626 struct cgroup *cgrp = kargs->cgrp;
6627 struct css_set *cset = kargs->cset;
6628
6629 cgroup_threadgroup_change_end(current);
6630
6631 if (cset) {
6632 put_css_set(cset);
6633 kargs->cset = NULL;
6634 }
6635
6636 if (kargs->flags & CLONE_INTO_CGROUP) {
6637 cgroup_unlock();
6638 if (cgrp) {
6639 cgroup_put(cgrp);
6640 kargs->cgrp = NULL;
6641 }
6642 }
6643 }
6644
6645 /**
6646 * cgroup_can_fork - called on a new task before the process is exposed
6647 * @child: the child process
6648 * @kargs: the arguments passed to create the child process
6649 *
6650 * This prepares a new css_set for the child process which the child will
6651 * be attached to in cgroup_post_fork().
6652 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6653 * callback returns an error, the fork aborts with that error code. This
6654 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6655 */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6656 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6657 {
6658 struct cgroup_subsys *ss;
6659 int i, j, ret;
6660
6661 ret = cgroup_css_set_fork(kargs);
6662 if (ret)
6663 return ret;
6664
6665 do_each_subsys_mask(ss, i, have_canfork_callback) {
6666 ret = ss->can_fork(child, kargs->cset);
6667 if (ret)
6668 goto out_revert;
6669 } while_each_subsys_mask();
6670
6671 return 0;
6672
6673 out_revert:
6674 for_each_subsys(ss, j) {
6675 if (j >= i)
6676 break;
6677 if (ss->cancel_fork)
6678 ss->cancel_fork(child, kargs->cset);
6679 }
6680
6681 cgroup_css_set_put_fork(kargs);
6682
6683 return ret;
6684 }
6685
6686 /**
6687 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6688 * @child: the child process
6689 * @kargs: the arguments passed to create the child process
6690 *
6691 * This calls the cancel_fork() callbacks if a fork failed *after*
6692 * cgroup_can_fork() succeeded and cleans up references we took to
6693 * prepare a new css_set for the child process in cgroup_can_fork().
6694 */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6695 void cgroup_cancel_fork(struct task_struct *child,
6696 struct kernel_clone_args *kargs)
6697 {
6698 struct cgroup_subsys *ss;
6699 int i;
6700
6701 for_each_subsys(ss, i)
6702 if (ss->cancel_fork)
6703 ss->cancel_fork(child, kargs->cset);
6704
6705 cgroup_css_set_put_fork(kargs);
6706 }
6707
6708 /**
6709 * cgroup_post_fork - finalize cgroup setup for the child process
6710 * @child: the child process
6711 * @kargs: the arguments passed to create the child process
6712 *
6713 * Attach the child process to its css_set calling the subsystem fork()
6714 * callbacks.
6715 */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6716 void cgroup_post_fork(struct task_struct *child,
6717 struct kernel_clone_args *kargs)
6718 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6719 {
6720 unsigned int cgrp_kill_seq = 0;
6721 unsigned long cgrp_flags = 0;
6722 bool kill = false;
6723 struct cgroup_subsys *ss;
6724 struct css_set *cset;
6725 int i;
6726
6727 cset = kargs->cset;
6728 kargs->cset = NULL;
6729
6730 spin_lock_irq(&css_set_lock);
6731
6732 /* init tasks are special, only link regular threads */
6733 if (likely(child->pid)) {
6734 if (kargs->cgrp) {
6735 cgrp_flags = kargs->cgrp->flags;
6736 cgrp_kill_seq = kargs->cgrp->kill_seq;
6737 } else {
6738 cgrp_flags = cset->dfl_cgrp->flags;
6739 cgrp_kill_seq = cset->dfl_cgrp->kill_seq;
6740 }
6741
6742 WARN_ON_ONCE(!list_empty(&child->cg_list));
6743 cset->nr_tasks++;
6744 css_set_move_task(child, NULL, cset, false);
6745 } else {
6746 put_css_set(cset);
6747 cset = NULL;
6748 }
6749
6750 if (!(child->flags & PF_KTHREAD)) {
6751 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6752 /*
6753 * If the cgroup has to be frozen, the new task has
6754 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6755 * get the task into the frozen state.
6756 */
6757 spin_lock(&child->sighand->siglock);
6758 WARN_ON_ONCE(child->frozen);
6759 child->jobctl |= JOBCTL_TRAP_FREEZE;
6760 spin_unlock(&child->sighand->siglock);
6761
6762 /*
6763 * Calling cgroup_update_frozen() isn't required here,
6764 * because it will be called anyway a bit later from
6765 * do_freezer_trap(). So we avoid cgroup's transient
6766 * switch from the frozen state and back.
6767 */
6768 }
6769
6770 /*
6771 * If the cgroup is to be killed notice it now and take the
6772 * child down right after we finished preparing it for
6773 * userspace.
6774 */
6775 kill = kargs->kill_seq != cgrp_kill_seq;
6776 }
6777
6778 spin_unlock_irq(&css_set_lock);
6779
6780 /*
6781 * Call ss->fork(). This must happen after @child is linked on
6782 * css_set; otherwise, @child might change state between ->fork()
6783 * and addition to css_set.
6784 */
6785 do_each_subsys_mask(ss, i, have_fork_callback) {
6786 ss->fork(child);
6787 } while_each_subsys_mask();
6788
6789 /* Make the new cset the root_cset of the new cgroup namespace. */
6790 if (kargs->flags & CLONE_NEWCGROUP) {
6791 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6792
6793 get_css_set(cset);
6794 child->nsproxy->cgroup_ns->root_cset = cset;
6795 put_css_set(rcset);
6796 }
6797
6798 /* Cgroup has to be killed so take down child immediately. */
6799 if (unlikely(kill))
6800 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6801
6802 cgroup_css_set_put_fork(kargs);
6803 }
6804
6805 /**
6806 * cgroup_exit - detach cgroup from exiting task
6807 * @tsk: pointer to task_struct of exiting process
6808 *
6809 * Description: Detach cgroup from @tsk.
6810 *
6811 */
cgroup_exit(struct task_struct * tsk)6812 void cgroup_exit(struct task_struct *tsk)
6813 {
6814 struct cgroup_subsys *ss;
6815 struct css_set *cset;
6816 int i;
6817
6818 spin_lock_irq(&css_set_lock);
6819
6820 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6821 cset = task_css_set(tsk);
6822 css_set_move_task(tsk, cset, NULL, false);
6823 cset->nr_tasks--;
6824 /* matches the signal->live check in css_task_iter_advance() */
6825 if (thread_group_leader(tsk) && atomic_read(&tsk->signal->live))
6826 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6827
6828 if (dl_task(tsk))
6829 dec_dl_tasks_cs(tsk);
6830
6831 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6832 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6833 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6834 cgroup_update_frozen(task_dfl_cgroup(tsk));
6835
6836 spin_unlock_irq(&css_set_lock);
6837
6838 /* see cgroup_post_fork() for details */
6839 do_each_subsys_mask(ss, i, have_exit_callback) {
6840 ss->exit(tsk);
6841 } while_each_subsys_mask();
6842 }
6843
cgroup_release(struct task_struct * task)6844 void cgroup_release(struct task_struct *task)
6845 {
6846 struct cgroup_subsys *ss;
6847 int ssid;
6848
6849 do_each_subsys_mask(ss, ssid, have_release_callback) {
6850 ss->release(task);
6851 } while_each_subsys_mask();
6852
6853 if (!list_empty(&task->cg_list)) {
6854 spin_lock_irq(&css_set_lock);
6855 css_set_skip_task_iters(task_css_set(task), task);
6856 list_del_init(&task->cg_list);
6857 spin_unlock_irq(&css_set_lock);
6858 }
6859 }
6860
cgroup_free(struct task_struct * task)6861 void cgroup_free(struct task_struct *task)
6862 {
6863 struct css_set *cset = task_css_set(task);
6864 put_css_set(cset);
6865 }
6866
cgroup_disable(char * str)6867 static int __init cgroup_disable(char *str)
6868 {
6869 struct cgroup_subsys *ss;
6870 char *token;
6871 int i;
6872
6873 while ((token = strsep(&str, ",")) != NULL) {
6874 if (!*token)
6875 continue;
6876
6877 for_each_subsys(ss, i) {
6878 if (strcmp(token, ss->name) &&
6879 strcmp(token, ss->legacy_name))
6880 continue;
6881
6882 static_branch_disable(cgroup_subsys_enabled_key[i]);
6883 pr_info("Disabling %s control group subsystem\n",
6884 ss->name);
6885 }
6886
6887 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6888 if (strcmp(token, cgroup_opt_feature_names[i]))
6889 continue;
6890 cgroup_feature_disable_mask |= 1 << i;
6891 pr_info("Disabling %s control group feature\n",
6892 cgroup_opt_feature_names[i]);
6893 break;
6894 }
6895 }
6896 return 1;
6897 }
6898 __setup("cgroup_disable=", cgroup_disable);
6899
enable_debug_cgroup(void)6900 void __init __weak enable_debug_cgroup(void) { }
6901
enable_cgroup_debug(char * str)6902 static int __init enable_cgroup_debug(char *str)
6903 {
6904 cgroup_debug = true;
6905 enable_debug_cgroup();
6906 return 1;
6907 }
6908 __setup("cgroup_debug", enable_cgroup_debug);
6909
cgroup_favordynmods_setup(char * str)6910 static int __init cgroup_favordynmods_setup(char *str)
6911 {
6912 return (kstrtobool(str, &have_favordynmods) == 0);
6913 }
6914 __setup("cgroup_favordynmods=", cgroup_favordynmods_setup);
6915
6916 /**
6917 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6918 * @dentry: directory dentry of interest
6919 * @ss: subsystem of interest
6920 *
6921 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6922 * to get the corresponding css and return it. If such css doesn't exist
6923 * or can't be pinned, an ERR_PTR value is returned.
6924 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6925 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6926 struct cgroup_subsys *ss)
6927 {
6928 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6929 struct file_system_type *s_type = dentry->d_sb->s_type;
6930 struct cgroup_subsys_state *css = NULL;
6931 struct cgroup *cgrp;
6932
6933 /* is @dentry a cgroup dir? */
6934 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6935 !kn || kernfs_type(kn) != KERNFS_DIR)
6936 return ERR_PTR(-EBADF);
6937
6938 rcu_read_lock();
6939
6940 /*
6941 * This path doesn't originate from kernfs and @kn could already
6942 * have been or be removed at any point. @kn->priv is RCU
6943 * protected for this access. See css_release_work_fn() for details.
6944 */
6945 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6946 if (cgrp)
6947 css = cgroup_css(cgrp, ss);
6948
6949 if (!css || !css_tryget_online(css))
6950 css = ERR_PTR(-ENOENT);
6951
6952 rcu_read_unlock();
6953 return css;
6954 }
6955
6956 /**
6957 * css_from_id - lookup css by id
6958 * @id: the cgroup id
6959 * @ss: cgroup subsys to be looked into
6960 *
6961 * Returns the css if there's valid one with @id, otherwise returns NULL.
6962 * Should be called under rcu_read_lock().
6963 */
css_from_id(int id,struct cgroup_subsys * ss)6964 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6965 {
6966 WARN_ON_ONCE(!rcu_read_lock_held());
6967 return idr_find(&ss->css_idr, id);
6968 }
6969
6970 /**
6971 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6972 * @path: path on the default hierarchy
6973 *
6974 * Find the cgroup at @path on the default hierarchy, increment its
6975 * reference count and return it. Returns pointer to the found cgroup on
6976 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6977 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6978 */
cgroup_get_from_path(const char * path)6979 struct cgroup *cgroup_get_from_path(const char *path)
6980 {
6981 struct kernfs_node *kn;
6982 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6983 struct cgroup *root_cgrp;
6984
6985 root_cgrp = current_cgns_cgroup_dfl();
6986 kn = kernfs_walk_and_get(root_cgrp->kn, path);
6987 if (!kn)
6988 goto out;
6989
6990 if (kernfs_type(kn) != KERNFS_DIR) {
6991 cgrp = ERR_PTR(-ENOTDIR);
6992 goto out_kernfs;
6993 }
6994
6995 rcu_read_lock();
6996
6997 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6998 if (!cgrp || !cgroup_tryget(cgrp))
6999 cgrp = ERR_PTR(-ENOENT);
7000
7001 rcu_read_unlock();
7002
7003 out_kernfs:
7004 kernfs_put(kn);
7005 out:
7006 return cgrp;
7007 }
7008 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
7009
7010 /**
7011 * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
7012 * @fd: fd obtained by open(cgroup_dir)
7013 *
7014 * Find the cgroup from a fd which should be obtained
7015 * by opening a cgroup directory. Returns a pointer to the
7016 * cgroup on success. ERR_PTR is returned if the cgroup
7017 * cannot be found.
7018 */
cgroup_v1v2_get_from_fd(int fd)7019 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
7020 {
7021 CLASS(fd_raw, f)(fd);
7022 if (fd_empty(f))
7023 return ERR_PTR(-EBADF);
7024
7025 return cgroup_v1v2_get_from_file(fd_file(f));
7026 }
7027
7028 /**
7029 * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
7030 * cgroup2.
7031 * @fd: fd obtained by open(cgroup2_dir)
7032 */
cgroup_get_from_fd(int fd)7033 struct cgroup *cgroup_get_from_fd(int fd)
7034 {
7035 struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
7036
7037 if (IS_ERR(cgrp))
7038 return ERR_CAST(cgrp);
7039
7040 if (!cgroup_on_dfl(cgrp)) {
7041 cgroup_put(cgrp);
7042 return ERR_PTR(-EBADF);
7043 }
7044 return cgrp;
7045 }
7046 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
7047
power_of_ten(int power)7048 static u64 power_of_ten(int power)
7049 {
7050 u64 v = 1;
7051 while (power--)
7052 v *= 10;
7053 return v;
7054 }
7055
7056 /**
7057 * cgroup_parse_float - parse a floating number
7058 * @input: input string
7059 * @dec_shift: number of decimal digits to shift
7060 * @v: output
7061 *
7062 * Parse a decimal floating point number in @input and store the result in
7063 * @v with decimal point right shifted @dec_shift times. For example, if
7064 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
7065 * Returns 0 on success, -errno otherwise.
7066 *
7067 * There's nothing cgroup specific about this function except that it's
7068 * currently the only user.
7069 */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)7070 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
7071 {
7072 s64 whole, frac = 0;
7073 int fstart = 0, fend = 0, flen;
7074
7075 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
7076 return -EINVAL;
7077 if (frac < 0)
7078 return -EINVAL;
7079
7080 flen = fend > fstart ? fend - fstart : 0;
7081 if (flen < dec_shift)
7082 frac *= power_of_ten(dec_shift - flen);
7083 else
7084 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
7085
7086 *v = whole * power_of_ten(dec_shift) + frac;
7087 return 0;
7088 }
7089
7090 /*
7091 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
7092 * definition in cgroup-defs.h.
7093 */
7094 #ifdef CONFIG_SOCK_CGROUP_DATA
7095
cgroup_sk_alloc(struct sock_cgroup_data * skcd)7096 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
7097 {
7098 struct cgroup *cgroup;
7099
7100 rcu_read_lock();
7101 /* Don't associate the sock with unrelated interrupted task's cgroup. */
7102 if (in_interrupt()) {
7103 cgroup = &cgrp_dfl_root.cgrp;
7104 cgroup_get(cgroup);
7105 goto out;
7106 }
7107
7108 while (true) {
7109 struct css_set *cset;
7110
7111 cset = task_css_set(current);
7112 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
7113 cgroup = cset->dfl_cgrp;
7114 break;
7115 }
7116 cpu_relax();
7117 }
7118 out:
7119 skcd->cgroup = cgroup;
7120 cgroup_bpf_get(cgroup);
7121 rcu_read_unlock();
7122 }
7123
cgroup_sk_clone(struct sock_cgroup_data * skcd)7124 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7125 {
7126 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7127
7128 /*
7129 * We might be cloning a socket which is left in an empty
7130 * cgroup and the cgroup might have already been rmdir'd.
7131 * Don't use cgroup_get_live().
7132 */
7133 cgroup_get(cgrp);
7134 cgroup_bpf_get(cgrp);
7135 }
7136
cgroup_sk_free(struct sock_cgroup_data * skcd)7137 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7138 {
7139 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7140
7141 cgroup_bpf_put(cgrp);
7142 cgroup_put(cgrp);
7143 }
7144
7145 #endif /* CONFIG_SOCK_CGROUP_DATA */
7146
7147 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7148 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7149 ssize_t size, const char *prefix)
7150 {
7151 struct cftype *cft;
7152 ssize_t ret = 0;
7153
7154 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7155 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7156 continue;
7157
7158 if (prefix)
7159 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7160
7161 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7162
7163 if (WARN_ON(ret >= size))
7164 break;
7165 }
7166
7167 return ret;
7168 }
7169
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7170 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7171 char *buf)
7172 {
7173 struct cgroup_subsys *ss;
7174 int ssid;
7175 ssize_t ret = 0;
7176
7177 ret = show_delegatable_files(cgroup_base_files, buf + ret,
7178 PAGE_SIZE - ret, NULL);
7179 if (cgroup_psi_enabled())
7180 ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7181 PAGE_SIZE - ret, NULL);
7182
7183 for_each_subsys(ss, ssid)
7184 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7185 PAGE_SIZE - ret,
7186 cgroup_subsys_name[ssid]);
7187
7188 return ret;
7189 }
7190 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7191
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7192 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7193 char *buf)
7194 {
7195 return snprintf(buf, PAGE_SIZE,
7196 "nsdelegate\n"
7197 "favordynmods\n"
7198 "memory_localevents\n"
7199 "memory_recursiveprot\n"
7200 "memory_hugetlb_accounting\n"
7201 "pids_localevents\n");
7202 }
7203 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7204
7205 static struct attribute *cgroup_sysfs_attrs[] = {
7206 &cgroup_delegate_attr.attr,
7207 &cgroup_features_attr.attr,
7208 NULL,
7209 };
7210
7211 static const struct attribute_group cgroup_sysfs_attr_group = {
7212 .attrs = cgroup_sysfs_attrs,
7213 .name = "cgroup",
7214 };
7215
cgroup_sysfs_init(void)7216 static int __init cgroup_sysfs_init(void)
7217 {
7218 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7219 }
7220 subsys_initcall(cgroup_sysfs_init);
7221
7222 #endif /* CONFIG_SYSFS */
7223