1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51
52 #include <asm/switch_to.h>
53
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57
58 /*
59 * The initial- and re-scaling of tunables is configurable
60 *
61 * Options are:
62 *
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66 *
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68 */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70
71 /*
72 * Minimal preemption granularity for CPU-bound tasks:
73 *
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75 */
76 unsigned int sysctl_sched_base_slice = 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
78
79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
80
81 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)82 static int __init setup_sched_thermal_decay_shift(char *str)
83 {
84 int _shift = 0;
85
86 if (kstrtoint(str, 0, &_shift))
87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
88
89 sched_thermal_decay_shift = clamp(_shift, 0, 10);
90 return 1;
91 }
92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
93
94 #ifdef CONFIG_SMP
95 /*
96 * For asym packing, by default the lower numbered CPU has higher priority.
97 */
arch_asym_cpu_priority(int cpu)98 int __weak arch_asym_cpu_priority(int cpu)
99 {
100 return -cpu;
101 }
102
103 /*
104 * The margin used when comparing utilization with CPU capacity.
105 *
106 * (default: ~20%)
107 */
108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
109
110 /*
111 * The margin used when comparing CPU capacities.
112 * is 'cap1' noticeably greater than 'cap2'
113 *
114 * (default: ~5%)
115 */
116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
117 #endif
118
119 #ifdef CONFIG_CFS_BANDWIDTH
120 /*
121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
122 * each time a cfs_rq requests quota.
123 *
124 * Note: in the case that the slice exceeds the runtime remaining (either due
125 * to consumption or the quota being specified to be smaller than the slice)
126 * we will always only issue the remaining available time.
127 *
128 * (default: 5 msec, units: microseconds)
129 */
130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
131 #endif
132
133 #ifdef CONFIG_NUMA_BALANCING
134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
136 #endif
137
138 #ifdef CONFIG_SYSCTL
139 static struct ctl_table sched_fair_sysctls[] = {
140 #ifdef CONFIG_CFS_BANDWIDTH
141 {
142 .procname = "sched_cfs_bandwidth_slice_us",
143 .data = &sysctl_sched_cfs_bandwidth_slice,
144 .maxlen = sizeof(unsigned int),
145 .mode = 0644,
146 .proc_handler = proc_dointvec_minmax,
147 .extra1 = SYSCTL_ONE,
148 },
149 #endif
150 #ifdef CONFIG_NUMA_BALANCING
151 {
152 .procname = "numa_balancing_promote_rate_limit_MBps",
153 .data = &sysctl_numa_balancing_promote_rate_limit,
154 .maxlen = sizeof(unsigned int),
155 .mode = 0644,
156 .proc_handler = proc_dointvec_minmax,
157 .extra1 = SYSCTL_ZERO,
158 },
159 #endif /* CONFIG_NUMA_BALANCING */
160 {}
161 };
162
sched_fair_sysctl_init(void)163 static int __init sched_fair_sysctl_init(void)
164 {
165 register_sysctl_init("kernel", sched_fair_sysctls);
166 return 0;
167 }
168 late_initcall(sched_fair_sysctl_init);
169 #endif
170
update_load_add(struct load_weight * lw,unsigned long inc)171 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
172 {
173 lw->weight += inc;
174 lw->inv_weight = 0;
175 }
176
update_load_sub(struct load_weight * lw,unsigned long dec)177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
178 {
179 lw->weight -= dec;
180 lw->inv_weight = 0;
181 }
182
update_load_set(struct load_weight * lw,unsigned long w)183 static inline void update_load_set(struct load_weight *lw, unsigned long w)
184 {
185 lw->weight = w;
186 lw->inv_weight = 0;
187 }
188
189 /*
190 * Increase the granularity value when there are more CPUs,
191 * because with more CPUs the 'effective latency' as visible
192 * to users decreases. But the relationship is not linear,
193 * so pick a second-best guess by going with the log2 of the
194 * number of CPUs.
195 *
196 * This idea comes from the SD scheduler of Con Kolivas:
197 */
get_update_sysctl_factor(void)198 static unsigned int get_update_sysctl_factor(void)
199 {
200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
201 unsigned int factor;
202
203 switch (sysctl_sched_tunable_scaling) {
204 case SCHED_TUNABLESCALING_NONE:
205 factor = 1;
206 break;
207 case SCHED_TUNABLESCALING_LINEAR:
208 factor = cpus;
209 break;
210 case SCHED_TUNABLESCALING_LOG:
211 default:
212 factor = 1 + ilog2(cpus);
213 break;
214 }
215
216 return factor;
217 }
218
update_sysctl(void)219 static void update_sysctl(void)
220 {
221 unsigned int factor = get_update_sysctl_factor();
222
223 #define SET_SYSCTL(name) \
224 (sysctl_##name = (factor) * normalized_sysctl_##name)
225 SET_SYSCTL(sched_base_slice);
226 #undef SET_SYSCTL
227 }
228
sched_init_granularity(void)229 void __init sched_init_granularity(void)
230 {
231 update_sysctl();
232 }
233
234 #define WMULT_CONST (~0U)
235 #define WMULT_SHIFT 32
236
__update_inv_weight(struct load_weight * lw)237 static void __update_inv_weight(struct load_weight *lw)
238 {
239 unsigned long w;
240
241 if (likely(lw->inv_weight))
242 return;
243
244 w = scale_load_down(lw->weight);
245
246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
247 lw->inv_weight = 1;
248 else if (unlikely(!w))
249 lw->inv_weight = WMULT_CONST;
250 else
251 lw->inv_weight = WMULT_CONST / w;
252 }
253
254 /*
255 * delta_exec * weight / lw.weight
256 * OR
257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
258 *
259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
260 * we're guaranteed shift stays positive because inv_weight is guaranteed to
261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
262 *
263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
264 * weight/lw.weight <= 1, and therefore our shift will also be positive.
265 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
267 {
268 u64 fact = scale_load_down(weight);
269 u32 fact_hi = (u32)(fact >> 32);
270 int shift = WMULT_SHIFT;
271 int fs;
272
273 __update_inv_weight(lw);
274
275 if (unlikely(fact_hi)) {
276 fs = fls(fact_hi);
277 shift -= fs;
278 fact >>= fs;
279 }
280
281 fact = mul_u32_u32(fact, lw->inv_weight);
282
283 fact_hi = (u32)(fact >> 32);
284 if (fact_hi) {
285 fs = fls(fact_hi);
286 shift -= fs;
287 fact >>= fs;
288 }
289
290 return mul_u64_u32_shr(delta_exec, fact, shift);
291 }
292
293 /*
294 * delta /= w
295 */
calc_delta_fair(u64 delta,struct sched_entity * se)296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
297 {
298 if (unlikely(se->load.weight != NICE_0_LOAD))
299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
300
301 return delta;
302 }
303
304 const struct sched_class fair_sched_class;
305
306 /**************************************************************
307 * CFS operations on generic schedulable entities:
308 */
309
310 #ifdef CONFIG_FAIR_GROUP_SCHED
311
312 /* Walk up scheduling entities hierarchy */
313 #define for_each_sched_entity(se) \
314 for (; se; se = se->parent)
315
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
317 {
318 struct rq *rq = rq_of(cfs_rq);
319 int cpu = cpu_of(rq);
320
321 if (cfs_rq->on_list)
322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
323
324 cfs_rq->on_list = 1;
325
326 /*
327 * Ensure we either appear before our parent (if already
328 * enqueued) or force our parent to appear after us when it is
329 * enqueued. The fact that we always enqueue bottom-up
330 * reduces this to two cases and a special case for the root
331 * cfs_rq. Furthermore, it also means that we will always reset
332 * tmp_alone_branch either when the branch is connected
333 * to a tree or when we reach the top of the tree
334 */
335 if (cfs_rq->tg->parent &&
336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
337 /*
338 * If parent is already on the list, we add the child
339 * just before. Thanks to circular linked property of
340 * the list, this means to put the child at the tail
341 * of the list that starts by parent.
342 */
343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
345 /*
346 * The branch is now connected to its tree so we can
347 * reset tmp_alone_branch to the beginning of the
348 * list.
349 */
350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
351 return true;
352 }
353
354 if (!cfs_rq->tg->parent) {
355 /*
356 * cfs rq without parent should be put
357 * at the tail of the list.
358 */
359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
360 &rq->leaf_cfs_rq_list);
361 /*
362 * We have reach the top of a tree so we can reset
363 * tmp_alone_branch to the beginning of the list.
364 */
365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
366 return true;
367 }
368
369 /*
370 * The parent has not already been added so we want to
371 * make sure that it will be put after us.
372 * tmp_alone_branch points to the begin of the branch
373 * where we will add parent.
374 */
375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
376 /*
377 * update tmp_alone_branch to points to the new begin
378 * of the branch
379 */
380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
381 return false;
382 }
383
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
385 {
386 if (cfs_rq->on_list) {
387 struct rq *rq = rq_of(cfs_rq);
388
389 /*
390 * With cfs_rq being unthrottled/throttled during an enqueue,
391 * it can happen the tmp_alone_branch points the a leaf that
392 * we finally want to del. In this case, tmp_alone_branch moves
393 * to the prev element but it will point to rq->leaf_cfs_rq_list
394 * at the end of the enqueue.
395 */
396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
398
399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
400 cfs_rq->on_list = 0;
401 }
402 }
403
assert_list_leaf_cfs_rq(struct rq * rq)404 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
405 {
406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
407 }
408
409 /* Iterate thr' all leaf cfs_rq's on a runqueue */
410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
412 leaf_cfs_rq_list)
413
414 /* Do the two (enqueued) entities belong to the same group ? */
415 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)416 is_same_group(struct sched_entity *se, struct sched_entity *pse)
417 {
418 if (se->cfs_rq == pse->cfs_rq)
419 return se->cfs_rq;
420
421 return NULL;
422 }
423
parent_entity(const struct sched_entity * se)424 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
425 {
426 return se->parent;
427 }
428
429 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)430 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
431 {
432 int se_depth, pse_depth;
433
434 /*
435 * preemption test can be made between sibling entities who are in the
436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
437 * both tasks until we find their ancestors who are siblings of common
438 * parent.
439 */
440
441 /* First walk up until both entities are at same depth */
442 se_depth = (*se)->depth;
443 pse_depth = (*pse)->depth;
444
445 while (se_depth > pse_depth) {
446 se_depth--;
447 *se = parent_entity(*se);
448 }
449
450 while (pse_depth > se_depth) {
451 pse_depth--;
452 *pse = parent_entity(*pse);
453 }
454
455 while (!is_same_group(*se, *pse)) {
456 *se = parent_entity(*se);
457 *pse = parent_entity(*pse);
458 }
459 }
460
tg_is_idle(struct task_group * tg)461 static int tg_is_idle(struct task_group *tg)
462 {
463 return tg->idle > 0;
464 }
465
cfs_rq_is_idle(struct cfs_rq * cfs_rq)466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
467 {
468 return cfs_rq->idle > 0;
469 }
470
se_is_idle(struct sched_entity * se)471 static int se_is_idle(struct sched_entity *se)
472 {
473 if (entity_is_task(se))
474 return task_has_idle_policy(task_of(se));
475 return cfs_rq_is_idle(group_cfs_rq(se));
476 }
477
478 #else /* !CONFIG_FAIR_GROUP_SCHED */
479
480 #define for_each_sched_entity(se) \
481 for (; se; se = NULL)
482
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
484 {
485 return true;
486 }
487
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
489 {
490 }
491
assert_list_leaf_cfs_rq(struct rq * rq)492 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
493 {
494 }
495
496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
498
parent_entity(struct sched_entity * se)499 static inline struct sched_entity *parent_entity(struct sched_entity *se)
500 {
501 return NULL;
502 }
503
504 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)505 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
506 {
507 }
508
tg_is_idle(struct task_group * tg)509 static inline int tg_is_idle(struct task_group *tg)
510 {
511 return 0;
512 }
513
cfs_rq_is_idle(struct cfs_rq * cfs_rq)514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
515 {
516 return 0;
517 }
518
se_is_idle(struct sched_entity * se)519 static int se_is_idle(struct sched_entity *se)
520 {
521 return 0;
522 }
523
524 #endif /* CONFIG_FAIR_GROUP_SCHED */
525
526 static __always_inline
527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
528
529 /**************************************************************
530 * Scheduling class tree data structure manipulation methods:
531 */
532
max_vruntime(u64 max_vruntime,u64 vruntime)533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
534 {
535 s64 delta = (s64)(vruntime - max_vruntime);
536 if (delta > 0)
537 max_vruntime = vruntime;
538
539 return max_vruntime;
540 }
541
min_vruntime(u64 min_vruntime,u64 vruntime)542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
543 {
544 s64 delta = (s64)(vruntime - min_vruntime);
545 if (delta < 0)
546 min_vruntime = vruntime;
547
548 return min_vruntime;
549 }
550
entity_before(const struct sched_entity * a,const struct sched_entity * b)551 static inline bool entity_before(const struct sched_entity *a,
552 const struct sched_entity *b)
553 {
554 /*
555 * Tiebreak on vruntime seems unnecessary since it can
556 * hardly happen.
557 */
558 return (s64)(a->deadline - b->deadline) < 0;
559 }
560
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 return (s64)(se->vruntime - cfs_rq->min_vruntime);
564 }
565
566 #define __node_2_se(node) \
567 rb_entry((node), struct sched_entity, run_node)
568
569 /*
570 * Compute virtual time from the per-task service numbers:
571 *
572 * Fair schedulers conserve lag:
573 *
574 * \Sum lag_i = 0
575 *
576 * Where lag_i is given by:
577 *
578 * lag_i = S - s_i = w_i * (V - v_i)
579 *
580 * Where S is the ideal service time and V is it's virtual time counterpart.
581 * Therefore:
582 *
583 * \Sum lag_i = 0
584 * \Sum w_i * (V - v_i) = 0
585 * \Sum w_i * V - w_i * v_i = 0
586 *
587 * From which we can solve an expression for V in v_i (which we have in
588 * se->vruntime):
589 *
590 * \Sum v_i * w_i \Sum v_i * w_i
591 * V = -------------- = --------------
592 * \Sum w_i W
593 *
594 * Specifically, this is the weighted average of all entity virtual runtimes.
595 *
596 * [[ NOTE: this is only equal to the ideal scheduler under the condition
597 * that join/leave operations happen at lag_i = 0, otherwise the
598 * virtual time has non-continguous motion equivalent to:
599 *
600 * V +-= lag_i / W
601 *
602 * Also see the comment in place_entity() that deals with this. ]]
603 *
604 * However, since v_i is u64, and the multiplcation could easily overflow
605 * transform it into a relative form that uses smaller quantities:
606 *
607 * Substitute: v_i == (v_i - v0) + v0
608 *
609 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
610 * V = ---------------------------- = --------------------- + v0
611 * W W
612 *
613 * Which we track using:
614 *
615 * v0 := cfs_rq->min_vruntime
616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
617 * \Sum w_i := cfs_rq->avg_load
618 *
619 * Since min_vruntime is a monotonic increasing variable that closely tracks
620 * the per-task service, these deltas: (v_i - v), will be in the order of the
621 * maximal (virtual) lag induced in the system due to quantisation.
622 *
623 * Also, we use scale_load_down() to reduce the size.
624 *
625 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
626 */
627 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 {
630 unsigned long weight = scale_load_down(se->load.weight);
631 s64 key = entity_key(cfs_rq, se);
632
633 cfs_rq->avg_vruntime += key * weight;
634 cfs_rq->avg_load += weight;
635 }
636
637 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
639 {
640 unsigned long weight = scale_load_down(se->load.weight);
641 s64 key = entity_key(cfs_rq, se);
642
643 cfs_rq->avg_vruntime -= key * weight;
644 cfs_rq->avg_load -= weight;
645 }
646
647 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
649 {
650 /*
651 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
652 */
653 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
654 }
655
656 /*
657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
658 * For this to be so, the result of this function must have a left bias.
659 */
avg_vruntime(struct cfs_rq * cfs_rq)660 u64 avg_vruntime(struct cfs_rq *cfs_rq)
661 {
662 struct sched_entity *curr = cfs_rq->curr;
663 s64 avg = cfs_rq->avg_vruntime;
664 long load = cfs_rq->avg_load;
665
666 if (curr && curr->on_rq) {
667 unsigned long weight = scale_load_down(curr->load.weight);
668
669 avg += entity_key(cfs_rq, curr) * weight;
670 load += weight;
671 }
672
673 if (load) {
674 /* sign flips effective floor / ceil */
675 if (avg < 0)
676 avg -= (load - 1);
677 avg = div_s64(avg, load);
678 }
679
680 return cfs_rq->min_vruntime + avg;
681 }
682
683 /*
684 * lag_i = S - s_i = w_i * (V - v_i)
685 *
686 * However, since V is approximated by the weighted average of all entities it
687 * is possible -- by addition/removal/reweight to the tree -- to move V around
688 * and end up with a larger lag than we started with.
689 *
690 * Limit this to either double the slice length with a minimum of TICK_NSEC
691 * since that is the timing granularity.
692 *
693 * EEVDF gives the following limit for a steady state system:
694 *
695 * -r_max < lag < max(r_max, q)
696 *
697 * XXX could add max_slice to the augmented data to track this.
698 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
700 {
701 s64 lag, limit;
702
703 SCHED_WARN_ON(!se->on_rq);
704 lag = avg_vruntime(cfs_rq) - se->vruntime;
705
706 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
707 se->vlag = clamp(lag, -limit, limit);
708 }
709
710 /*
711 * Entity is eligible once it received less service than it ought to have,
712 * eg. lag >= 0.
713 *
714 * lag_i = S - s_i = w_i*(V - v_i)
715 *
716 * lag_i >= 0 -> V >= v_i
717 *
718 * \Sum (v_i - v)*w_i
719 * V = ------------------ + v
720 * \Sum w_i
721 *
722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 *
724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due
725 * to the loss in precision caused by the division.
726 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 {
729 struct sched_entity *curr = cfs_rq->curr;
730 s64 avg = cfs_rq->avg_vruntime;
731 long load = cfs_rq->avg_load;
732
733 if (curr && curr->on_rq) {
734 unsigned long weight = scale_load_down(curr->load.weight);
735
736 avg += entity_key(cfs_rq, curr) * weight;
737 load += weight;
738 }
739
740 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
741 }
742
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 return vruntime_eligible(cfs_rq, se->vruntime);
746 }
747
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 {
750 u64 min_vruntime = cfs_rq->min_vruntime;
751 /*
752 * open coded max_vruntime() to allow updating avg_vruntime
753 */
754 s64 delta = (s64)(vruntime - min_vruntime);
755 if (delta > 0) {
756 avg_vruntime_update(cfs_rq, delta);
757 min_vruntime = vruntime;
758 }
759 return min_vruntime;
760 }
761
update_min_vruntime(struct cfs_rq * cfs_rq)762 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 {
764 struct sched_entity *se = __pick_root_entity(cfs_rq);
765 struct sched_entity *curr = cfs_rq->curr;
766 u64 vruntime = cfs_rq->min_vruntime;
767
768 if (curr) {
769 if (curr->on_rq)
770 vruntime = curr->vruntime;
771 else
772 curr = NULL;
773 }
774
775 if (se) {
776 if (!curr)
777 vruntime = se->min_vruntime;
778 else
779 vruntime = min_vruntime(vruntime, se->min_vruntime);
780 }
781
782 /* ensure we never gain time by being placed backwards. */
783 u64_u32_store(cfs_rq->min_vruntime,
784 __update_min_vruntime(cfs_rq, vruntime));
785 }
786
__entity_less(struct rb_node * a,const struct rb_node * b)787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
788 {
789 return entity_before(__node_2_se(a), __node_2_se(b));
790 }
791
792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
793
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
795 {
796 if (node) {
797 struct sched_entity *rse = __node_2_se(node);
798 if (vruntime_gt(min_vruntime, se, rse))
799 se->min_vruntime = rse->min_vruntime;
800 }
801 }
802
803 /*
804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
805 */
min_vruntime_update(struct sched_entity * se,bool exit)806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
807 {
808 u64 old_min_vruntime = se->min_vruntime;
809 struct rb_node *node = &se->run_node;
810
811 se->min_vruntime = se->vruntime;
812 __min_vruntime_update(se, node->rb_right);
813 __min_vruntime_update(se, node->rb_left);
814
815 return se->min_vruntime == old_min_vruntime;
816 }
817
818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
819 run_node, min_vruntime, min_vruntime_update);
820
821 /*
822 * Enqueue an entity into the rb-tree:
823 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 avg_vruntime_add(cfs_rq, se);
827 se->min_vruntime = se->vruntime;
828 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
829 __entity_less, &min_vruntime_cb);
830 }
831
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833 {
834 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
835 &min_vruntime_cb);
836 avg_vruntime_sub(cfs_rq, se);
837 }
838
__pick_root_entity(struct cfs_rq * cfs_rq)839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
840 {
841 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
842
843 if (!root)
844 return NULL;
845
846 return __node_2_se(root);
847 }
848
__pick_first_entity(struct cfs_rq * cfs_rq)849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
850 {
851 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
852
853 if (!left)
854 return NULL;
855
856 return __node_2_se(left);
857 }
858
859 /*
860 * Earliest Eligible Virtual Deadline First
861 *
862 * In order to provide latency guarantees for different request sizes
863 * EEVDF selects the best runnable task from two criteria:
864 *
865 * 1) the task must be eligible (must be owed service)
866 *
867 * 2) from those tasks that meet 1), we select the one
868 * with the earliest virtual deadline.
869 *
870 * We can do this in O(log n) time due to an augmented RB-tree. The
871 * tree keeps the entries sorted on deadline, but also functions as a
872 * heap based on the vruntime by keeping:
873 *
874 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
875 *
876 * Which allows tree pruning through eligibility.
877 */
pick_eevdf(struct cfs_rq * cfs_rq)878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
879 {
880 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
881 struct sched_entity *se = __pick_first_entity(cfs_rq);
882 struct sched_entity *curr = cfs_rq->curr;
883 struct sched_entity *best = NULL;
884
885 /*
886 * We can safely skip eligibility check if there is only one entity
887 * in this cfs_rq, saving some cycles.
888 */
889 if (cfs_rq->nr_running == 1)
890 return curr && curr->on_rq ? curr : se;
891
892 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
893 curr = NULL;
894
895 /*
896 * Once selected, run a task until it either becomes non-eligible or
897 * until it gets a new slice. See the HACK in set_next_entity().
898 */
899 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
900 return curr;
901
902 /* Pick the leftmost entity if it's eligible */
903 if (se && entity_eligible(cfs_rq, se)) {
904 best = se;
905 goto found;
906 }
907
908 /* Heap search for the EEVD entity */
909 while (node) {
910 struct rb_node *left = node->rb_left;
911
912 /*
913 * Eligible entities in left subtree are always better
914 * choices, since they have earlier deadlines.
915 */
916 if (left && vruntime_eligible(cfs_rq,
917 __node_2_se(left)->min_vruntime)) {
918 node = left;
919 continue;
920 }
921
922 se = __node_2_se(node);
923
924 /*
925 * The left subtree either is empty or has no eligible
926 * entity, so check the current node since it is the one
927 * with earliest deadline that might be eligible.
928 */
929 if (entity_eligible(cfs_rq, se)) {
930 best = se;
931 break;
932 }
933
934 node = node->rb_right;
935 }
936 found:
937 if (!best || (curr && entity_before(curr, best)))
938 best = curr;
939
940 return best;
941 }
942
943 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
945 {
946 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
947
948 if (!last)
949 return NULL;
950
951 return __node_2_se(last);
952 }
953
954 /**************************************************************
955 * Scheduling class statistics methods:
956 */
957 #ifdef CONFIG_SMP
sched_update_scaling(void)958 int sched_update_scaling(void)
959 {
960 unsigned int factor = get_update_sysctl_factor();
961
962 #define WRT_SYSCTL(name) \
963 (normalized_sysctl_##name = sysctl_##name / (factor))
964 WRT_SYSCTL(sched_base_slice);
965 #undef WRT_SYSCTL
966
967 return 0;
968 }
969 #endif
970 #endif
971
972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
973
974 /*
975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
976 * this is probably good enough.
977 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
979 {
980 if ((s64)(se->vruntime - se->deadline) < 0)
981 return;
982
983 /*
984 * For EEVDF the virtual time slope is determined by w_i (iow.
985 * nice) while the request time r_i is determined by
986 * sysctl_sched_base_slice.
987 */
988 se->slice = sysctl_sched_base_slice;
989
990 /*
991 * EEVDF: vd_i = ve_i + r_i / w_i
992 */
993 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
994
995 /*
996 * The task has consumed its request, reschedule.
997 */
998 if (cfs_rq->nr_running > 1) {
999 resched_curr(rq_of(cfs_rq));
1000 clear_buddies(cfs_rq, se);
1001 }
1002 }
1003
1004 #include "pelt.h"
1005 #ifdef CONFIG_SMP
1006
1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1008 static unsigned long task_h_load(struct task_struct *p);
1009 static unsigned long capacity_of(int cpu);
1010
1011 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1012 void init_entity_runnable_average(struct sched_entity *se)
1013 {
1014 struct sched_avg *sa = &se->avg;
1015
1016 memset(sa, 0, sizeof(*sa));
1017
1018 /*
1019 * Tasks are initialized with full load to be seen as heavy tasks until
1020 * they get a chance to stabilize to their real load level.
1021 * Group entities are initialized with zero load to reflect the fact that
1022 * nothing has been attached to the task group yet.
1023 */
1024 if (entity_is_task(se))
1025 sa->load_avg = scale_load_down(se->load.weight);
1026
1027 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
1028 }
1029
1030 /*
1031 * With new tasks being created, their initial util_avgs are extrapolated
1032 * based on the cfs_rq's current util_avg:
1033 *
1034 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
1035 *
1036 * However, in many cases, the above util_avg does not give a desired
1037 * value. Moreover, the sum of the util_avgs may be divergent, such
1038 * as when the series is a harmonic series.
1039 *
1040 * To solve this problem, we also cap the util_avg of successive tasks to
1041 * only 1/2 of the left utilization budget:
1042 *
1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044 *
1045 * where n denotes the nth task and cpu_scale the CPU capacity.
1046 *
1047 * For example, for a CPU with 1024 of capacity, a simplest series from
1048 * the beginning would be like:
1049 *
1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052 *
1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054 * if util_avg > util_avg_cap.
1055 */
post_init_entity_util_avg(struct task_struct * p)1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 struct sched_entity *se = &p->se;
1059 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 struct sched_avg *sa = &se->avg;
1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063
1064 if (p->sched_class != &fair_sched_class) {
1065 /*
1066 * For !fair tasks do:
1067 *
1068 update_cfs_rq_load_avg(now, cfs_rq);
1069 attach_entity_load_avg(cfs_rq, se);
1070 switched_from_fair(rq, p);
1071 *
1072 * such that the next switched_to_fair() has the
1073 * expected state.
1074 */
1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 return;
1077 }
1078
1079 if (cap > 0) {
1080 if (cfs_rq->avg.util_avg != 0) {
1081 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083
1084 if (sa->util_avg > cap)
1085 sa->util_avg = cap;
1086 } else {
1087 sa->util_avg = cap;
1088 }
1089 }
1090
1091 sa->runnable_avg = sa->util_avg;
1092 }
1093
1094 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
post_init_entity_util_avg(struct task_struct * p)1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
update_tg_load_avg(struct cfs_rq * cfs_rq)1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105
update_curr_se(struct rq * rq,struct sched_entity * curr)1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 u64 now = rq_clock_task(rq);
1109 s64 delta_exec;
1110
1111 delta_exec = now - curr->exec_start;
1112 if (unlikely(delta_exec <= 0))
1113 return delta_exec;
1114
1115 curr->exec_start = now;
1116 curr->sum_exec_runtime += delta_exec;
1117
1118 if (schedstat_enabled()) {
1119 struct sched_statistics *stats;
1120
1121 stats = __schedstats_from_se(curr);
1122 __schedstat_set(stats->exec_max,
1123 max(delta_exec, stats->exec_max));
1124 }
1125
1126 return delta_exec;
1127 }
1128
update_curr_task(struct task_struct * p,s64 delta_exec)1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 trace_sched_stat_runtime(p, delta_exec);
1132 account_group_exec_runtime(p, delta_exec);
1133 cgroup_account_cputime(p, delta_exec);
1134 if (p->dl_server)
1135 dl_server_update(p->dl_server, delta_exec);
1136 }
1137
1138 /*
1139 * Used by other classes to account runtime.
1140 */
update_curr_common(struct rq * rq)1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 struct task_struct *curr = rq->curr;
1144 s64 delta_exec;
1145
1146 delta_exec = update_curr_se(rq, &curr->se);
1147 if (likely(delta_exec > 0))
1148 update_curr_task(curr, delta_exec);
1149
1150 return delta_exec;
1151 }
1152
1153 /*
1154 * Update the current task's runtime statistics.
1155 */
update_curr(struct cfs_rq * cfs_rq)1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 struct sched_entity *curr = cfs_rq->curr;
1159 s64 delta_exec;
1160
1161 if (unlikely(!curr))
1162 return;
1163
1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 if (unlikely(delta_exec <= 0))
1166 return;
1167
1168 curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 update_deadline(cfs_rq, curr);
1170 update_min_vruntime(cfs_rq);
1171
1172 if (entity_is_task(curr))
1173 update_curr_task(task_of(curr), delta_exec);
1174
1175 account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177
update_curr_fair(struct rq * rq)1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182
1183 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 struct sched_statistics *stats;
1187 struct task_struct *p = NULL;
1188
1189 if (!schedstat_enabled())
1190 return;
1191
1192 stats = __schedstats_from_se(se);
1193
1194 if (entity_is_task(se))
1195 p = task_of(se);
1196
1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199
1200 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 struct sched_statistics *stats;
1204 struct task_struct *p = NULL;
1205
1206 if (!schedstat_enabled())
1207 return;
1208
1209 stats = __schedstats_from_se(se);
1210
1211 /*
1212 * When the sched_schedstat changes from 0 to 1, some sched se
1213 * maybe already in the runqueue, the se->statistics.wait_start
1214 * will be 0.So it will let the delta wrong. We need to avoid this
1215 * scenario.
1216 */
1217 if (unlikely(!schedstat_val(stats->wait_start)))
1218 return;
1219
1220 if (entity_is_task(se))
1221 p = task_of(se);
1222
1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225
1226 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 struct sched_statistics *stats;
1230 struct task_struct *tsk = NULL;
1231
1232 if (!schedstat_enabled())
1233 return;
1234
1235 stats = __schedstats_from_se(se);
1236
1237 if (entity_is_task(se))
1238 tsk = task_of(se);
1239
1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242
1243 /*
1244 * Task is being enqueued - update stats:
1245 */
1246 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 if (!schedstat_enabled())
1250 return;
1251
1252 /*
1253 * Are we enqueueing a waiting task? (for current tasks
1254 * a dequeue/enqueue event is a NOP)
1255 */
1256 if (se != cfs_rq->curr)
1257 update_stats_wait_start_fair(cfs_rq, se);
1258
1259 if (flags & ENQUEUE_WAKEUP)
1260 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262
1263 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266
1267 if (!schedstat_enabled())
1268 return;
1269
1270 /*
1271 * Mark the end of the wait period if dequeueing a
1272 * waiting task:
1273 */
1274 if (se != cfs_rq->curr)
1275 update_stats_wait_end_fair(cfs_rq, se);
1276
1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 struct task_struct *tsk = task_of(se);
1279 unsigned int state;
1280
1281 /* XXX racy against TTWU */
1282 state = READ_ONCE(tsk->__state);
1283 if (state & TASK_INTERRUPTIBLE)
1284 __schedstat_set(tsk->stats.sleep_start,
1285 rq_clock(rq_of(cfs_rq)));
1286 if (state & TASK_UNINTERRUPTIBLE)
1287 __schedstat_set(tsk->stats.block_start,
1288 rq_clock(rq_of(cfs_rq)));
1289 }
1290 }
1291
1292 /*
1293 * We are picking a new current task - update its stats:
1294 */
1295 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 /*
1299 * We are starting a new run period:
1300 */
1301 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303
1304 /**************************************************
1305 * Scheduling class queueing methods:
1306 */
1307
is_core_idle(int cpu)1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 int sibling;
1312
1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 if (cpu == sibling)
1315 continue;
1316
1317 if (!idle_cpu(sibling))
1318 return false;
1319 }
1320 #endif
1321
1322 return true;
1323 }
1324
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327
1328 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 /*
1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 * threshold. Above this threshold, individual tasks may be contending
1334 * for both memory bandwidth and any shared HT resources. This is an
1335 * approximation as the number of running tasks may not be related to
1336 * the number of busy CPUs due to sched_setaffinity.
1337 */
1338 if (dst_running > imb_numa_nr)
1339 return imbalance;
1340
1341 /*
1342 * Allow a small imbalance based on a simple pair of communicating
1343 * tasks that remain local when the destination is lightly loaded.
1344 */
1345 if (imbalance <= NUMA_IMBALANCE_MIN)
1346 return 0;
1347
1348 return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354 * Approximate time to scan a full NUMA task in ms. The task scan period is
1355 * calculated based on the tasks virtual memory size and
1356 * numa_balancing_scan_size.
1357 */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369
1370 struct numa_group {
1371 refcount_t refcount;
1372
1373 spinlock_t lock; /* nr_tasks, tasks */
1374 int nr_tasks;
1375 pid_t gid;
1376 int active_nodes;
1377
1378 struct rcu_head rcu;
1379 unsigned long total_faults;
1380 unsigned long max_faults_cpu;
1381 /*
1382 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 *
1384 * Faults_cpu is used to decide whether memory should move
1385 * towards the CPU. As a consequence, these stats are weighted
1386 * more by CPU use than by memory faults.
1387 */
1388 unsigned long faults[];
1389 };
1390
1391 /*
1392 * For functions that can be called in multiple contexts that permit reading
1393 * ->numa_group (see struct task_struct for locking rules).
1394 */
deref_task_numa_group(struct task_struct * p)1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 return rcu_dereference_check(p->numa_group, p == current ||
1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400
deref_curr_numa_group(struct task_struct * p)1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408
task_nr_scan_windows(struct task_struct * p)1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 unsigned long rss = 0;
1412 unsigned long nr_scan_pages;
1413
1414 /*
1415 * Calculations based on RSS as non-present and empty pages are skipped
1416 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 * on resident pages
1418 */
1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 rss = get_mm_rss(p->mm);
1421 if (!rss)
1422 rss = nr_scan_pages;
1423
1424 rss = round_up(rss, nr_scan_pages);
1425 return rss / nr_scan_pages;
1426 }
1427
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430
task_scan_min(struct task_struct * p)1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 unsigned int scan, floor;
1435 unsigned int windows = 1;
1436
1437 if (scan_size < MAX_SCAN_WINDOW)
1438 windows = MAX_SCAN_WINDOW / scan_size;
1439 floor = 1000 / windows;
1440
1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 return max_t(unsigned int, floor, scan);
1443 }
1444
task_scan_start(struct task_struct * p)1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 unsigned long smin = task_scan_min(p);
1448 unsigned long period = smin;
1449 struct numa_group *ng;
1450
1451 /* Scale the maximum scan period with the amount of shared memory. */
1452 rcu_read_lock();
1453 ng = rcu_dereference(p->numa_group);
1454 if (ng) {
1455 unsigned long shared = group_faults_shared(ng);
1456 unsigned long private = group_faults_priv(ng);
1457
1458 period *= refcount_read(&ng->refcount);
1459 period *= shared + 1;
1460 period /= private + shared + 1;
1461 }
1462 rcu_read_unlock();
1463
1464 return max(smin, period);
1465 }
1466
task_scan_max(struct task_struct * p)1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 unsigned long smin = task_scan_min(p);
1470 unsigned long smax;
1471 struct numa_group *ng;
1472
1473 /* Watch for min being lower than max due to floor calculations */
1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475
1476 /* Scale the maximum scan period with the amount of shared memory. */
1477 ng = deref_curr_numa_group(p);
1478 if (ng) {
1479 unsigned long shared = group_faults_shared(ng);
1480 unsigned long private = group_faults_priv(ng);
1481 unsigned long period = smax;
1482
1483 period *= refcount_read(&ng->refcount);
1484 period *= shared + 1;
1485 period /= private + shared + 1;
1486
1487 smax = max(smax, period);
1488 }
1489
1490 return max(smin, smax);
1491 }
1492
account_numa_enqueue(struct rq * rq,struct task_struct * p)1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498
account_numa_dequeue(struct rq * rq,struct task_struct * p)1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513
task_numa_group_id(struct task_struct * p)1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 struct numa_group *ng;
1517 pid_t gid = 0;
1518
1519 rcu_read_lock();
1520 ng = rcu_dereference(p->numa_group);
1521 if (ng)
1522 gid = ng->gid;
1523 rcu_read_unlock();
1524
1525 return gid;
1526 }
1527
1528 /*
1529 * The averaged statistics, shared & private, memory & CPU,
1530 * occupy the first half of the array. The second half of the
1531 * array is for current counters, which are averaged into the
1532 * first set by task_numa_placement.
1533 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538
task_faults(struct task_struct * p,int nid)1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 if (!p->numa_faults)
1542 return 0;
1543
1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547
group_faults(struct task_struct * p,int nid)1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 struct numa_group *ng = deref_task_numa_group(p);
1551
1552 if (!ng)
1553 return 0;
1554
1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558
group_faults_cpu(struct numa_group * group,int nid)1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564
group_faults_priv(struct numa_group * ng)1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 unsigned long faults = 0;
1568 int node;
1569
1570 for_each_online_node(node) {
1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 }
1573
1574 return faults;
1575 }
1576
group_faults_shared(struct numa_group * ng)1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 unsigned long faults = 0;
1580 int node;
1581
1582 for_each_online_node(node) {
1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 }
1585
1586 return faults;
1587 }
1588
1589 /*
1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591 * considered part of a numa group's pseudo-interleaving set. Migrations
1592 * between these nodes are slowed down, to allow things to settle down.
1593 */
1594 #define ACTIVE_NODE_FRACTION 3
1595
numa_is_active_node(int nid,struct numa_group * ng)1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600
1601 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 int lim_dist, bool task)
1604 {
1605 unsigned long score = 0;
1606 int node, max_dist;
1607
1608 /*
1609 * All nodes are directly connected, and the same distance
1610 * from each other. No need for fancy placement algorithms.
1611 */
1612 if (sched_numa_topology_type == NUMA_DIRECT)
1613 return 0;
1614
1615 /* sched_max_numa_distance may be changed in parallel. */
1616 max_dist = READ_ONCE(sched_max_numa_distance);
1617 /*
1618 * This code is called for each node, introducing N^2 complexity,
1619 * which should be ok given the number of nodes rarely exceeds 8.
1620 */
1621 for_each_online_node(node) {
1622 unsigned long faults;
1623 int dist = node_distance(nid, node);
1624
1625 /*
1626 * The furthest away nodes in the system are not interesting
1627 * for placement; nid was already counted.
1628 */
1629 if (dist >= max_dist || node == nid)
1630 continue;
1631
1632 /*
1633 * On systems with a backplane NUMA topology, compare groups
1634 * of nodes, and move tasks towards the group with the most
1635 * memory accesses. When comparing two nodes at distance
1636 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 * of each group. Skip other nodes.
1638 */
1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 continue;
1641
1642 /* Add up the faults from nearby nodes. */
1643 if (task)
1644 faults = task_faults(p, node);
1645 else
1646 faults = group_faults(p, node);
1647
1648 /*
1649 * On systems with a glueless mesh NUMA topology, there are
1650 * no fixed "groups of nodes". Instead, nodes that are not
1651 * directly connected bounce traffic through intermediate
1652 * nodes; a numa_group can occupy any set of nodes.
1653 * The further away a node is, the less the faults count.
1654 * This seems to result in good task placement.
1655 */
1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 faults *= (max_dist - dist);
1658 faults /= (max_dist - LOCAL_DISTANCE);
1659 }
1660
1661 score += faults;
1662 }
1663
1664 return score;
1665 }
1666
1667 /*
1668 * These return the fraction of accesses done by a particular task, or
1669 * task group, on a particular numa node. The group weight is given a
1670 * larger multiplier, in order to group tasks together that are almost
1671 * evenly spread out between numa nodes.
1672 */
task_weight(struct task_struct * p,int nid,int dist)1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 int dist)
1675 {
1676 unsigned long faults, total_faults;
1677
1678 if (!p->numa_faults)
1679 return 0;
1680
1681 total_faults = p->total_numa_faults;
1682
1683 if (!total_faults)
1684 return 0;
1685
1686 faults = task_faults(p, nid);
1687 faults += score_nearby_nodes(p, nid, dist, true);
1688
1689 return 1000 * faults / total_faults;
1690 }
1691
group_weight(struct task_struct * p,int nid,int dist)1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 int dist)
1694 {
1695 struct numa_group *ng = deref_task_numa_group(p);
1696 unsigned long faults, total_faults;
1697
1698 if (!ng)
1699 return 0;
1700
1701 total_faults = ng->total_faults;
1702
1703 if (!total_faults)
1704 return 0;
1705
1706 faults = group_faults(p, nid);
1707 faults += score_nearby_nodes(p, nid, dist, false);
1708
1709 return 1000 * faults / total_faults;
1710 }
1711
1712 /*
1713 * If memory tiering mode is enabled, cpupid of slow memory page is
1714 * used to record scan time instead of CPU and PID. When tiering mode
1715 * is disabled at run time, the scan time (in cpupid) will be
1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1717 * access out of array bound.
1718 */
cpupid_valid(int cpupid)1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723
1724 /*
1725 * For memory tiering mode, if there are enough free pages (more than
1726 * enough watermark defined here) in fast memory node, to take full
1727 * advantage of fast memory capacity, all recently accessed slow
1728 * memory pages will be migrated to fast memory node without
1729 * considering hot threshold.
1730 */
pgdat_free_space_enough(struct pglist_data * pgdat)1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 int z;
1734 unsigned long enough_wmark;
1735
1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 pgdat->node_present_pages >> 4);
1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 struct zone *zone = pgdat->node_zones + z;
1740
1741 if (!populated_zone(zone))
1742 continue;
1743
1744 if (zone_watermark_ok(zone, 0,
1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 ZONE_MOVABLE, 0))
1747 return true;
1748 }
1749 return false;
1750 }
1751
1752 /*
1753 * For memory tiering mode, when page tables are scanned, the scan
1754 * time will be recorded in struct page in addition to make page
1755 * PROT_NONE for slow memory page. So when the page is accessed, in
1756 * hint page fault handler, the hint page fault latency is calculated
1757 * via,
1758 *
1759 * hint page fault latency = hint page fault time - scan time
1760 *
1761 * The smaller the hint page fault latency, the higher the possibility
1762 * for the page to be hot.
1763 */
numa_hint_fault_latency(struct folio * folio)1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 int last_time, time;
1767
1768 time = jiffies_to_msecs(jiffies);
1769 last_time = folio_xchg_access_time(folio, time);
1770
1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773
1774 /*
1775 * For memory tiering mode, too high promotion/demotion throughput may
1776 * hurt application latency. So we provide a mechanism to rate limit
1777 * the number of pages that are tried to be promoted.
1778 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 unsigned long rate_limit, int nr)
1781 {
1782 unsigned long nr_cand;
1783 unsigned int now, start;
1784
1785 now = jiffies_to_msecs(jiffies);
1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 start = pgdat->nbp_rl_start;
1789 if (now - start > MSEC_PER_SEC &&
1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 pgdat->nbp_rl_nr_cand = nr_cand;
1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 return true;
1794 return false;
1795 }
1796
1797 #define NUMA_MIGRATION_ADJUST_STEPS 16
1798
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 unsigned long rate_limit,
1801 unsigned int ref_th)
1802 {
1803 unsigned int now, start, th_period, unit_th, th;
1804 unsigned long nr_cand, ref_cand, diff_cand;
1805
1806 now = jiffies_to_msecs(jiffies);
1807 th_period = sysctl_numa_balancing_scan_period_max;
1808 start = pgdat->nbp_th_start;
1809 if (now - start > th_period &&
1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 ref_cand = rate_limit *
1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 th = pgdat->nbp_threshold ? : ref_th;
1817 if (diff_cand > ref_cand * 11 / 10)
1818 th = max(th - unit_th, unit_th);
1819 else if (diff_cand < ref_cand * 9 / 10)
1820 th = min(th + unit_th, ref_th * 2);
1821 pgdat->nbp_th_nr_cand = nr_cand;
1822 pgdat->nbp_threshold = th;
1823 }
1824 }
1825
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 int src_nid, int dst_cpu)
1828 {
1829 struct numa_group *ng = deref_curr_numa_group(p);
1830 int dst_nid = cpu_to_node(dst_cpu);
1831 int last_cpupid, this_cpupid;
1832
1833 /*
1834 * The pages in slow memory node should be migrated according
1835 * to hot/cold instead of private/shared.
1836 */
1837 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
1838 !node_is_toptier(src_nid)) {
1839 struct pglist_data *pgdat;
1840 unsigned long rate_limit;
1841 unsigned int latency, th, def_th;
1842
1843 pgdat = NODE_DATA(dst_nid);
1844 if (pgdat_free_space_enough(pgdat)) {
1845 /* workload changed, reset hot threshold */
1846 pgdat->nbp_threshold = 0;
1847 return true;
1848 }
1849
1850 def_th = sysctl_numa_balancing_hot_threshold;
1851 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1852 (20 - PAGE_SHIFT);
1853 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1854
1855 th = pgdat->nbp_threshold ? : def_th;
1856 latency = numa_hint_fault_latency(folio);
1857 if (latency >= th)
1858 return false;
1859
1860 return !numa_promotion_rate_limit(pgdat, rate_limit,
1861 folio_nr_pages(folio));
1862 }
1863
1864 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1865 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1866
1867 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1868 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1869 return false;
1870
1871 /*
1872 * Allow first faults or private faults to migrate immediately early in
1873 * the lifetime of a task. The magic number 4 is based on waiting for
1874 * two full passes of the "multi-stage node selection" test that is
1875 * executed below.
1876 */
1877 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1878 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1879 return true;
1880
1881 /*
1882 * Multi-stage node selection is used in conjunction with a periodic
1883 * migration fault to build a temporal task<->page relation. By using
1884 * a two-stage filter we remove short/unlikely relations.
1885 *
1886 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1887 * a task's usage of a particular page (n_p) per total usage of this
1888 * page (n_t) (in a given time-span) to a probability.
1889 *
1890 * Our periodic faults will sample this probability and getting the
1891 * same result twice in a row, given these samples are fully
1892 * independent, is then given by P(n)^2, provided our sample period
1893 * is sufficiently short compared to the usage pattern.
1894 *
1895 * This quadric squishes small probabilities, making it less likely we
1896 * act on an unlikely task<->page relation.
1897 */
1898 if (!cpupid_pid_unset(last_cpupid) &&
1899 cpupid_to_nid(last_cpupid) != dst_nid)
1900 return false;
1901
1902 /* Always allow migrate on private faults */
1903 if (cpupid_match_pid(p, last_cpupid))
1904 return true;
1905
1906 /* A shared fault, but p->numa_group has not been set up yet. */
1907 if (!ng)
1908 return true;
1909
1910 /*
1911 * Destination node is much more heavily used than the source
1912 * node? Allow migration.
1913 */
1914 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1915 ACTIVE_NODE_FRACTION)
1916 return true;
1917
1918 /*
1919 * Distribute memory according to CPU & memory use on each node,
1920 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1921 *
1922 * faults_cpu(dst) 3 faults_cpu(src)
1923 * --------------- * - > ---------------
1924 * faults_mem(dst) 4 faults_mem(src)
1925 */
1926 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1927 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1928 }
1929
1930 /*
1931 * 'numa_type' describes the node at the moment of load balancing.
1932 */
1933 enum numa_type {
1934 /* The node has spare capacity that can be used to run more tasks. */
1935 node_has_spare = 0,
1936 /*
1937 * The node is fully used and the tasks don't compete for more CPU
1938 * cycles. Nevertheless, some tasks might wait before running.
1939 */
1940 node_fully_busy,
1941 /*
1942 * The node is overloaded and can't provide expected CPU cycles to all
1943 * tasks.
1944 */
1945 node_overloaded
1946 };
1947
1948 /* Cached statistics for all CPUs within a node */
1949 struct numa_stats {
1950 unsigned long load;
1951 unsigned long runnable;
1952 unsigned long util;
1953 /* Total compute capacity of CPUs on a node */
1954 unsigned long compute_capacity;
1955 unsigned int nr_running;
1956 unsigned int weight;
1957 enum numa_type node_type;
1958 int idle_cpu;
1959 };
1960
1961 struct task_numa_env {
1962 struct task_struct *p;
1963
1964 int src_cpu, src_nid;
1965 int dst_cpu, dst_nid;
1966 int imb_numa_nr;
1967
1968 struct numa_stats src_stats, dst_stats;
1969
1970 int imbalance_pct;
1971 int dist;
1972
1973 struct task_struct *best_task;
1974 long best_imp;
1975 int best_cpu;
1976 };
1977
1978 static unsigned long cpu_load(struct rq *rq);
1979 static unsigned long cpu_runnable(struct rq *rq);
1980
1981 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1982 numa_type numa_classify(unsigned int imbalance_pct,
1983 struct numa_stats *ns)
1984 {
1985 if ((ns->nr_running > ns->weight) &&
1986 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1987 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1988 return node_overloaded;
1989
1990 if ((ns->nr_running < ns->weight) ||
1991 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1992 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1993 return node_has_spare;
1994
1995 return node_fully_busy;
1996 }
1997
1998 #ifdef CONFIG_SCHED_SMT
1999 /* Forward declarations of select_idle_sibling helpers */
2000 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2001 static inline int numa_idle_core(int idle_core, int cpu)
2002 {
2003 if (!static_branch_likely(&sched_smt_present) ||
2004 idle_core >= 0 || !test_idle_cores(cpu))
2005 return idle_core;
2006
2007 /*
2008 * Prefer cores instead of packing HT siblings
2009 * and triggering future load balancing.
2010 */
2011 if (is_core_idle(cpu))
2012 idle_core = cpu;
2013
2014 return idle_core;
2015 }
2016 #else
numa_idle_core(int idle_core,int cpu)2017 static inline int numa_idle_core(int idle_core, int cpu)
2018 {
2019 return idle_core;
2020 }
2021 #endif
2022
2023 /*
2024 * Gather all necessary information to make NUMA balancing placement
2025 * decisions that are compatible with standard load balancer. This
2026 * borrows code and logic from update_sg_lb_stats but sharing a
2027 * common implementation is impractical.
2028 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2029 static void update_numa_stats(struct task_numa_env *env,
2030 struct numa_stats *ns, int nid,
2031 bool find_idle)
2032 {
2033 int cpu, idle_core = -1;
2034
2035 memset(ns, 0, sizeof(*ns));
2036 ns->idle_cpu = -1;
2037
2038 rcu_read_lock();
2039 for_each_cpu(cpu, cpumask_of_node(nid)) {
2040 struct rq *rq = cpu_rq(cpu);
2041
2042 ns->load += cpu_load(rq);
2043 ns->runnable += cpu_runnable(rq);
2044 ns->util += cpu_util_cfs(cpu);
2045 ns->nr_running += rq->cfs.h_nr_running;
2046 ns->compute_capacity += capacity_of(cpu);
2047
2048 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2049 if (READ_ONCE(rq->numa_migrate_on) ||
2050 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2051 continue;
2052
2053 if (ns->idle_cpu == -1)
2054 ns->idle_cpu = cpu;
2055
2056 idle_core = numa_idle_core(idle_core, cpu);
2057 }
2058 }
2059 rcu_read_unlock();
2060
2061 ns->weight = cpumask_weight(cpumask_of_node(nid));
2062
2063 ns->node_type = numa_classify(env->imbalance_pct, ns);
2064
2065 if (idle_core >= 0)
2066 ns->idle_cpu = idle_core;
2067 }
2068
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2069 static void task_numa_assign(struct task_numa_env *env,
2070 struct task_struct *p, long imp)
2071 {
2072 struct rq *rq = cpu_rq(env->dst_cpu);
2073
2074 /* Check if run-queue part of active NUMA balance. */
2075 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2076 int cpu;
2077 int start = env->dst_cpu;
2078
2079 /* Find alternative idle CPU. */
2080 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2081 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2082 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2083 continue;
2084 }
2085
2086 env->dst_cpu = cpu;
2087 rq = cpu_rq(env->dst_cpu);
2088 if (!xchg(&rq->numa_migrate_on, 1))
2089 goto assign;
2090 }
2091
2092 /* Failed to find an alternative idle CPU */
2093 return;
2094 }
2095
2096 assign:
2097 /*
2098 * Clear previous best_cpu/rq numa-migrate flag, since task now
2099 * found a better CPU to move/swap.
2100 */
2101 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2102 rq = cpu_rq(env->best_cpu);
2103 WRITE_ONCE(rq->numa_migrate_on, 0);
2104 }
2105
2106 if (env->best_task)
2107 put_task_struct(env->best_task);
2108 if (p)
2109 get_task_struct(p);
2110
2111 env->best_task = p;
2112 env->best_imp = imp;
2113 env->best_cpu = env->dst_cpu;
2114 }
2115
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2116 static bool load_too_imbalanced(long src_load, long dst_load,
2117 struct task_numa_env *env)
2118 {
2119 long imb, old_imb;
2120 long orig_src_load, orig_dst_load;
2121 long src_capacity, dst_capacity;
2122
2123 /*
2124 * The load is corrected for the CPU capacity available on each node.
2125 *
2126 * src_load dst_load
2127 * ------------ vs ---------
2128 * src_capacity dst_capacity
2129 */
2130 src_capacity = env->src_stats.compute_capacity;
2131 dst_capacity = env->dst_stats.compute_capacity;
2132
2133 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2134
2135 orig_src_load = env->src_stats.load;
2136 orig_dst_load = env->dst_stats.load;
2137
2138 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2139
2140 /* Would this change make things worse? */
2141 return (imb > old_imb);
2142 }
2143
2144 /*
2145 * Maximum NUMA importance can be 1998 (2*999);
2146 * SMALLIMP @ 30 would be close to 1998/64.
2147 * Used to deter task migration.
2148 */
2149 #define SMALLIMP 30
2150
2151 /*
2152 * This checks if the overall compute and NUMA accesses of the system would
2153 * be improved if the source tasks was migrated to the target dst_cpu taking
2154 * into account that it might be best if task running on the dst_cpu should
2155 * be exchanged with the source task
2156 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2157 static bool task_numa_compare(struct task_numa_env *env,
2158 long taskimp, long groupimp, bool maymove)
2159 {
2160 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2161 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2162 long imp = p_ng ? groupimp : taskimp;
2163 struct task_struct *cur;
2164 long src_load, dst_load;
2165 int dist = env->dist;
2166 long moveimp = imp;
2167 long load;
2168 bool stopsearch = false;
2169
2170 if (READ_ONCE(dst_rq->numa_migrate_on))
2171 return false;
2172
2173 rcu_read_lock();
2174 cur = rcu_dereference(dst_rq->curr);
2175 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2176 cur = NULL;
2177
2178 /*
2179 * Because we have preemption enabled we can get migrated around and
2180 * end try selecting ourselves (current == env->p) as a swap candidate.
2181 */
2182 if (cur == env->p) {
2183 stopsearch = true;
2184 goto unlock;
2185 }
2186
2187 if (!cur) {
2188 if (maymove && moveimp >= env->best_imp)
2189 goto assign;
2190 else
2191 goto unlock;
2192 }
2193
2194 /* Skip this swap candidate if cannot move to the source cpu. */
2195 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2196 goto unlock;
2197
2198 /*
2199 * Skip this swap candidate if it is not moving to its preferred
2200 * node and the best task is.
2201 */
2202 if (env->best_task &&
2203 env->best_task->numa_preferred_nid == env->src_nid &&
2204 cur->numa_preferred_nid != env->src_nid) {
2205 goto unlock;
2206 }
2207
2208 /*
2209 * "imp" is the fault differential for the source task between the
2210 * source and destination node. Calculate the total differential for
2211 * the source task and potential destination task. The more negative
2212 * the value is, the more remote accesses that would be expected to
2213 * be incurred if the tasks were swapped.
2214 *
2215 * If dst and source tasks are in the same NUMA group, or not
2216 * in any group then look only at task weights.
2217 */
2218 cur_ng = rcu_dereference(cur->numa_group);
2219 if (cur_ng == p_ng) {
2220 /*
2221 * Do not swap within a group or between tasks that have
2222 * no group if there is spare capacity. Swapping does
2223 * not address the load imbalance and helps one task at
2224 * the cost of punishing another.
2225 */
2226 if (env->dst_stats.node_type == node_has_spare)
2227 goto unlock;
2228
2229 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2230 task_weight(cur, env->dst_nid, dist);
2231 /*
2232 * Add some hysteresis to prevent swapping the
2233 * tasks within a group over tiny differences.
2234 */
2235 if (cur_ng)
2236 imp -= imp / 16;
2237 } else {
2238 /*
2239 * Compare the group weights. If a task is all by itself
2240 * (not part of a group), use the task weight instead.
2241 */
2242 if (cur_ng && p_ng)
2243 imp += group_weight(cur, env->src_nid, dist) -
2244 group_weight(cur, env->dst_nid, dist);
2245 else
2246 imp += task_weight(cur, env->src_nid, dist) -
2247 task_weight(cur, env->dst_nid, dist);
2248 }
2249
2250 /* Discourage picking a task already on its preferred node */
2251 if (cur->numa_preferred_nid == env->dst_nid)
2252 imp -= imp / 16;
2253
2254 /*
2255 * Encourage picking a task that moves to its preferred node.
2256 * This potentially makes imp larger than it's maximum of
2257 * 1998 (see SMALLIMP and task_weight for why) but in this
2258 * case, it does not matter.
2259 */
2260 if (cur->numa_preferred_nid == env->src_nid)
2261 imp += imp / 8;
2262
2263 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2264 imp = moveimp;
2265 cur = NULL;
2266 goto assign;
2267 }
2268
2269 /*
2270 * Prefer swapping with a task moving to its preferred node over a
2271 * task that is not.
2272 */
2273 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2274 env->best_task->numa_preferred_nid != env->src_nid) {
2275 goto assign;
2276 }
2277
2278 /*
2279 * If the NUMA importance is less than SMALLIMP,
2280 * task migration might only result in ping pong
2281 * of tasks and also hurt performance due to cache
2282 * misses.
2283 */
2284 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2285 goto unlock;
2286
2287 /*
2288 * In the overloaded case, try and keep the load balanced.
2289 */
2290 load = task_h_load(env->p) - task_h_load(cur);
2291 if (!load)
2292 goto assign;
2293
2294 dst_load = env->dst_stats.load + load;
2295 src_load = env->src_stats.load - load;
2296
2297 if (load_too_imbalanced(src_load, dst_load, env))
2298 goto unlock;
2299
2300 assign:
2301 /* Evaluate an idle CPU for a task numa move. */
2302 if (!cur) {
2303 int cpu = env->dst_stats.idle_cpu;
2304
2305 /* Nothing cached so current CPU went idle since the search. */
2306 if (cpu < 0)
2307 cpu = env->dst_cpu;
2308
2309 /*
2310 * If the CPU is no longer truly idle and the previous best CPU
2311 * is, keep using it.
2312 */
2313 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2314 idle_cpu(env->best_cpu)) {
2315 cpu = env->best_cpu;
2316 }
2317
2318 env->dst_cpu = cpu;
2319 }
2320
2321 task_numa_assign(env, cur, imp);
2322
2323 /*
2324 * If a move to idle is allowed because there is capacity or load
2325 * balance improves then stop the search. While a better swap
2326 * candidate may exist, a search is not free.
2327 */
2328 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2329 stopsearch = true;
2330
2331 /*
2332 * If a swap candidate must be identified and the current best task
2333 * moves its preferred node then stop the search.
2334 */
2335 if (!maymove && env->best_task &&
2336 env->best_task->numa_preferred_nid == env->src_nid) {
2337 stopsearch = true;
2338 }
2339 unlock:
2340 rcu_read_unlock();
2341
2342 return stopsearch;
2343 }
2344
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2345 static void task_numa_find_cpu(struct task_numa_env *env,
2346 long taskimp, long groupimp)
2347 {
2348 bool maymove = false;
2349 int cpu;
2350
2351 /*
2352 * If dst node has spare capacity, then check if there is an
2353 * imbalance that would be overruled by the load balancer.
2354 */
2355 if (env->dst_stats.node_type == node_has_spare) {
2356 unsigned int imbalance;
2357 int src_running, dst_running;
2358
2359 /*
2360 * Would movement cause an imbalance? Note that if src has
2361 * more running tasks that the imbalance is ignored as the
2362 * move improves the imbalance from the perspective of the
2363 * CPU load balancer.
2364 * */
2365 src_running = env->src_stats.nr_running - 1;
2366 dst_running = env->dst_stats.nr_running + 1;
2367 imbalance = max(0, dst_running - src_running);
2368 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2369 env->imb_numa_nr);
2370
2371 /* Use idle CPU if there is no imbalance */
2372 if (!imbalance) {
2373 maymove = true;
2374 if (env->dst_stats.idle_cpu >= 0) {
2375 env->dst_cpu = env->dst_stats.idle_cpu;
2376 task_numa_assign(env, NULL, 0);
2377 return;
2378 }
2379 }
2380 } else {
2381 long src_load, dst_load, load;
2382 /*
2383 * If the improvement from just moving env->p direction is better
2384 * than swapping tasks around, check if a move is possible.
2385 */
2386 load = task_h_load(env->p);
2387 dst_load = env->dst_stats.load + load;
2388 src_load = env->src_stats.load - load;
2389 maymove = !load_too_imbalanced(src_load, dst_load, env);
2390 }
2391
2392 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2393 /* Skip this CPU if the source task cannot migrate */
2394 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2395 continue;
2396
2397 env->dst_cpu = cpu;
2398 if (task_numa_compare(env, taskimp, groupimp, maymove))
2399 break;
2400 }
2401 }
2402
task_numa_migrate(struct task_struct * p)2403 static int task_numa_migrate(struct task_struct *p)
2404 {
2405 struct task_numa_env env = {
2406 .p = p,
2407
2408 .src_cpu = task_cpu(p),
2409 .src_nid = task_node(p),
2410
2411 .imbalance_pct = 112,
2412
2413 .best_task = NULL,
2414 .best_imp = 0,
2415 .best_cpu = -1,
2416 };
2417 unsigned long taskweight, groupweight;
2418 struct sched_domain *sd;
2419 long taskimp, groupimp;
2420 struct numa_group *ng;
2421 struct rq *best_rq;
2422 int nid, ret, dist;
2423
2424 /*
2425 * Pick the lowest SD_NUMA domain, as that would have the smallest
2426 * imbalance and would be the first to start moving tasks about.
2427 *
2428 * And we want to avoid any moving of tasks about, as that would create
2429 * random movement of tasks -- counter the numa conditions we're trying
2430 * to satisfy here.
2431 */
2432 rcu_read_lock();
2433 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2434 if (sd) {
2435 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2436 env.imb_numa_nr = sd->imb_numa_nr;
2437 }
2438 rcu_read_unlock();
2439
2440 /*
2441 * Cpusets can break the scheduler domain tree into smaller
2442 * balance domains, some of which do not cross NUMA boundaries.
2443 * Tasks that are "trapped" in such domains cannot be migrated
2444 * elsewhere, so there is no point in (re)trying.
2445 */
2446 if (unlikely(!sd)) {
2447 sched_setnuma(p, task_node(p));
2448 return -EINVAL;
2449 }
2450
2451 env.dst_nid = p->numa_preferred_nid;
2452 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2453 taskweight = task_weight(p, env.src_nid, dist);
2454 groupweight = group_weight(p, env.src_nid, dist);
2455 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2456 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2457 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2458 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2459
2460 /* Try to find a spot on the preferred nid. */
2461 task_numa_find_cpu(&env, taskimp, groupimp);
2462
2463 /*
2464 * Look at other nodes in these cases:
2465 * - there is no space available on the preferred_nid
2466 * - the task is part of a numa_group that is interleaved across
2467 * multiple NUMA nodes; in order to better consolidate the group,
2468 * we need to check other locations.
2469 */
2470 ng = deref_curr_numa_group(p);
2471 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2472 for_each_node_state(nid, N_CPU) {
2473 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2474 continue;
2475
2476 dist = node_distance(env.src_nid, env.dst_nid);
2477 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2478 dist != env.dist) {
2479 taskweight = task_weight(p, env.src_nid, dist);
2480 groupweight = group_weight(p, env.src_nid, dist);
2481 }
2482
2483 /* Only consider nodes where both task and groups benefit */
2484 taskimp = task_weight(p, nid, dist) - taskweight;
2485 groupimp = group_weight(p, nid, dist) - groupweight;
2486 if (taskimp < 0 && groupimp < 0)
2487 continue;
2488
2489 env.dist = dist;
2490 env.dst_nid = nid;
2491 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2492 task_numa_find_cpu(&env, taskimp, groupimp);
2493 }
2494 }
2495
2496 /*
2497 * If the task is part of a workload that spans multiple NUMA nodes,
2498 * and is migrating into one of the workload's active nodes, remember
2499 * this node as the task's preferred numa node, so the workload can
2500 * settle down.
2501 * A task that migrated to a second choice node will be better off
2502 * trying for a better one later. Do not set the preferred node here.
2503 */
2504 if (ng) {
2505 if (env.best_cpu == -1)
2506 nid = env.src_nid;
2507 else
2508 nid = cpu_to_node(env.best_cpu);
2509
2510 if (nid != p->numa_preferred_nid)
2511 sched_setnuma(p, nid);
2512 }
2513
2514 /* No better CPU than the current one was found. */
2515 if (env.best_cpu == -1) {
2516 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2517 return -EAGAIN;
2518 }
2519
2520 best_rq = cpu_rq(env.best_cpu);
2521 if (env.best_task == NULL) {
2522 ret = migrate_task_to(p, env.best_cpu);
2523 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2524 if (ret != 0)
2525 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2526 return ret;
2527 }
2528
2529 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2530 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2531
2532 if (ret != 0)
2533 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2534 put_task_struct(env.best_task);
2535 return ret;
2536 }
2537
2538 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2539 static void numa_migrate_preferred(struct task_struct *p)
2540 {
2541 unsigned long interval = HZ;
2542
2543 /* This task has no NUMA fault statistics yet */
2544 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2545 return;
2546
2547 /* Periodically retry migrating the task to the preferred node */
2548 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2549 p->numa_migrate_retry = jiffies + interval;
2550
2551 /* Success if task is already running on preferred CPU */
2552 if (task_node(p) == p->numa_preferred_nid)
2553 return;
2554
2555 /* Otherwise, try migrate to a CPU on the preferred node */
2556 task_numa_migrate(p);
2557 }
2558
2559 /*
2560 * Find out how many nodes the workload is actively running on. Do this by
2561 * tracking the nodes from which NUMA hinting faults are triggered. This can
2562 * be different from the set of nodes where the workload's memory is currently
2563 * located.
2564 */
numa_group_count_active_nodes(struct numa_group * numa_group)2565 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2566 {
2567 unsigned long faults, max_faults = 0;
2568 int nid, active_nodes = 0;
2569
2570 for_each_node_state(nid, N_CPU) {
2571 faults = group_faults_cpu(numa_group, nid);
2572 if (faults > max_faults)
2573 max_faults = faults;
2574 }
2575
2576 for_each_node_state(nid, N_CPU) {
2577 faults = group_faults_cpu(numa_group, nid);
2578 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2579 active_nodes++;
2580 }
2581
2582 numa_group->max_faults_cpu = max_faults;
2583 numa_group->active_nodes = active_nodes;
2584 }
2585
2586 /*
2587 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2588 * increments. The more local the fault statistics are, the higher the scan
2589 * period will be for the next scan window. If local/(local+remote) ratio is
2590 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2591 * the scan period will decrease. Aim for 70% local accesses.
2592 */
2593 #define NUMA_PERIOD_SLOTS 10
2594 #define NUMA_PERIOD_THRESHOLD 7
2595
2596 /*
2597 * Increase the scan period (slow down scanning) if the majority of
2598 * our memory is already on our local node, or if the majority of
2599 * the page accesses are shared with other processes.
2600 * Otherwise, decrease the scan period.
2601 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2602 static void update_task_scan_period(struct task_struct *p,
2603 unsigned long shared, unsigned long private)
2604 {
2605 unsigned int period_slot;
2606 int lr_ratio, ps_ratio;
2607 int diff;
2608
2609 unsigned long remote = p->numa_faults_locality[0];
2610 unsigned long local = p->numa_faults_locality[1];
2611
2612 /*
2613 * If there were no record hinting faults then either the task is
2614 * completely idle or all activity is in areas that are not of interest
2615 * to automatic numa balancing. Related to that, if there were failed
2616 * migration then it implies we are migrating too quickly or the local
2617 * node is overloaded. In either case, scan slower
2618 */
2619 if (local + shared == 0 || p->numa_faults_locality[2]) {
2620 p->numa_scan_period = min(p->numa_scan_period_max,
2621 p->numa_scan_period << 1);
2622
2623 p->mm->numa_next_scan = jiffies +
2624 msecs_to_jiffies(p->numa_scan_period);
2625
2626 return;
2627 }
2628
2629 /*
2630 * Prepare to scale scan period relative to the current period.
2631 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2632 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2633 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2634 */
2635 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2636 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2637 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2638
2639 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2640 /*
2641 * Most memory accesses are local. There is no need to
2642 * do fast NUMA scanning, since memory is already local.
2643 */
2644 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2645 if (!slot)
2646 slot = 1;
2647 diff = slot * period_slot;
2648 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2649 /*
2650 * Most memory accesses are shared with other tasks.
2651 * There is no point in continuing fast NUMA scanning,
2652 * since other tasks may just move the memory elsewhere.
2653 */
2654 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2655 if (!slot)
2656 slot = 1;
2657 diff = slot * period_slot;
2658 } else {
2659 /*
2660 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2661 * yet they are not on the local NUMA node. Speed up
2662 * NUMA scanning to get the memory moved over.
2663 */
2664 int ratio = max(lr_ratio, ps_ratio);
2665 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2666 }
2667
2668 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2669 task_scan_min(p), task_scan_max(p));
2670 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2671 }
2672
2673 /*
2674 * Get the fraction of time the task has been running since the last
2675 * NUMA placement cycle. The scheduler keeps similar statistics, but
2676 * decays those on a 32ms period, which is orders of magnitude off
2677 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2678 * stats only if the task is so new there are no NUMA statistics yet.
2679 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2680 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2681 {
2682 u64 runtime, delta, now;
2683 /* Use the start of this time slice to avoid calculations. */
2684 now = p->se.exec_start;
2685 runtime = p->se.sum_exec_runtime;
2686
2687 if (p->last_task_numa_placement) {
2688 delta = runtime - p->last_sum_exec_runtime;
2689 *period = now - p->last_task_numa_placement;
2690
2691 /* Avoid time going backwards, prevent potential divide error: */
2692 if (unlikely((s64)*period < 0))
2693 *period = 0;
2694 } else {
2695 delta = p->se.avg.load_sum;
2696 *period = LOAD_AVG_MAX;
2697 }
2698
2699 p->last_sum_exec_runtime = runtime;
2700 p->last_task_numa_placement = now;
2701
2702 return delta;
2703 }
2704
2705 /*
2706 * Determine the preferred nid for a task in a numa_group. This needs to
2707 * be done in a way that produces consistent results with group_weight,
2708 * otherwise workloads might not converge.
2709 */
preferred_group_nid(struct task_struct * p,int nid)2710 static int preferred_group_nid(struct task_struct *p, int nid)
2711 {
2712 nodemask_t nodes;
2713 int dist;
2714
2715 /* Direct connections between all NUMA nodes. */
2716 if (sched_numa_topology_type == NUMA_DIRECT)
2717 return nid;
2718
2719 /*
2720 * On a system with glueless mesh NUMA topology, group_weight
2721 * scores nodes according to the number of NUMA hinting faults on
2722 * both the node itself, and on nearby nodes.
2723 */
2724 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2725 unsigned long score, max_score = 0;
2726 int node, max_node = nid;
2727
2728 dist = sched_max_numa_distance;
2729
2730 for_each_node_state(node, N_CPU) {
2731 score = group_weight(p, node, dist);
2732 if (score > max_score) {
2733 max_score = score;
2734 max_node = node;
2735 }
2736 }
2737 return max_node;
2738 }
2739
2740 /*
2741 * Finding the preferred nid in a system with NUMA backplane
2742 * interconnect topology is more involved. The goal is to locate
2743 * tasks from numa_groups near each other in the system, and
2744 * untangle workloads from different sides of the system. This requires
2745 * searching down the hierarchy of node groups, recursively searching
2746 * inside the highest scoring group of nodes. The nodemask tricks
2747 * keep the complexity of the search down.
2748 */
2749 nodes = node_states[N_CPU];
2750 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2751 unsigned long max_faults = 0;
2752 nodemask_t max_group = NODE_MASK_NONE;
2753 int a, b;
2754
2755 /* Are there nodes at this distance from each other? */
2756 if (!find_numa_distance(dist))
2757 continue;
2758
2759 for_each_node_mask(a, nodes) {
2760 unsigned long faults = 0;
2761 nodemask_t this_group;
2762 nodes_clear(this_group);
2763
2764 /* Sum group's NUMA faults; includes a==b case. */
2765 for_each_node_mask(b, nodes) {
2766 if (node_distance(a, b) < dist) {
2767 faults += group_faults(p, b);
2768 node_set(b, this_group);
2769 node_clear(b, nodes);
2770 }
2771 }
2772
2773 /* Remember the top group. */
2774 if (faults > max_faults) {
2775 max_faults = faults;
2776 max_group = this_group;
2777 /*
2778 * subtle: at the smallest distance there is
2779 * just one node left in each "group", the
2780 * winner is the preferred nid.
2781 */
2782 nid = a;
2783 }
2784 }
2785 /* Next round, evaluate the nodes within max_group. */
2786 if (!max_faults)
2787 break;
2788 nodes = max_group;
2789 }
2790 return nid;
2791 }
2792
task_numa_placement(struct task_struct * p)2793 static void task_numa_placement(struct task_struct *p)
2794 {
2795 int seq, nid, max_nid = NUMA_NO_NODE;
2796 unsigned long max_faults = 0;
2797 unsigned long fault_types[2] = { 0, 0 };
2798 unsigned long total_faults;
2799 u64 runtime, period;
2800 spinlock_t *group_lock = NULL;
2801 struct numa_group *ng;
2802
2803 /*
2804 * The p->mm->numa_scan_seq field gets updated without
2805 * exclusive access. Use READ_ONCE() here to ensure
2806 * that the field is read in a single access:
2807 */
2808 seq = READ_ONCE(p->mm->numa_scan_seq);
2809 if (p->numa_scan_seq == seq)
2810 return;
2811 p->numa_scan_seq = seq;
2812 p->numa_scan_period_max = task_scan_max(p);
2813
2814 total_faults = p->numa_faults_locality[0] +
2815 p->numa_faults_locality[1];
2816 runtime = numa_get_avg_runtime(p, &period);
2817
2818 /* If the task is part of a group prevent parallel updates to group stats */
2819 ng = deref_curr_numa_group(p);
2820 if (ng) {
2821 group_lock = &ng->lock;
2822 spin_lock_irq(group_lock);
2823 }
2824
2825 /* Find the node with the highest number of faults */
2826 for_each_online_node(nid) {
2827 /* Keep track of the offsets in numa_faults array */
2828 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2829 unsigned long faults = 0, group_faults = 0;
2830 int priv;
2831
2832 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2833 long diff, f_diff, f_weight;
2834
2835 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2836 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2837 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2838 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2839
2840 /* Decay existing window, copy faults since last scan */
2841 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2842 fault_types[priv] += p->numa_faults[membuf_idx];
2843 p->numa_faults[membuf_idx] = 0;
2844
2845 /*
2846 * Normalize the faults_from, so all tasks in a group
2847 * count according to CPU use, instead of by the raw
2848 * number of faults. Tasks with little runtime have
2849 * little over-all impact on throughput, and thus their
2850 * faults are less important.
2851 */
2852 f_weight = div64_u64(runtime << 16, period + 1);
2853 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2854 (total_faults + 1);
2855 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2856 p->numa_faults[cpubuf_idx] = 0;
2857
2858 p->numa_faults[mem_idx] += diff;
2859 p->numa_faults[cpu_idx] += f_diff;
2860 faults += p->numa_faults[mem_idx];
2861 p->total_numa_faults += diff;
2862 if (ng) {
2863 /*
2864 * safe because we can only change our own group
2865 *
2866 * mem_idx represents the offset for a given
2867 * nid and priv in a specific region because it
2868 * is at the beginning of the numa_faults array.
2869 */
2870 ng->faults[mem_idx] += diff;
2871 ng->faults[cpu_idx] += f_diff;
2872 ng->total_faults += diff;
2873 group_faults += ng->faults[mem_idx];
2874 }
2875 }
2876
2877 if (!ng) {
2878 if (faults > max_faults) {
2879 max_faults = faults;
2880 max_nid = nid;
2881 }
2882 } else if (group_faults > max_faults) {
2883 max_faults = group_faults;
2884 max_nid = nid;
2885 }
2886 }
2887
2888 /* Cannot migrate task to CPU-less node */
2889 max_nid = numa_nearest_node(max_nid, N_CPU);
2890
2891 if (ng) {
2892 numa_group_count_active_nodes(ng);
2893 spin_unlock_irq(group_lock);
2894 max_nid = preferred_group_nid(p, max_nid);
2895 }
2896
2897 if (max_faults) {
2898 /* Set the new preferred node */
2899 if (max_nid != p->numa_preferred_nid)
2900 sched_setnuma(p, max_nid);
2901 }
2902
2903 update_task_scan_period(p, fault_types[0], fault_types[1]);
2904 }
2905
get_numa_group(struct numa_group * grp)2906 static inline int get_numa_group(struct numa_group *grp)
2907 {
2908 return refcount_inc_not_zero(&grp->refcount);
2909 }
2910
put_numa_group(struct numa_group * grp)2911 static inline void put_numa_group(struct numa_group *grp)
2912 {
2913 if (refcount_dec_and_test(&grp->refcount))
2914 kfree_rcu(grp, rcu);
2915 }
2916
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2917 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2918 int *priv)
2919 {
2920 struct numa_group *grp, *my_grp;
2921 struct task_struct *tsk;
2922 bool join = false;
2923 int cpu = cpupid_to_cpu(cpupid);
2924 int i;
2925
2926 if (unlikely(!deref_curr_numa_group(p))) {
2927 unsigned int size = sizeof(struct numa_group) +
2928 NR_NUMA_HINT_FAULT_STATS *
2929 nr_node_ids * sizeof(unsigned long);
2930
2931 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2932 if (!grp)
2933 return;
2934
2935 refcount_set(&grp->refcount, 1);
2936 grp->active_nodes = 1;
2937 grp->max_faults_cpu = 0;
2938 spin_lock_init(&grp->lock);
2939 grp->gid = p->pid;
2940
2941 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2942 grp->faults[i] = p->numa_faults[i];
2943
2944 grp->total_faults = p->total_numa_faults;
2945
2946 grp->nr_tasks++;
2947 rcu_assign_pointer(p->numa_group, grp);
2948 }
2949
2950 rcu_read_lock();
2951 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2952
2953 if (!cpupid_match_pid(tsk, cpupid))
2954 goto no_join;
2955
2956 grp = rcu_dereference(tsk->numa_group);
2957 if (!grp)
2958 goto no_join;
2959
2960 my_grp = deref_curr_numa_group(p);
2961 if (grp == my_grp)
2962 goto no_join;
2963
2964 /*
2965 * Only join the other group if its bigger; if we're the bigger group,
2966 * the other task will join us.
2967 */
2968 if (my_grp->nr_tasks > grp->nr_tasks)
2969 goto no_join;
2970
2971 /*
2972 * Tie-break on the grp address.
2973 */
2974 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2975 goto no_join;
2976
2977 /* Always join threads in the same process. */
2978 if (tsk->mm == current->mm)
2979 join = true;
2980
2981 /* Simple filter to avoid false positives due to PID collisions */
2982 if (flags & TNF_SHARED)
2983 join = true;
2984
2985 /* Update priv based on whether false sharing was detected */
2986 *priv = !join;
2987
2988 if (join && !get_numa_group(grp))
2989 goto no_join;
2990
2991 rcu_read_unlock();
2992
2993 if (!join)
2994 return;
2995
2996 WARN_ON_ONCE(irqs_disabled());
2997 double_lock_irq(&my_grp->lock, &grp->lock);
2998
2999 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3000 my_grp->faults[i] -= p->numa_faults[i];
3001 grp->faults[i] += p->numa_faults[i];
3002 }
3003 my_grp->total_faults -= p->total_numa_faults;
3004 grp->total_faults += p->total_numa_faults;
3005
3006 my_grp->nr_tasks--;
3007 grp->nr_tasks++;
3008
3009 spin_unlock(&my_grp->lock);
3010 spin_unlock_irq(&grp->lock);
3011
3012 rcu_assign_pointer(p->numa_group, grp);
3013
3014 put_numa_group(my_grp);
3015 return;
3016
3017 no_join:
3018 rcu_read_unlock();
3019 return;
3020 }
3021
3022 /*
3023 * Get rid of NUMA statistics associated with a task (either current or dead).
3024 * If @final is set, the task is dead and has reached refcount zero, so we can
3025 * safely free all relevant data structures. Otherwise, there might be
3026 * concurrent reads from places like load balancing and procfs, and we should
3027 * reset the data back to default state without freeing ->numa_faults.
3028 */
task_numa_free(struct task_struct * p,bool final)3029 void task_numa_free(struct task_struct *p, bool final)
3030 {
3031 /* safe: p either is current or is being freed by current */
3032 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3033 unsigned long *numa_faults = p->numa_faults;
3034 unsigned long flags;
3035 int i;
3036
3037 if (!numa_faults)
3038 return;
3039
3040 if (grp) {
3041 spin_lock_irqsave(&grp->lock, flags);
3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3043 grp->faults[i] -= p->numa_faults[i];
3044 grp->total_faults -= p->total_numa_faults;
3045
3046 grp->nr_tasks--;
3047 spin_unlock_irqrestore(&grp->lock, flags);
3048 RCU_INIT_POINTER(p->numa_group, NULL);
3049 put_numa_group(grp);
3050 }
3051
3052 if (final) {
3053 p->numa_faults = NULL;
3054 kfree(numa_faults);
3055 } else {
3056 p->total_numa_faults = 0;
3057 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3058 numa_faults[i] = 0;
3059 }
3060 }
3061
3062 /*
3063 * Got a PROT_NONE fault for a page on @node.
3064 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3066 {
3067 struct task_struct *p = current;
3068 bool migrated = flags & TNF_MIGRATED;
3069 int cpu_node = task_node(current);
3070 int local = !!(flags & TNF_FAULT_LOCAL);
3071 struct numa_group *ng;
3072 int priv;
3073
3074 if (!static_branch_likely(&sched_numa_balancing))
3075 return;
3076
3077 /* for example, ksmd faulting in a user's mm */
3078 if (!p->mm)
3079 return;
3080
3081 /*
3082 * NUMA faults statistics are unnecessary for the slow memory
3083 * node for memory tiering mode.
3084 */
3085 if (!node_is_toptier(mem_node) &&
3086 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3087 !cpupid_valid(last_cpupid)))
3088 return;
3089
3090 /* Allocate buffer to track faults on a per-node basis */
3091 if (unlikely(!p->numa_faults)) {
3092 int size = sizeof(*p->numa_faults) *
3093 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3094
3095 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3096 if (!p->numa_faults)
3097 return;
3098
3099 p->total_numa_faults = 0;
3100 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3101 }
3102
3103 /*
3104 * First accesses are treated as private, otherwise consider accesses
3105 * to be private if the accessing pid has not changed
3106 */
3107 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3108 priv = 1;
3109 } else {
3110 priv = cpupid_match_pid(p, last_cpupid);
3111 if (!priv && !(flags & TNF_NO_GROUP))
3112 task_numa_group(p, last_cpupid, flags, &priv);
3113 }
3114
3115 /*
3116 * If a workload spans multiple NUMA nodes, a shared fault that
3117 * occurs wholly within the set of nodes that the workload is
3118 * actively using should be counted as local. This allows the
3119 * scan rate to slow down when a workload has settled down.
3120 */
3121 ng = deref_curr_numa_group(p);
3122 if (!priv && !local && ng && ng->active_nodes > 1 &&
3123 numa_is_active_node(cpu_node, ng) &&
3124 numa_is_active_node(mem_node, ng))
3125 local = 1;
3126
3127 /*
3128 * Retry to migrate task to preferred node periodically, in case it
3129 * previously failed, or the scheduler moved us.
3130 */
3131 if (time_after(jiffies, p->numa_migrate_retry)) {
3132 task_numa_placement(p);
3133 numa_migrate_preferred(p);
3134 }
3135
3136 if (migrated)
3137 p->numa_pages_migrated += pages;
3138 if (flags & TNF_MIGRATE_FAIL)
3139 p->numa_faults_locality[2] += pages;
3140
3141 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3142 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3143 p->numa_faults_locality[local] += pages;
3144 }
3145
reset_ptenuma_scan(struct task_struct * p)3146 static void reset_ptenuma_scan(struct task_struct *p)
3147 {
3148 /*
3149 * We only did a read acquisition of the mmap sem, so
3150 * p->mm->numa_scan_seq is written to without exclusive access
3151 * and the update is not guaranteed to be atomic. That's not
3152 * much of an issue though, since this is just used for
3153 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3154 * expensive, to avoid any form of compiler optimizations:
3155 */
3156 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3157 p->mm->numa_scan_offset = 0;
3158 }
3159
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3160 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3161 {
3162 unsigned long pids;
3163 /*
3164 * Allow unconditional access first two times, so that all the (pages)
3165 * of VMAs get prot_none fault introduced irrespective of accesses.
3166 * This is also done to avoid any side effect of task scanning
3167 * amplifying the unfairness of disjoint set of VMAs' access.
3168 */
3169 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3170 return true;
3171
3172 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3173 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3174 return true;
3175
3176 /*
3177 * Complete a scan that has already started regardless of PID access, or
3178 * some VMAs may never be scanned in multi-threaded applications:
3179 */
3180 if (mm->numa_scan_offset > vma->vm_start) {
3181 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3182 return true;
3183 }
3184
3185 return false;
3186 }
3187
3188 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3189
3190 /*
3191 * The expensive part of numa migration is done from task_work context.
3192 * Triggered from task_tick_numa().
3193 */
task_numa_work(struct callback_head * work)3194 static void task_numa_work(struct callback_head *work)
3195 {
3196 unsigned long migrate, next_scan, now = jiffies;
3197 struct task_struct *p = current;
3198 struct mm_struct *mm = p->mm;
3199 u64 runtime = p->se.sum_exec_runtime;
3200 struct vm_area_struct *vma;
3201 unsigned long start, end;
3202 unsigned long nr_pte_updates = 0;
3203 long pages, virtpages;
3204 struct vma_iterator vmi;
3205 bool vma_pids_skipped;
3206 bool vma_pids_forced = false;
3207
3208 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3209
3210 work->next = work;
3211 /*
3212 * Who cares about NUMA placement when they're dying.
3213 *
3214 * NOTE: make sure not to dereference p->mm before this check,
3215 * exit_task_work() happens _after_ exit_mm() so we could be called
3216 * without p->mm even though we still had it when we enqueued this
3217 * work.
3218 */
3219 if (p->flags & PF_EXITING)
3220 return;
3221
3222 if (!mm->numa_next_scan) {
3223 mm->numa_next_scan = now +
3224 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3225 }
3226
3227 /*
3228 * Enforce maximal scan/migration frequency..
3229 */
3230 migrate = mm->numa_next_scan;
3231 if (time_before(now, migrate))
3232 return;
3233
3234 if (p->numa_scan_period == 0) {
3235 p->numa_scan_period_max = task_scan_max(p);
3236 p->numa_scan_period = task_scan_start(p);
3237 }
3238
3239 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3240 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3241 return;
3242
3243 /*
3244 * Delay this task enough that another task of this mm will likely win
3245 * the next time around.
3246 */
3247 p->node_stamp += 2 * TICK_NSEC;
3248
3249 pages = sysctl_numa_balancing_scan_size;
3250 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3251 virtpages = pages * 8; /* Scan up to this much virtual space */
3252 if (!pages)
3253 return;
3254
3255
3256 if (!mmap_read_trylock(mm))
3257 return;
3258
3259 /*
3260 * VMAs are skipped if the current PID has not trapped a fault within
3261 * the VMA recently. Allow scanning to be forced if there is no
3262 * suitable VMA remaining.
3263 */
3264 vma_pids_skipped = false;
3265
3266 retry_pids:
3267 start = mm->numa_scan_offset;
3268 vma_iter_init(&vmi, mm, start);
3269 vma = vma_next(&vmi);
3270 if (!vma) {
3271 reset_ptenuma_scan(p);
3272 start = 0;
3273 vma_iter_set(&vmi, start);
3274 vma = vma_next(&vmi);
3275 }
3276
3277 do {
3278 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3279 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3280 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3281 continue;
3282 }
3283
3284 /*
3285 * Shared library pages mapped by multiple processes are not
3286 * migrated as it is expected they are cache replicated. Avoid
3287 * hinting faults in read-only file-backed mappings or the vdso
3288 * as migrating the pages will be of marginal benefit.
3289 */
3290 if (!vma->vm_mm ||
3291 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3292 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3293 continue;
3294 }
3295
3296 /*
3297 * Skip inaccessible VMAs to avoid any confusion between
3298 * PROT_NONE and NUMA hinting ptes
3299 */
3300 if (!vma_is_accessible(vma)) {
3301 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3302 continue;
3303 }
3304
3305 /* Initialise new per-VMA NUMAB state. */
3306 if (!vma->numab_state) {
3307 vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3308 GFP_KERNEL);
3309 if (!vma->numab_state)
3310 continue;
3311
3312 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3313
3314 vma->numab_state->next_scan = now +
3315 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3316
3317 /* Reset happens after 4 times scan delay of scan start */
3318 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3319 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3320
3321 /*
3322 * Ensure prev_scan_seq does not match numa_scan_seq,
3323 * to prevent VMAs being skipped prematurely on the
3324 * first scan:
3325 */
3326 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3327 }
3328
3329 /*
3330 * Scanning the VMA's of short lived tasks add more overhead. So
3331 * delay the scan for new VMAs.
3332 */
3333 if (mm->numa_scan_seq && time_before(jiffies,
3334 vma->numab_state->next_scan)) {
3335 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3336 continue;
3337 }
3338
3339 /* RESET access PIDs regularly for old VMAs. */
3340 if (mm->numa_scan_seq &&
3341 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3342 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3343 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3344 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3345 vma->numab_state->pids_active[1] = 0;
3346 }
3347
3348 /* Do not rescan VMAs twice within the same sequence. */
3349 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3350 mm->numa_scan_offset = vma->vm_end;
3351 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3352 continue;
3353 }
3354
3355 /*
3356 * Do not scan the VMA if task has not accessed it, unless no other
3357 * VMA candidate exists.
3358 */
3359 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3360 vma_pids_skipped = true;
3361 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3362 continue;
3363 }
3364
3365 do {
3366 start = max(start, vma->vm_start);
3367 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3368 end = min(end, vma->vm_end);
3369 nr_pte_updates = change_prot_numa(vma, start, end);
3370
3371 /*
3372 * Try to scan sysctl_numa_balancing_size worth of
3373 * hpages that have at least one present PTE that
3374 * is not already pte-numa. If the VMA contains
3375 * areas that are unused or already full of prot_numa
3376 * PTEs, scan up to virtpages, to skip through those
3377 * areas faster.
3378 */
3379 if (nr_pte_updates)
3380 pages -= (end - start) >> PAGE_SHIFT;
3381 virtpages -= (end - start) >> PAGE_SHIFT;
3382
3383 start = end;
3384 if (pages <= 0 || virtpages <= 0)
3385 goto out;
3386
3387 cond_resched();
3388 } while (end != vma->vm_end);
3389
3390 /* VMA scan is complete, do not scan until next sequence. */
3391 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3392
3393 /*
3394 * Only force scan within one VMA at a time, to limit the
3395 * cost of scanning a potentially uninteresting VMA.
3396 */
3397 if (vma_pids_forced)
3398 break;
3399 } for_each_vma(vmi, vma);
3400
3401 /*
3402 * If no VMAs are remaining and VMAs were skipped due to the PID
3403 * not accessing the VMA previously, then force a scan to ensure
3404 * forward progress:
3405 */
3406 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3407 vma_pids_forced = true;
3408 goto retry_pids;
3409 }
3410
3411 out:
3412 /*
3413 * It is possible to reach the end of the VMA list but the last few
3414 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3415 * would find the !migratable VMA on the next scan but not reset the
3416 * scanner to the start so check it now.
3417 */
3418 if (vma)
3419 mm->numa_scan_offset = start;
3420 else
3421 reset_ptenuma_scan(p);
3422 mmap_read_unlock(mm);
3423
3424 /*
3425 * Make sure tasks use at least 32x as much time to run other code
3426 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3427 * Usually update_task_scan_period slows down scanning enough; on an
3428 * overloaded system we need to limit overhead on a per task basis.
3429 */
3430 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3431 u64 diff = p->se.sum_exec_runtime - runtime;
3432 p->node_stamp += 32 * diff;
3433 }
3434 }
3435
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)3436 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3437 {
3438 int mm_users = 0;
3439 struct mm_struct *mm = p->mm;
3440
3441 if (mm) {
3442 mm_users = atomic_read(&mm->mm_users);
3443 if (mm_users == 1) {
3444 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3445 mm->numa_scan_seq = 0;
3446 }
3447 }
3448 p->node_stamp = 0;
3449 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3450 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3451 p->numa_migrate_retry = 0;
3452 /* Protect against double add, see task_tick_numa and task_numa_work */
3453 p->numa_work.next = &p->numa_work;
3454 p->numa_faults = NULL;
3455 p->numa_pages_migrated = 0;
3456 p->total_numa_faults = 0;
3457 RCU_INIT_POINTER(p->numa_group, NULL);
3458 p->last_task_numa_placement = 0;
3459 p->last_sum_exec_runtime = 0;
3460
3461 init_task_work(&p->numa_work, task_numa_work);
3462
3463 /* New address space, reset the preferred nid */
3464 if (!(clone_flags & CLONE_VM)) {
3465 p->numa_preferred_nid = NUMA_NO_NODE;
3466 return;
3467 }
3468
3469 /*
3470 * New thread, keep existing numa_preferred_nid which should be copied
3471 * already by arch_dup_task_struct but stagger when scans start.
3472 */
3473 if (mm) {
3474 unsigned int delay;
3475
3476 delay = min_t(unsigned int, task_scan_max(current),
3477 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3478 delay += 2 * TICK_NSEC;
3479 p->node_stamp = delay;
3480 }
3481 }
3482
3483 /*
3484 * Drive the periodic memory faults..
3485 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3486 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3487 {
3488 struct callback_head *work = &curr->numa_work;
3489 u64 period, now;
3490
3491 /*
3492 * We don't care about NUMA placement if we don't have memory.
3493 */
3494 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3495 return;
3496
3497 /*
3498 * Using runtime rather than walltime has the dual advantage that
3499 * we (mostly) drive the selection from busy threads and that the
3500 * task needs to have done some actual work before we bother with
3501 * NUMA placement.
3502 */
3503 now = curr->se.sum_exec_runtime;
3504 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3505
3506 if (now > curr->node_stamp + period) {
3507 if (!curr->node_stamp)
3508 curr->numa_scan_period = task_scan_start(curr);
3509 curr->node_stamp += period;
3510
3511 if (!time_before(jiffies, curr->mm->numa_next_scan))
3512 task_work_add(curr, work, TWA_RESUME);
3513 }
3514 }
3515
update_scan_period(struct task_struct * p,int new_cpu)3516 static void update_scan_period(struct task_struct *p, int new_cpu)
3517 {
3518 int src_nid = cpu_to_node(task_cpu(p));
3519 int dst_nid = cpu_to_node(new_cpu);
3520
3521 if (!static_branch_likely(&sched_numa_balancing))
3522 return;
3523
3524 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3525 return;
3526
3527 if (src_nid == dst_nid)
3528 return;
3529
3530 /*
3531 * Allow resets if faults have been trapped before one scan
3532 * has completed. This is most likely due to a new task that
3533 * is pulled cross-node due to wakeups or load balancing.
3534 */
3535 if (p->numa_scan_seq) {
3536 /*
3537 * Avoid scan adjustments if moving to the preferred
3538 * node or if the task was not previously running on
3539 * the preferred node.
3540 */
3541 if (dst_nid == p->numa_preferred_nid ||
3542 (p->numa_preferred_nid != NUMA_NO_NODE &&
3543 src_nid != p->numa_preferred_nid))
3544 return;
3545 }
3546
3547 p->numa_scan_period = task_scan_start(p);
3548 }
3549
3550 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3551 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3552 {
3553 }
3554
account_numa_enqueue(struct rq * rq,struct task_struct * p)3555 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3556 {
3557 }
3558
account_numa_dequeue(struct rq * rq,struct task_struct * p)3559 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3560 {
3561 }
3562
update_scan_period(struct task_struct * p,int new_cpu)3563 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3564 {
3565 }
3566
3567 #endif /* CONFIG_NUMA_BALANCING */
3568
3569 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3570 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3571 {
3572 update_load_add(&cfs_rq->load, se->load.weight);
3573 #ifdef CONFIG_SMP
3574 if (entity_is_task(se)) {
3575 struct rq *rq = rq_of(cfs_rq);
3576
3577 account_numa_enqueue(rq, task_of(se));
3578 list_add(&se->group_node, &rq->cfs_tasks);
3579 }
3580 #endif
3581 cfs_rq->nr_running++;
3582 if (se_is_idle(se))
3583 cfs_rq->idle_nr_running++;
3584 }
3585
3586 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3587 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3588 {
3589 update_load_sub(&cfs_rq->load, se->load.weight);
3590 #ifdef CONFIG_SMP
3591 if (entity_is_task(se)) {
3592 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3593 list_del_init(&se->group_node);
3594 }
3595 #endif
3596 cfs_rq->nr_running--;
3597 if (se_is_idle(se))
3598 cfs_rq->idle_nr_running--;
3599 }
3600
3601 /*
3602 * Signed add and clamp on underflow.
3603 *
3604 * Explicitly do a load-store to ensure the intermediate value never hits
3605 * memory. This allows lockless observations without ever seeing the negative
3606 * values.
3607 */
3608 #define add_positive(_ptr, _val) do { \
3609 typeof(_ptr) ptr = (_ptr); \
3610 typeof(_val) val = (_val); \
3611 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3612 \
3613 res = var + val; \
3614 \
3615 if (val < 0 && res > var) \
3616 res = 0; \
3617 \
3618 WRITE_ONCE(*ptr, res); \
3619 } while (0)
3620
3621 /*
3622 * Unsigned subtract and clamp on underflow.
3623 *
3624 * Explicitly do a load-store to ensure the intermediate value never hits
3625 * memory. This allows lockless observations without ever seeing the negative
3626 * values.
3627 */
3628 #define sub_positive(_ptr, _val) do { \
3629 typeof(_ptr) ptr = (_ptr); \
3630 typeof(*ptr) val = (_val); \
3631 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3632 res = var - val; \
3633 if (res > var) \
3634 res = 0; \
3635 WRITE_ONCE(*ptr, res); \
3636 } while (0)
3637
3638 /*
3639 * Remove and clamp on negative, from a local variable.
3640 *
3641 * A variant of sub_positive(), which does not use explicit load-store
3642 * and is thus optimized for local variable updates.
3643 */
3644 #define lsub_positive(_ptr, _val) do { \
3645 typeof(_ptr) ptr = (_ptr); \
3646 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3647 } while (0)
3648
3649 #ifdef CONFIG_SMP
3650 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3651 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3652 {
3653 cfs_rq->avg.load_avg += se->avg.load_avg;
3654 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3655 }
3656
3657 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3658 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3659 {
3660 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3661 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3662 /* See update_cfs_rq_load_avg() */
3663 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3664 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3665 }
3666 #else
3667 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3668 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3669 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3671 #endif
3672
reweight_eevdf(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3673 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se,
3674 unsigned long weight)
3675 {
3676 unsigned long old_weight = se->load.weight;
3677 u64 avruntime = avg_vruntime(cfs_rq);
3678 s64 vlag, vslice;
3679
3680 /*
3681 * VRUNTIME
3682 * ========
3683 *
3684 * COROLLARY #1: The virtual runtime of the entity needs to be
3685 * adjusted if re-weight at !0-lag point.
3686 *
3687 * Proof: For contradiction assume this is not true, so we can
3688 * re-weight without changing vruntime at !0-lag point.
3689 *
3690 * Weight VRuntime Avg-VRuntime
3691 * before w v V
3692 * after w' v' V'
3693 *
3694 * Since lag needs to be preserved through re-weight:
3695 *
3696 * lag = (V - v)*w = (V'- v')*w', where v = v'
3697 * ==> V' = (V - v)*w/w' + v (1)
3698 *
3699 * Let W be the total weight of the entities before reweight,
3700 * since V' is the new weighted average of entities:
3701 *
3702 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3703 *
3704 * by using (1) & (2) we obtain:
3705 *
3706 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3707 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3708 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3709 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3710 *
3711 * Since we are doing at !0-lag point which means V != v, we
3712 * can simplify (3):
3713 *
3714 * ==> W / (W + w' - w) = w / w'
3715 * ==> Ww' = Ww + ww' - ww
3716 * ==> W * (w' - w) = w * (w' - w)
3717 * ==> W = w (re-weight indicates w' != w)
3718 *
3719 * So the cfs_rq contains only one entity, hence vruntime of
3720 * the entity @v should always equal to the cfs_rq's weighted
3721 * average vruntime @V, which means we will always re-weight
3722 * at 0-lag point, thus breach assumption. Proof completed.
3723 *
3724 *
3725 * COROLLARY #2: Re-weight does NOT affect weighted average
3726 * vruntime of all the entities.
3727 *
3728 * Proof: According to corollary #1, Eq. (1) should be:
3729 *
3730 * (V - v)*w = (V' - v')*w'
3731 * ==> v' = V' - (V - v)*w/w' (4)
3732 *
3733 * According to the weighted average formula, we have:
3734 *
3735 * V' = (WV - wv + w'v') / (W - w + w')
3736 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3737 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3738 * = (WV + w'V' - Vw) / (W - w + w')
3739 *
3740 * ==> V'*(W - w + w') = WV + w'V' - Vw
3741 * ==> V' * (W - w) = (W - w) * V (5)
3742 *
3743 * If the entity is the only one in the cfs_rq, then reweight
3744 * always occurs at 0-lag point, so V won't change. Or else
3745 * there are other entities, hence W != w, then Eq. (5) turns
3746 * into V' = V. So V won't change in either case, proof done.
3747 *
3748 *
3749 * So according to corollary #1 & #2, the effect of re-weight
3750 * on vruntime should be:
3751 *
3752 * v' = V' - (V - v) * w / w' (4)
3753 * = V - (V - v) * w / w'
3754 * = V - vl * w / w'
3755 * = V - vl'
3756 */
3757 if (avruntime != se->vruntime) {
3758 vlag = (s64)(avruntime - se->vruntime);
3759 vlag = div_s64(vlag * old_weight, weight);
3760 se->vruntime = avruntime - vlag;
3761 }
3762
3763 /*
3764 * DEADLINE
3765 * ========
3766 *
3767 * When the weight changes, the virtual time slope changes and
3768 * we should adjust the relative virtual deadline accordingly.
3769 *
3770 * d' = v' + (d - v)*w/w'
3771 * = V' - (V - v)*w/w' + (d - v)*w/w'
3772 * = V - (V - v)*w/w' + (d - v)*w/w'
3773 * = V + (d - V)*w/w'
3774 */
3775 vslice = (s64)(se->deadline - avruntime);
3776 vslice = div_s64(vslice * old_weight, weight);
3777 se->deadline = avruntime + vslice;
3778 }
3779
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3780 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3781 unsigned long weight)
3782 {
3783 bool curr = cfs_rq->curr == se;
3784
3785 if (se->on_rq) {
3786 /* commit outstanding execution time */
3787 if (curr)
3788 update_curr(cfs_rq);
3789 else
3790 __dequeue_entity(cfs_rq, se);
3791 update_load_sub(&cfs_rq->load, se->load.weight);
3792 }
3793 dequeue_load_avg(cfs_rq, se);
3794
3795 if (!se->on_rq) {
3796 /*
3797 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3798 * we need to scale se->vlag when w_i changes.
3799 */
3800 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3801 } else {
3802 reweight_eevdf(cfs_rq, se, weight);
3803 }
3804
3805 update_load_set(&se->load, weight);
3806
3807 #ifdef CONFIG_SMP
3808 do {
3809 u32 divider = get_pelt_divider(&se->avg);
3810
3811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3812 } while (0);
3813 #endif
3814
3815 enqueue_load_avg(cfs_rq, se);
3816 if (se->on_rq) {
3817 update_load_add(&cfs_rq->load, se->load.weight);
3818 if (!curr)
3819 __enqueue_entity(cfs_rq, se);
3820
3821 /*
3822 * The entity's vruntime has been adjusted, so let's check
3823 * whether the rq-wide min_vruntime needs updated too. Since
3824 * the calculations above require stable min_vruntime rather
3825 * than up-to-date one, we do the update at the end of the
3826 * reweight process.
3827 */
3828 update_min_vruntime(cfs_rq);
3829 }
3830 }
3831
reweight_task(struct task_struct * p,int prio)3832 void reweight_task(struct task_struct *p, int prio)
3833 {
3834 struct sched_entity *se = &p->se;
3835 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3836 struct load_weight *load = &se->load;
3837 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3838
3839 reweight_entity(cfs_rq, se, weight);
3840 load->inv_weight = sched_prio_to_wmult[prio];
3841 }
3842
3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3844
3845 #ifdef CONFIG_FAIR_GROUP_SCHED
3846 #ifdef CONFIG_SMP
3847 /*
3848 * All this does is approximate the hierarchical proportion which includes that
3849 * global sum we all love to hate.
3850 *
3851 * That is, the weight of a group entity, is the proportional share of the
3852 * group weight based on the group runqueue weights. That is:
3853 *
3854 * tg->weight * grq->load.weight
3855 * ge->load.weight = ----------------------------- (1)
3856 * \Sum grq->load.weight
3857 *
3858 * Now, because computing that sum is prohibitively expensive to compute (been
3859 * there, done that) we approximate it with this average stuff. The average
3860 * moves slower and therefore the approximation is cheaper and more stable.
3861 *
3862 * So instead of the above, we substitute:
3863 *
3864 * grq->load.weight -> grq->avg.load_avg (2)
3865 *
3866 * which yields the following:
3867 *
3868 * tg->weight * grq->avg.load_avg
3869 * ge->load.weight = ------------------------------ (3)
3870 * tg->load_avg
3871 *
3872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3873 *
3874 * That is shares_avg, and it is right (given the approximation (2)).
3875 *
3876 * The problem with it is that because the average is slow -- it was designed
3877 * to be exactly that of course -- this leads to transients in boundary
3878 * conditions. In specific, the case where the group was idle and we start the
3879 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3880 * yielding bad latency etc..
3881 *
3882 * Now, in that special case (1) reduces to:
3883 *
3884 * tg->weight * grq->load.weight
3885 * ge->load.weight = ----------------------------- = tg->weight (4)
3886 * grp->load.weight
3887 *
3888 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3889 *
3890 * So what we do is modify our approximation (3) to approach (4) in the (near)
3891 * UP case, like:
3892 *
3893 * ge->load.weight =
3894 *
3895 * tg->weight * grq->load.weight
3896 * --------------------------------------------------- (5)
3897 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3898 *
3899 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3900 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3901 *
3902 *
3903 * tg->weight * grq->load.weight
3904 * ge->load.weight = ----------------------------- (6)
3905 * tg_load_avg'
3906 *
3907 * Where:
3908 *
3909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3910 * max(grq->load.weight, grq->avg.load_avg)
3911 *
3912 * And that is shares_weight and is icky. In the (near) UP case it approaches
3913 * (4) while in the normal case it approaches (3). It consistently
3914 * overestimates the ge->load.weight and therefore:
3915 *
3916 * \Sum ge->load.weight >= tg->weight
3917 *
3918 * hence icky!
3919 */
calc_group_shares(struct cfs_rq * cfs_rq)3920 static long calc_group_shares(struct cfs_rq *cfs_rq)
3921 {
3922 long tg_weight, tg_shares, load, shares;
3923 struct task_group *tg = cfs_rq->tg;
3924
3925 tg_shares = READ_ONCE(tg->shares);
3926
3927 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3928
3929 tg_weight = atomic_long_read(&tg->load_avg);
3930
3931 /* Ensure tg_weight >= load */
3932 tg_weight -= cfs_rq->tg_load_avg_contrib;
3933 tg_weight += load;
3934
3935 shares = (tg_shares * load);
3936 if (tg_weight)
3937 shares /= tg_weight;
3938
3939 /*
3940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3941 * of a group with small tg->shares value. It is a floor value which is
3942 * assigned as a minimum load.weight to the sched_entity representing
3943 * the group on a CPU.
3944 *
3945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3946 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3949 * instead of 0.
3950 */
3951 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3952 }
3953 #endif /* CONFIG_SMP */
3954
3955 /*
3956 * Recomputes the group entity based on the current state of its group
3957 * runqueue.
3958 */
update_cfs_group(struct sched_entity * se)3959 static void update_cfs_group(struct sched_entity *se)
3960 {
3961 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3962 long shares;
3963
3964 if (!gcfs_rq)
3965 return;
3966
3967 if (throttled_hierarchy(gcfs_rq))
3968 return;
3969
3970 #ifndef CONFIG_SMP
3971 shares = READ_ONCE(gcfs_rq->tg->shares);
3972 #else
3973 shares = calc_group_shares(gcfs_rq);
3974 #endif
3975 if (unlikely(se->load.weight != shares))
3976 reweight_entity(cfs_rq_of(se), se, shares);
3977 }
3978
3979 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3980 static inline void update_cfs_group(struct sched_entity *se)
3981 {
3982 }
3983 #endif /* CONFIG_FAIR_GROUP_SCHED */
3984
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3985 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3986 {
3987 struct rq *rq = rq_of(cfs_rq);
3988
3989 if (&rq->cfs == cfs_rq) {
3990 /*
3991 * There are a few boundary cases this might miss but it should
3992 * get called often enough that that should (hopefully) not be
3993 * a real problem.
3994 *
3995 * It will not get called when we go idle, because the idle
3996 * thread is a different class (!fair), nor will the utilization
3997 * number include things like RT tasks.
3998 *
3999 * As is, the util number is not freq-invariant (we'd have to
4000 * implement arch_scale_freq_capacity() for that).
4001 *
4002 * See cpu_util_cfs().
4003 */
4004 cpufreq_update_util(rq, flags);
4005 }
4006 }
4007
4008 #ifdef CONFIG_SMP
load_avg_is_decayed(struct sched_avg * sa)4009 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4010 {
4011 if (sa->load_sum)
4012 return false;
4013
4014 if (sa->util_sum)
4015 return false;
4016
4017 if (sa->runnable_sum)
4018 return false;
4019
4020 /*
4021 * _avg must be null when _sum are null because _avg = _sum / divider
4022 * Make sure that rounding and/or propagation of PELT values never
4023 * break this.
4024 */
4025 SCHED_WARN_ON(sa->load_avg ||
4026 sa->util_avg ||
4027 sa->runnable_avg);
4028
4029 return true;
4030 }
4031
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4032 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4033 {
4034 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4035 cfs_rq->last_update_time_copy);
4036 }
4037 #ifdef CONFIG_FAIR_GROUP_SCHED
4038 /*
4039 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4040 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4041 * bottom-up, we only have to test whether the cfs_rq before us on the list
4042 * is our child.
4043 * If cfs_rq is not on the list, test whether a child needs its to be added to
4044 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4045 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4046 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4047 {
4048 struct cfs_rq *prev_cfs_rq;
4049 struct list_head *prev;
4050
4051 if (cfs_rq->on_list) {
4052 prev = cfs_rq->leaf_cfs_rq_list.prev;
4053 } else {
4054 struct rq *rq = rq_of(cfs_rq);
4055
4056 prev = rq->tmp_alone_branch;
4057 }
4058
4059 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4060
4061 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4062 }
4063
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4065 {
4066 if (cfs_rq->load.weight)
4067 return false;
4068
4069 if (!load_avg_is_decayed(&cfs_rq->avg))
4070 return false;
4071
4072 if (child_cfs_rq_on_list(cfs_rq))
4073 return false;
4074
4075 return true;
4076 }
4077
4078 /**
4079 * update_tg_load_avg - update the tg's load avg
4080 * @cfs_rq: the cfs_rq whose avg changed
4081 *
4082 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4083 * However, because tg->load_avg is a global value there are performance
4084 * considerations.
4085 *
4086 * In order to avoid having to look at the other cfs_rq's, we use a
4087 * differential update where we store the last value we propagated. This in
4088 * turn allows skipping updates if the differential is 'small'.
4089 *
4090 * Updating tg's load_avg is necessary before update_cfs_share().
4091 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4093 {
4094 long delta;
4095 u64 now;
4096
4097 /*
4098 * No need to update load_avg for root_task_group as it is not used.
4099 */
4100 if (cfs_rq->tg == &root_task_group)
4101 return;
4102
4103 /* rq has been offline and doesn't contribute to the share anymore: */
4104 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4105 return;
4106
4107 /*
4108 * For migration heavy workloads, access to tg->load_avg can be
4109 * unbound. Limit the update rate to at most once per ms.
4110 */
4111 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4112 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4113 return;
4114
4115 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4116 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4117 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4118 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4119 cfs_rq->last_update_tg_load_avg = now;
4120 }
4121 }
4122
clear_tg_load_avg(struct cfs_rq * cfs_rq)4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4124 {
4125 long delta;
4126 u64 now;
4127
4128 /*
4129 * No need to update load_avg for root_task_group, as it is not used.
4130 */
4131 if (cfs_rq->tg == &root_task_group)
4132 return;
4133
4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4135 delta = 0 - cfs_rq->tg_load_avg_contrib;
4136 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4137 cfs_rq->tg_load_avg_contrib = 0;
4138 cfs_rq->last_update_tg_load_avg = now;
4139 }
4140
4141 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4143 {
4144 struct task_group *tg;
4145
4146 lockdep_assert_rq_held(rq);
4147
4148 /*
4149 * The rq clock has already been updated in
4150 * set_rq_offline(), so we should skip updating
4151 * the rq clock again in unthrottle_cfs_rq().
4152 */
4153 rq_clock_start_loop_update(rq);
4154
4155 rcu_read_lock();
4156 list_for_each_entry_rcu(tg, &task_groups, list) {
4157 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4158
4159 clear_tg_load_avg(cfs_rq);
4160 }
4161 rcu_read_unlock();
4162
4163 rq_clock_stop_loop_update(rq);
4164 }
4165
4166 /*
4167 * Called within set_task_rq() right before setting a task's CPU. The
4168 * caller only guarantees p->pi_lock is held; no other assumptions,
4169 * including the state of rq->lock, should be made.
4170 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4171 void set_task_rq_fair(struct sched_entity *se,
4172 struct cfs_rq *prev, struct cfs_rq *next)
4173 {
4174 u64 p_last_update_time;
4175 u64 n_last_update_time;
4176
4177 if (!sched_feat(ATTACH_AGE_LOAD))
4178 return;
4179
4180 /*
4181 * We are supposed to update the task to "current" time, then its up to
4182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4183 * getting what current time is, so simply throw away the out-of-date
4184 * time. This will result in the wakee task is less decayed, but giving
4185 * the wakee more load sounds not bad.
4186 */
4187 if (!(se->avg.last_update_time && prev))
4188 return;
4189
4190 p_last_update_time = cfs_rq_last_update_time(prev);
4191 n_last_update_time = cfs_rq_last_update_time(next);
4192
4193 __update_load_avg_blocked_se(p_last_update_time, se);
4194 se->avg.last_update_time = n_last_update_time;
4195 }
4196
4197 /*
4198 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4199 * propagate its contribution. The key to this propagation is the invariant
4200 * that for each group:
4201 *
4202 * ge->avg == grq->avg (1)
4203 *
4204 * _IFF_ we look at the pure running and runnable sums. Because they
4205 * represent the very same entity, just at different points in the hierarchy.
4206 *
4207 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4208 * and simply copies the running/runnable sum over (but still wrong, because
4209 * the group entity and group rq do not have their PELT windows aligned).
4210 *
4211 * However, update_tg_cfs_load() is more complex. So we have:
4212 *
4213 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4214 *
4215 * And since, like util, the runnable part should be directly transferable,
4216 * the following would _appear_ to be the straight forward approach:
4217 *
4218 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4219 *
4220 * And per (1) we have:
4221 *
4222 * ge->avg.runnable_avg == grq->avg.runnable_avg
4223 *
4224 * Which gives:
4225 *
4226 * ge->load.weight * grq->avg.load_avg
4227 * ge->avg.load_avg = ----------------------------------- (4)
4228 * grq->load.weight
4229 *
4230 * Except that is wrong!
4231 *
4232 * Because while for entities historical weight is not important and we
4233 * really only care about our future and therefore can consider a pure
4234 * runnable sum, runqueues can NOT do this.
4235 *
4236 * We specifically want runqueues to have a load_avg that includes
4237 * historical weights. Those represent the blocked load, the load we expect
4238 * to (shortly) return to us. This only works by keeping the weights as
4239 * integral part of the sum. We therefore cannot decompose as per (3).
4240 *
4241 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4242 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4243 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4244 * runnable section of these tasks overlap (or not). If they were to perfectly
4245 * align the rq as a whole would be runnable 2/3 of the time. If however we
4246 * always have at least 1 runnable task, the rq as a whole is always runnable.
4247 *
4248 * So we'll have to approximate.. :/
4249 *
4250 * Given the constraint:
4251 *
4252 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4253 *
4254 * We can construct a rule that adds runnable to a rq by assuming minimal
4255 * overlap.
4256 *
4257 * On removal, we'll assume each task is equally runnable; which yields:
4258 *
4259 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4260 *
4261 * XXX: only do this for the part of runnable > running ?
4262 *
4263 */
4264 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4266 {
4267 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4268 u32 new_sum, divider;
4269
4270 /* Nothing to update */
4271 if (!delta_avg)
4272 return;
4273
4274 /*
4275 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4276 * See ___update_load_avg() for details.
4277 */
4278 divider = get_pelt_divider(&cfs_rq->avg);
4279
4280
4281 /* Set new sched_entity's utilization */
4282 se->avg.util_avg = gcfs_rq->avg.util_avg;
4283 new_sum = se->avg.util_avg * divider;
4284 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4285 se->avg.util_sum = new_sum;
4286
4287 /* Update parent cfs_rq utilization */
4288 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4289 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4290
4291 /* See update_cfs_rq_load_avg() */
4292 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4293 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4294 }
4295
4296 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4298 {
4299 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4300 u32 new_sum, divider;
4301
4302 /* Nothing to update */
4303 if (!delta_avg)
4304 return;
4305
4306 /*
4307 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4308 * See ___update_load_avg() for details.
4309 */
4310 divider = get_pelt_divider(&cfs_rq->avg);
4311
4312 /* Set new sched_entity's runnable */
4313 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4314 new_sum = se->avg.runnable_avg * divider;
4315 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4316 se->avg.runnable_sum = new_sum;
4317
4318 /* Update parent cfs_rq runnable */
4319 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4320 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4321 /* See update_cfs_rq_load_avg() */
4322 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4323 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4324 }
4325
4326 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4328 {
4329 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4330 unsigned long load_avg;
4331 u64 load_sum = 0;
4332 s64 delta_sum;
4333 u32 divider;
4334
4335 if (!runnable_sum)
4336 return;
4337
4338 gcfs_rq->prop_runnable_sum = 0;
4339
4340 /*
4341 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4342 * See ___update_load_avg() for details.
4343 */
4344 divider = get_pelt_divider(&cfs_rq->avg);
4345
4346 if (runnable_sum >= 0) {
4347 /*
4348 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4349 * the CPU is saturated running == runnable.
4350 */
4351 runnable_sum += se->avg.load_sum;
4352 runnable_sum = min_t(long, runnable_sum, divider);
4353 } else {
4354 /*
4355 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4356 * assuming all tasks are equally runnable.
4357 */
4358 if (scale_load_down(gcfs_rq->load.weight)) {
4359 load_sum = div_u64(gcfs_rq->avg.load_sum,
4360 scale_load_down(gcfs_rq->load.weight));
4361 }
4362
4363 /* But make sure to not inflate se's runnable */
4364 runnable_sum = min(se->avg.load_sum, load_sum);
4365 }
4366
4367 /*
4368 * runnable_sum can't be lower than running_sum
4369 * Rescale running sum to be in the same range as runnable sum
4370 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4371 * runnable_sum is in [0 : LOAD_AVG_MAX]
4372 */
4373 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4374 runnable_sum = max(runnable_sum, running_sum);
4375
4376 load_sum = se_weight(se) * runnable_sum;
4377 load_avg = div_u64(load_sum, divider);
4378
4379 delta_avg = load_avg - se->avg.load_avg;
4380 if (!delta_avg)
4381 return;
4382
4383 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4384
4385 se->avg.load_sum = runnable_sum;
4386 se->avg.load_avg = load_avg;
4387 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4388 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4389 /* See update_cfs_rq_load_avg() */
4390 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4391 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4392 }
4393
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4395 {
4396 cfs_rq->propagate = 1;
4397 cfs_rq->prop_runnable_sum += runnable_sum;
4398 }
4399
4400 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4401 static inline int propagate_entity_load_avg(struct sched_entity *se)
4402 {
4403 struct cfs_rq *cfs_rq, *gcfs_rq;
4404
4405 if (entity_is_task(se))
4406 return 0;
4407
4408 gcfs_rq = group_cfs_rq(se);
4409 if (!gcfs_rq->propagate)
4410 return 0;
4411
4412 gcfs_rq->propagate = 0;
4413
4414 cfs_rq = cfs_rq_of(se);
4415
4416 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4417
4418 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4419 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4420 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4421
4422 trace_pelt_cfs_tp(cfs_rq);
4423 trace_pelt_se_tp(se);
4424
4425 return 1;
4426 }
4427
4428 /*
4429 * Check if we need to update the load and the utilization of a blocked
4430 * group_entity:
4431 */
skip_blocked_update(struct sched_entity * se)4432 static inline bool skip_blocked_update(struct sched_entity *se)
4433 {
4434 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4435
4436 /*
4437 * If sched_entity still have not zero load or utilization, we have to
4438 * decay it:
4439 */
4440 if (se->avg.load_avg || se->avg.util_avg)
4441 return false;
4442
4443 /*
4444 * If there is a pending propagation, we have to update the load and
4445 * the utilization of the sched_entity:
4446 */
4447 if (gcfs_rq->propagate)
4448 return false;
4449
4450 /*
4451 * Otherwise, the load and the utilization of the sched_entity is
4452 * already zero and there is no pending propagation, so it will be a
4453 * waste of time to try to decay it:
4454 */
4455 return true;
4456 }
4457
4458 #else /* CONFIG_FAIR_GROUP_SCHED */
4459
update_tg_load_avg(struct cfs_rq * cfs_rq)4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4461
clear_tg_offline_cfs_rqs(struct rq * rq)4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4463
propagate_entity_load_avg(struct sched_entity * se)4464 static inline int propagate_entity_load_avg(struct sched_entity *se)
4465 {
4466 return 0;
4467 }
4468
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4470
4471 #endif /* CONFIG_FAIR_GROUP_SCHED */
4472
4473 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4474 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4475 {
4476 u64 throttled = 0, now, lut;
4477 struct cfs_rq *cfs_rq;
4478 struct rq *rq;
4479 bool is_idle;
4480
4481 if (load_avg_is_decayed(&se->avg))
4482 return;
4483
4484 cfs_rq = cfs_rq_of(se);
4485 rq = rq_of(cfs_rq);
4486
4487 rcu_read_lock();
4488 is_idle = is_idle_task(rcu_dereference(rq->curr));
4489 rcu_read_unlock();
4490
4491 /*
4492 * The lag estimation comes with a cost we don't want to pay all the
4493 * time. Hence, limiting to the case where the source CPU is idle and
4494 * we know we are at the greatest risk to have an outdated clock.
4495 */
4496 if (!is_idle)
4497 return;
4498
4499 /*
4500 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4501 *
4502 * last_update_time (the cfs_rq's last_update_time)
4503 * = cfs_rq_clock_pelt()@cfs_rq_idle
4504 * = rq_clock_pelt()@cfs_rq_idle
4505 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4506 *
4507 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4508 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4509 *
4510 * rq_idle_lag (delta between now and rq's update)
4511 * = sched_clock_cpu() - rq_clock()@rq_idle
4512 *
4513 * We can then write:
4514 *
4515 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4516 * sched_clock_cpu() - rq_clock()@rq_idle
4517 * Where:
4518 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4519 * rq_clock()@rq_idle is rq->clock_idle
4520 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4521 * is cfs_rq->throttled_pelt_idle
4522 */
4523
4524 #ifdef CONFIG_CFS_BANDWIDTH
4525 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4526 /* The clock has been stopped for throttling */
4527 if (throttled == U64_MAX)
4528 return;
4529 #endif
4530 now = u64_u32_load(rq->clock_pelt_idle);
4531 /*
4532 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4533 * is observed the old clock_pelt_idle value and the new clock_idle,
4534 * which lead to an underestimation. The opposite would lead to an
4535 * overestimation.
4536 */
4537 smp_rmb();
4538 lut = cfs_rq_last_update_time(cfs_rq);
4539
4540 now -= throttled;
4541 if (now < lut)
4542 /*
4543 * cfs_rq->avg.last_update_time is more recent than our
4544 * estimation, let's use it.
4545 */
4546 now = lut;
4547 else
4548 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4549
4550 __update_load_avg_blocked_se(now, se);
4551 }
4552 #else
migrate_se_pelt_lag(struct sched_entity * se)4553 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4554 #endif
4555
4556 /**
4557 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4558 * @now: current time, as per cfs_rq_clock_pelt()
4559 * @cfs_rq: cfs_rq to update
4560 *
4561 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4562 * avg. The immediate corollary is that all (fair) tasks must be attached.
4563 *
4564 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4565 *
4566 * Return: true if the load decayed or we removed load.
4567 *
4568 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4569 * call update_tg_load_avg() when this function returns true.
4570 */
4571 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4573 {
4574 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4575 struct sched_avg *sa = &cfs_rq->avg;
4576 int decayed = 0;
4577
4578 if (cfs_rq->removed.nr) {
4579 unsigned long r;
4580 u32 divider = get_pelt_divider(&cfs_rq->avg);
4581
4582 raw_spin_lock(&cfs_rq->removed.lock);
4583 swap(cfs_rq->removed.util_avg, removed_util);
4584 swap(cfs_rq->removed.load_avg, removed_load);
4585 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4586 cfs_rq->removed.nr = 0;
4587 raw_spin_unlock(&cfs_rq->removed.lock);
4588
4589 r = removed_load;
4590 sub_positive(&sa->load_avg, r);
4591 sub_positive(&sa->load_sum, r * divider);
4592 /* See sa->util_sum below */
4593 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4594
4595 r = removed_util;
4596 sub_positive(&sa->util_avg, r);
4597 sub_positive(&sa->util_sum, r * divider);
4598 /*
4599 * Because of rounding, se->util_sum might ends up being +1 more than
4600 * cfs->util_sum. Although this is not a problem by itself, detaching
4601 * a lot of tasks with the rounding problem between 2 updates of
4602 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4603 * cfs_util_avg is not.
4604 * Check that util_sum is still above its lower bound for the new
4605 * util_avg. Given that period_contrib might have moved since the last
4606 * sync, we are only sure that util_sum must be above or equal to
4607 * util_avg * minimum possible divider
4608 */
4609 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4610
4611 r = removed_runnable;
4612 sub_positive(&sa->runnable_avg, r);
4613 sub_positive(&sa->runnable_sum, r * divider);
4614 /* See sa->util_sum above */
4615 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4616 sa->runnable_avg * PELT_MIN_DIVIDER);
4617
4618 /*
4619 * removed_runnable is the unweighted version of removed_load so we
4620 * can use it to estimate removed_load_sum.
4621 */
4622 add_tg_cfs_propagate(cfs_rq,
4623 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4624
4625 decayed = 1;
4626 }
4627
4628 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4629 u64_u32_store_copy(sa->last_update_time,
4630 cfs_rq->last_update_time_copy,
4631 sa->last_update_time);
4632 return decayed;
4633 }
4634
4635 /**
4636 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4637 * @cfs_rq: cfs_rq to attach to
4638 * @se: sched_entity to attach
4639 *
4640 * Must call update_cfs_rq_load_avg() before this, since we rely on
4641 * cfs_rq->avg.last_update_time being current.
4642 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4644 {
4645 /*
4646 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4647 * See ___update_load_avg() for details.
4648 */
4649 u32 divider = get_pelt_divider(&cfs_rq->avg);
4650
4651 /*
4652 * When we attach the @se to the @cfs_rq, we must align the decay
4653 * window because without that, really weird and wonderful things can
4654 * happen.
4655 *
4656 * XXX illustrate
4657 */
4658 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4659 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4660
4661 /*
4662 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4663 * period_contrib. This isn't strictly correct, but since we're
4664 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4665 * _sum a little.
4666 */
4667 se->avg.util_sum = se->avg.util_avg * divider;
4668
4669 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4670
4671 se->avg.load_sum = se->avg.load_avg * divider;
4672 if (se_weight(se) < se->avg.load_sum)
4673 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4674 else
4675 se->avg.load_sum = 1;
4676
4677 enqueue_load_avg(cfs_rq, se);
4678 cfs_rq->avg.util_avg += se->avg.util_avg;
4679 cfs_rq->avg.util_sum += se->avg.util_sum;
4680 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4681 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4682
4683 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4684
4685 cfs_rq_util_change(cfs_rq, 0);
4686
4687 trace_pelt_cfs_tp(cfs_rq);
4688 }
4689
4690 /**
4691 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4692 * @cfs_rq: cfs_rq to detach from
4693 * @se: sched_entity to detach
4694 *
4695 * Must call update_cfs_rq_load_avg() before this, since we rely on
4696 * cfs_rq->avg.last_update_time being current.
4697 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4699 {
4700 dequeue_load_avg(cfs_rq, se);
4701 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4702 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4703 /* See update_cfs_rq_load_avg() */
4704 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4705 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4706
4707 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4708 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4709 /* See update_cfs_rq_load_avg() */
4710 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4711 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4712
4713 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4714
4715 cfs_rq_util_change(cfs_rq, 0);
4716
4717 trace_pelt_cfs_tp(cfs_rq);
4718 }
4719
4720 /*
4721 * Optional action to be done while updating the load average
4722 */
4723 #define UPDATE_TG 0x1
4724 #define SKIP_AGE_LOAD 0x2
4725 #define DO_ATTACH 0x4
4726 #define DO_DETACH 0x8
4727
4728 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4730 {
4731 u64 now = cfs_rq_clock_pelt(cfs_rq);
4732 int decayed;
4733
4734 /*
4735 * Track task load average for carrying it to new CPU after migrated, and
4736 * track group sched_entity load average for task_h_load calc in migration
4737 */
4738 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4739 __update_load_avg_se(now, cfs_rq, se);
4740
4741 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4742 decayed |= propagate_entity_load_avg(se);
4743
4744 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4745
4746 /*
4747 * DO_ATTACH means we're here from enqueue_entity().
4748 * !last_update_time means we've passed through
4749 * migrate_task_rq_fair() indicating we migrated.
4750 *
4751 * IOW we're enqueueing a task on a new CPU.
4752 */
4753 attach_entity_load_avg(cfs_rq, se);
4754 update_tg_load_avg(cfs_rq);
4755
4756 } else if (flags & DO_DETACH) {
4757 /*
4758 * DO_DETACH means we're here from dequeue_entity()
4759 * and we are migrating task out of the CPU.
4760 */
4761 detach_entity_load_avg(cfs_rq, se);
4762 update_tg_load_avg(cfs_rq);
4763 } else if (decayed) {
4764 cfs_rq_util_change(cfs_rq, 0);
4765
4766 if (flags & UPDATE_TG)
4767 update_tg_load_avg(cfs_rq);
4768 }
4769 }
4770
4771 /*
4772 * Synchronize entity load avg of dequeued entity without locking
4773 * the previous rq.
4774 */
sync_entity_load_avg(struct sched_entity * se)4775 static void sync_entity_load_avg(struct sched_entity *se)
4776 {
4777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 u64 last_update_time;
4779
4780 last_update_time = cfs_rq_last_update_time(cfs_rq);
4781 __update_load_avg_blocked_se(last_update_time, se);
4782 }
4783
4784 /*
4785 * Task first catches up with cfs_rq, and then subtract
4786 * itself from the cfs_rq (task must be off the queue now).
4787 */
remove_entity_load_avg(struct sched_entity * se)4788 static void remove_entity_load_avg(struct sched_entity *se)
4789 {
4790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 unsigned long flags;
4792
4793 /*
4794 * tasks cannot exit without having gone through wake_up_new_task() ->
4795 * enqueue_task_fair() which will have added things to the cfs_rq,
4796 * so we can remove unconditionally.
4797 */
4798
4799 sync_entity_load_avg(se);
4800
4801 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4802 ++cfs_rq->removed.nr;
4803 cfs_rq->removed.util_avg += se->avg.util_avg;
4804 cfs_rq->removed.load_avg += se->avg.load_avg;
4805 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4806 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4807 }
4808
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4810 {
4811 return cfs_rq->avg.runnable_avg;
4812 }
4813
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4815 {
4816 return cfs_rq->avg.load_avg;
4817 }
4818
4819 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4820
task_util(struct task_struct * p)4821 static inline unsigned long task_util(struct task_struct *p)
4822 {
4823 return READ_ONCE(p->se.avg.util_avg);
4824 }
4825
task_runnable(struct task_struct * p)4826 static inline unsigned long task_runnable(struct task_struct *p)
4827 {
4828 return READ_ONCE(p->se.avg.runnable_avg);
4829 }
4830
_task_util_est(struct task_struct * p)4831 static inline unsigned long _task_util_est(struct task_struct *p)
4832 {
4833 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4834 }
4835
task_util_est(struct task_struct * p)4836 static inline unsigned long task_util_est(struct task_struct *p)
4837 {
4838 return max(task_util(p), _task_util_est(p));
4839 }
4840
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4842 struct task_struct *p)
4843 {
4844 unsigned int enqueued;
4845
4846 if (!sched_feat(UTIL_EST))
4847 return;
4848
4849 /* Update root cfs_rq's estimated utilization */
4850 enqueued = cfs_rq->avg.util_est;
4851 enqueued += _task_util_est(p);
4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4853
4854 trace_sched_util_est_cfs_tp(cfs_rq);
4855 }
4856
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4858 struct task_struct *p)
4859 {
4860 unsigned int enqueued;
4861
4862 if (!sched_feat(UTIL_EST))
4863 return;
4864
4865 /* Update root cfs_rq's estimated utilization */
4866 enqueued = cfs_rq->avg.util_est;
4867 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4869
4870 trace_sched_util_est_cfs_tp(cfs_rq);
4871 }
4872
4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4874
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4875 static inline void util_est_update(struct cfs_rq *cfs_rq,
4876 struct task_struct *p,
4877 bool task_sleep)
4878 {
4879 unsigned int ewma, dequeued, last_ewma_diff;
4880
4881 if (!sched_feat(UTIL_EST))
4882 return;
4883
4884 /*
4885 * Skip update of task's estimated utilization when the task has not
4886 * yet completed an activation, e.g. being migrated.
4887 */
4888 if (!task_sleep)
4889 return;
4890
4891 /* Get current estimate of utilization */
4892 ewma = READ_ONCE(p->se.avg.util_est);
4893
4894 /*
4895 * If the PELT values haven't changed since enqueue time,
4896 * skip the util_est update.
4897 */
4898 if (ewma & UTIL_AVG_UNCHANGED)
4899 return;
4900
4901 /* Get utilization at dequeue */
4902 dequeued = task_util(p);
4903
4904 /*
4905 * Reset EWMA on utilization increases, the moving average is used only
4906 * to smooth utilization decreases.
4907 */
4908 if (ewma <= dequeued) {
4909 ewma = dequeued;
4910 goto done;
4911 }
4912
4913 /*
4914 * Skip update of task's estimated utilization when its members are
4915 * already ~1% close to its last activation value.
4916 */
4917 last_ewma_diff = ewma - dequeued;
4918 if (last_ewma_diff < UTIL_EST_MARGIN)
4919 goto done;
4920
4921 /*
4922 * To avoid overestimation of actual task utilization, skip updates if
4923 * we cannot grant there is idle time in this CPU.
4924 */
4925 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4926 return;
4927
4928 /*
4929 * To avoid underestimate of task utilization, skip updates of EWMA if
4930 * we cannot grant that thread got all CPU time it wanted.
4931 */
4932 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4933 goto done;
4934
4935
4936 /*
4937 * Update Task's estimated utilization
4938 *
4939 * When *p completes an activation we can consolidate another sample
4940 * of the task size. This is done by using this value to update the
4941 * Exponential Weighted Moving Average (EWMA):
4942 *
4943 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4944 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4945 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4946 * = w * ( -last_ewma_diff ) + ewma(t-1)
4947 * = w * (-last_ewma_diff + ewma(t-1) / w)
4948 *
4949 * Where 'w' is the weight of new samples, which is configured to be
4950 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4951 */
4952 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4953 ewma -= last_ewma_diff;
4954 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4955 done:
4956 ewma |= UTIL_AVG_UNCHANGED;
4957 WRITE_ONCE(p->se.avg.util_est, ewma);
4958
4959 trace_sched_util_est_se_tp(&p->se);
4960 }
4961
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4962 static inline int util_fits_cpu(unsigned long util,
4963 unsigned long uclamp_min,
4964 unsigned long uclamp_max,
4965 int cpu)
4966 {
4967 unsigned long capacity_orig, capacity_orig_thermal;
4968 unsigned long capacity = capacity_of(cpu);
4969 bool fits, uclamp_max_fits;
4970
4971 /*
4972 * Check if the real util fits without any uclamp boost/cap applied.
4973 */
4974 fits = fits_capacity(util, capacity);
4975
4976 if (!uclamp_is_used())
4977 return fits;
4978
4979 /*
4980 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4981 * uclamp_max. We only care about capacity pressure (by using
4982 * capacity_of()) for comparing against the real util.
4983 *
4984 * If a task is boosted to 1024 for example, we don't want a tiny
4985 * pressure to skew the check whether it fits a CPU or not.
4986 *
4987 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4988 * should fit a little cpu even if there's some pressure.
4989 *
4990 * Only exception is for thermal pressure since it has a direct impact
4991 * on available OPP of the system.
4992 *
4993 * We honour it for uclamp_min only as a drop in performance level
4994 * could result in not getting the requested minimum performance level.
4995 *
4996 * For uclamp_max, we can tolerate a drop in performance level as the
4997 * goal is to cap the task. So it's okay if it's getting less.
4998 */
4999 capacity_orig = arch_scale_cpu_capacity(cpu);
5000 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
5001
5002 /*
5003 * We want to force a task to fit a cpu as implied by uclamp_max.
5004 * But we do have some corner cases to cater for..
5005 *
5006 *
5007 * C=z
5008 * | ___
5009 * | C=y | |
5010 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5011 * | C=x | | | |
5012 * | ___ | | | |
5013 * | | | | | | | (util somewhere in this region)
5014 * | | | | | | |
5015 * | | | | | | |
5016 * +----------------------------------------
5017 * cpu0 cpu1 cpu2
5018 *
5019 * In the above example if a task is capped to a specific performance
5020 * point, y, then when:
5021 *
5022 * * util = 80% of x then it does not fit on cpu0 and should migrate
5023 * to cpu1
5024 * * util = 80% of y then it is forced to fit on cpu1 to honour
5025 * uclamp_max request.
5026 *
5027 * which is what we're enforcing here. A task always fits if
5028 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5029 * the normal upmigration rules should withhold still.
5030 *
5031 * Only exception is when we are on max capacity, then we need to be
5032 * careful not to block overutilized state. This is so because:
5033 *
5034 * 1. There's no concept of capping at max_capacity! We can't go
5035 * beyond this performance level anyway.
5036 * 2. The system is being saturated when we're operating near
5037 * max capacity, it doesn't make sense to block overutilized.
5038 */
5039 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5040 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5041 fits = fits || uclamp_max_fits;
5042
5043 /*
5044 *
5045 * C=z
5046 * | ___ (region a, capped, util >= uclamp_max)
5047 * | C=y | |
5048 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5049 * | C=x | | | |
5050 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5051 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5052 * | | | | | | |
5053 * | | | | | | | (region c, boosted, util < uclamp_min)
5054 * +----------------------------------------
5055 * cpu0 cpu1 cpu2
5056 *
5057 * a) If util > uclamp_max, then we're capped, we don't care about
5058 * actual fitness value here. We only care if uclamp_max fits
5059 * capacity without taking margin/pressure into account.
5060 * See comment above.
5061 *
5062 * b) If uclamp_min <= util <= uclamp_max, then the normal
5063 * fits_capacity() rules apply. Except we need to ensure that we
5064 * enforce we remain within uclamp_max, see comment above.
5065 *
5066 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5067 * need to take into account the boosted value fits the CPU without
5068 * taking margin/pressure into account.
5069 *
5070 * Cases (a) and (b) are handled in the 'fits' variable already. We
5071 * just need to consider an extra check for case (c) after ensuring we
5072 * handle the case uclamp_min > uclamp_max.
5073 */
5074 uclamp_min = min(uclamp_min, uclamp_max);
5075 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal))
5076 return -1;
5077
5078 return fits;
5079 }
5080
task_fits_cpu(struct task_struct * p,int cpu)5081 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5082 {
5083 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5084 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5085 unsigned long util = task_util_est(p);
5086 /*
5087 * Return true only if the cpu fully fits the task requirements, which
5088 * include the utilization but also the performance hints.
5089 */
5090 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5091 }
5092
update_misfit_status(struct task_struct * p,struct rq * rq)5093 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5094 {
5095 if (!sched_asym_cpucap_active())
5096 return;
5097
5098 if (!p || p->nr_cpus_allowed == 1) {
5099 rq->misfit_task_load = 0;
5100 return;
5101 }
5102
5103 if (task_fits_cpu(p, cpu_of(rq))) {
5104 rq->misfit_task_load = 0;
5105 return;
5106 }
5107
5108 /*
5109 * Make sure that misfit_task_load will not be null even if
5110 * task_h_load() returns 0.
5111 */
5112 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5113 }
5114
5115 #else /* CONFIG_SMP */
5116
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)5117 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5118 {
5119 return !cfs_rq->nr_running;
5120 }
5121
5122 #define UPDATE_TG 0x0
5123 #define SKIP_AGE_LOAD 0x0
5124 #define DO_ATTACH 0x0
5125 #define DO_DETACH 0x0
5126
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)5127 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5128 {
5129 cfs_rq_util_change(cfs_rq, 0);
5130 }
5131
remove_entity_load_avg(struct sched_entity * se)5132 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5133
5134 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5135 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5136 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)5137 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5138
newidle_balance(struct rq * rq,struct rq_flags * rf)5139 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
5140 {
5141 return 0;
5142 }
5143
5144 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)5145 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5146
5147 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)5148 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5149
5150 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)5151 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5152 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)5153 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5154
5155 #endif /* CONFIG_SMP */
5156
5157 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5158 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5159 {
5160 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5161 s64 lag = 0;
5162
5163 se->slice = sysctl_sched_base_slice;
5164 vslice = calc_delta_fair(se->slice, se);
5165
5166 /*
5167 * Due to how V is constructed as the weighted average of entities,
5168 * adding tasks with positive lag, or removing tasks with negative lag
5169 * will move 'time' backwards, this can screw around with the lag of
5170 * other tasks.
5171 *
5172 * EEVDF: placement strategy #1 / #2
5173 */
5174 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5175 struct sched_entity *curr = cfs_rq->curr;
5176 unsigned long load;
5177
5178 lag = se->vlag;
5179
5180 /*
5181 * If we want to place a task and preserve lag, we have to
5182 * consider the effect of the new entity on the weighted
5183 * average and compensate for this, otherwise lag can quickly
5184 * evaporate.
5185 *
5186 * Lag is defined as:
5187 *
5188 * lag_i = S - s_i = w_i * (V - v_i)
5189 *
5190 * To avoid the 'w_i' term all over the place, we only track
5191 * the virtual lag:
5192 *
5193 * vl_i = V - v_i <=> v_i = V - vl_i
5194 *
5195 * And we take V to be the weighted average of all v:
5196 *
5197 * V = (\Sum w_j*v_j) / W
5198 *
5199 * Where W is: \Sum w_j
5200 *
5201 * Then, the weighted average after adding an entity with lag
5202 * vl_i is given by:
5203 *
5204 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5205 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5206 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5207 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5208 * = V - w_i*vl_i / (W + w_i)
5209 *
5210 * And the actual lag after adding an entity with vl_i is:
5211 *
5212 * vl'_i = V' - v_i
5213 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5214 * = vl_i - w_i*vl_i / (W + w_i)
5215 *
5216 * Which is strictly less than vl_i. So in order to preserve lag
5217 * we should inflate the lag before placement such that the
5218 * effective lag after placement comes out right.
5219 *
5220 * As such, invert the above relation for vl'_i to get the vl_i
5221 * we need to use such that the lag after placement is the lag
5222 * we computed before dequeue.
5223 *
5224 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5225 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5226 *
5227 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5228 * = W*vl_i
5229 *
5230 * vl_i = (W + w_i)*vl'_i / W
5231 */
5232 load = cfs_rq->avg_load;
5233 if (curr && curr->on_rq)
5234 load += scale_load_down(curr->load.weight);
5235
5236 lag *= load + scale_load_down(se->load.weight);
5237 if (WARN_ON_ONCE(!load))
5238 load = 1;
5239 lag = div_s64(lag, load);
5240 }
5241
5242 se->vruntime = vruntime - lag;
5243
5244 /*
5245 * When joining the competition; the exisiting tasks will be,
5246 * on average, halfway through their slice, as such start tasks
5247 * off with half a slice to ease into the competition.
5248 */
5249 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5250 vslice /= 2;
5251
5252 /*
5253 * EEVDF: vd_i = ve_i + r_i/w_i
5254 */
5255 se->deadline = se->vruntime + vslice;
5256 }
5257
5258 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5259 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5260
5261 static inline bool cfs_bandwidth_used(void);
5262
5263 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5264 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5265 {
5266 bool curr = cfs_rq->curr == se;
5267
5268 /*
5269 * If we're the current task, we must renormalise before calling
5270 * update_curr().
5271 */
5272 if (curr)
5273 place_entity(cfs_rq, se, flags);
5274
5275 update_curr(cfs_rq);
5276
5277 /*
5278 * When enqueuing a sched_entity, we must:
5279 * - Update loads to have both entity and cfs_rq synced with now.
5280 * - For group_entity, update its runnable_weight to reflect the new
5281 * h_nr_running of its group cfs_rq.
5282 * - For group_entity, update its weight to reflect the new share of
5283 * its group cfs_rq
5284 * - Add its new weight to cfs_rq->load.weight
5285 */
5286 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5287 se_update_runnable(se);
5288 /*
5289 * XXX update_load_avg() above will have attached us to the pelt sum;
5290 * but update_cfs_group() here will re-adjust the weight and have to
5291 * undo/redo all that. Seems wasteful.
5292 */
5293 update_cfs_group(se);
5294
5295 /*
5296 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5297 * we can place the entity.
5298 */
5299 if (!curr)
5300 place_entity(cfs_rq, se, flags);
5301
5302 account_entity_enqueue(cfs_rq, se);
5303
5304 /* Entity has migrated, no longer consider this task hot */
5305 if (flags & ENQUEUE_MIGRATED)
5306 se->exec_start = 0;
5307
5308 check_schedstat_required();
5309 update_stats_enqueue_fair(cfs_rq, se, flags);
5310 if (!curr)
5311 __enqueue_entity(cfs_rq, se);
5312 se->on_rq = 1;
5313
5314 if (cfs_rq->nr_running == 1) {
5315 check_enqueue_throttle(cfs_rq);
5316 if (!throttled_hierarchy(cfs_rq)) {
5317 list_add_leaf_cfs_rq(cfs_rq);
5318 } else {
5319 #ifdef CONFIG_CFS_BANDWIDTH
5320 struct rq *rq = rq_of(cfs_rq);
5321
5322 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5323 cfs_rq->throttled_clock = rq_clock(rq);
5324 if (!cfs_rq->throttled_clock_self)
5325 cfs_rq->throttled_clock_self = rq_clock(rq);
5326 #endif
5327 }
5328 }
5329 }
5330
__clear_buddies_next(struct sched_entity * se)5331 static void __clear_buddies_next(struct sched_entity *se)
5332 {
5333 for_each_sched_entity(se) {
5334 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5335 if (cfs_rq->next != se)
5336 break;
5337
5338 cfs_rq->next = NULL;
5339 }
5340 }
5341
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5343 {
5344 if (cfs_rq->next == se)
5345 __clear_buddies_next(se);
5346 }
5347
5348 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5349
5350 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5351 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5352 {
5353 int action = UPDATE_TG;
5354
5355 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5356 action |= DO_DETACH;
5357
5358 /*
5359 * Update run-time statistics of the 'current'.
5360 */
5361 update_curr(cfs_rq);
5362
5363 /*
5364 * When dequeuing a sched_entity, we must:
5365 * - Update loads to have both entity and cfs_rq synced with now.
5366 * - For group_entity, update its runnable_weight to reflect the new
5367 * h_nr_running of its group cfs_rq.
5368 * - Subtract its previous weight from cfs_rq->load.weight.
5369 * - For group entity, update its weight to reflect the new share
5370 * of its group cfs_rq.
5371 */
5372 update_load_avg(cfs_rq, se, action);
5373 se_update_runnable(se);
5374
5375 update_stats_dequeue_fair(cfs_rq, se, flags);
5376
5377 clear_buddies(cfs_rq, se);
5378
5379 update_entity_lag(cfs_rq, se);
5380 if (se != cfs_rq->curr)
5381 __dequeue_entity(cfs_rq, se);
5382 se->on_rq = 0;
5383 account_entity_dequeue(cfs_rq, se);
5384
5385 /* return excess runtime on last dequeue */
5386 return_cfs_rq_runtime(cfs_rq);
5387
5388 update_cfs_group(se);
5389
5390 /*
5391 * Now advance min_vruntime if @se was the entity holding it back,
5392 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5393 * put back on, and if we advance min_vruntime, we'll be placed back
5394 * further than we started -- ie. we'll be penalized.
5395 */
5396 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5397 update_min_vruntime(cfs_rq);
5398
5399 if (cfs_rq->nr_running == 0)
5400 update_idle_cfs_rq_clock_pelt(cfs_rq);
5401 }
5402
5403 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5404 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5405 {
5406 clear_buddies(cfs_rq, se);
5407
5408 /* 'current' is not kept within the tree. */
5409 if (se->on_rq) {
5410 /*
5411 * Any task has to be enqueued before it get to execute on
5412 * a CPU. So account for the time it spent waiting on the
5413 * runqueue.
5414 */
5415 update_stats_wait_end_fair(cfs_rq, se);
5416 __dequeue_entity(cfs_rq, se);
5417 update_load_avg(cfs_rq, se, UPDATE_TG);
5418 /*
5419 * HACK, stash a copy of deadline at the point of pick in vlag,
5420 * which isn't used until dequeue.
5421 */
5422 se->vlag = se->deadline;
5423 }
5424
5425 update_stats_curr_start(cfs_rq, se);
5426 cfs_rq->curr = se;
5427
5428 /*
5429 * Track our maximum slice length, if the CPU's load is at
5430 * least twice that of our own weight (i.e. dont track it
5431 * when there are only lesser-weight tasks around):
5432 */
5433 if (schedstat_enabled() &&
5434 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5435 struct sched_statistics *stats;
5436
5437 stats = __schedstats_from_se(se);
5438 __schedstat_set(stats->slice_max,
5439 max((u64)stats->slice_max,
5440 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5441 }
5442
5443 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5444 }
5445
5446 /*
5447 * Pick the next process, keeping these things in mind, in this order:
5448 * 1) keep things fair between processes/task groups
5449 * 2) pick the "next" process, since someone really wants that to run
5450 * 3) pick the "last" process, for cache locality
5451 * 4) do not run the "skip" process, if something else is available
5452 */
5453 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq)5454 pick_next_entity(struct cfs_rq *cfs_rq)
5455 {
5456 /*
5457 * Enabling NEXT_BUDDY will affect latency but not fairness.
5458 */
5459 if (sched_feat(NEXT_BUDDY) &&
5460 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5461 return cfs_rq->next;
5462
5463 return pick_eevdf(cfs_rq);
5464 }
5465
5466 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5468 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5469 {
5470 /*
5471 * If still on the runqueue then deactivate_task()
5472 * was not called and update_curr() has to be done:
5473 */
5474 if (prev->on_rq)
5475 update_curr(cfs_rq);
5476
5477 /* throttle cfs_rqs exceeding runtime */
5478 check_cfs_rq_runtime(cfs_rq);
5479
5480 if (prev->on_rq) {
5481 update_stats_wait_start_fair(cfs_rq, prev);
5482 /* Put 'current' back into the tree. */
5483 __enqueue_entity(cfs_rq, prev);
5484 /* in !on_rq case, update occurred at dequeue */
5485 update_load_avg(cfs_rq, prev, 0);
5486 }
5487 cfs_rq->curr = NULL;
5488 }
5489
5490 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5491 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5492 {
5493 /*
5494 * Update run-time statistics of the 'current'.
5495 */
5496 update_curr(cfs_rq);
5497
5498 /*
5499 * Ensure that runnable average is periodically updated.
5500 */
5501 update_load_avg(cfs_rq, curr, UPDATE_TG);
5502 update_cfs_group(curr);
5503
5504 #ifdef CONFIG_SCHED_HRTICK
5505 /*
5506 * queued ticks are scheduled to match the slice, so don't bother
5507 * validating it and just reschedule.
5508 */
5509 if (queued) {
5510 resched_curr(rq_of(cfs_rq));
5511 return;
5512 }
5513 /*
5514 * don't let the period tick interfere with the hrtick preemption
5515 */
5516 if (!sched_feat(DOUBLE_TICK) &&
5517 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5518 return;
5519 #endif
5520 }
5521
5522
5523 /**************************************************
5524 * CFS bandwidth control machinery
5525 */
5526
5527 #ifdef CONFIG_CFS_BANDWIDTH
5528
5529 #ifdef CONFIG_JUMP_LABEL
5530 static struct static_key __cfs_bandwidth_used;
5531
cfs_bandwidth_used(void)5532 static inline bool cfs_bandwidth_used(void)
5533 {
5534 return static_key_false(&__cfs_bandwidth_used);
5535 }
5536
cfs_bandwidth_usage_inc(void)5537 void cfs_bandwidth_usage_inc(void)
5538 {
5539 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5540 }
5541
cfs_bandwidth_usage_dec(void)5542 void cfs_bandwidth_usage_dec(void)
5543 {
5544 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5545 }
5546 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)5547 static bool cfs_bandwidth_used(void)
5548 {
5549 return true;
5550 }
5551
cfs_bandwidth_usage_inc(void)5552 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5553 void cfs_bandwidth_usage_dec(void) {}
5554 #endif /* CONFIG_JUMP_LABEL */
5555
5556 /*
5557 * default period for cfs group bandwidth.
5558 * default: 0.1s, units: nanoseconds
5559 */
default_cfs_period(void)5560 static inline u64 default_cfs_period(void)
5561 {
5562 return 100000000ULL;
5563 }
5564
sched_cfs_bandwidth_slice(void)5565 static inline u64 sched_cfs_bandwidth_slice(void)
5566 {
5567 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5568 }
5569
5570 /*
5571 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5572 * directly instead of rq->clock to avoid adding additional synchronization
5573 * around rq->lock.
5574 *
5575 * requires cfs_b->lock
5576 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5577 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5578 {
5579 s64 runtime;
5580
5581 if (unlikely(cfs_b->quota == RUNTIME_INF))
5582 return;
5583
5584 cfs_b->runtime += cfs_b->quota;
5585 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5586 if (runtime > 0) {
5587 cfs_b->burst_time += runtime;
5588 cfs_b->nr_burst++;
5589 }
5590
5591 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5592 cfs_b->runtime_snap = cfs_b->runtime;
5593 }
5594
tg_cfs_bandwidth(struct task_group * tg)5595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5596 {
5597 return &tg->cfs_bandwidth;
5598 }
5599
5600 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5602 struct cfs_rq *cfs_rq, u64 target_runtime)
5603 {
5604 u64 min_amount, amount = 0;
5605
5606 lockdep_assert_held(&cfs_b->lock);
5607
5608 /* note: this is a positive sum as runtime_remaining <= 0 */
5609 min_amount = target_runtime - cfs_rq->runtime_remaining;
5610
5611 if (cfs_b->quota == RUNTIME_INF)
5612 amount = min_amount;
5613 else {
5614 start_cfs_bandwidth(cfs_b);
5615
5616 if (cfs_b->runtime > 0) {
5617 amount = min(cfs_b->runtime, min_amount);
5618 cfs_b->runtime -= amount;
5619 cfs_b->idle = 0;
5620 }
5621 }
5622
5623 cfs_rq->runtime_remaining += amount;
5624
5625 return cfs_rq->runtime_remaining > 0;
5626 }
5627
5628 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5630 {
5631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5632 int ret;
5633
5634 raw_spin_lock(&cfs_b->lock);
5635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5636 raw_spin_unlock(&cfs_b->lock);
5637
5638 return ret;
5639 }
5640
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5642 {
5643 /* dock delta_exec before expiring quota (as it could span periods) */
5644 cfs_rq->runtime_remaining -= delta_exec;
5645
5646 if (likely(cfs_rq->runtime_remaining > 0))
5647 return;
5648
5649 if (cfs_rq->throttled)
5650 return;
5651 /*
5652 * if we're unable to extend our runtime we resched so that the active
5653 * hierarchy can be throttled
5654 */
5655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5656 resched_curr(rq_of(cfs_rq));
5657 }
5658
5659 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5661 {
5662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5663 return;
5664
5665 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5666 }
5667
cfs_rq_throttled(struct cfs_rq * cfs_rq)5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5669 {
5670 return cfs_bandwidth_used() && cfs_rq->throttled;
5671 }
5672
5673 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5675 {
5676 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5677 }
5678
5679 /*
5680 * Ensure that neither of the group entities corresponding to src_cpu or
5681 * dest_cpu are members of a throttled hierarchy when performing group
5682 * load-balance operations.
5683 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5684 static inline int throttled_lb_pair(struct task_group *tg,
5685 int src_cpu, int dest_cpu)
5686 {
5687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5688
5689 src_cfs_rq = tg->cfs_rq[src_cpu];
5690 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5691
5692 return throttled_hierarchy(src_cfs_rq) ||
5693 throttled_hierarchy(dest_cfs_rq);
5694 }
5695
tg_unthrottle_up(struct task_group * tg,void * data)5696 static int tg_unthrottle_up(struct task_group *tg, void *data)
5697 {
5698 struct rq *rq = data;
5699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5700
5701 cfs_rq->throttle_count--;
5702 if (!cfs_rq->throttle_count) {
5703 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5704 cfs_rq->throttled_clock_pelt;
5705
5706 /* Add cfs_rq with load or one or more already running entities to the list */
5707 if (!cfs_rq_is_decayed(cfs_rq))
5708 list_add_leaf_cfs_rq(cfs_rq);
5709
5710 if (cfs_rq->throttled_clock_self) {
5711 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5712
5713 cfs_rq->throttled_clock_self = 0;
5714
5715 if (SCHED_WARN_ON((s64)delta < 0))
5716 delta = 0;
5717
5718 cfs_rq->throttled_clock_self_time += delta;
5719 }
5720 }
5721
5722 return 0;
5723 }
5724
tg_throttle_down(struct task_group * tg,void * data)5725 static int tg_throttle_down(struct task_group *tg, void *data)
5726 {
5727 struct rq *rq = data;
5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5729
5730 /* group is entering throttled state, stop time */
5731 if (!cfs_rq->throttle_count) {
5732 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5733 list_del_leaf_cfs_rq(cfs_rq);
5734
5735 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5736 if (cfs_rq->nr_running)
5737 cfs_rq->throttled_clock_self = rq_clock(rq);
5738 }
5739 cfs_rq->throttle_count++;
5740
5741 return 0;
5742 }
5743
throttle_cfs_rq(struct cfs_rq * cfs_rq)5744 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5745 {
5746 struct rq *rq = rq_of(cfs_rq);
5747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5748 struct sched_entity *se;
5749 long task_delta, idle_task_delta, dequeue = 1;
5750
5751 raw_spin_lock(&cfs_b->lock);
5752 /* This will start the period timer if necessary */
5753 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5754 /*
5755 * We have raced with bandwidth becoming available, and if we
5756 * actually throttled the timer might not unthrottle us for an
5757 * entire period. We additionally needed to make sure that any
5758 * subsequent check_cfs_rq_runtime calls agree not to throttle
5759 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5760 * for 1ns of runtime rather than just check cfs_b.
5761 */
5762 dequeue = 0;
5763 } else {
5764 list_add_tail_rcu(&cfs_rq->throttled_list,
5765 &cfs_b->throttled_cfs_rq);
5766 }
5767 raw_spin_unlock(&cfs_b->lock);
5768
5769 if (!dequeue)
5770 return false; /* Throttle no longer required. */
5771
5772 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5773
5774 /* freeze hierarchy runnable averages while throttled */
5775 rcu_read_lock();
5776 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5777 rcu_read_unlock();
5778
5779 task_delta = cfs_rq->h_nr_running;
5780 idle_task_delta = cfs_rq->idle_h_nr_running;
5781 for_each_sched_entity(se) {
5782 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5783 /* throttled entity or throttle-on-deactivate */
5784 if (!se->on_rq)
5785 goto done;
5786
5787 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5788
5789 if (cfs_rq_is_idle(group_cfs_rq(se)))
5790 idle_task_delta = cfs_rq->h_nr_running;
5791
5792 qcfs_rq->h_nr_running -= task_delta;
5793 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5794
5795 if (qcfs_rq->load.weight) {
5796 /* Avoid re-evaluating load for this entity: */
5797 se = parent_entity(se);
5798 break;
5799 }
5800 }
5801
5802 for_each_sched_entity(se) {
5803 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5804 /* throttled entity or throttle-on-deactivate */
5805 if (!se->on_rq)
5806 goto done;
5807
5808 update_load_avg(qcfs_rq, se, 0);
5809 se_update_runnable(se);
5810
5811 if (cfs_rq_is_idle(group_cfs_rq(se)))
5812 idle_task_delta = cfs_rq->h_nr_running;
5813
5814 qcfs_rq->h_nr_running -= task_delta;
5815 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5816 }
5817
5818 /* At this point se is NULL and we are at root level*/
5819 sub_nr_running(rq, task_delta);
5820
5821 done:
5822 /*
5823 * Note: distribution will already see us throttled via the
5824 * throttled-list. rq->lock protects completion.
5825 */
5826 cfs_rq->throttled = 1;
5827 SCHED_WARN_ON(cfs_rq->throttled_clock);
5828 if (cfs_rq->nr_running)
5829 cfs_rq->throttled_clock = rq_clock(rq);
5830 return true;
5831 }
5832
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5834 {
5835 struct rq *rq = rq_of(cfs_rq);
5836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5837 struct sched_entity *se;
5838 long task_delta, idle_task_delta;
5839
5840 se = cfs_rq->tg->se[cpu_of(rq)];
5841
5842 cfs_rq->throttled = 0;
5843
5844 update_rq_clock(rq);
5845
5846 raw_spin_lock(&cfs_b->lock);
5847 if (cfs_rq->throttled_clock) {
5848 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5849 cfs_rq->throttled_clock = 0;
5850 }
5851 list_del_rcu(&cfs_rq->throttled_list);
5852 raw_spin_unlock(&cfs_b->lock);
5853
5854 /* update hierarchical throttle state */
5855 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5856
5857 if (!cfs_rq->load.weight) {
5858 if (!cfs_rq->on_list)
5859 return;
5860 /*
5861 * Nothing to run but something to decay (on_list)?
5862 * Complete the branch.
5863 */
5864 for_each_sched_entity(se) {
5865 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5866 break;
5867 }
5868 goto unthrottle_throttle;
5869 }
5870
5871 task_delta = cfs_rq->h_nr_running;
5872 idle_task_delta = cfs_rq->idle_h_nr_running;
5873 for_each_sched_entity(se) {
5874 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5875
5876 if (se->on_rq)
5877 break;
5878 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5879
5880 if (cfs_rq_is_idle(group_cfs_rq(se)))
5881 idle_task_delta = cfs_rq->h_nr_running;
5882
5883 qcfs_rq->h_nr_running += task_delta;
5884 qcfs_rq->idle_h_nr_running += idle_task_delta;
5885
5886 /* end evaluation on encountering a throttled cfs_rq */
5887 if (cfs_rq_throttled(qcfs_rq))
5888 goto unthrottle_throttle;
5889 }
5890
5891 for_each_sched_entity(se) {
5892 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5893
5894 update_load_avg(qcfs_rq, se, UPDATE_TG);
5895 se_update_runnable(se);
5896
5897 if (cfs_rq_is_idle(group_cfs_rq(se)))
5898 idle_task_delta = cfs_rq->h_nr_running;
5899
5900 qcfs_rq->h_nr_running += task_delta;
5901 qcfs_rq->idle_h_nr_running += idle_task_delta;
5902
5903 /* end evaluation on encountering a throttled cfs_rq */
5904 if (cfs_rq_throttled(qcfs_rq))
5905 goto unthrottle_throttle;
5906 }
5907
5908 /* At this point se is NULL and we are at root level*/
5909 add_nr_running(rq, task_delta);
5910
5911 unthrottle_throttle:
5912 assert_list_leaf_cfs_rq(rq);
5913
5914 /* Determine whether we need to wake up potentially idle CPU: */
5915 if (rq->curr == rq->idle && rq->cfs.nr_running)
5916 resched_curr(rq);
5917 }
5918
5919 #ifdef CONFIG_SMP
__cfsb_csd_unthrottle(void * arg)5920 static void __cfsb_csd_unthrottle(void *arg)
5921 {
5922 struct cfs_rq *cursor, *tmp;
5923 struct rq *rq = arg;
5924 struct rq_flags rf;
5925
5926 rq_lock(rq, &rf);
5927
5928 /*
5929 * Iterating over the list can trigger several call to
5930 * update_rq_clock() in unthrottle_cfs_rq().
5931 * Do it once and skip the potential next ones.
5932 */
5933 update_rq_clock(rq);
5934 rq_clock_start_loop_update(rq);
5935
5936 /*
5937 * Since we hold rq lock we're safe from concurrent manipulation of
5938 * the CSD list. However, this RCU critical section annotates the
5939 * fact that we pair with sched_free_group_rcu(), so that we cannot
5940 * race with group being freed in the window between removing it
5941 * from the list and advancing to the next entry in the list.
5942 */
5943 rcu_read_lock();
5944
5945 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5946 throttled_csd_list) {
5947 list_del_init(&cursor->throttled_csd_list);
5948
5949 if (cfs_rq_throttled(cursor))
5950 unthrottle_cfs_rq(cursor);
5951 }
5952
5953 rcu_read_unlock();
5954
5955 rq_clock_stop_loop_update(rq);
5956 rq_unlock(rq, &rf);
5957 }
5958
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5959 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5960 {
5961 struct rq *rq = rq_of(cfs_rq);
5962 bool first;
5963
5964 if (rq == this_rq()) {
5965 unthrottle_cfs_rq(cfs_rq);
5966 return;
5967 }
5968
5969 /* Already enqueued */
5970 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5971 return;
5972
5973 first = list_empty(&rq->cfsb_csd_list);
5974 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5975 if (first)
5976 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5977 }
5978 #else
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5980 {
5981 unthrottle_cfs_rq(cfs_rq);
5982 }
5983 #endif
5984
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)5985 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986 {
5987 lockdep_assert_rq_held(rq_of(cfs_rq));
5988
5989 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
5990 cfs_rq->runtime_remaining <= 0))
5991 return;
5992
5993 __unthrottle_cfs_rq_async(cfs_rq);
5994 }
5995
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5996 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5997 {
5998 int this_cpu = smp_processor_id();
5999 u64 runtime, remaining = 1;
6000 bool throttled = false;
6001 struct cfs_rq *cfs_rq, *tmp;
6002 struct rq_flags rf;
6003 struct rq *rq;
6004 LIST_HEAD(local_unthrottle);
6005
6006 rcu_read_lock();
6007 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6008 throttled_list) {
6009 rq = rq_of(cfs_rq);
6010
6011 if (!remaining) {
6012 throttled = true;
6013 break;
6014 }
6015
6016 rq_lock_irqsave(rq, &rf);
6017 if (!cfs_rq_throttled(cfs_rq))
6018 goto next;
6019
6020 /* Already queued for async unthrottle */
6021 if (!list_empty(&cfs_rq->throttled_csd_list))
6022 goto next;
6023
6024 /* By the above checks, this should never be true */
6025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6026
6027 raw_spin_lock(&cfs_b->lock);
6028 runtime = -cfs_rq->runtime_remaining + 1;
6029 if (runtime > cfs_b->runtime)
6030 runtime = cfs_b->runtime;
6031 cfs_b->runtime -= runtime;
6032 remaining = cfs_b->runtime;
6033 raw_spin_unlock(&cfs_b->lock);
6034
6035 cfs_rq->runtime_remaining += runtime;
6036
6037 /* we check whether we're throttled above */
6038 if (cfs_rq->runtime_remaining > 0) {
6039 if (cpu_of(rq) != this_cpu) {
6040 unthrottle_cfs_rq_async(cfs_rq);
6041 } else {
6042 /*
6043 * We currently only expect to be unthrottling
6044 * a single cfs_rq locally.
6045 */
6046 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6047 list_add_tail(&cfs_rq->throttled_csd_list,
6048 &local_unthrottle);
6049 }
6050 } else {
6051 throttled = true;
6052 }
6053
6054 next:
6055 rq_unlock_irqrestore(rq, &rf);
6056 }
6057
6058 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6059 throttled_csd_list) {
6060 struct rq *rq = rq_of(cfs_rq);
6061
6062 rq_lock_irqsave(rq, &rf);
6063
6064 list_del_init(&cfs_rq->throttled_csd_list);
6065
6066 if (cfs_rq_throttled(cfs_rq))
6067 unthrottle_cfs_rq(cfs_rq);
6068
6069 rq_unlock_irqrestore(rq, &rf);
6070 }
6071 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6072
6073 rcu_read_unlock();
6074
6075 return throttled;
6076 }
6077
6078 /*
6079 * Responsible for refilling a task_group's bandwidth and unthrottling its
6080 * cfs_rqs as appropriate. If there has been no activity within the last
6081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6082 * used to track this state.
6083 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6085 {
6086 int throttled;
6087
6088 /* no need to continue the timer with no bandwidth constraint */
6089 if (cfs_b->quota == RUNTIME_INF)
6090 goto out_deactivate;
6091
6092 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6093 cfs_b->nr_periods += overrun;
6094
6095 /* Refill extra burst quota even if cfs_b->idle */
6096 __refill_cfs_bandwidth_runtime(cfs_b);
6097
6098 /*
6099 * idle depends on !throttled (for the case of a large deficit), and if
6100 * we're going inactive then everything else can be deferred
6101 */
6102 if (cfs_b->idle && !throttled)
6103 goto out_deactivate;
6104
6105 if (!throttled) {
6106 /* mark as potentially idle for the upcoming period */
6107 cfs_b->idle = 1;
6108 return 0;
6109 }
6110
6111 /* account preceding periods in which throttling occurred */
6112 cfs_b->nr_throttled += overrun;
6113
6114 /*
6115 * This check is repeated as we release cfs_b->lock while we unthrottle.
6116 */
6117 while (throttled && cfs_b->runtime > 0) {
6118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6119 /* we can't nest cfs_b->lock while distributing bandwidth */
6120 throttled = distribute_cfs_runtime(cfs_b);
6121 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6122 }
6123
6124 /*
6125 * While we are ensured activity in the period following an
6126 * unthrottle, this also covers the case in which the new bandwidth is
6127 * insufficient to cover the existing bandwidth deficit. (Forcing the
6128 * timer to remain active while there are any throttled entities.)
6129 */
6130 cfs_b->idle = 0;
6131
6132 return 0;
6133
6134 out_deactivate:
6135 return 1;
6136 }
6137
6138 /* a cfs_rq won't donate quota below this amount */
6139 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6140 /* minimum remaining period time to redistribute slack quota */
6141 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6142 /* how long we wait to gather additional slack before distributing */
6143 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6144
6145 /*
6146 * Are we near the end of the current quota period?
6147 *
6148 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6149 * hrtimer base being cleared by hrtimer_start. In the case of
6150 * migrate_hrtimers, base is never cleared, so we are fine.
6151 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6152 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6153 {
6154 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6155 s64 remaining;
6156
6157 /* if the call-back is running a quota refresh is already occurring */
6158 if (hrtimer_callback_running(refresh_timer))
6159 return 1;
6160
6161 /* is a quota refresh about to occur? */
6162 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6163 if (remaining < (s64)min_expire)
6164 return 1;
6165
6166 return 0;
6167 }
6168
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6169 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6170 {
6171 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6172
6173 /* if there's a quota refresh soon don't bother with slack */
6174 if (runtime_refresh_within(cfs_b, min_left))
6175 return;
6176
6177 /* don't push forwards an existing deferred unthrottle */
6178 if (cfs_b->slack_started)
6179 return;
6180 cfs_b->slack_started = true;
6181
6182 hrtimer_start(&cfs_b->slack_timer,
6183 ns_to_ktime(cfs_bandwidth_slack_period),
6184 HRTIMER_MODE_REL);
6185 }
6186
6187 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6189 {
6190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6191 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6192
6193 if (slack_runtime <= 0)
6194 return;
6195
6196 raw_spin_lock(&cfs_b->lock);
6197 if (cfs_b->quota != RUNTIME_INF) {
6198 cfs_b->runtime += slack_runtime;
6199
6200 /* we are under rq->lock, defer unthrottling using a timer */
6201 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6202 !list_empty(&cfs_b->throttled_cfs_rq))
6203 start_cfs_slack_bandwidth(cfs_b);
6204 }
6205 raw_spin_unlock(&cfs_b->lock);
6206
6207 /* even if it's not valid for return we don't want to try again */
6208 cfs_rq->runtime_remaining -= slack_runtime;
6209 }
6210
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6211 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6212 {
6213 if (!cfs_bandwidth_used())
6214 return;
6215
6216 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6217 return;
6218
6219 __return_cfs_rq_runtime(cfs_rq);
6220 }
6221
6222 /*
6223 * This is done with a timer (instead of inline with bandwidth return) since
6224 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6225 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6226 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6227 {
6228 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6229 unsigned long flags;
6230
6231 /* confirm we're still not at a refresh boundary */
6232 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6233 cfs_b->slack_started = false;
6234
6235 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6236 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6237 return;
6238 }
6239
6240 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6241 runtime = cfs_b->runtime;
6242
6243 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6244
6245 if (!runtime)
6246 return;
6247
6248 distribute_cfs_runtime(cfs_b);
6249 }
6250
6251 /*
6252 * When a group wakes up we want to make sure that its quota is not already
6253 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6254 * runtime as update_curr() throttling can not trigger until it's on-rq.
6255 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6256 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6257 {
6258 if (!cfs_bandwidth_used())
6259 return;
6260
6261 /* an active group must be handled by the update_curr()->put() path */
6262 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6263 return;
6264
6265 /* ensure the group is not already throttled */
6266 if (cfs_rq_throttled(cfs_rq))
6267 return;
6268
6269 /* update runtime allocation */
6270 account_cfs_rq_runtime(cfs_rq, 0);
6271 if (cfs_rq->runtime_remaining <= 0)
6272 throttle_cfs_rq(cfs_rq);
6273 }
6274
sync_throttle(struct task_group * tg,int cpu)6275 static void sync_throttle(struct task_group *tg, int cpu)
6276 {
6277 struct cfs_rq *pcfs_rq, *cfs_rq;
6278
6279 if (!cfs_bandwidth_used())
6280 return;
6281
6282 if (!tg->parent)
6283 return;
6284
6285 cfs_rq = tg->cfs_rq[cpu];
6286 pcfs_rq = tg->parent->cfs_rq[cpu];
6287
6288 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6289 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6290 }
6291
6292 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6293 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6294 {
6295 if (!cfs_bandwidth_used())
6296 return false;
6297
6298 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6299 return false;
6300
6301 /*
6302 * it's possible for a throttled entity to be forced into a running
6303 * state (e.g. set_curr_task), in this case we're finished.
6304 */
6305 if (cfs_rq_throttled(cfs_rq))
6306 return true;
6307
6308 return throttle_cfs_rq(cfs_rq);
6309 }
6310
sched_cfs_slack_timer(struct hrtimer * timer)6311 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6312 {
6313 struct cfs_bandwidth *cfs_b =
6314 container_of(timer, struct cfs_bandwidth, slack_timer);
6315
6316 do_sched_cfs_slack_timer(cfs_b);
6317
6318 return HRTIMER_NORESTART;
6319 }
6320
6321 extern const u64 max_cfs_quota_period;
6322
sched_cfs_period_timer(struct hrtimer * timer)6323 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6324 {
6325 struct cfs_bandwidth *cfs_b =
6326 container_of(timer, struct cfs_bandwidth, period_timer);
6327 unsigned long flags;
6328 int overrun;
6329 int idle = 0;
6330 int count = 0;
6331
6332 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6333 for (;;) {
6334 overrun = hrtimer_forward_now(timer, cfs_b->period);
6335 if (!overrun)
6336 break;
6337
6338 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6339
6340 if (++count > 3) {
6341 u64 new, old = ktime_to_ns(cfs_b->period);
6342
6343 /*
6344 * Grow period by a factor of 2 to avoid losing precision.
6345 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6346 * to fail.
6347 */
6348 new = old * 2;
6349 if (new < max_cfs_quota_period) {
6350 cfs_b->period = ns_to_ktime(new);
6351 cfs_b->quota *= 2;
6352 cfs_b->burst *= 2;
6353
6354 pr_warn_ratelimited(
6355 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6356 smp_processor_id(),
6357 div_u64(new, NSEC_PER_USEC),
6358 div_u64(cfs_b->quota, NSEC_PER_USEC));
6359 } else {
6360 pr_warn_ratelimited(
6361 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6362 smp_processor_id(),
6363 div_u64(old, NSEC_PER_USEC),
6364 div_u64(cfs_b->quota, NSEC_PER_USEC));
6365 }
6366
6367 /* reset count so we don't come right back in here */
6368 count = 0;
6369 }
6370 }
6371 if (idle)
6372 cfs_b->period_active = 0;
6373 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6374
6375 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6376 }
6377
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6378 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6379 {
6380 raw_spin_lock_init(&cfs_b->lock);
6381 cfs_b->runtime = 0;
6382 cfs_b->quota = RUNTIME_INF;
6383 cfs_b->period = ns_to_ktime(default_cfs_period());
6384 cfs_b->burst = 0;
6385 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6386
6387 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6388 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6389 cfs_b->period_timer.function = sched_cfs_period_timer;
6390
6391 /* Add a random offset so that timers interleave */
6392 hrtimer_set_expires(&cfs_b->period_timer,
6393 get_random_u32_below(cfs_b->period));
6394 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6395 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6396 cfs_b->slack_started = false;
6397 }
6398
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6400 {
6401 cfs_rq->runtime_enabled = 0;
6402 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6403 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6404 }
6405
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6406 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6407 {
6408 lockdep_assert_held(&cfs_b->lock);
6409
6410 if (cfs_b->period_active)
6411 return;
6412
6413 cfs_b->period_active = 1;
6414 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6415 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6416 }
6417
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6418 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6419 {
6420 int __maybe_unused i;
6421
6422 /* init_cfs_bandwidth() was not called */
6423 if (!cfs_b->throttled_cfs_rq.next)
6424 return;
6425
6426 hrtimer_cancel(&cfs_b->period_timer);
6427 hrtimer_cancel(&cfs_b->slack_timer);
6428
6429 /*
6430 * It is possible that we still have some cfs_rq's pending on a CSD
6431 * list, though this race is very rare. In order for this to occur, we
6432 * must have raced with the last task leaving the group while there
6433 * exist throttled cfs_rq(s), and the period_timer must have queued the
6434 * CSD item but the remote cpu has not yet processed it. To handle this,
6435 * we can simply flush all pending CSD work inline here. We're
6436 * guaranteed at this point that no additional cfs_rq of this group can
6437 * join a CSD list.
6438 */
6439 #ifdef CONFIG_SMP
6440 for_each_possible_cpu(i) {
6441 struct rq *rq = cpu_rq(i);
6442 unsigned long flags;
6443
6444 if (list_empty(&rq->cfsb_csd_list))
6445 continue;
6446
6447 local_irq_save(flags);
6448 __cfsb_csd_unthrottle(rq);
6449 local_irq_restore(flags);
6450 }
6451 #endif
6452 }
6453
6454 /*
6455 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6456 *
6457 * The race is harmless, since modifying bandwidth settings of unhooked group
6458 * bits doesn't do much.
6459 */
6460
6461 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6462 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6463 {
6464 struct task_group *tg;
6465
6466 lockdep_assert_rq_held(rq);
6467
6468 rcu_read_lock();
6469 list_for_each_entry_rcu(tg, &task_groups, list) {
6470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6471 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6472
6473 raw_spin_lock(&cfs_b->lock);
6474 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6475 raw_spin_unlock(&cfs_b->lock);
6476 }
6477 rcu_read_unlock();
6478 }
6479
6480 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6481 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6482 {
6483 struct task_group *tg;
6484
6485 lockdep_assert_rq_held(rq);
6486
6487 /*
6488 * The rq clock has already been updated in the
6489 * set_rq_offline(), so we should skip updating
6490 * the rq clock again in unthrottle_cfs_rq().
6491 */
6492 rq_clock_start_loop_update(rq);
6493
6494 rcu_read_lock();
6495 list_for_each_entry_rcu(tg, &task_groups, list) {
6496 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6497
6498 if (!cfs_rq->runtime_enabled)
6499 continue;
6500
6501 /*
6502 * clock_task is not advancing so we just need to make sure
6503 * there's some valid quota amount
6504 */
6505 cfs_rq->runtime_remaining = 1;
6506 /*
6507 * Offline rq is schedulable till CPU is completely disabled
6508 * in take_cpu_down(), so we prevent new cfs throttling here.
6509 */
6510 cfs_rq->runtime_enabled = 0;
6511
6512 if (cfs_rq_throttled(cfs_rq))
6513 unthrottle_cfs_rq(cfs_rq);
6514 }
6515 rcu_read_unlock();
6516
6517 rq_clock_stop_loop_update(rq);
6518 }
6519
cfs_task_bw_constrained(struct task_struct * p)6520 bool cfs_task_bw_constrained(struct task_struct *p)
6521 {
6522 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6523
6524 if (!cfs_bandwidth_used())
6525 return false;
6526
6527 if (cfs_rq->runtime_enabled ||
6528 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6529 return true;
6530
6531 return false;
6532 }
6533
6534 #ifdef CONFIG_NO_HZ_FULL
6535 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6536 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6537 {
6538 int cpu = cpu_of(rq);
6539
6540 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6541 return;
6542
6543 if (!tick_nohz_full_cpu(cpu))
6544 return;
6545
6546 if (rq->nr_running != 1)
6547 return;
6548
6549 /*
6550 * We know there is only one task runnable and we've just picked it. The
6551 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6552 * be otherwise able to stop the tick. Just need to check if we are using
6553 * bandwidth control.
6554 */
6555 if (cfs_task_bw_constrained(p))
6556 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6557 }
6558 #endif
6559
6560 #else /* CONFIG_CFS_BANDWIDTH */
6561
cfs_bandwidth_used(void)6562 static inline bool cfs_bandwidth_used(void)
6563 {
6564 return false;
6565 }
6566
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6567 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6569 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6570 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6572
cfs_rq_throttled(struct cfs_rq * cfs_rq)6573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6574 {
6575 return 0;
6576 }
6577
throttled_hierarchy(struct cfs_rq * cfs_rq)6578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6579 {
6580 return 0;
6581 }
6582
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)6583 static inline int throttled_lb_pair(struct task_group *tg,
6584 int src_cpu, int dest_cpu)
6585 {
6586 return 0;
6587 }
6588
6589 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6591 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6592 #endif
6593
tg_cfs_bandwidth(struct task_group * tg)6594 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6595 {
6596 return NULL;
6597 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6598 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6599 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6600 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6601 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6602 bool cfs_task_bw_constrained(struct task_struct *p)
6603 {
6604 return false;
6605 }
6606 #endif
6607 #endif /* CONFIG_CFS_BANDWIDTH */
6608
6609 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6610 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6611 #endif
6612
6613 /**************************************************
6614 * CFS operations on tasks:
6615 */
6616
6617 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6618 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6619 {
6620 struct sched_entity *se = &p->se;
6621
6622 SCHED_WARN_ON(task_rq(p) != rq);
6623
6624 if (rq->cfs.h_nr_running > 1) {
6625 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6626 u64 slice = se->slice;
6627 s64 delta = slice - ran;
6628
6629 if (delta < 0) {
6630 if (task_current(rq, p))
6631 resched_curr(rq);
6632 return;
6633 }
6634 hrtick_start(rq, delta);
6635 }
6636 }
6637
6638 /*
6639 * called from enqueue/dequeue and updates the hrtick when the
6640 * current task is from our class and nr_running is low enough
6641 * to matter.
6642 */
hrtick_update(struct rq * rq)6643 static void hrtick_update(struct rq *rq)
6644 {
6645 struct task_struct *curr = rq->curr;
6646
6647 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6648 return;
6649
6650 hrtick_start_fair(rq, curr);
6651 }
6652 #else /* !CONFIG_SCHED_HRTICK */
6653 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6654 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6655 {
6656 }
6657
hrtick_update(struct rq * rq)6658 static inline void hrtick_update(struct rq *rq)
6659 {
6660 }
6661 #endif
6662
6663 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)6664 static inline bool cpu_overutilized(int cpu)
6665 {
6666 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6667 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6668
6669 /* Return true only if the utilization doesn't fit CPU's capacity */
6670 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6671 }
6672
update_overutilized_status(struct rq * rq)6673 static inline void update_overutilized_status(struct rq *rq)
6674 {
6675 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
6676 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
6677 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
6678 }
6679 }
6680 #else
update_overutilized_status(struct rq * rq)6681 static inline void update_overutilized_status(struct rq *rq) { }
6682 #endif
6683
6684 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6685 static int sched_idle_rq(struct rq *rq)
6686 {
6687 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6688 rq->nr_running);
6689 }
6690
6691 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)6692 static int sched_idle_cpu(int cpu)
6693 {
6694 return sched_idle_rq(cpu_rq(cpu));
6695 }
6696 #endif
6697
6698 /*
6699 * The enqueue_task method is called before nr_running is
6700 * increased. Here we update the fair scheduling stats and
6701 * then put the task into the rbtree:
6702 */
6703 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6704 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6705 {
6706 struct cfs_rq *cfs_rq;
6707 struct sched_entity *se = &p->se;
6708 int idle_h_nr_running = task_has_idle_policy(p);
6709 int task_new = !(flags & ENQUEUE_WAKEUP);
6710
6711 /*
6712 * The code below (indirectly) updates schedutil which looks at
6713 * the cfs_rq utilization to select a frequency.
6714 * Let's add the task's estimated utilization to the cfs_rq's
6715 * estimated utilization, before we update schedutil.
6716 */
6717 util_est_enqueue(&rq->cfs, p);
6718
6719 /*
6720 * If in_iowait is set, the code below may not trigger any cpufreq
6721 * utilization updates, so do it here explicitly with the IOWAIT flag
6722 * passed.
6723 */
6724 if (p->in_iowait)
6725 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6726
6727 for_each_sched_entity(se) {
6728 if (se->on_rq)
6729 break;
6730 cfs_rq = cfs_rq_of(se);
6731 enqueue_entity(cfs_rq, se, flags);
6732
6733 cfs_rq->h_nr_running++;
6734 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6735
6736 if (cfs_rq_is_idle(cfs_rq))
6737 idle_h_nr_running = 1;
6738
6739 /* end evaluation on encountering a throttled cfs_rq */
6740 if (cfs_rq_throttled(cfs_rq))
6741 goto enqueue_throttle;
6742
6743 flags = ENQUEUE_WAKEUP;
6744 }
6745
6746 for_each_sched_entity(se) {
6747 cfs_rq = cfs_rq_of(se);
6748
6749 update_load_avg(cfs_rq, se, UPDATE_TG);
6750 se_update_runnable(se);
6751 update_cfs_group(se);
6752
6753 cfs_rq->h_nr_running++;
6754 cfs_rq->idle_h_nr_running += idle_h_nr_running;
6755
6756 if (cfs_rq_is_idle(cfs_rq))
6757 idle_h_nr_running = 1;
6758
6759 /* end evaluation on encountering a throttled cfs_rq */
6760 if (cfs_rq_throttled(cfs_rq))
6761 goto enqueue_throttle;
6762 }
6763
6764 /* At this point se is NULL and we are at root level*/
6765 add_nr_running(rq, 1);
6766
6767 /*
6768 * Since new tasks are assigned an initial util_avg equal to
6769 * half of the spare capacity of their CPU, tiny tasks have the
6770 * ability to cross the overutilized threshold, which will
6771 * result in the load balancer ruining all the task placement
6772 * done by EAS. As a way to mitigate that effect, do not account
6773 * for the first enqueue operation of new tasks during the
6774 * overutilized flag detection.
6775 *
6776 * A better way of solving this problem would be to wait for
6777 * the PELT signals of tasks to converge before taking them
6778 * into account, but that is not straightforward to implement,
6779 * and the following generally works well enough in practice.
6780 */
6781 if (!task_new)
6782 update_overutilized_status(rq);
6783
6784 enqueue_throttle:
6785 assert_list_leaf_cfs_rq(rq);
6786
6787 hrtick_update(rq);
6788 }
6789
6790 static void set_next_buddy(struct sched_entity *se);
6791
6792 /*
6793 * The dequeue_task method is called before nr_running is
6794 * decreased. We remove the task from the rbtree and
6795 * update the fair scheduling stats:
6796 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)6797 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6798 {
6799 struct cfs_rq *cfs_rq;
6800 struct sched_entity *se = &p->se;
6801 int task_sleep = flags & DEQUEUE_SLEEP;
6802 int idle_h_nr_running = task_has_idle_policy(p);
6803 bool was_sched_idle = sched_idle_rq(rq);
6804
6805 util_est_dequeue(&rq->cfs, p);
6806
6807 for_each_sched_entity(se) {
6808 cfs_rq = cfs_rq_of(se);
6809 dequeue_entity(cfs_rq, se, flags);
6810
6811 cfs_rq->h_nr_running--;
6812 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6813
6814 if (cfs_rq_is_idle(cfs_rq))
6815 idle_h_nr_running = 1;
6816
6817 /* end evaluation on encountering a throttled cfs_rq */
6818 if (cfs_rq_throttled(cfs_rq))
6819 goto dequeue_throttle;
6820
6821 /* Don't dequeue parent if it has other entities besides us */
6822 if (cfs_rq->load.weight) {
6823 /* Avoid re-evaluating load for this entity: */
6824 se = parent_entity(se);
6825 /*
6826 * Bias pick_next to pick a task from this cfs_rq, as
6827 * p is sleeping when it is within its sched_slice.
6828 */
6829 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6830 set_next_buddy(se);
6831 break;
6832 }
6833 flags |= DEQUEUE_SLEEP;
6834 }
6835
6836 for_each_sched_entity(se) {
6837 cfs_rq = cfs_rq_of(se);
6838
6839 update_load_avg(cfs_rq, se, UPDATE_TG);
6840 se_update_runnable(se);
6841 update_cfs_group(se);
6842
6843 cfs_rq->h_nr_running--;
6844 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6845
6846 if (cfs_rq_is_idle(cfs_rq))
6847 idle_h_nr_running = 1;
6848
6849 /* end evaluation on encountering a throttled cfs_rq */
6850 if (cfs_rq_throttled(cfs_rq))
6851 goto dequeue_throttle;
6852
6853 }
6854
6855 /* At this point se is NULL and we are at root level*/
6856 sub_nr_running(rq, 1);
6857
6858 /* balance early to pull high priority tasks */
6859 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6860 rq->next_balance = jiffies;
6861
6862 dequeue_throttle:
6863 util_est_update(&rq->cfs, p, task_sleep);
6864 hrtick_update(rq);
6865 }
6866
6867 #ifdef CONFIG_SMP
6868
6869 /* Working cpumask for: load_balance, load_balance_newidle. */
6870 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6871 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6872 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6873
6874 #ifdef CONFIG_NO_HZ_COMMON
6875
6876 static struct {
6877 cpumask_var_t idle_cpus_mask;
6878 atomic_t nr_cpus;
6879 int has_blocked; /* Idle CPUS has blocked load */
6880 int needs_update; /* Newly idle CPUs need their next_balance collated */
6881 unsigned long next_balance; /* in jiffy units */
6882 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6883 } nohz ____cacheline_aligned;
6884
6885 #endif /* CONFIG_NO_HZ_COMMON */
6886
cpu_load(struct rq * rq)6887 static unsigned long cpu_load(struct rq *rq)
6888 {
6889 return cfs_rq_load_avg(&rq->cfs);
6890 }
6891
6892 /*
6893 * cpu_load_without - compute CPU load without any contributions from *p
6894 * @cpu: the CPU which load is requested
6895 * @p: the task which load should be discounted
6896 *
6897 * The load of a CPU is defined by the load of tasks currently enqueued on that
6898 * CPU as well as tasks which are currently sleeping after an execution on that
6899 * CPU.
6900 *
6901 * This method returns the load of the specified CPU by discounting the load of
6902 * the specified task, whenever the task is currently contributing to the CPU
6903 * load.
6904 */
cpu_load_without(struct rq * rq,struct task_struct * p)6905 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6906 {
6907 struct cfs_rq *cfs_rq;
6908 unsigned int load;
6909
6910 /* Task has no contribution or is new */
6911 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6912 return cpu_load(rq);
6913
6914 cfs_rq = &rq->cfs;
6915 load = READ_ONCE(cfs_rq->avg.load_avg);
6916
6917 /* Discount task's util from CPU's util */
6918 lsub_positive(&load, task_h_load(p));
6919
6920 return load;
6921 }
6922
cpu_runnable(struct rq * rq)6923 static unsigned long cpu_runnable(struct rq *rq)
6924 {
6925 return cfs_rq_runnable_avg(&rq->cfs);
6926 }
6927
cpu_runnable_without(struct rq * rq,struct task_struct * p)6928 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6929 {
6930 struct cfs_rq *cfs_rq;
6931 unsigned int runnable;
6932
6933 /* Task has no contribution or is new */
6934 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6935 return cpu_runnable(rq);
6936
6937 cfs_rq = &rq->cfs;
6938 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6939
6940 /* Discount task's runnable from CPU's runnable */
6941 lsub_positive(&runnable, p->se.avg.runnable_avg);
6942
6943 return runnable;
6944 }
6945
capacity_of(int cpu)6946 static unsigned long capacity_of(int cpu)
6947 {
6948 return cpu_rq(cpu)->cpu_capacity;
6949 }
6950
record_wakee(struct task_struct * p)6951 static void record_wakee(struct task_struct *p)
6952 {
6953 /*
6954 * Only decay a single time; tasks that have less then 1 wakeup per
6955 * jiffy will not have built up many flips.
6956 */
6957 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6958 current->wakee_flips >>= 1;
6959 current->wakee_flip_decay_ts = jiffies;
6960 }
6961
6962 if (current->last_wakee != p) {
6963 current->last_wakee = p;
6964 current->wakee_flips++;
6965 }
6966 }
6967
6968 /*
6969 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6970 *
6971 * A waker of many should wake a different task than the one last awakened
6972 * at a frequency roughly N times higher than one of its wakees.
6973 *
6974 * In order to determine whether we should let the load spread vs consolidating
6975 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6976 * partner, and a factor of lls_size higher frequency in the other.
6977 *
6978 * With both conditions met, we can be relatively sure that the relationship is
6979 * non-monogamous, with partner count exceeding socket size.
6980 *
6981 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6982 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6983 * socket size.
6984 */
wake_wide(struct task_struct * p)6985 static int wake_wide(struct task_struct *p)
6986 {
6987 unsigned int master = current->wakee_flips;
6988 unsigned int slave = p->wakee_flips;
6989 int factor = __this_cpu_read(sd_llc_size);
6990
6991 if (master < slave)
6992 swap(master, slave);
6993 if (slave < factor || master < slave * factor)
6994 return 0;
6995 return 1;
6996 }
6997
6998 /*
6999 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7000 * soonest. For the purpose of speed we only consider the waking and previous
7001 * CPU.
7002 *
7003 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7004 * cache-affine and is (or will be) idle.
7005 *
7006 * wake_affine_weight() - considers the weight to reflect the average
7007 * scheduling latency of the CPUs. This seems to work
7008 * for the overloaded case.
7009 */
7010 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7011 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7012 {
7013 /*
7014 * If this_cpu is idle, it implies the wakeup is from interrupt
7015 * context. Only allow the move if cache is shared. Otherwise an
7016 * interrupt intensive workload could force all tasks onto one
7017 * node depending on the IO topology or IRQ affinity settings.
7018 *
7019 * If the prev_cpu is idle and cache affine then avoid a migration.
7020 * There is no guarantee that the cache hot data from an interrupt
7021 * is more important than cache hot data on the prev_cpu and from
7022 * a cpufreq perspective, it's better to have higher utilisation
7023 * on one CPU.
7024 */
7025 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7026 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7027
7028 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7029 return this_cpu;
7030
7031 if (available_idle_cpu(prev_cpu))
7032 return prev_cpu;
7033
7034 return nr_cpumask_bits;
7035 }
7036
7037 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7038 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7039 int this_cpu, int prev_cpu, int sync)
7040 {
7041 s64 this_eff_load, prev_eff_load;
7042 unsigned long task_load;
7043
7044 this_eff_load = cpu_load(cpu_rq(this_cpu));
7045
7046 if (sync) {
7047 unsigned long current_load = task_h_load(current);
7048
7049 if (current_load > this_eff_load)
7050 return this_cpu;
7051
7052 this_eff_load -= current_load;
7053 }
7054
7055 task_load = task_h_load(p);
7056
7057 this_eff_load += task_load;
7058 if (sched_feat(WA_BIAS))
7059 this_eff_load *= 100;
7060 this_eff_load *= capacity_of(prev_cpu);
7061
7062 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7063 prev_eff_load -= task_load;
7064 if (sched_feat(WA_BIAS))
7065 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7066 prev_eff_load *= capacity_of(this_cpu);
7067
7068 /*
7069 * If sync, adjust the weight of prev_eff_load such that if
7070 * prev_eff == this_eff that select_idle_sibling() will consider
7071 * stacking the wakee on top of the waker if no other CPU is
7072 * idle.
7073 */
7074 if (sync)
7075 prev_eff_load += 1;
7076
7077 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7078 }
7079
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7080 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7081 int this_cpu, int prev_cpu, int sync)
7082 {
7083 int target = nr_cpumask_bits;
7084
7085 if (sched_feat(WA_IDLE))
7086 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7087
7088 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7089 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7090
7091 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7092 if (target != this_cpu)
7093 return prev_cpu;
7094
7095 schedstat_inc(sd->ttwu_move_affine);
7096 schedstat_inc(p->stats.nr_wakeups_affine);
7097 return target;
7098 }
7099
7100 static struct sched_group *
7101 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7102
7103 /*
7104 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
7105 */
7106 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7107 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7108 {
7109 unsigned long load, min_load = ULONG_MAX;
7110 unsigned int min_exit_latency = UINT_MAX;
7111 u64 latest_idle_timestamp = 0;
7112 int least_loaded_cpu = this_cpu;
7113 int shallowest_idle_cpu = -1;
7114 int i;
7115
7116 /* Check if we have any choice: */
7117 if (group->group_weight == 1)
7118 return cpumask_first(sched_group_span(group));
7119
7120 /* Traverse only the allowed CPUs */
7121 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7122 struct rq *rq = cpu_rq(i);
7123
7124 if (!sched_core_cookie_match(rq, p))
7125 continue;
7126
7127 if (sched_idle_cpu(i))
7128 return i;
7129
7130 if (available_idle_cpu(i)) {
7131 struct cpuidle_state *idle = idle_get_state(rq);
7132 if (idle && idle->exit_latency < min_exit_latency) {
7133 /*
7134 * We give priority to a CPU whose idle state
7135 * has the smallest exit latency irrespective
7136 * of any idle timestamp.
7137 */
7138 min_exit_latency = idle->exit_latency;
7139 latest_idle_timestamp = rq->idle_stamp;
7140 shallowest_idle_cpu = i;
7141 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7142 rq->idle_stamp > latest_idle_timestamp) {
7143 /*
7144 * If equal or no active idle state, then
7145 * the most recently idled CPU might have
7146 * a warmer cache.
7147 */
7148 latest_idle_timestamp = rq->idle_stamp;
7149 shallowest_idle_cpu = i;
7150 }
7151 } else if (shallowest_idle_cpu == -1) {
7152 load = cpu_load(cpu_rq(i));
7153 if (load < min_load) {
7154 min_load = load;
7155 least_loaded_cpu = i;
7156 }
7157 }
7158 }
7159
7160 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7161 }
7162
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7163 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
7164 int cpu, int prev_cpu, int sd_flag)
7165 {
7166 int new_cpu = cpu;
7167
7168 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7169 return prev_cpu;
7170
7171 /*
7172 * We need task's util for cpu_util_without, sync it up to
7173 * prev_cpu's last_update_time.
7174 */
7175 if (!(sd_flag & SD_BALANCE_FORK))
7176 sync_entity_load_avg(&p->se);
7177
7178 while (sd) {
7179 struct sched_group *group;
7180 struct sched_domain *tmp;
7181 int weight;
7182
7183 if (!(sd->flags & sd_flag)) {
7184 sd = sd->child;
7185 continue;
7186 }
7187
7188 group = find_idlest_group(sd, p, cpu);
7189 if (!group) {
7190 sd = sd->child;
7191 continue;
7192 }
7193
7194 new_cpu = find_idlest_group_cpu(group, p, cpu);
7195 if (new_cpu == cpu) {
7196 /* Now try balancing at a lower domain level of 'cpu': */
7197 sd = sd->child;
7198 continue;
7199 }
7200
7201 /* Now try balancing at a lower domain level of 'new_cpu': */
7202 cpu = new_cpu;
7203 weight = sd->span_weight;
7204 sd = NULL;
7205 for_each_domain(cpu, tmp) {
7206 if (weight <= tmp->span_weight)
7207 break;
7208 if (tmp->flags & sd_flag)
7209 sd = tmp;
7210 }
7211 }
7212
7213 return new_cpu;
7214 }
7215
__select_idle_cpu(int cpu,struct task_struct * p)7216 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7217 {
7218 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7219 sched_cpu_cookie_match(cpu_rq(cpu), p))
7220 return cpu;
7221
7222 return -1;
7223 }
7224
7225 #ifdef CONFIG_SCHED_SMT
7226 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7227 EXPORT_SYMBOL_GPL(sched_smt_present);
7228
set_idle_cores(int cpu,int val)7229 static inline void set_idle_cores(int cpu, int val)
7230 {
7231 struct sched_domain_shared *sds;
7232
7233 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7234 if (sds)
7235 WRITE_ONCE(sds->has_idle_cores, val);
7236 }
7237
test_idle_cores(int cpu)7238 static inline bool test_idle_cores(int cpu)
7239 {
7240 struct sched_domain_shared *sds;
7241
7242 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7243 if (sds)
7244 return READ_ONCE(sds->has_idle_cores);
7245
7246 return false;
7247 }
7248
7249 /*
7250 * Scans the local SMT mask to see if the entire core is idle, and records this
7251 * information in sd_llc_shared->has_idle_cores.
7252 *
7253 * Since SMT siblings share all cache levels, inspecting this limited remote
7254 * state should be fairly cheap.
7255 */
__update_idle_core(struct rq * rq)7256 void __update_idle_core(struct rq *rq)
7257 {
7258 int core = cpu_of(rq);
7259 int cpu;
7260
7261 rcu_read_lock();
7262 if (test_idle_cores(core))
7263 goto unlock;
7264
7265 for_each_cpu(cpu, cpu_smt_mask(core)) {
7266 if (cpu == core)
7267 continue;
7268
7269 if (!available_idle_cpu(cpu))
7270 goto unlock;
7271 }
7272
7273 set_idle_cores(core, 1);
7274 unlock:
7275 rcu_read_unlock();
7276 }
7277
7278 /*
7279 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7280 * there are no idle cores left in the system; tracked through
7281 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7282 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7283 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7284 {
7285 bool idle = true;
7286 int cpu;
7287
7288 for_each_cpu(cpu, cpu_smt_mask(core)) {
7289 if (!available_idle_cpu(cpu)) {
7290 idle = false;
7291 if (*idle_cpu == -1) {
7292 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
7293 *idle_cpu = cpu;
7294 break;
7295 }
7296 continue;
7297 }
7298 break;
7299 }
7300 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
7301 *idle_cpu = cpu;
7302 }
7303
7304 if (idle)
7305 return core;
7306
7307 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7308 return -1;
7309 }
7310
7311 /*
7312 * Scan the local SMT mask for idle CPUs.
7313 */
select_idle_smt(struct task_struct * p,int target)7314 static int select_idle_smt(struct task_struct *p, int target)
7315 {
7316 int cpu;
7317
7318 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7319 if (cpu == target)
7320 continue;
7321 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7322 return cpu;
7323 }
7324
7325 return -1;
7326 }
7327
7328 #else /* CONFIG_SCHED_SMT */
7329
set_idle_cores(int cpu,int val)7330 static inline void set_idle_cores(int cpu, int val)
7331 {
7332 }
7333
test_idle_cores(int cpu)7334 static inline bool test_idle_cores(int cpu)
7335 {
7336 return false;
7337 }
7338
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7339 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7340 {
7341 return __select_idle_cpu(core, p);
7342 }
7343
select_idle_smt(struct task_struct * p,int target)7344 static inline int select_idle_smt(struct task_struct *p, int target)
7345 {
7346 return -1;
7347 }
7348
7349 #endif /* CONFIG_SCHED_SMT */
7350
7351 /*
7352 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7353 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7354 * average idle time for this rq (as found in rq->avg_idle).
7355 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7356 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7357 {
7358 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7359 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7360 struct sched_domain_shared *sd_share;
7361
7362 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7363
7364 if (sched_feat(SIS_UTIL)) {
7365 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7366 if (sd_share) {
7367 /* because !--nr is the condition to stop scan */
7368 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7369 /* overloaded LLC is unlikely to have idle cpu/core */
7370 if (nr == 1)
7371 return -1;
7372 }
7373 }
7374
7375 if (static_branch_unlikely(&sched_cluster_active)) {
7376 struct sched_group *sg = sd->groups;
7377
7378 if (sg->flags & SD_CLUSTER) {
7379 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7380 if (!cpumask_test_cpu(cpu, cpus))
7381 continue;
7382
7383 if (has_idle_core) {
7384 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7385 if ((unsigned int)i < nr_cpumask_bits)
7386 return i;
7387 } else {
7388 if (--nr <= 0)
7389 return -1;
7390 idle_cpu = __select_idle_cpu(cpu, p);
7391 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7392 return idle_cpu;
7393 }
7394 }
7395 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7396 }
7397 }
7398
7399 for_each_cpu_wrap(cpu, cpus, target + 1) {
7400 if (has_idle_core) {
7401 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7402 if ((unsigned int)i < nr_cpumask_bits)
7403 return i;
7404
7405 } else {
7406 if (--nr <= 0)
7407 return -1;
7408 idle_cpu = __select_idle_cpu(cpu, p);
7409 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7410 break;
7411 }
7412 }
7413
7414 if (has_idle_core)
7415 set_idle_cores(target, false);
7416
7417 return idle_cpu;
7418 }
7419
7420 /*
7421 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7422 * the task fits. If no CPU is big enough, but there are idle ones, try to
7423 * maximize capacity.
7424 */
7425 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7426 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7427 {
7428 unsigned long task_util, util_min, util_max, best_cap = 0;
7429 int fits, best_fits = 0;
7430 int cpu, best_cpu = -1;
7431 struct cpumask *cpus;
7432
7433 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7434 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7435
7436 task_util = task_util_est(p);
7437 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7438 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7439
7440 for_each_cpu_wrap(cpu, cpus, target) {
7441 unsigned long cpu_cap = capacity_of(cpu);
7442
7443 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7444 continue;
7445
7446 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7447
7448 /* This CPU fits with all requirements */
7449 if (fits > 0)
7450 return cpu;
7451 /*
7452 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7453 * Look for the CPU with best capacity.
7454 */
7455 else if (fits < 0)
7456 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu));
7457
7458 /*
7459 * First, select CPU which fits better (-1 being better than 0).
7460 * Then, select the one with best capacity at same level.
7461 */
7462 if ((fits < best_fits) ||
7463 ((fits == best_fits) && (cpu_cap > best_cap))) {
7464 best_cap = cpu_cap;
7465 best_cpu = cpu;
7466 best_fits = fits;
7467 }
7468 }
7469
7470 return best_cpu;
7471 }
7472
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7473 static inline bool asym_fits_cpu(unsigned long util,
7474 unsigned long util_min,
7475 unsigned long util_max,
7476 int cpu)
7477 {
7478 if (sched_asym_cpucap_active())
7479 /*
7480 * Return true only if the cpu fully fits the task requirements
7481 * which include the utilization and the performance hints.
7482 */
7483 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7484
7485 return true;
7486 }
7487
7488 /*
7489 * Try and locate an idle core/thread in the LLC cache domain.
7490 */
select_idle_sibling(struct task_struct * p,int prev,int target)7491 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7492 {
7493 bool has_idle_core = false;
7494 struct sched_domain *sd;
7495 unsigned long task_util, util_min, util_max;
7496 int i, recent_used_cpu, prev_aff = -1;
7497
7498 /*
7499 * On asymmetric system, update task utilization because we will check
7500 * that the task fits with cpu's capacity.
7501 */
7502 if (sched_asym_cpucap_active()) {
7503 sync_entity_load_avg(&p->se);
7504 task_util = task_util_est(p);
7505 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7506 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7507 }
7508
7509 /*
7510 * per-cpu select_rq_mask usage
7511 */
7512 lockdep_assert_irqs_disabled();
7513
7514 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7515 asym_fits_cpu(task_util, util_min, util_max, target))
7516 return target;
7517
7518 /*
7519 * If the previous CPU is cache affine and idle, don't be stupid:
7520 */
7521 if (prev != target && cpus_share_cache(prev, target) &&
7522 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7523 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7524
7525 if (!static_branch_unlikely(&sched_cluster_active) ||
7526 cpus_share_resources(prev, target))
7527 return prev;
7528
7529 prev_aff = prev;
7530 }
7531
7532 /*
7533 * Allow a per-cpu kthread to stack with the wakee if the
7534 * kworker thread and the tasks previous CPUs are the same.
7535 * The assumption is that the wakee queued work for the
7536 * per-cpu kthread that is now complete and the wakeup is
7537 * essentially a sync wakeup. An obvious example of this
7538 * pattern is IO completions.
7539 */
7540 if (is_per_cpu_kthread(current) &&
7541 in_task() &&
7542 prev == smp_processor_id() &&
7543 this_rq()->nr_running <= 1 &&
7544 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7545 return prev;
7546 }
7547
7548 /* Check a recently used CPU as a potential idle candidate: */
7549 recent_used_cpu = p->recent_used_cpu;
7550 p->recent_used_cpu = prev;
7551 if (recent_used_cpu != prev &&
7552 recent_used_cpu != target &&
7553 cpus_share_cache(recent_used_cpu, target) &&
7554 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7555 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7556 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7557
7558 if (!static_branch_unlikely(&sched_cluster_active) ||
7559 cpus_share_resources(recent_used_cpu, target))
7560 return recent_used_cpu;
7561
7562 } else {
7563 recent_used_cpu = -1;
7564 }
7565
7566 /*
7567 * For asymmetric CPU capacity systems, our domain of interest is
7568 * sd_asym_cpucapacity rather than sd_llc.
7569 */
7570 if (sched_asym_cpucap_active()) {
7571 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7572 /*
7573 * On an asymmetric CPU capacity system where an exclusive
7574 * cpuset defines a symmetric island (i.e. one unique
7575 * capacity_orig value through the cpuset), the key will be set
7576 * but the CPUs within that cpuset will not have a domain with
7577 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7578 * capacity path.
7579 */
7580 if (sd) {
7581 i = select_idle_capacity(p, sd, target);
7582 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7583 }
7584 }
7585
7586 sd = rcu_dereference(per_cpu(sd_llc, target));
7587 if (!sd)
7588 return target;
7589
7590 if (sched_smt_active()) {
7591 has_idle_core = test_idle_cores(target);
7592
7593 if (!has_idle_core && cpus_share_cache(prev, target)) {
7594 i = select_idle_smt(p, prev);
7595 if ((unsigned int)i < nr_cpumask_bits)
7596 return i;
7597 }
7598 }
7599
7600 i = select_idle_cpu(p, sd, has_idle_core, target);
7601 if ((unsigned)i < nr_cpumask_bits)
7602 return i;
7603
7604 /*
7605 * For cluster machines which have lower sharing cache like L2 or
7606 * LLC Tag, we tend to find an idle CPU in the target's cluster
7607 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7608 * use them if possible when no idle CPU found in select_idle_cpu().
7609 */
7610 if ((unsigned int)prev_aff < nr_cpumask_bits)
7611 return prev_aff;
7612 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7613 return recent_used_cpu;
7614
7615 return target;
7616 }
7617
7618 /**
7619 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7620 * @cpu: the CPU to get the utilization for
7621 * @p: task for which the CPU utilization should be predicted or NULL
7622 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7623 * @boost: 1 to enable boosting, otherwise 0
7624 *
7625 * The unit of the return value must be the same as the one of CPU capacity
7626 * so that CPU utilization can be compared with CPU capacity.
7627 *
7628 * CPU utilization is the sum of running time of runnable tasks plus the
7629 * recent utilization of currently non-runnable tasks on that CPU.
7630 * It represents the amount of CPU capacity currently used by CFS tasks in
7631 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7632 * capacity at f_max.
7633 *
7634 * The estimated CPU utilization is defined as the maximum between CPU
7635 * utilization and sum of the estimated utilization of the currently
7636 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7637 * previously-executed tasks, which helps better deduce how busy a CPU will
7638 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7639 * of such a task would be significantly decayed at this point of time.
7640 *
7641 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7642 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7643 * utilization. Boosting is implemented in cpu_util() so that internal
7644 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7645 * latter via cpu_util_cfs_boost().
7646 *
7647 * CPU utilization can be higher than the current CPU capacity
7648 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7649 * of rounding errors as well as task migrations or wakeups of new tasks.
7650 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7651 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7652 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7653 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7654 * though since this is useful for predicting the CPU capacity required
7655 * after task migrations (scheduler-driven DVFS).
7656 *
7657 * Return: (Boosted) (estimated) utilization for the specified CPU.
7658 */
7659 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7660 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7661 {
7662 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7663 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7664 unsigned long runnable;
7665
7666 if (boost) {
7667 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7668 util = max(util, runnable);
7669 }
7670
7671 /*
7672 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7673 * contribution. If @p migrates from another CPU to @cpu add its
7674 * contribution. In all the other cases @cpu is not impacted by the
7675 * migration so its util_avg is already correct.
7676 */
7677 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7678 lsub_positive(&util, task_util(p));
7679 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7680 util += task_util(p);
7681
7682 if (sched_feat(UTIL_EST)) {
7683 unsigned long util_est;
7684
7685 util_est = READ_ONCE(cfs_rq->avg.util_est);
7686
7687 /*
7688 * During wake-up @p isn't enqueued yet and doesn't contribute
7689 * to any cpu_rq(cpu)->cfs.avg.util_est.
7690 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7691 * has been enqueued.
7692 *
7693 * During exec (@dst_cpu = -1) @p is enqueued and does
7694 * contribute to cpu_rq(cpu)->cfs.util_est.
7695 * Remove it to "simulate" cpu_util without @p's contribution.
7696 *
7697 * Despite the task_on_rq_queued(@p) check there is still a
7698 * small window for a possible race when an exec
7699 * select_task_rq_fair() races with LB's detach_task().
7700 *
7701 * detach_task()
7702 * deactivate_task()
7703 * p->on_rq = TASK_ON_RQ_MIGRATING;
7704 * -------------------------------- A
7705 * dequeue_task() \
7706 * dequeue_task_fair() + Race Time
7707 * util_est_dequeue() /
7708 * -------------------------------- B
7709 *
7710 * The additional check "current == p" is required to further
7711 * reduce the race window.
7712 */
7713 if (dst_cpu == cpu)
7714 util_est += _task_util_est(p);
7715 else if (p && unlikely(task_on_rq_queued(p) || current == p))
7716 lsub_positive(&util_est, _task_util_est(p));
7717
7718 util = max(util, util_est);
7719 }
7720
7721 return min(util, arch_scale_cpu_capacity(cpu));
7722 }
7723
cpu_util_cfs(int cpu)7724 unsigned long cpu_util_cfs(int cpu)
7725 {
7726 return cpu_util(cpu, NULL, -1, 0);
7727 }
7728
cpu_util_cfs_boost(int cpu)7729 unsigned long cpu_util_cfs_boost(int cpu)
7730 {
7731 return cpu_util(cpu, NULL, -1, 1);
7732 }
7733
7734 /*
7735 * cpu_util_without: compute cpu utilization without any contributions from *p
7736 * @cpu: the CPU which utilization is requested
7737 * @p: the task which utilization should be discounted
7738 *
7739 * The utilization of a CPU is defined by the utilization of tasks currently
7740 * enqueued on that CPU as well as tasks which are currently sleeping after an
7741 * execution on that CPU.
7742 *
7743 * This method returns the utilization of the specified CPU by discounting the
7744 * utilization of the specified task, whenever the task is currently
7745 * contributing to the CPU utilization.
7746 */
cpu_util_without(int cpu,struct task_struct * p)7747 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7748 {
7749 /* Task has no contribution or is new */
7750 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7751 p = NULL;
7752
7753 return cpu_util(cpu, p, -1, 0);
7754 }
7755
7756 /*
7757 * energy_env - Utilization landscape for energy estimation.
7758 * @task_busy_time: Utilization contribution by the task for which we test the
7759 * placement. Given by eenv_task_busy_time().
7760 * @pd_busy_time: Utilization of the whole perf domain without the task
7761 * contribution. Given by eenv_pd_busy_time().
7762 * @cpu_cap: Maximum CPU capacity for the perf domain.
7763 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7764 */
7765 struct energy_env {
7766 unsigned long task_busy_time;
7767 unsigned long pd_busy_time;
7768 unsigned long cpu_cap;
7769 unsigned long pd_cap;
7770 };
7771
7772 /*
7773 * Compute the task busy time for compute_energy(). This time cannot be
7774 * injected directly into effective_cpu_util() because of the IRQ scaling.
7775 * The latter only makes sense with the most recent CPUs where the task has
7776 * run.
7777 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)7778 static inline void eenv_task_busy_time(struct energy_env *eenv,
7779 struct task_struct *p, int prev_cpu)
7780 {
7781 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7782 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7783
7784 if (unlikely(irq >= max_cap))
7785 busy_time = max_cap;
7786 else
7787 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7788
7789 eenv->task_busy_time = busy_time;
7790 }
7791
7792 /*
7793 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7794 * utilization for each @pd_cpus, it however doesn't take into account
7795 * clamping since the ratio (utilization / cpu_capacity) is already enough to
7796 * scale the EM reported power consumption at the (eventually clamped)
7797 * cpu_capacity.
7798 *
7799 * The contribution of the task @p for which we want to estimate the
7800 * energy cost is removed (by cpu_util()) and must be calculated
7801 * separately (see eenv_task_busy_time). This ensures:
7802 *
7803 * - A stable PD utilization, no matter which CPU of that PD we want to place
7804 * the task on.
7805 *
7806 * - A fair comparison between CPUs as the task contribution (task_util())
7807 * will always be the same no matter which CPU utilization we rely on
7808 * (util_avg or util_est).
7809 *
7810 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7811 * exceed @eenv->pd_cap.
7812 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)7813 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7814 struct cpumask *pd_cpus,
7815 struct task_struct *p)
7816 {
7817 unsigned long busy_time = 0;
7818 int cpu;
7819
7820 for_each_cpu(cpu, pd_cpus) {
7821 unsigned long util = cpu_util(cpu, p, -1, 0);
7822
7823 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7824 }
7825
7826 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7827 }
7828
7829 /*
7830 * Compute the maximum utilization for compute_energy() when the task @p
7831 * is placed on the cpu @dst_cpu.
7832 *
7833 * Returns the maximum utilization among @eenv->cpus. This utilization can't
7834 * exceed @eenv->cpu_cap.
7835 */
7836 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7837 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7838 struct task_struct *p, int dst_cpu)
7839 {
7840 unsigned long max_util = 0;
7841 int cpu;
7842
7843 for_each_cpu(cpu, pd_cpus) {
7844 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7845 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7846 unsigned long eff_util, min, max;
7847
7848 /*
7849 * Performance domain frequency: utilization clamping
7850 * must be considered since it affects the selection
7851 * of the performance domain frequency.
7852 * NOTE: in case RT tasks are running, by default the
7853 * FREQUENCY_UTIL's utilization can be max OPP.
7854 */
7855 eff_util = effective_cpu_util(cpu, util, &min, &max);
7856
7857 /* Task's uclamp can modify min and max value */
7858 if (tsk && uclamp_is_used()) {
7859 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7860
7861 /*
7862 * If there is no active max uclamp constraint,
7863 * directly use task's one, otherwise keep max.
7864 */
7865 if (uclamp_rq_is_idle(cpu_rq(cpu)))
7866 max = uclamp_eff_value(p, UCLAMP_MAX);
7867 else
7868 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7869 }
7870
7871 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7872 max_util = max(max_util, eff_util);
7873 }
7874
7875 return min(max_util, eenv->cpu_cap);
7876 }
7877
7878 /*
7879 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7880 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7881 * contribution is ignored.
7882 */
7883 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)7884 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7885 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7886 {
7887 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7888 unsigned long busy_time = eenv->pd_busy_time;
7889 unsigned long energy;
7890
7891 if (dst_cpu >= 0)
7892 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7893
7894 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7895
7896 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7897
7898 return energy;
7899 }
7900
7901 /*
7902 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7903 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7904 * spare capacity in each performance domain and uses it as a potential
7905 * candidate to execute the task. Then, it uses the Energy Model to figure
7906 * out which of the CPU candidates is the most energy-efficient.
7907 *
7908 * The rationale for this heuristic is as follows. In a performance domain,
7909 * all the most energy efficient CPU candidates (according to the Energy
7910 * Model) are those for which we'll request a low frequency. When there are
7911 * several CPUs for which the frequency request will be the same, we don't
7912 * have enough data to break the tie between them, because the Energy Model
7913 * only includes active power costs. With this model, if we assume that
7914 * frequency requests follow utilization (e.g. using schedutil), the CPU with
7915 * the maximum spare capacity in a performance domain is guaranteed to be among
7916 * the best candidates of the performance domain.
7917 *
7918 * In practice, it could be preferable from an energy standpoint to pack
7919 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7920 * but that could also hurt our chances to go cluster idle, and we have no
7921 * ways to tell with the current Energy Model if this is actually a good
7922 * idea or not. So, find_energy_efficient_cpu() basically favors
7923 * cluster-packing, and spreading inside a cluster. That should at least be
7924 * a good thing for latency, and this is consistent with the idea that most
7925 * of the energy savings of EAS come from the asymmetry of the system, and
7926 * not so much from breaking the tie between identical CPUs. That's also the
7927 * reason why EAS is enabled in the topology code only for systems where
7928 * SD_ASYM_CPUCAPACITY is set.
7929 *
7930 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7931 * they don't have any useful utilization data yet and it's not possible to
7932 * forecast their impact on energy consumption. Consequently, they will be
7933 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7934 * to be energy-inefficient in some use-cases. The alternative would be to
7935 * bias new tasks towards specific types of CPUs first, or to try to infer
7936 * their util_avg from the parent task, but those heuristics could hurt
7937 * other use-cases too. So, until someone finds a better way to solve this,
7938 * let's keep things simple by re-using the existing slow path.
7939 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)7940 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7941 {
7942 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7943 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7944 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7945 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7946 struct root_domain *rd = this_rq()->rd;
7947 int cpu, best_energy_cpu, target = -1;
7948 int prev_fits = -1, best_fits = -1;
7949 unsigned long best_thermal_cap = 0;
7950 unsigned long prev_thermal_cap = 0;
7951 struct sched_domain *sd;
7952 struct perf_domain *pd;
7953 struct energy_env eenv;
7954
7955 rcu_read_lock();
7956 pd = rcu_dereference(rd->pd);
7957 if (!pd || READ_ONCE(rd->overutilized))
7958 goto unlock;
7959
7960 /*
7961 * Energy-aware wake-up happens on the lowest sched_domain starting
7962 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7963 */
7964 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7965 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7966 sd = sd->parent;
7967 if (!sd)
7968 goto unlock;
7969
7970 target = prev_cpu;
7971
7972 sync_entity_load_avg(&p->se);
7973 if (!task_util_est(p) && p_util_min == 0)
7974 goto unlock;
7975
7976 eenv_task_busy_time(&eenv, p, prev_cpu);
7977
7978 for (; pd; pd = pd->next) {
7979 unsigned long util_min = p_util_min, util_max = p_util_max;
7980 unsigned long cpu_cap, cpu_thermal_cap, util;
7981 long prev_spare_cap = -1, max_spare_cap = -1;
7982 unsigned long rq_util_min, rq_util_max;
7983 unsigned long cur_delta, base_energy;
7984 int max_spare_cap_cpu = -1;
7985 int fits, max_fits = -1;
7986
7987 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
7988
7989 if (cpumask_empty(cpus))
7990 continue;
7991
7992 /* Account thermal pressure for the energy estimation */
7993 cpu = cpumask_first(cpus);
7994 cpu_thermal_cap = arch_scale_cpu_capacity(cpu);
7995 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu);
7996
7997 eenv.cpu_cap = cpu_thermal_cap;
7998 eenv.pd_cap = 0;
7999
8000 for_each_cpu(cpu, cpus) {
8001 struct rq *rq = cpu_rq(cpu);
8002
8003 eenv.pd_cap += cpu_thermal_cap;
8004
8005 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8006 continue;
8007
8008 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8009 continue;
8010
8011 util = cpu_util(cpu, p, cpu, 0);
8012 cpu_cap = capacity_of(cpu);
8013
8014 /*
8015 * Skip CPUs that cannot satisfy the capacity request.
8016 * IOW, placing the task there would make the CPU
8017 * overutilized. Take uclamp into account to see how
8018 * much capacity we can get out of the CPU; this is
8019 * aligned with sched_cpu_util().
8020 */
8021 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8022 /*
8023 * Open code uclamp_rq_util_with() except for
8024 * the clamp() part. Ie: apply max aggregation
8025 * only. util_fits_cpu() logic requires to
8026 * operate on non clamped util but must use the
8027 * max-aggregated uclamp_{min, max}.
8028 */
8029 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8030 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8031
8032 util_min = max(rq_util_min, p_util_min);
8033 util_max = max(rq_util_max, p_util_max);
8034 }
8035
8036 fits = util_fits_cpu(util, util_min, util_max, cpu);
8037 if (!fits)
8038 continue;
8039
8040 lsub_positive(&cpu_cap, util);
8041
8042 if (cpu == prev_cpu) {
8043 /* Always use prev_cpu as a candidate. */
8044 prev_spare_cap = cpu_cap;
8045 prev_fits = fits;
8046 } else if ((fits > max_fits) ||
8047 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8048 /*
8049 * Find the CPU with the maximum spare capacity
8050 * among the remaining CPUs in the performance
8051 * domain.
8052 */
8053 max_spare_cap = cpu_cap;
8054 max_spare_cap_cpu = cpu;
8055 max_fits = fits;
8056 }
8057 }
8058
8059 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8060 continue;
8061
8062 eenv_pd_busy_time(&eenv, cpus, p);
8063 /* Compute the 'base' energy of the pd, without @p */
8064 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8065
8066 /* Evaluate the energy impact of using prev_cpu. */
8067 if (prev_spare_cap > -1) {
8068 prev_delta = compute_energy(&eenv, pd, cpus, p,
8069 prev_cpu);
8070 /* CPU utilization has changed */
8071 if (prev_delta < base_energy)
8072 goto unlock;
8073 prev_delta -= base_energy;
8074 prev_thermal_cap = cpu_thermal_cap;
8075 best_delta = min(best_delta, prev_delta);
8076 }
8077
8078 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8079 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8080 /* Current best energy cpu fits better */
8081 if (max_fits < best_fits)
8082 continue;
8083
8084 /*
8085 * Both don't fit performance hint (i.e. uclamp_min)
8086 * but best energy cpu has better capacity.
8087 */
8088 if ((max_fits < 0) &&
8089 (cpu_thermal_cap <= best_thermal_cap))
8090 continue;
8091
8092 cur_delta = compute_energy(&eenv, pd, cpus, p,
8093 max_spare_cap_cpu);
8094 /* CPU utilization has changed */
8095 if (cur_delta < base_energy)
8096 goto unlock;
8097 cur_delta -= base_energy;
8098
8099 /*
8100 * Both fit for the task but best energy cpu has lower
8101 * energy impact.
8102 */
8103 if ((max_fits > 0) && (best_fits > 0) &&
8104 (cur_delta >= best_delta))
8105 continue;
8106
8107 best_delta = cur_delta;
8108 best_energy_cpu = max_spare_cap_cpu;
8109 best_fits = max_fits;
8110 best_thermal_cap = cpu_thermal_cap;
8111 }
8112 }
8113 rcu_read_unlock();
8114
8115 if ((best_fits > prev_fits) ||
8116 ((best_fits > 0) && (best_delta < prev_delta)) ||
8117 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap)))
8118 target = best_energy_cpu;
8119
8120 return target;
8121
8122 unlock:
8123 rcu_read_unlock();
8124
8125 return target;
8126 }
8127
8128 /*
8129 * select_task_rq_fair: Select target runqueue for the waking task in domains
8130 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8131 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8132 *
8133 * Balances load by selecting the idlest CPU in the idlest group, or under
8134 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8135 *
8136 * Returns the target CPU number.
8137 */
8138 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8139 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8140 {
8141 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8142 struct sched_domain *tmp, *sd = NULL;
8143 int cpu = smp_processor_id();
8144 int new_cpu = prev_cpu;
8145 int want_affine = 0;
8146 /* SD_flags and WF_flags share the first nibble */
8147 int sd_flag = wake_flags & 0xF;
8148
8149 /*
8150 * required for stable ->cpus_allowed
8151 */
8152 lockdep_assert_held(&p->pi_lock);
8153 if (wake_flags & WF_TTWU) {
8154 record_wakee(p);
8155
8156 if ((wake_flags & WF_CURRENT_CPU) &&
8157 cpumask_test_cpu(cpu, p->cpus_ptr))
8158 return cpu;
8159
8160 if (sched_energy_enabled()) {
8161 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8162 if (new_cpu >= 0)
8163 return new_cpu;
8164 new_cpu = prev_cpu;
8165 }
8166
8167 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8168 }
8169
8170 rcu_read_lock();
8171 for_each_domain(cpu, tmp) {
8172 /*
8173 * If both 'cpu' and 'prev_cpu' are part of this domain,
8174 * cpu is a valid SD_WAKE_AFFINE target.
8175 */
8176 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8177 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8178 if (cpu != prev_cpu)
8179 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8180
8181 sd = NULL; /* Prefer wake_affine over balance flags */
8182 break;
8183 }
8184
8185 /*
8186 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8187 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8188 * will usually go to the fast path.
8189 */
8190 if (tmp->flags & sd_flag)
8191 sd = tmp;
8192 else if (!want_affine)
8193 break;
8194 }
8195
8196 if (unlikely(sd)) {
8197 /* Slow path */
8198 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8199 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8200 /* Fast path */
8201 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8202 }
8203 rcu_read_unlock();
8204
8205 return new_cpu;
8206 }
8207
8208 /*
8209 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8210 * cfs_rq_of(p) references at time of call are still valid and identify the
8211 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8212 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8213 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8214 {
8215 struct sched_entity *se = &p->se;
8216
8217 if (!task_on_rq_migrating(p)) {
8218 remove_entity_load_avg(se);
8219
8220 /*
8221 * Here, the task's PELT values have been updated according to
8222 * the current rq's clock. But if that clock hasn't been
8223 * updated in a while, a substantial idle time will be missed,
8224 * leading to an inflation after wake-up on the new rq.
8225 *
8226 * Estimate the missing time from the cfs_rq last_update_time
8227 * and update sched_avg to improve the PELT continuity after
8228 * migration.
8229 */
8230 migrate_se_pelt_lag(se);
8231 }
8232
8233 /* Tell new CPU we are migrated */
8234 se->avg.last_update_time = 0;
8235
8236 update_scan_period(p, new_cpu);
8237 }
8238
task_dead_fair(struct task_struct * p)8239 static void task_dead_fair(struct task_struct *p)
8240 {
8241 remove_entity_load_avg(&p->se);
8242 }
8243
8244 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8245 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8246 {
8247 if (rq->nr_running)
8248 return 1;
8249
8250 return newidle_balance(rq, rf) != 0;
8251 }
8252 #endif /* CONFIG_SMP */
8253
set_next_buddy(struct sched_entity * se)8254 static void set_next_buddy(struct sched_entity *se)
8255 {
8256 for_each_sched_entity(se) {
8257 if (SCHED_WARN_ON(!se->on_rq))
8258 return;
8259 if (se_is_idle(se))
8260 return;
8261 cfs_rq_of(se)->next = se;
8262 }
8263 }
8264
8265 /*
8266 * Preempt the current task with a newly woken task if needed:
8267 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8268 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8269 {
8270 struct task_struct *curr = rq->curr;
8271 struct sched_entity *se = &curr->se, *pse = &p->se;
8272 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8273 int cse_is_idle, pse_is_idle;
8274
8275 if (unlikely(se == pse))
8276 return;
8277
8278 /*
8279 * This is possible from callers such as attach_tasks(), in which we
8280 * unconditionally wakeup_preempt() after an enqueue (which may have
8281 * lead to a throttle). This both saves work and prevents false
8282 * next-buddy nomination below.
8283 */
8284 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8285 return;
8286
8287 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8288 set_next_buddy(pse);
8289 }
8290
8291 /*
8292 * We can come here with TIF_NEED_RESCHED already set from new task
8293 * wake up path.
8294 *
8295 * Note: this also catches the edge-case of curr being in a throttled
8296 * group (e.g. via set_curr_task), since update_curr() (in the
8297 * enqueue of curr) will have resulted in resched being set. This
8298 * prevents us from potentially nominating it as a false LAST_BUDDY
8299 * below.
8300 */
8301 if (test_tsk_need_resched(curr))
8302 return;
8303
8304 /* Idle tasks are by definition preempted by non-idle tasks. */
8305 if (unlikely(task_has_idle_policy(curr)) &&
8306 likely(!task_has_idle_policy(p)))
8307 goto preempt;
8308
8309 /*
8310 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8311 * is driven by the tick):
8312 */
8313 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8314 return;
8315
8316 find_matching_se(&se, &pse);
8317 WARN_ON_ONCE(!pse);
8318
8319 cse_is_idle = se_is_idle(se);
8320 pse_is_idle = se_is_idle(pse);
8321
8322 /*
8323 * Preempt an idle group in favor of a non-idle group (and don't preempt
8324 * in the inverse case).
8325 */
8326 if (cse_is_idle && !pse_is_idle)
8327 goto preempt;
8328 if (cse_is_idle != pse_is_idle)
8329 return;
8330
8331 cfs_rq = cfs_rq_of(se);
8332 update_curr(cfs_rq);
8333
8334 /*
8335 * XXX pick_eevdf(cfs_rq) != se ?
8336 */
8337 if (pick_eevdf(cfs_rq) == pse)
8338 goto preempt;
8339
8340 return;
8341
8342 preempt:
8343 resched_curr(rq);
8344 }
8345
8346 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)8347 static struct task_struct *pick_task_fair(struct rq *rq)
8348 {
8349 struct sched_entity *se;
8350 struct cfs_rq *cfs_rq;
8351
8352 again:
8353 cfs_rq = &rq->cfs;
8354 if (!cfs_rq->nr_running)
8355 return NULL;
8356
8357 do {
8358 struct sched_entity *curr = cfs_rq->curr;
8359
8360 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8361 if (curr) {
8362 if (curr->on_rq)
8363 update_curr(cfs_rq);
8364 else
8365 curr = NULL;
8366
8367 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8368 goto again;
8369 }
8370
8371 se = pick_next_entity(cfs_rq);
8372 cfs_rq = group_cfs_rq(se);
8373 } while (cfs_rq);
8374
8375 return task_of(se);
8376 }
8377 #endif
8378
8379 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8380 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8381 {
8382 struct cfs_rq *cfs_rq = &rq->cfs;
8383 struct sched_entity *se;
8384 struct task_struct *p;
8385 int new_tasks;
8386
8387 again:
8388 if (!sched_fair_runnable(rq))
8389 goto idle;
8390
8391 #ifdef CONFIG_FAIR_GROUP_SCHED
8392 if (!prev || prev->sched_class != &fair_sched_class)
8393 goto simple;
8394
8395 /*
8396 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8397 * likely that a next task is from the same cgroup as the current.
8398 *
8399 * Therefore attempt to avoid putting and setting the entire cgroup
8400 * hierarchy, only change the part that actually changes.
8401 */
8402
8403 do {
8404 struct sched_entity *curr = cfs_rq->curr;
8405
8406 /*
8407 * Since we got here without doing put_prev_entity() we also
8408 * have to consider cfs_rq->curr. If it is still a runnable
8409 * entity, update_curr() will update its vruntime, otherwise
8410 * forget we've ever seen it.
8411 */
8412 if (curr) {
8413 if (curr->on_rq)
8414 update_curr(cfs_rq);
8415 else
8416 curr = NULL;
8417
8418 /*
8419 * This call to check_cfs_rq_runtime() will do the
8420 * throttle and dequeue its entity in the parent(s).
8421 * Therefore the nr_running test will indeed
8422 * be correct.
8423 */
8424 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8425 cfs_rq = &rq->cfs;
8426
8427 if (!cfs_rq->nr_running)
8428 goto idle;
8429
8430 goto simple;
8431 }
8432 }
8433
8434 se = pick_next_entity(cfs_rq);
8435 cfs_rq = group_cfs_rq(se);
8436 } while (cfs_rq);
8437
8438 p = task_of(se);
8439
8440 /*
8441 * Since we haven't yet done put_prev_entity and if the selected task
8442 * is a different task than we started out with, try and touch the
8443 * least amount of cfs_rqs.
8444 */
8445 if (prev != p) {
8446 struct sched_entity *pse = &prev->se;
8447
8448 while (!(cfs_rq = is_same_group(se, pse))) {
8449 int se_depth = se->depth;
8450 int pse_depth = pse->depth;
8451
8452 if (se_depth <= pse_depth) {
8453 put_prev_entity(cfs_rq_of(pse), pse);
8454 pse = parent_entity(pse);
8455 }
8456 if (se_depth >= pse_depth) {
8457 set_next_entity(cfs_rq_of(se), se);
8458 se = parent_entity(se);
8459 }
8460 }
8461
8462 put_prev_entity(cfs_rq, pse);
8463 set_next_entity(cfs_rq, se);
8464 }
8465
8466 goto done;
8467 simple:
8468 #endif
8469 if (prev)
8470 put_prev_task(rq, prev);
8471
8472 do {
8473 se = pick_next_entity(cfs_rq);
8474 set_next_entity(cfs_rq, se);
8475 cfs_rq = group_cfs_rq(se);
8476 } while (cfs_rq);
8477
8478 p = task_of(se);
8479
8480 done: __maybe_unused;
8481 #ifdef CONFIG_SMP
8482 /*
8483 * Move the next running task to the front of
8484 * the list, so our cfs_tasks list becomes MRU
8485 * one.
8486 */
8487 list_move(&p->se.group_node, &rq->cfs_tasks);
8488 #endif
8489
8490 if (hrtick_enabled_fair(rq))
8491 hrtick_start_fair(rq, p);
8492
8493 update_misfit_status(p, rq);
8494 sched_fair_update_stop_tick(rq, p);
8495
8496 return p;
8497
8498 idle:
8499 if (!rf)
8500 return NULL;
8501
8502 new_tasks = newidle_balance(rq, rf);
8503
8504 /*
8505 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
8506 * possible for any higher priority task to appear. In that case we
8507 * must re-start the pick_next_entity() loop.
8508 */
8509 if (new_tasks < 0)
8510 return RETRY_TASK;
8511
8512 if (new_tasks > 0)
8513 goto again;
8514
8515 /*
8516 * rq is about to be idle, check if we need to update the
8517 * lost_idle_time of clock_pelt
8518 */
8519 update_idle_rq_clock_pelt(rq);
8520
8521 return NULL;
8522 }
8523
__pick_next_task_fair(struct rq * rq)8524 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8525 {
8526 return pick_next_task_fair(rq, NULL, NULL);
8527 }
8528
8529 /*
8530 * Account for a descheduled task:
8531 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8532 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8533 {
8534 struct sched_entity *se = &prev->se;
8535 struct cfs_rq *cfs_rq;
8536
8537 for_each_sched_entity(se) {
8538 cfs_rq = cfs_rq_of(se);
8539 put_prev_entity(cfs_rq, se);
8540 }
8541 }
8542
8543 /*
8544 * sched_yield() is very simple
8545 */
yield_task_fair(struct rq * rq)8546 static void yield_task_fair(struct rq *rq)
8547 {
8548 struct task_struct *curr = rq->curr;
8549 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8550 struct sched_entity *se = &curr->se;
8551
8552 /*
8553 * Are we the only task in the tree?
8554 */
8555 if (unlikely(rq->nr_running == 1))
8556 return;
8557
8558 clear_buddies(cfs_rq, se);
8559
8560 update_rq_clock(rq);
8561 /*
8562 * Update run-time statistics of the 'current'.
8563 */
8564 update_curr(cfs_rq);
8565 /*
8566 * Tell update_rq_clock() that we've just updated,
8567 * so we don't do microscopic update in schedule()
8568 * and double the fastpath cost.
8569 */
8570 rq_clock_skip_update(rq);
8571
8572 se->deadline += calc_delta_fair(se->slice, se);
8573 }
8574
yield_to_task_fair(struct rq * rq,struct task_struct * p)8575 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8576 {
8577 struct sched_entity *se = &p->se;
8578
8579 /* throttled hierarchies are not runnable */
8580 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8581 return false;
8582
8583 /* Tell the scheduler that we'd really like pse to run next. */
8584 set_next_buddy(se);
8585
8586 yield_task_fair(rq);
8587
8588 return true;
8589 }
8590
8591 #ifdef CONFIG_SMP
8592 /**************************************************
8593 * Fair scheduling class load-balancing methods.
8594 *
8595 * BASICS
8596 *
8597 * The purpose of load-balancing is to achieve the same basic fairness the
8598 * per-CPU scheduler provides, namely provide a proportional amount of compute
8599 * time to each task. This is expressed in the following equation:
8600 *
8601 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8602 *
8603 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8604 * W_i,0 is defined as:
8605 *
8606 * W_i,0 = \Sum_j w_i,j (2)
8607 *
8608 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8609 * is derived from the nice value as per sched_prio_to_weight[].
8610 *
8611 * The weight average is an exponential decay average of the instantaneous
8612 * weight:
8613 *
8614 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8615 *
8616 * C_i is the compute capacity of CPU i, typically it is the
8617 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8618 * can also include other factors [XXX].
8619 *
8620 * To achieve this balance we define a measure of imbalance which follows
8621 * directly from (1):
8622 *
8623 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8624 *
8625 * We them move tasks around to minimize the imbalance. In the continuous
8626 * function space it is obvious this converges, in the discrete case we get
8627 * a few fun cases generally called infeasible weight scenarios.
8628 *
8629 * [XXX expand on:
8630 * - infeasible weights;
8631 * - local vs global optima in the discrete case. ]
8632 *
8633 *
8634 * SCHED DOMAINS
8635 *
8636 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8637 * for all i,j solution, we create a tree of CPUs that follows the hardware
8638 * topology where each level pairs two lower groups (or better). This results
8639 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8640 * tree to only the first of the previous level and we decrease the frequency
8641 * of load-balance at each level inv. proportional to the number of CPUs in
8642 * the groups.
8643 *
8644 * This yields:
8645 *
8646 * log_2 n 1 n
8647 * \Sum { --- * --- * 2^i } = O(n) (5)
8648 * i = 0 2^i 2^i
8649 * `- size of each group
8650 * | | `- number of CPUs doing load-balance
8651 * | `- freq
8652 * `- sum over all levels
8653 *
8654 * Coupled with a limit on how many tasks we can migrate every balance pass,
8655 * this makes (5) the runtime complexity of the balancer.
8656 *
8657 * An important property here is that each CPU is still (indirectly) connected
8658 * to every other CPU in at most O(log n) steps:
8659 *
8660 * The adjacency matrix of the resulting graph is given by:
8661 *
8662 * log_2 n
8663 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8664 * k = 0
8665 *
8666 * And you'll find that:
8667 *
8668 * A^(log_2 n)_i,j != 0 for all i,j (7)
8669 *
8670 * Showing there's indeed a path between every CPU in at most O(log n) steps.
8671 * The task movement gives a factor of O(m), giving a convergence complexity
8672 * of:
8673 *
8674 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8675 *
8676 *
8677 * WORK CONSERVING
8678 *
8679 * In order to avoid CPUs going idle while there's still work to do, new idle
8680 * balancing is more aggressive and has the newly idle CPU iterate up the domain
8681 * tree itself instead of relying on other CPUs to bring it work.
8682 *
8683 * This adds some complexity to both (5) and (8) but it reduces the total idle
8684 * time.
8685 *
8686 * [XXX more?]
8687 *
8688 *
8689 * CGROUPS
8690 *
8691 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8692 *
8693 * s_k,i
8694 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8695 * S_k
8696 *
8697 * Where
8698 *
8699 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8700 *
8701 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8702 *
8703 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8704 * property.
8705 *
8706 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8707 * rewrite all of this once again.]
8708 */
8709
8710 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8711
8712 enum fbq_type { regular, remote, all };
8713
8714 /*
8715 * 'group_type' describes the group of CPUs at the moment of load balancing.
8716 *
8717 * The enum is ordered by pulling priority, with the group with lowest priority
8718 * first so the group_type can simply be compared when selecting the busiest
8719 * group. See update_sd_pick_busiest().
8720 */
8721 enum group_type {
8722 /* The group has spare capacity that can be used to run more tasks. */
8723 group_has_spare = 0,
8724 /*
8725 * The group is fully used and the tasks don't compete for more CPU
8726 * cycles. Nevertheless, some tasks might wait before running.
8727 */
8728 group_fully_busy,
8729 /*
8730 * One task doesn't fit with CPU's capacity and must be migrated to a
8731 * more powerful CPU.
8732 */
8733 group_misfit_task,
8734 /*
8735 * Balance SMT group that's fully busy. Can benefit from migration
8736 * a task on SMT with busy sibling to another CPU on idle core.
8737 */
8738 group_smt_balance,
8739 /*
8740 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8741 * and the task should be migrated to it instead of running on the
8742 * current CPU.
8743 */
8744 group_asym_packing,
8745 /*
8746 * The tasks' affinity constraints previously prevented the scheduler
8747 * from balancing the load across the system.
8748 */
8749 group_imbalanced,
8750 /*
8751 * The CPU is overloaded and can't provide expected CPU cycles to all
8752 * tasks.
8753 */
8754 group_overloaded
8755 };
8756
8757 enum migration_type {
8758 migrate_load = 0,
8759 migrate_util,
8760 migrate_task,
8761 migrate_misfit
8762 };
8763
8764 #define LBF_ALL_PINNED 0x01
8765 #define LBF_NEED_BREAK 0x02
8766 #define LBF_DST_PINNED 0x04
8767 #define LBF_SOME_PINNED 0x08
8768 #define LBF_ACTIVE_LB 0x10
8769
8770 struct lb_env {
8771 struct sched_domain *sd;
8772
8773 struct rq *src_rq;
8774 int src_cpu;
8775
8776 int dst_cpu;
8777 struct rq *dst_rq;
8778
8779 struct cpumask *dst_grpmask;
8780 int new_dst_cpu;
8781 enum cpu_idle_type idle;
8782 long imbalance;
8783 /* The set of CPUs under consideration for load-balancing */
8784 struct cpumask *cpus;
8785
8786 unsigned int flags;
8787
8788 unsigned int loop;
8789 unsigned int loop_break;
8790 unsigned int loop_max;
8791
8792 enum fbq_type fbq_type;
8793 enum migration_type migration_type;
8794 struct list_head tasks;
8795 };
8796
8797 /*
8798 * Is this task likely cache-hot:
8799 */
task_hot(struct task_struct * p,struct lb_env * env)8800 static int task_hot(struct task_struct *p, struct lb_env *env)
8801 {
8802 s64 delta;
8803
8804 lockdep_assert_rq_held(env->src_rq);
8805
8806 if (p->sched_class != &fair_sched_class)
8807 return 0;
8808
8809 if (unlikely(task_has_idle_policy(p)))
8810 return 0;
8811
8812 /* SMT siblings share cache */
8813 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8814 return 0;
8815
8816 /*
8817 * Buddy candidates are cache hot:
8818 */
8819 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8820 (&p->se == cfs_rq_of(&p->se)->next))
8821 return 1;
8822
8823 if (sysctl_sched_migration_cost == -1)
8824 return 1;
8825
8826 /*
8827 * Don't migrate task if the task's cookie does not match
8828 * with the destination CPU's core cookie.
8829 */
8830 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8831 return 1;
8832
8833 if (sysctl_sched_migration_cost == 0)
8834 return 0;
8835
8836 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8837
8838 return delta < (s64)sysctl_sched_migration_cost;
8839 }
8840
8841 #ifdef CONFIG_NUMA_BALANCING
8842 /*
8843 * Returns 1, if task migration degrades locality
8844 * Returns 0, if task migration improves locality i.e migration preferred.
8845 * Returns -1, if task migration is not affected by locality.
8846 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8847 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8848 {
8849 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8850 unsigned long src_weight, dst_weight;
8851 int src_nid, dst_nid, dist;
8852
8853 if (!static_branch_likely(&sched_numa_balancing))
8854 return -1;
8855
8856 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8857 return -1;
8858
8859 src_nid = cpu_to_node(env->src_cpu);
8860 dst_nid = cpu_to_node(env->dst_cpu);
8861
8862 if (src_nid == dst_nid)
8863 return -1;
8864
8865 /* Migrating away from the preferred node is always bad. */
8866 if (src_nid == p->numa_preferred_nid) {
8867 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8868 return 1;
8869 else
8870 return -1;
8871 }
8872
8873 /* Encourage migration to the preferred node. */
8874 if (dst_nid == p->numa_preferred_nid)
8875 return 0;
8876
8877 /* Leaving a core idle is often worse than degrading locality. */
8878 if (env->idle == CPU_IDLE)
8879 return -1;
8880
8881 dist = node_distance(src_nid, dst_nid);
8882 if (numa_group) {
8883 src_weight = group_weight(p, src_nid, dist);
8884 dst_weight = group_weight(p, dst_nid, dist);
8885 } else {
8886 src_weight = task_weight(p, src_nid, dist);
8887 dst_weight = task_weight(p, dst_nid, dist);
8888 }
8889
8890 return dst_weight < src_weight;
8891 }
8892
8893 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8894 static inline int migrate_degrades_locality(struct task_struct *p,
8895 struct lb_env *env)
8896 {
8897 return -1;
8898 }
8899 #endif
8900
8901 /*
8902 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8903 */
8904 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8905 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8906 {
8907 int tsk_cache_hot;
8908
8909 lockdep_assert_rq_held(env->src_rq);
8910
8911 /*
8912 * We do not migrate tasks that are:
8913 * 1) throttled_lb_pair, or
8914 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8915 * 3) running (obviously), or
8916 * 4) are cache-hot on their current CPU.
8917 */
8918 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8919 return 0;
8920
8921 /* Disregard pcpu kthreads; they are where they need to be. */
8922 if (kthread_is_per_cpu(p))
8923 return 0;
8924
8925 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8926 int cpu;
8927
8928 schedstat_inc(p->stats.nr_failed_migrations_affine);
8929
8930 env->flags |= LBF_SOME_PINNED;
8931
8932 /*
8933 * Remember if this task can be migrated to any other CPU in
8934 * our sched_group. We may want to revisit it if we couldn't
8935 * meet load balance goals by pulling other tasks on src_cpu.
8936 *
8937 * Avoid computing new_dst_cpu
8938 * - for NEWLY_IDLE
8939 * - if we have already computed one in current iteration
8940 * - if it's an active balance
8941 */
8942 if (env->idle == CPU_NEWLY_IDLE ||
8943 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8944 return 0;
8945
8946 /* Prevent to re-select dst_cpu via env's CPUs: */
8947 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8948 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8949 env->flags |= LBF_DST_PINNED;
8950 env->new_dst_cpu = cpu;
8951 break;
8952 }
8953 }
8954
8955 return 0;
8956 }
8957
8958 /* Record that we found at least one task that could run on dst_cpu */
8959 env->flags &= ~LBF_ALL_PINNED;
8960
8961 if (task_on_cpu(env->src_rq, p)) {
8962 schedstat_inc(p->stats.nr_failed_migrations_running);
8963 return 0;
8964 }
8965
8966 /*
8967 * Aggressive migration if:
8968 * 1) active balance
8969 * 2) destination numa is preferred
8970 * 3) task is cache cold, or
8971 * 4) too many balance attempts have failed.
8972 */
8973 if (env->flags & LBF_ACTIVE_LB)
8974 return 1;
8975
8976 tsk_cache_hot = migrate_degrades_locality(p, env);
8977 if (tsk_cache_hot == -1)
8978 tsk_cache_hot = task_hot(p, env);
8979
8980 if (tsk_cache_hot <= 0 ||
8981 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8982 if (tsk_cache_hot == 1) {
8983 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8984 schedstat_inc(p->stats.nr_forced_migrations);
8985 }
8986 return 1;
8987 }
8988
8989 schedstat_inc(p->stats.nr_failed_migrations_hot);
8990 return 0;
8991 }
8992
8993 /*
8994 * detach_task() -- detach the task for the migration specified in env
8995 */
detach_task(struct task_struct * p,struct lb_env * env)8996 static void detach_task(struct task_struct *p, struct lb_env *env)
8997 {
8998 lockdep_assert_rq_held(env->src_rq);
8999
9000 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9001 set_task_cpu(p, env->dst_cpu);
9002 }
9003
9004 /*
9005 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9006 * part of active balancing operations within "domain".
9007 *
9008 * Returns a task if successful and NULL otherwise.
9009 */
detach_one_task(struct lb_env * env)9010 static struct task_struct *detach_one_task(struct lb_env *env)
9011 {
9012 struct task_struct *p;
9013
9014 lockdep_assert_rq_held(env->src_rq);
9015
9016 list_for_each_entry_reverse(p,
9017 &env->src_rq->cfs_tasks, se.group_node) {
9018 if (!can_migrate_task(p, env))
9019 continue;
9020
9021 detach_task(p, env);
9022
9023 /*
9024 * Right now, this is only the second place where
9025 * lb_gained[env->idle] is updated (other is detach_tasks)
9026 * so we can safely collect stats here rather than
9027 * inside detach_tasks().
9028 */
9029 schedstat_inc(env->sd->lb_gained[env->idle]);
9030 return p;
9031 }
9032 return NULL;
9033 }
9034
9035 /*
9036 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9037 * busiest_rq, as part of a balancing operation within domain "sd".
9038 *
9039 * Returns number of detached tasks if successful and 0 otherwise.
9040 */
detach_tasks(struct lb_env * env)9041 static int detach_tasks(struct lb_env *env)
9042 {
9043 struct list_head *tasks = &env->src_rq->cfs_tasks;
9044 unsigned long util, load;
9045 struct task_struct *p;
9046 int detached = 0;
9047
9048 lockdep_assert_rq_held(env->src_rq);
9049
9050 /*
9051 * Source run queue has been emptied by another CPU, clear
9052 * LBF_ALL_PINNED flag as we will not test any task.
9053 */
9054 if (env->src_rq->nr_running <= 1) {
9055 env->flags &= ~LBF_ALL_PINNED;
9056 return 0;
9057 }
9058
9059 if (env->imbalance <= 0)
9060 return 0;
9061
9062 while (!list_empty(tasks)) {
9063 /*
9064 * We don't want to steal all, otherwise we may be treated likewise,
9065 * which could at worst lead to a livelock crash.
9066 */
9067 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
9068 break;
9069
9070 env->loop++;
9071 /*
9072 * We've more or less seen every task there is, call it quits
9073 * unless we haven't found any movable task yet.
9074 */
9075 if (env->loop > env->loop_max &&
9076 !(env->flags & LBF_ALL_PINNED))
9077 break;
9078
9079 /* take a breather every nr_migrate tasks */
9080 if (env->loop > env->loop_break) {
9081 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9082 env->flags |= LBF_NEED_BREAK;
9083 break;
9084 }
9085
9086 p = list_last_entry(tasks, struct task_struct, se.group_node);
9087
9088 if (!can_migrate_task(p, env))
9089 goto next;
9090
9091 switch (env->migration_type) {
9092 case migrate_load:
9093 /*
9094 * Depending of the number of CPUs and tasks and the
9095 * cgroup hierarchy, task_h_load() can return a null
9096 * value. Make sure that env->imbalance decreases
9097 * otherwise detach_tasks() will stop only after
9098 * detaching up to loop_max tasks.
9099 */
9100 load = max_t(unsigned long, task_h_load(p), 1);
9101
9102 if (sched_feat(LB_MIN) &&
9103 load < 16 && !env->sd->nr_balance_failed)
9104 goto next;
9105
9106 /*
9107 * Make sure that we don't migrate too much load.
9108 * Nevertheless, let relax the constraint if
9109 * scheduler fails to find a good waiting task to
9110 * migrate.
9111 */
9112 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9113 goto next;
9114
9115 env->imbalance -= load;
9116 break;
9117
9118 case migrate_util:
9119 util = task_util_est(p);
9120
9121 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9122 goto next;
9123
9124 env->imbalance -= util;
9125 break;
9126
9127 case migrate_task:
9128 env->imbalance--;
9129 break;
9130
9131 case migrate_misfit:
9132 /* This is not a misfit task */
9133 if (task_fits_cpu(p, env->src_cpu))
9134 goto next;
9135
9136 env->imbalance = 0;
9137 break;
9138 }
9139
9140 detach_task(p, env);
9141 list_add(&p->se.group_node, &env->tasks);
9142
9143 detached++;
9144
9145 #ifdef CONFIG_PREEMPTION
9146 /*
9147 * NEWIDLE balancing is a source of latency, so preemptible
9148 * kernels will stop after the first task is detached to minimize
9149 * the critical section.
9150 */
9151 if (env->idle == CPU_NEWLY_IDLE)
9152 break;
9153 #endif
9154
9155 /*
9156 * We only want to steal up to the prescribed amount of
9157 * load/util/tasks.
9158 */
9159 if (env->imbalance <= 0)
9160 break;
9161
9162 continue;
9163 next:
9164 list_move(&p->se.group_node, tasks);
9165 }
9166
9167 /*
9168 * Right now, this is one of only two places we collect this stat
9169 * so we can safely collect detach_one_task() stats here rather
9170 * than inside detach_one_task().
9171 */
9172 schedstat_add(env->sd->lb_gained[env->idle], detached);
9173
9174 return detached;
9175 }
9176
9177 /*
9178 * attach_task() -- attach the task detached by detach_task() to its new rq.
9179 */
attach_task(struct rq * rq,struct task_struct * p)9180 static void attach_task(struct rq *rq, struct task_struct *p)
9181 {
9182 lockdep_assert_rq_held(rq);
9183
9184 WARN_ON_ONCE(task_rq(p) != rq);
9185 activate_task(rq, p, ENQUEUE_NOCLOCK);
9186 wakeup_preempt(rq, p, 0);
9187 }
9188
9189 /*
9190 * attach_one_task() -- attaches the task returned from detach_one_task() to
9191 * its new rq.
9192 */
attach_one_task(struct rq * rq,struct task_struct * p)9193 static void attach_one_task(struct rq *rq, struct task_struct *p)
9194 {
9195 struct rq_flags rf;
9196
9197 rq_lock(rq, &rf);
9198 update_rq_clock(rq);
9199 attach_task(rq, p);
9200 rq_unlock(rq, &rf);
9201 }
9202
9203 /*
9204 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9205 * new rq.
9206 */
attach_tasks(struct lb_env * env)9207 static void attach_tasks(struct lb_env *env)
9208 {
9209 struct list_head *tasks = &env->tasks;
9210 struct task_struct *p;
9211 struct rq_flags rf;
9212
9213 rq_lock(env->dst_rq, &rf);
9214 update_rq_clock(env->dst_rq);
9215
9216 while (!list_empty(tasks)) {
9217 p = list_first_entry(tasks, struct task_struct, se.group_node);
9218 list_del_init(&p->se.group_node);
9219
9220 attach_task(env->dst_rq, p);
9221 }
9222
9223 rq_unlock(env->dst_rq, &rf);
9224 }
9225
9226 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9227 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9228 {
9229 if (cfs_rq->avg.load_avg)
9230 return true;
9231
9232 if (cfs_rq->avg.util_avg)
9233 return true;
9234
9235 return false;
9236 }
9237
others_have_blocked(struct rq * rq)9238 static inline bool others_have_blocked(struct rq *rq)
9239 {
9240 if (READ_ONCE(rq->avg_rt.util_avg))
9241 return true;
9242
9243 if (READ_ONCE(rq->avg_dl.util_avg))
9244 return true;
9245
9246 if (thermal_load_avg(rq))
9247 return true;
9248
9249 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9250 if (READ_ONCE(rq->avg_irq.util_avg))
9251 return true;
9252 #endif
9253
9254 return false;
9255 }
9256
update_blocked_load_tick(struct rq * rq)9257 static inline void update_blocked_load_tick(struct rq *rq)
9258 {
9259 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9260 }
9261
update_blocked_load_status(struct rq * rq,bool has_blocked)9262 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9263 {
9264 if (!has_blocked)
9265 rq->has_blocked_load = 0;
9266 }
9267 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9268 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9269 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9270 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9271 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9272 #endif
9273
__update_blocked_others(struct rq * rq,bool * done)9274 static bool __update_blocked_others(struct rq *rq, bool *done)
9275 {
9276 const struct sched_class *curr_class;
9277 u64 now = rq_clock_pelt(rq);
9278 unsigned long thermal_pressure;
9279 bool decayed;
9280
9281 /*
9282 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9283 * DL and IRQ signals have been updated before updating CFS.
9284 */
9285 curr_class = rq->curr->sched_class;
9286
9287 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
9288
9289 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9290 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9291 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
9292 update_irq_load_avg(rq, 0);
9293
9294 if (others_have_blocked(rq))
9295 *done = false;
9296
9297 return decayed;
9298 }
9299
9300 #ifdef CONFIG_FAIR_GROUP_SCHED
9301
__update_blocked_fair(struct rq * rq,bool * done)9302 static bool __update_blocked_fair(struct rq *rq, bool *done)
9303 {
9304 struct cfs_rq *cfs_rq, *pos;
9305 bool decayed = false;
9306 int cpu = cpu_of(rq);
9307
9308 /*
9309 * Iterates the task_group tree in a bottom up fashion, see
9310 * list_add_leaf_cfs_rq() for details.
9311 */
9312 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9313 struct sched_entity *se;
9314
9315 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9316 update_tg_load_avg(cfs_rq);
9317
9318 if (cfs_rq->nr_running == 0)
9319 update_idle_cfs_rq_clock_pelt(cfs_rq);
9320
9321 if (cfs_rq == &rq->cfs)
9322 decayed = true;
9323 }
9324
9325 /* Propagate pending load changes to the parent, if any: */
9326 se = cfs_rq->tg->se[cpu];
9327 if (se && !skip_blocked_update(se))
9328 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9329
9330 /*
9331 * There can be a lot of idle CPU cgroups. Don't let fully
9332 * decayed cfs_rqs linger on the list.
9333 */
9334 if (cfs_rq_is_decayed(cfs_rq))
9335 list_del_leaf_cfs_rq(cfs_rq);
9336
9337 /* Don't need periodic decay once load/util_avg are null */
9338 if (cfs_rq_has_blocked(cfs_rq))
9339 *done = false;
9340 }
9341
9342 return decayed;
9343 }
9344
9345 /*
9346 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9347 * This needs to be done in a top-down fashion because the load of a child
9348 * group is a fraction of its parents load.
9349 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9350 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9351 {
9352 struct rq *rq = rq_of(cfs_rq);
9353 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9354 unsigned long now = jiffies;
9355 unsigned long load;
9356
9357 if (cfs_rq->last_h_load_update == now)
9358 return;
9359
9360 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9361 for_each_sched_entity(se) {
9362 cfs_rq = cfs_rq_of(se);
9363 WRITE_ONCE(cfs_rq->h_load_next, se);
9364 if (cfs_rq->last_h_load_update == now)
9365 break;
9366 }
9367
9368 if (!se) {
9369 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9370 cfs_rq->last_h_load_update = now;
9371 }
9372
9373 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9374 load = cfs_rq->h_load;
9375 load = div64_ul(load * se->avg.load_avg,
9376 cfs_rq_load_avg(cfs_rq) + 1);
9377 cfs_rq = group_cfs_rq(se);
9378 cfs_rq->h_load = load;
9379 cfs_rq->last_h_load_update = now;
9380 }
9381 }
9382
task_h_load(struct task_struct * p)9383 static unsigned long task_h_load(struct task_struct *p)
9384 {
9385 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9386
9387 update_cfs_rq_h_load(cfs_rq);
9388 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9389 cfs_rq_load_avg(cfs_rq) + 1);
9390 }
9391 #else
__update_blocked_fair(struct rq * rq,bool * done)9392 static bool __update_blocked_fair(struct rq *rq, bool *done)
9393 {
9394 struct cfs_rq *cfs_rq = &rq->cfs;
9395 bool decayed;
9396
9397 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9398 if (cfs_rq_has_blocked(cfs_rq))
9399 *done = false;
9400
9401 return decayed;
9402 }
9403
task_h_load(struct task_struct * p)9404 static unsigned long task_h_load(struct task_struct *p)
9405 {
9406 return p->se.avg.load_avg;
9407 }
9408 #endif
9409
update_blocked_averages(int cpu)9410 static void update_blocked_averages(int cpu)
9411 {
9412 bool decayed = false, done = true;
9413 struct rq *rq = cpu_rq(cpu);
9414 struct rq_flags rf;
9415
9416 rq_lock_irqsave(rq, &rf);
9417 update_blocked_load_tick(rq);
9418 update_rq_clock(rq);
9419
9420 decayed |= __update_blocked_others(rq, &done);
9421 decayed |= __update_blocked_fair(rq, &done);
9422
9423 update_blocked_load_status(rq, !done);
9424 if (decayed)
9425 cpufreq_update_util(rq, 0);
9426 rq_unlock_irqrestore(rq, &rf);
9427 }
9428
9429 /********** Helpers for find_busiest_group ************************/
9430
9431 /*
9432 * sg_lb_stats - stats of a sched_group required for load_balancing
9433 */
9434 struct sg_lb_stats {
9435 unsigned long avg_load; /*Avg load across the CPUs of the group */
9436 unsigned long group_load; /* Total load over the CPUs of the group */
9437 unsigned long group_capacity;
9438 unsigned long group_util; /* Total utilization over the CPUs of the group */
9439 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9440 unsigned int sum_nr_running; /* Nr of tasks running in the group */
9441 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9442 unsigned int idle_cpus;
9443 unsigned int group_weight;
9444 enum group_type group_type;
9445 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9446 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9447 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9448 #ifdef CONFIG_NUMA_BALANCING
9449 unsigned int nr_numa_running;
9450 unsigned int nr_preferred_running;
9451 #endif
9452 };
9453
9454 /*
9455 * sd_lb_stats - Structure to store the statistics of a sched_domain
9456 * during load balancing.
9457 */
9458 struct sd_lb_stats {
9459 struct sched_group *busiest; /* Busiest group in this sd */
9460 struct sched_group *local; /* Local group in this sd */
9461 unsigned long total_load; /* Total load of all groups in sd */
9462 unsigned long total_capacity; /* Total capacity of all groups in sd */
9463 unsigned long avg_load; /* Average load across all groups in sd */
9464 unsigned int prefer_sibling; /* tasks should go to sibling first */
9465
9466 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9467 struct sg_lb_stats local_stat; /* Statistics of the local group */
9468 };
9469
init_sd_lb_stats(struct sd_lb_stats * sds)9470 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9471 {
9472 /*
9473 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9474 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9475 * We must however set busiest_stat::group_type and
9476 * busiest_stat::idle_cpus to the worst busiest group because
9477 * update_sd_pick_busiest() reads these before assignment.
9478 */
9479 *sds = (struct sd_lb_stats){
9480 .busiest = NULL,
9481 .local = NULL,
9482 .total_load = 0UL,
9483 .total_capacity = 0UL,
9484 .busiest_stat = {
9485 .idle_cpus = UINT_MAX,
9486 .group_type = group_has_spare,
9487 },
9488 };
9489 }
9490
scale_rt_capacity(int cpu)9491 static unsigned long scale_rt_capacity(int cpu)
9492 {
9493 struct rq *rq = cpu_rq(cpu);
9494 unsigned long max = arch_scale_cpu_capacity(cpu);
9495 unsigned long used, free;
9496 unsigned long irq;
9497
9498 irq = cpu_util_irq(rq);
9499
9500 if (unlikely(irq >= max))
9501 return 1;
9502
9503 /*
9504 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9505 * (running and not running) with weights 0 and 1024 respectively.
9506 * avg_thermal.load_avg tracks thermal pressure and the weighted
9507 * average uses the actual delta max capacity(load).
9508 */
9509 used = READ_ONCE(rq->avg_rt.util_avg);
9510 used += READ_ONCE(rq->avg_dl.util_avg);
9511 used += thermal_load_avg(rq);
9512
9513 if (unlikely(used >= max))
9514 return 1;
9515
9516 free = max - used;
9517
9518 return scale_irq_capacity(free, irq, max);
9519 }
9520
update_cpu_capacity(struct sched_domain * sd,int cpu)9521 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9522 {
9523 unsigned long capacity = scale_rt_capacity(cpu);
9524 struct sched_group *sdg = sd->groups;
9525
9526 if (!capacity)
9527 capacity = 1;
9528
9529 cpu_rq(cpu)->cpu_capacity = capacity;
9530 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9531
9532 sdg->sgc->capacity = capacity;
9533 sdg->sgc->min_capacity = capacity;
9534 sdg->sgc->max_capacity = capacity;
9535 }
9536
update_group_capacity(struct sched_domain * sd,int cpu)9537 void update_group_capacity(struct sched_domain *sd, int cpu)
9538 {
9539 struct sched_domain *child = sd->child;
9540 struct sched_group *group, *sdg = sd->groups;
9541 unsigned long capacity, min_capacity, max_capacity;
9542 unsigned long interval;
9543
9544 interval = msecs_to_jiffies(sd->balance_interval);
9545 interval = clamp(interval, 1UL, max_load_balance_interval);
9546 sdg->sgc->next_update = jiffies + interval;
9547
9548 if (!child) {
9549 update_cpu_capacity(sd, cpu);
9550 return;
9551 }
9552
9553 capacity = 0;
9554 min_capacity = ULONG_MAX;
9555 max_capacity = 0;
9556
9557 if (child->flags & SD_OVERLAP) {
9558 /*
9559 * SD_OVERLAP domains cannot assume that child groups
9560 * span the current group.
9561 */
9562
9563 for_each_cpu(cpu, sched_group_span(sdg)) {
9564 unsigned long cpu_cap = capacity_of(cpu);
9565
9566 capacity += cpu_cap;
9567 min_capacity = min(cpu_cap, min_capacity);
9568 max_capacity = max(cpu_cap, max_capacity);
9569 }
9570 } else {
9571 /*
9572 * !SD_OVERLAP domains can assume that child groups
9573 * span the current group.
9574 */
9575
9576 group = child->groups;
9577 do {
9578 struct sched_group_capacity *sgc = group->sgc;
9579
9580 capacity += sgc->capacity;
9581 min_capacity = min(sgc->min_capacity, min_capacity);
9582 max_capacity = max(sgc->max_capacity, max_capacity);
9583 group = group->next;
9584 } while (group != child->groups);
9585 }
9586
9587 sdg->sgc->capacity = capacity;
9588 sdg->sgc->min_capacity = min_capacity;
9589 sdg->sgc->max_capacity = max_capacity;
9590 }
9591
9592 /*
9593 * Check whether the capacity of the rq has been noticeably reduced by side
9594 * activity. The imbalance_pct is used for the threshold.
9595 * Return true is the capacity is reduced
9596 */
9597 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9598 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9599 {
9600 return ((rq->cpu_capacity * sd->imbalance_pct) <
9601 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9602 }
9603
9604 /*
9605 * Check whether a rq has a misfit task and if it looks like we can actually
9606 * help that task: we can migrate the task to a CPU of higher capacity, or
9607 * the task's current CPU is heavily pressured.
9608 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)9609 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
9610 {
9611 return rq->misfit_task_load &&
9612 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity ||
9613 check_cpu_capacity(rq, sd));
9614 }
9615
9616 /*
9617 * Group imbalance indicates (and tries to solve) the problem where balancing
9618 * groups is inadequate due to ->cpus_ptr constraints.
9619 *
9620 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9621 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9622 * Something like:
9623 *
9624 * { 0 1 2 3 } { 4 5 6 7 }
9625 * * * * *
9626 *
9627 * If we were to balance group-wise we'd place two tasks in the first group and
9628 * two tasks in the second group. Clearly this is undesired as it will overload
9629 * cpu 3 and leave one of the CPUs in the second group unused.
9630 *
9631 * The current solution to this issue is detecting the skew in the first group
9632 * by noticing the lower domain failed to reach balance and had difficulty
9633 * moving tasks due to affinity constraints.
9634 *
9635 * When this is so detected; this group becomes a candidate for busiest; see
9636 * update_sd_pick_busiest(). And calculate_imbalance() and
9637 * find_busiest_group() avoid some of the usual balance conditions to allow it
9638 * to create an effective group imbalance.
9639 *
9640 * This is a somewhat tricky proposition since the next run might not find the
9641 * group imbalance and decide the groups need to be balanced again. A most
9642 * subtle and fragile situation.
9643 */
9644
sg_imbalanced(struct sched_group * group)9645 static inline int sg_imbalanced(struct sched_group *group)
9646 {
9647 return group->sgc->imbalance;
9648 }
9649
9650 /*
9651 * group_has_capacity returns true if the group has spare capacity that could
9652 * be used by some tasks.
9653 * We consider that a group has spare capacity if the number of task is
9654 * smaller than the number of CPUs or if the utilization is lower than the
9655 * available capacity for CFS tasks.
9656 * For the latter, we use a threshold to stabilize the state, to take into
9657 * account the variance of the tasks' load and to return true if the available
9658 * capacity in meaningful for the load balancer.
9659 * As an example, an available capacity of 1% can appear but it doesn't make
9660 * any benefit for the load balance.
9661 */
9662 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9663 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9664 {
9665 if (sgs->sum_nr_running < sgs->group_weight)
9666 return true;
9667
9668 if ((sgs->group_capacity * imbalance_pct) <
9669 (sgs->group_runnable * 100))
9670 return false;
9671
9672 if ((sgs->group_capacity * 100) >
9673 (sgs->group_util * imbalance_pct))
9674 return true;
9675
9676 return false;
9677 }
9678
9679 /*
9680 * group_is_overloaded returns true if the group has more tasks than it can
9681 * handle.
9682 * group_is_overloaded is not equals to !group_has_capacity because a group
9683 * with the exact right number of tasks, has no more spare capacity but is not
9684 * overloaded so both group_has_capacity and group_is_overloaded return
9685 * false.
9686 */
9687 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)9688 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9689 {
9690 if (sgs->sum_nr_running <= sgs->group_weight)
9691 return false;
9692
9693 if ((sgs->group_capacity * 100) <
9694 (sgs->group_util * imbalance_pct))
9695 return true;
9696
9697 if ((sgs->group_capacity * imbalance_pct) <
9698 (sgs->group_runnable * 100))
9699 return true;
9700
9701 return false;
9702 }
9703
9704 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)9705 group_type group_classify(unsigned int imbalance_pct,
9706 struct sched_group *group,
9707 struct sg_lb_stats *sgs)
9708 {
9709 if (group_is_overloaded(imbalance_pct, sgs))
9710 return group_overloaded;
9711
9712 if (sg_imbalanced(group))
9713 return group_imbalanced;
9714
9715 if (sgs->group_asym_packing)
9716 return group_asym_packing;
9717
9718 if (sgs->group_smt_balance)
9719 return group_smt_balance;
9720
9721 if (sgs->group_misfit_task_load)
9722 return group_misfit_task;
9723
9724 if (!group_has_capacity(imbalance_pct, sgs))
9725 return group_fully_busy;
9726
9727 return group_has_spare;
9728 }
9729
9730 /**
9731 * sched_use_asym_prio - Check whether asym_packing priority must be used
9732 * @sd: The scheduling domain of the load balancing
9733 * @cpu: A CPU
9734 *
9735 * Always use CPU priority when balancing load between SMT siblings. When
9736 * balancing load between cores, it is not sufficient that @cpu is idle. Only
9737 * use CPU priority if the whole core is idle.
9738 *
9739 * Returns: True if the priority of @cpu must be followed. False otherwise.
9740 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)9741 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9742 {
9743 if (!sched_smt_active())
9744 return true;
9745
9746 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9747 }
9748
9749 /**
9750 * sched_asym - Check if the destination CPU can do asym_packing load balance
9751 * @env: The load balancing environment
9752 * @sds: Load-balancing data with statistics of the local group
9753 * @sgs: Load-balancing statistics of the candidate busiest group
9754 * @group: The candidate busiest group
9755 *
9756 * @env::dst_cpu can do asym_packing if it has higher priority than the
9757 * preferred CPU of @group.
9758 *
9759 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu
9760 * can do asym_packing balance only if all its SMT siblings are idle. Also, it
9761 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger
9762 * imbalances in the number of CPUS are dealt with in find_busiest_group().
9763 *
9764 * If we are balancing load within an SMT core, or at PKG domain level, always
9765 * proceed.
9766 *
9767 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9768 * otherwise.
9769 */
9770 static inline bool
sched_asym(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * sgs,struct sched_group * group)9771 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs,
9772 struct sched_group *group)
9773 {
9774 /* Ensure that the whole local core is idle, if applicable. */
9775 if (!sched_use_asym_prio(env->sd, env->dst_cpu))
9776 return false;
9777
9778 /*
9779 * CPU priorities does not make sense for SMT cores with more than one
9780 * busy sibling.
9781 */
9782 if (group->flags & SD_SHARE_CPUCAPACITY) {
9783 if (sgs->group_weight - sgs->idle_cpus != 1)
9784 return false;
9785 }
9786
9787 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
9788 }
9789
9790 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)9791 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9792 struct sched_group *sg2)
9793 {
9794 if (!sg1 || !sg2)
9795 return false;
9796
9797 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9798 (sg2->flags & SD_SHARE_CPUCAPACITY);
9799 }
9800
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)9801 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9802 struct sched_group *group)
9803 {
9804 if (env->idle == CPU_NOT_IDLE)
9805 return false;
9806
9807 /*
9808 * For SMT source group, it is better to move a task
9809 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9810 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9811 * will not be on.
9812 */
9813 if (group->flags & SD_SHARE_CPUCAPACITY &&
9814 sgs->sum_h_nr_running > 1)
9815 return true;
9816
9817 return false;
9818 }
9819
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)9820 static inline long sibling_imbalance(struct lb_env *env,
9821 struct sd_lb_stats *sds,
9822 struct sg_lb_stats *busiest,
9823 struct sg_lb_stats *local)
9824 {
9825 int ncores_busiest, ncores_local;
9826 long imbalance;
9827
9828 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running)
9829 return 0;
9830
9831 ncores_busiest = sds->busiest->cores;
9832 ncores_local = sds->local->cores;
9833
9834 if (ncores_busiest == ncores_local) {
9835 imbalance = busiest->sum_nr_running;
9836 lsub_positive(&imbalance, local->sum_nr_running);
9837 return imbalance;
9838 }
9839
9840 /* Balance such that nr_running/ncores ratio are same on both groups */
9841 imbalance = ncores_local * busiest->sum_nr_running;
9842 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9843 /* Normalize imbalance and do rounding on normalization */
9844 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9845 imbalance /= ncores_local + ncores_busiest;
9846
9847 /* Take advantage of resource in an empty sched group */
9848 if (imbalance <= 1 && local->sum_nr_running == 0 &&
9849 busiest->sum_nr_running > 1)
9850 imbalance = 2;
9851
9852 return imbalance;
9853 }
9854
9855 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)9856 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9857 {
9858 /*
9859 * When there is more than 1 task, the group_overloaded case already
9860 * takes care of cpu with reduced capacity
9861 */
9862 if (rq->cfs.h_nr_running != 1)
9863 return false;
9864
9865 return check_cpu_capacity(rq, sd);
9866 }
9867
9868 /**
9869 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9870 * @env: The load balancing environment.
9871 * @sds: Load-balancing data with statistics of the local group.
9872 * @group: sched_group whose statistics are to be updated.
9873 * @sgs: variable to hold the statistics for this group.
9874 * @sg_status: Holds flag indicating the status of the sched_group
9875 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)9876 static inline void update_sg_lb_stats(struct lb_env *env,
9877 struct sd_lb_stats *sds,
9878 struct sched_group *group,
9879 struct sg_lb_stats *sgs,
9880 int *sg_status)
9881 {
9882 int i, nr_running, local_group;
9883
9884 memset(sgs, 0, sizeof(*sgs));
9885
9886 local_group = group == sds->local;
9887
9888 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9889 struct rq *rq = cpu_rq(i);
9890 unsigned long load = cpu_load(rq);
9891
9892 sgs->group_load += load;
9893 sgs->group_util += cpu_util_cfs(i);
9894 sgs->group_runnable += cpu_runnable(rq);
9895 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9896
9897 nr_running = rq->nr_running;
9898 sgs->sum_nr_running += nr_running;
9899
9900 if (nr_running > 1)
9901 *sg_status |= SG_OVERLOAD;
9902
9903 if (cpu_overutilized(i))
9904 *sg_status |= SG_OVERUTILIZED;
9905
9906 #ifdef CONFIG_NUMA_BALANCING
9907 sgs->nr_numa_running += rq->nr_numa_running;
9908 sgs->nr_preferred_running += rq->nr_preferred_running;
9909 #endif
9910 /*
9911 * No need to call idle_cpu() if nr_running is not 0
9912 */
9913 if (!nr_running && idle_cpu(i)) {
9914 sgs->idle_cpus++;
9915 /* Idle cpu can't have misfit task */
9916 continue;
9917 }
9918
9919 if (local_group)
9920 continue;
9921
9922 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9923 /* Check for a misfit task on the cpu */
9924 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9925 sgs->group_misfit_task_load = rq->misfit_task_load;
9926 *sg_status |= SG_OVERLOAD;
9927 }
9928 } else if ((env->idle != CPU_NOT_IDLE) &&
9929 sched_reduced_capacity(rq, env->sd)) {
9930 /* Check for a task running on a CPU with reduced capacity */
9931 if (sgs->group_misfit_task_load < load)
9932 sgs->group_misfit_task_load = load;
9933 }
9934 }
9935
9936 sgs->group_capacity = group->sgc->capacity;
9937
9938 sgs->group_weight = group->group_weight;
9939
9940 /* Check if dst CPU is idle and preferred to this group */
9941 if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
9942 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
9943 sched_asym(env, sds, sgs, group)) {
9944 sgs->group_asym_packing = 1;
9945 }
9946
9947 /* Check for loaded SMT group to be balanced to dst CPU */
9948 if (!local_group && smt_balance(env, sgs, group))
9949 sgs->group_smt_balance = 1;
9950
9951 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9952
9953 /* Computing avg_load makes sense only when group is overloaded */
9954 if (sgs->group_type == group_overloaded)
9955 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9956 sgs->group_capacity;
9957 }
9958
9959 /**
9960 * update_sd_pick_busiest - return 1 on busiest group
9961 * @env: The load balancing environment.
9962 * @sds: sched_domain statistics
9963 * @sg: sched_group candidate to be checked for being the busiest
9964 * @sgs: sched_group statistics
9965 *
9966 * Determine if @sg is a busier group than the previously selected
9967 * busiest group.
9968 *
9969 * Return: %true if @sg is a busier group than the previously selected
9970 * busiest group. %false otherwise.
9971 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9972 static bool update_sd_pick_busiest(struct lb_env *env,
9973 struct sd_lb_stats *sds,
9974 struct sched_group *sg,
9975 struct sg_lb_stats *sgs)
9976 {
9977 struct sg_lb_stats *busiest = &sds->busiest_stat;
9978
9979 /* Make sure that there is at least one task to pull */
9980 if (!sgs->sum_h_nr_running)
9981 return false;
9982
9983 /*
9984 * Don't try to pull misfit tasks we can't help.
9985 * We can use max_capacity here as reduction in capacity on some
9986 * CPUs in the group should either be possible to resolve
9987 * internally or be covered by avg_load imbalance (eventually).
9988 */
9989 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9990 (sgs->group_type == group_misfit_task) &&
9991 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9992 sds->local_stat.group_type != group_has_spare))
9993 return false;
9994
9995 if (sgs->group_type > busiest->group_type)
9996 return true;
9997
9998 if (sgs->group_type < busiest->group_type)
9999 return false;
10000
10001 /*
10002 * The candidate and the current busiest group are the same type of
10003 * group. Let check which one is the busiest according to the type.
10004 */
10005
10006 switch (sgs->group_type) {
10007 case group_overloaded:
10008 /* Select the overloaded group with highest avg_load. */
10009 if (sgs->avg_load <= busiest->avg_load)
10010 return false;
10011 break;
10012
10013 case group_imbalanced:
10014 /*
10015 * Select the 1st imbalanced group as we don't have any way to
10016 * choose one more than another.
10017 */
10018 return false;
10019
10020 case group_asym_packing:
10021 /* Prefer to move from lowest priority CPU's work */
10022 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
10023 return false;
10024 break;
10025
10026 case group_misfit_task:
10027 /*
10028 * If we have more than one misfit sg go with the biggest
10029 * misfit.
10030 */
10031 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
10032 return false;
10033 break;
10034
10035 case group_smt_balance:
10036 /*
10037 * Check if we have spare CPUs on either SMT group to
10038 * choose has spare or fully busy handling.
10039 */
10040 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10041 goto has_spare;
10042
10043 fallthrough;
10044
10045 case group_fully_busy:
10046 /*
10047 * Select the fully busy group with highest avg_load. In
10048 * theory, there is no need to pull task from such kind of
10049 * group because tasks have all compute capacity that they need
10050 * but we can still improve the overall throughput by reducing
10051 * contention when accessing shared HW resources.
10052 *
10053 * XXX for now avg_load is not computed and always 0 so we
10054 * select the 1st one, except if @sg is composed of SMT
10055 * siblings.
10056 */
10057
10058 if (sgs->avg_load < busiest->avg_load)
10059 return false;
10060
10061 if (sgs->avg_load == busiest->avg_load) {
10062 /*
10063 * SMT sched groups need more help than non-SMT groups.
10064 * If @sg happens to also be SMT, either choice is good.
10065 */
10066 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10067 return false;
10068 }
10069
10070 break;
10071
10072 case group_has_spare:
10073 /*
10074 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10075 * as we do not want to pull task off SMT core with one task
10076 * and make the core idle.
10077 */
10078 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10079 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10080 return false;
10081 else
10082 return true;
10083 }
10084 has_spare:
10085
10086 /*
10087 * Select not overloaded group with lowest number of idle cpus
10088 * and highest number of running tasks. We could also compare
10089 * the spare capacity which is more stable but it can end up
10090 * that the group has less spare capacity but finally more idle
10091 * CPUs which means less opportunity to pull tasks.
10092 */
10093 if (sgs->idle_cpus > busiest->idle_cpus)
10094 return false;
10095 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10096 (sgs->sum_nr_running <= busiest->sum_nr_running))
10097 return false;
10098
10099 break;
10100 }
10101
10102 /*
10103 * Candidate sg has no more than one task per CPU and has higher
10104 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10105 * throughput. Maximize throughput, power/energy consequences are not
10106 * considered.
10107 */
10108 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10109 (sgs->group_type <= group_fully_busy) &&
10110 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10111 return false;
10112
10113 return true;
10114 }
10115
10116 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10117 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10118 {
10119 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10120 return regular;
10121 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10122 return remote;
10123 return all;
10124 }
10125
fbq_classify_rq(struct rq * rq)10126 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10127 {
10128 if (rq->nr_running > rq->nr_numa_running)
10129 return regular;
10130 if (rq->nr_running > rq->nr_preferred_running)
10131 return remote;
10132 return all;
10133 }
10134 #else
fbq_classify_group(struct sg_lb_stats * sgs)10135 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10136 {
10137 return all;
10138 }
10139
fbq_classify_rq(struct rq * rq)10140 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10141 {
10142 return regular;
10143 }
10144 #endif /* CONFIG_NUMA_BALANCING */
10145
10146
10147 struct sg_lb_stats;
10148
10149 /*
10150 * task_running_on_cpu - return 1 if @p is running on @cpu.
10151 */
10152
task_running_on_cpu(int cpu,struct task_struct * p)10153 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10154 {
10155 /* Task has no contribution or is new */
10156 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10157 return 0;
10158
10159 if (task_on_rq_queued(p))
10160 return 1;
10161
10162 return 0;
10163 }
10164
10165 /**
10166 * idle_cpu_without - would a given CPU be idle without p ?
10167 * @cpu: the processor on which idleness is tested.
10168 * @p: task which should be ignored.
10169 *
10170 * Return: 1 if the CPU would be idle. 0 otherwise.
10171 */
idle_cpu_without(int cpu,struct task_struct * p)10172 static int idle_cpu_without(int cpu, struct task_struct *p)
10173 {
10174 struct rq *rq = cpu_rq(cpu);
10175
10176 if (rq->curr != rq->idle && rq->curr != p)
10177 return 0;
10178
10179 /*
10180 * rq->nr_running can't be used but an updated version without the
10181 * impact of p on cpu must be used instead. The updated nr_running
10182 * be computed and tested before calling idle_cpu_without().
10183 */
10184
10185 #ifdef CONFIG_SMP
10186 if (rq->ttwu_pending)
10187 return 0;
10188 #endif
10189
10190 return 1;
10191 }
10192
10193 /*
10194 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10195 * @sd: The sched_domain level to look for idlest group.
10196 * @group: sched_group whose statistics are to be updated.
10197 * @sgs: variable to hold the statistics for this group.
10198 * @p: The task for which we look for the idlest group/CPU.
10199 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10200 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10201 struct sched_group *group,
10202 struct sg_lb_stats *sgs,
10203 struct task_struct *p)
10204 {
10205 int i, nr_running;
10206
10207 memset(sgs, 0, sizeof(*sgs));
10208
10209 /* Assume that task can't fit any CPU of the group */
10210 if (sd->flags & SD_ASYM_CPUCAPACITY)
10211 sgs->group_misfit_task_load = 1;
10212
10213 for_each_cpu(i, sched_group_span(group)) {
10214 struct rq *rq = cpu_rq(i);
10215 unsigned int local;
10216
10217 sgs->group_load += cpu_load_without(rq, p);
10218 sgs->group_util += cpu_util_without(i, p);
10219 sgs->group_runnable += cpu_runnable_without(rq, p);
10220 local = task_running_on_cpu(i, p);
10221 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10222
10223 nr_running = rq->nr_running - local;
10224 sgs->sum_nr_running += nr_running;
10225
10226 /*
10227 * No need to call idle_cpu_without() if nr_running is not 0
10228 */
10229 if (!nr_running && idle_cpu_without(i, p))
10230 sgs->idle_cpus++;
10231
10232 /* Check if task fits in the CPU */
10233 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10234 sgs->group_misfit_task_load &&
10235 task_fits_cpu(p, i))
10236 sgs->group_misfit_task_load = 0;
10237
10238 }
10239
10240 sgs->group_capacity = group->sgc->capacity;
10241
10242 sgs->group_weight = group->group_weight;
10243
10244 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10245
10246 /*
10247 * Computing avg_load makes sense only when group is fully busy or
10248 * overloaded
10249 */
10250 if (sgs->group_type == group_fully_busy ||
10251 sgs->group_type == group_overloaded)
10252 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10253 sgs->group_capacity;
10254 }
10255
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10256 static bool update_pick_idlest(struct sched_group *idlest,
10257 struct sg_lb_stats *idlest_sgs,
10258 struct sched_group *group,
10259 struct sg_lb_stats *sgs)
10260 {
10261 if (sgs->group_type < idlest_sgs->group_type)
10262 return true;
10263
10264 if (sgs->group_type > idlest_sgs->group_type)
10265 return false;
10266
10267 /*
10268 * The candidate and the current idlest group are the same type of
10269 * group. Let check which one is the idlest according to the type.
10270 */
10271
10272 switch (sgs->group_type) {
10273 case group_overloaded:
10274 case group_fully_busy:
10275 /* Select the group with lowest avg_load. */
10276 if (idlest_sgs->avg_load <= sgs->avg_load)
10277 return false;
10278 break;
10279
10280 case group_imbalanced:
10281 case group_asym_packing:
10282 case group_smt_balance:
10283 /* Those types are not used in the slow wakeup path */
10284 return false;
10285
10286 case group_misfit_task:
10287 /* Select group with the highest max capacity */
10288 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10289 return false;
10290 break;
10291
10292 case group_has_spare:
10293 /* Select group with most idle CPUs */
10294 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10295 return false;
10296
10297 /* Select group with lowest group_util */
10298 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10299 idlest_sgs->group_util <= sgs->group_util)
10300 return false;
10301
10302 break;
10303 }
10304
10305 return true;
10306 }
10307
10308 /*
10309 * find_idlest_group() finds and returns the least busy CPU group within the
10310 * domain.
10311 *
10312 * Assumes p is allowed on at least one CPU in sd.
10313 */
10314 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10315 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10316 {
10317 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10318 struct sg_lb_stats local_sgs, tmp_sgs;
10319 struct sg_lb_stats *sgs;
10320 unsigned long imbalance;
10321 struct sg_lb_stats idlest_sgs = {
10322 .avg_load = UINT_MAX,
10323 .group_type = group_overloaded,
10324 };
10325
10326 do {
10327 int local_group;
10328
10329 /* Skip over this group if it has no CPUs allowed */
10330 if (!cpumask_intersects(sched_group_span(group),
10331 p->cpus_ptr))
10332 continue;
10333
10334 /* Skip over this group if no cookie matched */
10335 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10336 continue;
10337
10338 local_group = cpumask_test_cpu(this_cpu,
10339 sched_group_span(group));
10340
10341 if (local_group) {
10342 sgs = &local_sgs;
10343 local = group;
10344 } else {
10345 sgs = &tmp_sgs;
10346 }
10347
10348 update_sg_wakeup_stats(sd, group, sgs, p);
10349
10350 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10351 idlest = group;
10352 idlest_sgs = *sgs;
10353 }
10354
10355 } while (group = group->next, group != sd->groups);
10356
10357
10358 /* There is no idlest group to push tasks to */
10359 if (!idlest)
10360 return NULL;
10361
10362 /* The local group has been skipped because of CPU affinity */
10363 if (!local)
10364 return idlest;
10365
10366 /*
10367 * If the local group is idler than the selected idlest group
10368 * don't try and push the task.
10369 */
10370 if (local_sgs.group_type < idlest_sgs.group_type)
10371 return NULL;
10372
10373 /*
10374 * If the local group is busier than the selected idlest group
10375 * try and push the task.
10376 */
10377 if (local_sgs.group_type > idlest_sgs.group_type)
10378 return idlest;
10379
10380 switch (local_sgs.group_type) {
10381 case group_overloaded:
10382 case group_fully_busy:
10383
10384 /* Calculate allowed imbalance based on load */
10385 imbalance = scale_load_down(NICE_0_LOAD) *
10386 (sd->imbalance_pct-100) / 100;
10387
10388 /*
10389 * When comparing groups across NUMA domains, it's possible for
10390 * the local domain to be very lightly loaded relative to the
10391 * remote domains but "imbalance" skews the comparison making
10392 * remote CPUs look much more favourable. When considering
10393 * cross-domain, add imbalance to the load on the remote node
10394 * and consider staying local.
10395 */
10396
10397 if ((sd->flags & SD_NUMA) &&
10398 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10399 return NULL;
10400
10401 /*
10402 * If the local group is less loaded than the selected
10403 * idlest group don't try and push any tasks.
10404 */
10405 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10406 return NULL;
10407
10408 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10409 return NULL;
10410 break;
10411
10412 case group_imbalanced:
10413 case group_asym_packing:
10414 case group_smt_balance:
10415 /* Those type are not used in the slow wakeup path */
10416 return NULL;
10417
10418 case group_misfit_task:
10419 /* Select group with the highest max capacity */
10420 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10421 return NULL;
10422 break;
10423
10424 case group_has_spare:
10425 #ifdef CONFIG_NUMA
10426 if (sd->flags & SD_NUMA) {
10427 int imb_numa_nr = sd->imb_numa_nr;
10428 #ifdef CONFIG_NUMA_BALANCING
10429 int idlest_cpu;
10430 /*
10431 * If there is spare capacity at NUMA, try to select
10432 * the preferred node
10433 */
10434 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10435 return NULL;
10436
10437 idlest_cpu = cpumask_first(sched_group_span(idlest));
10438 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10439 return idlest;
10440 #endif /* CONFIG_NUMA_BALANCING */
10441 /*
10442 * Otherwise, keep the task close to the wakeup source
10443 * and improve locality if the number of running tasks
10444 * would remain below threshold where an imbalance is
10445 * allowed while accounting for the possibility the
10446 * task is pinned to a subset of CPUs. If there is a
10447 * real need of migration, periodic load balance will
10448 * take care of it.
10449 */
10450 if (p->nr_cpus_allowed != NR_CPUS) {
10451 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10452
10453 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10454 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10455 }
10456
10457 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10458 if (!adjust_numa_imbalance(imbalance,
10459 local_sgs.sum_nr_running + 1,
10460 imb_numa_nr)) {
10461 return NULL;
10462 }
10463 }
10464 #endif /* CONFIG_NUMA */
10465
10466 /*
10467 * Select group with highest number of idle CPUs. We could also
10468 * compare the utilization which is more stable but it can end
10469 * up that the group has less spare capacity but finally more
10470 * idle CPUs which means more opportunity to run task.
10471 */
10472 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10473 return NULL;
10474 break;
10475 }
10476
10477 return idlest;
10478 }
10479
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10480 static void update_idle_cpu_scan(struct lb_env *env,
10481 unsigned long sum_util)
10482 {
10483 struct sched_domain_shared *sd_share;
10484 int llc_weight, pct;
10485 u64 x, y, tmp;
10486 /*
10487 * Update the number of CPUs to scan in LLC domain, which could
10488 * be used as a hint in select_idle_cpu(). The update of sd_share
10489 * could be expensive because it is within a shared cache line.
10490 * So the write of this hint only occurs during periodic load
10491 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10492 * can fire way more frequently than the former.
10493 */
10494 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10495 return;
10496
10497 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10498 if (env->sd->span_weight != llc_weight)
10499 return;
10500
10501 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10502 if (!sd_share)
10503 return;
10504
10505 /*
10506 * The number of CPUs to search drops as sum_util increases, when
10507 * sum_util hits 85% or above, the scan stops.
10508 * The reason to choose 85% as the threshold is because this is the
10509 * imbalance_pct(117) when a LLC sched group is overloaded.
10510 *
10511 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10512 * and y'= y / SCHED_CAPACITY_SCALE
10513 *
10514 * x is the ratio of sum_util compared to the CPU capacity:
10515 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10516 * y' is the ratio of CPUs to be scanned in the LLC domain,
10517 * and the number of CPUs to scan is calculated by:
10518 *
10519 * nr_scan = llc_weight * y' [2]
10520 *
10521 * When x hits the threshold of overloaded, AKA, when
10522 * x = 100 / pct, y drops to 0. According to [1],
10523 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10524 *
10525 * Scale x by SCHED_CAPACITY_SCALE:
10526 * x' = sum_util / llc_weight; [3]
10527 *
10528 * and finally [1] becomes:
10529 * y = SCHED_CAPACITY_SCALE -
10530 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10531 *
10532 */
10533 /* equation [3] */
10534 x = sum_util;
10535 do_div(x, llc_weight);
10536
10537 /* equation [4] */
10538 pct = env->sd->imbalance_pct;
10539 tmp = x * x * pct * pct;
10540 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10541 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10542 y = SCHED_CAPACITY_SCALE - tmp;
10543
10544 /* equation [2] */
10545 y *= llc_weight;
10546 do_div(y, SCHED_CAPACITY_SCALE);
10547 if ((int)y != sd_share->nr_idle_scan)
10548 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10549 }
10550
10551 /**
10552 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10553 * @env: The load balancing environment.
10554 * @sds: variable to hold the statistics for this sched_domain.
10555 */
10556
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)10557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10558 {
10559 struct sched_group *sg = env->sd->groups;
10560 struct sg_lb_stats *local = &sds->local_stat;
10561 struct sg_lb_stats tmp_sgs;
10562 unsigned long sum_util = 0;
10563 int sg_status = 0;
10564
10565 do {
10566 struct sg_lb_stats *sgs = &tmp_sgs;
10567 int local_group;
10568
10569 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10570 if (local_group) {
10571 sds->local = sg;
10572 sgs = local;
10573
10574 if (env->idle != CPU_NEWLY_IDLE ||
10575 time_after_eq(jiffies, sg->sgc->next_update))
10576 update_group_capacity(env->sd, env->dst_cpu);
10577 }
10578
10579 update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
10580
10581 if (local_group)
10582 goto next_group;
10583
10584
10585 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
10586 sds->busiest = sg;
10587 sds->busiest_stat = *sgs;
10588 }
10589
10590 next_group:
10591 /* Now, start updating sd_lb_stats */
10592 sds->total_load += sgs->group_load;
10593 sds->total_capacity += sgs->group_capacity;
10594
10595 sum_util += sgs->group_util;
10596 sg = sg->next;
10597 } while (sg != env->sd->groups);
10598
10599 /*
10600 * Indicate that the child domain of the busiest group prefers tasks
10601 * go to a child's sibling domains first. NB the flags of a sched group
10602 * are those of the child domain.
10603 */
10604 if (sds->busiest)
10605 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10606
10607
10608 if (env->sd->flags & SD_NUMA)
10609 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10610
10611 if (!env->sd->parent) {
10612 struct root_domain *rd = env->dst_rq->rd;
10613
10614 /* update overload indicator if we are at root domain */
10615 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
10616
10617 /* Update over-utilization (tipping point, U >= 0) indicator */
10618 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
10619 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
10620 } else if (sg_status & SG_OVERUTILIZED) {
10621 struct root_domain *rd = env->dst_rq->rd;
10622
10623 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
10624 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
10625 }
10626
10627 update_idle_cpu_scan(env, sum_util);
10628 }
10629
10630 /**
10631 * calculate_imbalance - Calculate the amount of imbalance present within the
10632 * groups of a given sched_domain during load balance.
10633 * @env: load balance environment
10634 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10635 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)10636 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10637 {
10638 struct sg_lb_stats *local, *busiest;
10639
10640 local = &sds->local_stat;
10641 busiest = &sds->busiest_stat;
10642
10643 if (busiest->group_type == group_misfit_task) {
10644 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10645 /* Set imbalance to allow misfit tasks to be balanced. */
10646 env->migration_type = migrate_misfit;
10647 env->imbalance = 1;
10648 } else {
10649 /*
10650 * Set load imbalance to allow moving task from cpu
10651 * with reduced capacity.
10652 */
10653 env->migration_type = migrate_load;
10654 env->imbalance = busiest->group_misfit_task_load;
10655 }
10656 return;
10657 }
10658
10659 if (busiest->group_type == group_asym_packing) {
10660 /*
10661 * In case of asym capacity, we will try to migrate all load to
10662 * the preferred CPU.
10663 */
10664 env->migration_type = migrate_task;
10665 env->imbalance = busiest->sum_h_nr_running;
10666 return;
10667 }
10668
10669 if (busiest->group_type == group_smt_balance) {
10670 /* Reduce number of tasks sharing CPU capacity */
10671 env->migration_type = migrate_task;
10672 env->imbalance = 1;
10673 return;
10674 }
10675
10676 if (busiest->group_type == group_imbalanced) {
10677 /*
10678 * In the group_imb case we cannot rely on group-wide averages
10679 * to ensure CPU-load equilibrium, try to move any task to fix
10680 * the imbalance. The next load balance will take care of
10681 * balancing back the system.
10682 */
10683 env->migration_type = migrate_task;
10684 env->imbalance = 1;
10685 return;
10686 }
10687
10688 /*
10689 * Try to use spare capacity of local group without overloading it or
10690 * emptying busiest.
10691 */
10692 if (local->group_type == group_has_spare) {
10693 if ((busiest->group_type > group_fully_busy) &&
10694 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
10695 /*
10696 * If busiest is overloaded, try to fill spare
10697 * capacity. This might end up creating spare capacity
10698 * in busiest or busiest still being overloaded but
10699 * there is no simple way to directly compute the
10700 * amount of load to migrate in order to balance the
10701 * system.
10702 */
10703 env->migration_type = migrate_util;
10704 env->imbalance = max(local->group_capacity, local->group_util) -
10705 local->group_util;
10706
10707 /*
10708 * In some cases, the group's utilization is max or even
10709 * higher than capacity because of migrations but the
10710 * local CPU is (newly) idle. There is at least one
10711 * waiting task in this overloaded busiest group. Let's
10712 * try to pull it.
10713 */
10714 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
10715 env->migration_type = migrate_task;
10716 env->imbalance = 1;
10717 }
10718
10719 return;
10720 }
10721
10722 if (busiest->group_weight == 1 || sds->prefer_sibling) {
10723 /*
10724 * When prefer sibling, evenly spread running tasks on
10725 * groups.
10726 */
10727 env->migration_type = migrate_task;
10728 env->imbalance = sibling_imbalance(env, sds, busiest, local);
10729 } else {
10730
10731 /*
10732 * If there is no overload, we just want to even the number of
10733 * idle cpus.
10734 */
10735 env->migration_type = migrate_task;
10736 env->imbalance = max_t(long, 0,
10737 (local->idle_cpus - busiest->idle_cpus));
10738 }
10739
10740 #ifdef CONFIG_NUMA
10741 /* Consider allowing a small imbalance between NUMA groups */
10742 if (env->sd->flags & SD_NUMA) {
10743 env->imbalance = adjust_numa_imbalance(env->imbalance,
10744 local->sum_nr_running + 1,
10745 env->sd->imb_numa_nr);
10746 }
10747 #endif
10748
10749 /* Number of tasks to move to restore balance */
10750 env->imbalance >>= 1;
10751
10752 return;
10753 }
10754
10755 /*
10756 * Local is fully busy but has to take more load to relieve the
10757 * busiest group
10758 */
10759 if (local->group_type < group_overloaded) {
10760 /*
10761 * Local will become overloaded so the avg_load metrics are
10762 * finally needed.
10763 */
10764
10765 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10766 local->group_capacity;
10767
10768 /*
10769 * If the local group is more loaded than the selected
10770 * busiest group don't try to pull any tasks.
10771 */
10772 if (local->avg_load >= busiest->avg_load) {
10773 env->imbalance = 0;
10774 return;
10775 }
10776
10777 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10778 sds->total_capacity;
10779
10780 /*
10781 * If the local group is more loaded than the average system
10782 * load, don't try to pull any tasks.
10783 */
10784 if (local->avg_load >= sds->avg_load) {
10785 env->imbalance = 0;
10786 return;
10787 }
10788
10789 }
10790
10791 /*
10792 * Both group are or will become overloaded and we're trying to get all
10793 * the CPUs to the average_load, so we don't want to push ourselves
10794 * above the average load, nor do we wish to reduce the max loaded CPU
10795 * below the average load. At the same time, we also don't want to
10796 * reduce the group load below the group capacity. Thus we look for
10797 * the minimum possible imbalance.
10798 */
10799 env->migration_type = migrate_load;
10800 env->imbalance = min(
10801 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10802 (sds->avg_load - local->avg_load) * local->group_capacity
10803 ) / SCHED_CAPACITY_SCALE;
10804 }
10805
10806 /******* find_busiest_group() helpers end here *********************/
10807
10808 /*
10809 * Decision matrix according to the local and busiest group type:
10810 *
10811 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10812 * has_spare nr_idle balanced N/A N/A balanced balanced
10813 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
10814 * misfit_task force N/A N/A N/A N/A N/A
10815 * asym_packing force force N/A N/A force force
10816 * imbalanced force force N/A N/A force force
10817 * overloaded force force N/A N/A force avg_load
10818 *
10819 * N/A : Not Applicable because already filtered while updating
10820 * statistics.
10821 * balanced : The system is balanced for these 2 groups.
10822 * force : Calculate the imbalance as load migration is probably needed.
10823 * avg_load : Only if imbalance is significant enough.
10824 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
10825 * different in groups.
10826 */
10827
10828 /**
10829 * find_busiest_group - Returns the busiest group within the sched_domain
10830 * if there is an imbalance.
10831 * @env: The load balancing environment.
10832 *
10833 * Also calculates the amount of runnable load which should be moved
10834 * to restore balance.
10835 *
10836 * Return: - The busiest group if imbalance exists.
10837 */
find_busiest_group(struct lb_env * env)10838 static struct sched_group *find_busiest_group(struct lb_env *env)
10839 {
10840 struct sg_lb_stats *local, *busiest;
10841 struct sd_lb_stats sds;
10842
10843 init_sd_lb_stats(&sds);
10844
10845 /*
10846 * Compute the various statistics relevant for load balancing at
10847 * this level.
10848 */
10849 update_sd_lb_stats(env, &sds);
10850
10851 /* There is no busy sibling group to pull tasks from */
10852 if (!sds.busiest)
10853 goto out_balanced;
10854
10855 busiest = &sds.busiest_stat;
10856
10857 /* Misfit tasks should be dealt with regardless of the avg load */
10858 if (busiest->group_type == group_misfit_task)
10859 goto force_balance;
10860
10861 if (sched_energy_enabled()) {
10862 struct root_domain *rd = env->dst_rq->rd;
10863
10864 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
10865 goto out_balanced;
10866 }
10867
10868 /* ASYM feature bypasses nice load balance check */
10869 if (busiest->group_type == group_asym_packing)
10870 goto force_balance;
10871
10872 /*
10873 * If the busiest group is imbalanced the below checks don't
10874 * work because they assume all things are equal, which typically
10875 * isn't true due to cpus_ptr constraints and the like.
10876 */
10877 if (busiest->group_type == group_imbalanced)
10878 goto force_balance;
10879
10880 local = &sds.local_stat;
10881 /*
10882 * If the local group is busier than the selected busiest group
10883 * don't try and pull any tasks.
10884 */
10885 if (local->group_type > busiest->group_type)
10886 goto out_balanced;
10887
10888 /*
10889 * When groups are overloaded, use the avg_load to ensure fairness
10890 * between tasks.
10891 */
10892 if (local->group_type == group_overloaded) {
10893 /*
10894 * If the local group is more loaded than the selected
10895 * busiest group don't try to pull any tasks.
10896 */
10897 if (local->avg_load >= busiest->avg_load)
10898 goto out_balanced;
10899
10900 /* XXX broken for overlapping NUMA groups */
10901 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10902 sds.total_capacity;
10903
10904 /*
10905 * Don't pull any tasks if this group is already above the
10906 * domain average load.
10907 */
10908 if (local->avg_load >= sds.avg_load)
10909 goto out_balanced;
10910
10911 /*
10912 * If the busiest group is more loaded, use imbalance_pct to be
10913 * conservative.
10914 */
10915 if (100 * busiest->avg_load <=
10916 env->sd->imbalance_pct * local->avg_load)
10917 goto out_balanced;
10918 }
10919
10920 /*
10921 * Try to move all excess tasks to a sibling domain of the busiest
10922 * group's child domain.
10923 */
10924 if (sds.prefer_sibling && local->group_type == group_has_spare &&
10925 sibling_imbalance(env, &sds, busiest, local) > 1)
10926 goto force_balance;
10927
10928 if (busiest->group_type != group_overloaded) {
10929 if (env->idle == CPU_NOT_IDLE) {
10930 /*
10931 * If the busiest group is not overloaded (and as a
10932 * result the local one too) but this CPU is already
10933 * busy, let another idle CPU try to pull task.
10934 */
10935 goto out_balanced;
10936 }
10937
10938 if (busiest->group_type == group_smt_balance &&
10939 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10940 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
10941 goto force_balance;
10942 }
10943
10944 if (busiest->group_weight > 1 &&
10945 local->idle_cpus <= (busiest->idle_cpus + 1)) {
10946 /*
10947 * If the busiest group is not overloaded
10948 * and there is no imbalance between this and busiest
10949 * group wrt idle CPUs, it is balanced. The imbalance
10950 * becomes significant if the diff is greater than 1
10951 * otherwise we might end up to just move the imbalance
10952 * on another group. Of course this applies only if
10953 * there is more than 1 CPU per group.
10954 */
10955 goto out_balanced;
10956 }
10957
10958 if (busiest->sum_h_nr_running == 1) {
10959 /*
10960 * busiest doesn't have any tasks waiting to run
10961 */
10962 goto out_balanced;
10963 }
10964 }
10965
10966 force_balance:
10967 /* Looks like there is an imbalance. Compute it */
10968 calculate_imbalance(env, &sds);
10969 return env->imbalance ? sds.busiest : NULL;
10970
10971 out_balanced:
10972 env->imbalance = 0;
10973 return NULL;
10974 }
10975
10976 /*
10977 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
10978 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10979 static struct rq *find_busiest_queue(struct lb_env *env,
10980 struct sched_group *group)
10981 {
10982 struct rq *busiest = NULL, *rq;
10983 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
10984 unsigned int busiest_nr = 0;
10985 int i;
10986
10987 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10988 unsigned long capacity, load, util;
10989 unsigned int nr_running;
10990 enum fbq_type rt;
10991
10992 rq = cpu_rq(i);
10993 rt = fbq_classify_rq(rq);
10994
10995 /*
10996 * We classify groups/runqueues into three groups:
10997 * - regular: there are !numa tasks
10998 * - remote: there are numa tasks that run on the 'wrong' node
10999 * - all: there is no distinction
11000 *
11001 * In order to avoid migrating ideally placed numa tasks,
11002 * ignore those when there's better options.
11003 *
11004 * If we ignore the actual busiest queue to migrate another
11005 * task, the next balance pass can still reduce the busiest
11006 * queue by moving tasks around inside the node.
11007 *
11008 * If we cannot move enough load due to this classification
11009 * the next pass will adjust the group classification and
11010 * allow migration of more tasks.
11011 *
11012 * Both cases only affect the total convergence complexity.
11013 */
11014 if (rt > env->fbq_type)
11015 continue;
11016
11017 nr_running = rq->cfs.h_nr_running;
11018 if (!nr_running)
11019 continue;
11020
11021 capacity = capacity_of(i);
11022
11023 /*
11024 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11025 * eventually lead to active_balancing high->low capacity.
11026 * Higher per-CPU capacity is considered better than balancing
11027 * average load.
11028 */
11029 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11030 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11031 nr_running == 1)
11032 continue;
11033
11034 /*
11035 * Make sure we only pull tasks from a CPU of lower priority
11036 * when balancing between SMT siblings.
11037 *
11038 * If balancing between cores, let lower priority CPUs help
11039 * SMT cores with more than one busy sibling.
11040 */
11041 if ((env->sd->flags & SD_ASYM_PACKING) &&
11042 sched_use_asym_prio(env->sd, i) &&
11043 sched_asym_prefer(i, env->dst_cpu) &&
11044 nr_running == 1)
11045 continue;
11046
11047 switch (env->migration_type) {
11048 case migrate_load:
11049 /*
11050 * When comparing with load imbalance, use cpu_load()
11051 * which is not scaled with the CPU capacity.
11052 */
11053 load = cpu_load(rq);
11054
11055 if (nr_running == 1 && load > env->imbalance &&
11056 !check_cpu_capacity(rq, env->sd))
11057 break;
11058
11059 /*
11060 * For the load comparisons with the other CPUs,
11061 * consider the cpu_load() scaled with the CPU
11062 * capacity, so that the load can be moved away
11063 * from the CPU that is potentially running at a
11064 * lower capacity.
11065 *
11066 * Thus we're looking for max(load_i / capacity_i),
11067 * crosswise multiplication to rid ourselves of the
11068 * division works out to:
11069 * load_i * capacity_j > load_j * capacity_i;
11070 * where j is our previous maximum.
11071 */
11072 if (load * busiest_capacity > busiest_load * capacity) {
11073 busiest_load = load;
11074 busiest_capacity = capacity;
11075 busiest = rq;
11076 }
11077 break;
11078
11079 case migrate_util:
11080 util = cpu_util_cfs_boost(i);
11081
11082 /*
11083 * Don't try to pull utilization from a CPU with one
11084 * running task. Whatever its utilization, we will fail
11085 * detach the task.
11086 */
11087 if (nr_running <= 1)
11088 continue;
11089
11090 if (busiest_util < util) {
11091 busiest_util = util;
11092 busiest = rq;
11093 }
11094 break;
11095
11096 case migrate_task:
11097 if (busiest_nr < nr_running) {
11098 busiest_nr = nr_running;
11099 busiest = rq;
11100 }
11101 break;
11102
11103 case migrate_misfit:
11104 /*
11105 * For ASYM_CPUCAPACITY domains with misfit tasks we
11106 * simply seek the "biggest" misfit task.
11107 */
11108 if (rq->misfit_task_load > busiest_load) {
11109 busiest_load = rq->misfit_task_load;
11110 busiest = rq;
11111 }
11112
11113 break;
11114
11115 }
11116 }
11117
11118 return busiest;
11119 }
11120
11121 /*
11122 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11123 * so long as it is large enough.
11124 */
11125 #define MAX_PINNED_INTERVAL 512
11126
11127 static inline bool
asym_active_balance(struct lb_env * env)11128 asym_active_balance(struct lb_env *env)
11129 {
11130 /*
11131 * ASYM_PACKING needs to force migrate tasks from busy but lower
11132 * priority CPUs in order to pack all tasks in the highest priority
11133 * CPUs. When done between cores, do it only if the whole core if the
11134 * whole core is idle.
11135 *
11136 * If @env::src_cpu is an SMT core with busy siblings, let
11137 * the lower priority @env::dst_cpu help it. Do not follow
11138 * CPU priority.
11139 */
11140 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
11141 sched_use_asym_prio(env->sd, env->dst_cpu) &&
11142 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11143 !sched_use_asym_prio(env->sd, env->src_cpu));
11144 }
11145
11146 static inline bool
imbalanced_active_balance(struct lb_env * env)11147 imbalanced_active_balance(struct lb_env *env)
11148 {
11149 struct sched_domain *sd = env->sd;
11150
11151 /*
11152 * The imbalanced case includes the case of pinned tasks preventing a fair
11153 * distribution of the load on the system but also the even distribution of the
11154 * threads on a system with spare capacity
11155 */
11156 if ((env->migration_type == migrate_task) &&
11157 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11158 return 1;
11159
11160 return 0;
11161 }
11162
need_active_balance(struct lb_env * env)11163 static int need_active_balance(struct lb_env *env)
11164 {
11165 struct sched_domain *sd = env->sd;
11166
11167 if (asym_active_balance(env))
11168 return 1;
11169
11170 if (imbalanced_active_balance(env))
11171 return 1;
11172
11173 /*
11174 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11175 * It's worth migrating the task if the src_cpu's capacity is reduced
11176 * because of other sched_class or IRQs if more capacity stays
11177 * available on dst_cpu.
11178 */
11179 if ((env->idle != CPU_NOT_IDLE) &&
11180 (env->src_rq->cfs.h_nr_running == 1)) {
11181 if ((check_cpu_capacity(env->src_rq, sd)) &&
11182 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11183 return 1;
11184 }
11185
11186 if (env->migration_type == migrate_misfit)
11187 return 1;
11188
11189 return 0;
11190 }
11191
11192 static int active_load_balance_cpu_stop(void *data);
11193
should_we_balance(struct lb_env * env)11194 static int should_we_balance(struct lb_env *env)
11195 {
11196 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11197 struct sched_group *sg = env->sd->groups;
11198 int cpu, idle_smt = -1;
11199
11200 /*
11201 * Ensure the balancing environment is consistent; can happen
11202 * when the softirq triggers 'during' hotplug.
11203 */
11204 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11205 return 0;
11206
11207 /*
11208 * In the newly idle case, we will allow all the CPUs
11209 * to do the newly idle load balance.
11210 *
11211 * However, we bail out if we already have tasks or a wakeup pending,
11212 * to optimize wakeup latency.
11213 */
11214 if (env->idle == CPU_NEWLY_IDLE) {
11215 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11216 return 0;
11217 return 1;
11218 }
11219
11220 cpumask_copy(swb_cpus, group_balance_mask(sg));
11221 /* Try to find first idle CPU */
11222 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11223 if (!idle_cpu(cpu))
11224 continue;
11225
11226 /*
11227 * Don't balance to idle SMT in busy core right away when
11228 * balancing cores, but remember the first idle SMT CPU for
11229 * later consideration. Find CPU on an idle core first.
11230 */
11231 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11232 if (idle_smt == -1)
11233 idle_smt = cpu;
11234 /*
11235 * If the core is not idle, and first SMT sibling which is
11236 * idle has been found, then its not needed to check other
11237 * SMT siblings for idleness:
11238 */
11239 #ifdef CONFIG_SCHED_SMT
11240 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11241 #endif
11242 continue;
11243 }
11244
11245 /*
11246 * Are we the first idle core in a non-SMT domain or higher,
11247 * or the first idle CPU in a SMT domain?
11248 */
11249 return cpu == env->dst_cpu;
11250 }
11251
11252 /* Are we the first idle CPU with busy siblings? */
11253 if (idle_smt != -1)
11254 return idle_smt == env->dst_cpu;
11255
11256 /* Are we the first CPU of this group ? */
11257 return group_balance_cpu(sg) == env->dst_cpu;
11258 }
11259
11260 /*
11261 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11262 * tasks if there is an imbalance.
11263 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11264 static int load_balance(int this_cpu, struct rq *this_rq,
11265 struct sched_domain *sd, enum cpu_idle_type idle,
11266 int *continue_balancing)
11267 {
11268 int ld_moved, cur_ld_moved, active_balance = 0;
11269 struct sched_domain *sd_parent = sd->parent;
11270 struct sched_group *group;
11271 struct rq *busiest;
11272 struct rq_flags rf;
11273 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11274 struct lb_env env = {
11275 .sd = sd,
11276 .dst_cpu = this_cpu,
11277 .dst_rq = this_rq,
11278 .dst_grpmask = group_balance_mask(sd->groups),
11279 .idle = idle,
11280 .loop_break = SCHED_NR_MIGRATE_BREAK,
11281 .cpus = cpus,
11282 .fbq_type = all,
11283 .tasks = LIST_HEAD_INIT(env.tasks),
11284 };
11285
11286 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11287
11288 schedstat_inc(sd->lb_count[idle]);
11289
11290 redo:
11291 if (!should_we_balance(&env)) {
11292 *continue_balancing = 0;
11293 goto out_balanced;
11294 }
11295
11296 group = find_busiest_group(&env);
11297 if (!group) {
11298 schedstat_inc(sd->lb_nobusyg[idle]);
11299 goto out_balanced;
11300 }
11301
11302 busiest = find_busiest_queue(&env, group);
11303 if (!busiest) {
11304 schedstat_inc(sd->lb_nobusyq[idle]);
11305 goto out_balanced;
11306 }
11307
11308 WARN_ON_ONCE(busiest == env.dst_rq);
11309
11310 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11311
11312 env.src_cpu = busiest->cpu;
11313 env.src_rq = busiest;
11314
11315 ld_moved = 0;
11316 /* Clear this flag as soon as we find a pullable task */
11317 env.flags |= LBF_ALL_PINNED;
11318 if (busiest->nr_running > 1) {
11319 /*
11320 * Attempt to move tasks. If find_busiest_group has found
11321 * an imbalance but busiest->nr_running <= 1, the group is
11322 * still unbalanced. ld_moved simply stays zero, so it is
11323 * correctly treated as an imbalance.
11324 */
11325 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11326
11327 more_balance:
11328 rq_lock_irqsave(busiest, &rf);
11329 update_rq_clock(busiest);
11330
11331 /*
11332 * cur_ld_moved - load moved in current iteration
11333 * ld_moved - cumulative load moved across iterations
11334 */
11335 cur_ld_moved = detach_tasks(&env);
11336
11337 /*
11338 * We've detached some tasks from busiest_rq. Every
11339 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11340 * unlock busiest->lock, and we are able to be sure
11341 * that nobody can manipulate the tasks in parallel.
11342 * See task_rq_lock() family for the details.
11343 */
11344
11345 rq_unlock(busiest, &rf);
11346
11347 if (cur_ld_moved) {
11348 attach_tasks(&env);
11349 ld_moved += cur_ld_moved;
11350 }
11351
11352 local_irq_restore(rf.flags);
11353
11354 if (env.flags & LBF_NEED_BREAK) {
11355 env.flags &= ~LBF_NEED_BREAK;
11356 /* Stop if we tried all running tasks */
11357 if (env.loop < busiest->nr_running)
11358 goto more_balance;
11359 }
11360
11361 /*
11362 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11363 * us and move them to an alternate dst_cpu in our sched_group
11364 * where they can run. The upper limit on how many times we
11365 * iterate on same src_cpu is dependent on number of CPUs in our
11366 * sched_group.
11367 *
11368 * This changes load balance semantics a bit on who can move
11369 * load to a given_cpu. In addition to the given_cpu itself
11370 * (or a ilb_cpu acting on its behalf where given_cpu is
11371 * nohz-idle), we now have balance_cpu in a position to move
11372 * load to given_cpu. In rare situations, this may cause
11373 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11374 * _independently_ and at _same_ time to move some load to
11375 * given_cpu) causing excess load to be moved to given_cpu.
11376 * This however should not happen so much in practice and
11377 * moreover subsequent load balance cycles should correct the
11378 * excess load moved.
11379 */
11380 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11381
11382 /* Prevent to re-select dst_cpu via env's CPUs */
11383 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11384
11385 env.dst_rq = cpu_rq(env.new_dst_cpu);
11386 env.dst_cpu = env.new_dst_cpu;
11387 env.flags &= ~LBF_DST_PINNED;
11388 env.loop = 0;
11389 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11390
11391 /*
11392 * Go back to "more_balance" rather than "redo" since we
11393 * need to continue with same src_cpu.
11394 */
11395 goto more_balance;
11396 }
11397
11398 /*
11399 * We failed to reach balance because of affinity.
11400 */
11401 if (sd_parent) {
11402 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11403
11404 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11405 *group_imbalance = 1;
11406 }
11407
11408 /* All tasks on this runqueue were pinned by CPU affinity */
11409 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11410 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11411 /*
11412 * Attempting to continue load balancing at the current
11413 * sched_domain level only makes sense if there are
11414 * active CPUs remaining as possible busiest CPUs to
11415 * pull load from which are not contained within the
11416 * destination group that is receiving any migrated
11417 * load.
11418 */
11419 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11420 env.loop = 0;
11421 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11422 goto redo;
11423 }
11424 goto out_all_pinned;
11425 }
11426 }
11427
11428 if (!ld_moved) {
11429 schedstat_inc(sd->lb_failed[idle]);
11430 /*
11431 * Increment the failure counter only on periodic balance.
11432 * We do not want newidle balance, which can be very
11433 * frequent, pollute the failure counter causing
11434 * excessive cache_hot migrations and active balances.
11435 */
11436 if (idle != CPU_NEWLY_IDLE)
11437 sd->nr_balance_failed++;
11438
11439 if (need_active_balance(&env)) {
11440 unsigned long flags;
11441
11442 raw_spin_rq_lock_irqsave(busiest, flags);
11443
11444 /*
11445 * Don't kick the active_load_balance_cpu_stop,
11446 * if the curr task on busiest CPU can't be
11447 * moved to this_cpu:
11448 */
11449 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11450 raw_spin_rq_unlock_irqrestore(busiest, flags);
11451 goto out_one_pinned;
11452 }
11453
11454 /* Record that we found at least one task that could run on this_cpu */
11455 env.flags &= ~LBF_ALL_PINNED;
11456
11457 /*
11458 * ->active_balance synchronizes accesses to
11459 * ->active_balance_work. Once set, it's cleared
11460 * only after active load balance is finished.
11461 */
11462 if (!busiest->active_balance) {
11463 busiest->active_balance = 1;
11464 busiest->push_cpu = this_cpu;
11465 active_balance = 1;
11466 }
11467
11468 preempt_disable();
11469 raw_spin_rq_unlock_irqrestore(busiest, flags);
11470 if (active_balance) {
11471 stop_one_cpu_nowait(cpu_of(busiest),
11472 active_load_balance_cpu_stop, busiest,
11473 &busiest->active_balance_work);
11474 }
11475 preempt_enable();
11476 }
11477 } else {
11478 sd->nr_balance_failed = 0;
11479 }
11480
11481 if (likely(!active_balance) || need_active_balance(&env)) {
11482 /* We were unbalanced, so reset the balancing interval */
11483 sd->balance_interval = sd->min_interval;
11484 }
11485
11486 goto out;
11487
11488 out_balanced:
11489 /*
11490 * We reach balance although we may have faced some affinity
11491 * constraints. Clear the imbalance flag only if other tasks got
11492 * a chance to move and fix the imbalance.
11493 */
11494 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11495 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11496
11497 if (*group_imbalance)
11498 *group_imbalance = 0;
11499 }
11500
11501 out_all_pinned:
11502 /*
11503 * We reach balance because all tasks are pinned at this level so
11504 * we can't migrate them. Let the imbalance flag set so parent level
11505 * can try to migrate them.
11506 */
11507 schedstat_inc(sd->lb_balanced[idle]);
11508
11509 sd->nr_balance_failed = 0;
11510
11511 out_one_pinned:
11512 ld_moved = 0;
11513
11514 /*
11515 * newidle_balance() disregards balance intervals, so we could
11516 * repeatedly reach this code, which would lead to balance_interval
11517 * skyrocketing in a short amount of time. Skip the balance_interval
11518 * increase logic to avoid that.
11519 */
11520 if (env.idle == CPU_NEWLY_IDLE)
11521 goto out;
11522
11523 /* tune up the balancing interval */
11524 if ((env.flags & LBF_ALL_PINNED &&
11525 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11526 sd->balance_interval < sd->max_interval)
11527 sd->balance_interval *= 2;
11528 out:
11529 return ld_moved;
11530 }
11531
11532 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)11533 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11534 {
11535 unsigned long interval = sd->balance_interval;
11536
11537 if (cpu_busy)
11538 interval *= sd->busy_factor;
11539
11540 /* scale ms to jiffies */
11541 interval = msecs_to_jiffies(interval);
11542
11543 /*
11544 * Reduce likelihood of busy balancing at higher domains racing with
11545 * balancing at lower domains by preventing their balancing periods
11546 * from being multiples of each other.
11547 */
11548 if (cpu_busy)
11549 interval -= 1;
11550
11551 interval = clamp(interval, 1UL, max_load_balance_interval);
11552
11553 return interval;
11554 }
11555
11556 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)11557 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11558 {
11559 unsigned long interval, next;
11560
11561 /* used by idle balance, so cpu_busy = 0 */
11562 interval = get_sd_balance_interval(sd, 0);
11563 next = sd->last_balance + interval;
11564
11565 if (time_after(*next_balance, next))
11566 *next_balance = next;
11567 }
11568
11569 /*
11570 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11571 * running tasks off the busiest CPU onto idle CPUs. It requires at
11572 * least 1 task to be running on each physical CPU where possible, and
11573 * avoids physical / logical imbalances.
11574 */
active_load_balance_cpu_stop(void * data)11575 static int active_load_balance_cpu_stop(void *data)
11576 {
11577 struct rq *busiest_rq = data;
11578 int busiest_cpu = cpu_of(busiest_rq);
11579 int target_cpu = busiest_rq->push_cpu;
11580 struct rq *target_rq = cpu_rq(target_cpu);
11581 struct sched_domain *sd;
11582 struct task_struct *p = NULL;
11583 struct rq_flags rf;
11584
11585 rq_lock_irq(busiest_rq, &rf);
11586 /*
11587 * Between queueing the stop-work and running it is a hole in which
11588 * CPUs can become inactive. We should not move tasks from or to
11589 * inactive CPUs.
11590 */
11591 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11592 goto out_unlock;
11593
11594 /* Make sure the requested CPU hasn't gone down in the meantime: */
11595 if (unlikely(busiest_cpu != smp_processor_id() ||
11596 !busiest_rq->active_balance))
11597 goto out_unlock;
11598
11599 /* Is there any task to move? */
11600 if (busiest_rq->nr_running <= 1)
11601 goto out_unlock;
11602
11603 /*
11604 * This condition is "impossible", if it occurs
11605 * we need to fix it. Originally reported by
11606 * Bjorn Helgaas on a 128-CPU setup.
11607 */
11608 WARN_ON_ONCE(busiest_rq == target_rq);
11609
11610 /* Search for an sd spanning us and the target CPU. */
11611 rcu_read_lock();
11612 for_each_domain(target_cpu, sd) {
11613 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11614 break;
11615 }
11616
11617 if (likely(sd)) {
11618 struct lb_env env = {
11619 .sd = sd,
11620 .dst_cpu = target_cpu,
11621 .dst_rq = target_rq,
11622 .src_cpu = busiest_rq->cpu,
11623 .src_rq = busiest_rq,
11624 .idle = CPU_IDLE,
11625 .flags = LBF_ACTIVE_LB,
11626 };
11627
11628 schedstat_inc(sd->alb_count);
11629 update_rq_clock(busiest_rq);
11630
11631 p = detach_one_task(&env);
11632 if (p) {
11633 schedstat_inc(sd->alb_pushed);
11634 /* Active balancing done, reset the failure counter. */
11635 sd->nr_balance_failed = 0;
11636 } else {
11637 schedstat_inc(sd->alb_failed);
11638 }
11639 }
11640 rcu_read_unlock();
11641 out_unlock:
11642 busiest_rq->active_balance = 0;
11643 rq_unlock(busiest_rq, &rf);
11644
11645 if (p)
11646 attach_one_task(target_rq, p);
11647
11648 local_irq_enable();
11649
11650 return 0;
11651 }
11652
11653 static DEFINE_SPINLOCK(balancing);
11654
11655 /*
11656 * Scale the max load_balance interval with the number of CPUs in the system.
11657 * This trades load-balance latency on larger machines for less cross talk.
11658 */
update_max_interval(void)11659 void update_max_interval(void)
11660 {
11661 max_load_balance_interval = HZ*num_online_cpus()/10;
11662 }
11663
update_newidle_cost(struct sched_domain * sd,u64 cost)11664 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11665 {
11666 if (cost > sd->max_newidle_lb_cost) {
11667 /*
11668 * Track max cost of a domain to make sure to not delay the
11669 * next wakeup on the CPU.
11670 */
11671 sd->max_newidle_lb_cost = cost;
11672 sd->last_decay_max_lb_cost = jiffies;
11673 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11674 /*
11675 * Decay the newidle max times by ~1% per second to ensure that
11676 * it is not outdated and the current max cost is actually
11677 * shorter.
11678 */
11679 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11680 sd->last_decay_max_lb_cost = jiffies;
11681
11682 return true;
11683 }
11684
11685 return false;
11686 }
11687
11688 /*
11689 * It checks each scheduling domain to see if it is due to be balanced,
11690 * and initiates a balancing operation if so.
11691 *
11692 * Balancing parameters are set up in init_sched_domains.
11693 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11695 {
11696 int continue_balancing = 1;
11697 int cpu = rq->cpu;
11698 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11699 unsigned long interval;
11700 struct sched_domain *sd;
11701 /* Earliest time when we have to do rebalance again */
11702 unsigned long next_balance = jiffies + 60*HZ;
11703 int update_next_balance = 0;
11704 int need_serialize, need_decay = 0;
11705 u64 max_cost = 0;
11706
11707 rcu_read_lock();
11708 for_each_domain(cpu, sd) {
11709 /*
11710 * Decay the newidle max times here because this is a regular
11711 * visit to all the domains.
11712 */
11713 need_decay = update_newidle_cost(sd, 0);
11714 max_cost += sd->max_newidle_lb_cost;
11715
11716 /*
11717 * Stop the load balance at this level. There is another
11718 * CPU in our sched group which is doing load balancing more
11719 * actively.
11720 */
11721 if (!continue_balancing) {
11722 if (need_decay)
11723 continue;
11724 break;
11725 }
11726
11727 interval = get_sd_balance_interval(sd, busy);
11728
11729 need_serialize = sd->flags & SD_SERIALIZE;
11730 if (need_serialize) {
11731 if (!spin_trylock(&balancing))
11732 goto out;
11733 }
11734
11735 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11736 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11737 /*
11738 * The LBF_DST_PINNED logic could have changed
11739 * env->dst_cpu, so we can't know our idle
11740 * state even if we migrated tasks. Update it.
11741 */
11742 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11743 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11744 }
11745 sd->last_balance = jiffies;
11746 interval = get_sd_balance_interval(sd, busy);
11747 }
11748 if (need_serialize)
11749 spin_unlock(&balancing);
11750 out:
11751 if (time_after(next_balance, sd->last_balance + interval)) {
11752 next_balance = sd->last_balance + interval;
11753 update_next_balance = 1;
11754 }
11755 }
11756 if (need_decay) {
11757 /*
11758 * Ensure the rq-wide value also decays but keep it at a
11759 * reasonable floor to avoid funnies with rq->avg_idle.
11760 */
11761 rq->max_idle_balance_cost =
11762 max((u64)sysctl_sched_migration_cost, max_cost);
11763 }
11764 rcu_read_unlock();
11765
11766 /*
11767 * next_balance will be updated only when there is a need.
11768 * When the cpu is attached to null domain for ex, it will not be
11769 * updated.
11770 */
11771 if (likely(update_next_balance))
11772 rq->next_balance = next_balance;
11773
11774 }
11775
on_null_domain(struct rq * rq)11776 static inline int on_null_domain(struct rq *rq)
11777 {
11778 return unlikely(!rcu_dereference_sched(rq->sd));
11779 }
11780
11781 #ifdef CONFIG_NO_HZ_COMMON
11782 /*
11783 * NOHZ idle load balancing (ILB) details:
11784 *
11785 * - When one of the busy CPUs notices that there may be an idle rebalancing
11786 * needed, they will kick the idle load balancer, which then does idle
11787 * load balancing for all the idle CPUs.
11788 *
11789 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11790 * anywhere yet.
11791 */
find_new_ilb(void)11792 static inline int find_new_ilb(void)
11793 {
11794 const struct cpumask *hk_mask;
11795 int ilb_cpu;
11796
11797 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11798
11799 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11800
11801 if (ilb_cpu == smp_processor_id())
11802 continue;
11803
11804 if (idle_cpu(ilb_cpu))
11805 return ilb_cpu;
11806 }
11807
11808 return -1;
11809 }
11810
11811 /*
11812 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11813 * SMP function call (IPI).
11814 *
11815 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11816 */
kick_ilb(unsigned int flags)11817 static void kick_ilb(unsigned int flags)
11818 {
11819 int ilb_cpu;
11820
11821 /*
11822 * Increase nohz.next_balance only when if full ilb is triggered but
11823 * not if we only update stats.
11824 */
11825 if (flags & NOHZ_BALANCE_KICK)
11826 nohz.next_balance = jiffies+1;
11827
11828 ilb_cpu = find_new_ilb();
11829 if (ilb_cpu < 0)
11830 return;
11831
11832 /*
11833 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11834 * the first flag owns it; cleared by nohz_csd_func().
11835 */
11836 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11837 if (flags & NOHZ_KICK_MASK)
11838 return;
11839
11840 /*
11841 * This way we generate an IPI on the target CPU which
11842 * is idle, and the softirq performing NOHZ idle load balancing
11843 * will be run before returning from the IPI.
11844 */
11845 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11846 }
11847
11848 /*
11849 * Current decision point for kicking the idle load balancer in the presence
11850 * of idle CPUs in the system.
11851 */
nohz_balancer_kick(struct rq * rq)11852 static void nohz_balancer_kick(struct rq *rq)
11853 {
11854 unsigned long now = jiffies;
11855 struct sched_domain_shared *sds;
11856 struct sched_domain *sd;
11857 int nr_busy, i, cpu = rq->cpu;
11858 unsigned int flags = 0;
11859
11860 if (unlikely(rq->idle_balance))
11861 return;
11862
11863 /*
11864 * We may be recently in ticked or tickless idle mode. At the first
11865 * busy tick after returning from idle, we will update the busy stats.
11866 */
11867 nohz_balance_exit_idle(rq);
11868
11869 /*
11870 * None are in tickless mode and hence no need for NOHZ idle load
11871 * balancing:
11872 */
11873 if (likely(!atomic_read(&nohz.nr_cpus)))
11874 return;
11875
11876 if (READ_ONCE(nohz.has_blocked) &&
11877 time_after(now, READ_ONCE(nohz.next_blocked)))
11878 flags = NOHZ_STATS_KICK;
11879
11880 if (time_before(now, nohz.next_balance))
11881 goto out;
11882
11883 if (rq->nr_running >= 2) {
11884 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11885 goto out;
11886 }
11887
11888 rcu_read_lock();
11889
11890 sd = rcu_dereference(rq->sd);
11891 if (sd) {
11892 /*
11893 * If there's a runnable CFS task and the current CPU has reduced
11894 * capacity, kick the ILB to see if there's a better CPU to run on:
11895 */
11896 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11897 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11898 goto unlock;
11899 }
11900 }
11901
11902 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11903 if (sd) {
11904 /*
11905 * When ASYM_PACKING; see if there's a more preferred CPU
11906 * currently idle; in which case, kick the ILB to move tasks
11907 * around.
11908 *
11909 * When balancing betwen cores, all the SMT siblings of the
11910 * preferred CPU must be idle.
11911 */
11912 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11913 if (sched_use_asym_prio(sd, i) &&
11914 sched_asym_prefer(i, cpu)) {
11915 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11916 goto unlock;
11917 }
11918 }
11919 }
11920
11921 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11922 if (sd) {
11923 /*
11924 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11925 * to run the misfit task on.
11926 */
11927 if (check_misfit_status(rq, sd)) {
11928 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11929 goto unlock;
11930 }
11931
11932 /*
11933 * For asymmetric systems, we do not want to nicely balance
11934 * cache use, instead we want to embrace asymmetry and only
11935 * ensure tasks have enough CPU capacity.
11936 *
11937 * Skip the LLC logic because it's not relevant in that case.
11938 */
11939 goto unlock;
11940 }
11941
11942 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11943 if (sds) {
11944 /*
11945 * If there is an imbalance between LLC domains (IOW we could
11946 * increase the overall cache utilization), we need a less-loaded LLC
11947 * domain to pull some load from. Likewise, we may need to spread
11948 * load within the current LLC domain (e.g. packed SMT cores but
11949 * other CPUs are idle). We can't really know from here how busy
11950 * the others are - so just get a NOHZ balance going if it looks
11951 * like this LLC domain has tasks we could move.
11952 */
11953 nr_busy = atomic_read(&sds->nr_busy_cpus);
11954 if (nr_busy > 1) {
11955 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11956 goto unlock;
11957 }
11958 }
11959 unlock:
11960 rcu_read_unlock();
11961 out:
11962 if (READ_ONCE(nohz.needs_update))
11963 flags |= NOHZ_NEXT_KICK;
11964
11965 if (flags)
11966 kick_ilb(flags);
11967 }
11968
set_cpu_sd_state_busy(int cpu)11969 static void set_cpu_sd_state_busy(int cpu)
11970 {
11971 struct sched_domain *sd;
11972
11973 rcu_read_lock();
11974 sd = rcu_dereference(per_cpu(sd_llc, cpu));
11975
11976 if (!sd || !sd->nohz_idle)
11977 goto unlock;
11978 sd->nohz_idle = 0;
11979
11980 atomic_inc(&sd->shared->nr_busy_cpus);
11981 unlock:
11982 rcu_read_unlock();
11983 }
11984
nohz_balance_exit_idle(struct rq * rq)11985 void nohz_balance_exit_idle(struct rq *rq)
11986 {
11987 SCHED_WARN_ON(rq != this_rq());
11988
11989 if (likely(!rq->nohz_tick_stopped))
11990 return;
11991
11992 rq->nohz_tick_stopped = 0;
11993 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
11994 atomic_dec(&nohz.nr_cpus);
11995
11996 set_cpu_sd_state_busy(rq->cpu);
11997 }
11998
set_cpu_sd_state_idle(int cpu)11999 static void set_cpu_sd_state_idle(int cpu)
12000 {
12001 struct sched_domain *sd;
12002
12003 rcu_read_lock();
12004 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12005
12006 if (!sd || sd->nohz_idle)
12007 goto unlock;
12008 sd->nohz_idle = 1;
12009
12010 atomic_dec(&sd->shared->nr_busy_cpus);
12011 unlock:
12012 rcu_read_unlock();
12013 }
12014
12015 /*
12016 * This routine will record that the CPU is going idle with tick stopped.
12017 * This info will be used in performing idle load balancing in the future.
12018 */
nohz_balance_enter_idle(int cpu)12019 void nohz_balance_enter_idle(int cpu)
12020 {
12021 struct rq *rq = cpu_rq(cpu);
12022
12023 SCHED_WARN_ON(cpu != smp_processor_id());
12024
12025 /* If this CPU is going down, then nothing needs to be done: */
12026 if (!cpu_active(cpu))
12027 return;
12028
12029 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12030 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12031 return;
12032
12033 /*
12034 * Can be set safely without rq->lock held
12035 * If a clear happens, it will have evaluated last additions because
12036 * rq->lock is held during the check and the clear
12037 */
12038 rq->has_blocked_load = 1;
12039
12040 /*
12041 * The tick is still stopped but load could have been added in the
12042 * meantime. We set the nohz.has_blocked flag to trig a check of the
12043 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12044 * of nohz.has_blocked can only happen after checking the new load
12045 */
12046 if (rq->nohz_tick_stopped)
12047 goto out;
12048
12049 /* If we're a completely isolated CPU, we don't play: */
12050 if (on_null_domain(rq))
12051 return;
12052
12053 rq->nohz_tick_stopped = 1;
12054
12055 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12056 atomic_inc(&nohz.nr_cpus);
12057
12058 /*
12059 * Ensures that if nohz_idle_balance() fails to observe our
12060 * @idle_cpus_mask store, it must observe the @has_blocked
12061 * and @needs_update stores.
12062 */
12063 smp_mb__after_atomic();
12064
12065 set_cpu_sd_state_idle(cpu);
12066
12067 WRITE_ONCE(nohz.needs_update, 1);
12068 out:
12069 /*
12070 * Each time a cpu enter idle, we assume that it has blocked load and
12071 * enable the periodic update of the load of idle cpus
12072 */
12073 WRITE_ONCE(nohz.has_blocked, 1);
12074 }
12075
update_nohz_stats(struct rq * rq)12076 static bool update_nohz_stats(struct rq *rq)
12077 {
12078 unsigned int cpu = rq->cpu;
12079
12080 if (!rq->has_blocked_load)
12081 return false;
12082
12083 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12084 return false;
12085
12086 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12087 return true;
12088
12089 update_blocked_averages(cpu);
12090
12091 return rq->has_blocked_load;
12092 }
12093
12094 /*
12095 * Internal function that runs load balance for all idle cpus. The load balance
12096 * can be a simple update of blocked load or a complete load balance with
12097 * tasks movement depending of flags.
12098 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12099 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12100 {
12101 /* Earliest time when we have to do rebalance again */
12102 unsigned long now = jiffies;
12103 unsigned long next_balance = now + 60*HZ;
12104 bool has_blocked_load = false;
12105 int update_next_balance = 0;
12106 int this_cpu = this_rq->cpu;
12107 int balance_cpu;
12108 struct rq *rq;
12109
12110 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12111
12112 /*
12113 * We assume there will be no idle load after this update and clear
12114 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12115 * set the has_blocked flag and trigger another update of idle load.
12116 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12117 * setting the flag, we are sure to not clear the state and not
12118 * check the load of an idle cpu.
12119 *
12120 * Same applies to idle_cpus_mask vs needs_update.
12121 */
12122 if (flags & NOHZ_STATS_KICK)
12123 WRITE_ONCE(nohz.has_blocked, 0);
12124 if (flags & NOHZ_NEXT_KICK)
12125 WRITE_ONCE(nohz.needs_update, 0);
12126
12127 /*
12128 * Ensures that if we miss the CPU, we must see the has_blocked
12129 * store from nohz_balance_enter_idle().
12130 */
12131 smp_mb();
12132
12133 /*
12134 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12135 * chance for other idle cpu to pull load.
12136 */
12137 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12138 if (!idle_cpu(balance_cpu))
12139 continue;
12140
12141 /*
12142 * If this CPU gets work to do, stop the load balancing
12143 * work being done for other CPUs. Next load
12144 * balancing owner will pick it up.
12145 */
12146 if (need_resched()) {
12147 if (flags & NOHZ_STATS_KICK)
12148 has_blocked_load = true;
12149 if (flags & NOHZ_NEXT_KICK)
12150 WRITE_ONCE(nohz.needs_update, 1);
12151 goto abort;
12152 }
12153
12154 rq = cpu_rq(balance_cpu);
12155
12156 if (flags & NOHZ_STATS_KICK)
12157 has_blocked_load |= update_nohz_stats(rq);
12158
12159 /*
12160 * If time for next balance is due,
12161 * do the balance.
12162 */
12163 if (time_after_eq(jiffies, rq->next_balance)) {
12164 struct rq_flags rf;
12165
12166 rq_lock_irqsave(rq, &rf);
12167 update_rq_clock(rq);
12168 rq_unlock_irqrestore(rq, &rf);
12169
12170 if (flags & NOHZ_BALANCE_KICK)
12171 rebalance_domains(rq, CPU_IDLE);
12172 }
12173
12174 if (time_after(next_balance, rq->next_balance)) {
12175 next_balance = rq->next_balance;
12176 update_next_balance = 1;
12177 }
12178 }
12179
12180 /*
12181 * next_balance will be updated only when there is a need.
12182 * When the CPU is attached to null domain for ex, it will not be
12183 * updated.
12184 */
12185 if (likely(update_next_balance))
12186 nohz.next_balance = next_balance;
12187
12188 if (flags & NOHZ_STATS_KICK)
12189 WRITE_ONCE(nohz.next_blocked,
12190 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12191
12192 abort:
12193 /* There is still blocked load, enable periodic update */
12194 if (has_blocked_load)
12195 WRITE_ONCE(nohz.has_blocked, 1);
12196 }
12197
12198 /*
12199 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12200 * rebalancing for all the cpus for whom scheduler ticks are stopped.
12201 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12202 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12203 {
12204 unsigned int flags = this_rq->nohz_idle_balance;
12205
12206 if (!flags)
12207 return false;
12208
12209 this_rq->nohz_idle_balance = 0;
12210
12211 if (idle != CPU_IDLE)
12212 return false;
12213
12214 _nohz_idle_balance(this_rq, flags);
12215
12216 return true;
12217 }
12218
12219 /*
12220 * Check if we need to directly run the ILB for updating blocked load before
12221 * entering idle state. Here we run ILB directly without issuing IPIs.
12222 *
12223 * Note that when this function is called, the tick may not yet be stopped on
12224 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12225 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12226 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12227 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12228 * called from this function on (this) CPU that's not yet in the mask. That's
12229 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12230 * updating the blocked load of already idle CPUs without waking up one of
12231 * those idle CPUs and outside the preempt disable / irq off phase of the local
12232 * cpu about to enter idle, because it can take a long time.
12233 */
nohz_run_idle_balance(int cpu)12234 void nohz_run_idle_balance(int cpu)
12235 {
12236 unsigned int flags;
12237
12238 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12239
12240 /*
12241 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12242 * (ie NOHZ_STATS_KICK set) and will do the same.
12243 */
12244 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12245 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12246 }
12247
nohz_newidle_balance(struct rq * this_rq)12248 static void nohz_newidle_balance(struct rq *this_rq)
12249 {
12250 int this_cpu = this_rq->cpu;
12251
12252 /*
12253 * This CPU doesn't want to be disturbed by scheduler
12254 * housekeeping
12255 */
12256 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12257 return;
12258
12259 /* Will wake up very soon. No time for doing anything else*/
12260 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12261 return;
12262
12263 /* Don't need to update blocked load of idle CPUs*/
12264 if (!READ_ONCE(nohz.has_blocked) ||
12265 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12266 return;
12267
12268 /*
12269 * Set the need to trigger ILB in order to update blocked load
12270 * before entering idle state.
12271 */
12272 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12273 }
12274
12275 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)12276 static inline void nohz_balancer_kick(struct rq *rq) { }
12277
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12278 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12279 {
12280 return false;
12281 }
12282
nohz_newidle_balance(struct rq * this_rq)12283 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12284 #endif /* CONFIG_NO_HZ_COMMON */
12285
12286 /*
12287 * newidle_balance is called by schedule() if this_cpu is about to become
12288 * idle. Attempts to pull tasks from other CPUs.
12289 *
12290 * Returns:
12291 * < 0 - we released the lock and there are !fair tasks present
12292 * 0 - failed, no new tasks
12293 * > 0 - success, new (fair) tasks present
12294 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)12295 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
12296 {
12297 unsigned long next_balance = jiffies + HZ;
12298 int this_cpu = this_rq->cpu;
12299 u64 t0, t1, curr_cost = 0;
12300 struct sched_domain *sd;
12301 int pulled_task = 0;
12302
12303 update_misfit_status(NULL, this_rq);
12304
12305 /*
12306 * There is a task waiting to run. No need to search for one.
12307 * Return 0; the task will be enqueued when switching to idle.
12308 */
12309 if (this_rq->ttwu_pending)
12310 return 0;
12311
12312 /*
12313 * We must set idle_stamp _before_ calling idle_balance(), such that we
12314 * measure the duration of idle_balance() as idle time.
12315 */
12316 this_rq->idle_stamp = rq_clock(this_rq);
12317
12318 /*
12319 * Do not pull tasks towards !active CPUs...
12320 */
12321 if (!cpu_active(this_cpu))
12322 return 0;
12323
12324 /*
12325 * This is OK, because current is on_cpu, which avoids it being picked
12326 * for load-balance and preemption/IRQs are still disabled avoiding
12327 * further scheduler activity on it and we're being very careful to
12328 * re-start the picking loop.
12329 */
12330 rq_unpin_lock(this_rq, rf);
12331
12332 rcu_read_lock();
12333 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12334
12335 if (!READ_ONCE(this_rq->rd->overload) ||
12336 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12337
12338 if (sd)
12339 update_next_balance(sd, &next_balance);
12340 rcu_read_unlock();
12341
12342 goto out;
12343 }
12344 rcu_read_unlock();
12345
12346 raw_spin_rq_unlock(this_rq);
12347
12348 t0 = sched_clock_cpu(this_cpu);
12349 update_blocked_averages(this_cpu);
12350
12351 rcu_read_lock();
12352 for_each_domain(this_cpu, sd) {
12353 int continue_balancing = 1;
12354 u64 domain_cost;
12355
12356 update_next_balance(sd, &next_balance);
12357
12358 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12359 break;
12360
12361 if (sd->flags & SD_BALANCE_NEWIDLE) {
12362
12363 pulled_task = load_balance(this_cpu, this_rq,
12364 sd, CPU_NEWLY_IDLE,
12365 &continue_balancing);
12366
12367 t1 = sched_clock_cpu(this_cpu);
12368 domain_cost = t1 - t0;
12369 update_newidle_cost(sd, domain_cost);
12370
12371 curr_cost += domain_cost;
12372 t0 = t1;
12373 }
12374
12375 /*
12376 * Stop searching for tasks to pull if there are
12377 * now runnable tasks on this rq.
12378 */
12379 if (pulled_task || this_rq->nr_running > 0 ||
12380 this_rq->ttwu_pending)
12381 break;
12382 }
12383 rcu_read_unlock();
12384
12385 raw_spin_rq_lock(this_rq);
12386
12387 if (curr_cost > this_rq->max_idle_balance_cost)
12388 this_rq->max_idle_balance_cost = curr_cost;
12389
12390 /*
12391 * While browsing the domains, we released the rq lock, a task could
12392 * have been enqueued in the meantime. Since we're not going idle,
12393 * pretend we pulled a task.
12394 */
12395 if (this_rq->cfs.h_nr_running && !pulled_task)
12396 pulled_task = 1;
12397
12398 /* Is there a task of a high priority class? */
12399 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12400 pulled_task = -1;
12401
12402 out:
12403 /* Move the next balance forward */
12404 if (time_after(this_rq->next_balance, next_balance))
12405 this_rq->next_balance = next_balance;
12406
12407 if (pulled_task)
12408 this_rq->idle_stamp = 0;
12409 else
12410 nohz_newidle_balance(this_rq);
12411
12412 rq_repin_lock(this_rq, rf);
12413
12414 return pulled_task;
12415 }
12416
12417 /*
12418 * run_rebalance_domains is triggered when needed from the scheduler tick.
12419 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
12420 */
run_rebalance_domains(struct softirq_action * h)12421 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
12422 {
12423 struct rq *this_rq = this_rq();
12424 enum cpu_idle_type idle = this_rq->idle_balance ?
12425 CPU_IDLE : CPU_NOT_IDLE;
12426
12427 /*
12428 * If this CPU has a pending nohz_balance_kick, then do the
12429 * balancing on behalf of the other idle CPUs whose ticks are
12430 * stopped. Do nohz_idle_balance *before* rebalance_domains to
12431 * give the idle CPUs a chance to load balance. Else we may
12432 * load balance only within the local sched_domain hierarchy
12433 * and abort nohz_idle_balance altogether if we pull some load.
12434 */
12435 if (nohz_idle_balance(this_rq, idle))
12436 return;
12437
12438 /* normal load balance */
12439 update_blocked_averages(this_rq->cpu);
12440 rebalance_domains(this_rq, idle);
12441 }
12442
12443 /*
12444 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12445 */
trigger_load_balance(struct rq * rq)12446 void trigger_load_balance(struct rq *rq)
12447 {
12448 /*
12449 * Don't need to rebalance while attached to NULL domain or
12450 * runqueue CPU is not active
12451 */
12452 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12453 return;
12454
12455 if (time_after_eq(jiffies, rq->next_balance))
12456 raise_softirq(SCHED_SOFTIRQ);
12457
12458 nohz_balancer_kick(rq);
12459 }
12460
rq_online_fair(struct rq * rq)12461 static void rq_online_fair(struct rq *rq)
12462 {
12463 update_sysctl();
12464
12465 update_runtime_enabled(rq);
12466 }
12467
rq_offline_fair(struct rq * rq)12468 static void rq_offline_fair(struct rq *rq)
12469 {
12470 update_sysctl();
12471
12472 /* Ensure any throttled groups are reachable by pick_next_task */
12473 unthrottle_offline_cfs_rqs(rq);
12474
12475 /* Ensure that we remove rq contribution to group share: */
12476 clear_tg_offline_cfs_rqs(rq);
12477 }
12478
12479 #endif /* CONFIG_SMP */
12480
12481 #ifdef CONFIG_SCHED_CORE
12482 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12483 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12484 {
12485 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12486 u64 slice = se->slice;
12487
12488 return (rtime * min_nr_tasks > slice);
12489 }
12490
12491 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12492 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12493 {
12494 if (!sched_core_enabled(rq))
12495 return;
12496
12497 /*
12498 * If runqueue has only one task which used up its slice and
12499 * if the sibling is forced idle, then trigger schedule to
12500 * give forced idle task a chance.
12501 *
12502 * sched_slice() considers only this active rq and it gets the
12503 * whole slice. But during force idle, we have siblings acting
12504 * like a single runqueue and hence we need to consider runnable
12505 * tasks on this CPU and the forced idle CPU. Ideally, we should
12506 * go through the forced idle rq, but that would be a perf hit.
12507 * We can assume that the forced idle CPU has at least
12508 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12509 * if we need to give up the CPU.
12510 */
12511 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12512 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12513 resched_curr(rq);
12514 }
12515
12516 /*
12517 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12518 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)12519 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12520 bool forceidle)
12521 {
12522 for_each_sched_entity(se) {
12523 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12524
12525 if (forceidle) {
12526 if (cfs_rq->forceidle_seq == fi_seq)
12527 break;
12528 cfs_rq->forceidle_seq = fi_seq;
12529 }
12530
12531 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12532 }
12533 }
12534
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)12535 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12536 {
12537 struct sched_entity *se = &p->se;
12538
12539 if (p->sched_class != &fair_sched_class)
12540 return;
12541
12542 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12543 }
12544
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)12545 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12546 bool in_fi)
12547 {
12548 struct rq *rq = task_rq(a);
12549 const struct sched_entity *sea = &a->se;
12550 const struct sched_entity *seb = &b->se;
12551 struct cfs_rq *cfs_rqa;
12552 struct cfs_rq *cfs_rqb;
12553 s64 delta;
12554
12555 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12556
12557 #ifdef CONFIG_FAIR_GROUP_SCHED
12558 /*
12559 * Find an se in the hierarchy for tasks a and b, such that the se's
12560 * are immediate siblings.
12561 */
12562 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12563 int sea_depth = sea->depth;
12564 int seb_depth = seb->depth;
12565
12566 if (sea_depth >= seb_depth)
12567 sea = parent_entity(sea);
12568 if (sea_depth <= seb_depth)
12569 seb = parent_entity(seb);
12570 }
12571
12572 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12573 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12574
12575 cfs_rqa = sea->cfs_rq;
12576 cfs_rqb = seb->cfs_rq;
12577 #else
12578 cfs_rqa = &task_rq(a)->cfs;
12579 cfs_rqb = &task_rq(b)->cfs;
12580 #endif
12581
12582 /*
12583 * Find delta after normalizing se's vruntime with its cfs_rq's
12584 * min_vruntime_fi, which would have been updated in prior calls
12585 * to se_fi_update().
12586 */
12587 delta = (s64)(sea->vruntime - seb->vruntime) +
12588 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12589
12590 return delta > 0;
12591 }
12592
task_is_throttled_fair(struct task_struct * p,int cpu)12593 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12594 {
12595 struct cfs_rq *cfs_rq;
12596
12597 #ifdef CONFIG_FAIR_GROUP_SCHED
12598 cfs_rq = task_group(p)->cfs_rq[cpu];
12599 #else
12600 cfs_rq = &cpu_rq(cpu)->cfs;
12601 #endif
12602 return throttled_hierarchy(cfs_rq);
12603 }
12604 #else
task_tick_core(struct rq * rq,struct task_struct * curr)12605 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12606 #endif
12607
12608 /*
12609 * scheduler tick hitting a task of our scheduling class.
12610 *
12611 * NOTE: This function can be called remotely by the tick offload that
12612 * goes along full dynticks. Therefore no local assumption can be made
12613 * and everything must be accessed through the @rq and @curr passed in
12614 * parameters.
12615 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)12616 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12617 {
12618 struct cfs_rq *cfs_rq;
12619 struct sched_entity *se = &curr->se;
12620
12621 for_each_sched_entity(se) {
12622 cfs_rq = cfs_rq_of(se);
12623 entity_tick(cfs_rq, se, queued);
12624 }
12625
12626 if (static_branch_unlikely(&sched_numa_balancing))
12627 task_tick_numa(rq, curr);
12628
12629 update_misfit_status(curr, rq);
12630 update_overutilized_status(task_rq(curr));
12631
12632 task_tick_core(rq, curr);
12633 }
12634
12635 /*
12636 * called on fork with the child task as argument from the parent's context
12637 * - child not yet on the tasklist
12638 * - preemption disabled
12639 */
task_fork_fair(struct task_struct * p)12640 static void task_fork_fair(struct task_struct *p)
12641 {
12642 struct sched_entity *se = &p->se, *curr;
12643 struct cfs_rq *cfs_rq;
12644 struct rq *rq = this_rq();
12645 struct rq_flags rf;
12646
12647 rq_lock(rq, &rf);
12648 update_rq_clock(rq);
12649
12650 cfs_rq = task_cfs_rq(current);
12651 curr = cfs_rq->curr;
12652 if (curr)
12653 update_curr(cfs_rq);
12654 place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12655 rq_unlock(rq, &rf);
12656 }
12657
12658 /*
12659 * Priority of the task has changed. Check to see if we preempt
12660 * the current task.
12661 */
12662 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)12663 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12664 {
12665 if (!task_on_rq_queued(p))
12666 return;
12667
12668 if (rq->cfs.nr_running == 1)
12669 return;
12670
12671 /*
12672 * Reschedule if we are currently running on this runqueue and
12673 * our priority decreased, or if we are not currently running on
12674 * this runqueue and our priority is higher than the current's
12675 */
12676 if (task_current(rq, p)) {
12677 if (p->prio > oldprio)
12678 resched_curr(rq);
12679 } else
12680 wakeup_preempt(rq, p, 0);
12681 }
12682
12683 #ifdef CONFIG_FAIR_GROUP_SCHED
12684 /*
12685 * Propagate the changes of the sched_entity across the tg tree to make it
12686 * visible to the root
12687 */
propagate_entity_cfs_rq(struct sched_entity * se)12688 static void propagate_entity_cfs_rq(struct sched_entity *se)
12689 {
12690 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12691
12692 if (cfs_rq_throttled(cfs_rq))
12693 return;
12694
12695 if (!throttled_hierarchy(cfs_rq))
12696 list_add_leaf_cfs_rq(cfs_rq);
12697
12698 /* Start to propagate at parent */
12699 se = se->parent;
12700
12701 for_each_sched_entity(se) {
12702 cfs_rq = cfs_rq_of(se);
12703
12704 update_load_avg(cfs_rq, se, UPDATE_TG);
12705
12706 if (cfs_rq_throttled(cfs_rq))
12707 break;
12708
12709 if (!throttled_hierarchy(cfs_rq))
12710 list_add_leaf_cfs_rq(cfs_rq);
12711 }
12712 }
12713 #else
propagate_entity_cfs_rq(struct sched_entity * se)12714 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12715 #endif
12716
detach_entity_cfs_rq(struct sched_entity * se)12717 static void detach_entity_cfs_rq(struct sched_entity *se)
12718 {
12719 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12720
12721 #ifdef CONFIG_SMP
12722 /*
12723 * In case the task sched_avg hasn't been attached:
12724 * - A forked task which hasn't been woken up by wake_up_new_task().
12725 * - A task which has been woken up by try_to_wake_up() but is
12726 * waiting for actually being woken up by sched_ttwu_pending().
12727 */
12728 if (!se->avg.last_update_time)
12729 return;
12730 #endif
12731
12732 /* Catch up with the cfs_rq and remove our load when we leave */
12733 update_load_avg(cfs_rq, se, 0);
12734 detach_entity_load_avg(cfs_rq, se);
12735 update_tg_load_avg(cfs_rq);
12736 propagate_entity_cfs_rq(se);
12737 }
12738
attach_entity_cfs_rq(struct sched_entity * se)12739 static void attach_entity_cfs_rq(struct sched_entity *se)
12740 {
12741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12742
12743 /* Synchronize entity with its cfs_rq */
12744 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12745 attach_entity_load_avg(cfs_rq, se);
12746 update_tg_load_avg(cfs_rq);
12747 propagate_entity_cfs_rq(se);
12748 }
12749
detach_task_cfs_rq(struct task_struct * p)12750 static void detach_task_cfs_rq(struct task_struct *p)
12751 {
12752 struct sched_entity *se = &p->se;
12753
12754 detach_entity_cfs_rq(se);
12755 }
12756
attach_task_cfs_rq(struct task_struct * p)12757 static void attach_task_cfs_rq(struct task_struct *p)
12758 {
12759 struct sched_entity *se = &p->se;
12760
12761 attach_entity_cfs_rq(se);
12762 }
12763
switched_from_fair(struct rq * rq,struct task_struct * p)12764 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12765 {
12766 detach_task_cfs_rq(p);
12767 }
12768
switched_to_fair(struct rq * rq,struct task_struct * p)12769 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12770 {
12771 attach_task_cfs_rq(p);
12772
12773 if (task_on_rq_queued(p)) {
12774 /*
12775 * We were most likely switched from sched_rt, so
12776 * kick off the schedule if running, otherwise just see
12777 * if we can still preempt the current task.
12778 */
12779 if (task_current(rq, p))
12780 resched_curr(rq);
12781 else
12782 wakeup_preempt(rq, p, 0);
12783 }
12784 }
12785
12786 /* Account for a task changing its policy or group.
12787 *
12788 * This routine is mostly called to set cfs_rq->curr field when a task
12789 * migrates between groups/classes.
12790 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)12791 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12792 {
12793 struct sched_entity *se = &p->se;
12794
12795 #ifdef CONFIG_SMP
12796 if (task_on_rq_queued(p)) {
12797 /*
12798 * Move the next running task to the front of the list, so our
12799 * cfs_tasks list becomes MRU one.
12800 */
12801 list_move(&se->group_node, &rq->cfs_tasks);
12802 }
12803 #endif
12804
12805 for_each_sched_entity(se) {
12806 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12807
12808 set_next_entity(cfs_rq, se);
12809 /* ensure bandwidth has been allocated on our new cfs_rq */
12810 account_cfs_rq_runtime(cfs_rq, 0);
12811 }
12812 }
12813
init_cfs_rq(struct cfs_rq * cfs_rq)12814 void init_cfs_rq(struct cfs_rq *cfs_rq)
12815 {
12816 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12817 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12818 #ifdef CONFIG_SMP
12819 raw_spin_lock_init(&cfs_rq->removed.lock);
12820 #endif
12821 }
12822
12823 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)12824 static void task_change_group_fair(struct task_struct *p)
12825 {
12826 /*
12827 * We couldn't detach or attach a forked task which
12828 * hasn't been woken up by wake_up_new_task().
12829 */
12830 if (READ_ONCE(p->__state) == TASK_NEW)
12831 return;
12832
12833 detach_task_cfs_rq(p);
12834
12835 #ifdef CONFIG_SMP
12836 /* Tell se's cfs_rq has been changed -- migrated */
12837 p->se.avg.last_update_time = 0;
12838 #endif
12839 set_task_rq(p, task_cpu(p));
12840 attach_task_cfs_rq(p);
12841 }
12842
free_fair_sched_group(struct task_group * tg)12843 void free_fair_sched_group(struct task_group *tg)
12844 {
12845 int i;
12846
12847 for_each_possible_cpu(i) {
12848 if (tg->cfs_rq)
12849 kfree(tg->cfs_rq[i]);
12850 if (tg->se)
12851 kfree(tg->se[i]);
12852 }
12853
12854 kfree(tg->cfs_rq);
12855 kfree(tg->se);
12856 }
12857
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)12858 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12859 {
12860 struct sched_entity *se;
12861 struct cfs_rq *cfs_rq;
12862 int i;
12863
12864 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12865 if (!tg->cfs_rq)
12866 goto err;
12867 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12868 if (!tg->se)
12869 goto err;
12870
12871 tg->shares = NICE_0_LOAD;
12872
12873 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12874
12875 for_each_possible_cpu(i) {
12876 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12877 GFP_KERNEL, cpu_to_node(i));
12878 if (!cfs_rq)
12879 goto err;
12880
12881 se = kzalloc_node(sizeof(struct sched_entity_stats),
12882 GFP_KERNEL, cpu_to_node(i));
12883 if (!se)
12884 goto err_free_rq;
12885
12886 init_cfs_rq(cfs_rq);
12887 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12888 init_entity_runnable_average(se);
12889 }
12890
12891 return 1;
12892
12893 err_free_rq:
12894 kfree(cfs_rq);
12895 err:
12896 return 0;
12897 }
12898
online_fair_sched_group(struct task_group * tg)12899 void online_fair_sched_group(struct task_group *tg)
12900 {
12901 struct sched_entity *se;
12902 struct rq_flags rf;
12903 struct rq *rq;
12904 int i;
12905
12906 for_each_possible_cpu(i) {
12907 rq = cpu_rq(i);
12908 se = tg->se[i];
12909 rq_lock_irq(rq, &rf);
12910 update_rq_clock(rq);
12911 attach_entity_cfs_rq(se);
12912 sync_throttle(tg, i);
12913 rq_unlock_irq(rq, &rf);
12914 }
12915 }
12916
unregister_fair_sched_group(struct task_group * tg)12917 void unregister_fair_sched_group(struct task_group *tg)
12918 {
12919 unsigned long flags;
12920 struct rq *rq;
12921 int cpu;
12922
12923 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12924
12925 for_each_possible_cpu(cpu) {
12926 if (tg->se[cpu])
12927 remove_entity_load_avg(tg->se[cpu]);
12928
12929 /*
12930 * Only empty task groups can be destroyed; so we can speculatively
12931 * check on_list without danger of it being re-added.
12932 */
12933 if (!tg->cfs_rq[cpu]->on_list)
12934 continue;
12935
12936 rq = cpu_rq(cpu);
12937
12938 raw_spin_rq_lock_irqsave(rq, flags);
12939 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
12940 raw_spin_rq_unlock_irqrestore(rq, flags);
12941 }
12942 }
12943
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)12944 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
12945 struct sched_entity *se, int cpu,
12946 struct sched_entity *parent)
12947 {
12948 struct rq *rq = cpu_rq(cpu);
12949
12950 cfs_rq->tg = tg;
12951 cfs_rq->rq = rq;
12952 init_cfs_rq_runtime(cfs_rq);
12953
12954 tg->cfs_rq[cpu] = cfs_rq;
12955 tg->se[cpu] = se;
12956
12957 /* se could be NULL for root_task_group */
12958 if (!se)
12959 return;
12960
12961 if (!parent) {
12962 se->cfs_rq = &rq->cfs;
12963 se->depth = 0;
12964 } else {
12965 se->cfs_rq = parent->my_q;
12966 se->depth = parent->depth + 1;
12967 }
12968
12969 se->my_q = cfs_rq;
12970 /* guarantee group entities always have weight */
12971 update_load_set(&se->load, NICE_0_LOAD);
12972 se->parent = parent;
12973 }
12974
12975 static DEFINE_MUTEX(shares_mutex);
12976
__sched_group_set_shares(struct task_group * tg,unsigned long shares)12977 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
12978 {
12979 int i;
12980
12981 lockdep_assert_held(&shares_mutex);
12982
12983 /*
12984 * We can't change the weight of the root cgroup.
12985 */
12986 if (!tg->se[0])
12987 return -EINVAL;
12988
12989 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
12990
12991 if (tg->shares == shares)
12992 return 0;
12993
12994 tg->shares = shares;
12995 for_each_possible_cpu(i) {
12996 struct rq *rq = cpu_rq(i);
12997 struct sched_entity *se = tg->se[i];
12998 struct rq_flags rf;
12999
13000 /* Propagate contribution to hierarchy */
13001 rq_lock_irqsave(rq, &rf);
13002 update_rq_clock(rq);
13003 for_each_sched_entity(se) {
13004 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13005 update_cfs_group(se);
13006 }
13007 rq_unlock_irqrestore(rq, &rf);
13008 }
13009
13010 return 0;
13011 }
13012
sched_group_set_shares(struct task_group * tg,unsigned long shares)13013 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13014 {
13015 int ret;
13016
13017 mutex_lock(&shares_mutex);
13018 if (tg_is_idle(tg))
13019 ret = -EINVAL;
13020 else
13021 ret = __sched_group_set_shares(tg, shares);
13022 mutex_unlock(&shares_mutex);
13023
13024 return ret;
13025 }
13026
sched_group_set_idle(struct task_group * tg,long idle)13027 int sched_group_set_idle(struct task_group *tg, long idle)
13028 {
13029 int i;
13030
13031 if (tg == &root_task_group)
13032 return -EINVAL;
13033
13034 if (idle < 0 || idle > 1)
13035 return -EINVAL;
13036
13037 mutex_lock(&shares_mutex);
13038
13039 if (tg->idle == idle) {
13040 mutex_unlock(&shares_mutex);
13041 return 0;
13042 }
13043
13044 tg->idle = idle;
13045
13046 for_each_possible_cpu(i) {
13047 struct rq *rq = cpu_rq(i);
13048 struct sched_entity *se = tg->se[i];
13049 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13050 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13051 long idle_task_delta;
13052 struct rq_flags rf;
13053
13054 rq_lock_irqsave(rq, &rf);
13055
13056 grp_cfs_rq->idle = idle;
13057 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13058 goto next_cpu;
13059
13060 if (se->on_rq) {
13061 parent_cfs_rq = cfs_rq_of(se);
13062 if (cfs_rq_is_idle(grp_cfs_rq))
13063 parent_cfs_rq->idle_nr_running++;
13064 else
13065 parent_cfs_rq->idle_nr_running--;
13066 }
13067
13068 idle_task_delta = grp_cfs_rq->h_nr_running -
13069 grp_cfs_rq->idle_h_nr_running;
13070 if (!cfs_rq_is_idle(grp_cfs_rq))
13071 idle_task_delta *= -1;
13072
13073 for_each_sched_entity(se) {
13074 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13075
13076 if (!se->on_rq)
13077 break;
13078
13079 cfs_rq->idle_h_nr_running += idle_task_delta;
13080
13081 /* Already accounted at parent level and above. */
13082 if (cfs_rq_is_idle(cfs_rq))
13083 break;
13084 }
13085
13086 next_cpu:
13087 rq_unlock_irqrestore(rq, &rf);
13088 }
13089
13090 /* Idle groups have minimum weight. */
13091 if (tg_is_idle(tg))
13092 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13093 else
13094 __sched_group_set_shares(tg, NICE_0_LOAD);
13095
13096 mutex_unlock(&shares_mutex);
13097 return 0;
13098 }
13099
13100 #endif /* CONFIG_FAIR_GROUP_SCHED */
13101
13102
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13104 {
13105 struct sched_entity *se = &task->se;
13106 unsigned int rr_interval = 0;
13107
13108 /*
13109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13110 * idle runqueue:
13111 */
13112 if (rq->cfs.load.weight)
13113 rr_interval = NS_TO_JIFFIES(se->slice);
13114
13115 return rr_interval;
13116 }
13117
13118 /*
13119 * All the scheduling class methods:
13120 */
13121 DEFINE_SCHED_CLASS(fair) = {
13122
13123 .enqueue_task = enqueue_task_fair,
13124 .dequeue_task = dequeue_task_fair,
13125 .yield_task = yield_task_fair,
13126 .yield_to_task = yield_to_task_fair,
13127
13128 .wakeup_preempt = check_preempt_wakeup_fair,
13129
13130 .pick_next_task = __pick_next_task_fair,
13131 .put_prev_task = put_prev_task_fair,
13132 .set_next_task = set_next_task_fair,
13133
13134 #ifdef CONFIG_SMP
13135 .balance = balance_fair,
13136 .pick_task = pick_task_fair,
13137 .select_task_rq = select_task_rq_fair,
13138 .migrate_task_rq = migrate_task_rq_fair,
13139
13140 .rq_online = rq_online_fair,
13141 .rq_offline = rq_offline_fair,
13142
13143 .task_dead = task_dead_fair,
13144 .set_cpus_allowed = set_cpus_allowed_common,
13145 #endif
13146
13147 .task_tick = task_tick_fair,
13148 .task_fork = task_fork_fair,
13149
13150 .prio_changed = prio_changed_fair,
13151 .switched_from = switched_from_fair,
13152 .switched_to = switched_to_fair,
13153
13154 .get_rr_interval = get_rr_interval_fair,
13155
13156 .update_curr = update_curr_fair,
13157
13158 #ifdef CONFIG_FAIR_GROUP_SCHED
13159 .task_change_group = task_change_group_fair,
13160 #endif
13161
13162 #ifdef CONFIG_SCHED_CORE
13163 .task_is_throttled = task_is_throttled_fair,
13164 #endif
13165
13166 #ifdef CONFIG_UCLAMP_TASK
13167 .uclamp_enabled = 1,
13168 #endif
13169 };
13170
13171 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)13172 void print_cfs_stats(struct seq_file *m, int cpu)
13173 {
13174 struct cfs_rq *cfs_rq, *pos;
13175
13176 rcu_read_lock();
13177 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13178 print_cfs_rq(m, cpu, cfs_rq);
13179 rcu_read_unlock();
13180 }
13181
13182 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13183 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13184 {
13185 int node;
13186 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13187 struct numa_group *ng;
13188
13189 rcu_read_lock();
13190 ng = rcu_dereference(p->numa_group);
13191 for_each_online_node(node) {
13192 if (p->numa_faults) {
13193 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13194 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13195 }
13196 if (ng) {
13197 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13198 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13199 }
13200 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13201 }
13202 rcu_read_unlock();
13203 }
13204 #endif /* CONFIG_NUMA_BALANCING */
13205 #endif /* CONFIG_SCHED_DEBUG */
13206
init_sched_fair_class(void)13207 __init void init_sched_fair_class(void)
13208 {
13209 #ifdef CONFIG_SMP
13210 int i;
13211
13212 for_each_possible_cpu(i) {
13213 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13214 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13215 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13216 GFP_KERNEL, cpu_to_node(i));
13217
13218 #ifdef CONFIG_CFS_BANDWIDTH
13219 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13220 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13221 #endif
13222 }
13223
13224 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
13225
13226 #ifdef CONFIG_NO_HZ_COMMON
13227 nohz.next_balance = jiffies;
13228 nohz.next_blocked = jiffies;
13229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13230 #endif
13231 #endif /* SMP */
13232
13233 }
13234