1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22
23 static void clocksource_enqueue(struct clocksource *cs);
24
cycles_to_nsec_safe(struct clocksource * cs,u64 start,u64 end)25 static noinline u64 cycles_to_nsec_safe(struct clocksource *cs, u64 start, u64 end)
26 {
27 u64 delta = clocksource_delta(end, start, cs->mask, cs->max_raw_delta);
28
29 if (likely(delta < cs->max_cycles))
30 return clocksource_cyc2ns(delta, cs->mult, cs->shift);
31
32 return mul_u64_u32_shr(delta, cs->mult, cs->shift);
33 }
34
35 /**
36 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
37 * @mult: pointer to mult variable
38 * @shift: pointer to shift variable
39 * @from: frequency to convert from
40 * @to: frequency to convert to
41 * @maxsec: guaranteed runtime conversion range in seconds
42 *
43 * The function evaluates the shift/mult pair for the scaled math
44 * operations of clocksources and clockevents.
45 *
46 * @to and @from are frequency values in HZ. For clock sources @to is
47 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
48 * event @to is the counter frequency and @from is NSEC_PER_SEC.
49 *
50 * The @maxsec conversion range argument controls the time frame in
51 * seconds which must be covered by the runtime conversion with the
52 * calculated mult and shift factors. This guarantees that no 64bit
53 * overflow happens when the input value of the conversion is
54 * multiplied with the calculated mult factor. Larger ranges may
55 * reduce the conversion accuracy by choosing smaller mult and shift
56 * factors.
57 */
58 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)59 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
60 {
61 u64 tmp;
62 u32 sft, sftacc= 32;
63
64 /*
65 * Calculate the shift factor which is limiting the conversion
66 * range:
67 */
68 tmp = ((u64)maxsec * from) >> 32;
69 while (tmp) {
70 tmp >>=1;
71 sftacc--;
72 }
73
74 /*
75 * Find the conversion shift/mult pair which has the best
76 * accuracy and fits the maxsec conversion range:
77 */
78 for (sft = 32; sft > 0; sft--) {
79 tmp = (u64) to << sft;
80 tmp += from / 2;
81 do_div(tmp, from);
82 if ((tmp >> sftacc) == 0)
83 break;
84 }
85 *mult = tmp;
86 *shift = sft;
87 }
88 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
89
90 /*[Clocksource internal variables]---------
91 * curr_clocksource:
92 * currently selected clocksource.
93 * suspend_clocksource:
94 * used to calculate the suspend time.
95 * clocksource_list:
96 * linked list with the registered clocksources
97 * clocksource_mutex:
98 * protects manipulations to curr_clocksource and the clocksource_list
99 * override_name:
100 * Name of the user-specified clocksource.
101 */
102 static struct clocksource *curr_clocksource;
103 static struct clocksource *suspend_clocksource;
104 static LIST_HEAD(clocksource_list);
105 static DEFINE_MUTEX(clocksource_mutex);
106 static char override_name[CS_NAME_LEN];
107 static int finished_booting;
108 static u64 suspend_start;
109
110 /*
111 * Interval: 0.5sec.
112 */
113 #define WATCHDOG_INTERVAL (HZ >> 1)
114 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
115
116 /*
117 * Threshold: 0.0312s, when doubled: 0.0625s.
118 */
119 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
120
121 /*
122 * Maximum permissible delay between two readouts of the watchdog
123 * clocksource surrounding a read of the clocksource being validated.
124 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
125 * a lower bound for cs->uncertainty_margin values when registering clocks.
126 *
127 * The default of 500 parts per million is based on NTP's limits.
128 * If a clocksource is good enough for NTP, it is good enough for us!
129 *
130 * In other words, by default, even if a clocksource is extremely
131 * precise (for example, with a sub-nanosecond period), the maximum
132 * permissible skew between the clocksource watchdog and the clocksource
133 * under test is not permitted to go below the 500ppm minimum defined
134 * by MAX_SKEW_USEC. This 500ppm minimum may be overridden using the
135 * CLOCKSOURCE_WATCHDOG_MAX_SKEW_US Kconfig option.
136 */
137 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
138 #define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
139 #else
140 #define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ)
141 #endif
142
143 /*
144 * Default for maximum permissible skew when cs->uncertainty_margin is
145 * not specified, and the lower bound even when cs->uncertainty_margin
146 * is specified. This is also the default that is used when registering
147 * clocks with unspecifed cs->uncertainty_margin, so this macro is used
148 * even in CONFIG_CLOCKSOURCE_WATCHDOG=n kernels.
149 */
150 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
151
152 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
153 static void clocksource_watchdog_work(struct work_struct *work);
154 static void clocksource_select(void);
155
156 static LIST_HEAD(watchdog_list);
157 static struct clocksource *watchdog;
158 static struct timer_list watchdog_timer;
159 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
160 static DEFINE_SPINLOCK(watchdog_lock);
161 static int watchdog_running;
162 static atomic_t watchdog_reset_pending;
163 static int64_t watchdog_max_interval;
164
clocksource_watchdog_lock(unsigned long * flags)165 static inline void clocksource_watchdog_lock(unsigned long *flags)
166 {
167 spin_lock_irqsave(&watchdog_lock, *flags);
168 }
169
clocksource_watchdog_unlock(unsigned long * flags)170 static inline void clocksource_watchdog_unlock(unsigned long *flags)
171 {
172 spin_unlock_irqrestore(&watchdog_lock, *flags);
173 }
174
175 static int clocksource_watchdog_kthread(void *data);
176
clocksource_watchdog_work(struct work_struct * work)177 static void clocksource_watchdog_work(struct work_struct *work)
178 {
179 /*
180 * We cannot directly run clocksource_watchdog_kthread() here, because
181 * clocksource_select() calls timekeeping_notify() which uses
182 * stop_machine(). One cannot use stop_machine() from a workqueue() due
183 * lock inversions wrt CPU hotplug.
184 *
185 * Also, we only ever run this work once or twice during the lifetime
186 * of the kernel, so there is no point in creating a more permanent
187 * kthread for this.
188 *
189 * If kthread_run fails the next watchdog scan over the
190 * watchdog_list will find the unstable clock again.
191 */
192 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
193 }
194
clocksource_change_rating(struct clocksource * cs,int rating)195 static void clocksource_change_rating(struct clocksource *cs, int rating)
196 {
197 list_del(&cs->list);
198 cs->rating = rating;
199 clocksource_enqueue(cs);
200 }
201
__clocksource_unstable(struct clocksource * cs)202 static void __clocksource_unstable(struct clocksource *cs)
203 {
204 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
205 cs->flags |= CLOCK_SOURCE_UNSTABLE;
206
207 /*
208 * If the clocksource is registered clocksource_watchdog_kthread() will
209 * re-rate and re-select.
210 */
211 if (list_empty(&cs->list)) {
212 cs->rating = 0;
213 return;
214 }
215
216 if (cs->mark_unstable)
217 cs->mark_unstable(cs);
218
219 /* kick clocksource_watchdog_kthread() */
220 if (finished_booting)
221 schedule_work(&watchdog_work);
222 }
223
224 /**
225 * clocksource_mark_unstable - mark clocksource unstable via watchdog
226 * @cs: clocksource to be marked unstable
227 *
228 * This function is called by the x86 TSC code to mark clocksources as unstable;
229 * it defers demotion and re-selection to a kthread.
230 */
clocksource_mark_unstable(struct clocksource * cs)231 void clocksource_mark_unstable(struct clocksource *cs)
232 {
233 unsigned long flags;
234
235 spin_lock_irqsave(&watchdog_lock, flags);
236 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
237 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
238 list_add(&cs->wd_list, &watchdog_list);
239 __clocksource_unstable(cs);
240 }
241 spin_unlock_irqrestore(&watchdog_lock, flags);
242 }
243
244 static int verify_n_cpus = 8;
245 module_param(verify_n_cpus, int, 0644);
246
247 enum wd_read_status {
248 WD_READ_SUCCESS,
249 WD_READ_UNSTABLE,
250 WD_READ_SKIP
251 };
252
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)253 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
254 {
255 int64_t md = 2 * watchdog->uncertainty_margin;
256 unsigned int nretries, max_retries;
257 int64_t wd_delay, wd_seq_delay;
258 u64 wd_end, wd_end2;
259
260 max_retries = clocksource_get_max_watchdog_retry();
261 for (nretries = 0; nretries <= max_retries; nretries++) {
262 local_irq_disable();
263 *wdnow = watchdog->read(watchdog);
264 *csnow = cs->read(cs);
265 wd_end = watchdog->read(watchdog);
266 wd_end2 = watchdog->read(watchdog);
267 local_irq_enable();
268
269 wd_delay = cycles_to_nsec_safe(watchdog, *wdnow, wd_end);
270 if (wd_delay <= md + cs->uncertainty_margin) {
271 if (nretries > 1 && nretries >= max_retries) {
272 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
273 smp_processor_id(), watchdog->name, nretries);
274 }
275 return WD_READ_SUCCESS;
276 }
277
278 /*
279 * Now compute delay in consecutive watchdog read to see if
280 * there is too much external interferences that cause
281 * significant delay in reading both clocksource and watchdog.
282 *
283 * If consecutive WD read-back delay > md, report
284 * system busy, reinit the watchdog and skip the current
285 * watchdog test.
286 */
287 wd_seq_delay = cycles_to_nsec_safe(watchdog, wd_end, wd_end2);
288 if (wd_seq_delay > md)
289 goto skip_test;
290 }
291
292 pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
293 smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
294 return WD_READ_UNSTABLE;
295
296 skip_test:
297 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
298 smp_processor_id(), watchdog->name, wd_seq_delay);
299 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
300 cs->name, wd_delay);
301 return WD_READ_SKIP;
302 }
303
304 static u64 csnow_mid;
305 static cpumask_t cpus_ahead;
306 static cpumask_t cpus_behind;
307 static cpumask_t cpus_chosen;
308
clocksource_verify_choose_cpus(void)309 static void clocksource_verify_choose_cpus(void)
310 {
311 int cpu, i, n = verify_n_cpus;
312
313 if (n < 0 || n >= num_online_cpus()) {
314 /* Check all of the CPUs. */
315 cpumask_copy(&cpus_chosen, cpu_online_mask);
316 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 return;
318 }
319
320 /* If no checking desired, or no other CPU to check, leave. */
321 cpumask_clear(&cpus_chosen);
322 if (n == 0 || num_online_cpus() <= 1)
323 return;
324
325 /* Make sure to select at least one CPU other than the current CPU. */
326 cpu = cpumask_any_but(cpu_online_mask, smp_processor_id());
327 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
328 return;
329 cpumask_set_cpu(cpu, &cpus_chosen);
330
331 /* Force a sane value for the boot parameter. */
332 if (n > nr_cpu_ids)
333 n = nr_cpu_ids;
334
335 /*
336 * Randomly select the specified number of CPUs. If the same
337 * CPU is selected multiple times, that CPU is checked only once,
338 * and no replacement CPU is selected. This gracefully handles
339 * situations where verify_n_cpus is greater than the number of
340 * CPUs that are currently online.
341 */
342 for (i = 1; i < n; i++) {
343 cpu = cpumask_random(cpu_online_mask);
344 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
345 cpumask_set_cpu(cpu, &cpus_chosen);
346 }
347
348 /* Don't verify ourselves. */
349 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
350 }
351
clocksource_verify_one_cpu(void * csin)352 static void clocksource_verify_one_cpu(void *csin)
353 {
354 struct clocksource *cs = (struct clocksource *)csin;
355
356 csnow_mid = cs->read(cs);
357 }
358
clocksource_verify_percpu(struct clocksource * cs)359 void clocksource_verify_percpu(struct clocksource *cs)
360 {
361 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
362 u64 csnow_begin, csnow_end;
363 int cpu, testcpu;
364 s64 delta;
365
366 if (verify_n_cpus == 0)
367 return;
368 cpumask_clear(&cpus_ahead);
369 cpumask_clear(&cpus_behind);
370 cpus_read_lock();
371 migrate_disable();
372 clocksource_verify_choose_cpus();
373 if (cpumask_empty(&cpus_chosen)) {
374 migrate_enable();
375 cpus_read_unlock();
376 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
377 return;
378 }
379 testcpu = smp_processor_id();
380 pr_info("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n",
381 cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
382 preempt_disable();
383 for_each_cpu(cpu, &cpus_chosen) {
384 if (cpu == testcpu)
385 continue;
386 csnow_begin = cs->read(cs);
387 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
388 csnow_end = cs->read(cs);
389 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
390 if (delta < 0)
391 cpumask_set_cpu(cpu, &cpus_behind);
392 delta = (csnow_end - csnow_mid) & cs->mask;
393 if (delta < 0)
394 cpumask_set_cpu(cpu, &cpus_ahead);
395 cs_nsec = cycles_to_nsec_safe(cs, csnow_begin, csnow_end);
396 if (cs_nsec > cs_nsec_max)
397 cs_nsec_max = cs_nsec;
398 if (cs_nsec < cs_nsec_min)
399 cs_nsec_min = cs_nsec;
400 }
401 preempt_enable();
402 migrate_enable();
403 cpus_read_unlock();
404 if (!cpumask_empty(&cpus_ahead))
405 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
406 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
407 if (!cpumask_empty(&cpus_behind))
408 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
409 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
410 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
411 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
412 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
413 }
414 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
415
clocksource_reset_watchdog(void)416 static inline void clocksource_reset_watchdog(void)
417 {
418 struct clocksource *cs;
419
420 list_for_each_entry(cs, &watchdog_list, wd_list)
421 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
422 }
423
424
clocksource_watchdog(struct timer_list * unused)425 static void clocksource_watchdog(struct timer_list *unused)
426 {
427 int64_t wd_nsec, cs_nsec, interval;
428 u64 csnow, wdnow, cslast, wdlast;
429 int next_cpu, reset_pending;
430 struct clocksource *cs;
431 enum wd_read_status read_ret;
432 unsigned long extra_wait = 0;
433 u32 md;
434
435 spin_lock(&watchdog_lock);
436 if (!watchdog_running)
437 goto out;
438
439 reset_pending = atomic_read(&watchdog_reset_pending);
440
441 list_for_each_entry(cs, &watchdog_list, wd_list) {
442
443 /* Clocksource already marked unstable? */
444 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
445 if (finished_booting)
446 schedule_work(&watchdog_work);
447 continue;
448 }
449
450 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
451
452 if (read_ret == WD_READ_UNSTABLE) {
453 /* Clock readout unreliable, so give it up. */
454 __clocksource_unstable(cs);
455 continue;
456 }
457
458 /*
459 * When WD_READ_SKIP is returned, it means the system is likely
460 * under very heavy load, where the latency of reading
461 * watchdog/clocksource is very big, and affect the accuracy of
462 * watchdog check. So give system some space and suspend the
463 * watchdog check for 5 minutes.
464 */
465 if (read_ret == WD_READ_SKIP) {
466 /*
467 * As the watchdog timer will be suspended, and
468 * cs->last could keep unchanged for 5 minutes, reset
469 * the counters.
470 */
471 clocksource_reset_watchdog();
472 extra_wait = HZ * 300;
473 break;
474 }
475
476 /* Clocksource initialized ? */
477 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
478 atomic_read(&watchdog_reset_pending)) {
479 cs->flags |= CLOCK_SOURCE_WATCHDOG;
480 cs->wd_last = wdnow;
481 cs->cs_last = csnow;
482 continue;
483 }
484
485 wd_nsec = cycles_to_nsec_safe(watchdog, cs->wd_last, wdnow);
486 cs_nsec = cycles_to_nsec_safe(cs, cs->cs_last, csnow);
487 wdlast = cs->wd_last; /* save these in case we print them */
488 cslast = cs->cs_last;
489 cs->cs_last = csnow;
490 cs->wd_last = wdnow;
491
492 if (atomic_read(&watchdog_reset_pending))
493 continue;
494
495 /*
496 * The processing of timer softirqs can get delayed (usually
497 * on account of ksoftirqd not getting to run in a timely
498 * manner), which causes the watchdog interval to stretch.
499 * Skew detection may fail for longer watchdog intervals
500 * on account of fixed margins being used.
501 * Some clocksources, e.g. acpi_pm, cannot tolerate
502 * watchdog intervals longer than a few seconds.
503 */
504 interval = max(cs_nsec, wd_nsec);
505 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
506 if (system_state > SYSTEM_SCHEDULING &&
507 interval > 2 * watchdog_max_interval) {
508 watchdog_max_interval = interval;
509 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
510 cs_nsec, wd_nsec);
511 }
512 watchdog_timer.expires = jiffies;
513 continue;
514 }
515
516 /* Check the deviation from the watchdog clocksource. */
517 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
518 if (abs(cs_nsec - wd_nsec) > md) {
519 s64 cs_wd_msec;
520 s64 wd_msec;
521 u32 wd_rem;
522
523 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
524 smp_processor_id(), cs->name);
525 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
526 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
527 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
528 cs->name, cs_nsec, csnow, cslast, cs->mask);
529 cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
530 wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
531 pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
532 cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
533 if (curr_clocksource == cs)
534 pr_warn(" '%s' is current clocksource.\n", cs->name);
535 else if (curr_clocksource)
536 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
537 else
538 pr_warn(" No current clocksource.\n");
539 __clocksource_unstable(cs);
540 continue;
541 }
542
543 if (cs == curr_clocksource && cs->tick_stable)
544 cs->tick_stable(cs);
545
546 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
547 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
548 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
549 /* Mark it valid for high-res. */
550 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
551
552 /*
553 * clocksource_done_booting() will sort it if
554 * finished_booting is not set yet.
555 */
556 if (!finished_booting)
557 continue;
558
559 /*
560 * If this is not the current clocksource let
561 * the watchdog thread reselect it. Due to the
562 * change to high res this clocksource might
563 * be preferred now. If it is the current
564 * clocksource let the tick code know about
565 * that change.
566 */
567 if (cs != curr_clocksource) {
568 cs->flags |= CLOCK_SOURCE_RESELECT;
569 schedule_work(&watchdog_work);
570 } else {
571 tick_clock_notify();
572 }
573 }
574 }
575
576 /*
577 * We only clear the watchdog_reset_pending, when we did a
578 * full cycle through all clocksources.
579 */
580 if (reset_pending)
581 atomic_dec(&watchdog_reset_pending);
582
583 /*
584 * Cycle through CPUs to check if the CPUs stay synchronized
585 * to each other.
586 */
587 next_cpu = cpumask_next_wrap(raw_smp_processor_id(), cpu_online_mask);
588
589 /*
590 * Arm timer if not already pending: could race with concurrent
591 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
592 */
593 if (!timer_pending(&watchdog_timer)) {
594 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
595 add_timer_on(&watchdog_timer, next_cpu);
596 }
597 out:
598 spin_unlock(&watchdog_lock);
599 }
600
clocksource_start_watchdog(void)601 static inline void clocksource_start_watchdog(void)
602 {
603 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
604 return;
605 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
606 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
607 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
608 watchdog_running = 1;
609 }
610
clocksource_stop_watchdog(void)611 static inline void clocksource_stop_watchdog(void)
612 {
613 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
614 return;
615 timer_delete(&watchdog_timer);
616 watchdog_running = 0;
617 }
618
clocksource_resume_watchdog(void)619 static void clocksource_resume_watchdog(void)
620 {
621 atomic_inc(&watchdog_reset_pending);
622 }
623
clocksource_enqueue_watchdog(struct clocksource * cs)624 static void clocksource_enqueue_watchdog(struct clocksource *cs)
625 {
626 INIT_LIST_HEAD(&cs->wd_list);
627
628 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
629 /* cs is a clocksource to be watched. */
630 list_add(&cs->wd_list, &watchdog_list);
631 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
632 } else {
633 /* cs is a watchdog. */
634 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
635 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
636 }
637 }
638
clocksource_select_watchdog(bool fallback)639 static void clocksource_select_watchdog(bool fallback)
640 {
641 struct clocksource *cs, *old_wd;
642 unsigned long flags;
643
644 spin_lock_irqsave(&watchdog_lock, flags);
645 /* save current watchdog */
646 old_wd = watchdog;
647 if (fallback)
648 watchdog = NULL;
649
650 list_for_each_entry(cs, &clocksource_list, list) {
651 /* cs is a clocksource to be watched. */
652 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
653 continue;
654
655 /* Skip current if we were requested for a fallback. */
656 if (fallback && cs == old_wd)
657 continue;
658
659 /* Pick the best watchdog. */
660 if (!watchdog || cs->rating > watchdog->rating)
661 watchdog = cs;
662 }
663 /* If we failed to find a fallback restore the old one. */
664 if (!watchdog)
665 watchdog = old_wd;
666
667 /* If we changed the watchdog we need to reset cycles. */
668 if (watchdog != old_wd)
669 clocksource_reset_watchdog();
670
671 /* Check if the watchdog timer needs to be started. */
672 clocksource_start_watchdog();
673 spin_unlock_irqrestore(&watchdog_lock, flags);
674 }
675
clocksource_dequeue_watchdog(struct clocksource * cs)676 static void clocksource_dequeue_watchdog(struct clocksource *cs)
677 {
678 if (cs != watchdog) {
679 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
680 /* cs is a watched clocksource. */
681 list_del_init(&cs->wd_list);
682 /* Check if the watchdog timer needs to be stopped. */
683 clocksource_stop_watchdog();
684 }
685 }
686 }
687
__clocksource_watchdog_kthread(void)688 static int __clocksource_watchdog_kthread(void)
689 {
690 struct clocksource *cs, *tmp;
691 unsigned long flags;
692 int select = 0;
693
694 /* Do any required per-CPU skew verification. */
695 if (curr_clocksource &&
696 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
697 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
698 clocksource_verify_percpu(curr_clocksource);
699
700 spin_lock_irqsave(&watchdog_lock, flags);
701 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
702 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
703 list_del_init(&cs->wd_list);
704 clocksource_change_rating(cs, 0);
705 select = 1;
706 }
707 if (cs->flags & CLOCK_SOURCE_RESELECT) {
708 cs->flags &= ~CLOCK_SOURCE_RESELECT;
709 select = 1;
710 }
711 }
712 /* Check if the watchdog timer needs to be stopped. */
713 clocksource_stop_watchdog();
714 spin_unlock_irqrestore(&watchdog_lock, flags);
715
716 return select;
717 }
718
clocksource_watchdog_kthread(void * data)719 static int clocksource_watchdog_kthread(void *data)
720 {
721 mutex_lock(&clocksource_mutex);
722 if (__clocksource_watchdog_kthread())
723 clocksource_select();
724 mutex_unlock(&clocksource_mutex);
725 return 0;
726 }
727
clocksource_is_watchdog(struct clocksource * cs)728 static bool clocksource_is_watchdog(struct clocksource *cs)
729 {
730 return cs == watchdog;
731 }
732
733 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
734
clocksource_enqueue_watchdog(struct clocksource * cs)735 static void clocksource_enqueue_watchdog(struct clocksource *cs)
736 {
737 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
738 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
739 }
740
clocksource_select_watchdog(bool fallback)741 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)742 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)743 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)744 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)745 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)746 void clocksource_mark_unstable(struct clocksource *cs) { }
747
clocksource_watchdog_lock(unsigned long * flags)748 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)749 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
750
751 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
752
clocksource_is_suspend(struct clocksource * cs)753 static bool clocksource_is_suspend(struct clocksource *cs)
754 {
755 return cs == suspend_clocksource;
756 }
757
__clocksource_suspend_select(struct clocksource * cs)758 static void __clocksource_suspend_select(struct clocksource *cs)
759 {
760 /*
761 * Skip the clocksource which will be stopped in suspend state.
762 */
763 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
764 return;
765
766 /*
767 * The nonstop clocksource can be selected as the suspend clocksource to
768 * calculate the suspend time, so it should not supply suspend/resume
769 * interfaces to suspend the nonstop clocksource when system suspends.
770 */
771 if (cs->suspend || cs->resume) {
772 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
773 cs->name);
774 }
775
776 /* Pick the best rating. */
777 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
778 suspend_clocksource = cs;
779 }
780
781 /**
782 * clocksource_suspend_select - Select the best clocksource for suspend timing
783 * @fallback: if select a fallback clocksource
784 */
clocksource_suspend_select(bool fallback)785 static void clocksource_suspend_select(bool fallback)
786 {
787 struct clocksource *cs, *old_suspend;
788
789 old_suspend = suspend_clocksource;
790 if (fallback)
791 suspend_clocksource = NULL;
792
793 list_for_each_entry(cs, &clocksource_list, list) {
794 /* Skip current if we were requested for a fallback. */
795 if (fallback && cs == old_suspend)
796 continue;
797
798 __clocksource_suspend_select(cs);
799 }
800 }
801
802 /**
803 * clocksource_start_suspend_timing - Start measuring the suspend timing
804 * @cs: current clocksource from timekeeping
805 * @start_cycles: current cycles from timekeeping
806 *
807 * This function will save the start cycle values of suspend timer to calculate
808 * the suspend time when resuming system.
809 *
810 * This function is called late in the suspend process from timekeeping_suspend(),
811 * that means processes are frozen, non-boot cpus and interrupts are disabled
812 * now. It is therefore possible to start the suspend timer without taking the
813 * clocksource mutex.
814 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)815 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
816 {
817 if (!suspend_clocksource)
818 return;
819
820 /*
821 * If current clocksource is the suspend timer, we should use the
822 * tkr_mono.cycle_last value as suspend_start to avoid same reading
823 * from suspend timer.
824 */
825 if (clocksource_is_suspend(cs)) {
826 suspend_start = start_cycles;
827 return;
828 }
829
830 if (suspend_clocksource->enable &&
831 suspend_clocksource->enable(suspend_clocksource)) {
832 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
833 return;
834 }
835
836 suspend_start = suspend_clocksource->read(suspend_clocksource);
837 }
838
839 /**
840 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
841 * @cs: current clocksource from timekeeping
842 * @cycle_now: current cycles from timekeeping
843 *
844 * This function will calculate the suspend time from suspend timer.
845 *
846 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
847 *
848 * This function is called early in the resume process from timekeeping_resume(),
849 * that means there is only one cpu, no processes are running and the interrupts
850 * are disabled. It is therefore possible to stop the suspend timer without
851 * taking the clocksource mutex.
852 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)853 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
854 {
855 u64 now, nsec = 0;
856
857 if (!suspend_clocksource)
858 return 0;
859
860 /*
861 * If current clocksource is the suspend timer, we should use the
862 * tkr_mono.cycle_last value from timekeeping as current cycle to
863 * avoid same reading from suspend timer.
864 */
865 if (clocksource_is_suspend(cs))
866 now = cycle_now;
867 else
868 now = suspend_clocksource->read(suspend_clocksource);
869
870 if (now > suspend_start)
871 nsec = cycles_to_nsec_safe(suspend_clocksource, suspend_start, now);
872
873 /*
874 * Disable the suspend timer to save power if current clocksource is
875 * not the suspend timer.
876 */
877 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
878 suspend_clocksource->disable(suspend_clocksource);
879
880 return nsec;
881 }
882
883 /**
884 * clocksource_suspend - suspend the clocksource(s)
885 */
clocksource_suspend(void)886 void clocksource_suspend(void)
887 {
888 struct clocksource *cs;
889
890 list_for_each_entry_reverse(cs, &clocksource_list, list)
891 if (cs->suspend)
892 cs->suspend(cs);
893 }
894
895 /**
896 * clocksource_resume - resume the clocksource(s)
897 */
clocksource_resume(void)898 void clocksource_resume(void)
899 {
900 struct clocksource *cs;
901
902 list_for_each_entry(cs, &clocksource_list, list)
903 if (cs->resume)
904 cs->resume(cs);
905
906 clocksource_resume_watchdog();
907 }
908
909 /**
910 * clocksource_touch_watchdog - Update watchdog
911 *
912 * Update the watchdog after exception contexts such as kgdb so as not
913 * to incorrectly trip the watchdog. This might fail when the kernel
914 * was stopped in code which holds watchdog_lock.
915 */
clocksource_touch_watchdog(void)916 void clocksource_touch_watchdog(void)
917 {
918 clocksource_resume_watchdog();
919 }
920
921 /**
922 * clocksource_max_adjustment- Returns max adjustment amount
923 * @cs: Pointer to clocksource
924 *
925 */
clocksource_max_adjustment(struct clocksource * cs)926 static u32 clocksource_max_adjustment(struct clocksource *cs)
927 {
928 u64 ret;
929 /*
930 * We won't try to correct for more than 11% adjustments (110,000 ppm),
931 */
932 ret = (u64)cs->mult * 11;
933 do_div(ret,100);
934 return (u32)ret;
935 }
936
937 /**
938 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
939 * @mult: cycle to nanosecond multiplier
940 * @shift: cycle to nanosecond divisor (power of two)
941 * @maxadj: maximum adjustment value to mult (~11%)
942 * @mask: bitmask for two's complement subtraction of non 64 bit counters
943 * @max_cyc: maximum cycle value before potential overflow (does not include
944 * any safety margin)
945 *
946 * NOTE: This function includes a safety margin of 50%, in other words, we
947 * return half the number of nanoseconds the hardware counter can technically
948 * cover. This is done so that we can potentially detect problems caused by
949 * delayed timers or bad hardware, which might result in time intervals that
950 * are larger than what the math used can handle without overflows.
951 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)952 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
953 {
954 u64 max_nsecs, max_cycles;
955
956 /*
957 * Calculate the maximum number of cycles that we can pass to the
958 * cyc2ns() function without overflowing a 64-bit result.
959 */
960 max_cycles = ULLONG_MAX;
961 do_div(max_cycles, mult+maxadj);
962
963 /*
964 * The actual maximum number of cycles we can defer the clocksource is
965 * determined by the minimum of max_cycles and mask.
966 * Note: Here we subtract the maxadj to make sure we don't sleep for
967 * too long if there's a large negative adjustment.
968 */
969 max_cycles = min(max_cycles, mask);
970 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
971
972 /* return the max_cycles value as well if requested */
973 if (max_cyc)
974 *max_cyc = max_cycles;
975
976 /* Return 50% of the actual maximum, so we can detect bad values */
977 max_nsecs >>= 1;
978
979 return max_nsecs;
980 }
981
982 /**
983 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
984 * @cs: Pointer to clocksource to be updated
985 *
986 */
clocksource_update_max_deferment(struct clocksource * cs)987 static inline void clocksource_update_max_deferment(struct clocksource *cs)
988 {
989 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
990 cs->maxadj, cs->mask,
991 &cs->max_cycles);
992
993 /*
994 * Threshold for detecting negative motion in clocksource_delta().
995 *
996 * Allow for 0.875 of the counter width so that overly long idle
997 * sleeps, which go slightly over mask/2, do not trigger the
998 * negative motion detection.
999 */
1000 cs->max_raw_delta = (cs->mask >> 1) + (cs->mask >> 2) + (cs->mask >> 3);
1001 }
1002
clocksource_find_best(bool oneshot,bool skipcur)1003 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
1004 {
1005 struct clocksource *cs;
1006
1007 if (!finished_booting || list_empty(&clocksource_list))
1008 return NULL;
1009
1010 /*
1011 * We pick the clocksource with the highest rating. If oneshot
1012 * mode is active, we pick the highres valid clocksource with
1013 * the best rating.
1014 */
1015 list_for_each_entry(cs, &clocksource_list, list) {
1016 if (skipcur && cs == curr_clocksource)
1017 continue;
1018 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1019 continue;
1020 return cs;
1021 }
1022 return NULL;
1023 }
1024
__clocksource_select(bool skipcur)1025 static void __clocksource_select(bool skipcur)
1026 {
1027 bool oneshot = tick_oneshot_mode_active();
1028 struct clocksource *best, *cs;
1029
1030 /* Find the best suitable clocksource */
1031 best = clocksource_find_best(oneshot, skipcur);
1032 if (!best)
1033 return;
1034
1035 if (!strlen(override_name))
1036 goto found;
1037
1038 /* Check for the override clocksource. */
1039 list_for_each_entry(cs, &clocksource_list, list) {
1040 if (skipcur && cs == curr_clocksource)
1041 continue;
1042 if (strcmp(cs->name, override_name) != 0)
1043 continue;
1044 /*
1045 * Check to make sure we don't switch to a non-highres
1046 * capable clocksource if the tick code is in oneshot
1047 * mode (highres or nohz)
1048 */
1049 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1050 /* Override clocksource cannot be used. */
1051 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1052 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1053 cs->name);
1054 override_name[0] = 0;
1055 } else {
1056 /*
1057 * The override cannot be currently verified.
1058 * Deferring to let the watchdog check.
1059 */
1060 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1061 cs->name);
1062 }
1063 } else
1064 /* Override clocksource can be used. */
1065 best = cs;
1066 break;
1067 }
1068
1069 found:
1070 if (curr_clocksource != best && !timekeeping_notify(best)) {
1071 pr_info("Switched to clocksource %s\n", best->name);
1072 curr_clocksource = best;
1073 }
1074 }
1075
1076 /**
1077 * clocksource_select - Select the best clocksource available
1078 *
1079 * Private function. Must hold clocksource_mutex when called.
1080 *
1081 * Select the clocksource with the best rating, or the clocksource,
1082 * which is selected by userspace override.
1083 */
clocksource_select(void)1084 static void clocksource_select(void)
1085 {
1086 __clocksource_select(false);
1087 }
1088
clocksource_select_fallback(void)1089 static void clocksource_select_fallback(void)
1090 {
1091 __clocksource_select(true);
1092 }
1093
1094 /*
1095 * clocksource_done_booting - Called near the end of core bootup
1096 *
1097 * Hack to avoid lots of clocksource churn at boot time.
1098 * We use fs_initcall because we want this to start before
1099 * device_initcall but after subsys_initcall.
1100 */
clocksource_done_booting(void)1101 static int __init clocksource_done_booting(void)
1102 {
1103 mutex_lock(&clocksource_mutex);
1104 curr_clocksource = clocksource_default_clock();
1105 finished_booting = 1;
1106 /*
1107 * Run the watchdog first to eliminate unstable clock sources
1108 */
1109 __clocksource_watchdog_kthread();
1110 clocksource_select();
1111 mutex_unlock(&clocksource_mutex);
1112 return 0;
1113 }
1114 fs_initcall(clocksource_done_booting);
1115
1116 /*
1117 * Enqueue the clocksource sorted by rating
1118 */
clocksource_enqueue(struct clocksource * cs)1119 static void clocksource_enqueue(struct clocksource *cs)
1120 {
1121 struct list_head *entry = &clocksource_list;
1122 struct clocksource *tmp;
1123
1124 list_for_each_entry(tmp, &clocksource_list, list) {
1125 /* Keep track of the place, where to insert */
1126 if (tmp->rating < cs->rating)
1127 break;
1128 entry = &tmp->list;
1129 }
1130 list_add(&cs->list, entry);
1131 }
1132
1133 /**
1134 * __clocksource_update_freq_scale - Used update clocksource with new freq
1135 * @cs: clocksource to be registered
1136 * @scale: Scale factor multiplied against freq to get clocksource hz
1137 * @freq: clocksource frequency (cycles per second) divided by scale
1138 *
1139 * This should only be called from the clocksource->enable() method.
1140 *
1141 * This *SHOULD NOT* be called directly! Please use the
1142 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1143 * functions.
1144 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1145 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1146 {
1147 u64 sec;
1148
1149 /*
1150 * Default clocksources are *special* and self-define their mult/shift.
1151 * But, you're not special, so you should specify a freq value.
1152 */
1153 if (freq) {
1154 /*
1155 * Calc the maximum number of seconds which we can run before
1156 * wrapping around. For clocksources which have a mask > 32-bit
1157 * we need to limit the max sleep time to have a good
1158 * conversion precision. 10 minutes is still a reasonable
1159 * amount. That results in a shift value of 24 for a
1160 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1161 * ~ 0.06ppm granularity for NTP.
1162 */
1163 sec = cs->mask;
1164 do_div(sec, freq);
1165 do_div(sec, scale);
1166 if (!sec)
1167 sec = 1;
1168 else if (sec > 600 && cs->mask > UINT_MAX)
1169 sec = 600;
1170
1171 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1172 NSEC_PER_SEC / scale, sec * scale);
1173 }
1174
1175 /*
1176 * If the uncertainty margin is not specified, calculate it. If
1177 * both scale and freq are non-zero, calculate the clock period, but
1178 * bound below at 2*WATCHDOG_MAX_SKEW, that is, 500ppm by default.
1179 * However, if either of scale or freq is zero, be very conservative
1180 * and take the tens-of-milliseconds WATCHDOG_THRESHOLD value
1181 * for the uncertainty margin. Allow stupidly small uncertainty
1182 * margins to be specified by the caller for testing purposes,
1183 * but warn to discourage production use of this capability.
1184 *
1185 * Bottom line: The sum of the uncertainty margins of the
1186 * watchdog clocksource and the clocksource under test will be at
1187 * least 500ppm by default. For more information, please see the
1188 * comment preceding CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US above.
1189 */
1190 if (scale && freq && !cs->uncertainty_margin) {
1191 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1192 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1193 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1194 } else if (!cs->uncertainty_margin) {
1195 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1196 }
1197 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1198
1199 /*
1200 * Ensure clocksources that have large 'mult' values don't overflow
1201 * when adjusted.
1202 */
1203 cs->maxadj = clocksource_max_adjustment(cs);
1204 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1205 || (cs->mult - cs->maxadj > cs->mult))) {
1206 cs->mult >>= 1;
1207 cs->shift--;
1208 cs->maxadj = clocksource_max_adjustment(cs);
1209 }
1210
1211 /*
1212 * Only warn for *special* clocksources that self-define
1213 * their mult/shift values and don't specify a freq.
1214 */
1215 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1216 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1217 cs->name);
1218
1219 clocksource_update_max_deferment(cs);
1220
1221 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1222 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1223 }
1224 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1225
1226 /**
1227 * __clocksource_register_scale - Used to install new clocksources
1228 * @cs: clocksource to be registered
1229 * @scale: Scale factor multiplied against freq to get clocksource hz
1230 * @freq: clocksource frequency (cycles per second) divided by scale
1231 *
1232 * Returns -EBUSY if registration fails, zero otherwise.
1233 *
1234 * This *SHOULD NOT* be called directly! Please use the
1235 * clocksource_register_hz() or clocksource_register_khz helper functions.
1236 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1237 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1238 {
1239 unsigned long flags;
1240
1241 clocksource_arch_init(cs);
1242
1243 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1244 cs->id = CSID_GENERIC;
1245 if (cs->vdso_clock_mode < 0 ||
1246 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1247 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1248 cs->name, cs->vdso_clock_mode);
1249 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1250 }
1251
1252 /* Initialize mult/shift and max_idle_ns */
1253 __clocksource_update_freq_scale(cs, scale, freq);
1254
1255 /* Add clocksource to the clocksource list */
1256 mutex_lock(&clocksource_mutex);
1257
1258 clocksource_watchdog_lock(&flags);
1259 clocksource_enqueue(cs);
1260 clocksource_enqueue_watchdog(cs);
1261 clocksource_watchdog_unlock(&flags);
1262
1263 clocksource_select();
1264 clocksource_select_watchdog(false);
1265 __clocksource_suspend_select(cs);
1266 mutex_unlock(&clocksource_mutex);
1267 return 0;
1268 }
1269 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1270
1271 /*
1272 * Unbind clocksource @cs. Called with clocksource_mutex held
1273 */
clocksource_unbind(struct clocksource * cs)1274 static int clocksource_unbind(struct clocksource *cs)
1275 {
1276 unsigned long flags;
1277
1278 if (clocksource_is_watchdog(cs)) {
1279 /* Select and try to install a replacement watchdog. */
1280 clocksource_select_watchdog(true);
1281 if (clocksource_is_watchdog(cs))
1282 return -EBUSY;
1283 }
1284
1285 if (cs == curr_clocksource) {
1286 /* Select and try to install a replacement clock source */
1287 clocksource_select_fallback();
1288 if (curr_clocksource == cs)
1289 return -EBUSY;
1290 }
1291
1292 if (clocksource_is_suspend(cs)) {
1293 /*
1294 * Select and try to install a replacement suspend clocksource.
1295 * If no replacement suspend clocksource, we will just let the
1296 * clocksource go and have no suspend clocksource.
1297 */
1298 clocksource_suspend_select(true);
1299 }
1300
1301 clocksource_watchdog_lock(&flags);
1302 clocksource_dequeue_watchdog(cs);
1303 list_del_init(&cs->list);
1304 clocksource_watchdog_unlock(&flags);
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * clocksource_unregister - remove a registered clocksource
1311 * @cs: clocksource to be unregistered
1312 */
clocksource_unregister(struct clocksource * cs)1313 int clocksource_unregister(struct clocksource *cs)
1314 {
1315 int ret = 0;
1316
1317 mutex_lock(&clocksource_mutex);
1318 if (!list_empty(&cs->list))
1319 ret = clocksource_unbind(cs);
1320 mutex_unlock(&clocksource_mutex);
1321 return ret;
1322 }
1323 EXPORT_SYMBOL(clocksource_unregister);
1324
1325 #ifdef CONFIG_SYSFS
1326 /**
1327 * current_clocksource_show - sysfs interface for current clocksource
1328 * @dev: unused
1329 * @attr: unused
1330 * @buf: char buffer to be filled with clocksource list
1331 *
1332 * Provides sysfs interface for listing current clocksource.
1333 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1334 static ssize_t current_clocksource_show(struct device *dev,
1335 struct device_attribute *attr,
1336 char *buf)
1337 {
1338 ssize_t count = 0;
1339
1340 mutex_lock(&clocksource_mutex);
1341 count = sysfs_emit(buf, "%s\n", curr_clocksource->name);
1342 mutex_unlock(&clocksource_mutex);
1343
1344 return count;
1345 }
1346
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1347 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1348 {
1349 size_t ret = cnt;
1350
1351 /* strings from sysfs write are not 0 terminated! */
1352 if (!cnt || cnt >= CS_NAME_LEN)
1353 return -EINVAL;
1354
1355 /* strip of \n: */
1356 if (buf[cnt-1] == '\n')
1357 cnt--;
1358 if (cnt > 0)
1359 memcpy(dst, buf, cnt);
1360 dst[cnt] = 0;
1361 return ret;
1362 }
1363
1364 /**
1365 * current_clocksource_store - interface for manually overriding clocksource
1366 * @dev: unused
1367 * @attr: unused
1368 * @buf: name of override clocksource
1369 * @count: length of buffer
1370 *
1371 * Takes input from sysfs interface for manually overriding the default
1372 * clocksource selection.
1373 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1374 static ssize_t current_clocksource_store(struct device *dev,
1375 struct device_attribute *attr,
1376 const char *buf, size_t count)
1377 {
1378 ssize_t ret;
1379
1380 mutex_lock(&clocksource_mutex);
1381
1382 ret = sysfs_get_uname(buf, override_name, count);
1383 if (ret >= 0)
1384 clocksource_select();
1385
1386 mutex_unlock(&clocksource_mutex);
1387
1388 return ret;
1389 }
1390 static DEVICE_ATTR_RW(current_clocksource);
1391
1392 /**
1393 * unbind_clocksource_store - interface for manually unbinding clocksource
1394 * @dev: unused
1395 * @attr: unused
1396 * @buf: unused
1397 * @count: length of buffer
1398 *
1399 * Takes input from sysfs interface for manually unbinding a clocksource.
1400 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1401 static ssize_t unbind_clocksource_store(struct device *dev,
1402 struct device_attribute *attr,
1403 const char *buf, size_t count)
1404 {
1405 struct clocksource *cs;
1406 char name[CS_NAME_LEN];
1407 ssize_t ret;
1408
1409 ret = sysfs_get_uname(buf, name, count);
1410 if (ret < 0)
1411 return ret;
1412
1413 ret = -ENODEV;
1414 mutex_lock(&clocksource_mutex);
1415 list_for_each_entry(cs, &clocksource_list, list) {
1416 if (strcmp(cs->name, name))
1417 continue;
1418 ret = clocksource_unbind(cs);
1419 break;
1420 }
1421 mutex_unlock(&clocksource_mutex);
1422
1423 return ret ? ret : count;
1424 }
1425 static DEVICE_ATTR_WO(unbind_clocksource);
1426
1427 /**
1428 * available_clocksource_show - sysfs interface for listing clocksource
1429 * @dev: unused
1430 * @attr: unused
1431 * @buf: char buffer to be filled with clocksource list
1432 *
1433 * Provides sysfs interface for listing registered clocksources
1434 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1435 static ssize_t available_clocksource_show(struct device *dev,
1436 struct device_attribute *attr,
1437 char *buf)
1438 {
1439 struct clocksource *src;
1440 ssize_t count = 0;
1441
1442 mutex_lock(&clocksource_mutex);
1443 list_for_each_entry(src, &clocksource_list, list) {
1444 /*
1445 * Don't show non-HRES clocksource if the tick code is
1446 * in one shot mode (highres=on or nohz=on)
1447 */
1448 if (!tick_oneshot_mode_active() ||
1449 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1450 count += snprintf(buf + count,
1451 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1452 "%s ", src->name);
1453 }
1454 mutex_unlock(&clocksource_mutex);
1455
1456 count += snprintf(buf + count,
1457 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1458
1459 return count;
1460 }
1461 static DEVICE_ATTR_RO(available_clocksource);
1462
1463 static struct attribute *clocksource_attrs[] = {
1464 &dev_attr_current_clocksource.attr,
1465 &dev_attr_unbind_clocksource.attr,
1466 &dev_attr_available_clocksource.attr,
1467 NULL
1468 };
1469 ATTRIBUTE_GROUPS(clocksource);
1470
1471 static const struct bus_type clocksource_subsys = {
1472 .name = "clocksource",
1473 .dev_name = "clocksource",
1474 };
1475
1476 static struct device device_clocksource = {
1477 .id = 0,
1478 .bus = &clocksource_subsys,
1479 .groups = clocksource_groups,
1480 };
1481
init_clocksource_sysfs(void)1482 static int __init init_clocksource_sysfs(void)
1483 {
1484 int error = subsys_system_register(&clocksource_subsys, NULL);
1485
1486 if (!error)
1487 error = device_register(&device_clocksource);
1488
1489 return error;
1490 }
1491
1492 device_initcall(init_clocksource_sysfs);
1493 #endif /* CONFIG_SYSFS */
1494
1495 /**
1496 * boot_override_clocksource - boot clock override
1497 * @str: override name
1498 *
1499 * Takes a clocksource= boot argument and uses it
1500 * as the clocksource override name.
1501 */
boot_override_clocksource(char * str)1502 static int __init boot_override_clocksource(char* str)
1503 {
1504 mutex_lock(&clocksource_mutex);
1505 if (str)
1506 strscpy(override_name, str);
1507 mutex_unlock(&clocksource_mutex);
1508 return 1;
1509 }
1510
1511 __setup("clocksource=", boot_override_clocksource);
1512
1513 /**
1514 * boot_override_clock - Compatibility layer for deprecated boot option
1515 * @str: override name
1516 *
1517 * DEPRECATED! Takes a clock= boot argument and uses it
1518 * as the clocksource override name
1519 */
boot_override_clock(char * str)1520 static int __init boot_override_clock(char* str)
1521 {
1522 if (!strcmp(str, "pmtmr")) {
1523 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1524 return boot_override_clocksource("acpi_pm");
1525 }
1526 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1527 return boot_override_clocksource(str);
1528 }
1529
1530 __setup("clock=", boot_override_clock);
1531