1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
11 * license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
24 *
25 * Neither the name of the Network Appliance, Inc. nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
28 * permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Author: Tom Tucker <tom@opengridcomputing.com>
43 */
44
45 /* Operation
46 *
47 * The main entry point is svc_rdma_recvfrom. This is called from
48 * svc_recv when the transport indicates there is incoming data to
49 * be read. "Data Ready" is signaled when an RDMA Receive completes,
50 * or when a set of RDMA Reads complete.
51 *
52 * An svc_rqst is passed in. This structure contains an array of
53 * free pages (rq_pages) that will contain the incoming RPC message.
54 *
55 * Short messages are moved directly into svc_rqst::rq_arg, and
56 * the RPC Call is ready to be processed by the Upper Layer.
57 * svc_rdma_recvfrom returns the length of the RPC Call message,
58 * completing the reception of the RPC Call.
59 *
60 * However, when an incoming message has Read chunks,
61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62 * data payload from the client. svc_rdma_recvfrom sets up the
63 * RDMA Reads using pages in svc_rqst::rq_pages, which are
64 * transferred to an svc_rdma_recv_ctxt for the duration of the
65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66 * is still not yet ready.
67 *
68 * When the Read chunk payloads have become available on the
69 * server, "Data Ready" is raised again, and svc_recv calls
70 * svc_rdma_recvfrom again. This second call may use a different
71 * svc_rqst than the first one, thus any information that needs
72 * to be preserved across these two calls is kept in an
73 * svc_rdma_recv_ctxt.
74 *
75 * The second call to svc_rdma_recvfrom performs final assembly
76 * of the RPC Call message, using the RDMA Read sink pages kept in
77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79 * the length of the completed RPC Call message.
80 *
81 * Page Management
82 *
83 * Pages under I/O must be transferred from the first svc_rqst to an
84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
85 *
86 * The first svc_rqst supplies pages for RDMA Reads. These are moved
87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88 * the rq_pages array are set to NULL and refilled with the first
89 * svc_rdma_recvfrom call returns.
90 *
91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst.
93 */
94
95 #include <linux/slab.h>
96 #include <linux/spinlock.h>
97 #include <linux/unaligned.h>
98 #include <rdma/ib_verbs.h>
99 #include <rdma/rdma_cm.h>
100
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
105
106 #include "xprt_rdma.h"
107 #include <trace/events/rpcrdma.h>
108
109 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc);
110
111 static inline struct svc_rdma_recv_ctxt *
svc_rdma_next_recv_ctxt(struct list_head * list)112 svc_rdma_next_recv_ctxt(struct list_head *list)
113 {
114 return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt,
115 rc_list);
116 }
117
118 static struct svc_rdma_recv_ctxt *
svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma * rdma)119 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma)
120 {
121 int node = ibdev_to_node(rdma->sc_cm_id->device);
122 struct svc_rdma_recv_ctxt *ctxt;
123 unsigned long pages;
124 dma_addr_t addr;
125 void *buffer;
126
127 pages = svc_serv_maxpages(rdma->sc_xprt.xpt_server);
128 ctxt = kzalloc_node(struct_size(ctxt, rc_pages, pages),
129 GFP_KERNEL, node);
130 if (!ctxt)
131 goto fail0;
132 ctxt->rc_maxpages = pages;
133 buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node);
134 if (!buffer)
135 goto fail1;
136 addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
137 rdma->sc_max_req_size, DMA_FROM_DEVICE);
138 if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
139 goto fail2;
140
141 svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid);
142 pcl_init(&ctxt->rc_call_pcl);
143 pcl_init(&ctxt->rc_read_pcl);
144 pcl_init(&ctxt->rc_write_pcl);
145 pcl_init(&ctxt->rc_reply_pcl);
146
147 ctxt->rc_recv_wr.next = NULL;
148 ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe;
149 ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge;
150 ctxt->rc_recv_wr.num_sge = 1;
151 ctxt->rc_cqe.done = svc_rdma_wc_receive;
152 ctxt->rc_recv_sge.addr = addr;
153 ctxt->rc_recv_sge.length = rdma->sc_max_req_size;
154 ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey;
155 ctxt->rc_recv_buf = buffer;
156 svc_rdma_cc_init(rdma, &ctxt->rc_cc);
157 return ctxt;
158
159 fail2:
160 kfree(buffer);
161 fail1:
162 kfree(ctxt);
163 fail0:
164 return NULL;
165 }
166
svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)167 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma,
168 struct svc_rdma_recv_ctxt *ctxt)
169 {
170 ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr,
171 ctxt->rc_recv_sge.length, DMA_FROM_DEVICE);
172 kfree(ctxt->rc_recv_buf);
173 kfree(ctxt);
174 }
175
176 /**
177 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
178 * @rdma: svcxprt_rdma being torn down
179 *
180 */
svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma * rdma)181 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma)
182 {
183 struct svc_rdma_recv_ctxt *ctxt;
184 struct llist_node *node;
185
186 while ((node = llist_del_first(&rdma->sc_recv_ctxts))) {
187 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
188 svc_rdma_recv_ctxt_destroy(rdma, ctxt);
189 }
190 }
191
192 /**
193 * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt
194 * @rdma: controlling svcxprt_rdma
195 *
196 * Returns a recv_ctxt or (rarely) NULL if none are available.
197 */
svc_rdma_recv_ctxt_get(struct svcxprt_rdma * rdma)198 struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma)
199 {
200 struct svc_rdma_recv_ctxt *ctxt;
201 struct llist_node *node;
202
203 node = llist_del_first(&rdma->sc_recv_ctxts);
204 if (!node)
205 return NULL;
206
207 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
208 ctxt->rc_page_count = 0;
209 return ctxt;
210 }
211
212 /**
213 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
214 * @rdma: controlling svcxprt_rdma
215 * @ctxt: object to return to the free list
216 *
217 */
svc_rdma_recv_ctxt_put(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)218 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma,
219 struct svc_rdma_recv_ctxt *ctxt)
220 {
221 svc_rdma_cc_release(rdma, &ctxt->rc_cc, DMA_FROM_DEVICE);
222
223 /* @rc_page_count is normally zero here, but error flows
224 * can leave pages in @rc_pages.
225 */
226 release_pages(ctxt->rc_pages, ctxt->rc_page_count);
227
228 pcl_free(&ctxt->rc_call_pcl);
229 pcl_free(&ctxt->rc_read_pcl);
230 pcl_free(&ctxt->rc_write_pcl);
231 pcl_free(&ctxt->rc_reply_pcl);
232
233 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts);
234 }
235
236 /**
237 * svc_rdma_release_ctxt - Release transport-specific per-rqst resources
238 * @xprt: the transport which owned the context
239 * @vctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
240 *
241 * Ensure that the recv_ctxt is released whether or not a Reply
242 * was sent. For example, the client could close the connection,
243 * or svc_process could drop an RPC, before the Reply is sent.
244 */
svc_rdma_release_ctxt(struct svc_xprt * xprt,void * vctxt)245 void svc_rdma_release_ctxt(struct svc_xprt *xprt, void *vctxt)
246 {
247 struct svc_rdma_recv_ctxt *ctxt = vctxt;
248 struct svcxprt_rdma *rdma =
249 container_of(xprt, struct svcxprt_rdma, sc_xprt);
250
251 if (ctxt)
252 svc_rdma_recv_ctxt_put(rdma, ctxt);
253 }
254
svc_rdma_refresh_recvs(struct svcxprt_rdma * rdma,unsigned int wanted)255 static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma,
256 unsigned int wanted)
257 {
258 const struct ib_recv_wr *bad_wr = NULL;
259 struct svc_rdma_recv_ctxt *ctxt;
260 struct ib_recv_wr *recv_chain;
261 int ret;
262
263 if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
264 return false;
265
266 recv_chain = NULL;
267 while (wanted--) {
268 ctxt = svc_rdma_recv_ctxt_get(rdma);
269 if (!ctxt)
270 break;
271
272 trace_svcrdma_post_recv(&ctxt->rc_cid);
273 ctxt->rc_recv_wr.next = recv_chain;
274 recv_chain = &ctxt->rc_recv_wr;
275 rdma->sc_pending_recvs++;
276 }
277 if (!recv_chain)
278 return true;
279
280 ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr);
281 if (ret)
282 goto err_free;
283 return true;
284
285 err_free:
286 trace_svcrdma_rq_post_err(rdma, ret);
287 while (bad_wr) {
288 ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt,
289 rc_recv_wr);
290 bad_wr = bad_wr->next;
291 svc_rdma_recv_ctxt_put(rdma, ctxt);
292 }
293 /* Since we're destroying the xprt, no need to reset
294 * sc_pending_recvs. */
295 return false;
296 }
297
298 /**
299 * svc_rdma_post_recvs - Post initial set of Recv WRs
300 * @rdma: fresh svcxprt_rdma
301 *
302 * Return values:
303 * %true: Receive Queue initialization successful
304 * %false: memory allocation or DMA error
305 */
svc_rdma_post_recvs(struct svcxprt_rdma * rdma)306 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma)
307 {
308 unsigned int total;
309
310 /* For each credit, allocate enough recv_ctxts for one
311 * posted Receive and one RPC in process.
312 */
313 total = (rdma->sc_max_requests * 2) + rdma->sc_recv_batch;
314 while (total--) {
315 struct svc_rdma_recv_ctxt *ctxt;
316
317 ctxt = svc_rdma_recv_ctxt_alloc(rdma);
318 if (!ctxt)
319 return false;
320 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts);
321 }
322
323 return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests);
324 }
325
326 /**
327 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
328 * @cq: Completion Queue context
329 * @wc: Work Completion object
330 *
331 */
svc_rdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)332 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
333 {
334 struct svcxprt_rdma *rdma = cq->cq_context;
335 struct ib_cqe *cqe = wc->wr_cqe;
336 struct svc_rdma_recv_ctxt *ctxt;
337
338 rdma->sc_pending_recvs--;
339
340 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
341 ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe);
342
343 if (wc->status != IB_WC_SUCCESS)
344 goto flushed;
345 trace_svcrdma_wc_recv(wc, &ctxt->rc_cid);
346
347 /* If receive posting fails, the connection is about to be
348 * lost anyway. The server will not be able to send a reply
349 * for this RPC, and the client will retransmit this RPC
350 * anyway when it reconnects.
351 *
352 * Therefore we drop the Receive, even if status was SUCCESS
353 * to reduce the likelihood of replayed requests once the
354 * client reconnects.
355 */
356 if (rdma->sc_pending_recvs < rdma->sc_max_requests)
357 if (!svc_rdma_refresh_recvs(rdma, rdma->sc_recv_batch))
358 goto dropped;
359
360 /* All wc fields are now known to be valid */
361 ctxt->rc_byte_len = wc->byte_len;
362
363 spin_lock(&rdma->sc_rq_dto_lock);
364 list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q);
365 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
366 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
367 spin_unlock(&rdma->sc_rq_dto_lock);
368 if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags))
369 svc_xprt_enqueue(&rdma->sc_xprt);
370 return;
371
372 flushed:
373 if (wc->status == IB_WC_WR_FLUSH_ERR)
374 trace_svcrdma_wc_recv_flush(wc, &ctxt->rc_cid);
375 else
376 trace_svcrdma_wc_recv_err(wc, &ctxt->rc_cid);
377 dropped:
378 svc_rdma_recv_ctxt_put(rdma, ctxt);
379 svc_xprt_deferred_close(&rdma->sc_xprt);
380 }
381
382 /**
383 * svc_rdma_flush_recv_queues - Drain pending Receive work
384 * @rdma: svcxprt_rdma being shut down
385 *
386 */
svc_rdma_flush_recv_queues(struct svcxprt_rdma * rdma)387 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma)
388 {
389 struct svc_rdma_recv_ctxt *ctxt;
390
391 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_read_complete_q))) {
392 list_del(&ctxt->rc_list);
393 svc_rdma_recv_ctxt_put(rdma, ctxt);
394 }
395 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) {
396 list_del(&ctxt->rc_list);
397 svc_rdma_recv_ctxt_put(rdma, ctxt);
398 }
399 }
400
svc_rdma_build_arg_xdr(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)401 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp,
402 struct svc_rdma_recv_ctxt *ctxt)
403 {
404 struct xdr_buf *arg = &rqstp->rq_arg;
405
406 arg->head[0].iov_base = ctxt->rc_recv_buf;
407 arg->head[0].iov_len = ctxt->rc_byte_len;
408 arg->tail[0].iov_base = NULL;
409 arg->tail[0].iov_len = 0;
410 arg->page_len = 0;
411 arg->page_base = 0;
412 arg->buflen = ctxt->rc_byte_len;
413 arg->len = ctxt->rc_byte_len;
414 }
415
416 /**
417 * xdr_count_read_segments - Count number of Read segments in Read list
418 * @rctxt: Ingress receive context
419 * @p: Start of an un-decoded Read list
420 *
421 * Before allocating anything, ensure the ingress Read list is safe
422 * to use.
423 *
424 * The segment count is limited to how many segments can fit in the
425 * transport header without overflowing the buffer. That's about 40
426 * Read segments for a 1KB inline threshold.
427 *
428 * Return values:
429 * %true: Read list is valid. @rctxt's xdr_stream is updated to point
430 * to the first byte past the Read list. rc_read_pcl and
431 * rc_call_pcl cl_count fields are set to the number of
432 * Read segments in the list.
433 * %false: Read list is corrupt. @rctxt's xdr_stream is left in an
434 * unknown state.
435 */
xdr_count_read_segments(struct svc_rdma_recv_ctxt * rctxt,__be32 * p)436 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
437 {
438 rctxt->rc_call_pcl.cl_count = 0;
439 rctxt->rc_read_pcl.cl_count = 0;
440 while (xdr_item_is_present(p)) {
441 u32 position, handle, length;
442 u64 offset;
443
444 p = xdr_inline_decode(&rctxt->rc_stream,
445 rpcrdma_readseg_maxsz * sizeof(*p));
446 if (!p)
447 return false;
448
449 xdr_decode_read_segment(p, &position, &handle,
450 &length, &offset);
451 if (position) {
452 if (position & 3)
453 return false;
454 ++rctxt->rc_read_pcl.cl_count;
455 } else {
456 ++rctxt->rc_call_pcl.cl_count;
457 }
458
459 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
460 if (!p)
461 return false;
462 }
463 return true;
464 }
465
466 /* Sanity check the Read list.
467 *
468 * Sanity checks:
469 * - Read list does not overflow Receive buffer.
470 * - Chunk size limited by largest NFS data payload.
471 *
472 * Return values:
473 * %true: Read list is valid. @rctxt's xdr_stream is updated
474 * to point to the first byte past the Read list.
475 * %false: Read list is corrupt. @rctxt's xdr_stream is left
476 * in an unknown state.
477 */
xdr_check_read_list(struct svc_rdma_recv_ctxt * rctxt)478 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt)
479 {
480 __be32 *p;
481
482 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
483 if (!p)
484 return false;
485 if (!xdr_count_read_segments(rctxt, p))
486 return false;
487 if (!pcl_alloc_call(rctxt, p))
488 return false;
489 return pcl_alloc_read(rctxt, p);
490 }
491
xdr_check_write_chunk(struct svc_rdma_recv_ctxt * rctxt)492 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
493 {
494 u32 segcount;
495 __be32 *p;
496
497 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
498 return false;
499
500 /* Before trusting the segcount value enough to use it in
501 * a computation, perform a simple range check. This is an
502 * arbitrary but sensible limit (ie, not architectural).
503 */
504 if (unlikely(segcount > rctxt->rc_maxpages))
505 return false;
506
507 p = xdr_inline_decode(&rctxt->rc_stream,
508 segcount * rpcrdma_segment_maxsz * sizeof(*p));
509 return p != NULL;
510 }
511
512 /**
513 * xdr_count_write_chunks - Count number of Write chunks in Write list
514 * @rctxt: Received header and decoding state
515 * @p: start of an un-decoded Write list
516 *
517 * Before allocating anything, ensure the ingress Write list is
518 * safe to use.
519 *
520 * Return values:
521 * %true: Write list is valid. @rctxt's xdr_stream is updated
522 * to point to the first byte past the Write list, and
523 * the number of Write chunks is in rc_write_pcl.cl_count.
524 * %false: Write list is corrupt. @rctxt's xdr_stream is left
525 * in an indeterminate state.
526 */
xdr_count_write_chunks(struct svc_rdma_recv_ctxt * rctxt,__be32 * p)527 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
528 {
529 rctxt->rc_write_pcl.cl_count = 0;
530 while (xdr_item_is_present(p)) {
531 if (!xdr_check_write_chunk(rctxt))
532 return false;
533 ++rctxt->rc_write_pcl.cl_count;
534 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
535 if (!p)
536 return false;
537 }
538 return true;
539 }
540
541 /* Sanity check the Write list.
542 *
543 * Implementation limits:
544 * - This implementation currently supports only one Write chunk.
545 *
546 * Sanity checks:
547 * - Write list does not overflow Receive buffer.
548 * - Chunk size limited by largest NFS data payload.
549 *
550 * Return values:
551 * %true: Write list is valid. @rctxt's xdr_stream is updated
552 * to point to the first byte past the Write list.
553 * %false: Write list is corrupt. @rctxt's xdr_stream is left
554 * in an unknown state.
555 */
xdr_check_write_list(struct svc_rdma_recv_ctxt * rctxt)556 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt)
557 {
558 __be32 *p;
559
560 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
561 if (!p)
562 return false;
563 if (!xdr_count_write_chunks(rctxt, p))
564 return false;
565 if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p))
566 return false;
567
568 rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl);
569 return true;
570 }
571
572 /* Sanity check the Reply chunk.
573 *
574 * Sanity checks:
575 * - Reply chunk does not overflow Receive buffer.
576 * - Chunk size limited by largest NFS data payload.
577 *
578 * Return values:
579 * %true: Reply chunk is valid. @rctxt's xdr_stream is updated
580 * to point to the first byte past the Reply chunk.
581 * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left
582 * in an unknown state.
583 */
xdr_check_reply_chunk(struct svc_rdma_recv_ctxt * rctxt)584 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt)
585 {
586 __be32 *p;
587
588 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
589 if (!p)
590 return false;
591
592 if (!xdr_item_is_present(p))
593 return true;
594 if (!xdr_check_write_chunk(rctxt))
595 return false;
596
597 rctxt->rc_reply_pcl.cl_count = 1;
598 return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p);
599 }
600
601 /* RPC-over-RDMA Version One private extension: Remote Invalidation.
602 * Responder's choice: requester signals it can handle Send With
603 * Invalidate, and responder chooses one R_key to invalidate.
604 *
605 * If there is exactly one distinct R_key in the received transport
606 * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero.
607 */
svc_rdma_get_inv_rkey(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)608 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma,
609 struct svc_rdma_recv_ctxt *ctxt)
610 {
611 struct svc_rdma_segment *segment;
612 struct svc_rdma_chunk *chunk;
613 u32 inv_rkey;
614
615 ctxt->rc_inv_rkey = 0;
616
617 if (!rdma->sc_snd_w_inv)
618 return;
619
620 inv_rkey = 0;
621 pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) {
622 pcl_for_each_segment(segment, chunk) {
623 if (inv_rkey == 0)
624 inv_rkey = segment->rs_handle;
625 else if (inv_rkey != segment->rs_handle)
626 return;
627 }
628 }
629 pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) {
630 pcl_for_each_segment(segment, chunk) {
631 if (inv_rkey == 0)
632 inv_rkey = segment->rs_handle;
633 else if (inv_rkey != segment->rs_handle)
634 return;
635 }
636 }
637 pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) {
638 pcl_for_each_segment(segment, chunk) {
639 if (inv_rkey == 0)
640 inv_rkey = segment->rs_handle;
641 else if (inv_rkey != segment->rs_handle)
642 return;
643 }
644 }
645 pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) {
646 pcl_for_each_segment(segment, chunk) {
647 if (inv_rkey == 0)
648 inv_rkey = segment->rs_handle;
649 else if (inv_rkey != segment->rs_handle)
650 return;
651 }
652 }
653 ctxt->rc_inv_rkey = inv_rkey;
654 }
655
656 /**
657 * svc_rdma_xdr_decode_req - Decode the transport header
658 * @rq_arg: xdr_buf containing ingress RPC/RDMA message
659 * @rctxt: state of decoding
660 *
661 * On entry, xdr->head[0].iov_base points to first byte of the
662 * RPC-over-RDMA transport header.
663 *
664 * On successful exit, head[0] points to first byte past the
665 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
666 *
667 * The length of the RPC-over-RDMA header is returned.
668 *
669 * Assumptions:
670 * - The transport header is entirely contained in the head iovec.
671 */
svc_rdma_xdr_decode_req(struct xdr_buf * rq_arg,struct svc_rdma_recv_ctxt * rctxt)672 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg,
673 struct svc_rdma_recv_ctxt *rctxt)
674 {
675 __be32 *p, *rdma_argp;
676 unsigned int hdr_len;
677
678 rdma_argp = rq_arg->head[0].iov_base;
679 xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL);
680
681 p = xdr_inline_decode(&rctxt->rc_stream,
682 rpcrdma_fixed_maxsz * sizeof(*p));
683 if (unlikely(!p))
684 goto out_short;
685 p++;
686 if (*p != rpcrdma_version)
687 goto out_version;
688 p += 2;
689 rctxt->rc_msgtype = *p;
690 switch (rctxt->rc_msgtype) {
691 case rdma_msg:
692 break;
693 case rdma_nomsg:
694 break;
695 case rdma_done:
696 goto out_drop;
697 case rdma_error:
698 goto out_drop;
699 default:
700 goto out_proc;
701 }
702
703 if (!xdr_check_read_list(rctxt))
704 goto out_inval;
705 if (!xdr_check_write_list(rctxt))
706 goto out_inval;
707 if (!xdr_check_reply_chunk(rctxt))
708 goto out_inval;
709
710 rq_arg->head[0].iov_base = rctxt->rc_stream.p;
711 hdr_len = xdr_stream_pos(&rctxt->rc_stream);
712 rq_arg->head[0].iov_len -= hdr_len;
713 rq_arg->len -= hdr_len;
714 trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len);
715 return hdr_len;
716
717 out_short:
718 trace_svcrdma_decode_short_err(rctxt, rq_arg->len);
719 return -EINVAL;
720
721 out_version:
722 trace_svcrdma_decode_badvers_err(rctxt, rdma_argp);
723 return -EPROTONOSUPPORT;
724
725 out_drop:
726 trace_svcrdma_decode_drop_err(rctxt, rdma_argp);
727 return 0;
728
729 out_proc:
730 trace_svcrdma_decode_badproc_err(rctxt, rdma_argp);
731 return -EINVAL;
732
733 out_inval:
734 trace_svcrdma_decode_parse_err(rctxt, rdma_argp);
735 return -EINVAL;
736 }
737
svc_rdma_send_error(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * rctxt,int status)738 static void svc_rdma_send_error(struct svcxprt_rdma *rdma,
739 struct svc_rdma_recv_ctxt *rctxt,
740 int status)
741 {
742 struct svc_rdma_send_ctxt *sctxt;
743
744 sctxt = svc_rdma_send_ctxt_get(rdma);
745 if (!sctxt)
746 return;
747 svc_rdma_send_error_msg(rdma, sctxt, rctxt, status);
748 }
749
750 /* By convention, backchannel calls arrive via rdma_msg type
751 * messages, and never populate the chunk lists. This makes
752 * the RPC/RDMA header small and fixed in size, so it is
753 * straightforward to check the RPC header's direction field.
754 */
svc_rdma_is_reverse_direction_reply(struct svc_xprt * xprt,struct svc_rdma_recv_ctxt * rctxt)755 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt,
756 struct svc_rdma_recv_ctxt *rctxt)
757 {
758 __be32 *p = rctxt->rc_recv_buf;
759
760 if (!xprt->xpt_bc_xprt)
761 return false;
762
763 if (rctxt->rc_msgtype != rdma_msg)
764 return false;
765
766 if (!pcl_is_empty(&rctxt->rc_call_pcl))
767 return false;
768 if (!pcl_is_empty(&rctxt->rc_read_pcl))
769 return false;
770 if (!pcl_is_empty(&rctxt->rc_write_pcl))
771 return false;
772 if (!pcl_is_empty(&rctxt->rc_reply_pcl))
773 return false;
774
775 /* RPC call direction */
776 if (*(p + 8) == cpu_to_be32(RPC_CALL))
777 return false;
778
779 return true;
780 }
781
782 /* Finish constructing the RPC Call message in rqstp::rq_arg.
783 *
784 * The incoming RPC/RDMA message is an RDMA_MSG type message
785 * with a single Read chunk (only the upper layer data payload
786 * was conveyed via RDMA Read).
787 */
svc_rdma_read_complete_one(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)788 static void svc_rdma_read_complete_one(struct svc_rqst *rqstp,
789 struct svc_rdma_recv_ctxt *ctxt)
790 {
791 struct svc_rdma_chunk *chunk = pcl_first_chunk(&ctxt->rc_read_pcl);
792 struct xdr_buf *buf = &rqstp->rq_arg;
793 unsigned int length;
794
795 /* Split the Receive buffer between the head and tail
796 * buffers at Read chunk's position. XDR roundup of the
797 * chunk is not included in either the pagelist or in
798 * the tail.
799 */
800 buf->tail[0].iov_base = buf->head[0].iov_base + chunk->ch_position;
801 buf->tail[0].iov_len = buf->head[0].iov_len - chunk->ch_position;
802 buf->head[0].iov_len = chunk->ch_position;
803
804 /* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
805 *
806 * If the client already rounded up the chunk length, the
807 * length does not change. Otherwise, the length of the page
808 * list is increased to include XDR round-up.
809 *
810 * Currently these chunks always start at page offset 0,
811 * thus the rounded-up length never crosses a page boundary.
812 */
813 buf->pages = &rqstp->rq_pages[0];
814 length = xdr_align_size(chunk->ch_length);
815 buf->page_len = length;
816 buf->len += length;
817 buf->buflen += length;
818 }
819
820 /* Finish constructing the RPC Call message in rqstp::rq_arg.
821 *
822 * The incoming RPC/RDMA message is an RDMA_MSG type message
823 * with payload in multiple Read chunks and no PZRC.
824 */
svc_rdma_read_complete_multiple(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)825 static void svc_rdma_read_complete_multiple(struct svc_rqst *rqstp,
826 struct svc_rdma_recv_ctxt *ctxt)
827 {
828 struct xdr_buf *buf = &rqstp->rq_arg;
829
830 buf->len += ctxt->rc_readbytes;
831 buf->buflen += ctxt->rc_readbytes;
832
833 buf->head[0].iov_base = page_address(rqstp->rq_pages[0]);
834 buf->head[0].iov_len = min_t(size_t, PAGE_SIZE, ctxt->rc_readbytes);
835 buf->pages = &rqstp->rq_pages[1];
836 buf->page_len = ctxt->rc_readbytes - buf->head[0].iov_len;
837 }
838
839 /* Finish constructing the RPC Call message in rqstp::rq_arg.
840 *
841 * The incoming RPC/RDMA message is an RDMA_NOMSG type message
842 * (the RPC message body was conveyed via RDMA Read).
843 */
svc_rdma_read_complete_pzrc(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)844 static void svc_rdma_read_complete_pzrc(struct svc_rqst *rqstp,
845 struct svc_rdma_recv_ctxt *ctxt)
846 {
847 struct xdr_buf *buf = &rqstp->rq_arg;
848
849 buf->len += ctxt->rc_readbytes;
850 buf->buflen += ctxt->rc_readbytes;
851
852 buf->head[0].iov_base = page_address(rqstp->rq_pages[0]);
853 buf->head[0].iov_len = min_t(size_t, PAGE_SIZE, ctxt->rc_readbytes);
854 buf->pages = &rqstp->rq_pages[1];
855 buf->page_len = ctxt->rc_readbytes - buf->head[0].iov_len;
856 }
857
svc_rdma_read_complete(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)858 static noinline void svc_rdma_read_complete(struct svc_rqst *rqstp,
859 struct svc_rdma_recv_ctxt *ctxt)
860 {
861 unsigned int i;
862
863 /* Transfer the Read chunk pages into @rqstp.rq_pages, replacing
864 * the rq_pages that were already allocated for this rqstp.
865 */
866 release_pages(rqstp->rq_respages, ctxt->rc_page_count);
867 for (i = 0; i < ctxt->rc_page_count; i++)
868 rqstp->rq_pages[i] = ctxt->rc_pages[i];
869
870 /* Update @rqstp's result send buffer to start after the
871 * last page in the RDMA Read payload.
872 */
873 rqstp->rq_respages = &rqstp->rq_pages[ctxt->rc_page_count];
874 rqstp->rq_next_page = rqstp->rq_respages + 1;
875
876 /* Prevent svc_rdma_recv_ctxt_put() from releasing the
877 * pages in ctxt::rc_pages a second time.
878 */
879 ctxt->rc_page_count = 0;
880
881 /* Finish constructing the RPC Call message. The exact
882 * procedure for that depends on what kind of RPC/RDMA
883 * chunks were provided by the client.
884 */
885 rqstp->rq_arg = ctxt->rc_saved_arg;
886 if (pcl_is_empty(&ctxt->rc_call_pcl)) {
887 if (ctxt->rc_read_pcl.cl_count == 1)
888 svc_rdma_read_complete_one(rqstp, ctxt);
889 else
890 svc_rdma_read_complete_multiple(rqstp, ctxt);
891 } else {
892 svc_rdma_read_complete_pzrc(rqstp, ctxt);
893 }
894
895 trace_svcrdma_read_finished(&ctxt->rc_cid);
896 }
897
898 /**
899 * svc_rdma_recvfrom - Receive an RPC call
900 * @rqstp: request structure into which to receive an RPC Call
901 *
902 * Returns:
903 * The positive number of bytes in the RPC Call message,
904 * %0 if there were no Calls ready to return,
905 * %-EINVAL if the Read chunk data is too large,
906 * %-ENOMEM if rdma_rw context pool was exhausted,
907 * %-ENOTCONN if posting failed (connection is lost),
908 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
909 *
910 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
911 * when there are no remaining ctxt's to process.
912 *
913 * The next ctxt is removed from the "receive" lists.
914 *
915 * - If the ctxt completes a Receive, then construct the Call
916 * message from the contents of the Receive buffer.
917 *
918 * - If there are no Read chunks in this message, then finish
919 * assembling the Call message and return the number of bytes
920 * in the message.
921 *
922 * - If there are Read chunks in this message, post Read WRs to
923 * pull that payload. When the Read WRs complete, build the
924 * full message and return the number of bytes in it.
925 */
svc_rdma_recvfrom(struct svc_rqst * rqstp)926 int svc_rdma_recvfrom(struct svc_rqst *rqstp)
927 {
928 struct svc_xprt *xprt = rqstp->rq_xprt;
929 struct svcxprt_rdma *rdma_xprt =
930 container_of(xprt, struct svcxprt_rdma, sc_xprt);
931 struct svc_rdma_recv_ctxt *ctxt;
932 int ret;
933
934 /* Prevent svc_xprt_release() from releasing pages in rq_pages
935 * when returning 0 or an error.
936 */
937 rqstp->rq_respages = rqstp->rq_pages;
938 rqstp->rq_next_page = rqstp->rq_respages;
939
940 rqstp->rq_xprt_ctxt = NULL;
941
942 spin_lock(&rdma_xprt->sc_rq_dto_lock);
943 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_read_complete_q);
944 if (ctxt) {
945 list_del(&ctxt->rc_list);
946 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
947 svc_xprt_received(xprt);
948 svc_rdma_read_complete(rqstp, ctxt);
949 goto complete;
950 }
951 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q);
952 if (ctxt)
953 list_del(&ctxt->rc_list);
954 else
955 /* No new incoming requests, terminate the loop */
956 clear_bit(XPT_DATA, &xprt->xpt_flags);
957 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
958
959 /* Unblock the transport for the next receive */
960 svc_xprt_received(xprt);
961 if (!ctxt)
962 return 0;
963
964 percpu_counter_inc(&svcrdma_stat_recv);
965 ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device,
966 ctxt->rc_recv_sge.addr, ctxt->rc_byte_len,
967 DMA_FROM_DEVICE);
968 svc_rdma_build_arg_xdr(rqstp, ctxt);
969
970 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt);
971 if (ret < 0)
972 goto out_err;
973 if (ret == 0)
974 goto out_drop;
975
976 if (svc_rdma_is_reverse_direction_reply(xprt, ctxt))
977 goto out_backchannel;
978
979 svc_rdma_get_inv_rkey(rdma_xprt, ctxt);
980
981 if (!pcl_is_empty(&ctxt->rc_read_pcl) ||
982 !pcl_is_empty(&ctxt->rc_call_pcl))
983 goto out_readlist;
984
985 complete:
986 rqstp->rq_xprt_ctxt = ctxt;
987 rqstp->rq_prot = IPPROTO_MAX;
988 svc_xprt_copy_addrs(rqstp, xprt);
989 set_bit(RQ_SECURE, &rqstp->rq_flags);
990 return rqstp->rq_arg.len;
991
992 out_err:
993 svc_rdma_send_error(rdma_xprt, ctxt, ret);
994 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
995 return 0;
996
997 out_readlist:
998 /* This @rqstp is about to be recycled. Save the work
999 * already done constructing the Call message in rq_arg
1000 * so it can be restored when the RDMA Reads have
1001 * completed.
1002 */
1003 ctxt->rc_saved_arg = rqstp->rq_arg;
1004
1005 ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt);
1006 if (ret < 0) {
1007 if (ret == -EINVAL)
1008 svc_rdma_send_error(rdma_xprt, ctxt, ret);
1009 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
1010 svc_xprt_deferred_close(xprt);
1011 return ret;
1012 }
1013 return 0;
1014
1015 out_backchannel:
1016 svc_rdma_handle_bc_reply(rqstp, ctxt);
1017 out_drop:
1018 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
1019 return 0;
1020 }
1021