1 /*
2 * ARM v8.5-MemTag Operations
3 *
4 * Copyright (c) 2020 Linaro, Ltd.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "exec/page-protection.h"
25 #ifdef CONFIG_USER_ONLY
26 #include "user/cpu_loop.h"
27 #include "user/page-protection.h"
28 #else
29 #include "system/ram_addr.h"
30 #endif
31 #include "accel/tcg/cpu-ldst.h"
32 #include "accel/tcg/probe.h"
33 #include "exec/helper-proto.h"
34 #include "exec/tlb-flags.h"
35 #include "accel/tcg/cpu-ops.h"
36 #include "qapi/error.h"
37 #include "qemu/guest-random.h"
38 #include "mte_helper.h"
39
choose_nonexcluded_tag(int tag,int offset,uint16_t exclude)40 static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
41 {
42 if (exclude == 0xffff) {
43 return 0;
44 }
45 if (offset == 0) {
46 while (exclude & (1 << tag)) {
47 tag = (tag + 1) & 15;
48 }
49 } else {
50 do {
51 do {
52 tag = (tag + 1) & 15;
53 } while (exclude & (1 << tag));
54 } while (--offset > 0);
55 }
56 return tag;
57 }
58
allocation_tag_mem_probe(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,bool probe,uintptr_t ra)59 uint8_t *allocation_tag_mem_probe(CPUARMState *env, int ptr_mmu_idx,
60 uint64_t ptr, MMUAccessType ptr_access,
61 int ptr_size, MMUAccessType tag_access,
62 bool probe, uintptr_t ra)
63 {
64 #ifdef CONFIG_USER_ONLY
65 const size_t page_data_size = TARGET_PAGE_SIZE >> (LOG2_TAG_GRANULE + 1);
66 uint64_t clean_ptr = useronly_clean_ptr(ptr);
67 int flags = page_get_flags(clean_ptr);
68 uint8_t *tags;
69 uintptr_t index;
70
71 assert(!(probe && ra));
72
73 if (!(flags & (ptr_access == MMU_DATA_STORE ? PAGE_WRITE_ORG : PAGE_READ))) {
74 if (probe) {
75 return NULL;
76 }
77 cpu_loop_exit_sigsegv(env_cpu(env), ptr, ptr_access,
78 !(flags & PAGE_VALID), ra);
79 }
80
81 /* Require both MAP_ANON and PROT_MTE for the page. */
82 if (!(flags & PAGE_ANON) || !(flags & PAGE_MTE)) {
83 return NULL;
84 }
85
86 tags = page_get_target_data(clean_ptr, page_data_size);
87
88 index = extract32(ptr, LOG2_TAG_GRANULE + 1,
89 TARGET_PAGE_BITS - LOG2_TAG_GRANULE - 1);
90 return tags + index;
91 #else
92 CPUTLBEntryFull *full;
93 MemTxAttrs attrs;
94 int in_page, flags;
95 hwaddr ptr_paddr, tag_paddr, xlat;
96 MemoryRegion *mr;
97 ARMASIdx tag_asi;
98 AddressSpace *tag_as;
99 void *host;
100
101 /*
102 * Probe the first byte of the virtual address. This raises an
103 * exception for inaccessible pages, and resolves the virtual address
104 * into the softmmu tlb.
105 *
106 * When RA == 0, this is either a pure probe or a no-fault-expected probe.
107 * Indicate to probe_access_flags no-fault, then either return NULL
108 * for the pure probe, or assert that we received a valid page for the
109 * no-fault-expected probe.
110 */
111 flags = probe_access_full(env, ptr, 0, ptr_access, ptr_mmu_idx,
112 ra == 0, &host, &full, ra);
113 if (probe && (flags & TLB_INVALID_MASK)) {
114 return NULL;
115 }
116 assert(!(flags & TLB_INVALID_MASK));
117
118 /* If the virtual page MemAttr != Tagged, access unchecked. */
119 if (full->extra.arm.pte_attrs != 0xf0) {
120 return NULL;
121 }
122
123 /*
124 * If not backed by host ram, there is no tag storage: access unchecked.
125 * This is probably a guest os bug though, so log it.
126 */
127 if (unlikely(flags & TLB_MMIO)) {
128 qemu_log_mask(LOG_GUEST_ERROR,
129 "Page @ 0x%" PRIx64 " indicates Tagged Normal memory "
130 "but is not backed by host ram\n", ptr);
131 return NULL;
132 }
133
134 /*
135 * Remember these values across the second lookup below,
136 * which may invalidate this pointer via tlb resize.
137 */
138 ptr_paddr = full->phys_addr | (ptr & ~TARGET_PAGE_MASK);
139 attrs = full->attrs;
140 full = NULL;
141
142 /*
143 * The Normal memory access can extend to the next page. E.g. a single
144 * 8-byte access to the last byte of a page will check only the last
145 * tag on the first page.
146 * Any page access exception has priority over tag check exception.
147 */
148 in_page = -(ptr | TARGET_PAGE_MASK);
149 if (unlikely(ptr_size > in_page)) {
150 flags |= probe_access_full(env, ptr + in_page, 0, ptr_access,
151 ptr_mmu_idx, ra == 0, &host, &full, ra);
152 assert(!(flags & TLB_INVALID_MASK));
153 }
154
155 /* Any debug exception has priority over a tag check exception. */
156 if (!probe && unlikely(flags & TLB_WATCHPOINT)) {
157 int wp = ptr_access == MMU_DATA_LOAD ? BP_MEM_READ : BP_MEM_WRITE;
158 assert(ra != 0);
159 cpu_check_watchpoint(env_cpu(env), ptr, ptr_size, attrs, wp, ra);
160 }
161
162 /* Convert to the physical address in tag space. */
163 tag_paddr = ptr_paddr >> (LOG2_TAG_GRANULE + 1);
164
165 /* Look up the address in tag space. */
166 tag_asi = attrs.secure ? ARMASIdx_TagS : ARMASIdx_TagNS;
167 tag_as = cpu_get_address_space(env_cpu(env), tag_asi);
168 mr = address_space_translate(tag_as, tag_paddr, &xlat, NULL,
169 tag_access == MMU_DATA_STORE, attrs);
170
171 /*
172 * Note that @mr will never be NULL. If there is nothing in the address
173 * space at @tag_paddr, the translation will return the unallocated memory
174 * region. For our purposes, the result must be ram.
175 */
176 if (unlikely(!memory_region_is_ram(mr))) {
177 /* ??? Failure is a board configuration error. */
178 qemu_log_mask(LOG_UNIMP,
179 "Tag Memory @ 0x%" HWADDR_PRIx " not found for "
180 "Normal Memory @ 0x%" HWADDR_PRIx "\n",
181 tag_paddr, ptr_paddr);
182 return NULL;
183 }
184
185 /*
186 * Ensure the tag memory is dirty on write, for migration.
187 * Tag memory can never contain code or display memory (vga).
188 */
189 if (tag_access == MMU_DATA_STORE) {
190 ram_addr_t tag_ra = memory_region_get_ram_addr(mr) + xlat;
191 cpu_physical_memory_set_dirty_flag(tag_ra, DIRTY_MEMORY_MIGRATION);
192 }
193
194 return memory_region_get_ram_ptr(mr) + xlat;
195 #endif
196 }
197
allocation_tag_mem(CPUARMState * env,int ptr_mmu_idx,uint64_t ptr,MMUAccessType ptr_access,int ptr_size,MMUAccessType tag_access,uintptr_t ra)198 static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
199 uint64_t ptr, MMUAccessType ptr_access,
200 int ptr_size, MMUAccessType tag_access,
201 uintptr_t ra)
202 {
203 return allocation_tag_mem_probe(env, ptr_mmu_idx, ptr, ptr_access,
204 ptr_size, tag_access, false, ra);
205 }
206
HELPER(irg)207 uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
208 {
209 uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
210 int rrnd = extract32(env->cp15.gcr_el1, 16, 1);
211 int start = extract32(env->cp15.rgsr_el1, 0, 4);
212 int seed = extract32(env->cp15.rgsr_el1, 8, 16);
213 int offset, i, rtag;
214
215 /*
216 * Our IMPDEF choice for GCR_EL1.RRND==1 is to continue to use the
217 * deterministic algorithm. Except that with RRND==1 the kernel is
218 * not required to have set RGSR_EL1.SEED != 0, which is required for
219 * the deterministic algorithm to function. So we force a non-zero
220 * SEED for that case.
221 */
222 if (unlikely(seed == 0) && rrnd) {
223 do {
224 Error *err = NULL;
225 uint16_t two;
226
227 if (qemu_guest_getrandom(&two, sizeof(two), &err) < 0) {
228 /*
229 * Failed, for unknown reasons in the crypto subsystem.
230 * Best we can do is log the reason and use a constant seed.
231 */
232 qemu_log_mask(LOG_UNIMP, "IRG: Crypto failure: %s\n",
233 error_get_pretty(err));
234 error_free(err);
235 two = 1;
236 }
237 seed = two;
238 } while (seed == 0);
239 }
240
241 /* RandomTag */
242 for (i = offset = 0; i < 4; ++i) {
243 /* NextRandomTagBit */
244 int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
245 extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
246 seed = (top << 15) | (seed >> 1);
247 offset |= top << i;
248 }
249 rtag = choose_nonexcluded_tag(start, offset, exclude);
250 env->cp15.rgsr_el1 = rtag | (seed << 8);
251
252 return address_with_allocation_tag(rn, rtag);
253 }
254
HELPER(addsubg)255 uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
256 int32_t offset, uint32_t tag_offset)
257 {
258 int start_tag = allocation_tag_from_addr(ptr);
259 uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
260 int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
261
262 return address_with_allocation_tag(ptr + offset, rtag);
263 }
264
load_tag1(uint64_t ptr,uint8_t * mem)265 int load_tag1(uint64_t ptr, uint8_t *mem)
266 {
267 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
268 return extract32(*mem, ofs, 4);
269 }
270
HELPER(ldg)271 uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
272 {
273 int mmu_idx = arm_env_mmu_index(env);
274 uint8_t *mem;
275 int rtag = 0;
276
277 /* Trap if accessing an invalid page. */
278 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
279 MMU_DATA_LOAD, GETPC());
280
281 /* Load if page supports tags. */
282 if (mem) {
283 rtag = load_tag1(ptr, mem);
284 }
285
286 return address_with_allocation_tag(xt, rtag);
287 }
288
check_tag_aligned(CPUARMState * env,uint64_t ptr,uintptr_t ra)289 static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
290 {
291 if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
292 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
293 arm_env_mmu_index(env), ra);
294 g_assert_not_reached();
295 }
296 }
297
298 /* For use in a non-parallel context, store to the given nibble. */
store_tag1(uint64_t ptr,uint8_t * mem,int tag)299 void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
300 {
301 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
302 *mem = deposit32(*mem, ofs, 4, tag);
303 }
304
305 /* For use in a parallel context, atomically store to the given nibble. */
store_tag1_parallel(uint64_t ptr,uint8_t * mem,int tag)306 static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
307 {
308 int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
309 uint8_t old = qatomic_read(mem);
310
311 while (1) {
312 uint8_t new = deposit32(old, ofs, 4, tag);
313 uint8_t cmp = qatomic_cmpxchg(mem, old, new);
314 if (likely(cmp == old)) {
315 return;
316 }
317 old = cmp;
318 }
319 }
320
321 typedef void stg_store1(uint64_t, uint8_t *, int);
322
do_stg(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)323 static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
324 uintptr_t ra, stg_store1 store1)
325 {
326 int mmu_idx = arm_env_mmu_index(env);
327 uint8_t *mem;
328
329 check_tag_aligned(env, ptr, ra);
330
331 /* Trap if accessing an invalid page. */
332 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
333 MMU_DATA_STORE, ra);
334
335 /* Store if page supports tags. */
336 if (mem) {
337 store1(ptr, mem, allocation_tag_from_addr(xt));
338 }
339 }
340
HELPER(stg)341 void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
342 {
343 do_stg(env, ptr, xt, GETPC(), store_tag1);
344 }
345
HELPER(stg_parallel)346 void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
347 {
348 do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
349 }
350
HELPER(stg_stub)351 void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
352 {
353 int mmu_idx = arm_env_mmu_index(env);
354 uintptr_t ra = GETPC();
355
356 check_tag_aligned(env, ptr, ra);
357 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
358 }
359
do_st2g(CPUARMState * env,uint64_t ptr,uint64_t xt,uintptr_t ra,stg_store1 store1)360 static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
361 uintptr_t ra, stg_store1 store1)
362 {
363 int mmu_idx = arm_env_mmu_index(env);
364 int tag = allocation_tag_from_addr(xt);
365 uint8_t *mem1, *mem2;
366
367 check_tag_aligned(env, ptr, ra);
368
369 /*
370 * Trap if accessing an invalid page(s).
371 * This takes priority over !allocation_tag_access_enabled.
372 */
373 if (ptr & TAG_GRANULE) {
374 /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
375 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
376 TAG_GRANULE, MMU_DATA_STORE, ra);
377 mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
378 MMU_DATA_STORE, TAG_GRANULE,
379 MMU_DATA_STORE, ra);
380
381 /* Store if page(s) support tags. */
382 if (mem1) {
383 store1(TAG_GRANULE, mem1, tag);
384 }
385 if (mem2) {
386 store1(0, mem2, tag);
387 }
388 } else {
389 /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
390 mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
391 2 * TAG_GRANULE, MMU_DATA_STORE, ra);
392 if (mem1) {
393 tag |= tag << 4;
394 qatomic_set(mem1, tag);
395 }
396 }
397 }
398
HELPER(st2g)399 void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
400 {
401 do_st2g(env, ptr, xt, GETPC(), store_tag1);
402 }
403
HELPER(st2g_parallel)404 void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
405 {
406 do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
407 }
408
HELPER(st2g_stub)409 void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
410 {
411 int mmu_idx = arm_env_mmu_index(env);
412 uintptr_t ra = GETPC();
413 int in_page = -(ptr | TARGET_PAGE_MASK);
414
415 check_tag_aligned(env, ptr, ra);
416
417 if (likely(in_page >= 2 * TAG_GRANULE)) {
418 probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
419 } else {
420 probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
421 probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
422 }
423 }
424
HELPER(ldgm)425 uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr)
426 {
427 int mmu_idx = arm_env_mmu_index(env);
428 uintptr_t ra = GETPC();
429 int gm_bs = env_archcpu(env)->gm_blocksize;
430 int gm_bs_bytes = 4 << gm_bs;
431 void *tag_mem;
432 uint64_t ret;
433 int shift;
434
435 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
436
437 /* Trap if accessing an invalid page. */
438 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD,
439 gm_bs_bytes, MMU_DATA_LOAD, ra);
440
441 /* The tag is squashed to zero if the page does not support tags. */
442 if (!tag_mem) {
443 return 0;
444 }
445
446 /*
447 * The ordering of elements within the word corresponds to
448 * a little-endian operation. Computation of shift comes from
449 *
450 * index = address<LOG2_TAG_GRANULE+3:LOG2_TAG_GRANULE>
451 * data<index*4+3:index*4> = tag
452 *
453 * Because of the alignment of ptr above, BS=6 has shift=0.
454 * All memory operations are aligned. Defer support for BS=2,
455 * requiring insertion or extraction of a nibble, until we
456 * support a cpu that requires it.
457 */
458 switch (gm_bs) {
459 case 3:
460 /* 32 bytes -> 2 tags -> 8 result bits */
461 ret = *(uint8_t *)tag_mem;
462 break;
463 case 4:
464 /* 64 bytes -> 4 tags -> 16 result bits */
465 ret = cpu_to_le16(*(uint16_t *)tag_mem);
466 break;
467 case 5:
468 /* 128 bytes -> 8 tags -> 32 result bits */
469 ret = cpu_to_le32(*(uint32_t *)tag_mem);
470 break;
471 case 6:
472 /* 256 bytes -> 16 tags -> 64 result bits */
473 return cpu_to_le64(*(uint64_t *)tag_mem);
474 default:
475 /*
476 * CPU configured with unsupported/invalid gm blocksize.
477 * This is detected early in arm_cpu_realizefn.
478 */
479 g_assert_not_reached();
480 }
481 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
482 return ret << shift;
483 }
484
HELPER(stgm)485 void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val)
486 {
487 int mmu_idx = arm_env_mmu_index(env);
488 uintptr_t ra = GETPC();
489 int gm_bs = env_archcpu(env)->gm_blocksize;
490 int gm_bs_bytes = 4 << gm_bs;
491 void *tag_mem;
492 int shift;
493
494 ptr = QEMU_ALIGN_DOWN(ptr, gm_bs_bytes);
495
496 /* Trap if accessing an invalid page. */
497 tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
498 gm_bs_bytes, MMU_DATA_LOAD, ra);
499
500 /*
501 * Tag store only happens if the page support tags,
502 * and if the OS has enabled access to the tags.
503 */
504 if (!tag_mem) {
505 return;
506 }
507
508 /* See LDGM for comments on BS and on shift. */
509 shift = extract64(ptr, LOG2_TAG_GRANULE, 4) * 4;
510 val >>= shift;
511 switch (gm_bs) {
512 case 3:
513 /* 32 bytes -> 2 tags -> 8 result bits */
514 *(uint8_t *)tag_mem = val;
515 break;
516 case 4:
517 /* 64 bytes -> 4 tags -> 16 result bits */
518 *(uint16_t *)tag_mem = cpu_to_le16(val);
519 break;
520 case 5:
521 /* 128 bytes -> 8 tags -> 32 result bits */
522 *(uint32_t *)tag_mem = cpu_to_le32(val);
523 break;
524 case 6:
525 /* 256 bytes -> 16 tags -> 64 result bits */
526 *(uint64_t *)tag_mem = cpu_to_le64(val);
527 break;
528 default:
529 /* cpu configured with unsupported gm blocksize. */
530 g_assert_not_reached();
531 }
532 }
533
HELPER(stzgm_tags)534 void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val)
535 {
536 uintptr_t ra = GETPC();
537 int mmu_idx = arm_env_mmu_index(env);
538 int log2_dcz_bytes, log2_tag_bytes;
539 intptr_t dcz_bytes, tag_bytes;
540 uint8_t *mem;
541
542 /*
543 * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1,
544 * i.e. 32 bytes, which is an unreasonably small dcz anyway,
545 * to make sure that we can access one complete tag byte here.
546 */
547 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
548 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
549 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
550 tag_bytes = (intptr_t)1 << log2_tag_bytes;
551 ptr &= -dcz_bytes;
552
553 mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes,
554 MMU_DATA_STORE, ra);
555 if (mem) {
556 int tag_pair = (val & 0xf) * 0x11;
557 memset(mem, tag_pair, tag_bytes);
558 }
559 }
560
mte_sync_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)561 static void mte_sync_check_fail(CPUARMState *env, uint32_t desc,
562 uint64_t dirty_ptr, uintptr_t ra)
563 {
564 int is_write, syn;
565
566 env->exception.vaddress = dirty_ptr;
567
568 is_write = FIELD_EX32(desc, MTEDESC, WRITE);
569 syn = syn_data_abort_no_iss(arm_current_el(env) != 0, 0, 0, 0, 0, is_write,
570 0x11);
571 raise_exception_ra(env, EXCP_DATA_ABORT, syn, exception_target_el(env), ra);
572 g_assert_not_reached();
573 }
574
mte_async_check_fail(CPUARMState * env,uint64_t dirty_ptr,uintptr_t ra,ARMMMUIdx arm_mmu_idx,int el)575 static void mte_async_check_fail(CPUARMState *env, uint64_t dirty_ptr,
576 uintptr_t ra, ARMMMUIdx arm_mmu_idx, int el)
577 {
578 int select;
579
580 if (regime_has_2_ranges(arm_mmu_idx)) {
581 select = extract64(dirty_ptr, 55, 1);
582 } else {
583 select = 0;
584 }
585 env->cp15.tfsr_el[el] |= 1 << select;
586 #ifdef CONFIG_USER_ONLY
587 /*
588 * Stand in for a timer irq, setting _TIF_MTE_ASYNC_FAULT,
589 * which then sends a SIGSEGV when the thread is next scheduled.
590 * This cpu will return to the main loop at the end of the TB,
591 * which is rather sooner than "normal". But the alternative
592 * is waiting until the next syscall.
593 */
594 qemu_cpu_kick(env_cpu(env));
595 #endif
596 }
597
598 /* Record a tag check failure. */
mte_check_fail(CPUARMState * env,uint32_t desc,uint64_t dirty_ptr,uintptr_t ra)599 void mte_check_fail(CPUARMState *env, uint32_t desc,
600 uint64_t dirty_ptr, uintptr_t ra)
601 {
602 int mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
603 ARMMMUIdx arm_mmu_idx = core_to_aa64_mmu_idx(mmu_idx);
604 int el, reg_el, tcf;
605 uint64_t sctlr;
606
607 reg_el = regime_el(env, arm_mmu_idx);
608 sctlr = env->cp15.sctlr_el[reg_el];
609
610 switch (arm_mmu_idx) {
611 case ARMMMUIdx_E10_0:
612 case ARMMMUIdx_E20_0:
613 el = 0;
614 tcf = extract64(sctlr, 38, 2);
615 break;
616 default:
617 el = reg_el;
618 tcf = extract64(sctlr, 40, 2);
619 }
620
621 switch (tcf) {
622 case 1:
623 /* Tag check fail causes a synchronous exception. */
624 mte_sync_check_fail(env, desc, dirty_ptr, ra);
625 break;
626
627 case 0:
628 /*
629 * Tag check fail does not affect the PE.
630 * We eliminate this case by not setting MTE_ACTIVE
631 * in tb_flags, so that we never make this runtime call.
632 */
633 g_assert_not_reached();
634
635 case 2:
636 /* Tag check fail causes asynchronous flag set. */
637 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
638 break;
639
640 case 3:
641 /*
642 * Tag check fail causes asynchronous flag set for stores, or
643 * a synchronous exception for loads.
644 */
645 if (FIELD_EX32(desc, MTEDESC, WRITE)) {
646 mte_async_check_fail(env, dirty_ptr, ra, arm_mmu_idx, el);
647 } else {
648 mte_sync_check_fail(env, desc, dirty_ptr, ra);
649 }
650 break;
651 }
652 }
653
654 /**
655 * checkN:
656 * @tag: tag memory to test
657 * @odd: true to begin testing at tags at odd nibble
658 * @cmp: the tag to compare against
659 * @count: number of tags to test
660 *
661 * Return the number of successful tests.
662 * Thus a return value < @count indicates a failure.
663 *
664 * A note about sizes: count is expected to be small.
665 *
666 * The most common use will be LDP/STP of two integer registers,
667 * which means 16 bytes of memory touching at most 2 tags, but
668 * often the access is aligned and thus just 1 tag.
669 *
670 * Using AdvSIMD LD/ST (multiple), one can access 64 bytes of memory,
671 * touching at most 5 tags. SVE LDR/STR (vector) with the default
672 * vector length is also 64 bytes; the maximum architectural length
673 * is 256 bytes touching at most 9 tags.
674 *
675 * The loop below uses 7 logical operations and 1 memory operation
676 * per tag pair. An implementation that loads an aligned word and
677 * uses masking to ignore adjacent tags requires 18 logical operations
678 * and thus does not begin to pay off until 6 tags.
679 * Which, according to the survey above, is unlikely to be common.
680 */
checkN(uint8_t * mem,int odd,int cmp,int count)681 static int checkN(uint8_t *mem, int odd, int cmp, int count)
682 {
683 int n = 0, diff;
684
685 /* Replicate the test tag and compare. */
686 cmp *= 0x11;
687 diff = *mem++ ^ cmp;
688
689 if (odd) {
690 goto start_odd;
691 }
692
693 while (1) {
694 /* Test even tag. */
695 if (unlikely((diff) & 0x0f)) {
696 break;
697 }
698 if (++n == count) {
699 break;
700 }
701
702 start_odd:
703 /* Test odd tag. */
704 if (unlikely((diff) & 0xf0)) {
705 break;
706 }
707 if (++n == count) {
708 break;
709 }
710
711 diff = *mem++ ^ cmp;
712 }
713 return n;
714 }
715
716 /**
717 * checkNrev:
718 * @tag: tag memory to test
719 * @odd: true to begin testing at tags at odd nibble
720 * @cmp: the tag to compare against
721 * @count: number of tags to test
722 *
723 * Return the number of successful tests.
724 * Thus a return value < @count indicates a failure.
725 *
726 * This is like checkN, but it runs backwards, checking the
727 * tags starting with @tag and then the tags preceding it.
728 * This is needed by the backwards-memory-copying operations.
729 */
checkNrev(uint8_t * mem,int odd,int cmp,int count)730 static int checkNrev(uint8_t *mem, int odd, int cmp, int count)
731 {
732 int n = 0, diff;
733
734 /* Replicate the test tag and compare. */
735 cmp *= 0x11;
736 diff = *mem-- ^ cmp;
737
738 if (!odd) {
739 goto start_even;
740 }
741
742 while (1) {
743 /* Test odd tag. */
744 if (unlikely((diff) & 0xf0)) {
745 break;
746 }
747 if (++n == count) {
748 break;
749 }
750
751 start_even:
752 /* Test even tag. */
753 if (unlikely((diff) & 0x0f)) {
754 break;
755 }
756 if (++n == count) {
757 break;
758 }
759
760 diff = *mem-- ^ cmp;
761 }
762 return n;
763 }
764
765 /**
766 * mte_probe_int() - helper for mte_probe and mte_check
767 * @env: CPU environment
768 * @desc: MTEDESC descriptor
769 * @ptr: virtual address of the base of the access
770 * @fault: return virtual address of the first check failure
771 *
772 * Internal routine for both mte_probe and mte_check.
773 * Return zero on failure, filling in *fault.
774 * Return negative on trivial success for tbi disabled.
775 * Return positive on success with tbi enabled.
776 */
mte_probe_int(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra,uint64_t * fault)777 static int mte_probe_int(CPUARMState *env, uint32_t desc, uint64_t ptr,
778 uintptr_t ra, uint64_t *fault)
779 {
780 int mmu_idx, ptr_tag, bit55;
781 uint64_t ptr_last, prev_page, next_page;
782 uint64_t tag_first, tag_last;
783 uint32_t sizem1, tag_count, n, c;
784 uint8_t *mem1, *mem2;
785 MMUAccessType type;
786
787 bit55 = extract64(ptr, 55, 1);
788 *fault = ptr;
789
790 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
791 if (unlikely(!tbi_check(desc, bit55))) {
792 return -1;
793 }
794
795 ptr_tag = allocation_tag_from_addr(ptr);
796
797 if (tcma_check(desc, bit55, ptr_tag)) {
798 return 1;
799 }
800
801 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
802 type = FIELD_EX32(desc, MTEDESC, WRITE) ? MMU_DATA_STORE : MMU_DATA_LOAD;
803 sizem1 = FIELD_EX32(desc, MTEDESC, SIZEM1);
804
805 /* Find the addr of the end of the access */
806 ptr_last = ptr + sizem1;
807
808 /* Round the bounds to the tag granule, and compute the number of tags. */
809 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
810 tag_last = QEMU_ALIGN_DOWN(ptr_last, TAG_GRANULE);
811 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
812
813 /* Locate the page boundaries. */
814 prev_page = ptr & TARGET_PAGE_MASK;
815 next_page = prev_page + TARGET_PAGE_SIZE;
816
817 if (likely(tag_last - prev_page < TARGET_PAGE_SIZE)) {
818 /* Memory access stays on one page. */
819 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, sizem1 + 1,
820 MMU_DATA_LOAD, ra);
821 if (!mem1) {
822 return 1;
823 }
824 /* Perform all of the comparisons. */
825 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, tag_count);
826 } else {
827 /* Memory access crosses to next page. */
828 mem1 = allocation_tag_mem(env, mmu_idx, ptr, type, next_page - ptr,
829 MMU_DATA_LOAD, ra);
830
831 mem2 = allocation_tag_mem(env, mmu_idx, next_page, type,
832 ptr_last - next_page + 1,
833 MMU_DATA_LOAD, ra);
834
835 /*
836 * Perform all of the comparisons.
837 * Note the possible but unlikely case of the operation spanning
838 * two pages that do not both have tagging enabled.
839 */
840 n = c = (next_page - tag_first) / TAG_GRANULE;
841 if (mem1) {
842 n = checkN(mem1, ptr & TAG_GRANULE, ptr_tag, c);
843 }
844 if (n == c) {
845 if (!mem2) {
846 return 1;
847 }
848 n += checkN(mem2, 0, ptr_tag, tag_count - c);
849 }
850 }
851
852 if (likely(n == tag_count)) {
853 return 1;
854 }
855
856 /*
857 * If we failed, we know which granule. For the first granule, the
858 * failure address is @ptr, the first byte accessed. Otherwise the
859 * failure address is the first byte of the nth granule.
860 */
861 if (n > 0) {
862 *fault = tag_first + n * TAG_GRANULE;
863 }
864 return 0;
865 }
866
mte_check(CPUARMState * env,uint32_t desc,uint64_t ptr,uintptr_t ra)867 uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra)
868 {
869 uint64_t fault;
870 int ret = mte_probe_int(env, desc, ptr, ra, &fault);
871
872 if (unlikely(ret == 0)) {
873 mte_check_fail(env, desc, fault, ra);
874 } else if (ret < 0) {
875 return ptr;
876 }
877 return useronly_clean_ptr(ptr);
878 }
879
HELPER(mte_check)880 uint64_t HELPER(mte_check)(CPUARMState *env, uint32_t desc, uint64_t ptr)
881 {
882 /*
883 * R_XCHFJ: Alignment check not caused by memory type is priority 1,
884 * higher than any translation fault. When MTE is disabled, tcg
885 * performs the alignment check during the code generated for the
886 * memory access. With MTE enabled, we must check this here before
887 * raising any translation fault in allocation_tag_mem.
888 */
889 unsigned align = FIELD_EX32(desc, MTEDESC, ALIGN);
890 if (unlikely(align)) {
891 align = (1u << align) - 1;
892 if (unlikely(ptr & align)) {
893 int idx = FIELD_EX32(desc, MTEDESC, MIDX);
894 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
895 MMUAccessType type = w ? MMU_DATA_STORE : MMU_DATA_LOAD;
896 arm_cpu_do_unaligned_access(env_cpu(env), ptr, type, idx, GETPC());
897 }
898 }
899
900 return mte_check(env, desc, ptr, GETPC());
901 }
902
903 /*
904 * No-fault version of mte_check, to be used by SVE for MemSingleNF.
905 * Returns false if the access is Checked and the check failed. This
906 * is only intended to probe the tag -- the validity of the page must
907 * be checked beforehand.
908 */
mte_probe(CPUARMState * env,uint32_t desc,uint64_t ptr)909 bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr)
910 {
911 uint64_t fault;
912 int ret = mte_probe_int(env, desc, ptr, 0, &fault);
913
914 return ret != 0;
915 }
916
917 /*
918 * Perform an MTE checked access for DC_ZVA.
919 */
HELPER(mte_check_zva)920 uint64_t HELPER(mte_check_zva)(CPUARMState *env, uint32_t desc, uint64_t ptr)
921 {
922 uintptr_t ra = GETPC();
923 int log2_dcz_bytes, log2_tag_bytes;
924 int mmu_idx, bit55;
925 intptr_t dcz_bytes, tag_bytes, i;
926 void *mem;
927 uint64_t ptr_tag, mem_tag, align_ptr;
928
929 bit55 = extract64(ptr, 55, 1);
930
931 /* If TBI is disabled, the access is unchecked, and ptr is not dirty. */
932 if (unlikely(!tbi_check(desc, bit55))) {
933 return ptr;
934 }
935
936 ptr_tag = allocation_tag_from_addr(ptr);
937
938 if (tcma_check(desc, bit55, ptr_tag)) {
939 goto done;
940 }
941
942 /*
943 * In arm_cpu_realizefn, we asserted that dcz > LOG2_TAG_GRANULE+1,
944 * i.e. 32 bytes, which is an unreasonably small dcz anyway, to make
945 * sure that we can access one complete tag byte here.
946 */
947 log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2;
948 log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1);
949 dcz_bytes = (intptr_t)1 << log2_dcz_bytes;
950 tag_bytes = (intptr_t)1 << log2_tag_bytes;
951 align_ptr = ptr & -dcz_bytes;
952
953 /*
954 * Trap if accessing an invalid page. DC_ZVA requires that we supply
955 * the original pointer for an invalid page. But watchpoints require
956 * that we probe the actual space. So do both.
957 */
958 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
959 (void) probe_write(env, ptr, 1, mmu_idx, ra);
960 mem = allocation_tag_mem(env, mmu_idx, align_ptr, MMU_DATA_STORE,
961 dcz_bytes, MMU_DATA_LOAD, ra);
962 if (!mem) {
963 goto done;
964 }
965
966 /*
967 * Unlike the reasoning for checkN, DC_ZVA is always aligned, and thus
968 * it is quite easy to perform all of the comparisons at once without
969 * any extra masking.
970 *
971 * The most common zva block size is 64; some of the thunderx cpus use
972 * a block size of 128. For user-only, aarch64_max_initfn will set the
973 * block size to 512. Fill out the other cases for future-proofing.
974 *
975 * In order to be able to find the first miscompare later, we want the
976 * tag bytes to be in little-endian order.
977 */
978 switch (log2_tag_bytes) {
979 case 0: /* zva_blocksize 32 */
980 mem_tag = *(uint8_t *)mem;
981 ptr_tag *= 0x11u;
982 break;
983 case 1: /* zva_blocksize 64 */
984 mem_tag = cpu_to_le16(*(uint16_t *)mem);
985 ptr_tag *= 0x1111u;
986 break;
987 case 2: /* zva_blocksize 128 */
988 mem_tag = cpu_to_le32(*(uint32_t *)mem);
989 ptr_tag *= 0x11111111u;
990 break;
991 case 3: /* zva_blocksize 256 */
992 mem_tag = cpu_to_le64(*(uint64_t *)mem);
993 ptr_tag *= 0x1111111111111111ull;
994 break;
995
996 default: /* zva_blocksize 512, 1024, 2048 */
997 ptr_tag *= 0x1111111111111111ull;
998 i = 0;
999 do {
1000 mem_tag = cpu_to_le64(*(uint64_t *)(mem + i));
1001 if (unlikely(mem_tag != ptr_tag)) {
1002 goto fail;
1003 }
1004 i += 8;
1005 align_ptr += 16 * TAG_GRANULE;
1006 } while (i < tag_bytes);
1007 goto done;
1008 }
1009
1010 if (likely(mem_tag == ptr_tag)) {
1011 goto done;
1012 }
1013
1014 fail:
1015 /* Locate the first nibble that differs. */
1016 i = ctz64(mem_tag ^ ptr_tag) >> 4;
1017 mte_check_fail(env, desc, align_ptr + i * TAG_GRANULE, ra);
1018
1019 done:
1020 return useronly_clean_ptr(ptr);
1021 }
1022
mte_mops_probe(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1023 uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
1024 uint32_t desc)
1025 {
1026 int mmu_idx, tag_count;
1027 uint64_t ptr_tag, tag_first, tag_last;
1028 void *mem;
1029 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1030 uint32_t n;
1031
1032 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1033 /* True probe; this will never fault */
1034 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1035 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1036 size, MMU_DATA_LOAD, true, 0);
1037 if (!mem) {
1038 return size;
1039 }
1040
1041 /*
1042 * TODO: checkN() is not designed for checks of the size we expect
1043 * for FEAT_MOPS operations, so we should implement this differently.
1044 * Maybe we should do something like
1045 * if (region start and size are aligned nicely) {
1046 * do direct loads of 64 tag bits at a time;
1047 * } else {
1048 * call checkN()
1049 * }
1050 */
1051 /* Round the bounds to the tag granule, and compute the number of tags. */
1052 ptr_tag = allocation_tag_from_addr(ptr);
1053 tag_first = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1054 tag_last = QEMU_ALIGN_DOWN(ptr + size - 1, TAG_GRANULE);
1055 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1056 n = checkN(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1057 if (likely(n == tag_count)) {
1058 return size;
1059 }
1060
1061 /*
1062 * Failure; for the first granule, it's at @ptr. Otherwise
1063 * it's at the first byte of the nth granule. Calculate how
1064 * many bytes we can access without hitting that failure.
1065 */
1066 if (n == 0) {
1067 return 0;
1068 } else {
1069 return n * TAG_GRANULE - (ptr - tag_first);
1070 }
1071 }
1072
mte_mops_probe_rev(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1073 uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
1074 uint32_t desc)
1075 {
1076 int mmu_idx, tag_count;
1077 uint64_t ptr_tag, tag_first, tag_last;
1078 void *mem;
1079 bool w = FIELD_EX32(desc, MTEDESC, WRITE);
1080 uint32_t n;
1081
1082 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1083 /*
1084 * True probe; this will never fault. Note that our caller passes
1085 * us a pointer to the end of the region, but allocation_tag_mem_probe()
1086 * wants a pointer to the start. Because we know we don't span a page
1087 * boundary and that allocation_tag_mem_probe() doesn't otherwise care
1088 * about the size, pass in a size of 1 byte. This is simpler than
1089 * adjusting the ptr to point to the start of the region and then having
1090 * to adjust the returned 'mem' to get the end of the tag memory.
1091 */
1092 mem = allocation_tag_mem_probe(env, mmu_idx, ptr,
1093 w ? MMU_DATA_STORE : MMU_DATA_LOAD,
1094 1, MMU_DATA_LOAD, true, 0);
1095 if (!mem) {
1096 return size;
1097 }
1098
1099 /*
1100 * TODO: checkNrev() is not designed for checks of the size we expect
1101 * for FEAT_MOPS operations, so we should implement this differently.
1102 * Maybe we should do something like
1103 * if (region start and size are aligned nicely) {
1104 * do direct loads of 64 tag bits at a time;
1105 * } else {
1106 * call checkN()
1107 * }
1108 */
1109 /* Round the bounds to the tag granule, and compute the number of tags. */
1110 ptr_tag = allocation_tag_from_addr(ptr);
1111 tag_first = QEMU_ALIGN_DOWN(ptr - (size - 1), TAG_GRANULE);
1112 tag_last = QEMU_ALIGN_DOWN(ptr, TAG_GRANULE);
1113 tag_count = ((tag_last - tag_first) / TAG_GRANULE) + 1;
1114 n = checkNrev(mem, ptr & TAG_GRANULE, ptr_tag, tag_count);
1115 if (likely(n == tag_count)) {
1116 return size;
1117 }
1118
1119 /*
1120 * Failure; for the first granule, it's at @ptr. Otherwise
1121 * it's at the last byte of the nth granule. Calculate how
1122 * many bytes we can access without hitting that failure.
1123 */
1124 if (n == 0) {
1125 return 0;
1126 } else {
1127 return (n - 1) * TAG_GRANULE + ((ptr + 1) - tag_last);
1128 }
1129 }
1130
mte_mops_set_tags(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t desc)1131 void mte_mops_set_tags(CPUARMState *env, uint64_t ptr, uint64_t size,
1132 uint32_t desc)
1133 {
1134 int mmu_idx, tag_count;
1135 uint64_t ptr_tag;
1136 void *mem;
1137
1138 if (!desc) {
1139 /* Tags not actually enabled */
1140 return;
1141 }
1142
1143 mmu_idx = FIELD_EX32(desc, MTEDESC, MIDX);
1144 /* True probe: this will never fault */
1145 mem = allocation_tag_mem_probe(env, mmu_idx, ptr, MMU_DATA_STORE, size,
1146 MMU_DATA_STORE, true, 0);
1147 if (!mem) {
1148 return;
1149 }
1150
1151 /*
1152 * We know that ptr and size are both TAG_GRANULE aligned; store
1153 * the tag from the pointer value into the tag memory.
1154 */
1155 ptr_tag = allocation_tag_from_addr(ptr);
1156 tag_count = size / TAG_GRANULE;
1157 if (ptr & TAG_GRANULE) {
1158 /* Not 2*TAG_GRANULE-aligned: store tag to first nibble */
1159 store_tag1_parallel(TAG_GRANULE, mem, ptr_tag);
1160 mem++;
1161 tag_count--;
1162 }
1163 memset(mem, ptr_tag | (ptr_tag << 4), tag_count / 2);
1164 if (tag_count & 1) {
1165 /* Final trailing unaligned nibble */
1166 mem += tag_count / 2;
1167 store_tag1_parallel(0, mem, ptr_tag);
1168 }
1169 }
1170