1 /*
2 * BCM2835 CPRMAN clock manager
3 *
4 * Copyright (c) 2020 Luc Michel <luc@lmichel.fr>
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 /*
10 * This peripheral is roughly divided into 3 main parts:
11 * - the PLLs
12 * - the PLL channels
13 * - the clock muxes
14 *
15 * A main oscillator (xosc) feeds all the PLLs. Each PLLs has one or more
16 * channels. Those channel are then connected to the clock muxes. Each mux has
17 * multiples sources (usually the xosc, some of the PLL channels and some "test
18 * debug" clocks). A mux is configured to select a given source through its
19 * control register. Each mux has one output clock that also goes out of the
20 * CPRMAN. This output clock usually connects to another peripheral in the SoC
21 * (so a given mux is dedicated to a peripheral).
22 *
23 * At each level (PLL, channel and mux), the clock can be altered through
24 * dividers (and multipliers in case of the PLLs), and can be disabled (in this
25 * case, the next levels see no clock).
26 *
27 * This can be sum-up as follows (this is an example and not the actual BCM2835
28 * clock tree):
29 *
30 * /-->[PLL]-|->[PLL channel]--... [mux]--> to peripherals
31 * | |->[PLL channel] muxes takes [mux]
32 * | \->[PLL channel] inputs from [mux]
33 * | some channels [mux]
34 * [xosc]---|-->[PLL]-|->[PLL channel] and other srcs [mux]
35 * | \->[PLL channel] ...-->[mux]
36 * | [mux]
37 * \-->[PLL]--->[PLL channel] [mux]
38 *
39 * The page at https://elinux.org/The_Undocumented_Pi gives the actual clock
40 * tree configuration.
41 *
42 * The CPRMAN exposes clock outputs with the name of the clock mux suffixed
43 * with "-out" (e.g. "uart-out", "h264-out", ...).
44 */
45
46 #include "qemu/osdep.h"
47 #include "qemu/log.h"
48 #include "migration/vmstate.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/misc/bcm2835_cprman.h"
51 #include "hw/misc/bcm2835_cprman_internals.h"
52 #include "trace.h"
53
54 /* PLL */
55
pll_reset(DeviceState * dev)56 static void pll_reset(DeviceState *dev)
57 {
58 CprmanPllState *s = CPRMAN_PLL(dev);
59 const PLLResetInfo *info = &PLL_RESET_INFO[s->id];
60
61 *s->reg_cm = info->cm;
62 *s->reg_a2w_ctrl = info->a2w_ctrl;
63 memcpy(s->reg_a2w_ana, info->a2w_ana, sizeof(info->a2w_ana));
64 *s->reg_a2w_frac = info->a2w_frac;
65 }
66
pll_is_locked(const CprmanPllState * pll)67 static bool pll_is_locked(const CprmanPllState *pll)
68 {
69 return !FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PWRDN)
70 && !FIELD_EX32(*pll->reg_cm, CM_PLLx, ANARST);
71 }
72
pll_update(CprmanPllState * pll)73 static void pll_update(CprmanPllState *pll)
74 {
75 uint64_t freq, ndiv, fdiv, pdiv;
76
77 if (!pll_is_locked(pll)) {
78 clock_update(pll->out, 0);
79 return;
80 }
81
82 pdiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, PDIV);
83
84 if (!pdiv) {
85 clock_update(pll->out, 0);
86 return;
87 }
88
89 ndiv = FIELD_EX32(*pll->reg_a2w_ctrl, A2W_PLLx_CTRL, NDIV);
90 fdiv = FIELD_EX32(*pll->reg_a2w_frac, A2W_PLLx_FRAC, FRAC);
91
92 if (pll->reg_a2w_ana[1] & pll->prediv_mask) {
93 /* The prescaler doubles the parent frequency */
94 ndiv *= 2;
95 fdiv *= 2;
96 }
97
98 /*
99 * We have a multiplier with an integer part (ndiv) and a fractional part
100 * (fdiv), and a divider (pdiv).
101 */
102 freq = clock_get_hz(pll->xosc_in) *
103 ((ndiv << R_A2W_PLLx_FRAC_FRAC_LENGTH) + fdiv);
104 freq /= pdiv;
105 freq >>= R_A2W_PLLx_FRAC_FRAC_LENGTH;
106
107 clock_update_hz(pll->out, freq);
108 }
109
pll_xosc_update(void * opaque,ClockEvent event)110 static void pll_xosc_update(void *opaque, ClockEvent event)
111 {
112 pll_update(CPRMAN_PLL(opaque));
113 }
114
pll_init(Object * obj)115 static void pll_init(Object *obj)
116 {
117 CprmanPllState *s = CPRMAN_PLL(obj);
118
119 s->xosc_in = qdev_init_clock_in(DEVICE(s), "xosc-in", pll_xosc_update,
120 s, ClockUpdate);
121 s->out = qdev_init_clock_out(DEVICE(s), "out");
122 }
123
124 static const VMStateDescription pll_vmstate = {
125 .name = TYPE_CPRMAN_PLL,
126 .version_id = 1,
127 .minimum_version_id = 1,
128 .fields = (const VMStateField[]) {
129 VMSTATE_CLOCK(xosc_in, CprmanPllState),
130 VMSTATE_END_OF_LIST()
131 }
132 };
133
pll_class_init(ObjectClass * klass,const void * data)134 static void pll_class_init(ObjectClass *klass, const void *data)
135 {
136 DeviceClass *dc = DEVICE_CLASS(klass);
137
138 device_class_set_legacy_reset(dc, pll_reset);
139 dc->vmsd = &pll_vmstate;
140 /* Reason: Part of BCM2835CprmanState component */
141 dc->user_creatable = false;
142 }
143
144 static const TypeInfo cprman_pll_info = {
145 .name = TYPE_CPRMAN_PLL,
146 .parent = TYPE_DEVICE,
147 .instance_size = sizeof(CprmanPllState),
148 .class_init = pll_class_init,
149 .instance_init = pll_init,
150 };
151
152
153 /* PLL channel */
154
pll_channel_reset(DeviceState * dev)155 static void pll_channel_reset(DeviceState *dev)
156 {
157 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(dev);
158 const PLLChannelResetInfo *info = &PLL_CHANNEL_RESET_INFO[s->id];
159
160 *s->reg_a2w_ctrl = info->a2w_ctrl;
161 }
162
pll_channel_is_enabled(CprmanPllChannelState * channel)163 static bool pll_channel_is_enabled(CprmanPllChannelState *channel)
164 {
165 /*
166 * XXX I'm not sure of the purpose of the LOAD field. The Linux driver does
167 * not set it when enabling the channel, but does clear it when disabling
168 * it.
169 */
170 return !FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DISABLE)
171 && !(*channel->reg_cm & channel->hold_mask);
172 }
173
pll_channel_update(CprmanPllChannelState * channel)174 static void pll_channel_update(CprmanPllChannelState *channel)
175 {
176 uint64_t freq, div;
177
178 if (!pll_channel_is_enabled(channel)) {
179 clock_update(channel->out, 0);
180 return;
181 }
182
183 div = FIELD_EX32(*channel->reg_a2w_ctrl, A2W_PLLx_CHANNELy, DIV);
184
185 if (!div) {
186 /*
187 * It seems that when the divider value is 0, it is considered as
188 * being maximum by the hardware (see the Linux driver).
189 */
190 div = R_A2W_PLLx_CHANNELy_DIV_MASK;
191 }
192
193 /* Some channels have an additional fixed divider */
194 freq = clock_get_hz(channel->pll_in) / (div * channel->fixed_divider);
195
196 clock_update_hz(channel->out, freq);
197 }
198
199 /* Update a PLL and all its channels */
pll_update_all_channels(BCM2835CprmanState * s,CprmanPllState * pll)200 static void pll_update_all_channels(BCM2835CprmanState *s,
201 CprmanPllState *pll)
202 {
203 size_t i;
204
205 pll_update(pll);
206
207 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
208 CprmanPllChannelState *channel = &s->channels[i];
209 if (channel->parent == pll->id) {
210 pll_channel_update(channel);
211 }
212 }
213 }
214
pll_channel_pll_in_update(void * opaque,ClockEvent event)215 static void pll_channel_pll_in_update(void *opaque, ClockEvent event)
216 {
217 pll_channel_update(CPRMAN_PLL_CHANNEL(opaque));
218 }
219
pll_channel_init(Object * obj)220 static void pll_channel_init(Object *obj)
221 {
222 CprmanPllChannelState *s = CPRMAN_PLL_CHANNEL(obj);
223
224 s->pll_in = qdev_init_clock_in(DEVICE(s), "pll-in",
225 pll_channel_pll_in_update, s,
226 ClockUpdate);
227 s->out = qdev_init_clock_out(DEVICE(s), "out");
228 }
229
230 static const VMStateDescription pll_channel_vmstate = {
231 .name = TYPE_CPRMAN_PLL_CHANNEL,
232 .version_id = 1,
233 .minimum_version_id = 1,
234 .fields = (const VMStateField[]) {
235 VMSTATE_CLOCK(pll_in, CprmanPllChannelState),
236 VMSTATE_END_OF_LIST()
237 }
238 };
239
pll_channel_class_init(ObjectClass * klass,const void * data)240 static void pll_channel_class_init(ObjectClass *klass, const void *data)
241 {
242 DeviceClass *dc = DEVICE_CLASS(klass);
243
244 device_class_set_legacy_reset(dc, pll_channel_reset);
245 dc->vmsd = &pll_channel_vmstate;
246 /* Reason: Part of BCM2835CprmanState component */
247 dc->user_creatable = false;
248 }
249
250 static const TypeInfo cprman_pll_channel_info = {
251 .name = TYPE_CPRMAN_PLL_CHANNEL,
252 .parent = TYPE_DEVICE,
253 .instance_size = sizeof(CprmanPllChannelState),
254 .class_init = pll_channel_class_init,
255 .instance_init = pll_channel_init,
256 };
257
258
259 /* clock mux */
260
clock_mux_is_enabled(CprmanClockMuxState * mux)261 static bool clock_mux_is_enabled(CprmanClockMuxState *mux)
262 {
263 return FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, ENABLE);
264 }
265
clock_mux_update(CprmanClockMuxState * mux)266 static void clock_mux_update(CprmanClockMuxState *mux)
267 {
268 uint64_t freq;
269 uint32_t div, src = FIELD_EX32(*mux->reg_ctl, CM_CLOCKx_CTL, SRC);
270 bool enabled = clock_mux_is_enabled(mux);
271
272 *mux->reg_ctl = FIELD_DP32(*mux->reg_ctl, CM_CLOCKx_CTL, BUSY, enabled);
273
274 if (!enabled) {
275 clock_update(mux->out, 0);
276 return;
277 }
278
279 freq = clock_get_hz(mux->srcs[src]);
280
281 if (mux->int_bits == 0 && mux->frac_bits == 0) {
282 clock_update_hz(mux->out, freq);
283 return;
284 }
285
286 /*
287 * The divider has an integer and a fractional part. The size of each part
288 * varies with the muxes (int_bits and frac_bits). Both parts are
289 * concatenated, with the integer part always starting at bit 12.
290 *
291 * 31 12 11 0
292 * ------------------------------
293 * CM_DIV | | int | frac | |
294 * ------------------------------
295 * <-----> <------>
296 * int_bits frac_bits
297 */
298 div = extract32(*mux->reg_div,
299 R_CM_CLOCKx_DIV_FRAC_LENGTH - mux->frac_bits,
300 mux->int_bits + mux->frac_bits);
301
302 if (!div) {
303 clock_update(mux->out, 0);
304 return;
305 }
306
307 freq = muldiv64(freq, 1 << mux->frac_bits, div);
308
309 clock_update_hz(mux->out, freq);
310 }
311
clock_mux_src_update(void * opaque,ClockEvent event)312 static void clock_mux_src_update(void *opaque, ClockEvent event)
313 {
314 CprmanClockMuxState **backref = opaque;
315 CprmanClockMuxState *s = *backref;
316 CprmanClockMuxSource src = backref - s->backref;
317
318 if (FIELD_EX32(*s->reg_ctl, CM_CLOCKx_CTL, SRC) != src) {
319 return;
320 }
321
322 clock_mux_update(s);
323 }
324
clock_mux_reset(DeviceState * dev)325 static void clock_mux_reset(DeviceState *dev)
326 {
327 CprmanClockMuxState *clock = CPRMAN_CLOCK_MUX(dev);
328 const ClockMuxResetInfo *info = &CLOCK_MUX_RESET_INFO[clock->id];
329
330 *clock->reg_ctl = info->cm_ctl;
331 *clock->reg_div = info->cm_div;
332 }
333
clock_mux_init(Object * obj)334 static void clock_mux_init(Object *obj)
335 {
336 CprmanClockMuxState *s = CPRMAN_CLOCK_MUX(obj);
337 size_t i;
338
339 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
340 char *name = g_strdup_printf("srcs[%zu]", i);
341 s->backref[i] = s;
342 s->srcs[i] = qdev_init_clock_in(DEVICE(s), name,
343 clock_mux_src_update,
344 &s->backref[i],
345 ClockUpdate);
346 g_free(name);
347 }
348
349 s->out = qdev_init_clock_out(DEVICE(s), "out");
350 }
351
352 static const VMStateDescription clock_mux_vmstate = {
353 .name = TYPE_CPRMAN_CLOCK_MUX,
354 .version_id = 1,
355 .minimum_version_id = 1,
356 .fields = (const VMStateField[]) {
357 VMSTATE_ARRAY_CLOCK(srcs, CprmanClockMuxState,
358 CPRMAN_NUM_CLOCK_MUX_SRC),
359 VMSTATE_END_OF_LIST()
360 }
361 };
362
clock_mux_class_init(ObjectClass * klass,const void * data)363 static void clock_mux_class_init(ObjectClass *klass, const void *data)
364 {
365 DeviceClass *dc = DEVICE_CLASS(klass);
366
367 device_class_set_legacy_reset(dc, clock_mux_reset);
368 dc->vmsd = &clock_mux_vmstate;
369 /* Reason: Part of BCM2835CprmanState component */
370 dc->user_creatable = false;
371 }
372
373 static const TypeInfo cprman_clock_mux_info = {
374 .name = TYPE_CPRMAN_CLOCK_MUX,
375 .parent = TYPE_DEVICE,
376 .instance_size = sizeof(CprmanClockMuxState),
377 .class_init = clock_mux_class_init,
378 .instance_init = clock_mux_init,
379 };
380
381
382 /* DSI0HSCK mux */
383
dsi0hsck_mux_update(CprmanDsi0HsckMuxState * s)384 static void dsi0hsck_mux_update(CprmanDsi0HsckMuxState *s)
385 {
386 bool src_is_plld = FIELD_EX32(*s->reg_cm, CM_DSI0HSCK, SELPLLD);
387 Clock *src = src_is_plld ? s->plld_in : s->plla_in;
388
389 clock_update(s->out, clock_get(src));
390 }
391
dsi0hsck_mux_in_update(void * opaque,ClockEvent event)392 static void dsi0hsck_mux_in_update(void *opaque, ClockEvent event)
393 {
394 dsi0hsck_mux_update(CPRMAN_DSI0HSCK_MUX(opaque));
395 }
396
dsi0hsck_mux_init(Object * obj)397 static void dsi0hsck_mux_init(Object *obj)
398 {
399 CprmanDsi0HsckMuxState *s = CPRMAN_DSI0HSCK_MUX(obj);
400 DeviceState *dev = DEVICE(obj);
401
402 s->plla_in = qdev_init_clock_in(dev, "plla-in", dsi0hsck_mux_in_update,
403 s, ClockUpdate);
404 s->plld_in = qdev_init_clock_in(dev, "plld-in", dsi0hsck_mux_in_update,
405 s, ClockUpdate);
406 s->out = qdev_init_clock_out(DEVICE(s), "out");
407 }
408
409 static const VMStateDescription dsi0hsck_mux_vmstate = {
410 .name = TYPE_CPRMAN_DSI0HSCK_MUX,
411 .version_id = 1,
412 .minimum_version_id = 1,
413 .fields = (const VMStateField[]) {
414 VMSTATE_CLOCK(plla_in, CprmanDsi0HsckMuxState),
415 VMSTATE_CLOCK(plld_in, CprmanDsi0HsckMuxState),
416 VMSTATE_END_OF_LIST()
417 }
418 };
419
dsi0hsck_mux_class_init(ObjectClass * klass,const void * data)420 static void dsi0hsck_mux_class_init(ObjectClass *klass, const void *data)
421 {
422 DeviceClass *dc = DEVICE_CLASS(klass);
423
424 dc->vmsd = &dsi0hsck_mux_vmstate;
425 /* Reason: Part of BCM2835CprmanState component */
426 dc->user_creatable = false;
427 }
428
429 static const TypeInfo cprman_dsi0hsck_mux_info = {
430 .name = TYPE_CPRMAN_DSI0HSCK_MUX,
431 .parent = TYPE_DEVICE,
432 .instance_size = sizeof(CprmanDsi0HsckMuxState),
433 .class_init = dsi0hsck_mux_class_init,
434 .instance_init = dsi0hsck_mux_init,
435 };
436
437
438 /* CPRMAN "top level" model */
439
get_cm_lock(const BCM2835CprmanState * s)440 static uint32_t get_cm_lock(const BCM2835CprmanState *s)
441 {
442 static const int CM_LOCK_MAPPING[CPRMAN_NUM_PLL] = {
443 [CPRMAN_PLLA] = R_CM_LOCK_FLOCKA_SHIFT,
444 [CPRMAN_PLLC] = R_CM_LOCK_FLOCKC_SHIFT,
445 [CPRMAN_PLLD] = R_CM_LOCK_FLOCKD_SHIFT,
446 [CPRMAN_PLLH] = R_CM_LOCK_FLOCKH_SHIFT,
447 [CPRMAN_PLLB] = R_CM_LOCK_FLOCKB_SHIFT,
448 };
449
450 uint32_t r = 0;
451 size_t i;
452
453 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
454 r |= pll_is_locked(&s->plls[i]) << CM_LOCK_MAPPING[i];
455 }
456
457 return r;
458 }
459
cprman_read(void * opaque,hwaddr offset,unsigned size)460 static uint64_t cprman_read(void *opaque, hwaddr offset,
461 unsigned size)
462 {
463 BCM2835CprmanState *s = CPRMAN(opaque);
464 uint64_t r = 0;
465 size_t idx = offset / sizeof(uint32_t);
466
467 switch (idx) {
468 case R_CM_LOCK:
469 r = get_cm_lock(s);
470 break;
471
472 default:
473 r = s->regs[idx];
474 }
475
476 trace_bcm2835_cprman_read(offset, r);
477 return r;
478 }
479
update_pll_and_channels_from_cm(BCM2835CprmanState * s,size_t idx)480 static inline void update_pll_and_channels_from_cm(BCM2835CprmanState *s,
481 size_t idx)
482 {
483 size_t i;
484
485 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
486 if (PLL_INIT_INFO[i].cm_offset == idx) {
487 pll_update_all_channels(s, &s->plls[i]);
488 return;
489 }
490 }
491 }
492
update_channel_from_a2w(BCM2835CprmanState * s,size_t idx)493 static inline void update_channel_from_a2w(BCM2835CprmanState *s, size_t idx)
494 {
495 size_t i;
496
497 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
498 if (PLL_CHANNEL_INIT_INFO[i].a2w_ctrl_offset == idx) {
499 pll_channel_update(&s->channels[i]);
500 return;
501 }
502 }
503 }
504
update_mux_from_cm(BCM2835CprmanState * s,size_t idx)505 static inline void update_mux_from_cm(BCM2835CprmanState *s, size_t idx)
506 {
507 size_t i;
508
509 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
510 if ((CLOCK_MUX_INIT_INFO[i].cm_offset == idx) ||
511 (CLOCK_MUX_INIT_INFO[i].cm_offset + 4 == idx)) {
512 /* matches CM_CTL or CM_DIV mux register */
513 clock_mux_update(&s->clock_muxes[i]);
514 return;
515 }
516 }
517 }
518
519 #define CASE_PLL_A2W_REGS(pll_) \
520 case R_A2W_ ## pll_ ## _CTRL: \
521 case R_A2W_ ## pll_ ## _ANA0: \
522 case R_A2W_ ## pll_ ## _ANA1: \
523 case R_A2W_ ## pll_ ## _ANA2: \
524 case R_A2W_ ## pll_ ## _ANA3: \
525 case R_A2W_ ## pll_ ## _FRAC
526
cprman_write(void * opaque,hwaddr offset,uint64_t value,unsigned size)527 static void cprman_write(void *opaque, hwaddr offset,
528 uint64_t value, unsigned size)
529 {
530 BCM2835CprmanState *s = CPRMAN(opaque);
531 size_t idx = offset / sizeof(uint32_t);
532
533 if (FIELD_EX32(value, CPRMAN, PASSWORD) != CPRMAN_PASSWORD) {
534 trace_bcm2835_cprman_write_invalid_magic(offset, value);
535 return;
536 }
537
538 value &= ~R_CPRMAN_PASSWORD_MASK;
539
540 trace_bcm2835_cprman_write(offset, value);
541 s->regs[idx] = value;
542
543 switch (idx) {
544 case R_CM_PLLA ... R_CM_PLLH:
545 case R_CM_PLLB:
546 /*
547 * A given CM_PLLx register is shared by both the PLL and the channels
548 * of this PLL.
549 */
550 update_pll_and_channels_from_cm(s, idx);
551 break;
552
553 CASE_PLL_A2W_REGS(PLLA) :
554 pll_update(&s->plls[CPRMAN_PLLA]);
555 break;
556
557 CASE_PLL_A2W_REGS(PLLC) :
558 pll_update(&s->plls[CPRMAN_PLLC]);
559 break;
560
561 CASE_PLL_A2W_REGS(PLLD) :
562 pll_update(&s->plls[CPRMAN_PLLD]);
563 break;
564
565 CASE_PLL_A2W_REGS(PLLH) :
566 pll_update(&s->plls[CPRMAN_PLLH]);
567 break;
568
569 CASE_PLL_A2W_REGS(PLLB) :
570 pll_update(&s->plls[CPRMAN_PLLB]);
571 break;
572
573 case R_A2W_PLLA_DSI0:
574 case R_A2W_PLLA_CORE:
575 case R_A2W_PLLA_PER:
576 case R_A2W_PLLA_CCP2:
577 case R_A2W_PLLC_CORE2:
578 case R_A2W_PLLC_CORE1:
579 case R_A2W_PLLC_PER:
580 case R_A2W_PLLC_CORE0:
581 case R_A2W_PLLD_DSI0:
582 case R_A2W_PLLD_CORE:
583 case R_A2W_PLLD_PER:
584 case R_A2W_PLLD_DSI1:
585 case R_A2W_PLLH_AUX:
586 case R_A2W_PLLH_RCAL:
587 case R_A2W_PLLH_PIX:
588 case R_A2W_PLLB_ARM:
589 update_channel_from_a2w(s, idx);
590 break;
591
592 case R_CM_GNRICCTL ... R_CM_SMIDIV:
593 case R_CM_TCNTCNT ... R_CM_VECDIV:
594 case R_CM_PULSECTL ... R_CM_PULSEDIV:
595 case R_CM_SDCCTL ... R_CM_ARMCTL:
596 case R_CM_AVEOCTL ... R_CM_EMMCDIV:
597 case R_CM_EMMC2CTL ... R_CM_EMMC2DIV:
598 update_mux_from_cm(s, idx);
599 break;
600
601 case R_CM_DSI0HSCK:
602 dsi0hsck_mux_update(&s->dsi0hsck_mux);
603 break;
604 }
605 }
606
607 #undef CASE_PLL_A2W_REGS
608
609 static const MemoryRegionOps cprman_ops = {
610 .read = cprman_read,
611 .write = cprman_write,
612 .endianness = DEVICE_LITTLE_ENDIAN,
613 .valid = {
614 /*
615 * Although this hasn't been checked against real hardware, nor the
616 * information can be found in a datasheet, it seems reasonable because
617 * of the "PASSWORD" magic value found in every registers.
618 */
619 .min_access_size = 4,
620 .max_access_size = 4,
621 .unaligned = false,
622 },
623 .impl = {
624 .max_access_size = 4,
625 },
626 };
627
cprman_reset(DeviceState * dev)628 static void cprman_reset(DeviceState *dev)
629 {
630 BCM2835CprmanState *s = CPRMAN(dev);
631 size_t i;
632
633 memset(s->regs, 0, sizeof(s->regs));
634
635 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
636 device_cold_reset(DEVICE(&s->plls[i]));
637 }
638
639 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
640 device_cold_reset(DEVICE(&s->channels[i]));
641 }
642
643 device_cold_reset(DEVICE(&s->dsi0hsck_mux));
644
645 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
646 device_cold_reset(DEVICE(&s->clock_muxes[i]));
647 }
648
649 clock_update_hz(s->xosc, s->xosc_freq);
650 }
651
cprman_init(Object * obj)652 static void cprman_init(Object *obj)
653 {
654 BCM2835CprmanState *s = CPRMAN(obj);
655 size_t i;
656
657 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
658 object_initialize_child(obj, PLL_INIT_INFO[i].name,
659 &s->plls[i], TYPE_CPRMAN_PLL);
660 set_pll_init_info(s, &s->plls[i], i);
661 }
662
663 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
664 object_initialize_child(obj, PLL_CHANNEL_INIT_INFO[i].name,
665 &s->channels[i],
666 TYPE_CPRMAN_PLL_CHANNEL);
667 set_pll_channel_init_info(s, &s->channels[i], i);
668 }
669
670 object_initialize_child(obj, "dsi0hsck-mux",
671 &s->dsi0hsck_mux, TYPE_CPRMAN_DSI0HSCK_MUX);
672 s->dsi0hsck_mux.reg_cm = &s->regs[R_CM_DSI0HSCK];
673
674 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
675 char *alias;
676
677 object_initialize_child(obj, CLOCK_MUX_INIT_INFO[i].name,
678 &s->clock_muxes[i],
679 TYPE_CPRMAN_CLOCK_MUX);
680 set_clock_mux_init_info(s, &s->clock_muxes[i], i);
681
682 /* Expose muxes output as CPRMAN outputs */
683 alias = g_strdup_printf("%s-out", CLOCK_MUX_INIT_INFO[i].name);
684 qdev_alias_clock(DEVICE(&s->clock_muxes[i]), "out", DEVICE(obj), alias);
685 g_free(alias);
686 }
687
688 s->xosc = clock_new(obj, "xosc");
689 s->gnd = clock_new(obj, "gnd");
690
691 clock_set(s->gnd, 0);
692
693 memory_region_init_io(&s->iomem, obj, &cprman_ops,
694 s, "bcm2835-cprman", 0x2000);
695 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
696 }
697
connect_mux_sources(BCM2835CprmanState * s,CprmanClockMuxState * mux,const CprmanPllChannel * clk_mapping)698 static void connect_mux_sources(BCM2835CprmanState *s,
699 CprmanClockMuxState *mux,
700 const CprmanPllChannel *clk_mapping)
701 {
702 size_t i;
703 Clock *td0 = s->clock_muxes[CPRMAN_CLOCK_TD0].out;
704 Clock *td1 = s->clock_muxes[CPRMAN_CLOCK_TD1].out;
705
706 /* For sources from 0 to 3. Source 4 to 9 are mux specific */
707 Clock * const CLK_SRC_MAPPING[] = {
708 [CPRMAN_CLOCK_SRC_GND] = s->gnd,
709 [CPRMAN_CLOCK_SRC_XOSC] = s->xosc,
710 [CPRMAN_CLOCK_SRC_TD0] = td0,
711 [CPRMAN_CLOCK_SRC_TD1] = td1,
712 };
713
714 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX_SRC; i++) {
715 CprmanPllChannel mapping = clk_mapping[i];
716 Clock *src;
717
718 if (mapping == CPRMAN_CLOCK_SRC_FORCE_GROUND) {
719 src = s->gnd;
720 } else if (mapping == CPRMAN_CLOCK_SRC_DSI0HSCK) {
721 src = s->dsi0hsck_mux.out;
722 } else if (i < CPRMAN_CLOCK_SRC_PLLA) {
723 src = CLK_SRC_MAPPING[i];
724 } else {
725 src = s->channels[mapping].out;
726 }
727
728 clock_set_source(mux->srcs[i], src);
729 }
730 }
731
cprman_realize(DeviceState * dev,Error ** errp)732 static void cprman_realize(DeviceState *dev, Error **errp)
733 {
734 BCM2835CprmanState *s = CPRMAN(dev);
735 size_t i;
736
737 for (i = 0; i < CPRMAN_NUM_PLL; i++) {
738 CprmanPllState *pll = &s->plls[i];
739
740 clock_set_source(pll->xosc_in, s->xosc);
741
742 if (!qdev_realize(DEVICE(pll), NULL, errp)) {
743 return;
744 }
745 }
746
747 for (i = 0; i < CPRMAN_NUM_PLL_CHANNEL; i++) {
748 CprmanPllChannelState *channel = &s->channels[i];
749 CprmanPll parent = PLL_CHANNEL_INIT_INFO[i].parent;
750 Clock *parent_clk = s->plls[parent].out;
751
752 clock_set_source(channel->pll_in, parent_clk);
753
754 if (!qdev_realize(DEVICE(channel), NULL, errp)) {
755 return;
756 }
757 }
758
759 clock_set_source(s->dsi0hsck_mux.plla_in,
760 s->channels[CPRMAN_PLLA_CHANNEL_DSI0].out);
761 clock_set_source(s->dsi0hsck_mux.plld_in,
762 s->channels[CPRMAN_PLLD_CHANNEL_DSI0].out);
763
764 if (!qdev_realize(DEVICE(&s->dsi0hsck_mux), NULL, errp)) {
765 return;
766 }
767
768 for (i = 0; i < CPRMAN_NUM_CLOCK_MUX; i++) {
769 CprmanClockMuxState *clock_mux = &s->clock_muxes[i];
770
771 connect_mux_sources(s, clock_mux, CLOCK_MUX_INIT_INFO[i].src_mapping);
772
773 if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) {
774 return;
775 }
776 }
777 }
778
779 static const VMStateDescription cprman_vmstate = {
780 .name = TYPE_BCM2835_CPRMAN,
781 .version_id = 1,
782 .minimum_version_id = 1,
783 .fields = (const VMStateField[]) {
784 VMSTATE_UINT32_ARRAY(regs, BCM2835CprmanState, CPRMAN_NUM_REGS),
785 VMSTATE_END_OF_LIST()
786 }
787 };
788
789 static const Property cprman_properties[] = {
790 DEFINE_PROP_UINT32("xosc-freq-hz", BCM2835CprmanState, xosc_freq, 19200000),
791 };
792
cprman_class_init(ObjectClass * klass,const void * data)793 static void cprman_class_init(ObjectClass *klass, const void *data)
794 {
795 DeviceClass *dc = DEVICE_CLASS(klass);
796
797 dc->realize = cprman_realize;
798 device_class_set_legacy_reset(dc, cprman_reset);
799 dc->vmsd = &cprman_vmstate;
800 device_class_set_props(dc, cprman_properties);
801 }
802
803 static const TypeInfo cprman_info = {
804 .name = TYPE_BCM2835_CPRMAN,
805 .parent = TYPE_SYS_BUS_DEVICE,
806 .instance_size = sizeof(BCM2835CprmanState),
807 .class_init = cprman_class_init,
808 .instance_init = cprman_init,
809 };
810
cprman_register_types(void)811 static void cprman_register_types(void)
812 {
813 type_register_static(&cprman_info);
814 type_register_static(&cprman_pll_info);
815 type_register_static(&cprman_pll_channel_info);
816 type_register_static(&cprman_clock_mux_info);
817 type_register_static(&cprman_dsi0hsck_mux_info);
818 }
819
820 type_init(cprman_register_types);
821