xref: /qemu/target/arm/tcg/helper-a64.c (revision 0baf907b718e1602383b973de7822c25db4c4a36)
1 /*
2  *  AArch64 specific helpers
3  *
4  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/cpu-common.h"
32 #include "accel/tcg/cpu-ldst.h"
33 #include "accel/tcg/helper-retaddr.h"
34 #include "accel/tcg/probe.h"
35 #include "exec/target_page.h"
36 #include "exec/tlb-flags.h"
37 #include "qemu/int128.h"
38 #include "qemu/atomic128.h"
39 #include "fpu/softfloat.h"
40 #include <zlib.h> /* for crc32 */
41 #ifdef CONFIG_USER_ONLY
42 #include "user/page-protection.h"
43 #endif
44 #include "vec_internal.h"
45 
46 /* C2.4.7 Multiply and divide */
47 /* special cases for 0 and LLONG_MIN are mandated by the standard */
HELPER(udiv64)48 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
49 {
50     if (den == 0) {
51         return 0;
52     }
53     return num / den;
54 }
55 
HELPER(sdiv64)56 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
57 {
58     if (den == 0) {
59         return 0;
60     }
61     if (num == LLONG_MIN && den == -1) {
62         return LLONG_MIN;
63     }
64     return num / den;
65 }
66 
HELPER(rbit64)67 uint64_t HELPER(rbit64)(uint64_t x)
68 {
69     return revbit64(x);
70 }
71 
HELPER(msr_i_spsel)72 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
73 {
74     update_spsel(env, imm);
75 }
76 
HELPER(msr_set_allint_el1)77 void HELPER(msr_set_allint_el1)(CPUARMState *env)
78 {
79     /* ALLINT update to PSTATE. */
80     if (arm_hcrx_el2_eff(env) & HCRX_TALLINT) {
81         raise_exception_ra(env, EXCP_UDEF,
82                            syn_aa64_sysregtrap(0, 1, 0, 4, 1, 0x1f, 0), 2,
83                            GETPC());
84     }
85 
86     env->pstate |= PSTATE_ALLINT;
87 }
88 
daif_check(CPUARMState * env,uint32_t op,uint32_t imm,uintptr_t ra)89 static void daif_check(CPUARMState *env, uint32_t op,
90                        uint32_t imm, uintptr_t ra)
91 {
92     /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
93     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
94         raise_exception_ra(env, EXCP_UDEF,
95                            syn_aa64_sysregtrap(0, extract32(op, 0, 3),
96                                                extract32(op, 3, 3), 4,
97                                                imm, 0x1f, 0),
98                            exception_target_el(env), ra);
99     }
100 }
101 
HELPER(msr_i_daifset)102 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
103 {
104     daif_check(env, 0x1e, imm, GETPC());
105     env->daif |= (imm << 6) & PSTATE_DAIF;
106     arm_rebuild_hflags(env);
107 }
108 
HELPER(msr_i_daifclear)109 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
110 {
111     daif_check(env, 0x1f, imm, GETPC());
112     env->daif &= ~((imm << 6) & PSTATE_DAIF);
113     arm_rebuild_hflags(env);
114 }
115 
116 /* Convert a softfloat float_relation_ (as returned by
117  * the float*_compare functions) to the correct ARM
118  * NZCV flag state.
119  */
float_rel_to_flags(int res)120 static inline uint32_t float_rel_to_flags(int res)
121 {
122     uint64_t flags;
123     switch (res) {
124     case float_relation_equal:
125         flags = PSTATE_Z | PSTATE_C;
126         break;
127     case float_relation_less:
128         flags = PSTATE_N;
129         break;
130     case float_relation_greater:
131         flags = PSTATE_C;
132         break;
133     case float_relation_unordered:
134     default:
135         flags = PSTATE_C | PSTATE_V;
136         break;
137     }
138     return flags;
139 }
140 
HELPER(vfp_cmph_a64)141 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, float_status *fp_status)
142 {
143     return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
144 }
145 
HELPER(vfp_cmpeh_a64)146 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, float_status *fp_status)
147 {
148     return float_rel_to_flags(float16_compare(x, y, fp_status));
149 }
150 
HELPER(vfp_cmps_a64)151 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, float_status *fp_status)
152 {
153     return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
154 }
155 
HELPER(vfp_cmpes_a64)156 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, float_status *fp_status)
157 {
158     return float_rel_to_flags(float32_compare(x, y, fp_status));
159 }
160 
HELPER(vfp_cmpd_a64)161 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, float_status *fp_status)
162 {
163     return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
164 }
165 
HELPER(vfp_cmped_a64)166 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, float_status *fp_status)
167 {
168     return float_rel_to_flags(float64_compare(x, y, fp_status));
169 }
170 
HELPER(vfp_mulxs)171 float32 HELPER(vfp_mulxs)(float32 a, float32 b, float_status *fpst)
172 {
173     a = float32_squash_input_denormal(a, fpst);
174     b = float32_squash_input_denormal(b, fpst);
175 
176     if ((float32_is_zero(a) && float32_is_infinity(b)) ||
177         (float32_is_infinity(a) && float32_is_zero(b))) {
178         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
179         return make_float32((1U << 30) |
180                             ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
181     }
182     return float32_mul(a, b, fpst);
183 }
184 
HELPER(vfp_mulxd)185 float64 HELPER(vfp_mulxd)(float64 a, float64 b, float_status *fpst)
186 {
187     a = float64_squash_input_denormal(a, fpst);
188     b = float64_squash_input_denormal(b, fpst);
189 
190     if ((float64_is_zero(a) && float64_is_infinity(b)) ||
191         (float64_is_infinity(a) && float64_is_zero(b))) {
192         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
193         return make_float64((1ULL << 62) |
194                             ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
195     }
196     return float64_mul(a, b, fpst);
197 }
198 
199 /* 64bit/double versions of the neon float compare functions */
HELPER(neon_ceq_f64)200 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, float_status *fpst)
201 {
202     return -float64_eq_quiet(a, b, fpst);
203 }
204 
HELPER(neon_cge_f64)205 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, float_status *fpst)
206 {
207     return -float64_le(b, a, fpst);
208 }
209 
HELPER(neon_cgt_f64)210 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, float_status *fpst)
211 {
212     return -float64_lt(b, a, fpst);
213 }
214 
215 /*
216  * Reciprocal step and sqrt step. Note that unlike the A32/T32
217  * versions, these do a fully fused multiply-add or
218  * multiply-add-and-halve.
219  * The FPCR.AH == 1 versions need to avoid flipping the sign of NaN.
220  */
221 #define DO_RECPS(NAME, CTYPE, FLOATTYPE, CHSFN)                         \
222     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
223     {                                                                   \
224         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
225         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
226         a = FLOATTYPE ## _ ## CHSFN(a);                                 \
227         if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
228             (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
229             return FLOATTYPE ## _two;                                   \
230         }                                                               \
231         return FLOATTYPE ## _muladd(a, b, FLOATTYPE ## _two, 0, fpst);  \
232     }
233 
DO_RECPS(recpsf_f16,uint32_t,float16,chs)234 DO_RECPS(recpsf_f16, uint32_t, float16, chs)
235 DO_RECPS(recpsf_f32, float32, float32, chs)
236 DO_RECPS(recpsf_f64, float64, float64, chs)
237 DO_RECPS(recpsf_ah_f16, uint32_t, float16, ah_chs)
238 DO_RECPS(recpsf_ah_f32, float32, float32, ah_chs)
239 DO_RECPS(recpsf_ah_f64, float64, float64, ah_chs)
240 
241 #define DO_RSQRTSF(NAME, CTYPE, FLOATTYPE, CHSFN)                       \
242     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
243     {                                                                   \
244         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
245         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
246         a = FLOATTYPE ## _ ## CHSFN(a);                                 \
247         if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
248             (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
249             return FLOATTYPE ## _one_point_five;                        \
250         }                                                               \
251         return FLOATTYPE ## _muladd_scalbn(a, b, FLOATTYPE ## _three,   \
252                                            -1, 0, fpst);                \
253     }                                                                   \
254 
255 DO_RSQRTSF(rsqrtsf_f16, uint32_t, float16, chs)
256 DO_RSQRTSF(rsqrtsf_f32, float32, float32, chs)
257 DO_RSQRTSF(rsqrtsf_f64, float64, float64, chs)
258 DO_RSQRTSF(rsqrtsf_ah_f16, uint32_t, float16, ah_chs)
259 DO_RSQRTSF(rsqrtsf_ah_f32, float32, float32, ah_chs)
260 DO_RSQRTSF(rsqrtsf_ah_f64, float64, float64, ah_chs)
261 
262 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
263 uint32_t HELPER(frecpx_f16)(uint32_t a, float_status *fpst)
264 {
265     uint16_t val16, sbit;
266     int16_t exp;
267 
268     if (float16_is_any_nan(a)) {
269         float16 nan = a;
270         if (float16_is_signaling_nan(a, fpst)) {
271             float_raise(float_flag_invalid, fpst);
272             if (!fpst->default_nan_mode) {
273                 nan = float16_silence_nan(a, fpst);
274             }
275         }
276         if (fpst->default_nan_mode) {
277             nan = float16_default_nan(fpst);
278         }
279         return nan;
280     }
281 
282     a = float16_squash_input_denormal(a, fpst);
283 
284     val16 = float16_val(a);
285     sbit = 0x8000 & val16;
286     exp = extract32(val16, 10, 5);
287 
288     if (exp == 0) {
289         return make_float16(deposit32(sbit, 10, 5, 0x1e));
290     } else {
291         return make_float16(deposit32(sbit, 10, 5, ~exp));
292     }
293 }
294 
HELPER(frecpx_f32)295 float32 HELPER(frecpx_f32)(float32 a, float_status *fpst)
296 {
297     uint32_t val32, sbit;
298     int32_t exp;
299 
300     if (float32_is_any_nan(a)) {
301         float32 nan = a;
302         if (float32_is_signaling_nan(a, fpst)) {
303             float_raise(float_flag_invalid, fpst);
304             if (!fpst->default_nan_mode) {
305                 nan = float32_silence_nan(a, fpst);
306             }
307         }
308         if (fpst->default_nan_mode) {
309             nan = float32_default_nan(fpst);
310         }
311         return nan;
312     }
313 
314     a = float32_squash_input_denormal(a, fpst);
315 
316     val32 = float32_val(a);
317     sbit = 0x80000000ULL & val32;
318     exp = extract32(val32, 23, 8);
319 
320     if (exp == 0) {
321         return make_float32(sbit | (0xfe << 23));
322     } else {
323         return make_float32(sbit | (~exp & 0xff) << 23);
324     }
325 }
326 
HELPER(frecpx_f64)327 float64 HELPER(frecpx_f64)(float64 a, float_status *fpst)
328 {
329     uint64_t val64, sbit;
330     int64_t exp;
331 
332     if (float64_is_any_nan(a)) {
333         float64 nan = a;
334         if (float64_is_signaling_nan(a, fpst)) {
335             float_raise(float_flag_invalid, fpst);
336             if (!fpst->default_nan_mode) {
337                 nan = float64_silence_nan(a, fpst);
338             }
339         }
340         if (fpst->default_nan_mode) {
341             nan = float64_default_nan(fpst);
342         }
343         return nan;
344     }
345 
346     a = float64_squash_input_denormal(a, fpst);
347 
348     val64 = float64_val(a);
349     sbit = 0x8000000000000000ULL & val64;
350     exp = extract64(float64_val(a), 52, 11);
351 
352     if (exp == 0) {
353         return make_float64(sbit | (0x7feULL << 52));
354     } else {
355         return make_float64(sbit | (~exp & 0x7ffULL) << 52);
356     }
357 }
358 
HELPER(fcvtx_f64_to_f32)359 float32 HELPER(fcvtx_f64_to_f32)(float64 a, float_status *fpst)
360 {
361     float32 r;
362     int old = get_float_rounding_mode(fpst);
363 
364     set_float_rounding_mode(float_round_to_odd, fpst);
365     r = float64_to_float32(a, fpst);
366     set_float_rounding_mode(old, fpst);
367     return r;
368 }
369 
370 /*
371  * AH=1 min/max have some odd special cases:
372  * comparing two zeroes (regardless of sign), (NaN, anything),
373  * or (anything, NaN) should return the second argument (possibly
374  * squashed to zero).
375  * Also, denormal outputs are not squashed to zero regardless of FZ or FZ16.
376  */
377 #define AH_MINMAX_HELPER(NAME, CTYPE, FLOATTYPE, MINMAX)                \
378     CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst)            \
379     {                                                                   \
380         bool save;                                                      \
381         CTYPE r;                                                        \
382         a = FLOATTYPE ## _squash_input_denormal(a, fpst);               \
383         b = FLOATTYPE ## _squash_input_denormal(b, fpst);               \
384         if (FLOATTYPE ## _is_zero(a) && FLOATTYPE ## _is_zero(b)) {     \
385             return b;                                                   \
386         }                                                               \
387         if (FLOATTYPE ## _is_any_nan(a) ||                              \
388             FLOATTYPE ## _is_any_nan(b)) {                              \
389             float_raise(float_flag_invalid, fpst);                      \
390             return b;                                                   \
391         }                                                               \
392         save = get_flush_to_zero(fpst);                                 \
393         set_flush_to_zero(false, fpst);                                 \
394         r = FLOATTYPE ## _ ## MINMAX(a, b, fpst);                       \
395         set_flush_to_zero(save, fpst);                                  \
396         return r;                                                       \
397     }
398 
AH_MINMAX_HELPER(vfp_ah_minh,dh_ctype_f16,float16,min)399 AH_MINMAX_HELPER(vfp_ah_minh, dh_ctype_f16, float16, min)
400 AH_MINMAX_HELPER(vfp_ah_mins, float32, float32, min)
401 AH_MINMAX_HELPER(vfp_ah_mind, float64, float64, min)
402 AH_MINMAX_HELPER(vfp_ah_maxh, dh_ctype_f16, float16, max)
403 AH_MINMAX_HELPER(vfp_ah_maxs, float32, float32, max)
404 AH_MINMAX_HELPER(vfp_ah_maxd, float64, float64, max)
405 
406 /* 64-bit versions of the CRC helpers. Note that although the operation
407  * (and the prototypes of crc32c() and crc32() mean that only the bottom
408  * 32 bits of the accumulator and result are used, we pass and return
409  * uint64_t for convenience of the generated code. Unlike the 32-bit
410  * instruction set versions, val may genuinely have 64 bits of data in it.
411  * The upper bytes of val (above the number specified by 'bytes') must have
412  * been zeroed out by the caller.
413  */
414 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
415 {
416     uint8_t buf[8];
417 
418     stq_le_p(buf, val);
419 
420     /* zlib crc32 converts the accumulator and output to one's complement.  */
421     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
422 }
423 
HELPER(crc32c_64)424 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
425 {
426     uint8_t buf[8];
427 
428     stq_le_p(buf, val);
429 
430     /* Linux crc32c converts the output to one's complement.  */
431     return crc32c(acc, buf, bytes) ^ 0xffffffff;
432 }
433 
434 /*
435  * AdvSIMD half-precision
436  */
437 
438 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
439 
440 #define ADVSIMD_HALFOP(name) \
441 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, float_status *fpst) \
442 { \
443     return float16_ ## name(a, b, fpst);    \
444 }
445 
446 #define ADVSIMD_TWOHALFOP(name)                                         \
447 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b,       \
448                                   float_status *fpst)                   \
449 { \
450     float16  a1, a2, b1, b2;                        \
451     uint32_t r1, r2;                                \
452     a1 = extract32(two_a, 0, 16);                   \
453     a2 = extract32(two_a, 16, 16);                  \
454     b1 = extract32(two_b, 0, 16);                   \
455     b2 = extract32(two_b, 16, 16);                  \
456     r1 = float16_ ## name(a1, b1, fpst);            \
457     r2 = float16_ ## name(a2, b2, fpst);            \
458     return deposit32(r1, 16, 16, r2);               \
459 }
460 
461 ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)462 ADVSIMD_TWOHALFOP(sub)
463 ADVSIMD_TWOHALFOP(mul)
464 ADVSIMD_TWOHALFOP(div)
465 ADVSIMD_TWOHALFOP(min)
466 ADVSIMD_TWOHALFOP(max)
467 ADVSIMD_TWOHALFOP(minnum)
468 ADVSIMD_TWOHALFOP(maxnum)
469 
470 /* Data processing - scalar floating-point and advanced SIMD */
471 static float16 float16_mulx(float16 a, float16 b, float_status *fpst)
472 {
473     a = float16_squash_input_denormal(a, fpst);
474     b = float16_squash_input_denormal(b, fpst);
475 
476     if ((float16_is_zero(a) && float16_is_infinity(b)) ||
477         (float16_is_infinity(a) && float16_is_zero(b))) {
478         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
479         return make_float16((1U << 14) |
480                             ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
481     }
482     return float16_mul(a, b, fpst);
483 }
484 
485 ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)486 ADVSIMD_TWOHALFOP(mulx)
487 
488 /* fused multiply-accumulate */
489 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
490                                  float_status *fpst)
491 {
492     return float16_muladd(a, b, c, 0, fpst);
493 }
494 
HELPER(advsimd_muladd2h)495 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
496                                   uint32_t two_c, float_status *fpst)
497 {
498     float16  a1, a2, b1, b2, c1, c2;
499     uint32_t r1, r2;
500     a1 = extract32(two_a, 0, 16);
501     a2 = extract32(two_a, 16, 16);
502     b1 = extract32(two_b, 0, 16);
503     b2 = extract32(two_b, 16, 16);
504     c1 = extract32(two_c, 0, 16);
505     c2 = extract32(two_c, 16, 16);
506     r1 = float16_muladd(a1, b1, c1, 0, fpst);
507     r2 = float16_muladd(a2, b2, c2, 0, fpst);
508     return deposit32(r1, 16, 16, r2);
509 }
510 
511 /*
512  * Floating point comparisons produce an integer result. Softfloat
513  * routines return float_relation types which we convert to the 0/-1
514  * Neon requires.
515  */
516 
517 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
518 
HELPER(advsimd_ceq_f16)519 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, float_status *fpst)
520 {
521     int compare = float16_compare_quiet(a, b, fpst);
522     return ADVSIMD_CMPRES(compare == float_relation_equal);
523 }
524 
HELPER(advsimd_cge_f16)525 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, float_status *fpst)
526 {
527     int compare = float16_compare(a, b, fpst);
528     return ADVSIMD_CMPRES(compare == float_relation_greater ||
529                           compare == float_relation_equal);
530 }
531 
HELPER(advsimd_cgt_f16)532 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
533 {
534     int compare = float16_compare(a, b, fpst);
535     return ADVSIMD_CMPRES(compare == float_relation_greater);
536 }
537 
HELPER(advsimd_acge_f16)538 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, float_status *fpst)
539 {
540     float16 f0 = float16_abs(a);
541     float16 f1 = float16_abs(b);
542     int compare = float16_compare(f0, f1, fpst);
543     return ADVSIMD_CMPRES(compare == float_relation_greater ||
544                           compare == float_relation_equal);
545 }
546 
HELPER(advsimd_acgt_f16)547 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
548 {
549     float16 f0 = float16_abs(a);
550     float16 f1 = float16_abs(b);
551     int compare = float16_compare(f0, f1, fpst);
552     return ADVSIMD_CMPRES(compare == float_relation_greater);
553 }
554 
555 /* round to integral */
HELPER(advsimd_rinth_exact)556 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, float_status *fp_status)
557 {
558     return float16_round_to_int(x, fp_status);
559 }
560 
HELPER(advsimd_rinth)561 uint32_t HELPER(advsimd_rinth)(uint32_t x, float_status *fp_status)
562 {
563     int old_flags = get_float_exception_flags(fp_status), new_flags;
564     float16 ret;
565 
566     ret = float16_round_to_int(x, fp_status);
567 
568     /* Suppress any inexact exceptions the conversion produced */
569     if (!(old_flags & float_flag_inexact)) {
570         new_flags = get_float_exception_flags(fp_status);
571         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
572     }
573 
574     return ret;
575 }
576 
el_from_spsr(uint32_t spsr)577 static int el_from_spsr(uint32_t spsr)
578 {
579     /* Return the exception level that this SPSR is requesting a return to,
580      * or -1 if it is invalid (an illegal return)
581      */
582     if (spsr & PSTATE_nRW) {
583         switch (spsr & CPSR_M) {
584         case ARM_CPU_MODE_USR:
585             return 0;
586         case ARM_CPU_MODE_HYP:
587             return 2;
588         case ARM_CPU_MODE_FIQ:
589         case ARM_CPU_MODE_IRQ:
590         case ARM_CPU_MODE_SVC:
591         case ARM_CPU_MODE_ABT:
592         case ARM_CPU_MODE_UND:
593         case ARM_CPU_MODE_SYS:
594             return 1;
595         case ARM_CPU_MODE_MON:
596             /* Returning to Mon from AArch64 is never possible,
597              * so this is an illegal return.
598              */
599         default:
600             return -1;
601         }
602     } else {
603         if (extract32(spsr, 1, 1)) {
604             /* Return with reserved M[1] bit set */
605             return -1;
606         }
607         if (extract32(spsr, 0, 4) == 1) {
608             /* return to EL0 with M[0] bit set */
609             return -1;
610         }
611         return extract32(spsr, 2, 2);
612     }
613 }
614 
cpsr_write_from_spsr_elx(CPUARMState * env,uint32_t val)615 static void cpsr_write_from_spsr_elx(CPUARMState *env,
616                                      uint32_t val)
617 {
618     uint32_t mask;
619 
620     /* Save SPSR_ELx.SS into PSTATE. */
621     env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
622     val &= ~PSTATE_SS;
623 
624     /* Move DIT to the correct location for CPSR */
625     if (val & PSTATE_DIT) {
626         val &= ~PSTATE_DIT;
627         val |= CPSR_DIT;
628     }
629 
630     mask = aarch32_cpsr_valid_mask(env->features, \
631         &env_archcpu(env)->isar);
632     cpsr_write(env, val, mask, CPSRWriteRaw);
633 }
634 
HELPER(exception_return)635 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
636 {
637     ARMCPU *cpu = env_archcpu(env);
638     int cur_el = arm_current_el(env);
639     unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
640     uint32_t spsr = env->banked_spsr[spsr_idx];
641     int new_el;
642     bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
643 
644     aarch64_save_sp(env, cur_el);
645 
646     arm_clear_exclusive(env);
647 
648     /* We must squash the PSTATE.SS bit to zero unless both of the
649      * following hold:
650      *  1. debug exceptions are currently disabled
651      *  2. singlestep will be active in the EL we return to
652      * We check 1 here and 2 after we've done the pstate/cpsr write() to
653      * transition to the EL we're going to.
654      */
655     if (arm_generate_debug_exceptions(env)) {
656         spsr &= ~PSTATE_SS;
657     }
658 
659     /*
660      * FEAT_RME forbids return from EL3 with an invalid security state.
661      * We don't need an explicit check for FEAT_RME here because we enforce
662      * in scr_write() that you can't set the NSE bit without it.
663      */
664     if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
665         goto illegal_return;
666     }
667 
668     new_el = el_from_spsr(spsr);
669     if (new_el == -1) {
670         goto illegal_return;
671     }
672     if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
673         /* Disallow return to an EL which is unimplemented or higher
674          * than the current one.
675          */
676         goto illegal_return;
677     }
678 
679     if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
680         /* Return to an EL which is configured for a different register width */
681         goto illegal_return;
682     }
683 
684     if (!return_to_aa64 && !cpu_isar_feature(aa64_aa32, cpu)) {
685         /* Return to AArch32 when CPU is AArch64-only */
686         goto illegal_return;
687     }
688 
689     if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
690         goto illegal_return;
691     }
692 
693     bql_lock();
694     arm_call_pre_el_change_hook(cpu);
695     bql_unlock();
696 
697     if (!return_to_aa64) {
698         env->aarch64 = false;
699         /* We do a raw CPSR write because aarch64_sync_64_to_32()
700          * will sort the register banks out for us, and we've already
701          * caught all the bad-mode cases in el_from_spsr().
702          */
703         cpsr_write_from_spsr_elx(env, spsr);
704         if (!arm_singlestep_active(env)) {
705             env->pstate &= ~PSTATE_SS;
706         }
707         aarch64_sync_64_to_32(env);
708 
709         if (spsr & CPSR_T) {
710             env->regs[15] = new_pc & ~0x1;
711         } else {
712             env->regs[15] = new_pc & ~0x3;
713         }
714         helper_rebuild_hflags_a32(env, new_el);
715         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
716                       "AArch32 EL%d PC 0x%" PRIx32 "\n",
717                       cur_el, new_el, env->regs[15]);
718     } else {
719         int tbii;
720 
721         env->aarch64 = true;
722         spsr &= aarch64_pstate_valid_mask(&cpu->isar);
723         pstate_write(env, spsr);
724         if (!arm_singlestep_active(env)) {
725             env->pstate &= ~PSTATE_SS;
726         }
727         aarch64_restore_sp(env, new_el);
728         helper_rebuild_hflags_a64(env, new_el);
729 
730         /*
731          * Apply TBI to the exception return address.  We had to delay this
732          * until after we selected the new EL, so that we could select the
733          * correct TBI+TBID bits.  This is made easier by waiting until after
734          * the hflags rebuild, since we can pull the composite TBII field
735          * from there.
736          */
737         tbii = EX_TBFLAG_A64(env->hflags, TBII);
738         if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
739             /* TBI is enabled. */
740             int core_mmu_idx = arm_env_mmu_index(env);
741             if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
742                 new_pc = sextract64(new_pc, 0, 56);
743             } else {
744                 new_pc = extract64(new_pc, 0, 56);
745             }
746         }
747         env->pc = new_pc;
748 
749         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
750                       "AArch64 EL%d PC 0x%" PRIx64 "\n",
751                       cur_el, new_el, env->pc);
752     }
753 
754     /*
755      * Note that cur_el can never be 0.  If new_el is 0, then
756      * el0_a64 is return_to_aa64, else el0_a64 is ignored.
757      */
758     aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
759 
760     bql_lock();
761     arm_call_el_change_hook(cpu);
762     bql_unlock();
763 
764     return;
765 
766 illegal_return:
767     /* Illegal return events of various kinds have architecturally
768      * mandated behaviour:
769      * restore NZCV and DAIF from SPSR_ELx
770      * set PSTATE.IL
771      * restore PC from ELR_ELx
772      * no change to exception level, execution state or stack pointer
773      */
774     env->pstate |= PSTATE_IL;
775     env->pc = new_pc;
776     spsr &= PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT;
777     spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT);
778     pstate_write(env, spsr);
779     if (!arm_singlestep_active(env)) {
780         env->pstate &= ~PSTATE_SS;
781     }
782     helper_rebuild_hflags_a64(env, cur_el);
783     qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
784                   "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
785 }
786 
HELPER(dc_zva)787 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
788 {
789     uintptr_t ra = GETPC();
790 
791     /*
792      * Implement DC ZVA, which zeroes a fixed-length block of memory.
793      * Note that we do not implement the (architecturally mandated)
794      * alignment fault for attempts to use this on Device memory
795      * (which matches the usual QEMU behaviour of not implementing either
796      * alignment faults or any memory attribute handling).
797      */
798     int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
799     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
800     int mmu_idx = arm_env_mmu_index(env);
801     void *mem;
802 
803     /*
804      * Trapless lookup.  In addition to actual invalid page, may
805      * return NULL for I/O, watchpoints, clean pages, etc.
806      */
807     mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
808 
809 #ifndef CONFIG_USER_ONLY
810     if (unlikely(!mem)) {
811         /*
812          * Trap if accessing an invalid page.  DC_ZVA requires that we supply
813          * the original pointer for an invalid page.  But watchpoints require
814          * that we probe the actual space.  So do both.
815          */
816         (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
817         mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
818 
819         if (unlikely(!mem)) {
820             /*
821              * The only remaining reason for mem == NULL is I/O.
822              * Just do a series of byte writes as the architecture demands.
823              */
824             for (int i = 0; i < blocklen; i++) {
825                 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
826             }
827             return;
828         }
829     }
830 #endif
831 
832     set_helper_retaddr(ra);
833     memset(mem, 0, blocklen);
834     clear_helper_retaddr();
835 }
836 
HELPER(unaligned_access)837 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
838                               uint32_t access_type, uint32_t mmu_idx)
839 {
840     arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
841                                 mmu_idx, GETPC());
842 }
843 
844 /* Memory operations (memset, memmove, memcpy) */
845 
846 /*
847  * Return true if the CPY* and SET* insns can execute; compare
848  * pseudocode CheckMOPSEnabled(), though we refactor it a little.
849  */
mops_enabled(CPUARMState * env)850 static bool mops_enabled(CPUARMState *env)
851 {
852     int el = arm_current_el(env);
853 
854     if (el < 2 &&
855         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
856         !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
857         return false;
858     }
859 
860     if (el == 0) {
861         if (!el_is_in_host(env, 0)) {
862             return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
863         } else {
864             return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
865         }
866     }
867     return true;
868 }
869 
check_mops_enabled(CPUARMState * env,uintptr_t ra)870 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
871 {
872     if (!mops_enabled(env)) {
873         raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
874                            exception_target_el(env), ra);
875     }
876 }
877 
878 /*
879  * Return the target exception level for an exception due
880  * to mismatched arguments in a FEAT_MOPS copy or set.
881  * Compare pseudocode MismatchedCpySetTargetEL()
882  */
mops_mismatch_exception_target_el(CPUARMState * env)883 static int mops_mismatch_exception_target_el(CPUARMState *env)
884 {
885     int el = arm_current_el(env);
886 
887     if (el > 1) {
888         return el;
889     }
890     if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
891         return 2;
892     }
893     if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
894         return 2;
895     }
896     return 1;
897 }
898 
899 /*
900  * Check whether an M or E instruction was executed with a CF value
901  * indicating the wrong option for this implementation.
902  * Assumes we are always Option A.
903  */
check_mops_wrong_option(CPUARMState * env,uint32_t syndrome,uintptr_t ra)904 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
905                                     uintptr_t ra)
906 {
907     if (env->CF != 0) {
908         syndrome |= 1 << 17; /* Set the wrong-option bit */
909         raise_exception_ra(env, EXCP_UDEF, syndrome,
910                            mops_mismatch_exception_target_el(env), ra);
911     }
912 }
913 
914 /*
915  * Return the maximum number of bytes we can transfer starting at addr
916  * without crossing a page boundary.
917  */
page_limit(uint64_t addr)918 static uint64_t page_limit(uint64_t addr)
919 {
920     return TARGET_PAGE_ALIGN(addr + 1) - addr;
921 }
922 
923 /*
924  * Return the number of bytes we can copy starting from addr and working
925  * backwards without crossing a page boundary.
926  */
page_limit_rev(uint64_t addr)927 static uint64_t page_limit_rev(uint64_t addr)
928 {
929     return (addr & ~TARGET_PAGE_MASK) + 1;
930 }
931 
932 /*
933  * Perform part of a memory set on an area of guest memory starting at
934  * toaddr (a dirty address) and extending for setsize bytes.
935  *
936  * Returns the number of bytes actually set, which might be less than
937  * setsize; the caller should loop until the whole set has been done.
938  * The caller should ensure that the guest registers are correct
939  * for the possibility that the first byte of the set encounters
940  * an exception or watchpoint. We guarantee not to take any faults
941  * for bytes other than the first.
942  */
set_step(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)943 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
944                          uint64_t setsize, uint32_t data, int memidx,
945                          uint32_t *mtedesc, uintptr_t ra)
946 {
947     void *mem;
948 
949     setsize = MIN(setsize, page_limit(toaddr));
950     if (*mtedesc) {
951         uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
952         if (mtesize == 0) {
953             /* Trap, or not. All CPU state is up to date */
954             mte_check_fail(env, *mtedesc, toaddr, ra);
955             /* Continue, with no further MTE checks required */
956             *mtedesc = 0;
957         } else {
958             /* Advance to the end, or to the tag mismatch */
959             setsize = MIN(setsize, mtesize);
960         }
961     }
962 
963     toaddr = useronly_clean_ptr(toaddr);
964     /*
965      * Trapless lookup: returns NULL for invalid page, I/O,
966      * watchpoints, clean pages, etc.
967      */
968     mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
969 
970 #ifndef CONFIG_USER_ONLY
971     if (unlikely(!mem)) {
972         /*
973          * Slow-path: just do one byte write. This will handle the
974          * watchpoint, invalid page, etc handling correctly.
975          * For clean code pages, the next iteration will see
976          * the page dirty and will use the fast path.
977          */
978         cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
979         return 1;
980     }
981 #endif
982     /* Easy case: just memset the host memory */
983     set_helper_retaddr(ra);
984     memset(mem, data, setsize);
985     clear_helper_retaddr();
986     return setsize;
987 }
988 
989 /*
990  * Similar, but setting tags. The architecture requires us to do this
991  * in 16-byte chunks. SETP accesses are not tag checked; they set
992  * the tags.
993  */
set_step_tags(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)994 static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
995                               uint64_t setsize, uint32_t data, int memidx,
996                               uint32_t *mtedesc, uintptr_t ra)
997 {
998     void *mem;
999     uint64_t cleanaddr;
1000 
1001     setsize = MIN(setsize, page_limit(toaddr));
1002 
1003     cleanaddr = useronly_clean_ptr(toaddr);
1004     /*
1005      * Trapless lookup: returns NULL for invalid page, I/O,
1006      * watchpoints, clean pages, etc.
1007      */
1008     mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);
1009 
1010 #ifndef CONFIG_USER_ONLY
1011     if (unlikely(!mem)) {
1012         /*
1013          * Slow-path: just do one write. This will handle the
1014          * watchpoint, invalid page, etc handling correctly.
1015          * The architecture requires that we do 16 bytes at a time,
1016          * and we know both ptr and size are 16 byte aligned.
1017          * For clean code pages, the next iteration will see
1018          * the page dirty and will use the fast path.
1019          */
1020         uint64_t repldata = data * 0x0101010101010101ULL;
1021         MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
1022         cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
1023         mte_mops_set_tags(env, toaddr, 16, *mtedesc);
1024         return 16;
1025     }
1026 #endif
1027     /* Easy case: just memset the host memory */
1028     set_helper_retaddr(ra);
1029     memset(mem, data, setsize);
1030     clear_helper_retaddr();
1031     mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
1032     return setsize;
1033 }
1034 
1035 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1036                         uint64_t setsize, uint32_t data,
1037                         int memidx, uint32_t *mtedesc, uintptr_t ra);
1038 
1039 /* Extract register numbers from a MOPS exception syndrome value */
mops_destreg(uint32_t syndrome)1040 static int mops_destreg(uint32_t syndrome)
1041 {
1042     return extract32(syndrome, 10, 5);
1043 }
1044 
mops_srcreg(uint32_t syndrome)1045 static int mops_srcreg(uint32_t syndrome)
1046 {
1047     return extract32(syndrome, 5, 5);
1048 }
1049 
mops_sizereg(uint32_t syndrome)1050 static int mops_sizereg(uint32_t syndrome)
1051 {
1052     return extract32(syndrome, 0, 5);
1053 }
1054 
1055 /*
1056  * Return true if TCMA and TBI bits mean we need to do MTE checks.
1057  * We only need to do this once per MOPS insn, not for every page.
1058  */
mte_checks_needed(uint64_t ptr,uint32_t desc)1059 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1060 {
1061     int bit55 = extract64(ptr, 55, 1);
1062 
1063     /*
1064      * Note that tbi_check() returns true for "access checked" but
1065      * tcma_check() returns true for "access unchecked".
1066      */
1067     if (!tbi_check(desc, bit55)) {
1068         return false;
1069     }
1070     return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1071 }
1072 
1073 /* Take an exception if the SETG addr/size are not granule aligned */
check_setg_alignment(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t memidx,uintptr_t ra)1074 static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
1075                                  uint32_t memidx, uintptr_t ra)
1076 {
1077     if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
1078         !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
1079         arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
1080                                     memidx, ra);
1081 
1082     }
1083 }
1084 
arm_reg_or_xzr(CPUARMState * env,int reg)1085 static uint64_t arm_reg_or_xzr(CPUARMState *env, int reg)
1086 {
1087     /*
1088      * Runtime equivalent of cpu_reg() -- return the CPU register value,
1089      * for contexts when index 31 means XZR (not SP).
1090      */
1091     return reg == 31 ? 0 : env->xregs[reg];
1092 }
1093 
1094 /*
1095  * For the Memory Set operation, our implementation chooses
1096  * always to use "option A", where we update Xd to the final
1097  * address in the SETP insn, and set Xn to be -(bytes remaining).
1098  * On SETM and SETE insns we only need update Xn.
1099  *
1100  * @env: CPU
1101  * @syndrome: syndrome value for mismatch exceptions
1102  * (also contains the register numbers we need to use)
1103  * @mtedesc: MTE descriptor word
1104  * @stepfn: function which does a single part of the set operation
1105  * @is_setg: true if this is the tag-setting SETG variant
1106  */
do_setp(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1107 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1108                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1109 {
1110     /* Prologue: we choose to do up to the next page boundary */
1111     int rd = mops_destreg(syndrome);
1112     int rs = mops_srcreg(syndrome);
1113     int rn = mops_sizereg(syndrome);
1114     uint8_t data = arm_reg_or_xzr(env, rs);
1115     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1116     uint64_t toaddr = env->xregs[rd];
1117     uint64_t setsize = env->xregs[rn];
1118     uint64_t stagesetsize, step;
1119 
1120     check_mops_enabled(env, ra);
1121 
1122     if (setsize > INT64_MAX) {
1123         setsize = INT64_MAX;
1124         if (is_setg) {
1125             setsize &= ~0xf;
1126         }
1127     }
1128 
1129     if (unlikely(is_setg)) {
1130         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1131     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1132         mtedesc = 0;
1133     }
1134 
1135     stagesetsize = MIN(setsize, page_limit(toaddr));
1136     while (stagesetsize) {
1137         env->xregs[rd] = toaddr;
1138         env->xregs[rn] = setsize;
1139         step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1140         toaddr += step;
1141         setsize -= step;
1142         stagesetsize -= step;
1143     }
1144     /* Insn completed, so update registers to the Option A format */
1145     env->xregs[rd] = toaddr + setsize;
1146     env->xregs[rn] = -setsize;
1147 
1148     /* Set NZCV = 0000 to indicate we are an Option A implementation */
1149     env->NF = 0;
1150     env->ZF = 1; /* our env->ZF encoding is inverted */
1151     env->CF = 0;
1152     env->VF = 0;
1153 }
1154 
HELPER(setp)1155 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1156 {
1157     do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1158 }
1159 
HELPER(setgp)1160 void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1161 {
1162     do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1163 }
1164 
do_setm(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1165 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1166                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1167 {
1168     /* Main: we choose to do all the full-page chunks */
1169     CPUState *cs = env_cpu(env);
1170     int rd = mops_destreg(syndrome);
1171     int rs = mops_srcreg(syndrome);
1172     int rn = mops_sizereg(syndrome);
1173     uint8_t data = arm_reg_or_xzr(env, rs);
1174     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1175     uint64_t setsize = -env->xregs[rn];
1176     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1177     uint64_t step, stagesetsize;
1178 
1179     check_mops_enabled(env, ra);
1180 
1181     /*
1182      * We're allowed to NOP out "no data to copy" before the consistency
1183      * checks; we choose to do so.
1184      */
1185     if (env->xregs[rn] == 0) {
1186         return;
1187     }
1188 
1189     check_mops_wrong_option(env, syndrome, ra);
1190 
1191     /*
1192      * Our implementation will work fine even if we have an unaligned
1193      * destination address, and because we update Xn every time around
1194      * the loop below and the return value from stepfn() may be less
1195      * than requested, we might find toaddr is unaligned. So we don't
1196      * have an IMPDEF check for alignment here.
1197      */
1198 
1199     if (unlikely(is_setg)) {
1200         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1201     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1202         mtedesc = 0;
1203     }
1204 
1205     /* Do the actual memset: we leave the last partial page to SETE */
1206     stagesetsize = setsize & TARGET_PAGE_MASK;
1207     while (stagesetsize > 0) {
1208         step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1209         toaddr += step;
1210         setsize -= step;
1211         stagesetsize -= step;
1212         env->xregs[rn] = -setsize;
1213         if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1214             cpu_loop_exit_restore(cs, ra);
1215         }
1216     }
1217 }
1218 
HELPER(setm)1219 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1220 {
1221     do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1222 }
1223 
HELPER(setgm)1224 void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1225 {
1226     do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1227 }
1228 
do_sete(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1229 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1230                     StepFn *stepfn, bool is_setg, uintptr_t ra)
1231 {
1232     /* Epilogue: do the last partial page */
1233     int rd = mops_destreg(syndrome);
1234     int rs = mops_srcreg(syndrome);
1235     int rn = mops_sizereg(syndrome);
1236     uint8_t data = arm_reg_or_xzr(env, rs);
1237     uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1238     uint64_t setsize = -env->xregs[rn];
1239     uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1240     uint64_t step;
1241 
1242     check_mops_enabled(env, ra);
1243 
1244     /*
1245      * We're allowed to NOP out "no data to copy" before the consistency
1246      * checks; we choose to do so.
1247      */
1248     if (setsize == 0) {
1249         return;
1250     }
1251 
1252     check_mops_wrong_option(env, syndrome, ra);
1253 
1254     /*
1255      * Our implementation has no address alignment requirements, but
1256      * we do want to enforce the "less than a page" size requirement,
1257      * so we don't need to have the "check for interrupts" here.
1258      */
1259     if (setsize >= TARGET_PAGE_SIZE) {
1260         raise_exception_ra(env, EXCP_UDEF, syndrome,
1261                            mops_mismatch_exception_target_el(env), ra);
1262     }
1263 
1264     if (unlikely(is_setg)) {
1265         check_setg_alignment(env, toaddr, setsize, memidx, ra);
1266     } else if (!mte_checks_needed(toaddr, mtedesc)) {
1267         mtedesc = 0;
1268     }
1269 
1270     /* Do the actual memset */
1271     while (setsize > 0) {
1272         step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1273         toaddr += step;
1274         setsize -= step;
1275         env->xregs[rn] = -setsize;
1276     }
1277 }
1278 
HELPER(sete)1279 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1280 {
1281     do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1282 }
1283 
HELPER(setge)1284 void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1285 {
1286     do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1287 }
1288 
1289 /*
1290  * Perform part of a memory copy from the guest memory at fromaddr
1291  * and extending for copysize bytes, to the guest memory at
1292  * toaddr. Both addresses are dirty.
1293  *
1294  * Returns the number of bytes actually set, which might be less than
1295  * copysize; the caller should loop until the whole copy has been done.
1296  * The caller should ensure that the guest registers are correct
1297  * for the possibility that the first byte of the copy encounters
1298  * an exception or watchpoint. We guarantee not to take any faults
1299  * for bytes other than the first.
1300  */
copy_step(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1301 static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
1302                           uint64_t copysize, int wmemidx, int rmemidx,
1303                           uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1304 {
1305     void *rmem;
1306     void *wmem;
1307 
1308     /* Don't cross a page boundary on either source or destination */
1309     copysize = MIN(copysize, page_limit(toaddr));
1310     copysize = MIN(copysize, page_limit(fromaddr));
1311     /*
1312      * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1313      * or else copy up to but not including the byte with the mismatch.
1314      */
1315     if (*rdesc) {
1316         uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
1317         if (mtesize == 0) {
1318             mte_check_fail(env, *rdesc, fromaddr, ra);
1319             *rdesc = 0;
1320         } else {
1321             copysize = MIN(copysize, mtesize);
1322         }
1323     }
1324     if (*wdesc) {
1325         uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
1326         if (mtesize == 0) {
1327             mte_check_fail(env, *wdesc, toaddr, ra);
1328             *wdesc = 0;
1329         } else {
1330             copysize = MIN(copysize, mtesize);
1331         }
1332     }
1333 
1334     toaddr = useronly_clean_ptr(toaddr);
1335     fromaddr = useronly_clean_ptr(fromaddr);
1336     /* Trapless lookup of whether we can get a host memory pointer */
1337     wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1338     rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1339 
1340 #ifndef CONFIG_USER_ONLY
1341     /*
1342      * If we don't have host memory for both source and dest then just
1343      * do a single byte copy. This will handle watchpoints, invalid pages,
1344      * etc correctly. For clean code pages, the next iteration will see
1345      * the page dirty and will use the fast path.
1346      */
1347     if (unlikely(!rmem || !wmem)) {
1348         uint8_t byte;
1349         if (rmem) {
1350             byte = *(uint8_t *)rmem;
1351         } else {
1352             byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1353         }
1354         if (wmem) {
1355             *(uint8_t *)wmem = byte;
1356         } else {
1357             cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1358         }
1359         return 1;
1360     }
1361 #endif
1362     /* Easy case: just memmove the host memory */
1363     set_helper_retaddr(ra);
1364     memmove(wmem, rmem, copysize);
1365     clear_helper_retaddr();
1366     return copysize;
1367 }
1368 
1369 /*
1370  * Do part of a backwards memory copy. Here toaddr and fromaddr point
1371  * to the *last* byte to be copied.
1372  */
copy_step_rev(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1373 static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
1374                               uint64_t fromaddr,
1375                               uint64_t copysize, int wmemidx, int rmemidx,
1376                               uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1377 {
1378     void *rmem;
1379     void *wmem;
1380 
1381     /* Don't cross a page boundary on either source or destination */
1382     copysize = MIN(copysize, page_limit_rev(toaddr));
1383     copysize = MIN(copysize, page_limit_rev(fromaddr));
1384 
1385     /*
1386      * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1387      * or else copy up to but not including the byte with the mismatch.
1388      */
1389     if (*rdesc) {
1390         uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
1391         if (mtesize == 0) {
1392             mte_check_fail(env, *rdesc, fromaddr, ra);
1393             *rdesc = 0;
1394         } else {
1395             copysize = MIN(copysize, mtesize);
1396         }
1397     }
1398     if (*wdesc) {
1399         uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
1400         if (mtesize == 0) {
1401             mte_check_fail(env, *wdesc, toaddr, ra);
1402             *wdesc = 0;
1403         } else {
1404             copysize = MIN(copysize, mtesize);
1405         }
1406     }
1407 
1408     toaddr = useronly_clean_ptr(toaddr);
1409     fromaddr = useronly_clean_ptr(fromaddr);
1410     /* Trapless lookup of whether we can get a host memory pointer */
1411     wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1412     rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1413 
1414 #ifndef CONFIG_USER_ONLY
1415     /*
1416      * If we don't have host memory for both source and dest then just
1417      * do a single byte copy. This will handle watchpoints, invalid pages,
1418      * etc correctly. For clean code pages, the next iteration will see
1419      * the page dirty and will use the fast path.
1420      */
1421     if (unlikely(!rmem || !wmem)) {
1422         uint8_t byte;
1423         if (rmem) {
1424             byte = *(uint8_t *)rmem;
1425         } else {
1426             byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1427         }
1428         if (wmem) {
1429             *(uint8_t *)wmem = byte;
1430         } else {
1431             cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1432         }
1433         return 1;
1434     }
1435 #endif
1436     /*
1437      * Easy case: just memmove the host memory. Note that wmem and
1438      * rmem here point to the *last* byte to copy.
1439      */
1440     set_helper_retaddr(ra);
1441     memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
1442     clear_helper_retaddr();
1443     return copysize;
1444 }
1445 
1446 /*
1447  * for the Memory Copy operation, our implementation chooses always
1448  * to use "option A", where we update Xd and Xs to the final addresses
1449  * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
1450  *
1451  * @env: CPU
1452  * @syndrome: syndrome value for mismatch exceptions
1453  * (also contains the register numbers we need to use)
1454  * @wdesc: MTE descriptor for the writes (destination)
1455  * @rdesc: MTE descriptor for the reads (source)
1456  * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
1457  */
do_cpyp(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1458 static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1459                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1460 {
1461     int rd = mops_destreg(syndrome);
1462     int rs = mops_srcreg(syndrome);
1463     int rn = mops_sizereg(syndrome);
1464     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1465     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1466     bool forwards = true;
1467     uint64_t toaddr = env->xregs[rd];
1468     uint64_t fromaddr = env->xregs[rs];
1469     uint64_t copysize = env->xregs[rn];
1470     uint64_t stagecopysize, step;
1471 
1472     check_mops_enabled(env, ra);
1473 
1474 
1475     if (move) {
1476         /*
1477          * Copy backwards if necessary. The direction for a non-overlapping
1478          * copy is IMPDEF; we choose forwards.
1479          */
1480         if (copysize > 0x007FFFFFFFFFFFFFULL) {
1481             copysize = 0x007FFFFFFFFFFFFFULL;
1482         }
1483         uint64_t fs = extract64(fromaddr, 0, 56);
1484         uint64_t ts = extract64(toaddr, 0, 56);
1485         uint64_t fe = extract64(fromaddr + copysize, 0, 56);
1486 
1487         if (fs < ts && fe > ts) {
1488             forwards = false;
1489         }
1490     } else {
1491         if (copysize > INT64_MAX) {
1492             copysize = INT64_MAX;
1493         }
1494     }
1495 
1496     if (!mte_checks_needed(fromaddr, rdesc)) {
1497         rdesc = 0;
1498     }
1499     if (!mte_checks_needed(toaddr, wdesc)) {
1500         wdesc = 0;
1501     }
1502 
1503     if (forwards) {
1504         stagecopysize = MIN(copysize, page_limit(toaddr));
1505         stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
1506         while (stagecopysize) {
1507             env->xregs[rd] = toaddr;
1508             env->xregs[rs] = fromaddr;
1509             env->xregs[rn] = copysize;
1510             step = copy_step(env, toaddr, fromaddr, stagecopysize,
1511                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1512             toaddr += step;
1513             fromaddr += step;
1514             copysize -= step;
1515             stagecopysize -= step;
1516         }
1517         /* Insn completed, so update registers to the Option A format */
1518         env->xregs[rd] = toaddr + copysize;
1519         env->xregs[rs] = fromaddr + copysize;
1520         env->xregs[rn] = -copysize;
1521     } else {
1522         /*
1523          * In a reverse copy the to and from addrs in Xs and Xd are the start
1524          * of the range, but it's more convenient for us to work with pointers
1525          * to the last byte being copied.
1526          */
1527         toaddr += copysize - 1;
1528         fromaddr += copysize - 1;
1529         stagecopysize = MIN(copysize, page_limit_rev(toaddr));
1530         stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
1531         while (stagecopysize) {
1532             env->xregs[rn] = copysize;
1533             step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
1534                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1535             copysize -= step;
1536             stagecopysize -= step;
1537             toaddr -= step;
1538             fromaddr -= step;
1539         }
1540         /*
1541          * Insn completed, so update registers to the Option A format.
1542          * For a reverse copy this is no different to the CPYP input format.
1543          */
1544         env->xregs[rn] = copysize;
1545     }
1546 
1547     /* Set NZCV = 0000 to indicate we are an Option A implementation */
1548     env->NF = 0;
1549     env->ZF = 1; /* our env->ZF encoding is inverted */
1550     env->CF = 0;
1551     env->VF = 0;
1552 }
1553 
HELPER(cpyp)1554 void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1555                   uint32_t rdesc)
1556 {
1557     do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
1558 }
1559 
HELPER(cpyfp)1560 void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1561                    uint32_t rdesc)
1562 {
1563     do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
1564 }
1565 
do_cpym(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1566 static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1567                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1568 {
1569     /* Main: we choose to copy until less than a page remaining */
1570     CPUState *cs = env_cpu(env);
1571     int rd = mops_destreg(syndrome);
1572     int rs = mops_srcreg(syndrome);
1573     int rn = mops_sizereg(syndrome);
1574     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1575     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1576     bool forwards = true;
1577     uint64_t toaddr, fromaddr, copysize, step;
1578 
1579     check_mops_enabled(env, ra);
1580 
1581     /* We choose to NOP out "no data to copy" before consistency checks */
1582     if (env->xregs[rn] == 0) {
1583         return;
1584     }
1585 
1586     check_mops_wrong_option(env, syndrome, ra);
1587 
1588     if (move) {
1589         forwards = (int64_t)env->xregs[rn] < 0;
1590     }
1591 
1592     if (forwards) {
1593         toaddr = env->xregs[rd] + env->xregs[rn];
1594         fromaddr = env->xregs[rs] + env->xregs[rn];
1595         copysize = -env->xregs[rn];
1596     } else {
1597         copysize = env->xregs[rn];
1598         /* This toaddr and fromaddr point to the *last* byte to copy */
1599         toaddr = env->xregs[rd] + copysize - 1;
1600         fromaddr = env->xregs[rs] + copysize - 1;
1601     }
1602 
1603     if (!mte_checks_needed(fromaddr, rdesc)) {
1604         rdesc = 0;
1605     }
1606     if (!mte_checks_needed(toaddr, wdesc)) {
1607         wdesc = 0;
1608     }
1609 
1610     /* Our implementation has no particular parameter requirements for CPYM */
1611 
1612     /* Do the actual memmove */
1613     if (forwards) {
1614         while (copysize >= TARGET_PAGE_SIZE) {
1615             step = copy_step(env, toaddr, fromaddr, copysize,
1616                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1617             toaddr += step;
1618             fromaddr += step;
1619             copysize -= step;
1620             env->xregs[rn] = -copysize;
1621             if (copysize >= TARGET_PAGE_SIZE &&
1622                 unlikely(cpu_loop_exit_requested(cs))) {
1623                 cpu_loop_exit_restore(cs, ra);
1624             }
1625         }
1626     } else {
1627         while (copysize >= TARGET_PAGE_SIZE) {
1628             step = copy_step_rev(env, toaddr, fromaddr, copysize,
1629                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1630             toaddr -= step;
1631             fromaddr -= step;
1632             copysize -= step;
1633             env->xregs[rn] = copysize;
1634             if (copysize >= TARGET_PAGE_SIZE &&
1635                 unlikely(cpu_loop_exit_requested(cs))) {
1636                 cpu_loop_exit_restore(cs, ra);
1637             }
1638         }
1639     }
1640 }
1641 
HELPER(cpym)1642 void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1643                   uint32_t rdesc)
1644 {
1645     do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
1646 }
1647 
HELPER(cpyfm)1648 void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1649                    uint32_t rdesc)
1650 {
1651     do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
1652 }
1653 
do_cpye(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1654 static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1655                     uint32_t rdesc, uint32_t move, uintptr_t ra)
1656 {
1657     /* Epilogue: do the last partial page */
1658     int rd = mops_destreg(syndrome);
1659     int rs = mops_srcreg(syndrome);
1660     int rn = mops_sizereg(syndrome);
1661     uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1662     uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1663     bool forwards = true;
1664     uint64_t toaddr, fromaddr, copysize, step;
1665 
1666     check_mops_enabled(env, ra);
1667 
1668     /* We choose to NOP out "no data to copy" before consistency checks */
1669     if (env->xregs[rn] == 0) {
1670         return;
1671     }
1672 
1673     check_mops_wrong_option(env, syndrome, ra);
1674 
1675     if (move) {
1676         forwards = (int64_t)env->xregs[rn] < 0;
1677     }
1678 
1679     if (forwards) {
1680         toaddr = env->xregs[rd] + env->xregs[rn];
1681         fromaddr = env->xregs[rs] + env->xregs[rn];
1682         copysize = -env->xregs[rn];
1683     } else {
1684         copysize = env->xregs[rn];
1685         /* This toaddr and fromaddr point to the *last* byte to copy */
1686         toaddr = env->xregs[rd] + copysize - 1;
1687         fromaddr = env->xregs[rs] + copysize - 1;
1688     }
1689 
1690     if (!mte_checks_needed(fromaddr, rdesc)) {
1691         rdesc = 0;
1692     }
1693     if (!mte_checks_needed(toaddr, wdesc)) {
1694         wdesc = 0;
1695     }
1696 
1697     /* Check the size; we don't want to have do a check-for-interrupts */
1698     if (copysize >= TARGET_PAGE_SIZE) {
1699         raise_exception_ra(env, EXCP_UDEF, syndrome,
1700                            mops_mismatch_exception_target_el(env), ra);
1701     }
1702 
1703     /* Do the actual memmove */
1704     if (forwards) {
1705         while (copysize > 0) {
1706             step = copy_step(env, toaddr, fromaddr, copysize,
1707                              wmemidx, rmemidx, &wdesc, &rdesc, ra);
1708             toaddr += step;
1709             fromaddr += step;
1710             copysize -= step;
1711             env->xregs[rn] = -copysize;
1712         }
1713     } else {
1714         while (copysize > 0) {
1715             step = copy_step_rev(env, toaddr, fromaddr, copysize,
1716                                  wmemidx, rmemidx, &wdesc, &rdesc, ra);
1717             toaddr -= step;
1718             fromaddr -= step;
1719             copysize -= step;
1720             env->xregs[rn] = copysize;
1721         }
1722     }
1723 }
1724 
HELPER(cpye)1725 void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1726                   uint32_t rdesc)
1727 {
1728     do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
1729 }
1730 
HELPER(cpyfe)1731 void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1732                    uint32_t rdesc)
1733 {
1734     do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
1735 }
1736 
is_guarded_page(CPUARMState * env,target_ulong addr,uintptr_t ra)1737 static bool is_guarded_page(CPUARMState *env, target_ulong addr, uintptr_t ra)
1738 {
1739 #ifdef CONFIG_USER_ONLY
1740     return page_get_flags(addr) & PAGE_BTI;
1741 #else
1742     CPUTLBEntryFull *full;
1743     void *host;
1744     int mmu_idx = cpu_mmu_index(env_cpu(env), true);
1745     int flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
1746                                   false, &host, &full, ra);
1747 
1748     assert(!(flags & TLB_INVALID_MASK));
1749     return full->extra.arm.guarded;
1750 #endif
1751 }
1752 
HELPER(guarded_page_check)1753 void HELPER(guarded_page_check)(CPUARMState *env)
1754 {
1755     /*
1756      * We have already verified that bti is enabled, and that the
1757      * instruction at PC is not ok for BTYPE.  This is always at
1758      * the beginning of a block, so PC is always up-to-date and
1759      * no unwind is required.
1760      */
1761     if (is_guarded_page(env, env->pc, 0)) {
1762         raise_exception(env, EXCP_UDEF, syn_btitrap(env->btype),
1763                         exception_target_el(env));
1764     }
1765 }
1766 
HELPER(guarded_page_br)1767 void HELPER(guarded_page_br)(CPUARMState *env, target_ulong pc)
1768 {
1769     /*
1770      * We have already checked for branch via x16 and x17.
1771      * What remains for choosing BTYPE is checking for a guarded page.
1772      */
1773     env->btype = is_guarded_page(env, pc, GETPC()) ? 3 : 1;
1774 }
1775