1 #define pr_fmt(fmt) "SVM: " fmt
2
3 #include <linux/kvm_host.h>
4
5 #include "irq.h"
6 #include "mmu.h"
7 #include "kvm_cache_regs.h"
8 #include "x86.h"
9 #include "cpuid.h"
10 #include "pmu.h"
11
12 #include <linux/module.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/kernel.h>
15 #include <linux/vmalloc.h>
16 #include <linux/highmem.h>
17 #include <linux/amd-iommu.h>
18 #include <linux/sched.h>
19 #include <linux/trace_events.h>
20 #include <linux/slab.h>
21 #include <linux/hashtable.h>
22 #include <linux/objtool.h>
23 #include <linux/psp-sev.h>
24 #include <linux/file.h>
25 #include <linux/pagemap.h>
26 #include <linux/swap.h>
27 #include <linux/rwsem.h>
28
29 #include <asm/apic.h>
30 #include <asm/perf_event.h>
31 #include <asm/tlbflush.h>
32 #include <asm/desc.h>
33 #include <asm/debugreg.h>
34 #include <asm/kvm_para.h>
35 #include <asm/irq_remapping.h>
36 #include <asm/mce.h>
37 #include <asm/spec-ctrl.h>
38 #include <asm/cpu_device_id.h>
39
40 #include <asm/virtext.h>
41 #include "trace.h"
42
43 #include "svm.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 #ifdef MODULE
51 static const struct x86_cpu_id svm_cpu_id[] = {
52 X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
53 {}
54 };
55 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
56 #endif
57
58 #define IOPM_ALLOC_ORDER 2
59 #define MSRPM_ALLOC_ORDER 1
60
61 #define SEG_TYPE_LDT 2
62 #define SEG_TYPE_BUSY_TSS16 3
63
64 #define SVM_FEATURE_LBRV (1 << 1)
65 #define SVM_FEATURE_SVML (1 << 2)
66 #define SVM_FEATURE_TSC_RATE (1 << 4)
67 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
68 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
69 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
70 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
71
72 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
73
74 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
75 #define TSC_RATIO_MIN 0x0000000000000001ULL
76 #define TSC_RATIO_MAX 0x000000ffffffffffULL
77
78 static bool erratum_383_found __read_mostly;
79
80 u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
81
82 /*
83 * Set osvw_len to higher value when updated Revision Guides
84 * are published and we know what the new status bits are
85 */
86 static uint64_t osvw_len = 4, osvw_status;
87
88 static DEFINE_PER_CPU(u64, current_tsc_ratio);
89 #define TSC_RATIO_DEFAULT 0x0100000000ULL
90
91 static const struct svm_direct_access_msrs {
92 u32 index; /* Index of the MSR */
93 bool always; /* True if intercept is always on */
94 } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
95 { .index = MSR_STAR, .always = true },
96 { .index = MSR_IA32_SYSENTER_CS, .always = true },
97 #ifdef CONFIG_X86_64
98 { .index = MSR_GS_BASE, .always = true },
99 { .index = MSR_FS_BASE, .always = true },
100 { .index = MSR_KERNEL_GS_BASE, .always = true },
101 { .index = MSR_LSTAR, .always = true },
102 { .index = MSR_CSTAR, .always = true },
103 { .index = MSR_SYSCALL_MASK, .always = true },
104 #endif
105 { .index = MSR_IA32_SPEC_CTRL, .always = false },
106 { .index = MSR_IA32_PRED_CMD, .always = false },
107 { .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
108 { .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
109 { .index = MSR_IA32_LASTINTFROMIP, .always = false },
110 { .index = MSR_IA32_LASTINTTOIP, .always = false },
111 { .index = MSR_INVALID, .always = false },
112 };
113
114 /* enable NPT for AMD64 and X86 with PAE */
115 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
116 bool npt_enabled = true;
117 #else
118 bool npt_enabled;
119 #endif
120
121 /*
122 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
123 * pause_filter_count: On processors that support Pause filtering(indicated
124 * by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
125 * count value. On VMRUN this value is loaded into an internal counter.
126 * Each time a pause instruction is executed, this counter is decremented
127 * until it reaches zero at which time a #VMEXIT is generated if pause
128 * intercept is enabled. Refer to AMD APM Vol 2 Section 15.14.4 Pause
129 * Intercept Filtering for more details.
130 * This also indicate if ple logic enabled.
131 *
132 * pause_filter_thresh: In addition, some processor families support advanced
133 * pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
134 * the amount of time a guest is allowed to execute in a pause loop.
135 * In this mode, a 16-bit pause filter threshold field is added in the
136 * VMCB. The threshold value is a cycle count that is used to reset the
137 * pause counter. As with simple pause filtering, VMRUN loads the pause
138 * count value from VMCB into an internal counter. Then, on each pause
139 * instruction the hardware checks the elapsed number of cycles since
140 * the most recent pause instruction against the pause filter threshold.
141 * If the elapsed cycle count is greater than the pause filter threshold,
142 * then the internal pause count is reloaded from the VMCB and execution
143 * continues. If the elapsed cycle count is less than the pause filter
144 * threshold, then the internal pause count is decremented. If the count
145 * value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
146 * triggered. If advanced pause filtering is supported and pause filter
147 * threshold field is set to zero, the filter will operate in the simpler,
148 * count only mode.
149 */
150
151 static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
152 module_param(pause_filter_thresh, ushort, 0444);
153
154 static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
155 module_param(pause_filter_count, ushort, 0444);
156
157 /* Default doubles per-vcpu window every exit. */
158 static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
159 module_param(pause_filter_count_grow, ushort, 0444);
160
161 /* Default resets per-vcpu window every exit to pause_filter_count. */
162 static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
163 module_param(pause_filter_count_shrink, ushort, 0444);
164
165 /* Default is to compute the maximum so we can never overflow. */
166 static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
167 module_param(pause_filter_count_max, ushort, 0444);
168
169 /* allow nested paging (virtualized MMU) for all guests */
170 static int npt = true;
171 module_param(npt, int, S_IRUGO);
172
173 /* allow nested virtualization in KVM/SVM */
174 static int nested = true;
175 module_param(nested, int, S_IRUGO);
176
177 /* enable/disable Next RIP Save */
178 static int nrips = true;
179 module_param(nrips, int, 0444);
180
181 /* enable/disable Virtual VMLOAD VMSAVE */
182 static int vls = true;
183 module_param(vls, int, 0444);
184
185 /* enable/disable Virtual GIF */
186 static int vgif = true;
187 module_param(vgif, int, 0444);
188
189 /* enable/disable SEV support */
190 static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT);
191 module_param(sev, int, 0444);
192
193 static bool __read_mostly dump_invalid_vmcb = 0;
194 module_param(dump_invalid_vmcb, bool, 0644);
195
196 static u8 rsm_ins_bytes[] = "\x0f\xaa";
197
198 static void svm_complete_interrupts(struct vcpu_svm *svm);
199
200 static unsigned long iopm_base;
201
202 struct kvm_ldttss_desc {
203 u16 limit0;
204 u16 base0;
205 unsigned base1:8, type:5, dpl:2, p:1;
206 unsigned limit1:4, zero0:3, g:1, base2:8;
207 u32 base3;
208 u32 zero1;
209 } __attribute__((packed));
210
211 DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
212
213 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
214
215 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
216 #define MSRS_RANGE_SIZE 2048
217 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
218
svm_msrpm_offset(u32 msr)219 u32 svm_msrpm_offset(u32 msr)
220 {
221 u32 offset;
222 int i;
223
224 for (i = 0; i < NUM_MSR_MAPS; i++) {
225 if (msr < msrpm_ranges[i] ||
226 msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
227 continue;
228
229 offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
230 offset += (i * MSRS_RANGE_SIZE); /* add range offset */
231
232 /* Now we have the u8 offset - but need the u32 offset */
233 return offset / 4;
234 }
235
236 /* MSR not in any range */
237 return MSR_INVALID;
238 }
239
240 #define MAX_INST_SIZE 15
241
clgi(void)242 static inline void clgi(void)
243 {
244 asm volatile (__ex("clgi"));
245 }
246
stgi(void)247 static inline void stgi(void)
248 {
249 asm volatile (__ex("stgi"));
250 }
251
invlpga(unsigned long addr,u32 asid)252 static inline void invlpga(unsigned long addr, u32 asid)
253 {
254 asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
255 }
256
get_max_npt_level(void)257 static int get_max_npt_level(void)
258 {
259 #ifdef CONFIG_X86_64
260 return PT64_ROOT_4LEVEL;
261 #else
262 return PT32E_ROOT_LEVEL;
263 #endif
264 }
265
svm_set_efer(struct kvm_vcpu * vcpu,u64 efer)266 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
267 {
268 struct vcpu_svm *svm = to_svm(vcpu);
269 u64 old_efer = vcpu->arch.efer;
270 vcpu->arch.efer = efer;
271
272 if (!npt_enabled) {
273 /* Shadow paging assumes NX to be available. */
274 efer |= EFER_NX;
275
276 if (!(efer & EFER_LMA))
277 efer &= ~EFER_LME;
278 }
279
280 if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
281 if (!(efer & EFER_SVME)) {
282 svm_leave_nested(svm);
283 svm_set_gif(svm, true);
284
285 /*
286 * Free the nested guest state, unless we are in SMM.
287 * In this case we will return to the nested guest
288 * as soon as we leave SMM.
289 */
290 if (!is_smm(&svm->vcpu))
291 svm_free_nested(svm);
292
293 } else {
294 int ret = svm_allocate_nested(svm);
295
296 if (ret) {
297 vcpu->arch.efer = old_efer;
298 return ret;
299 }
300 }
301 }
302
303 svm->vmcb->save.efer = efer | EFER_SVME;
304 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
305 return 0;
306 }
307
is_external_interrupt(u32 info)308 static int is_external_interrupt(u32 info)
309 {
310 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
311 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
312 }
313
svm_get_interrupt_shadow(struct kvm_vcpu * vcpu)314 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
315 {
316 struct vcpu_svm *svm = to_svm(vcpu);
317 u32 ret = 0;
318
319 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
320 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
321 return ret;
322 }
323
svm_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)324 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
325 {
326 struct vcpu_svm *svm = to_svm(vcpu);
327
328 if (mask == 0)
329 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
330 else
331 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
332
333 }
334
skip_emulated_instruction(struct kvm_vcpu * vcpu)335 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
336 {
337 struct vcpu_svm *svm = to_svm(vcpu);
338
339 if (nrips && svm->vmcb->control.next_rip != 0) {
340 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
341 svm->next_rip = svm->vmcb->control.next_rip;
342 }
343
344 if (!svm->next_rip) {
345 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
346 return 0;
347 } else {
348 kvm_rip_write(vcpu, svm->next_rip);
349 }
350 svm_set_interrupt_shadow(vcpu, 0);
351
352 return 1;
353 }
354
svm_queue_exception(struct kvm_vcpu * vcpu)355 static void svm_queue_exception(struct kvm_vcpu *vcpu)
356 {
357 struct vcpu_svm *svm = to_svm(vcpu);
358 unsigned nr = vcpu->arch.exception.nr;
359 bool has_error_code = vcpu->arch.exception.has_error_code;
360 u32 error_code = vcpu->arch.exception.error_code;
361
362 kvm_deliver_exception_payload(&svm->vcpu);
363
364 if (nr == BP_VECTOR && !nrips) {
365 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
366
367 /*
368 * For guest debugging where we have to reinject #BP if some
369 * INT3 is guest-owned:
370 * Emulate nRIP by moving RIP forward. Will fail if injection
371 * raises a fault that is not intercepted. Still better than
372 * failing in all cases.
373 */
374 (void)skip_emulated_instruction(&svm->vcpu);
375 rip = kvm_rip_read(&svm->vcpu);
376 svm->int3_rip = rip + svm->vmcb->save.cs.base;
377 svm->int3_injected = rip - old_rip;
378 }
379
380 svm->vmcb->control.event_inj = nr
381 | SVM_EVTINJ_VALID
382 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
383 | SVM_EVTINJ_TYPE_EXEPT;
384 svm->vmcb->control.event_inj_err = error_code;
385 }
386
svm_init_erratum_383(void)387 static void svm_init_erratum_383(void)
388 {
389 u32 low, high;
390 int err;
391 u64 val;
392
393 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
394 return;
395
396 /* Use _safe variants to not break nested virtualization */
397 val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
398 if (err)
399 return;
400
401 val |= (1ULL << 47);
402
403 low = lower_32_bits(val);
404 high = upper_32_bits(val);
405
406 native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
407
408 erratum_383_found = true;
409 }
410
svm_init_osvw(struct kvm_vcpu * vcpu)411 static void svm_init_osvw(struct kvm_vcpu *vcpu)
412 {
413 /*
414 * Guests should see errata 400 and 415 as fixed (assuming that
415 * HLT and IO instructions are intercepted).
416 */
417 vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
418 vcpu->arch.osvw.status = osvw_status & ~(6ULL);
419
420 /*
421 * By increasing VCPU's osvw.length to 3 we are telling the guest that
422 * all osvw.status bits inside that length, including bit 0 (which is
423 * reserved for erratum 298), are valid. However, if host processor's
424 * osvw_len is 0 then osvw_status[0] carries no information. We need to
425 * be conservative here and therefore we tell the guest that erratum 298
426 * is present (because we really don't know).
427 */
428 if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
429 vcpu->arch.osvw.status |= 1;
430 }
431
has_svm(void)432 static int has_svm(void)
433 {
434 const char *msg;
435
436 if (!cpu_has_svm(&msg)) {
437 printk(KERN_INFO "has_svm: %s\n", msg);
438 return 0;
439 }
440
441 return 1;
442 }
443
svm_hardware_disable(void)444 static void svm_hardware_disable(void)
445 {
446 /* Make sure we clean up behind us */
447 if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
448 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
449
450 cpu_svm_disable();
451
452 amd_pmu_disable_virt();
453 }
454
svm_hardware_enable(void)455 static int svm_hardware_enable(void)
456 {
457
458 struct svm_cpu_data *sd;
459 uint64_t efer;
460 struct desc_struct *gdt;
461 int me = raw_smp_processor_id();
462
463 rdmsrl(MSR_EFER, efer);
464 if (efer & EFER_SVME)
465 return -EBUSY;
466
467 if (!has_svm()) {
468 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
469 return -EINVAL;
470 }
471 sd = per_cpu(svm_data, me);
472 if (!sd) {
473 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
474 return -EINVAL;
475 }
476
477 sd->asid_generation = 1;
478 sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
479 sd->next_asid = sd->max_asid + 1;
480 sd->min_asid = max_sev_asid + 1;
481
482 gdt = get_current_gdt_rw();
483 sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
484
485 wrmsrl(MSR_EFER, efer | EFER_SVME);
486
487 wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
488
489 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
490 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
491 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
492 }
493
494
495 /*
496 * Get OSVW bits.
497 *
498 * Note that it is possible to have a system with mixed processor
499 * revisions and therefore different OSVW bits. If bits are not the same
500 * on different processors then choose the worst case (i.e. if erratum
501 * is present on one processor and not on another then assume that the
502 * erratum is present everywhere).
503 */
504 if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
505 uint64_t len, status = 0;
506 int err;
507
508 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
509 if (!err)
510 status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
511 &err);
512
513 if (err)
514 osvw_status = osvw_len = 0;
515 else {
516 if (len < osvw_len)
517 osvw_len = len;
518 osvw_status |= status;
519 osvw_status &= (1ULL << osvw_len) - 1;
520 }
521 } else
522 osvw_status = osvw_len = 0;
523
524 svm_init_erratum_383();
525
526 amd_pmu_enable_virt();
527
528 return 0;
529 }
530
svm_cpu_uninit(int cpu)531 static void svm_cpu_uninit(int cpu)
532 {
533 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
534
535 if (!sd)
536 return;
537
538 per_cpu(svm_data, cpu) = NULL;
539 kfree(sd->sev_vmcbs);
540 __free_page(sd->save_area);
541 kfree(sd);
542 }
543
svm_cpu_init(int cpu)544 static int svm_cpu_init(int cpu)
545 {
546 struct svm_cpu_data *sd;
547
548 sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
549 if (!sd)
550 return -ENOMEM;
551 sd->cpu = cpu;
552 sd->save_area = alloc_page(GFP_KERNEL);
553 if (!sd->save_area)
554 goto free_cpu_data;
555
556 if (svm_sev_enabled()) {
557 sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1,
558 sizeof(void *),
559 GFP_KERNEL);
560 if (!sd->sev_vmcbs)
561 goto free_save_area;
562 }
563
564 per_cpu(svm_data, cpu) = sd;
565
566 return 0;
567
568 free_save_area:
569 __free_page(sd->save_area);
570 free_cpu_data:
571 kfree(sd);
572 return -ENOMEM;
573
574 }
575
direct_access_msr_slot(u32 msr)576 static int direct_access_msr_slot(u32 msr)
577 {
578 u32 i;
579
580 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
581 if (direct_access_msrs[i].index == msr)
582 return i;
583
584 return -ENOENT;
585 }
586
set_shadow_msr_intercept(struct kvm_vcpu * vcpu,u32 msr,int read,int write)587 static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
588 int write)
589 {
590 struct vcpu_svm *svm = to_svm(vcpu);
591 int slot = direct_access_msr_slot(msr);
592
593 if (slot == -ENOENT)
594 return;
595
596 /* Set the shadow bitmaps to the desired intercept states */
597 if (read)
598 set_bit(slot, svm->shadow_msr_intercept.read);
599 else
600 clear_bit(slot, svm->shadow_msr_intercept.read);
601
602 if (write)
603 set_bit(slot, svm->shadow_msr_intercept.write);
604 else
605 clear_bit(slot, svm->shadow_msr_intercept.write);
606 }
607
valid_msr_intercept(u32 index)608 static bool valid_msr_intercept(u32 index)
609 {
610 return direct_access_msr_slot(index) != -ENOENT;
611 }
612
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)613 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
614 {
615 u8 bit_write;
616 unsigned long tmp;
617 u32 offset;
618 u32 *msrpm;
619
620 msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
621 to_svm(vcpu)->msrpm;
622
623 offset = svm_msrpm_offset(msr);
624 bit_write = 2 * (msr & 0x0f) + 1;
625 tmp = msrpm[offset];
626
627 BUG_ON(offset == MSR_INVALID);
628
629 return !!test_bit(bit_write, &tmp);
630 }
631
set_msr_interception_bitmap(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)632 static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
633 u32 msr, int read, int write)
634 {
635 u8 bit_read, bit_write;
636 unsigned long tmp;
637 u32 offset;
638
639 /*
640 * If this warning triggers extend the direct_access_msrs list at the
641 * beginning of the file
642 */
643 WARN_ON(!valid_msr_intercept(msr));
644
645 /* Enforce non allowed MSRs to trap */
646 if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
647 read = 0;
648
649 if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
650 write = 0;
651
652 offset = svm_msrpm_offset(msr);
653 bit_read = 2 * (msr & 0x0f);
654 bit_write = 2 * (msr & 0x0f) + 1;
655 tmp = msrpm[offset];
656
657 BUG_ON(offset == MSR_INVALID);
658
659 read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
660 write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
661
662 msrpm[offset] = tmp;
663 }
664
set_msr_interception(struct kvm_vcpu * vcpu,u32 * msrpm,u32 msr,int read,int write)665 static void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
666 int read, int write)
667 {
668 set_shadow_msr_intercept(vcpu, msr, read, write);
669 set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
670 }
671
svm_vcpu_alloc_msrpm(void)672 u32 *svm_vcpu_alloc_msrpm(void)
673 {
674 struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, MSRPM_ALLOC_ORDER);
675 u32 *msrpm;
676
677 if (!pages)
678 return NULL;
679
680 msrpm = page_address(pages);
681 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
682
683 return msrpm;
684 }
685
svm_vcpu_init_msrpm(struct kvm_vcpu * vcpu,u32 * msrpm)686 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
687 {
688 int i;
689
690 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
691 if (!direct_access_msrs[i].always)
692 continue;
693 set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
694 }
695 }
696
697
svm_vcpu_free_msrpm(u32 * msrpm)698 void svm_vcpu_free_msrpm(u32 *msrpm)
699 {
700 __free_pages(virt_to_page(msrpm), MSRPM_ALLOC_ORDER);
701 }
702
svm_msr_filter_changed(struct kvm_vcpu * vcpu)703 static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
704 {
705 struct vcpu_svm *svm = to_svm(vcpu);
706 u32 i;
707
708 /*
709 * Set intercept permissions for all direct access MSRs again. They
710 * will automatically get filtered through the MSR filter, so we are
711 * back in sync after this.
712 */
713 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
714 u32 msr = direct_access_msrs[i].index;
715 u32 read = test_bit(i, svm->shadow_msr_intercept.read);
716 u32 write = test_bit(i, svm->shadow_msr_intercept.write);
717
718 set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
719 }
720 }
721
add_msr_offset(u32 offset)722 static void add_msr_offset(u32 offset)
723 {
724 int i;
725
726 for (i = 0; i < MSRPM_OFFSETS; ++i) {
727
728 /* Offset already in list? */
729 if (msrpm_offsets[i] == offset)
730 return;
731
732 /* Slot used by another offset? */
733 if (msrpm_offsets[i] != MSR_INVALID)
734 continue;
735
736 /* Add offset to list */
737 msrpm_offsets[i] = offset;
738
739 return;
740 }
741
742 /*
743 * If this BUG triggers the msrpm_offsets table has an overflow. Just
744 * increase MSRPM_OFFSETS in this case.
745 */
746 BUG();
747 }
748
init_msrpm_offsets(void)749 static void init_msrpm_offsets(void)
750 {
751 int i;
752
753 memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
754
755 for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
756 u32 offset;
757
758 offset = svm_msrpm_offset(direct_access_msrs[i].index);
759 BUG_ON(offset == MSR_INVALID);
760
761 add_msr_offset(offset);
762 }
763 }
764
svm_enable_lbrv(struct kvm_vcpu * vcpu)765 static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
766 {
767 struct vcpu_svm *svm = to_svm(vcpu);
768
769 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
770 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
771 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
772 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
773 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
774 }
775
svm_disable_lbrv(struct kvm_vcpu * vcpu)776 static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
777 {
778 struct vcpu_svm *svm = to_svm(vcpu);
779
780 svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
781 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
782 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
783 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
784 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
785 }
786
disable_nmi_singlestep(struct vcpu_svm * svm)787 void disable_nmi_singlestep(struct vcpu_svm *svm)
788 {
789 svm->nmi_singlestep = false;
790
791 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
792 /* Clear our flags if they were not set by the guest */
793 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
794 svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
795 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
796 svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
797 }
798 }
799
grow_ple_window(struct kvm_vcpu * vcpu)800 static void grow_ple_window(struct kvm_vcpu *vcpu)
801 {
802 struct vcpu_svm *svm = to_svm(vcpu);
803 struct vmcb_control_area *control = &svm->vmcb->control;
804 int old = control->pause_filter_count;
805
806 control->pause_filter_count = __grow_ple_window(old,
807 pause_filter_count,
808 pause_filter_count_grow,
809 pause_filter_count_max);
810
811 if (control->pause_filter_count != old) {
812 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
813 trace_kvm_ple_window_update(vcpu->vcpu_id,
814 control->pause_filter_count, old);
815 }
816 }
817
shrink_ple_window(struct kvm_vcpu * vcpu)818 static void shrink_ple_window(struct kvm_vcpu *vcpu)
819 {
820 struct vcpu_svm *svm = to_svm(vcpu);
821 struct vmcb_control_area *control = &svm->vmcb->control;
822 int old = control->pause_filter_count;
823
824 control->pause_filter_count =
825 __shrink_ple_window(old,
826 pause_filter_count,
827 pause_filter_count_shrink,
828 pause_filter_count);
829 if (control->pause_filter_count != old) {
830 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
831 trace_kvm_ple_window_update(vcpu->vcpu_id,
832 control->pause_filter_count, old);
833 }
834 }
835
836 /*
837 * The default MMIO mask is a single bit (excluding the present bit),
838 * which could conflict with the memory encryption bit. Check for
839 * memory encryption support and override the default MMIO mask if
840 * memory encryption is enabled.
841 */
svm_adjust_mmio_mask(void)842 static __init void svm_adjust_mmio_mask(void)
843 {
844 unsigned int enc_bit, mask_bit;
845 u64 msr, mask;
846
847 /* If there is no memory encryption support, use existing mask */
848 if (cpuid_eax(0x80000000) < 0x8000001f)
849 return;
850
851 /* If memory encryption is not enabled, use existing mask */
852 rdmsrl(MSR_K8_SYSCFG, msr);
853 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
854 return;
855
856 enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
857 mask_bit = boot_cpu_data.x86_phys_bits;
858
859 /* Increment the mask bit if it is the same as the encryption bit */
860 if (enc_bit == mask_bit)
861 mask_bit++;
862
863 /*
864 * If the mask bit location is below 52, then some bits above the
865 * physical addressing limit will always be reserved, so use the
866 * rsvd_bits() function to generate the mask. This mask, along with
867 * the present bit, will be used to generate a page fault with
868 * PFER.RSV = 1.
869 *
870 * If the mask bit location is 52 (or above), then clear the mask.
871 */
872 mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
873
874 kvm_mmu_set_mmio_spte_mask(mask, PT_WRITABLE_MASK | PT_USER_MASK);
875 }
876
svm_hardware_teardown(void)877 static void svm_hardware_teardown(void)
878 {
879 int cpu;
880
881 if (svm_sev_enabled())
882 sev_hardware_teardown();
883
884 for_each_possible_cpu(cpu)
885 svm_cpu_uninit(cpu);
886
887 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
888 iopm_base = 0;
889 }
890
svm_set_cpu_caps(void)891 static __init void svm_set_cpu_caps(void)
892 {
893 kvm_set_cpu_caps();
894
895 supported_xss = 0;
896
897 /* CPUID 0x80000001 and 0x8000000A (SVM features) */
898 if (nested) {
899 kvm_cpu_cap_set(X86_FEATURE_SVM);
900
901 if (nrips)
902 kvm_cpu_cap_set(X86_FEATURE_NRIPS);
903
904 if (npt_enabled)
905 kvm_cpu_cap_set(X86_FEATURE_NPT);
906 }
907
908 /* CPUID 0x80000008 */
909 if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
910 boot_cpu_has(X86_FEATURE_AMD_SSBD))
911 kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
912
913 /* Enable INVPCID feature */
914 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
915 }
916
svm_hardware_setup(void)917 static __init int svm_hardware_setup(void)
918 {
919 int cpu;
920 struct page *iopm_pages;
921 void *iopm_va;
922 int r;
923
924 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
925
926 if (!iopm_pages)
927 return -ENOMEM;
928
929 iopm_va = page_address(iopm_pages);
930 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
931 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
932
933 init_msrpm_offsets();
934
935 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
936
937 if (boot_cpu_has(X86_FEATURE_NX))
938 kvm_enable_efer_bits(EFER_NX);
939
940 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
941 kvm_enable_efer_bits(EFER_FFXSR);
942
943 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
944 kvm_has_tsc_control = true;
945 kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
946 kvm_tsc_scaling_ratio_frac_bits = 32;
947 }
948
949 /* Check for pause filtering support */
950 if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
951 pause_filter_count = 0;
952 pause_filter_thresh = 0;
953 } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
954 pause_filter_thresh = 0;
955 }
956
957 if (nested) {
958 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
959 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
960 }
961
962 if (sev) {
963 if (boot_cpu_has(X86_FEATURE_SEV) &&
964 IS_ENABLED(CONFIG_KVM_AMD_SEV)) {
965 r = sev_hardware_setup();
966 if (r)
967 sev = false;
968 } else {
969 sev = false;
970 }
971 }
972
973 svm_adjust_mmio_mask();
974
975 for_each_possible_cpu(cpu) {
976 r = svm_cpu_init(cpu);
977 if (r)
978 goto err;
979 }
980
981 if (!boot_cpu_has(X86_FEATURE_NPT))
982 npt_enabled = false;
983
984 if (npt_enabled && !npt)
985 npt_enabled = false;
986
987 kvm_configure_mmu(npt_enabled, get_max_npt_level(), PG_LEVEL_1G);
988 pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
989
990 if (nrips) {
991 if (!boot_cpu_has(X86_FEATURE_NRIPS))
992 nrips = false;
993 }
994
995 if (avic) {
996 if (!npt_enabled ||
997 !boot_cpu_has(X86_FEATURE_AVIC) ||
998 !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) {
999 avic = false;
1000 } else {
1001 pr_info("AVIC enabled\n");
1002
1003 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
1004 }
1005 }
1006
1007 if (vls) {
1008 if (!npt_enabled ||
1009 !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
1010 !IS_ENABLED(CONFIG_X86_64)) {
1011 vls = false;
1012 } else {
1013 pr_info("Virtual VMLOAD VMSAVE supported\n");
1014 }
1015 }
1016
1017 if (vgif) {
1018 if (!boot_cpu_has(X86_FEATURE_VGIF))
1019 vgif = false;
1020 else
1021 pr_info("Virtual GIF supported\n");
1022 }
1023
1024 svm_set_cpu_caps();
1025
1026 /*
1027 * It seems that on AMD processors PTE's accessed bit is
1028 * being set by the CPU hardware before the NPF vmexit.
1029 * This is not expected behaviour and our tests fail because
1030 * of it.
1031 * A workaround here is to disable support for
1032 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
1033 * In this case userspace can know if there is support using
1034 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
1035 * it
1036 * If future AMD CPU models change the behaviour described above,
1037 * this variable can be changed accordingly
1038 */
1039 allow_smaller_maxphyaddr = !npt_enabled;
1040
1041 return 0;
1042
1043 err:
1044 svm_hardware_teardown();
1045 return r;
1046 }
1047
init_seg(struct vmcb_seg * seg)1048 static void init_seg(struct vmcb_seg *seg)
1049 {
1050 seg->selector = 0;
1051 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1052 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1053 seg->limit = 0xffff;
1054 seg->base = 0;
1055 }
1056
init_sys_seg(struct vmcb_seg * seg,uint32_t type)1057 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1058 {
1059 seg->selector = 0;
1060 seg->attrib = SVM_SELECTOR_P_MASK | type;
1061 seg->limit = 0xffff;
1062 seg->base = 0;
1063 }
1064
svm_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1065 static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1066 {
1067 struct vcpu_svm *svm = to_svm(vcpu);
1068 u64 g_tsc_offset = 0;
1069
1070 if (is_guest_mode(vcpu)) {
1071 /* Write L1's TSC offset. */
1072 g_tsc_offset = svm->vmcb->control.tsc_offset -
1073 svm->nested.hsave->control.tsc_offset;
1074 svm->nested.hsave->control.tsc_offset = offset;
1075 }
1076
1077 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1078 svm->vmcb->control.tsc_offset - g_tsc_offset,
1079 offset);
1080
1081 svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1082
1083 vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1084 return svm->vmcb->control.tsc_offset;
1085 }
1086
svm_check_invpcid(struct vcpu_svm * svm)1087 static void svm_check_invpcid(struct vcpu_svm *svm)
1088 {
1089 /*
1090 * Intercept INVPCID instruction only if shadow page table is
1091 * enabled. Interception is not required with nested page table
1092 * enabled.
1093 */
1094 if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1095 if (!npt_enabled)
1096 svm_set_intercept(svm, INTERCEPT_INVPCID);
1097 else
1098 svm_clr_intercept(svm, INTERCEPT_INVPCID);
1099 }
1100 }
1101
init_vmcb(struct vcpu_svm * svm)1102 static void init_vmcb(struct vcpu_svm *svm)
1103 {
1104 struct vmcb_control_area *control = &svm->vmcb->control;
1105 struct vmcb_save_area *save = &svm->vmcb->save;
1106
1107 svm->vcpu.arch.hflags = 0;
1108
1109 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1110 svm_set_intercept(svm, INTERCEPT_CR3_READ);
1111 svm_set_intercept(svm, INTERCEPT_CR4_READ);
1112 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1113 svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1114 svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1115 if (!kvm_vcpu_apicv_active(&svm->vcpu))
1116 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1117
1118 set_dr_intercepts(svm);
1119
1120 set_exception_intercept(svm, PF_VECTOR);
1121 set_exception_intercept(svm, UD_VECTOR);
1122 set_exception_intercept(svm, MC_VECTOR);
1123 set_exception_intercept(svm, AC_VECTOR);
1124 set_exception_intercept(svm, DB_VECTOR);
1125 /*
1126 * Guest access to VMware backdoor ports could legitimately
1127 * trigger #GP because of TSS I/O permission bitmap.
1128 * We intercept those #GP and allow access to them anyway
1129 * as VMware does.
1130 */
1131 if (enable_vmware_backdoor)
1132 set_exception_intercept(svm, GP_VECTOR);
1133
1134 svm_set_intercept(svm, INTERCEPT_INTR);
1135 svm_set_intercept(svm, INTERCEPT_NMI);
1136 svm_set_intercept(svm, INTERCEPT_SMI);
1137 svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1138 svm_set_intercept(svm, INTERCEPT_RDPMC);
1139 svm_set_intercept(svm, INTERCEPT_CPUID);
1140 svm_set_intercept(svm, INTERCEPT_INVD);
1141 svm_set_intercept(svm, INTERCEPT_INVLPG);
1142 svm_set_intercept(svm, INTERCEPT_INVLPGA);
1143 svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1144 svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1145 svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1146 svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1147 svm_set_intercept(svm, INTERCEPT_VMRUN);
1148 svm_set_intercept(svm, INTERCEPT_VMMCALL);
1149 svm_set_intercept(svm, INTERCEPT_VMLOAD);
1150 svm_set_intercept(svm, INTERCEPT_VMSAVE);
1151 svm_set_intercept(svm, INTERCEPT_STGI);
1152 svm_set_intercept(svm, INTERCEPT_CLGI);
1153 svm_set_intercept(svm, INTERCEPT_SKINIT);
1154 svm_set_intercept(svm, INTERCEPT_WBINVD);
1155 svm_set_intercept(svm, INTERCEPT_XSETBV);
1156 svm_set_intercept(svm, INTERCEPT_RDPRU);
1157 svm_set_intercept(svm, INTERCEPT_RSM);
1158
1159 if (!kvm_mwait_in_guest(svm->vcpu.kvm)) {
1160 svm_set_intercept(svm, INTERCEPT_MONITOR);
1161 svm_set_intercept(svm, INTERCEPT_MWAIT);
1162 }
1163
1164 if (!kvm_hlt_in_guest(svm->vcpu.kvm))
1165 svm_set_intercept(svm, INTERCEPT_HLT);
1166
1167 control->iopm_base_pa = __sme_set(iopm_base);
1168 control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1169 control->int_ctl = V_INTR_MASKING_MASK;
1170
1171 init_seg(&save->es);
1172 init_seg(&save->ss);
1173 init_seg(&save->ds);
1174 init_seg(&save->fs);
1175 init_seg(&save->gs);
1176
1177 save->cs.selector = 0xf000;
1178 save->cs.base = 0xffff0000;
1179 /* Executable/Readable Code Segment */
1180 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1181 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1182 save->cs.limit = 0xffff;
1183
1184 save->gdtr.limit = 0xffff;
1185 save->idtr.limit = 0xffff;
1186
1187 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1188 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1189
1190 svm_set_efer(&svm->vcpu, 0);
1191 save->dr6 = 0xffff0ff0;
1192 kvm_set_rflags(&svm->vcpu, 2);
1193 save->rip = 0x0000fff0;
1194 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1195
1196 /*
1197 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1198 * It also updates the guest-visible cr0 value.
1199 */
1200 svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1201 kvm_mmu_reset_context(&svm->vcpu);
1202
1203 save->cr4 = X86_CR4_PAE;
1204 /* rdx = ?? */
1205
1206 if (npt_enabled) {
1207 /* Setup VMCB for Nested Paging */
1208 control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1209 svm_clr_intercept(svm, INTERCEPT_INVLPG);
1210 clr_exception_intercept(svm, PF_VECTOR);
1211 svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1212 svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1213 save->g_pat = svm->vcpu.arch.pat;
1214 save->cr3 = 0;
1215 save->cr4 = 0;
1216 }
1217 svm->asid_generation = 0;
1218
1219 svm->nested.vmcb12_gpa = 0;
1220 svm->vcpu.arch.hflags = 0;
1221
1222 if (!kvm_pause_in_guest(svm->vcpu.kvm)) {
1223 control->pause_filter_count = pause_filter_count;
1224 if (pause_filter_thresh)
1225 control->pause_filter_thresh = pause_filter_thresh;
1226 svm_set_intercept(svm, INTERCEPT_PAUSE);
1227 } else {
1228 svm_clr_intercept(svm, INTERCEPT_PAUSE);
1229 }
1230
1231 svm_check_invpcid(svm);
1232
1233 if (kvm_vcpu_apicv_active(&svm->vcpu))
1234 avic_init_vmcb(svm);
1235
1236 /*
1237 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1238 * in VMCB and clear intercepts to avoid #VMEXIT.
1239 */
1240 if (vls) {
1241 svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1242 svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1243 svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1244 }
1245
1246 if (vgif) {
1247 svm_clr_intercept(svm, INTERCEPT_STGI);
1248 svm_clr_intercept(svm, INTERCEPT_CLGI);
1249 svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1250 }
1251
1252 if (sev_guest(svm->vcpu.kvm)) {
1253 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
1254 clr_exception_intercept(svm, UD_VECTOR);
1255 }
1256
1257 vmcb_mark_all_dirty(svm->vmcb);
1258
1259 enable_gif(svm);
1260
1261 }
1262
svm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)1263 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1264 {
1265 struct vcpu_svm *svm = to_svm(vcpu);
1266 u32 dummy;
1267 u32 eax = 1;
1268
1269 svm->spec_ctrl = 0;
1270 svm->virt_spec_ctrl = 0;
1271
1272 if (!init_event) {
1273 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1274 MSR_IA32_APICBASE_ENABLE;
1275 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1276 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1277 }
1278 init_vmcb(svm);
1279
1280 kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, false);
1281 kvm_rdx_write(vcpu, eax);
1282
1283 if (kvm_vcpu_apicv_active(vcpu) && !init_event)
1284 avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE);
1285 }
1286
svm_create_vcpu(struct kvm_vcpu * vcpu)1287 static int svm_create_vcpu(struct kvm_vcpu *vcpu)
1288 {
1289 struct vcpu_svm *svm;
1290 struct page *vmcb_page;
1291 int err;
1292
1293 BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1294 svm = to_svm(vcpu);
1295
1296 err = -ENOMEM;
1297 vmcb_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1298 if (!vmcb_page)
1299 goto out;
1300
1301 err = avic_init_vcpu(svm);
1302 if (err)
1303 goto error_free_vmcb_page;
1304
1305 /* We initialize this flag to true to make sure that the is_running
1306 * bit would be set the first time the vcpu is loaded.
1307 */
1308 if (irqchip_in_kernel(vcpu->kvm) && kvm_apicv_activated(vcpu->kvm))
1309 svm->avic_is_running = true;
1310
1311 svm->msrpm = svm_vcpu_alloc_msrpm();
1312 if (!svm->msrpm) {
1313 err = -ENOMEM;
1314 goto error_free_vmcb_page;
1315 }
1316
1317 svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1318
1319 svm->vmcb = page_address(vmcb_page);
1320 svm->vmcb_pa = __sme_set(page_to_pfn(vmcb_page) << PAGE_SHIFT);
1321 svm->asid_generation = 0;
1322 init_vmcb(svm);
1323
1324 svm_init_osvw(vcpu);
1325 vcpu->arch.microcode_version = 0x01000065;
1326
1327 return 0;
1328
1329 error_free_vmcb_page:
1330 __free_page(vmcb_page);
1331 out:
1332 return err;
1333 }
1334
svm_clear_current_vmcb(struct vmcb * vmcb)1335 static void svm_clear_current_vmcb(struct vmcb *vmcb)
1336 {
1337 int i;
1338
1339 for_each_online_cpu(i)
1340 cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
1341 }
1342
svm_free_vcpu(struct kvm_vcpu * vcpu)1343 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1344 {
1345 struct vcpu_svm *svm = to_svm(vcpu);
1346
1347 /*
1348 * The vmcb page can be recycled, causing a false negative in
1349 * svm_vcpu_load(). So, ensure that no logical CPU has this
1350 * vmcb page recorded as its current vmcb.
1351 */
1352 svm_clear_current_vmcb(svm->vmcb);
1353
1354 svm_free_nested(svm);
1355
1356 __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT));
1357 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1358 }
1359
svm_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1360 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1361 {
1362 struct vcpu_svm *svm = to_svm(vcpu);
1363 struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
1364 int i;
1365
1366 if (unlikely(cpu != vcpu->cpu)) {
1367 svm->asid_generation = 0;
1368 vmcb_mark_all_dirty(svm->vmcb);
1369 }
1370
1371 #ifdef CONFIG_X86_64
1372 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1373 #endif
1374 savesegment(fs, svm->host.fs);
1375 savesegment(gs, svm->host.gs);
1376 svm->host.ldt = kvm_read_ldt();
1377
1378 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1379 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1380
1381 if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1382 u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1383 if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1384 __this_cpu_write(current_tsc_ratio, tsc_ratio);
1385 wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1386 }
1387 }
1388 /* This assumes that the kernel never uses MSR_TSC_AUX */
1389 if (static_cpu_has(X86_FEATURE_RDTSCP))
1390 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
1391
1392 if (sd->current_vmcb != svm->vmcb) {
1393 sd->current_vmcb = svm->vmcb;
1394 indirect_branch_prediction_barrier();
1395 }
1396 avic_vcpu_load(vcpu, cpu);
1397 }
1398
svm_vcpu_put(struct kvm_vcpu * vcpu)1399 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1400 {
1401 struct vcpu_svm *svm = to_svm(vcpu);
1402 int i;
1403
1404 avic_vcpu_put(vcpu);
1405
1406 ++vcpu->stat.host_state_reload;
1407 kvm_load_ldt(svm->host.ldt);
1408 #ifdef CONFIG_X86_64
1409 loadsegment(fs, svm->host.fs);
1410 wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase);
1411 load_gs_index(svm->host.gs);
1412 #else
1413 #ifdef CONFIG_X86_32_LAZY_GS
1414 loadsegment(gs, svm->host.gs);
1415 #endif
1416 #endif
1417 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1418 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1419 }
1420
svm_get_rflags(struct kvm_vcpu * vcpu)1421 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1422 {
1423 struct vcpu_svm *svm = to_svm(vcpu);
1424 unsigned long rflags = svm->vmcb->save.rflags;
1425
1426 if (svm->nmi_singlestep) {
1427 /* Hide our flags if they were not set by the guest */
1428 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1429 rflags &= ~X86_EFLAGS_TF;
1430 if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1431 rflags &= ~X86_EFLAGS_RF;
1432 }
1433 return rflags;
1434 }
1435
svm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1436 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 if (to_svm(vcpu)->nmi_singlestep)
1439 rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1440
1441 /*
1442 * Any change of EFLAGS.VM is accompanied by a reload of SS
1443 * (caused by either a task switch or an inter-privilege IRET),
1444 * so we do not need to update the CPL here.
1445 */
1446 to_svm(vcpu)->vmcb->save.rflags = rflags;
1447 }
1448
svm_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)1449 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1450 {
1451 switch (reg) {
1452 case VCPU_EXREG_PDPTR:
1453 BUG_ON(!npt_enabled);
1454 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1455 break;
1456 default:
1457 WARN_ON_ONCE(1);
1458 }
1459 }
1460
svm_set_vintr(struct vcpu_svm * svm)1461 static void svm_set_vintr(struct vcpu_svm *svm)
1462 {
1463 struct vmcb_control_area *control;
1464
1465 /* The following fields are ignored when AVIC is enabled */
1466 WARN_ON(kvm_vcpu_apicv_active(&svm->vcpu));
1467 svm_set_intercept(svm, INTERCEPT_VINTR);
1468
1469 /*
1470 * This is just a dummy VINTR to actually cause a vmexit to happen.
1471 * Actual injection of virtual interrupts happens through EVENTINJ.
1472 */
1473 control = &svm->vmcb->control;
1474 control->int_vector = 0x0;
1475 control->int_ctl &= ~V_INTR_PRIO_MASK;
1476 control->int_ctl |= V_IRQ_MASK |
1477 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1478 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1479 }
1480
svm_clear_vintr(struct vcpu_svm * svm)1481 static void svm_clear_vintr(struct vcpu_svm *svm)
1482 {
1483 const u32 mask = V_TPR_MASK | V_GIF_ENABLE_MASK | V_GIF_MASK | V_INTR_MASKING_MASK;
1484 svm_clr_intercept(svm, INTERCEPT_VINTR);
1485
1486 /* Drop int_ctl fields related to VINTR injection. */
1487 svm->vmcb->control.int_ctl &= mask;
1488 if (is_guest_mode(&svm->vcpu)) {
1489 svm->nested.hsave->control.int_ctl &= mask;
1490
1491 WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1492 (svm->nested.ctl.int_ctl & V_TPR_MASK));
1493 svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl & ~mask;
1494 }
1495
1496 vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1497 }
1498
svm_seg(struct kvm_vcpu * vcpu,int seg)1499 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1500 {
1501 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1502
1503 switch (seg) {
1504 case VCPU_SREG_CS: return &save->cs;
1505 case VCPU_SREG_DS: return &save->ds;
1506 case VCPU_SREG_ES: return &save->es;
1507 case VCPU_SREG_FS: return &save->fs;
1508 case VCPU_SREG_GS: return &save->gs;
1509 case VCPU_SREG_SS: return &save->ss;
1510 case VCPU_SREG_TR: return &save->tr;
1511 case VCPU_SREG_LDTR: return &save->ldtr;
1512 }
1513 BUG();
1514 return NULL;
1515 }
1516
svm_get_segment_base(struct kvm_vcpu * vcpu,int seg)1517 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1518 {
1519 struct vmcb_seg *s = svm_seg(vcpu, seg);
1520
1521 return s->base;
1522 }
1523
svm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1524 static void svm_get_segment(struct kvm_vcpu *vcpu,
1525 struct kvm_segment *var, int seg)
1526 {
1527 struct vmcb_seg *s = svm_seg(vcpu, seg);
1528
1529 var->base = s->base;
1530 var->limit = s->limit;
1531 var->selector = s->selector;
1532 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1533 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1534 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1535 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1536 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1537 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1538 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1539
1540 /*
1541 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1542 * However, the SVM spec states that the G bit is not observed by the
1543 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1544 * So let's synthesize a legal G bit for all segments, this helps
1545 * running KVM nested. It also helps cross-vendor migration, because
1546 * Intel's vmentry has a check on the 'G' bit.
1547 */
1548 var->g = s->limit > 0xfffff;
1549
1550 /*
1551 * AMD's VMCB does not have an explicit unusable field, so emulate it
1552 * for cross vendor migration purposes by "not present"
1553 */
1554 var->unusable = !var->present;
1555
1556 switch (seg) {
1557 case VCPU_SREG_TR:
1558 /*
1559 * Work around a bug where the busy flag in the tr selector
1560 * isn't exposed
1561 */
1562 var->type |= 0x2;
1563 break;
1564 case VCPU_SREG_DS:
1565 case VCPU_SREG_ES:
1566 case VCPU_SREG_FS:
1567 case VCPU_SREG_GS:
1568 /*
1569 * The accessed bit must always be set in the segment
1570 * descriptor cache, although it can be cleared in the
1571 * descriptor, the cached bit always remains at 1. Since
1572 * Intel has a check on this, set it here to support
1573 * cross-vendor migration.
1574 */
1575 if (!var->unusable)
1576 var->type |= 0x1;
1577 break;
1578 case VCPU_SREG_SS:
1579 /*
1580 * On AMD CPUs sometimes the DB bit in the segment
1581 * descriptor is left as 1, although the whole segment has
1582 * been made unusable. Clear it here to pass an Intel VMX
1583 * entry check when cross vendor migrating.
1584 */
1585 if (var->unusable)
1586 var->db = 0;
1587 /* This is symmetric with svm_set_segment() */
1588 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1589 break;
1590 }
1591 }
1592
svm_get_cpl(struct kvm_vcpu * vcpu)1593 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1594 {
1595 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1596
1597 return save->cpl;
1598 }
1599
svm_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1600 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1601 {
1602 struct vcpu_svm *svm = to_svm(vcpu);
1603
1604 dt->size = svm->vmcb->save.idtr.limit;
1605 dt->address = svm->vmcb->save.idtr.base;
1606 }
1607
svm_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1608 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1609 {
1610 struct vcpu_svm *svm = to_svm(vcpu);
1611
1612 svm->vmcb->save.idtr.limit = dt->size;
1613 svm->vmcb->save.idtr.base = dt->address ;
1614 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1615 }
1616
svm_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1617 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1618 {
1619 struct vcpu_svm *svm = to_svm(vcpu);
1620
1621 dt->size = svm->vmcb->save.gdtr.limit;
1622 dt->address = svm->vmcb->save.gdtr.base;
1623 }
1624
svm_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)1625 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1626 {
1627 struct vcpu_svm *svm = to_svm(vcpu);
1628
1629 svm->vmcb->save.gdtr.limit = dt->size;
1630 svm->vmcb->save.gdtr.base = dt->address ;
1631 vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1632 }
1633
update_cr0_intercept(struct vcpu_svm * svm)1634 static void update_cr0_intercept(struct vcpu_svm *svm)
1635 {
1636 ulong gcr0 = svm->vcpu.arch.cr0;
1637 u64 *hcr0 = &svm->vmcb->save.cr0;
1638
1639 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1640 | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1641
1642 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1643
1644 if (gcr0 == *hcr0) {
1645 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1646 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1647 } else {
1648 svm_set_intercept(svm, INTERCEPT_CR0_READ);
1649 svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1650 }
1651 }
1652
svm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)1653 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1654 {
1655 struct vcpu_svm *svm = to_svm(vcpu);
1656
1657 #ifdef CONFIG_X86_64
1658 if (vcpu->arch.efer & EFER_LME) {
1659 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1660 vcpu->arch.efer |= EFER_LMA;
1661 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1662 }
1663
1664 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1665 vcpu->arch.efer &= ~EFER_LMA;
1666 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1667 }
1668 }
1669 #endif
1670 vcpu->arch.cr0 = cr0;
1671
1672 if (!npt_enabled)
1673 cr0 |= X86_CR0_PG | X86_CR0_WP;
1674
1675 /*
1676 * re-enable caching here because the QEMU bios
1677 * does not do it - this results in some delay at
1678 * reboot
1679 */
1680 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1681 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1682 svm->vmcb->save.cr0 = cr0;
1683 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1684 update_cr0_intercept(svm);
1685 }
1686
svm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1687 int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1688 {
1689 unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1690 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1691
1692 if (cr4 & X86_CR4_VMXE)
1693 return 1;
1694
1695 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1696 svm_flush_tlb(vcpu);
1697
1698 vcpu->arch.cr4 = cr4;
1699 if (!npt_enabled)
1700 cr4 |= X86_CR4_PAE;
1701 cr4 |= host_cr4_mce;
1702 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1703 vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1704 return 0;
1705 }
1706
svm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)1707 static void svm_set_segment(struct kvm_vcpu *vcpu,
1708 struct kvm_segment *var, int seg)
1709 {
1710 struct vcpu_svm *svm = to_svm(vcpu);
1711 struct vmcb_seg *s = svm_seg(vcpu, seg);
1712
1713 s->base = var->base;
1714 s->limit = var->limit;
1715 s->selector = var->selector;
1716 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1717 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1718 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1719 s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1720 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1721 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1722 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1723 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1724
1725 /*
1726 * This is always accurate, except if SYSRET returned to a segment
1727 * with SS.DPL != 3. Intel does not have this quirk, and always
1728 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1729 * would entail passing the CPL to userspace and back.
1730 */
1731 if (seg == VCPU_SREG_SS)
1732 /* This is symmetric with svm_get_segment() */
1733 svm->vmcb->save.cpl = (var->dpl & 3);
1734
1735 vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1736 }
1737
update_exception_bitmap(struct kvm_vcpu * vcpu)1738 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1739 {
1740 struct vcpu_svm *svm = to_svm(vcpu);
1741
1742 clr_exception_intercept(svm, BP_VECTOR);
1743
1744 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1745 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1746 set_exception_intercept(svm, BP_VECTOR);
1747 }
1748 }
1749
new_asid(struct vcpu_svm * svm,struct svm_cpu_data * sd)1750 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1751 {
1752 if (sd->next_asid > sd->max_asid) {
1753 ++sd->asid_generation;
1754 sd->next_asid = sd->min_asid;
1755 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1756 }
1757
1758 svm->asid_generation = sd->asid_generation;
1759 svm->vmcb->control.asid = sd->next_asid++;
1760
1761 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
1762 }
1763
svm_set_dr6(struct vcpu_svm * svm,unsigned long value)1764 static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
1765 {
1766 struct vmcb *vmcb = svm->vmcb;
1767
1768 if (unlikely(value != vmcb->save.dr6)) {
1769 vmcb->save.dr6 = value;
1770 vmcb_mark_dirty(vmcb, VMCB_DR);
1771 }
1772 }
1773
svm_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)1774 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1775 {
1776 struct vcpu_svm *svm = to_svm(vcpu);
1777
1778 get_debugreg(vcpu->arch.db[0], 0);
1779 get_debugreg(vcpu->arch.db[1], 1);
1780 get_debugreg(vcpu->arch.db[2], 2);
1781 get_debugreg(vcpu->arch.db[3], 3);
1782 /*
1783 * We cannot reset svm->vmcb->save.dr6 to DR6_FIXED_1|DR6_RTM here,
1784 * because db_interception might need it. We can do it before vmentry.
1785 */
1786 vcpu->arch.dr6 = svm->vmcb->save.dr6;
1787 vcpu->arch.dr7 = svm->vmcb->save.dr7;
1788 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1789 set_dr_intercepts(svm);
1790 }
1791
svm_set_dr7(struct kvm_vcpu * vcpu,unsigned long value)1792 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1793 {
1794 struct vcpu_svm *svm = to_svm(vcpu);
1795
1796 svm->vmcb->save.dr7 = value;
1797 vmcb_mark_dirty(svm->vmcb, VMCB_DR);
1798 }
1799
pf_interception(struct vcpu_svm * svm)1800 static int pf_interception(struct vcpu_svm *svm)
1801 {
1802 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1803 u64 error_code = svm->vmcb->control.exit_info_1;
1804
1805 return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address,
1806 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1807 svm->vmcb->control.insn_bytes : NULL,
1808 svm->vmcb->control.insn_len);
1809 }
1810
npf_interception(struct vcpu_svm * svm)1811 static int npf_interception(struct vcpu_svm *svm)
1812 {
1813 u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2);
1814 u64 error_code = svm->vmcb->control.exit_info_1;
1815
1816 trace_kvm_page_fault(fault_address, error_code);
1817 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1818 static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
1819 svm->vmcb->control.insn_bytes : NULL,
1820 svm->vmcb->control.insn_len);
1821 }
1822
db_interception(struct vcpu_svm * svm)1823 static int db_interception(struct vcpu_svm *svm)
1824 {
1825 struct kvm_run *kvm_run = svm->vcpu.run;
1826 struct kvm_vcpu *vcpu = &svm->vcpu;
1827
1828 if (!(svm->vcpu.guest_debug &
1829 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1830 !svm->nmi_singlestep) {
1831 u32 payload = (svm->vmcb->save.dr6 ^ DR6_RTM) & ~DR6_FIXED_1;
1832 kvm_queue_exception_p(&svm->vcpu, DB_VECTOR, payload);
1833 return 1;
1834 }
1835
1836 if (svm->nmi_singlestep) {
1837 disable_nmi_singlestep(svm);
1838 /* Make sure we check for pending NMIs upon entry */
1839 kvm_make_request(KVM_REQ_EVENT, vcpu);
1840 }
1841
1842 if (svm->vcpu.guest_debug &
1843 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1844 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1845 kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
1846 kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
1847 kvm_run->debug.arch.pc =
1848 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1849 kvm_run->debug.arch.exception = DB_VECTOR;
1850 return 0;
1851 }
1852
1853 return 1;
1854 }
1855
bp_interception(struct vcpu_svm * svm)1856 static int bp_interception(struct vcpu_svm *svm)
1857 {
1858 struct kvm_run *kvm_run = svm->vcpu.run;
1859
1860 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1861 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1862 kvm_run->debug.arch.exception = BP_VECTOR;
1863 return 0;
1864 }
1865
ud_interception(struct vcpu_svm * svm)1866 static int ud_interception(struct vcpu_svm *svm)
1867 {
1868 return handle_ud(&svm->vcpu);
1869 }
1870
ac_interception(struct vcpu_svm * svm)1871 static int ac_interception(struct vcpu_svm *svm)
1872 {
1873 kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1874 return 1;
1875 }
1876
gp_interception(struct vcpu_svm * svm)1877 static int gp_interception(struct vcpu_svm *svm)
1878 {
1879 struct kvm_vcpu *vcpu = &svm->vcpu;
1880 u32 error_code = svm->vmcb->control.exit_info_1;
1881
1882 WARN_ON_ONCE(!enable_vmware_backdoor);
1883
1884 /*
1885 * VMware backdoor emulation on #GP interception only handles IN{S},
1886 * OUT{S}, and RDPMC, none of which generate a non-zero error code.
1887 */
1888 if (error_code) {
1889 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1890 return 1;
1891 }
1892 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
1893 }
1894
is_erratum_383(void)1895 static bool is_erratum_383(void)
1896 {
1897 int err, i;
1898 u64 value;
1899
1900 if (!erratum_383_found)
1901 return false;
1902
1903 value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1904 if (err)
1905 return false;
1906
1907 /* Bit 62 may or may not be set for this mce */
1908 value &= ~(1ULL << 62);
1909
1910 if (value != 0xb600000000010015ULL)
1911 return false;
1912
1913 /* Clear MCi_STATUS registers */
1914 for (i = 0; i < 6; ++i)
1915 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1916
1917 value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1918 if (!err) {
1919 u32 low, high;
1920
1921 value &= ~(1ULL << 2);
1922 low = lower_32_bits(value);
1923 high = upper_32_bits(value);
1924
1925 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1926 }
1927
1928 /* Flush tlb to evict multi-match entries */
1929 __flush_tlb_all();
1930
1931 return true;
1932 }
1933
1934 /*
1935 * Trigger machine check on the host. We assume all the MSRs are already set up
1936 * by the CPU and that we still run on the same CPU as the MCE occurred on.
1937 * We pass a fake environment to the machine check handler because we want
1938 * the guest to be always treated like user space, no matter what context
1939 * it used internally.
1940 */
kvm_machine_check(void)1941 static void kvm_machine_check(void)
1942 {
1943 #if defined(CONFIG_X86_MCE)
1944 struct pt_regs regs = {
1945 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
1946 .flags = X86_EFLAGS_IF,
1947 };
1948
1949 do_machine_check(®s);
1950 #endif
1951 }
1952
svm_handle_mce(struct vcpu_svm * svm)1953 static void svm_handle_mce(struct vcpu_svm *svm)
1954 {
1955 if (is_erratum_383()) {
1956 /*
1957 * Erratum 383 triggered. Guest state is corrupt so kill the
1958 * guest.
1959 */
1960 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1961
1962 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1963
1964 return;
1965 }
1966
1967 /*
1968 * On an #MC intercept the MCE handler is not called automatically in
1969 * the host. So do it by hand here.
1970 */
1971 kvm_machine_check();
1972 }
1973
mc_interception(struct vcpu_svm * svm)1974 static int mc_interception(struct vcpu_svm *svm)
1975 {
1976 return 1;
1977 }
1978
shutdown_interception(struct vcpu_svm * svm)1979 static int shutdown_interception(struct vcpu_svm *svm)
1980 {
1981 struct kvm_run *kvm_run = svm->vcpu.run;
1982
1983 /*
1984 * VMCB is undefined after a SHUTDOWN intercept
1985 * so reinitialize it.
1986 */
1987 clear_page(svm->vmcb);
1988 init_vmcb(svm);
1989
1990 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1991 return 0;
1992 }
1993
io_interception(struct vcpu_svm * svm)1994 static int io_interception(struct vcpu_svm *svm)
1995 {
1996 struct kvm_vcpu *vcpu = &svm->vcpu;
1997 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1998 int size, in, string;
1999 unsigned port;
2000
2001 ++svm->vcpu.stat.io_exits;
2002 string = (io_info & SVM_IOIO_STR_MASK) != 0;
2003 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2004 if (string)
2005 return kvm_emulate_instruction(vcpu, 0);
2006
2007 port = io_info >> 16;
2008 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2009 svm->next_rip = svm->vmcb->control.exit_info_2;
2010
2011 return kvm_fast_pio(&svm->vcpu, size, port, in);
2012 }
2013
nmi_interception(struct vcpu_svm * svm)2014 static int nmi_interception(struct vcpu_svm *svm)
2015 {
2016 return 1;
2017 }
2018
intr_interception(struct vcpu_svm * svm)2019 static int intr_interception(struct vcpu_svm *svm)
2020 {
2021 ++svm->vcpu.stat.irq_exits;
2022 return 1;
2023 }
2024
nop_on_interception(struct vcpu_svm * svm)2025 static int nop_on_interception(struct vcpu_svm *svm)
2026 {
2027 return 1;
2028 }
2029
halt_interception(struct vcpu_svm * svm)2030 static int halt_interception(struct vcpu_svm *svm)
2031 {
2032 return kvm_emulate_halt(&svm->vcpu);
2033 }
2034
vmmcall_interception(struct vcpu_svm * svm)2035 static int vmmcall_interception(struct vcpu_svm *svm)
2036 {
2037 return kvm_emulate_hypercall(&svm->vcpu);
2038 }
2039
vmload_interception(struct vcpu_svm * svm)2040 static int vmload_interception(struct vcpu_svm *svm)
2041 {
2042 struct vmcb *nested_vmcb;
2043 struct kvm_host_map map;
2044 int ret;
2045
2046 if (nested_svm_check_permissions(svm))
2047 return 1;
2048
2049 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2050 if (ret) {
2051 if (ret == -EINVAL)
2052 kvm_inject_gp(&svm->vcpu, 0);
2053 return 1;
2054 }
2055
2056 nested_vmcb = map.hva;
2057
2058 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2059
2060 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2061 kvm_vcpu_unmap(&svm->vcpu, &map, true);
2062
2063 return ret;
2064 }
2065
vmsave_interception(struct vcpu_svm * svm)2066 static int vmsave_interception(struct vcpu_svm *svm)
2067 {
2068 struct vmcb *nested_vmcb;
2069 struct kvm_host_map map;
2070 int ret;
2071
2072 if (nested_svm_check_permissions(svm))
2073 return 1;
2074
2075 ret = kvm_vcpu_map(&svm->vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2076 if (ret) {
2077 if (ret == -EINVAL)
2078 kvm_inject_gp(&svm->vcpu, 0);
2079 return 1;
2080 }
2081
2082 nested_vmcb = map.hva;
2083
2084 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2085
2086 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2087 kvm_vcpu_unmap(&svm->vcpu, &map, true);
2088
2089 return ret;
2090 }
2091
vmrun_interception(struct vcpu_svm * svm)2092 static int vmrun_interception(struct vcpu_svm *svm)
2093 {
2094 if (nested_svm_check_permissions(svm))
2095 return 1;
2096
2097 return nested_svm_vmrun(svm);
2098 }
2099
svm_set_gif(struct vcpu_svm * svm,bool value)2100 void svm_set_gif(struct vcpu_svm *svm, bool value)
2101 {
2102 if (value) {
2103 /*
2104 * If VGIF is enabled, the STGI intercept is only added to
2105 * detect the opening of the SMI/NMI window; remove it now.
2106 * Likewise, clear the VINTR intercept, we will set it
2107 * again while processing KVM_REQ_EVENT if needed.
2108 */
2109 if (vgif_enabled(svm))
2110 svm_clr_intercept(svm, INTERCEPT_STGI);
2111 if (svm_is_intercept(svm, INTERCEPT_VINTR))
2112 svm_clear_vintr(svm);
2113
2114 enable_gif(svm);
2115 if (svm->vcpu.arch.smi_pending ||
2116 svm->vcpu.arch.nmi_pending ||
2117 kvm_cpu_has_injectable_intr(&svm->vcpu))
2118 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2119 } else {
2120 disable_gif(svm);
2121
2122 /*
2123 * After a CLGI no interrupts should come. But if vGIF is
2124 * in use, we still rely on the VINTR intercept (rather than
2125 * STGI) to detect an open interrupt window.
2126 */
2127 if (!vgif_enabled(svm))
2128 svm_clear_vintr(svm);
2129 }
2130 }
2131
stgi_interception(struct vcpu_svm * svm)2132 static int stgi_interception(struct vcpu_svm *svm)
2133 {
2134 int ret;
2135
2136 if (nested_svm_check_permissions(svm))
2137 return 1;
2138
2139 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2140 svm_set_gif(svm, true);
2141 return ret;
2142 }
2143
clgi_interception(struct vcpu_svm * svm)2144 static int clgi_interception(struct vcpu_svm *svm)
2145 {
2146 int ret;
2147
2148 if (nested_svm_check_permissions(svm))
2149 return 1;
2150
2151 ret = kvm_skip_emulated_instruction(&svm->vcpu);
2152 svm_set_gif(svm, false);
2153 return ret;
2154 }
2155
invlpga_interception(struct vcpu_svm * svm)2156 static int invlpga_interception(struct vcpu_svm *svm)
2157 {
2158 struct kvm_vcpu *vcpu = &svm->vcpu;
2159
2160 trace_kvm_invlpga(svm->vmcb->save.rip, kvm_rcx_read(&svm->vcpu),
2161 kvm_rax_read(&svm->vcpu));
2162
2163 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2164 kvm_mmu_invlpg(vcpu, kvm_rax_read(&svm->vcpu));
2165
2166 return kvm_skip_emulated_instruction(&svm->vcpu);
2167 }
2168
skinit_interception(struct vcpu_svm * svm)2169 static int skinit_interception(struct vcpu_svm *svm)
2170 {
2171 trace_kvm_skinit(svm->vmcb->save.rip, kvm_rax_read(&svm->vcpu));
2172
2173 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2174 return 1;
2175 }
2176
wbinvd_interception(struct vcpu_svm * svm)2177 static int wbinvd_interception(struct vcpu_svm *svm)
2178 {
2179 return kvm_emulate_wbinvd(&svm->vcpu);
2180 }
2181
xsetbv_interception(struct vcpu_svm * svm)2182 static int xsetbv_interception(struct vcpu_svm *svm)
2183 {
2184 u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2185 u32 index = kvm_rcx_read(&svm->vcpu);
2186
2187 if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2188 return kvm_skip_emulated_instruction(&svm->vcpu);
2189 }
2190
2191 return 1;
2192 }
2193
rdpru_interception(struct vcpu_svm * svm)2194 static int rdpru_interception(struct vcpu_svm *svm)
2195 {
2196 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2197 return 1;
2198 }
2199
task_switch_interception(struct vcpu_svm * svm)2200 static int task_switch_interception(struct vcpu_svm *svm)
2201 {
2202 u16 tss_selector;
2203 int reason;
2204 int int_type = svm->vmcb->control.exit_int_info &
2205 SVM_EXITINTINFO_TYPE_MASK;
2206 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2207 uint32_t type =
2208 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2209 uint32_t idt_v =
2210 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2211 bool has_error_code = false;
2212 u32 error_code = 0;
2213
2214 tss_selector = (u16)svm->vmcb->control.exit_info_1;
2215
2216 if (svm->vmcb->control.exit_info_2 &
2217 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2218 reason = TASK_SWITCH_IRET;
2219 else if (svm->vmcb->control.exit_info_2 &
2220 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2221 reason = TASK_SWITCH_JMP;
2222 else if (idt_v)
2223 reason = TASK_SWITCH_GATE;
2224 else
2225 reason = TASK_SWITCH_CALL;
2226
2227 if (reason == TASK_SWITCH_GATE) {
2228 switch (type) {
2229 case SVM_EXITINTINFO_TYPE_NMI:
2230 svm->vcpu.arch.nmi_injected = false;
2231 break;
2232 case SVM_EXITINTINFO_TYPE_EXEPT:
2233 if (svm->vmcb->control.exit_info_2 &
2234 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2235 has_error_code = true;
2236 error_code =
2237 (u32)svm->vmcb->control.exit_info_2;
2238 }
2239 kvm_clear_exception_queue(&svm->vcpu);
2240 break;
2241 case SVM_EXITINTINFO_TYPE_INTR:
2242 kvm_clear_interrupt_queue(&svm->vcpu);
2243 break;
2244 default:
2245 break;
2246 }
2247 }
2248
2249 if (reason != TASK_SWITCH_GATE ||
2250 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2251 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2252 (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2253 if (!skip_emulated_instruction(&svm->vcpu))
2254 return 0;
2255 }
2256
2257 if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2258 int_vec = -1;
2259
2260 return kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2261 has_error_code, error_code);
2262 }
2263
cpuid_interception(struct vcpu_svm * svm)2264 static int cpuid_interception(struct vcpu_svm *svm)
2265 {
2266 return kvm_emulate_cpuid(&svm->vcpu);
2267 }
2268
iret_interception(struct vcpu_svm * svm)2269 static int iret_interception(struct vcpu_svm *svm)
2270 {
2271 ++svm->vcpu.stat.nmi_window_exits;
2272 svm_clr_intercept(svm, INTERCEPT_IRET);
2273 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2274 svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2275 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2276 return 1;
2277 }
2278
invd_interception(struct vcpu_svm * svm)2279 static int invd_interception(struct vcpu_svm *svm)
2280 {
2281 /* Treat an INVD instruction as a NOP and just skip it. */
2282 return kvm_skip_emulated_instruction(&svm->vcpu);
2283 }
2284
invlpg_interception(struct vcpu_svm * svm)2285 static int invlpg_interception(struct vcpu_svm *svm)
2286 {
2287 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2288 return kvm_emulate_instruction(&svm->vcpu, 0);
2289
2290 kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2291 return kvm_skip_emulated_instruction(&svm->vcpu);
2292 }
2293
emulate_on_interception(struct vcpu_svm * svm)2294 static int emulate_on_interception(struct vcpu_svm *svm)
2295 {
2296 return kvm_emulate_instruction(&svm->vcpu, 0);
2297 }
2298
rsm_interception(struct vcpu_svm * svm)2299 static int rsm_interception(struct vcpu_svm *svm)
2300 {
2301 return kvm_emulate_instruction_from_buffer(&svm->vcpu, rsm_ins_bytes, 2);
2302 }
2303
rdpmc_interception(struct vcpu_svm * svm)2304 static int rdpmc_interception(struct vcpu_svm *svm)
2305 {
2306 int err;
2307
2308 if (!nrips)
2309 return emulate_on_interception(svm);
2310
2311 err = kvm_rdpmc(&svm->vcpu);
2312 return kvm_complete_insn_gp(&svm->vcpu, err);
2313 }
2314
check_selective_cr0_intercepted(struct vcpu_svm * svm,unsigned long val)2315 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2316 unsigned long val)
2317 {
2318 unsigned long cr0 = svm->vcpu.arch.cr0;
2319 bool ret = false;
2320
2321 if (!is_guest_mode(&svm->vcpu) ||
2322 (!(vmcb_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2323 return false;
2324
2325 cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2326 val &= ~SVM_CR0_SELECTIVE_MASK;
2327
2328 if (cr0 ^ val) {
2329 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2330 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2331 }
2332
2333 return ret;
2334 }
2335
2336 #define CR_VALID (1ULL << 63)
2337
cr_interception(struct vcpu_svm * svm)2338 static int cr_interception(struct vcpu_svm *svm)
2339 {
2340 int reg, cr;
2341 unsigned long val;
2342 int err;
2343
2344 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2345 return emulate_on_interception(svm);
2346
2347 if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2348 return emulate_on_interception(svm);
2349
2350 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2351 if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2352 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2353 else
2354 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2355
2356 err = 0;
2357 if (cr >= 16) { /* mov to cr */
2358 cr -= 16;
2359 val = kvm_register_read(&svm->vcpu, reg);
2360 trace_kvm_cr_write(cr, val);
2361 switch (cr) {
2362 case 0:
2363 if (!check_selective_cr0_intercepted(svm, val))
2364 err = kvm_set_cr0(&svm->vcpu, val);
2365 else
2366 return 1;
2367
2368 break;
2369 case 3:
2370 err = kvm_set_cr3(&svm->vcpu, val);
2371 break;
2372 case 4:
2373 err = kvm_set_cr4(&svm->vcpu, val);
2374 break;
2375 case 8:
2376 err = kvm_set_cr8(&svm->vcpu, val);
2377 break;
2378 default:
2379 WARN(1, "unhandled write to CR%d", cr);
2380 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2381 return 1;
2382 }
2383 } else { /* mov from cr */
2384 switch (cr) {
2385 case 0:
2386 val = kvm_read_cr0(&svm->vcpu);
2387 break;
2388 case 2:
2389 val = svm->vcpu.arch.cr2;
2390 break;
2391 case 3:
2392 val = kvm_read_cr3(&svm->vcpu);
2393 break;
2394 case 4:
2395 val = kvm_read_cr4(&svm->vcpu);
2396 break;
2397 case 8:
2398 val = kvm_get_cr8(&svm->vcpu);
2399 break;
2400 default:
2401 WARN(1, "unhandled read from CR%d", cr);
2402 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2403 return 1;
2404 }
2405 kvm_register_write(&svm->vcpu, reg, val);
2406 trace_kvm_cr_read(cr, val);
2407 }
2408 return kvm_complete_insn_gp(&svm->vcpu, err);
2409 }
2410
dr_interception(struct vcpu_svm * svm)2411 static int dr_interception(struct vcpu_svm *svm)
2412 {
2413 int reg, dr;
2414 unsigned long val;
2415
2416 if (svm->vcpu.guest_debug == 0) {
2417 /*
2418 * No more DR vmexits; force a reload of the debug registers
2419 * and reenter on this instruction. The next vmexit will
2420 * retrieve the full state of the debug registers.
2421 */
2422 clr_dr_intercepts(svm);
2423 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2424 return 1;
2425 }
2426
2427 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2428 return emulate_on_interception(svm);
2429
2430 reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2431 dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2432
2433 if (dr >= 16) { /* mov to DRn */
2434 if (!kvm_require_dr(&svm->vcpu, dr - 16))
2435 return 1;
2436 val = kvm_register_read(&svm->vcpu, reg);
2437 kvm_set_dr(&svm->vcpu, dr - 16, val);
2438 } else {
2439 if (!kvm_require_dr(&svm->vcpu, dr))
2440 return 1;
2441 kvm_get_dr(&svm->vcpu, dr, &val);
2442 kvm_register_write(&svm->vcpu, reg, val);
2443 }
2444
2445 return kvm_skip_emulated_instruction(&svm->vcpu);
2446 }
2447
cr8_write_interception(struct vcpu_svm * svm)2448 static int cr8_write_interception(struct vcpu_svm *svm)
2449 {
2450 struct kvm_run *kvm_run = svm->vcpu.run;
2451 int r;
2452
2453 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2454 /* instruction emulation calls kvm_set_cr8() */
2455 r = cr_interception(svm);
2456 if (lapic_in_kernel(&svm->vcpu))
2457 return r;
2458 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2459 return r;
2460 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2461 return 0;
2462 }
2463
svm_get_msr_feature(struct kvm_msr_entry * msr)2464 static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2465 {
2466 msr->data = 0;
2467
2468 switch (msr->index) {
2469 case MSR_F10H_DECFG:
2470 if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC))
2471 msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE;
2472 break;
2473 case MSR_IA32_PERF_CAPABILITIES:
2474 return 0;
2475 default:
2476 return KVM_MSR_RET_INVALID;
2477 }
2478
2479 return 0;
2480 }
2481
svm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2482 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2483 {
2484 struct vcpu_svm *svm = to_svm(vcpu);
2485
2486 switch (msr_info->index) {
2487 case MSR_STAR:
2488 msr_info->data = svm->vmcb->save.star;
2489 break;
2490 #ifdef CONFIG_X86_64
2491 case MSR_LSTAR:
2492 msr_info->data = svm->vmcb->save.lstar;
2493 break;
2494 case MSR_CSTAR:
2495 msr_info->data = svm->vmcb->save.cstar;
2496 break;
2497 case MSR_KERNEL_GS_BASE:
2498 msr_info->data = svm->vmcb->save.kernel_gs_base;
2499 break;
2500 case MSR_SYSCALL_MASK:
2501 msr_info->data = svm->vmcb->save.sfmask;
2502 break;
2503 #endif
2504 case MSR_IA32_SYSENTER_CS:
2505 msr_info->data = svm->vmcb->save.sysenter_cs;
2506 break;
2507 case MSR_IA32_SYSENTER_EIP:
2508 msr_info->data = svm->sysenter_eip;
2509 break;
2510 case MSR_IA32_SYSENTER_ESP:
2511 msr_info->data = svm->sysenter_esp;
2512 break;
2513 case MSR_TSC_AUX:
2514 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2515 return 1;
2516 msr_info->data = svm->tsc_aux;
2517 break;
2518 /*
2519 * Nobody will change the following 5 values in the VMCB so we can
2520 * safely return them on rdmsr. They will always be 0 until LBRV is
2521 * implemented.
2522 */
2523 case MSR_IA32_DEBUGCTLMSR:
2524 msr_info->data = svm->vmcb->save.dbgctl;
2525 break;
2526 case MSR_IA32_LASTBRANCHFROMIP:
2527 msr_info->data = svm->vmcb->save.br_from;
2528 break;
2529 case MSR_IA32_LASTBRANCHTOIP:
2530 msr_info->data = svm->vmcb->save.br_to;
2531 break;
2532 case MSR_IA32_LASTINTFROMIP:
2533 msr_info->data = svm->vmcb->save.last_excp_from;
2534 break;
2535 case MSR_IA32_LASTINTTOIP:
2536 msr_info->data = svm->vmcb->save.last_excp_to;
2537 break;
2538 case MSR_VM_HSAVE_PA:
2539 msr_info->data = svm->nested.hsave_msr;
2540 break;
2541 case MSR_VM_CR:
2542 msr_info->data = svm->nested.vm_cr_msr;
2543 break;
2544 case MSR_IA32_SPEC_CTRL:
2545 if (!msr_info->host_initiated &&
2546 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2547 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2548 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2549 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2550 return 1;
2551
2552 msr_info->data = svm->spec_ctrl;
2553 break;
2554 case MSR_AMD64_VIRT_SPEC_CTRL:
2555 if (!msr_info->host_initiated &&
2556 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2557 return 1;
2558
2559 msr_info->data = svm->virt_spec_ctrl;
2560 break;
2561 case MSR_F15H_IC_CFG: {
2562
2563 int family, model;
2564
2565 family = guest_cpuid_family(vcpu);
2566 model = guest_cpuid_model(vcpu);
2567
2568 if (family < 0 || model < 0)
2569 return kvm_get_msr_common(vcpu, msr_info);
2570
2571 msr_info->data = 0;
2572
2573 if (family == 0x15 &&
2574 (model >= 0x2 && model < 0x20))
2575 msr_info->data = 0x1E;
2576 }
2577 break;
2578 case MSR_F10H_DECFG:
2579 msr_info->data = svm->msr_decfg;
2580 break;
2581 default:
2582 return kvm_get_msr_common(vcpu, msr_info);
2583 }
2584 return 0;
2585 }
2586
rdmsr_interception(struct vcpu_svm * svm)2587 static int rdmsr_interception(struct vcpu_svm *svm)
2588 {
2589 return kvm_emulate_rdmsr(&svm->vcpu);
2590 }
2591
svm_set_vm_cr(struct kvm_vcpu * vcpu,u64 data)2592 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2593 {
2594 struct vcpu_svm *svm = to_svm(vcpu);
2595 int svm_dis, chg_mask;
2596
2597 if (data & ~SVM_VM_CR_VALID_MASK)
2598 return 1;
2599
2600 chg_mask = SVM_VM_CR_VALID_MASK;
2601
2602 if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2603 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2604
2605 svm->nested.vm_cr_msr &= ~chg_mask;
2606 svm->nested.vm_cr_msr |= (data & chg_mask);
2607
2608 svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2609
2610 /* check for svm_disable while efer.svme is set */
2611 if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2612 return 1;
2613
2614 return 0;
2615 }
2616
svm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2617 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2618 {
2619 struct vcpu_svm *svm = to_svm(vcpu);
2620
2621 u32 ecx = msr->index;
2622 u64 data = msr->data;
2623 switch (ecx) {
2624 case MSR_IA32_CR_PAT:
2625 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2626 return 1;
2627 vcpu->arch.pat = data;
2628 svm->vmcb->save.g_pat = data;
2629 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
2630 break;
2631 case MSR_IA32_SPEC_CTRL:
2632 if (!msr->host_initiated &&
2633 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
2634 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_STIBP) &&
2635 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) &&
2636 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD))
2637 return 1;
2638
2639 if (kvm_spec_ctrl_test_value(data))
2640 return 1;
2641
2642 svm->spec_ctrl = data;
2643 if (!data)
2644 break;
2645
2646 /*
2647 * For non-nested:
2648 * When it's written (to non-zero) for the first time, pass
2649 * it through.
2650 *
2651 * For nested:
2652 * The handling of the MSR bitmap for L2 guests is done in
2653 * nested_svm_vmrun_msrpm.
2654 * We update the L1 MSR bit as well since it will end up
2655 * touching the MSR anyway now.
2656 */
2657 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
2658 break;
2659 case MSR_IA32_PRED_CMD:
2660 if (!msr->host_initiated &&
2661 !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
2662 return 1;
2663
2664 if (data & ~PRED_CMD_IBPB)
2665 return 1;
2666 if (!boot_cpu_has(X86_FEATURE_AMD_IBPB))
2667 return 1;
2668 if (!data)
2669 break;
2670
2671 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2672 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0, 1);
2673 break;
2674 case MSR_AMD64_VIRT_SPEC_CTRL:
2675 if (!msr->host_initiated &&
2676 !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2677 return 1;
2678
2679 if (data & ~SPEC_CTRL_SSBD)
2680 return 1;
2681
2682 svm->virt_spec_ctrl = data;
2683 break;
2684 case MSR_STAR:
2685 svm->vmcb->save.star = data;
2686 break;
2687 #ifdef CONFIG_X86_64
2688 case MSR_LSTAR:
2689 svm->vmcb->save.lstar = data;
2690 break;
2691 case MSR_CSTAR:
2692 svm->vmcb->save.cstar = data;
2693 break;
2694 case MSR_KERNEL_GS_BASE:
2695 svm->vmcb->save.kernel_gs_base = data;
2696 break;
2697 case MSR_SYSCALL_MASK:
2698 svm->vmcb->save.sfmask = data;
2699 break;
2700 #endif
2701 case MSR_IA32_SYSENTER_CS:
2702 svm->vmcb->save.sysenter_cs = data;
2703 break;
2704 case MSR_IA32_SYSENTER_EIP:
2705 svm->sysenter_eip = data;
2706 svm->vmcb->save.sysenter_eip = data;
2707 break;
2708 case MSR_IA32_SYSENTER_ESP:
2709 svm->sysenter_esp = data;
2710 svm->vmcb->save.sysenter_esp = data;
2711 break;
2712 case MSR_TSC_AUX:
2713 if (!boot_cpu_has(X86_FEATURE_RDTSCP))
2714 return 1;
2715
2716 /*
2717 * This is rare, so we update the MSR here instead of using
2718 * direct_access_msrs. Doing that would require a rdmsr in
2719 * svm_vcpu_put.
2720 */
2721 svm->tsc_aux = data;
2722 wrmsrl(MSR_TSC_AUX, svm->tsc_aux);
2723 break;
2724 case MSR_IA32_DEBUGCTLMSR:
2725 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
2726 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2727 __func__, data);
2728 break;
2729 }
2730 if (data & DEBUGCTL_RESERVED_BITS)
2731 return 1;
2732
2733 svm->vmcb->save.dbgctl = data;
2734 vmcb_mark_dirty(svm->vmcb, VMCB_LBR);
2735 if (data & (1ULL<<0))
2736 svm_enable_lbrv(vcpu);
2737 else
2738 svm_disable_lbrv(vcpu);
2739 break;
2740 case MSR_VM_HSAVE_PA:
2741 svm->nested.hsave_msr = data;
2742 break;
2743 case MSR_VM_CR:
2744 return svm_set_vm_cr(vcpu, data);
2745 case MSR_VM_IGNNE:
2746 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2747 break;
2748 case MSR_F10H_DECFG: {
2749 struct kvm_msr_entry msr_entry;
2750
2751 msr_entry.index = msr->index;
2752 if (svm_get_msr_feature(&msr_entry))
2753 return 1;
2754
2755 /* Check the supported bits */
2756 if (data & ~msr_entry.data)
2757 return 1;
2758
2759 /* Don't allow the guest to change a bit, #GP */
2760 if (!msr->host_initiated && (data ^ msr_entry.data))
2761 return 1;
2762
2763 svm->msr_decfg = data;
2764 break;
2765 }
2766 case MSR_IA32_APICBASE:
2767 if (kvm_vcpu_apicv_active(vcpu))
2768 avic_update_vapic_bar(to_svm(vcpu), data);
2769 fallthrough;
2770 default:
2771 return kvm_set_msr_common(vcpu, msr);
2772 }
2773 return 0;
2774 }
2775
wrmsr_interception(struct vcpu_svm * svm)2776 static int wrmsr_interception(struct vcpu_svm *svm)
2777 {
2778 return kvm_emulate_wrmsr(&svm->vcpu);
2779 }
2780
msr_interception(struct vcpu_svm * svm)2781 static int msr_interception(struct vcpu_svm *svm)
2782 {
2783 if (svm->vmcb->control.exit_info_1)
2784 return wrmsr_interception(svm);
2785 else
2786 return rdmsr_interception(svm);
2787 }
2788
interrupt_window_interception(struct vcpu_svm * svm)2789 static int interrupt_window_interception(struct vcpu_svm *svm)
2790 {
2791 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2792 svm_clear_vintr(svm);
2793
2794 /*
2795 * For AVIC, the only reason to end up here is ExtINTs.
2796 * In this case AVIC was temporarily disabled for
2797 * requesting the IRQ window and we have to re-enable it.
2798 */
2799 svm_toggle_avic_for_irq_window(&svm->vcpu, true);
2800
2801 ++svm->vcpu.stat.irq_window_exits;
2802 return 1;
2803 }
2804
pause_interception(struct vcpu_svm * svm)2805 static int pause_interception(struct vcpu_svm *svm)
2806 {
2807 struct kvm_vcpu *vcpu = &svm->vcpu;
2808 bool in_kernel = (svm_get_cpl(vcpu) == 0);
2809
2810 if (!kvm_pause_in_guest(vcpu->kvm))
2811 grow_ple_window(vcpu);
2812
2813 kvm_vcpu_on_spin(vcpu, in_kernel);
2814 return 1;
2815 }
2816
nop_interception(struct vcpu_svm * svm)2817 static int nop_interception(struct vcpu_svm *svm)
2818 {
2819 return kvm_skip_emulated_instruction(&(svm->vcpu));
2820 }
2821
monitor_interception(struct vcpu_svm * svm)2822 static int monitor_interception(struct vcpu_svm *svm)
2823 {
2824 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
2825 return nop_interception(svm);
2826 }
2827
mwait_interception(struct vcpu_svm * svm)2828 static int mwait_interception(struct vcpu_svm *svm)
2829 {
2830 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
2831 return nop_interception(svm);
2832 }
2833
invpcid_interception(struct vcpu_svm * svm)2834 static int invpcid_interception(struct vcpu_svm *svm)
2835 {
2836 struct kvm_vcpu *vcpu = &svm->vcpu;
2837 unsigned long type;
2838 gva_t gva;
2839
2840 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
2841 kvm_queue_exception(vcpu, UD_VECTOR);
2842 return 1;
2843 }
2844
2845 /*
2846 * For an INVPCID intercept:
2847 * EXITINFO1 provides the linear address of the memory operand.
2848 * EXITINFO2 provides the contents of the register operand.
2849 */
2850 type = svm->vmcb->control.exit_info_2;
2851 gva = svm->vmcb->control.exit_info_1;
2852
2853 if (type > 3) {
2854 kvm_inject_gp(vcpu, 0);
2855 return 1;
2856 }
2857
2858 return kvm_handle_invpcid(vcpu, type, gva);
2859 }
2860
2861 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
2862 [SVM_EXIT_READ_CR0] = cr_interception,
2863 [SVM_EXIT_READ_CR3] = cr_interception,
2864 [SVM_EXIT_READ_CR4] = cr_interception,
2865 [SVM_EXIT_READ_CR8] = cr_interception,
2866 [SVM_EXIT_CR0_SEL_WRITE] = cr_interception,
2867 [SVM_EXIT_WRITE_CR0] = cr_interception,
2868 [SVM_EXIT_WRITE_CR3] = cr_interception,
2869 [SVM_EXIT_WRITE_CR4] = cr_interception,
2870 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2871 [SVM_EXIT_READ_DR0] = dr_interception,
2872 [SVM_EXIT_READ_DR1] = dr_interception,
2873 [SVM_EXIT_READ_DR2] = dr_interception,
2874 [SVM_EXIT_READ_DR3] = dr_interception,
2875 [SVM_EXIT_READ_DR4] = dr_interception,
2876 [SVM_EXIT_READ_DR5] = dr_interception,
2877 [SVM_EXIT_READ_DR6] = dr_interception,
2878 [SVM_EXIT_READ_DR7] = dr_interception,
2879 [SVM_EXIT_WRITE_DR0] = dr_interception,
2880 [SVM_EXIT_WRITE_DR1] = dr_interception,
2881 [SVM_EXIT_WRITE_DR2] = dr_interception,
2882 [SVM_EXIT_WRITE_DR3] = dr_interception,
2883 [SVM_EXIT_WRITE_DR4] = dr_interception,
2884 [SVM_EXIT_WRITE_DR5] = dr_interception,
2885 [SVM_EXIT_WRITE_DR6] = dr_interception,
2886 [SVM_EXIT_WRITE_DR7] = dr_interception,
2887 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2888 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2889 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2890 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2891 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2892 [SVM_EXIT_EXCP_BASE + AC_VECTOR] = ac_interception,
2893 [SVM_EXIT_EXCP_BASE + GP_VECTOR] = gp_interception,
2894 [SVM_EXIT_INTR] = intr_interception,
2895 [SVM_EXIT_NMI] = nmi_interception,
2896 [SVM_EXIT_SMI] = nop_on_interception,
2897 [SVM_EXIT_INIT] = nop_on_interception,
2898 [SVM_EXIT_VINTR] = interrupt_window_interception,
2899 [SVM_EXIT_RDPMC] = rdpmc_interception,
2900 [SVM_EXIT_CPUID] = cpuid_interception,
2901 [SVM_EXIT_IRET] = iret_interception,
2902 [SVM_EXIT_INVD] = invd_interception,
2903 [SVM_EXIT_PAUSE] = pause_interception,
2904 [SVM_EXIT_HLT] = halt_interception,
2905 [SVM_EXIT_INVLPG] = invlpg_interception,
2906 [SVM_EXIT_INVLPGA] = invlpga_interception,
2907 [SVM_EXIT_IOIO] = io_interception,
2908 [SVM_EXIT_MSR] = msr_interception,
2909 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2910 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2911 [SVM_EXIT_VMRUN] = vmrun_interception,
2912 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2913 [SVM_EXIT_VMLOAD] = vmload_interception,
2914 [SVM_EXIT_VMSAVE] = vmsave_interception,
2915 [SVM_EXIT_STGI] = stgi_interception,
2916 [SVM_EXIT_CLGI] = clgi_interception,
2917 [SVM_EXIT_SKINIT] = skinit_interception,
2918 [SVM_EXIT_WBINVD] = wbinvd_interception,
2919 [SVM_EXIT_MONITOR] = monitor_interception,
2920 [SVM_EXIT_MWAIT] = mwait_interception,
2921 [SVM_EXIT_XSETBV] = xsetbv_interception,
2922 [SVM_EXIT_RDPRU] = rdpru_interception,
2923 [SVM_EXIT_INVPCID] = invpcid_interception,
2924 [SVM_EXIT_NPF] = npf_interception,
2925 [SVM_EXIT_RSM] = rsm_interception,
2926 [SVM_EXIT_AVIC_INCOMPLETE_IPI] = avic_incomplete_ipi_interception,
2927 [SVM_EXIT_AVIC_UNACCELERATED_ACCESS] = avic_unaccelerated_access_interception,
2928 };
2929
dump_vmcb(struct kvm_vcpu * vcpu)2930 static void dump_vmcb(struct kvm_vcpu *vcpu)
2931 {
2932 struct vcpu_svm *svm = to_svm(vcpu);
2933 struct vmcb_control_area *control = &svm->vmcb->control;
2934 struct vmcb_save_area *save = &svm->vmcb->save;
2935
2936 if (!dump_invalid_vmcb) {
2937 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2938 return;
2939 }
2940
2941 pr_err("VMCB Control Area:\n");
2942 pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
2943 pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
2944 pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
2945 pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
2946 pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
2947 pr_err("%-20s%08x %08x\n", "intercepts:",
2948 control->intercepts[INTERCEPT_WORD3],
2949 control->intercepts[INTERCEPT_WORD4]);
2950 pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
2951 pr_err("%-20s%d\n", "pause filter threshold:",
2952 control->pause_filter_thresh);
2953 pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
2954 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
2955 pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
2956 pr_err("%-20s%d\n", "asid:", control->asid);
2957 pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
2958 pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
2959 pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
2960 pr_err("%-20s%08x\n", "int_state:", control->int_state);
2961 pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
2962 pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
2963 pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
2964 pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
2965 pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
2966 pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
2967 pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
2968 pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
2969 pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
2970 pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
2971 pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
2972 pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
2973 pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
2974 pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
2975 pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
2976 pr_err("VMCB State Save Area:\n");
2977 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2978 "es:",
2979 save->es.selector, save->es.attrib,
2980 save->es.limit, save->es.base);
2981 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2982 "cs:",
2983 save->cs.selector, save->cs.attrib,
2984 save->cs.limit, save->cs.base);
2985 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2986 "ss:",
2987 save->ss.selector, save->ss.attrib,
2988 save->ss.limit, save->ss.base);
2989 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2990 "ds:",
2991 save->ds.selector, save->ds.attrib,
2992 save->ds.limit, save->ds.base);
2993 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2994 "fs:",
2995 save->fs.selector, save->fs.attrib,
2996 save->fs.limit, save->fs.base);
2997 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
2998 "gs:",
2999 save->gs.selector, save->gs.attrib,
3000 save->gs.limit, save->gs.base);
3001 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3002 "gdtr:",
3003 save->gdtr.selector, save->gdtr.attrib,
3004 save->gdtr.limit, save->gdtr.base);
3005 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3006 "ldtr:",
3007 save->ldtr.selector, save->ldtr.attrib,
3008 save->ldtr.limit, save->ldtr.base);
3009 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3010 "idtr:",
3011 save->idtr.selector, save->idtr.attrib,
3012 save->idtr.limit, save->idtr.base);
3013 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3014 "tr:",
3015 save->tr.selector, save->tr.attrib,
3016 save->tr.limit, save->tr.base);
3017 pr_err("cpl: %d efer: %016llx\n",
3018 save->cpl, save->efer);
3019 pr_err("%-15s %016llx %-13s %016llx\n",
3020 "cr0:", save->cr0, "cr2:", save->cr2);
3021 pr_err("%-15s %016llx %-13s %016llx\n",
3022 "cr3:", save->cr3, "cr4:", save->cr4);
3023 pr_err("%-15s %016llx %-13s %016llx\n",
3024 "dr6:", save->dr6, "dr7:", save->dr7);
3025 pr_err("%-15s %016llx %-13s %016llx\n",
3026 "rip:", save->rip, "rflags:", save->rflags);
3027 pr_err("%-15s %016llx %-13s %016llx\n",
3028 "rsp:", save->rsp, "rax:", save->rax);
3029 pr_err("%-15s %016llx %-13s %016llx\n",
3030 "star:", save->star, "lstar:", save->lstar);
3031 pr_err("%-15s %016llx %-13s %016llx\n",
3032 "cstar:", save->cstar, "sfmask:", save->sfmask);
3033 pr_err("%-15s %016llx %-13s %016llx\n",
3034 "kernel_gs_base:", save->kernel_gs_base,
3035 "sysenter_cs:", save->sysenter_cs);
3036 pr_err("%-15s %016llx %-13s %016llx\n",
3037 "sysenter_esp:", save->sysenter_esp,
3038 "sysenter_eip:", save->sysenter_eip);
3039 pr_err("%-15s %016llx %-13s %016llx\n",
3040 "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3041 pr_err("%-15s %016llx %-13s %016llx\n",
3042 "br_from:", save->br_from, "br_to:", save->br_to);
3043 pr_err("%-15s %016llx %-13s %016llx\n",
3044 "excp_from:", save->last_excp_from,
3045 "excp_to:", save->last_excp_to);
3046 }
3047
svm_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)3048 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
3049 u32 *intr_info, u32 *error_code)
3050 {
3051 struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3052
3053 *info1 = control->exit_info_1;
3054 *info2 = control->exit_info_2;
3055 *intr_info = control->exit_int_info;
3056 if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3057 (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3058 *error_code = control->exit_int_info_err;
3059 else
3060 *error_code = 0;
3061 }
3062
handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)3063 static int handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3064 {
3065 struct vcpu_svm *svm = to_svm(vcpu);
3066 struct kvm_run *kvm_run = vcpu->run;
3067 u32 exit_code = svm->vmcb->control.exit_code;
3068
3069 trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3070
3071 if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3072 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3073 if (npt_enabled)
3074 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3075
3076 if (is_guest_mode(vcpu)) {
3077 int vmexit;
3078
3079 trace_kvm_nested_vmexit(exit_code, vcpu, KVM_ISA_SVM);
3080
3081 vmexit = nested_svm_exit_special(svm);
3082
3083 if (vmexit == NESTED_EXIT_CONTINUE)
3084 vmexit = nested_svm_exit_handled(svm);
3085
3086 if (vmexit == NESTED_EXIT_DONE)
3087 return 1;
3088 }
3089
3090 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3091 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3092 kvm_run->fail_entry.hardware_entry_failure_reason
3093 = svm->vmcb->control.exit_code;
3094 kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3095 dump_vmcb(vcpu);
3096 return 0;
3097 }
3098
3099 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3100 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3101 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3102 exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3103 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3104 "exit_code 0x%x\n",
3105 __func__, svm->vmcb->control.exit_int_info,
3106 exit_code);
3107
3108 if (exit_fastpath != EXIT_FASTPATH_NONE)
3109 return 1;
3110
3111 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3112 || !svm_exit_handlers[exit_code]) {
3113 vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%x\n", exit_code);
3114 dump_vmcb(vcpu);
3115 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3116 vcpu->run->internal.suberror =
3117 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3118 vcpu->run->internal.ndata = 2;
3119 vcpu->run->internal.data[0] = exit_code;
3120 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3121 return 0;
3122 }
3123
3124 #ifdef CONFIG_RETPOLINE
3125 if (exit_code == SVM_EXIT_MSR)
3126 return msr_interception(svm);
3127 else if (exit_code == SVM_EXIT_VINTR)
3128 return interrupt_window_interception(svm);
3129 else if (exit_code == SVM_EXIT_INTR)
3130 return intr_interception(svm);
3131 else if (exit_code == SVM_EXIT_HLT)
3132 return halt_interception(svm);
3133 else if (exit_code == SVM_EXIT_NPF)
3134 return npf_interception(svm);
3135 #endif
3136 return svm_exit_handlers[exit_code](svm);
3137 }
3138
reload_tss(struct kvm_vcpu * vcpu)3139 static void reload_tss(struct kvm_vcpu *vcpu)
3140 {
3141 struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
3142
3143 sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3144 load_TR_desc();
3145 }
3146
pre_svm_run(struct vcpu_svm * svm)3147 static void pre_svm_run(struct vcpu_svm *svm)
3148 {
3149 struct svm_cpu_data *sd = per_cpu(svm_data, svm->vcpu.cpu);
3150
3151 if (sev_guest(svm->vcpu.kvm))
3152 return pre_sev_run(svm, svm->vcpu.cpu);
3153
3154 /* FIXME: handle wraparound of asid_generation */
3155 if (svm->asid_generation != sd->asid_generation)
3156 new_asid(svm, sd);
3157 }
3158
svm_inject_nmi(struct kvm_vcpu * vcpu)3159 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3160 {
3161 struct vcpu_svm *svm = to_svm(vcpu);
3162
3163 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3164 vcpu->arch.hflags |= HF_NMI_MASK;
3165 svm_set_intercept(svm, INTERCEPT_IRET);
3166 ++vcpu->stat.nmi_injections;
3167 }
3168
svm_set_irq(struct kvm_vcpu * vcpu)3169 static void svm_set_irq(struct kvm_vcpu *vcpu)
3170 {
3171 struct vcpu_svm *svm = to_svm(vcpu);
3172
3173 BUG_ON(!(gif_set(svm)));
3174
3175 trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3176 ++vcpu->stat.irq_injections;
3177
3178 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3179 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3180 }
3181
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)3182 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3183 {
3184 struct vcpu_svm *svm = to_svm(vcpu);
3185
3186 if (nested_svm_virtualize_tpr(vcpu))
3187 return;
3188
3189 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3190
3191 if (irr == -1)
3192 return;
3193
3194 if (tpr >= irr)
3195 svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3196 }
3197
svm_nmi_blocked(struct kvm_vcpu * vcpu)3198 bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3199 {
3200 struct vcpu_svm *svm = to_svm(vcpu);
3201 struct vmcb *vmcb = svm->vmcb;
3202 bool ret;
3203
3204 if (!gif_set(svm))
3205 return true;
3206
3207 if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3208 return false;
3209
3210 ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
3211 (svm->vcpu.arch.hflags & HF_NMI_MASK);
3212
3213 return ret;
3214 }
3215
svm_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)3216 static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3217 {
3218 struct vcpu_svm *svm = to_svm(vcpu);
3219 if (svm->nested.nested_run_pending)
3220 return -EBUSY;
3221
3222 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
3223 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3224 return -EBUSY;
3225
3226 return !svm_nmi_blocked(vcpu);
3227 }
3228
svm_get_nmi_mask(struct kvm_vcpu * vcpu)3229 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3230 {
3231 struct vcpu_svm *svm = to_svm(vcpu);
3232
3233 return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3234 }
3235
svm_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)3236 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3237 {
3238 struct vcpu_svm *svm = to_svm(vcpu);
3239
3240 if (masked) {
3241 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3242 svm_set_intercept(svm, INTERCEPT_IRET);
3243 } else {
3244 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3245 svm_clr_intercept(svm, INTERCEPT_IRET);
3246 }
3247 }
3248
svm_interrupt_blocked(struct kvm_vcpu * vcpu)3249 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3250 {
3251 struct vcpu_svm *svm = to_svm(vcpu);
3252 struct vmcb *vmcb = svm->vmcb;
3253
3254 if (!gif_set(svm))
3255 return true;
3256
3257 if (is_guest_mode(vcpu)) {
3258 /* As long as interrupts are being delivered... */
3259 if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3260 ? !(svm->nested.hsave->save.rflags & X86_EFLAGS_IF)
3261 : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3262 return true;
3263
3264 /* ... vmexits aren't blocked by the interrupt shadow */
3265 if (nested_exit_on_intr(svm))
3266 return false;
3267 } else {
3268 if (!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3269 return true;
3270 }
3271
3272 return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3273 }
3274
svm_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)3275 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3276 {
3277 struct vcpu_svm *svm = to_svm(vcpu);
3278 if (svm->nested.nested_run_pending)
3279 return -EBUSY;
3280
3281 /*
3282 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3283 * e.g. if the IRQ arrived asynchronously after checking nested events.
3284 */
3285 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3286 return -EBUSY;
3287
3288 return !svm_interrupt_blocked(vcpu);
3289 }
3290
enable_irq_window(struct kvm_vcpu * vcpu)3291 static void enable_irq_window(struct kvm_vcpu *vcpu)
3292 {
3293 struct vcpu_svm *svm = to_svm(vcpu);
3294
3295 /*
3296 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3297 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3298 * get that intercept, this function will be called again though and
3299 * we'll get the vintr intercept. However, if the vGIF feature is
3300 * enabled, the STGI interception will not occur. Enable the irq
3301 * window under the assumption that the hardware will set the GIF.
3302 */
3303 if (vgif_enabled(svm) || gif_set(svm)) {
3304 /*
3305 * IRQ window is not needed when AVIC is enabled,
3306 * unless we have pending ExtINT since it cannot be injected
3307 * via AVIC. In such case, we need to temporarily disable AVIC,
3308 * and fallback to injecting IRQ via V_IRQ.
3309 */
3310 svm_toggle_avic_for_irq_window(vcpu, false);
3311 svm_set_vintr(svm);
3312 }
3313 }
3314
enable_nmi_window(struct kvm_vcpu * vcpu)3315 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3316 {
3317 struct vcpu_svm *svm = to_svm(vcpu);
3318
3319 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3320 == HF_NMI_MASK)
3321 return; /* IRET will cause a vm exit */
3322
3323 if (!gif_set(svm)) {
3324 if (vgif_enabled(svm))
3325 svm_set_intercept(svm, INTERCEPT_STGI);
3326 return; /* STGI will cause a vm exit */
3327 }
3328
3329 /*
3330 * Something prevents NMI from been injected. Single step over possible
3331 * problem (IRET or exception injection or interrupt shadow)
3332 */
3333 svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3334 svm->nmi_singlestep = true;
3335 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3336 }
3337
svm_set_tss_addr(struct kvm * kvm,unsigned int addr)3338 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3339 {
3340 return 0;
3341 }
3342
svm_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3343 static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
3344 {
3345 return 0;
3346 }
3347
svm_flush_tlb(struct kvm_vcpu * vcpu)3348 void svm_flush_tlb(struct kvm_vcpu *vcpu)
3349 {
3350 struct vcpu_svm *svm = to_svm(vcpu);
3351
3352 /*
3353 * Flush only the current ASID even if the TLB flush was invoked via
3354 * kvm_flush_remote_tlbs(). Although flushing remote TLBs requires all
3355 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3356 * unconditionally does a TLB flush on both nested VM-Enter and nested
3357 * VM-Exit (via kvm_mmu_reset_context()).
3358 */
3359 if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3360 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3361 else
3362 svm->asid_generation--;
3363 }
3364
svm_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t gva)3365 static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3366 {
3367 struct vcpu_svm *svm = to_svm(vcpu);
3368
3369 invlpga(gva, svm->vmcb->control.asid);
3370 }
3371
svm_prepare_guest_switch(struct kvm_vcpu * vcpu)3372 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3373 {
3374 }
3375
sync_cr8_to_lapic(struct kvm_vcpu * vcpu)3376 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3377 {
3378 struct vcpu_svm *svm = to_svm(vcpu);
3379
3380 if (nested_svm_virtualize_tpr(vcpu))
3381 return;
3382
3383 if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3384 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3385 kvm_set_cr8(vcpu, cr8);
3386 }
3387 }
3388
sync_lapic_to_cr8(struct kvm_vcpu * vcpu)3389 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3390 {
3391 struct vcpu_svm *svm = to_svm(vcpu);
3392 u64 cr8;
3393
3394 if (nested_svm_virtualize_tpr(vcpu) ||
3395 kvm_vcpu_apicv_active(vcpu))
3396 return;
3397
3398 cr8 = kvm_get_cr8(vcpu);
3399 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3400 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3401 }
3402
svm_complete_interrupts(struct vcpu_svm * svm)3403 static void svm_complete_interrupts(struct vcpu_svm *svm)
3404 {
3405 u8 vector;
3406 int type;
3407 u32 exitintinfo = svm->vmcb->control.exit_int_info;
3408 unsigned int3_injected = svm->int3_injected;
3409
3410 svm->int3_injected = 0;
3411
3412 /*
3413 * If we've made progress since setting HF_IRET_MASK, we've
3414 * executed an IRET and can allow NMI injection.
3415 */
3416 if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3417 && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3418 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3419 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3420 }
3421
3422 svm->vcpu.arch.nmi_injected = false;
3423 kvm_clear_exception_queue(&svm->vcpu);
3424 kvm_clear_interrupt_queue(&svm->vcpu);
3425
3426 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3427 return;
3428
3429 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3430
3431 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3432 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3433
3434 switch (type) {
3435 case SVM_EXITINTINFO_TYPE_NMI:
3436 svm->vcpu.arch.nmi_injected = true;
3437 break;
3438 case SVM_EXITINTINFO_TYPE_EXEPT:
3439 /*
3440 * In case of software exceptions, do not reinject the vector,
3441 * but re-execute the instruction instead. Rewind RIP first
3442 * if we emulated INT3 before.
3443 */
3444 if (kvm_exception_is_soft(vector)) {
3445 if (vector == BP_VECTOR && int3_injected &&
3446 kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3447 kvm_rip_write(&svm->vcpu,
3448 kvm_rip_read(&svm->vcpu) -
3449 int3_injected);
3450 break;
3451 }
3452 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3453 u32 err = svm->vmcb->control.exit_int_info_err;
3454 kvm_requeue_exception_e(&svm->vcpu, vector, err);
3455
3456 } else
3457 kvm_requeue_exception(&svm->vcpu, vector);
3458 break;
3459 case SVM_EXITINTINFO_TYPE_INTR:
3460 kvm_queue_interrupt(&svm->vcpu, vector, false);
3461 break;
3462 default:
3463 break;
3464 }
3465 }
3466
svm_cancel_injection(struct kvm_vcpu * vcpu)3467 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3468 {
3469 struct vcpu_svm *svm = to_svm(vcpu);
3470 struct vmcb_control_area *control = &svm->vmcb->control;
3471
3472 control->exit_int_info = control->event_inj;
3473 control->exit_int_info_err = control->event_inj_err;
3474 control->event_inj = 0;
3475 svm_complete_interrupts(svm);
3476 }
3477
svm_exit_handlers_fastpath(struct kvm_vcpu * vcpu)3478 static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
3479 {
3480 if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
3481 to_svm(vcpu)->vmcb->control.exit_info_1)
3482 return handle_fastpath_set_msr_irqoff(vcpu);
3483
3484 return EXIT_FASTPATH_NONE;
3485 }
3486
3487 void __svm_vcpu_run(unsigned long vmcb_pa, unsigned long *regs);
3488
svm_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_svm * svm)3489 static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu,
3490 struct vcpu_svm *svm)
3491 {
3492 /*
3493 * VMENTER enables interrupts (host state), but the kernel state is
3494 * interrupts disabled when this is invoked. Also tell RCU about
3495 * it. This is the same logic as for exit_to_user_mode().
3496 *
3497 * This ensures that e.g. latency analysis on the host observes
3498 * guest mode as interrupt enabled.
3499 *
3500 * guest_enter_irqoff() informs context tracking about the
3501 * transition to guest mode and if enabled adjusts RCU state
3502 * accordingly.
3503 */
3504 instrumentation_begin();
3505 trace_hardirqs_on_prepare();
3506 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
3507 instrumentation_end();
3508
3509 guest_enter_irqoff();
3510 lockdep_hardirqs_on(CALLER_ADDR0);
3511
3512 __svm_vcpu_run(svm->vmcb_pa, (unsigned long *)&svm->vcpu.arch.regs);
3513
3514 #ifdef CONFIG_X86_64
3515 native_wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3516 #else
3517 loadsegment(fs, svm->host.fs);
3518 #ifndef CONFIG_X86_32_LAZY_GS
3519 loadsegment(gs, svm->host.gs);
3520 #endif
3521 #endif
3522
3523 /*
3524 * VMEXIT disables interrupts (host state), but tracing and lockdep
3525 * have them in state 'on' as recorded before entering guest mode.
3526 * Same as enter_from_user_mode().
3527 *
3528 * guest_exit_irqoff() restores host context and reinstates RCU if
3529 * enabled and required.
3530 *
3531 * This needs to be done before the below as native_read_msr()
3532 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
3533 * into world and some more.
3534 */
3535 lockdep_hardirqs_off(CALLER_ADDR0);
3536 guest_exit_irqoff();
3537
3538 instrumentation_begin();
3539 trace_hardirqs_off_finish();
3540 instrumentation_end();
3541 }
3542
svm_vcpu_run(struct kvm_vcpu * vcpu)3543 static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
3544 {
3545 struct vcpu_svm *svm = to_svm(vcpu);
3546
3547 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3548 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3549 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3550
3551 /*
3552 * Disable singlestep if we're injecting an interrupt/exception.
3553 * We don't want our modified rflags to be pushed on the stack where
3554 * we might not be able to easily reset them if we disabled NMI
3555 * singlestep later.
3556 */
3557 if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
3558 /*
3559 * Event injection happens before external interrupts cause a
3560 * vmexit and interrupts are disabled here, so smp_send_reschedule
3561 * is enough to force an immediate vmexit.
3562 */
3563 disable_nmi_singlestep(svm);
3564 smp_send_reschedule(vcpu->cpu);
3565 }
3566
3567 pre_svm_run(svm);
3568
3569 sync_lapic_to_cr8(vcpu);
3570
3571 svm->vmcb->save.cr2 = vcpu->arch.cr2;
3572
3573 /*
3574 * Run with all-zero DR6 unless needed, so that we can get the exact cause
3575 * of a #DB.
3576 */
3577 if (unlikely(svm->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
3578 svm_set_dr6(svm, vcpu->arch.dr6);
3579 else
3580 svm_set_dr6(svm, DR6_FIXED_1 | DR6_RTM);
3581
3582 clgi();
3583 kvm_load_guest_xsave_state(vcpu);
3584
3585 kvm_wait_lapic_expire(vcpu);
3586
3587 /*
3588 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
3589 * it's non-zero. Since vmentry is serialising on affected CPUs, there
3590 * is no need to worry about the conditional branch over the wrmsr
3591 * being speculatively taken.
3592 */
3593 x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
3594
3595 svm_vcpu_enter_exit(vcpu, svm);
3596
3597 /*
3598 * We do not use IBRS in the kernel. If this vCPU has used the
3599 * SPEC_CTRL MSR it may have left it on; save the value and
3600 * turn it off. This is much more efficient than blindly adding
3601 * it to the atomic save/restore list. Especially as the former
3602 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
3603 *
3604 * For non-nested case:
3605 * If the L01 MSR bitmap does not intercept the MSR, then we need to
3606 * save it.
3607 *
3608 * For nested case:
3609 * If the L02 MSR bitmap does not intercept the MSR, then we need to
3610 * save it.
3611 */
3612 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
3613 svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
3614
3615 reload_tss(vcpu);
3616
3617 x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
3618
3619 vcpu->arch.cr2 = svm->vmcb->save.cr2;
3620 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3621 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3622 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3623
3624 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3625 kvm_before_interrupt(&svm->vcpu);
3626
3627 kvm_load_host_xsave_state(vcpu);
3628 stgi();
3629
3630 /* Any pending NMI will happen here */
3631
3632 if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3633 kvm_after_interrupt(&svm->vcpu);
3634
3635 sync_cr8_to_lapic(vcpu);
3636
3637 svm->next_rip = 0;
3638 if (is_guest_mode(&svm->vcpu)) {
3639 sync_nested_vmcb_control(svm);
3640 svm->nested.nested_run_pending = 0;
3641 }
3642
3643 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3644 vmcb_mark_all_clean(svm->vmcb);
3645
3646 /* if exit due to PF check for async PF */
3647 if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3648 svm->vcpu.arch.apf.host_apf_flags =
3649 kvm_read_and_reset_apf_flags();
3650
3651 if (npt_enabled) {
3652 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3653 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3654 }
3655
3656 /*
3657 * We need to handle MC intercepts here before the vcpu has a chance to
3658 * change the physical cpu
3659 */
3660 if (unlikely(svm->vmcb->control.exit_code ==
3661 SVM_EXIT_EXCP_BASE + MC_VECTOR))
3662 svm_handle_mce(svm);
3663
3664 svm_complete_interrupts(svm);
3665
3666 if (is_guest_mode(vcpu))
3667 return EXIT_FASTPATH_NONE;
3668
3669 return svm_exit_handlers_fastpath(vcpu);
3670 }
3671
svm_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long root,int root_level)3672 static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long root,
3673 int root_level)
3674 {
3675 struct vcpu_svm *svm = to_svm(vcpu);
3676 unsigned long cr3;
3677
3678 cr3 = __sme_set(root);
3679 if (npt_enabled) {
3680 svm->vmcb->control.nested_cr3 = cr3;
3681 vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3682
3683 /* Loading L2's CR3 is handled by enter_svm_guest_mode. */
3684 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3685 return;
3686 cr3 = vcpu->arch.cr3;
3687 }
3688
3689 svm->vmcb->save.cr3 = cr3;
3690 vmcb_mark_dirty(svm->vmcb, VMCB_CR);
3691 }
3692
is_disabled(void)3693 static int is_disabled(void)
3694 {
3695 u64 vm_cr;
3696
3697 rdmsrl(MSR_VM_CR, vm_cr);
3698 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3699 return 1;
3700
3701 return 0;
3702 }
3703
3704 static void
svm_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)3705 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3706 {
3707 /*
3708 * Patch in the VMMCALL instruction:
3709 */
3710 hypercall[0] = 0x0f;
3711 hypercall[1] = 0x01;
3712 hypercall[2] = 0xd9;
3713 }
3714
svm_check_processor_compat(void)3715 static int __init svm_check_processor_compat(void)
3716 {
3717 return 0;
3718 }
3719
svm_cpu_has_accelerated_tpr(void)3720 static bool svm_cpu_has_accelerated_tpr(void)
3721 {
3722 return false;
3723 }
3724
svm_has_emulated_msr(u32 index)3725 static bool svm_has_emulated_msr(u32 index)
3726 {
3727 switch (index) {
3728 case MSR_IA32_MCG_EXT_CTL:
3729 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3730 return false;
3731 default:
3732 break;
3733 }
3734
3735 return true;
3736 }
3737
svm_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)3738 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3739 {
3740 return 0;
3741 }
3742
svm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)3743 static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
3744 {
3745 struct vcpu_svm *svm = to_svm(vcpu);
3746 struct kvm_cpuid_entry2 *best;
3747
3748 vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3749 boot_cpu_has(X86_FEATURE_XSAVE) &&
3750 boot_cpu_has(X86_FEATURE_XSAVES);
3751
3752 /* Update nrips enabled cache */
3753 svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
3754 guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS);
3755
3756 /* Check again if INVPCID interception if required */
3757 svm_check_invpcid(svm);
3758
3759 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3760 if (sev_guest(vcpu->kvm)) {
3761 best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
3762 if (best)
3763 vcpu->arch.cr3_lm_rsvd_bits &= ~(1UL << (best->ebx & 0x3f));
3764 }
3765
3766 if (!kvm_vcpu_apicv_active(vcpu))
3767 return;
3768
3769 /*
3770 * AVIC does not work with an x2APIC mode guest. If the X2APIC feature
3771 * is exposed to the guest, disable AVIC.
3772 */
3773 if (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC))
3774 kvm_request_apicv_update(vcpu->kvm, false,
3775 APICV_INHIBIT_REASON_X2APIC);
3776
3777 /*
3778 * Currently, AVIC does not work with nested virtualization.
3779 * So, we disable AVIC when cpuid for SVM is set in the L1 guest.
3780 */
3781 if (nested && guest_cpuid_has(vcpu, X86_FEATURE_SVM))
3782 kvm_request_apicv_update(vcpu->kvm, false,
3783 APICV_INHIBIT_REASON_NESTED);
3784 }
3785
svm_has_wbinvd_exit(void)3786 static bool svm_has_wbinvd_exit(void)
3787 {
3788 return true;
3789 }
3790
3791 #define PRE_EX(exit) { .exit_code = (exit), \
3792 .stage = X86_ICPT_PRE_EXCEPT, }
3793 #define POST_EX(exit) { .exit_code = (exit), \
3794 .stage = X86_ICPT_POST_EXCEPT, }
3795 #define POST_MEM(exit) { .exit_code = (exit), \
3796 .stage = X86_ICPT_POST_MEMACCESS, }
3797
3798 static const struct __x86_intercept {
3799 u32 exit_code;
3800 enum x86_intercept_stage stage;
3801 } x86_intercept_map[] = {
3802 [x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
3803 [x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
3804 [x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
3805 [x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
3806 [x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
3807 [x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
3808 [x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
3809 [x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
3810 [x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
3811 [x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
3812 [x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
3813 [x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
3814 [x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
3815 [x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
3816 [x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
3817 [x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
3818 [x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
3819 [x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
3820 [x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
3821 [x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
3822 [x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
3823 [x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
3824 [x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
3825 [x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
3826 [x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
3827 [x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
3828 [x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
3829 [x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
3830 [x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
3831 [x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
3832 [x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
3833 [x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
3834 [x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
3835 [x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
3836 [x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
3837 [x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
3838 [x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
3839 [x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
3840 [x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
3841 [x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
3842 [x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
3843 [x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
3844 [x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
3845 [x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
3846 [x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
3847 [x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
3848 [x86_intercept_xsetbv] = PRE_EX(SVM_EXIT_XSETBV),
3849 };
3850
3851 #undef PRE_EX
3852 #undef POST_EX
3853 #undef POST_MEM
3854
svm_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)3855 static int svm_check_intercept(struct kvm_vcpu *vcpu,
3856 struct x86_instruction_info *info,
3857 enum x86_intercept_stage stage,
3858 struct x86_exception *exception)
3859 {
3860 struct vcpu_svm *svm = to_svm(vcpu);
3861 int vmexit, ret = X86EMUL_CONTINUE;
3862 struct __x86_intercept icpt_info;
3863 struct vmcb *vmcb = svm->vmcb;
3864
3865 if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
3866 goto out;
3867
3868 icpt_info = x86_intercept_map[info->intercept];
3869
3870 if (stage != icpt_info.stage)
3871 goto out;
3872
3873 switch (icpt_info.exit_code) {
3874 case SVM_EXIT_READ_CR0:
3875 if (info->intercept == x86_intercept_cr_read)
3876 icpt_info.exit_code += info->modrm_reg;
3877 break;
3878 case SVM_EXIT_WRITE_CR0: {
3879 unsigned long cr0, val;
3880
3881 if (info->intercept == x86_intercept_cr_write)
3882 icpt_info.exit_code += info->modrm_reg;
3883
3884 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
3885 info->intercept == x86_intercept_clts)
3886 break;
3887
3888 if (!(vmcb_is_intercept(&svm->nested.ctl,
3889 INTERCEPT_SELECTIVE_CR0)))
3890 break;
3891
3892 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
3893 val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
3894
3895 if (info->intercept == x86_intercept_lmsw) {
3896 cr0 &= 0xfUL;
3897 val &= 0xfUL;
3898 /* lmsw can't clear PE - catch this here */
3899 if (cr0 & X86_CR0_PE)
3900 val |= X86_CR0_PE;
3901 }
3902
3903 if (cr0 ^ val)
3904 icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
3905
3906 break;
3907 }
3908 case SVM_EXIT_READ_DR0:
3909 case SVM_EXIT_WRITE_DR0:
3910 icpt_info.exit_code += info->modrm_reg;
3911 break;
3912 case SVM_EXIT_MSR:
3913 if (info->intercept == x86_intercept_wrmsr)
3914 vmcb->control.exit_info_1 = 1;
3915 else
3916 vmcb->control.exit_info_1 = 0;
3917 break;
3918 case SVM_EXIT_PAUSE:
3919 /*
3920 * We get this for NOP only, but pause
3921 * is rep not, check this here
3922 */
3923 if (info->rep_prefix != REPE_PREFIX)
3924 goto out;
3925 break;
3926 case SVM_EXIT_IOIO: {
3927 u64 exit_info;
3928 u32 bytes;
3929
3930 if (info->intercept == x86_intercept_in ||
3931 info->intercept == x86_intercept_ins) {
3932 exit_info = ((info->src_val & 0xffff) << 16) |
3933 SVM_IOIO_TYPE_MASK;
3934 bytes = info->dst_bytes;
3935 } else {
3936 exit_info = (info->dst_val & 0xffff) << 16;
3937 bytes = info->src_bytes;
3938 }
3939
3940 if (info->intercept == x86_intercept_outs ||
3941 info->intercept == x86_intercept_ins)
3942 exit_info |= SVM_IOIO_STR_MASK;
3943
3944 if (info->rep_prefix)
3945 exit_info |= SVM_IOIO_REP_MASK;
3946
3947 bytes = min(bytes, 4u);
3948
3949 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
3950
3951 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
3952
3953 vmcb->control.exit_info_1 = exit_info;
3954 vmcb->control.exit_info_2 = info->next_rip;
3955
3956 break;
3957 }
3958 default:
3959 break;
3960 }
3961
3962 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
3963 if (static_cpu_has(X86_FEATURE_NRIPS))
3964 vmcb->control.next_rip = info->next_rip;
3965 vmcb->control.exit_code = icpt_info.exit_code;
3966 vmexit = nested_svm_exit_handled(svm);
3967
3968 ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
3969 : X86EMUL_CONTINUE;
3970
3971 out:
3972 return ret;
3973 }
3974
svm_handle_exit_irqoff(struct kvm_vcpu * vcpu)3975 static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
3976 {
3977 }
3978
svm_sched_in(struct kvm_vcpu * vcpu,int cpu)3979 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
3980 {
3981 if (!kvm_pause_in_guest(vcpu->kvm))
3982 shrink_ple_window(vcpu);
3983 }
3984
svm_setup_mce(struct kvm_vcpu * vcpu)3985 static void svm_setup_mce(struct kvm_vcpu *vcpu)
3986 {
3987 /* [63:9] are reserved. */
3988 vcpu->arch.mcg_cap &= 0x1ff;
3989 }
3990
svm_smi_blocked(struct kvm_vcpu * vcpu)3991 bool svm_smi_blocked(struct kvm_vcpu *vcpu)
3992 {
3993 struct vcpu_svm *svm = to_svm(vcpu);
3994
3995 /* Per APM Vol.2 15.22.2 "Response to SMI" */
3996 if (!gif_set(svm))
3997 return true;
3998
3999 return is_smm(vcpu);
4000 }
4001
svm_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4002 static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4003 {
4004 struct vcpu_svm *svm = to_svm(vcpu);
4005 if (svm->nested.nested_run_pending)
4006 return -EBUSY;
4007
4008 /* An SMI must not be injected into L2 if it's supposed to VM-Exit. */
4009 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4010 return -EBUSY;
4011
4012 return !svm_smi_blocked(vcpu);
4013 }
4014
svm_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)4015 static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
4016 {
4017 struct vcpu_svm *svm = to_svm(vcpu);
4018 int ret;
4019
4020 if (is_guest_mode(vcpu)) {
4021 /* FED8h - SVM Guest */
4022 put_smstate(u64, smstate, 0x7ed8, 1);
4023 /* FEE0h - SVM Guest VMCB Physical Address */
4024 put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb12_gpa);
4025
4026 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4027 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4028 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4029
4030 ret = nested_svm_vmexit(svm);
4031 if (ret)
4032 return ret;
4033 }
4034 return 0;
4035 }
4036
svm_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)4037 static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
4038 {
4039 struct vcpu_svm *svm = to_svm(vcpu);
4040 struct kvm_host_map map;
4041 int ret = 0;
4042
4043 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) {
4044 u64 saved_efer = GET_SMSTATE(u64, smstate, 0x7ed0);
4045 u64 guest = GET_SMSTATE(u64, smstate, 0x7ed8);
4046 u64 vmcb12_gpa = GET_SMSTATE(u64, smstate, 0x7ee0);
4047
4048 if (guest) {
4049 if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4050 return 1;
4051
4052 if (!(saved_efer & EFER_SVME))
4053 return 1;
4054
4055 if (kvm_vcpu_map(&svm->vcpu,
4056 gpa_to_gfn(vmcb12_gpa), &map) == -EINVAL)
4057 return 1;
4058
4059 if (svm_allocate_nested(svm))
4060 return 1;
4061
4062 ret = enter_svm_guest_mode(svm, vmcb12_gpa, map.hva);
4063 kvm_vcpu_unmap(&svm->vcpu, &map, true);
4064 }
4065 }
4066
4067 return ret;
4068 }
4069
enable_smi_window(struct kvm_vcpu * vcpu)4070 static void enable_smi_window(struct kvm_vcpu *vcpu)
4071 {
4072 struct vcpu_svm *svm = to_svm(vcpu);
4073
4074 if (!gif_set(svm)) {
4075 if (vgif_enabled(svm))
4076 svm_set_intercept(svm, INTERCEPT_STGI);
4077 /* STGI will cause a vm exit */
4078 } else {
4079 /* We must be in SMM; RSM will cause a vmexit anyway. */
4080 }
4081 }
4082
svm_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)4083 static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
4084 {
4085 bool smep, smap, is_user;
4086 unsigned long cr4;
4087
4088 /*
4089 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4090 *
4091 * Errata:
4092 * When CPU raise #NPF on guest data access and vCPU CR4.SMAP=1, it is
4093 * possible that CPU microcode implementing DecodeAssist will fail
4094 * to read bytes of instruction which caused #NPF. In this case,
4095 * GuestIntrBytes field of the VMCB on a VMEXIT will incorrectly
4096 * return 0 instead of the correct guest instruction bytes.
4097 *
4098 * This happens because CPU microcode reading instruction bytes
4099 * uses a special opcode which attempts to read data using CPL=0
4100 * priviledges. The microcode reads CS:RIP and if it hits a SMAP
4101 * fault, it gives up and returns no instruction bytes.
4102 *
4103 * Detection:
4104 * We reach here in case CPU supports DecodeAssist, raised #NPF and
4105 * returned 0 in GuestIntrBytes field of the VMCB.
4106 * First, errata can only be triggered in case vCPU CR4.SMAP=1.
4107 * Second, if vCPU CR4.SMEP=1, errata could only be triggered
4108 * in case vCPU CPL==3 (Because otherwise guest would have triggered
4109 * a SMEP fault instead of #NPF).
4110 * Otherwise, vCPU CR4.SMEP=0, errata could be triggered by any vCPU CPL.
4111 * As most guests enable SMAP if they have also enabled SMEP, use above
4112 * logic in order to attempt minimize false-positive of detecting errata
4113 * while still preserving all cases semantic correctness.
4114 *
4115 * Workaround:
4116 * To determine what instruction the guest was executing, the hypervisor
4117 * will have to decode the instruction at the instruction pointer.
4118 *
4119 * In non SEV guest, hypervisor will be able to read the guest
4120 * memory to decode the instruction pointer when insn_len is zero
4121 * so we return true to indicate that decoding is possible.
4122 *
4123 * But in the SEV guest, the guest memory is encrypted with the
4124 * guest specific key and hypervisor will not be able to decode the
4125 * instruction pointer so we will not able to workaround it. Lets
4126 * print the error and request to kill the guest.
4127 */
4128 if (likely(!insn || insn_len))
4129 return true;
4130
4131 /*
4132 * If RIP is invalid, go ahead with emulation which will cause an
4133 * internal error exit.
4134 */
4135 if (!kvm_vcpu_gfn_to_memslot(vcpu, kvm_rip_read(vcpu) >> PAGE_SHIFT))
4136 return true;
4137
4138 cr4 = kvm_read_cr4(vcpu);
4139 smep = cr4 & X86_CR4_SMEP;
4140 smap = cr4 & X86_CR4_SMAP;
4141 is_user = svm_get_cpl(vcpu) == 3;
4142 if (smap && (!smep || is_user)) {
4143 if (!sev_guest(vcpu->kvm))
4144 return true;
4145
4146 pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
4147 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4148 }
4149
4150 return false;
4151 }
4152
svm_apic_init_signal_blocked(struct kvm_vcpu * vcpu)4153 static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4154 {
4155 struct vcpu_svm *svm = to_svm(vcpu);
4156
4157 /*
4158 * TODO: Last condition latch INIT signals on vCPU when
4159 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
4160 * To properly emulate the INIT intercept,
4161 * svm_check_nested_events() should call nested_svm_vmexit()
4162 * if an INIT signal is pending.
4163 */
4164 return !gif_set(svm) ||
4165 (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
4166 }
4167
svm_vm_destroy(struct kvm * kvm)4168 static void svm_vm_destroy(struct kvm *kvm)
4169 {
4170 avic_vm_destroy(kvm);
4171 sev_vm_destroy(kvm);
4172 }
4173
svm_vm_init(struct kvm * kvm)4174 static int svm_vm_init(struct kvm *kvm)
4175 {
4176 if (!pause_filter_count || !pause_filter_thresh)
4177 kvm->arch.pause_in_guest = true;
4178
4179 if (avic) {
4180 int ret = avic_vm_init(kvm);
4181 if (ret)
4182 return ret;
4183 }
4184
4185 kvm_apicv_init(kvm, avic);
4186 return 0;
4187 }
4188
4189 static struct kvm_x86_ops svm_x86_ops __initdata = {
4190 .hardware_unsetup = svm_hardware_teardown,
4191 .hardware_enable = svm_hardware_enable,
4192 .hardware_disable = svm_hardware_disable,
4193 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4194 .has_emulated_msr = svm_has_emulated_msr,
4195
4196 .vcpu_create = svm_create_vcpu,
4197 .vcpu_free = svm_free_vcpu,
4198 .vcpu_reset = svm_vcpu_reset,
4199
4200 .vm_size = sizeof(struct kvm_svm),
4201 .vm_init = svm_vm_init,
4202 .vm_destroy = svm_vm_destroy,
4203
4204 .prepare_guest_switch = svm_prepare_guest_switch,
4205 .vcpu_load = svm_vcpu_load,
4206 .vcpu_put = svm_vcpu_put,
4207 .vcpu_blocking = svm_vcpu_blocking,
4208 .vcpu_unblocking = svm_vcpu_unblocking,
4209
4210 .update_exception_bitmap = update_exception_bitmap,
4211 .get_msr_feature = svm_get_msr_feature,
4212 .get_msr = svm_get_msr,
4213 .set_msr = svm_set_msr,
4214 .get_segment_base = svm_get_segment_base,
4215 .get_segment = svm_get_segment,
4216 .set_segment = svm_set_segment,
4217 .get_cpl = svm_get_cpl,
4218 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4219 .set_cr0 = svm_set_cr0,
4220 .set_cr4 = svm_set_cr4,
4221 .set_efer = svm_set_efer,
4222 .get_idt = svm_get_idt,
4223 .set_idt = svm_set_idt,
4224 .get_gdt = svm_get_gdt,
4225 .set_gdt = svm_set_gdt,
4226 .set_dr7 = svm_set_dr7,
4227 .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4228 .cache_reg = svm_cache_reg,
4229 .get_rflags = svm_get_rflags,
4230 .set_rflags = svm_set_rflags,
4231
4232 .tlb_flush_all = svm_flush_tlb,
4233 .tlb_flush_current = svm_flush_tlb,
4234 .tlb_flush_gva = svm_flush_tlb_gva,
4235 .tlb_flush_guest = svm_flush_tlb,
4236
4237 .run = svm_vcpu_run,
4238 .handle_exit = handle_exit,
4239 .skip_emulated_instruction = skip_emulated_instruction,
4240 .update_emulated_instruction = NULL,
4241 .set_interrupt_shadow = svm_set_interrupt_shadow,
4242 .get_interrupt_shadow = svm_get_interrupt_shadow,
4243 .patch_hypercall = svm_patch_hypercall,
4244 .set_irq = svm_set_irq,
4245 .set_nmi = svm_inject_nmi,
4246 .queue_exception = svm_queue_exception,
4247 .cancel_injection = svm_cancel_injection,
4248 .interrupt_allowed = svm_interrupt_allowed,
4249 .nmi_allowed = svm_nmi_allowed,
4250 .get_nmi_mask = svm_get_nmi_mask,
4251 .set_nmi_mask = svm_set_nmi_mask,
4252 .enable_nmi_window = enable_nmi_window,
4253 .enable_irq_window = enable_irq_window,
4254 .update_cr8_intercept = update_cr8_intercept,
4255 .set_virtual_apic_mode = svm_set_virtual_apic_mode,
4256 .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl,
4257 .check_apicv_inhibit_reasons = svm_check_apicv_inhibit_reasons,
4258 .pre_update_apicv_exec_ctrl = svm_pre_update_apicv_exec_ctrl,
4259 .load_eoi_exitmap = svm_load_eoi_exitmap,
4260 .hwapic_irr_update = svm_hwapic_irr_update,
4261 .hwapic_isr_update = svm_hwapic_isr_update,
4262 .sync_pir_to_irr = kvm_lapic_find_highest_irr,
4263 .apicv_post_state_restore = avic_post_state_restore,
4264
4265 .set_tss_addr = svm_set_tss_addr,
4266 .set_identity_map_addr = svm_set_identity_map_addr,
4267 .get_mt_mask = svm_get_mt_mask,
4268
4269 .get_exit_info = svm_get_exit_info,
4270
4271 .vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4272
4273 .has_wbinvd_exit = svm_has_wbinvd_exit,
4274
4275 .write_l1_tsc_offset = svm_write_l1_tsc_offset,
4276
4277 .load_mmu_pgd = svm_load_mmu_pgd,
4278
4279 .check_intercept = svm_check_intercept,
4280 .handle_exit_irqoff = svm_handle_exit_irqoff,
4281
4282 .request_immediate_exit = __kvm_request_immediate_exit,
4283
4284 .sched_in = svm_sched_in,
4285
4286 .pmu_ops = &amd_pmu_ops,
4287 .nested_ops = &svm_nested_ops,
4288
4289 .deliver_posted_interrupt = svm_deliver_avic_intr,
4290 .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt,
4291 .update_pi_irte = svm_update_pi_irte,
4292 .setup_mce = svm_setup_mce,
4293
4294 .smi_allowed = svm_smi_allowed,
4295 .pre_enter_smm = svm_pre_enter_smm,
4296 .pre_leave_smm = svm_pre_leave_smm,
4297 .enable_smi_window = enable_smi_window,
4298
4299 .mem_enc_op = svm_mem_enc_op,
4300 .mem_enc_reg_region = svm_register_enc_region,
4301 .mem_enc_unreg_region = svm_unregister_enc_region,
4302
4303 .can_emulate_instruction = svm_can_emulate_instruction,
4304
4305 .apic_init_signal_blocked = svm_apic_init_signal_blocked,
4306
4307 .msr_filter_changed = svm_msr_filter_changed,
4308 };
4309
4310 static struct kvm_x86_init_ops svm_init_ops __initdata = {
4311 .cpu_has_kvm_support = has_svm,
4312 .disabled_by_bios = is_disabled,
4313 .hardware_setup = svm_hardware_setup,
4314 .check_processor_compatibility = svm_check_processor_compat,
4315
4316 .runtime_ops = &svm_x86_ops,
4317 };
4318
svm_init(void)4319 static int __init svm_init(void)
4320 {
4321 __unused_size_checks();
4322
4323 return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
4324 __alignof__(struct vcpu_svm), THIS_MODULE);
4325 }
4326
svm_exit(void)4327 static void __exit svm_exit(void)
4328 {
4329 kvm_exit();
4330 }
4331
4332 module_init(svm_init)
4333 module_exit(svm_exit)
4334