1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/cleanup.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/math64.h>
16 #include <linux/module.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/spi-nor.h>
19 #include <linux/mutex.h>
20 #include <linux/of.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sizes.h>
24 #include <linux/slab.h>
25 #include <linux/spi/flash.h>
26
27 #include "core.h"
28
29 /* Define max times to check status register before we give up. */
30
31 /*
32 * For everything but full-chip erase; probably could be much smaller, but kept
33 * around for safety for now
34 */
35 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
36
37 /*
38 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
39 * for larger flash
40 */
41 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
42
43 #define SPI_NOR_MAX_ADDR_NBYTES 4
44
45 #define SPI_NOR_SRST_SLEEP_MIN 200
46 #define SPI_NOR_SRST_SLEEP_MAX 400
47
48 /**
49 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
50 * extension type.
51 * @nor: pointer to a 'struct spi_nor'
52 * @op: pointer to the 'struct spi_mem_op' whose properties
53 * need to be initialized.
54 *
55 * Right now, only "repeat" and "invert" are supported.
56 *
57 * Return: The opcode extension.
58 */
spi_nor_get_cmd_ext(const struct spi_nor * nor,const struct spi_mem_op * op)59 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
60 const struct spi_mem_op *op)
61 {
62 switch (nor->cmd_ext_type) {
63 case SPI_NOR_EXT_INVERT:
64 return ~op->cmd.opcode;
65
66 case SPI_NOR_EXT_REPEAT:
67 return op->cmd.opcode;
68
69 default:
70 dev_err(nor->dev, "Unknown command extension type\n");
71 return 0;
72 }
73 }
74
75 /**
76 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
77 * @nor: pointer to a 'struct spi_nor'
78 * @op: pointer to the 'struct spi_mem_op' whose properties
79 * need to be initialized.
80 * @proto: the protocol from which the properties need to be set.
81 */
spi_nor_spimem_setup_op(const struct spi_nor * nor,struct spi_mem_op * op,const enum spi_nor_protocol proto)82 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
83 struct spi_mem_op *op,
84 const enum spi_nor_protocol proto)
85 {
86 u8 ext;
87
88 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
89
90 if (op->addr.nbytes)
91 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
92
93 if (op->dummy.nbytes)
94 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
95
96 if (op->data.nbytes)
97 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
98
99 if (spi_nor_protocol_is_dtr(proto)) {
100 /*
101 * SPIMEM supports mixed DTR modes, but right now we can only
102 * have all phases either DTR or STR. IOW, SPIMEM can have
103 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
104 * phases to either DTR or STR.
105 */
106 op->cmd.dtr = true;
107 op->addr.dtr = true;
108 op->dummy.dtr = true;
109 op->data.dtr = true;
110
111 /* 2 bytes per clock cycle in DTR mode. */
112 op->dummy.nbytes *= 2;
113
114 ext = spi_nor_get_cmd_ext(nor, op);
115 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
116 op->cmd.nbytes = 2;
117 }
118
119 if (proto == SNOR_PROTO_8_8_8_DTR && nor->flags & SNOR_F_SWAP16)
120 op->data.swap16 = true;
121 }
122
123 /**
124 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
125 * transfer
126 * @nor: pointer to 'struct spi_nor'
127 * @op: pointer to 'struct spi_mem_op' template for transfer
128 *
129 * If we have to use the bounce buffer, the data field in @op will be updated.
130 *
131 * Return: true if the bounce buffer is needed, false if not
132 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)133 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
134 {
135 /* op->data.buf.in occupies the same memory as op->data.buf.out */
136 if (object_is_on_stack(op->data.buf.in) ||
137 !virt_addr_valid(op->data.buf.in)) {
138 if (op->data.nbytes > nor->bouncebuf_size)
139 op->data.nbytes = nor->bouncebuf_size;
140 op->data.buf.in = nor->bouncebuf;
141 return true;
142 }
143
144 return false;
145 }
146
147 /**
148 * spi_nor_spimem_exec_op() - execute a memory operation
149 * @nor: pointer to 'struct spi_nor'
150 * @op: pointer to 'struct spi_mem_op' template for transfer
151 *
152 * Return: 0 on success, -error otherwise.
153 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)154 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
155 {
156 int error;
157
158 error = spi_mem_adjust_op_size(nor->spimem, op);
159 if (error)
160 return error;
161
162 return spi_mem_exec_op(nor->spimem, op);
163 }
164
spi_nor_controller_ops_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)165 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
166 u8 *buf, size_t len)
167 {
168 if (spi_nor_protocol_is_dtr(nor->reg_proto))
169 return -EOPNOTSUPP;
170
171 return nor->controller_ops->read_reg(nor, opcode, buf, len);
172 }
173
spi_nor_controller_ops_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)174 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
175 const u8 *buf, size_t len)
176 {
177 if (spi_nor_protocol_is_dtr(nor->reg_proto))
178 return -EOPNOTSUPP;
179
180 return nor->controller_ops->write_reg(nor, opcode, buf, len);
181 }
182
spi_nor_controller_ops_erase(struct spi_nor * nor,loff_t offs)183 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
184 {
185 if (spi_nor_protocol_is_dtr(nor->reg_proto))
186 return -EOPNOTSUPP;
187
188 return nor->controller_ops->erase(nor, offs);
189 }
190
191 /**
192 * spi_nor_spimem_read_data() - read data from flash's memory region via
193 * spi-mem
194 * @nor: pointer to 'struct spi_nor'
195 * @from: offset to read from
196 * @len: number of bytes to read
197 * @buf: pointer to dst buffer
198 *
199 * Return: number of bytes read successfully, -errno otherwise
200 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)201 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
202 size_t len, u8 *buf)
203 {
204 struct spi_mem_op op =
205 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
206 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
207 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
208 SPI_MEM_OP_DATA_IN(len, buf, 0));
209 bool usebouncebuf;
210 ssize_t nbytes;
211 int error;
212
213 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
214
215 /* convert the dummy cycles to the number of bytes */
216 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
217 if (spi_nor_protocol_is_dtr(nor->read_proto))
218 op.dummy.nbytes *= 2;
219
220 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
221
222 if (nor->dirmap.rdesc) {
223 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
224 op.data.nbytes, op.data.buf.in);
225 } else {
226 error = spi_nor_spimem_exec_op(nor, &op);
227 if (error)
228 return error;
229 nbytes = op.data.nbytes;
230 }
231
232 if (usebouncebuf && nbytes > 0)
233 memcpy(buf, op.data.buf.in, nbytes);
234
235 return nbytes;
236 }
237
238 /**
239 * spi_nor_read_data() - read data from flash memory
240 * @nor: pointer to 'struct spi_nor'
241 * @from: offset to read from
242 * @len: number of bytes to read
243 * @buf: pointer to dst buffer
244 *
245 * Return: number of bytes read successfully, -errno otherwise
246 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)247 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
248 {
249 if (nor->spimem)
250 return spi_nor_spimem_read_data(nor, from, len, buf);
251
252 return nor->controller_ops->read(nor, from, len, buf);
253 }
254
255 /**
256 * spi_nor_spimem_write_data() - write data to flash memory via
257 * spi-mem
258 * @nor: pointer to 'struct spi_nor'
259 * @to: offset to write to
260 * @len: number of bytes to write
261 * @buf: pointer to src buffer
262 *
263 * Return: number of bytes written successfully, -errno otherwise
264 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)265 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
266 size_t len, const u8 *buf)
267 {
268 struct spi_mem_op op =
269 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
270 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
271 SPI_MEM_OP_NO_DUMMY,
272 SPI_MEM_OP_DATA_OUT(len, buf, 0));
273 ssize_t nbytes;
274 int error;
275
276 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
277 op.addr.nbytes = 0;
278
279 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
280
281 if (spi_nor_spimem_bounce(nor, &op))
282 memcpy(nor->bouncebuf, buf, op.data.nbytes);
283
284 if (nor->dirmap.wdesc) {
285 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
286 op.data.nbytes, op.data.buf.out);
287 } else {
288 error = spi_nor_spimem_exec_op(nor, &op);
289 if (error)
290 return error;
291 nbytes = op.data.nbytes;
292 }
293
294 return nbytes;
295 }
296
297 /**
298 * spi_nor_write_data() - write data to flash memory
299 * @nor: pointer to 'struct spi_nor'
300 * @to: offset to write to
301 * @len: number of bytes to write
302 * @buf: pointer to src buffer
303 *
304 * Return: number of bytes written successfully, -errno otherwise
305 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)306 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
307 const u8 *buf)
308 {
309 if (nor->spimem)
310 return spi_nor_spimem_write_data(nor, to, len, buf);
311
312 return nor->controller_ops->write(nor, to, len, buf);
313 }
314
315 /**
316 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
317 * volatile.
318 * @nor: pointer to 'struct spi_nor'.
319 * @op: SPI memory operation. op->data.buf must be DMA-able.
320 * @proto: SPI protocol to use for the register operation.
321 *
322 * Return: zero on success, -errno otherwise
323 */
spi_nor_read_any_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)324 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
325 enum spi_nor_protocol proto)
326 {
327 if (!nor->spimem)
328 return -EOPNOTSUPP;
329
330 spi_nor_spimem_setup_op(nor, op, proto);
331 return spi_nor_spimem_exec_op(nor, op);
332 }
333
334 /**
335 * spi_nor_write_any_volatile_reg() - write any volatile register to flash
336 * memory.
337 * @nor: pointer to 'struct spi_nor'
338 * @op: SPI memory operation. op->data.buf must be DMA-able.
339 * @proto: SPI protocol to use for the register operation.
340 *
341 * Writing volatile registers are instant according to some manufacturers
342 * (Cypress, Micron) and do not need any status polling.
343 *
344 * Return: zero on success, -errno otherwise
345 */
spi_nor_write_any_volatile_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)346 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
347 enum spi_nor_protocol proto)
348 {
349 int ret;
350
351 if (!nor->spimem)
352 return -EOPNOTSUPP;
353
354 ret = spi_nor_write_enable(nor);
355 if (ret)
356 return ret;
357 spi_nor_spimem_setup_op(nor, op, proto);
358 return spi_nor_spimem_exec_op(nor, op);
359 }
360
361 /**
362 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
363 * @nor: pointer to 'struct spi_nor'.
364 *
365 * Return: 0 on success, -errno otherwise.
366 */
spi_nor_write_enable(struct spi_nor * nor)367 int spi_nor_write_enable(struct spi_nor *nor)
368 {
369 int ret;
370
371 if (nor->spimem) {
372 struct spi_mem_op op = SPI_NOR_WREN_OP;
373
374 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
375
376 ret = spi_mem_exec_op(nor->spimem, &op);
377 } else {
378 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
379 NULL, 0);
380 }
381
382 if (ret)
383 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
384
385 return ret;
386 }
387
388 /**
389 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
390 * @nor: pointer to 'struct spi_nor'.
391 *
392 * Return: 0 on success, -errno otherwise.
393 */
spi_nor_write_disable(struct spi_nor * nor)394 int spi_nor_write_disable(struct spi_nor *nor)
395 {
396 int ret;
397
398 if (nor->spimem) {
399 struct spi_mem_op op = SPI_NOR_WRDI_OP;
400
401 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402
403 ret = spi_mem_exec_op(nor->spimem, &op);
404 } else {
405 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
406 NULL, 0);
407 }
408
409 if (ret)
410 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
411
412 return ret;
413 }
414
415 /**
416 * spi_nor_read_id() - Read the JEDEC ID.
417 * @nor: pointer to 'struct spi_nor'.
418 * @naddr: number of address bytes to send. Can be zero if the operation
419 * does not need to send an address.
420 * @ndummy: number of dummy bytes to send after an opcode or address. Can
421 * be zero if the operation does not require dummy bytes.
422 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID
423 * will be written.
424 * @proto: the SPI protocol for register operation.
425 *
426 * Return: 0 on success, -errno otherwise.
427 */
spi_nor_read_id(struct spi_nor * nor,u8 naddr,u8 ndummy,u8 * id,enum spi_nor_protocol proto)428 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
429 enum spi_nor_protocol proto)
430 {
431 int ret;
432
433 if (nor->spimem) {
434 struct spi_mem_op op =
435 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
436
437 spi_nor_spimem_setup_op(nor, &op, proto);
438 ret = spi_mem_exec_op(nor->spimem, &op);
439 } else {
440 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
441 SPI_NOR_MAX_ID_LEN);
442 }
443 return ret;
444 }
445
446 /**
447 * spi_nor_read_sr() - Read the Status Register.
448 * @nor: pointer to 'struct spi_nor'.
449 * @sr: pointer to a DMA-able buffer where the value of the
450 * Status Register will be written. Should be at least 2 bytes.
451 *
452 * Return: 0 on success, -errno otherwise.
453 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)454 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
455 {
456 int ret;
457
458 if (nor->spimem) {
459 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
460
461 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
462 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
463 op.dummy.nbytes = nor->params->rdsr_dummy;
464 /*
465 * We don't want to read only one byte in DTR mode. So,
466 * read 2 and then discard the second byte.
467 */
468 op.data.nbytes = 2;
469 }
470
471 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
472
473 ret = spi_mem_exec_op(nor->spimem, &op);
474 } else {
475 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
476 1);
477 }
478
479 if (ret)
480 dev_dbg(nor->dev, "error %d reading SR\n", ret);
481
482 return ret;
483 }
484
485 /**
486 * spi_nor_read_cr() - Read the Configuration Register using the
487 * SPINOR_OP_RDCR (35h) command.
488 * @nor: pointer to 'struct spi_nor'
489 * @cr: pointer to a DMA-able buffer where the value of the
490 * Configuration Register will be written.
491 *
492 * Return: 0 on success, -errno otherwise.
493 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)494 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
495 {
496 int ret;
497
498 if (nor->spimem) {
499 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
500
501 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
502
503 ret = spi_mem_exec_op(nor->spimem, &op);
504 } else {
505 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
506 1);
507 }
508
509 if (ret)
510 dev_dbg(nor->dev, "error %d reading CR\n", ret);
511
512 return ret;
513 }
514
515 /**
516 * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
517 * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
518 * Winbond and Macronix.
519 * @nor: pointer to 'struct spi_nor'.
520 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
521 * address mode.
522 *
523 * Return: 0 on success, -errno otherwise.
524 */
spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor * nor,bool enable)525 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
526 {
527 int ret;
528
529 if (nor->spimem) {
530 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
531
532 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
533
534 ret = spi_mem_exec_op(nor->spimem, &op);
535 } else {
536 ret = spi_nor_controller_ops_write_reg(nor,
537 enable ? SPINOR_OP_EN4B :
538 SPINOR_OP_EX4B,
539 NULL, 0);
540 }
541
542 if (ret)
543 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
544
545 return ret;
546 }
547
548 /**
549 * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
550 * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
551 * by ST and Micron flashes.
552 * @nor: pointer to 'struct spi_nor'.
553 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
554 * address mode.
555 *
556 * Return: 0 on success, -errno otherwise.
557 */
spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor * nor,bool enable)558 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
559 {
560 int ret;
561
562 ret = spi_nor_write_enable(nor);
563 if (ret)
564 return ret;
565
566 ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
567 if (ret)
568 return ret;
569
570 return spi_nor_write_disable(nor);
571 }
572
573 /**
574 * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
575 * SPINOR_OP_BRWR. Typically used by Spansion flashes.
576 * @nor: pointer to 'struct spi_nor'.
577 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
578 * address mode.
579 *
580 * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
581 * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
582 * address mode is active and A[30:24] bits are don’t care. Write instruction is
583 * SPINOR_OP_BRWR(17h) with 1 byte of data.
584 *
585 * Return: 0 on success, -errno otherwise.
586 */
spi_nor_set_4byte_addr_mode_brwr(struct spi_nor * nor,bool enable)587 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
588 {
589 int ret;
590
591 nor->bouncebuf[0] = enable << 7;
592
593 if (nor->spimem) {
594 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
595
596 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
597
598 ret = spi_mem_exec_op(nor->spimem, &op);
599 } else {
600 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
601 nor->bouncebuf, 1);
602 }
603
604 if (ret)
605 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
606
607 return ret;
608 }
609
610 /**
611 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
612 * for new commands.
613 * @nor: pointer to 'struct spi_nor'.
614 *
615 * Return: 1 if ready, 0 if not ready, -errno on errors.
616 */
spi_nor_sr_ready(struct spi_nor * nor)617 int spi_nor_sr_ready(struct spi_nor *nor)
618 {
619 int ret;
620
621 ret = spi_nor_read_sr(nor, nor->bouncebuf);
622 if (ret)
623 return ret;
624
625 return !(nor->bouncebuf[0] & SR_WIP);
626 }
627
628 /**
629 * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
630 * @nor: pointer to 'struct spi_nor'.
631 *
632 * Return: true if parallel locking is enabled, false otherwise.
633 */
spi_nor_use_parallel_locking(struct spi_nor * nor)634 static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
635 {
636 return nor->flags & SNOR_F_RWW;
637 }
638
639 /* Locking helpers for status read operations */
spi_nor_rww_start_rdst(struct spi_nor * nor)640 static int spi_nor_rww_start_rdst(struct spi_nor *nor)
641 {
642 struct spi_nor_rww *rww = &nor->rww;
643
644 guard(mutex)(&nor->lock);
645
646 if (rww->ongoing_io || rww->ongoing_rd)
647 return -EAGAIN;
648
649 rww->ongoing_io = true;
650 rww->ongoing_rd = true;
651
652 return 0;
653 }
654
spi_nor_rww_end_rdst(struct spi_nor * nor)655 static void spi_nor_rww_end_rdst(struct spi_nor *nor)
656 {
657 struct spi_nor_rww *rww = &nor->rww;
658
659 guard(mutex)(&nor->lock);
660
661 rww->ongoing_io = false;
662 rww->ongoing_rd = false;
663 }
664
spi_nor_lock_rdst(struct spi_nor * nor)665 static int spi_nor_lock_rdst(struct spi_nor *nor)
666 {
667 if (spi_nor_use_parallel_locking(nor))
668 return spi_nor_rww_start_rdst(nor);
669
670 return 0;
671 }
672
spi_nor_unlock_rdst(struct spi_nor * nor)673 static void spi_nor_unlock_rdst(struct spi_nor *nor)
674 {
675 if (spi_nor_use_parallel_locking(nor)) {
676 spi_nor_rww_end_rdst(nor);
677 wake_up(&nor->rww.wait);
678 }
679 }
680
681 /**
682 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
683 * @nor: pointer to 'struct spi_nor'.
684 *
685 * Return: 1 if ready, 0 if not ready, -errno on errors.
686 */
spi_nor_ready(struct spi_nor * nor)687 static int spi_nor_ready(struct spi_nor *nor)
688 {
689 int ret;
690
691 ret = spi_nor_lock_rdst(nor);
692 if (ret)
693 return 0;
694
695 /* Flashes might override the standard routine. */
696 if (nor->params->ready)
697 ret = nor->params->ready(nor);
698 else
699 ret = spi_nor_sr_ready(nor);
700
701 spi_nor_unlock_rdst(nor);
702
703 return ret;
704 }
705
706 /**
707 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
708 * Status Register until ready, or timeout occurs.
709 * @nor: pointer to "struct spi_nor".
710 * @timeout_jiffies: jiffies to wait until timeout.
711 *
712 * Return: 0 on success, -errno otherwise.
713 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)714 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
715 unsigned long timeout_jiffies)
716 {
717 unsigned long deadline;
718 int timeout = 0, ret;
719
720 deadline = jiffies + timeout_jiffies;
721
722 while (!timeout) {
723 if (time_after_eq(jiffies, deadline))
724 timeout = 1;
725
726 ret = spi_nor_ready(nor);
727 if (ret < 0)
728 return ret;
729 if (ret)
730 return 0;
731
732 cond_resched();
733 }
734
735 dev_dbg(nor->dev, "flash operation timed out\n");
736
737 return -ETIMEDOUT;
738 }
739
740 /**
741 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
742 * flash to be ready, or timeout occurs.
743 * @nor: pointer to "struct spi_nor".
744 *
745 * Return: 0 on success, -errno otherwise.
746 */
spi_nor_wait_till_ready(struct spi_nor * nor)747 int spi_nor_wait_till_ready(struct spi_nor *nor)
748 {
749 return spi_nor_wait_till_ready_with_timeout(nor,
750 DEFAULT_READY_WAIT_JIFFIES);
751 }
752
753 /**
754 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
755 * @nor: pointer to 'struct spi_nor'.
756 *
757 * Return: 0 on success, -errno otherwise.
758 */
spi_nor_global_block_unlock(struct spi_nor * nor)759 int spi_nor_global_block_unlock(struct spi_nor *nor)
760 {
761 int ret;
762
763 ret = spi_nor_write_enable(nor);
764 if (ret)
765 return ret;
766
767 if (nor->spimem) {
768 struct spi_mem_op op = SPI_NOR_GBULK_OP;
769
770 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
771
772 ret = spi_mem_exec_op(nor->spimem, &op);
773 } else {
774 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
775 NULL, 0);
776 }
777
778 if (ret) {
779 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
780 return ret;
781 }
782
783 return spi_nor_wait_till_ready(nor);
784 }
785
786 /**
787 * spi_nor_write_sr() - Write the Status Register.
788 * @nor: pointer to 'struct spi_nor'.
789 * @sr: pointer to DMA-able buffer to write to the Status Register.
790 * @len: number of bytes to write to the Status Register.
791 *
792 * Return: 0 on success, -errno otherwise.
793 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)794 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
795 {
796 int ret;
797
798 ret = spi_nor_write_enable(nor);
799 if (ret)
800 return ret;
801
802 if (nor->spimem) {
803 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
804
805 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
806
807 ret = spi_mem_exec_op(nor->spimem, &op);
808 } else {
809 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
810 len);
811 }
812
813 if (ret) {
814 dev_dbg(nor->dev, "error %d writing SR\n", ret);
815 return ret;
816 }
817
818 return spi_nor_wait_till_ready(nor);
819 }
820
821 /**
822 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
823 * ensure that the byte written match the received value.
824 * @nor: pointer to a 'struct spi_nor'.
825 * @sr1: byte value to be written to the Status Register.
826 *
827 * Return: 0 on success, -errno otherwise.
828 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)829 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
830 {
831 int ret;
832
833 nor->bouncebuf[0] = sr1;
834
835 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
836 if (ret)
837 return ret;
838
839 ret = spi_nor_read_sr(nor, nor->bouncebuf);
840 if (ret)
841 return ret;
842
843 if (nor->bouncebuf[0] != sr1) {
844 dev_dbg(nor->dev, "SR1: read back test failed\n");
845 return -EIO;
846 }
847
848 return 0;
849 }
850
851 /**
852 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
853 * Status Register 2 in one shot. Ensure that the byte written in the Status
854 * Register 1 match the received value, and that the 16-bit Write did not
855 * affect what was already in the Status Register 2.
856 * @nor: pointer to a 'struct spi_nor'.
857 * @sr1: byte value to be written to the Status Register 1.
858 *
859 * Return: 0 on success, -errno otherwise.
860 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)861 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
862 {
863 int ret;
864 u8 *sr_cr = nor->bouncebuf;
865 u8 cr_written;
866
867 /* Make sure we don't overwrite the contents of Status Register 2. */
868 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
869 ret = spi_nor_read_cr(nor, &sr_cr[1]);
870 if (ret)
871 return ret;
872 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
873 spi_nor_get_protocol_width(nor->write_proto) == 4 &&
874 nor->params->quad_enable) {
875 /*
876 * If the Status Register 2 Read command (35h) is not
877 * supported, we should at least be sure we don't
878 * change the value of the SR2 Quad Enable bit.
879 *
880 * When the Quad Enable method is set and the buswidth is 4, we
881 * can safely assume that the value of the QE bit is one, as a
882 * consequence of the nor->params->quad_enable() call.
883 *
884 * According to the JESD216 revB standard, BFPT DWORDS[15],
885 * bits 22:20, the 16-bit Write Status (01h) command is
886 * available just for the cases in which the QE bit is
887 * described in SR2 at BIT(1).
888 */
889 sr_cr[1] = SR2_QUAD_EN_BIT1;
890 } else {
891 sr_cr[1] = 0;
892 }
893
894 sr_cr[0] = sr1;
895
896 ret = spi_nor_write_sr(nor, sr_cr, 2);
897 if (ret)
898 return ret;
899
900 ret = spi_nor_read_sr(nor, sr_cr);
901 if (ret)
902 return ret;
903
904 if (sr1 != sr_cr[0]) {
905 dev_dbg(nor->dev, "SR: Read back test failed\n");
906 return -EIO;
907 }
908
909 if (nor->flags & SNOR_F_NO_READ_CR)
910 return 0;
911
912 cr_written = sr_cr[1];
913
914 ret = spi_nor_read_cr(nor, &sr_cr[1]);
915 if (ret)
916 return ret;
917
918 if (cr_written != sr_cr[1]) {
919 dev_dbg(nor->dev, "CR: read back test failed\n");
920 return -EIO;
921 }
922
923 return 0;
924 }
925
926 /**
927 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
928 * Configuration Register in one shot. Ensure that the byte written in the
929 * Configuration Register match the received value, and that the 16-bit Write
930 * did not affect what was already in the Status Register 1.
931 * @nor: pointer to a 'struct spi_nor'.
932 * @cr: byte value to be written to the Configuration Register.
933 *
934 * Return: 0 on success, -errno otherwise.
935 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)936 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
937 {
938 int ret;
939 u8 *sr_cr = nor->bouncebuf;
940 u8 sr_written;
941
942 /* Keep the current value of the Status Register 1. */
943 ret = spi_nor_read_sr(nor, sr_cr);
944 if (ret)
945 return ret;
946
947 sr_cr[1] = cr;
948
949 ret = spi_nor_write_sr(nor, sr_cr, 2);
950 if (ret)
951 return ret;
952
953 sr_written = sr_cr[0];
954
955 ret = spi_nor_read_sr(nor, sr_cr);
956 if (ret)
957 return ret;
958
959 if (sr_written != sr_cr[0]) {
960 dev_dbg(nor->dev, "SR: Read back test failed\n");
961 return -EIO;
962 }
963
964 if (nor->flags & SNOR_F_NO_READ_CR)
965 return 0;
966
967 ret = spi_nor_read_cr(nor, &sr_cr[1]);
968 if (ret)
969 return ret;
970
971 if (cr != sr_cr[1]) {
972 dev_dbg(nor->dev, "CR: read back test failed\n");
973 return -EIO;
974 }
975
976 return 0;
977 }
978
979 /**
980 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
981 * the byte written match the received value without affecting other bits in the
982 * Status Register 1 and 2.
983 * @nor: pointer to a 'struct spi_nor'.
984 * @sr1: byte value to be written to the Status Register.
985 *
986 * Return: 0 on success, -errno otherwise.
987 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)988 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
989 {
990 if (nor->flags & SNOR_F_HAS_16BIT_SR)
991 return spi_nor_write_16bit_sr_and_check(nor, sr1);
992
993 return spi_nor_write_sr1_and_check(nor, sr1);
994 }
995
996 /**
997 * spi_nor_write_sr2() - Write the Status Register 2 using the
998 * SPINOR_OP_WRSR2 (3eh) command.
999 * @nor: pointer to 'struct spi_nor'.
1000 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
1001 *
1002 * Return: 0 on success, -errno otherwise.
1003 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)1004 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1005 {
1006 int ret;
1007
1008 ret = spi_nor_write_enable(nor);
1009 if (ret)
1010 return ret;
1011
1012 if (nor->spimem) {
1013 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1014
1015 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1016
1017 ret = spi_mem_exec_op(nor->spimem, &op);
1018 } else {
1019 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1020 sr2, 1);
1021 }
1022
1023 if (ret) {
1024 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1025 return ret;
1026 }
1027
1028 return spi_nor_wait_till_ready(nor);
1029 }
1030
1031 /**
1032 * spi_nor_read_sr2() - Read the Status Register 2 using the
1033 * SPINOR_OP_RDSR2 (3fh) command.
1034 * @nor: pointer to 'struct spi_nor'.
1035 * @sr2: pointer to DMA-able buffer where the value of the
1036 * Status Register 2 will be written.
1037 *
1038 * Return: 0 on success, -errno otherwise.
1039 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)1040 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1041 {
1042 int ret;
1043
1044 if (nor->spimem) {
1045 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1046
1047 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1048
1049 ret = spi_mem_exec_op(nor->spimem, &op);
1050 } else {
1051 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1052 1);
1053 }
1054
1055 if (ret)
1056 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1057
1058 return ret;
1059 }
1060
1061 /**
1062 * spi_nor_erase_die() - Erase the entire die.
1063 * @nor: pointer to 'struct spi_nor'.
1064 * @addr: address of the die.
1065 * @die_size: size of the die.
1066 *
1067 * Return: 0 on success, -errno otherwise.
1068 */
spi_nor_erase_die(struct spi_nor * nor,loff_t addr,size_t die_size)1069 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1070 {
1071 bool multi_die = nor->mtd.size != die_size;
1072 int ret;
1073
1074 dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1075
1076 if (nor->spimem) {
1077 struct spi_mem_op op =
1078 SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1079 nor->addr_nbytes, addr, multi_die);
1080
1081 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1082
1083 ret = spi_mem_exec_op(nor->spimem, &op);
1084 } else {
1085 if (multi_die)
1086 return -EOPNOTSUPP;
1087
1088 ret = spi_nor_controller_ops_write_reg(nor,
1089 SPINOR_OP_CHIP_ERASE,
1090 NULL, 0);
1091 }
1092
1093 if (ret)
1094 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1095
1096 return ret;
1097 }
1098
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1099 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1100 {
1101 size_t i;
1102
1103 for (i = 0; i < size; i++)
1104 if (table[i][0] == opcode)
1105 return table[i][1];
1106
1107 /* No conversion found, keep input op code. */
1108 return opcode;
1109 }
1110
spi_nor_convert_3to4_read(u8 opcode)1111 u8 spi_nor_convert_3to4_read(u8 opcode)
1112 {
1113 static const u8 spi_nor_3to4_read[][2] = {
1114 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1115 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1116 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1117 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1118 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1119 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1120 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1121 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1122
1123 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1124 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1125 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1126 };
1127
1128 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1129 ARRAY_SIZE(spi_nor_3to4_read));
1130 }
1131
spi_nor_convert_3to4_program(u8 opcode)1132 static u8 spi_nor_convert_3to4_program(u8 opcode)
1133 {
1134 static const u8 spi_nor_3to4_program[][2] = {
1135 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1136 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1137 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1138 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1139 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1140 };
1141
1142 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1143 ARRAY_SIZE(spi_nor_3to4_program));
1144 }
1145
spi_nor_convert_3to4_erase(u8 opcode)1146 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1147 {
1148 static const u8 spi_nor_3to4_erase[][2] = {
1149 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1150 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1151 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1152 };
1153
1154 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1155 ARRAY_SIZE(spi_nor_3to4_erase));
1156 }
1157
spi_nor_has_uniform_erase(const struct spi_nor * nor)1158 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1159 {
1160 return !!nor->params->erase_map.uniform_region.erase_mask;
1161 }
1162
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1163 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1164 {
1165 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1166 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1167 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1168
1169 if (!spi_nor_has_uniform_erase(nor)) {
1170 struct spi_nor_erase_map *map = &nor->params->erase_map;
1171 struct spi_nor_erase_type *erase;
1172 int i;
1173
1174 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1175 erase = &map->erase_type[i];
1176 erase->opcode =
1177 spi_nor_convert_3to4_erase(erase->opcode);
1178 }
1179 }
1180 }
1181
spi_nor_prep(struct spi_nor * nor)1182 static int spi_nor_prep(struct spi_nor *nor)
1183 {
1184 int ret = 0;
1185
1186 if (nor->controller_ops && nor->controller_ops->prepare)
1187 ret = nor->controller_ops->prepare(nor);
1188
1189 return ret;
1190 }
1191
spi_nor_unprep(struct spi_nor * nor)1192 static void spi_nor_unprep(struct spi_nor *nor)
1193 {
1194 if (nor->controller_ops && nor->controller_ops->unprepare)
1195 nor->controller_ops->unprepare(nor);
1196 }
1197
spi_nor_offset_to_banks(u64 bank_size,loff_t start,size_t len,u8 * first,u8 * last)1198 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1199 u8 *first, u8 *last)
1200 {
1201 /* This is currently safe, the number of banks being very small */
1202 *first = DIV_ROUND_DOWN_ULL(start, bank_size);
1203 *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1204 }
1205
1206 /* Generic helpers for internal locking and serialization */
spi_nor_rww_start_io(struct spi_nor * nor)1207 static bool spi_nor_rww_start_io(struct spi_nor *nor)
1208 {
1209 struct spi_nor_rww *rww = &nor->rww;
1210
1211 guard(mutex)(&nor->lock);
1212
1213 if (rww->ongoing_io)
1214 return false;
1215
1216 rww->ongoing_io = true;
1217
1218 return true;
1219 }
1220
spi_nor_rww_end_io(struct spi_nor * nor)1221 static void spi_nor_rww_end_io(struct spi_nor *nor)
1222 {
1223 guard(mutex)(&nor->lock);
1224 nor->rww.ongoing_io = false;
1225 }
1226
spi_nor_lock_device(struct spi_nor * nor)1227 static int spi_nor_lock_device(struct spi_nor *nor)
1228 {
1229 if (!spi_nor_use_parallel_locking(nor))
1230 return 0;
1231
1232 return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1233 }
1234
spi_nor_unlock_device(struct spi_nor * nor)1235 static void spi_nor_unlock_device(struct spi_nor *nor)
1236 {
1237 if (spi_nor_use_parallel_locking(nor)) {
1238 spi_nor_rww_end_io(nor);
1239 wake_up(&nor->rww.wait);
1240 }
1241 }
1242
1243 /* Generic helpers for internal locking and serialization */
spi_nor_rww_start_exclusive(struct spi_nor * nor)1244 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1245 {
1246 struct spi_nor_rww *rww = &nor->rww;
1247
1248 mutex_lock(&nor->lock);
1249
1250 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1251 return false;
1252
1253 rww->ongoing_io = true;
1254 rww->ongoing_rd = true;
1255 rww->ongoing_pe = true;
1256
1257 return true;
1258 }
1259
spi_nor_rww_end_exclusive(struct spi_nor * nor)1260 static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1261 {
1262 struct spi_nor_rww *rww = &nor->rww;
1263
1264 guard(mutex)(&nor->lock);
1265 rww->ongoing_io = false;
1266 rww->ongoing_rd = false;
1267 rww->ongoing_pe = false;
1268 }
1269
spi_nor_prep_and_lock(struct spi_nor * nor)1270 int spi_nor_prep_and_lock(struct spi_nor *nor)
1271 {
1272 int ret;
1273
1274 ret = spi_nor_prep(nor);
1275 if (ret)
1276 return ret;
1277
1278 if (!spi_nor_use_parallel_locking(nor))
1279 mutex_lock(&nor->lock);
1280 else
1281 ret = wait_event_killable(nor->rww.wait,
1282 spi_nor_rww_start_exclusive(nor));
1283
1284 return ret;
1285 }
1286
spi_nor_unlock_and_unprep(struct spi_nor * nor)1287 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1288 {
1289 if (!spi_nor_use_parallel_locking(nor)) {
1290 mutex_unlock(&nor->lock);
1291 } else {
1292 spi_nor_rww_end_exclusive(nor);
1293 wake_up(&nor->rww.wait);
1294 }
1295
1296 spi_nor_unprep(nor);
1297 }
1298
1299 /* Internal locking helpers for program and erase operations */
spi_nor_rww_start_pe(struct spi_nor * nor,loff_t start,size_t len)1300 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1301 {
1302 struct spi_nor_rww *rww = &nor->rww;
1303 unsigned int used_banks = 0;
1304 u8 first, last;
1305 int bank;
1306
1307 guard(mutex)(&nor->lock);
1308
1309 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1310 return false;
1311
1312 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1313 for (bank = first; bank <= last; bank++) {
1314 if (rww->used_banks & BIT(bank))
1315 return false;
1316
1317 used_banks |= BIT(bank);
1318 }
1319
1320 rww->used_banks |= used_banks;
1321 rww->ongoing_pe = true;
1322
1323 return true;
1324 }
1325
spi_nor_rww_end_pe(struct spi_nor * nor,loff_t start,size_t len)1326 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1327 {
1328 struct spi_nor_rww *rww = &nor->rww;
1329 u8 first, last;
1330 int bank;
1331
1332 guard(mutex)(&nor->lock);
1333
1334 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1335 for (bank = first; bank <= last; bank++)
1336 rww->used_banks &= ~BIT(bank);
1337
1338 rww->ongoing_pe = false;
1339 }
1340
spi_nor_prep_and_lock_pe(struct spi_nor * nor,loff_t start,size_t len)1341 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1342 {
1343 int ret;
1344
1345 ret = spi_nor_prep(nor);
1346 if (ret)
1347 return ret;
1348
1349 if (!spi_nor_use_parallel_locking(nor))
1350 mutex_lock(&nor->lock);
1351 else
1352 ret = wait_event_killable(nor->rww.wait,
1353 spi_nor_rww_start_pe(nor, start, len));
1354
1355 return ret;
1356 }
1357
spi_nor_unlock_and_unprep_pe(struct spi_nor * nor,loff_t start,size_t len)1358 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1359 {
1360 if (!spi_nor_use_parallel_locking(nor)) {
1361 mutex_unlock(&nor->lock);
1362 } else {
1363 spi_nor_rww_end_pe(nor, start, len);
1364 wake_up(&nor->rww.wait);
1365 }
1366
1367 spi_nor_unprep(nor);
1368 }
1369
1370 /* Internal locking helpers for read operations */
spi_nor_rww_start_rd(struct spi_nor * nor,loff_t start,size_t len)1371 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1372 {
1373 struct spi_nor_rww *rww = &nor->rww;
1374 unsigned int used_banks = 0;
1375 u8 first, last;
1376 int bank;
1377
1378 guard(mutex)(&nor->lock);
1379
1380 if (rww->ongoing_io || rww->ongoing_rd)
1381 return false;
1382
1383 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1384 for (bank = first; bank <= last; bank++) {
1385 if (rww->used_banks & BIT(bank))
1386 return false;
1387
1388 used_banks |= BIT(bank);
1389 }
1390
1391 rww->used_banks |= used_banks;
1392 rww->ongoing_io = true;
1393 rww->ongoing_rd = true;
1394
1395 return true;
1396 }
1397
spi_nor_rww_end_rd(struct spi_nor * nor,loff_t start,size_t len)1398 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1399 {
1400 struct spi_nor_rww *rww = &nor->rww;
1401 u8 first, last;
1402 int bank;
1403
1404 guard(mutex)(&nor->lock);
1405
1406 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1407 for (bank = first; bank <= last; bank++)
1408 nor->rww.used_banks &= ~BIT(bank);
1409
1410 rww->ongoing_io = false;
1411 rww->ongoing_rd = false;
1412 }
1413
spi_nor_prep_and_lock_rd(struct spi_nor * nor,loff_t start,size_t len)1414 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1415 {
1416 int ret;
1417
1418 ret = spi_nor_prep(nor);
1419 if (ret)
1420 return ret;
1421
1422 if (!spi_nor_use_parallel_locking(nor))
1423 mutex_lock(&nor->lock);
1424 else
1425 ret = wait_event_killable(nor->rww.wait,
1426 spi_nor_rww_start_rd(nor, start, len));
1427
1428 return ret;
1429 }
1430
spi_nor_unlock_and_unprep_rd(struct spi_nor * nor,loff_t start,size_t len)1431 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1432 {
1433 if (!spi_nor_use_parallel_locking(nor)) {
1434 mutex_unlock(&nor->lock);
1435 } else {
1436 spi_nor_rww_end_rd(nor, start, len);
1437 wake_up(&nor->rww.wait);
1438 }
1439
1440 spi_nor_unprep(nor);
1441 }
1442
1443 /*
1444 * Initiate the erasure of a single sector
1445 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1446 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1447 {
1448 int i;
1449
1450 if (nor->spimem) {
1451 struct spi_mem_op op =
1452 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1453 nor->addr_nbytes, addr);
1454
1455 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1456
1457 return spi_mem_exec_op(nor->spimem, &op);
1458 } else if (nor->controller_ops->erase) {
1459 return spi_nor_controller_ops_erase(nor, addr);
1460 }
1461
1462 /*
1463 * Default implementation, if driver doesn't have a specialized HW
1464 * control
1465 */
1466 for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1467 nor->bouncebuf[i] = addr & 0xff;
1468 addr >>= 8;
1469 }
1470
1471 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1472 nor->bouncebuf, nor->addr_nbytes);
1473 }
1474
1475 /**
1476 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1477 * @erase: pointer to a structure that describes a SPI NOR erase type
1478 * @dividend: dividend value
1479 * @remainder: pointer to u32 remainder (will be updated)
1480 *
1481 * Return: the result of the division
1482 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1483 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1484 u64 dividend, u32 *remainder)
1485 {
1486 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1487 *remainder = (u32)dividend & erase->size_mask;
1488 return dividend >> erase->size_shift;
1489 }
1490
1491 /**
1492 * spi_nor_find_best_erase_type() - find the best erase type for the given
1493 * offset in the serial flash memory and the
1494 * number of bytes to erase. The region in
1495 * which the address fits is expected to be
1496 * provided.
1497 * @map: the erase map of the SPI NOR
1498 * @region: pointer to a structure that describes a SPI NOR erase region
1499 * @addr: offset in the serial flash memory
1500 * @len: number of bytes to erase
1501 *
1502 * Return: a pointer to the best fitted erase type, NULL otherwise.
1503 */
1504 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1505 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1506 const struct spi_nor_erase_region *region,
1507 u64 addr, u32 len)
1508 {
1509 const struct spi_nor_erase_type *erase;
1510 u32 rem;
1511 int i;
1512
1513 /*
1514 * Erase types are ordered by size, with the smallest erase type at
1515 * index 0.
1516 */
1517 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1518 /* Does the erase region support the tested erase type? */
1519 if (!(region->erase_mask & BIT(i)))
1520 continue;
1521
1522 erase = &map->erase_type[i];
1523 if (!erase->size)
1524 continue;
1525
1526 /* Alignment is not mandatory for overlaid regions */
1527 if (region->overlaid && region->size <= len)
1528 return erase;
1529
1530 /* Don't erase more than what the user has asked for. */
1531 if (erase->size > len)
1532 continue;
1533
1534 spi_nor_div_by_erase_size(erase, addr, &rem);
1535 if (!rem)
1536 return erase;
1537 }
1538
1539 return NULL;
1540 }
1541
1542 /**
1543 * spi_nor_init_erase_cmd() - initialize an erase command
1544 * @region: pointer to a structure that describes a SPI NOR erase region
1545 * @erase: pointer to a structure that describes a SPI NOR erase type
1546 *
1547 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1548 * otherwise.
1549 */
1550 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1551 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1552 const struct spi_nor_erase_type *erase)
1553 {
1554 struct spi_nor_erase_command *cmd;
1555
1556 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1557 if (!cmd)
1558 return ERR_PTR(-ENOMEM);
1559
1560 INIT_LIST_HEAD(&cmd->list);
1561 cmd->opcode = erase->opcode;
1562 cmd->count = 1;
1563
1564 if (region->overlaid)
1565 cmd->size = region->size;
1566 else
1567 cmd->size = erase->size;
1568
1569 return cmd;
1570 }
1571
1572 /**
1573 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1574 * @erase_list: list of erase commands
1575 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1576 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1577 {
1578 struct spi_nor_erase_command *cmd, *next;
1579
1580 list_for_each_entry_safe(cmd, next, erase_list, list) {
1581 list_del(&cmd->list);
1582 kfree(cmd);
1583 }
1584 }
1585
1586 /**
1587 * spi_nor_init_erase_cmd_list() - initialize erase command list
1588 * @nor: pointer to a 'struct spi_nor'
1589 * @erase_list: list of erase commands to be executed once we validate that the
1590 * erase can be performed
1591 * @addr: offset in the serial flash memory
1592 * @len: number of bytes to erase
1593 *
1594 * Builds the list of best fitted erase commands and verifies if the erase can
1595 * be performed.
1596 *
1597 * Return: 0 on success, -errno otherwise.
1598 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1599 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1600 struct list_head *erase_list,
1601 u64 addr, u32 len)
1602 {
1603 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1604 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1605 struct spi_nor_erase_region *region;
1606 struct spi_nor_erase_command *cmd = NULL;
1607 u64 region_end;
1608 unsigned int i;
1609 int ret = -EINVAL;
1610
1611 for (i = 0; i < map->n_regions && len; i++) {
1612 region = &map->regions[i];
1613 region_end = region->offset + region->size;
1614
1615 while (len && addr >= region->offset && addr < region_end) {
1616 erase = spi_nor_find_best_erase_type(map, region, addr,
1617 len);
1618 if (!erase)
1619 goto destroy_erase_cmd_list;
1620
1621 if (prev_erase != erase || erase->size != cmd->size ||
1622 region->overlaid) {
1623 cmd = spi_nor_init_erase_cmd(region, erase);
1624 if (IS_ERR(cmd)) {
1625 ret = PTR_ERR(cmd);
1626 goto destroy_erase_cmd_list;
1627 }
1628
1629 list_add_tail(&cmd->list, erase_list);
1630 } else {
1631 cmd->count++;
1632 }
1633
1634 len -= cmd->size;
1635 addr += cmd->size;
1636 prev_erase = erase;
1637 }
1638 }
1639
1640 return 0;
1641
1642 destroy_erase_cmd_list:
1643 spi_nor_destroy_erase_cmd_list(erase_list);
1644 return ret;
1645 }
1646
1647 /**
1648 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1649 * @nor: pointer to a 'struct spi_nor'
1650 * @addr: offset in the serial flash memory
1651 * @len: number of bytes to erase
1652 *
1653 * Build a list of best fitted erase commands and execute it once we validate
1654 * that the erase can be performed.
1655 *
1656 * Return: 0 on success, -errno otherwise.
1657 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1658 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1659 {
1660 LIST_HEAD(erase_list);
1661 struct spi_nor_erase_command *cmd, *next;
1662 int ret;
1663
1664 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1665 if (ret)
1666 return ret;
1667
1668 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1669 nor->erase_opcode = cmd->opcode;
1670 while (cmd->count) {
1671 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1672 cmd->size, cmd->opcode, cmd->count);
1673
1674 ret = spi_nor_lock_device(nor);
1675 if (ret)
1676 goto destroy_erase_cmd_list;
1677
1678 ret = spi_nor_write_enable(nor);
1679 if (ret) {
1680 spi_nor_unlock_device(nor);
1681 goto destroy_erase_cmd_list;
1682 }
1683
1684 ret = spi_nor_erase_sector(nor, addr);
1685 spi_nor_unlock_device(nor);
1686 if (ret)
1687 goto destroy_erase_cmd_list;
1688
1689 ret = spi_nor_wait_till_ready(nor);
1690 if (ret)
1691 goto destroy_erase_cmd_list;
1692
1693 addr += cmd->size;
1694 cmd->count--;
1695 }
1696 list_del(&cmd->list);
1697 kfree(cmd);
1698 }
1699
1700 return 0;
1701
1702 destroy_erase_cmd_list:
1703 spi_nor_destroy_erase_cmd_list(&erase_list);
1704 return ret;
1705 }
1706
spi_nor_erase_dice(struct spi_nor * nor,loff_t addr,size_t len,size_t die_size)1707 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1708 size_t len, size_t die_size)
1709 {
1710 unsigned long timeout;
1711 int ret;
1712
1713 /*
1714 * Scale the timeout linearly with the size of the flash, with
1715 * a minimum calibrated to an old 2MB flash. We could try to
1716 * pull these from CFI/SFDP, but these values should be good
1717 * enough for now.
1718 */
1719 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1720 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1721 (unsigned long)(nor->mtd.size / SZ_2M));
1722
1723 do {
1724 ret = spi_nor_lock_device(nor);
1725 if (ret)
1726 return ret;
1727
1728 ret = spi_nor_write_enable(nor);
1729 if (ret) {
1730 spi_nor_unlock_device(nor);
1731 return ret;
1732 }
1733
1734 ret = spi_nor_erase_die(nor, addr, die_size);
1735
1736 spi_nor_unlock_device(nor);
1737 if (ret)
1738 return ret;
1739
1740 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1741 if (ret)
1742 return ret;
1743
1744 addr += die_size;
1745 len -= die_size;
1746
1747 } while (len);
1748
1749 return 0;
1750 }
1751
1752 /*
1753 * Erase an address range on the nor chip. The address range may extend
1754 * one or more erase sectors. Return an error if there is a problem erasing.
1755 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1756 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1757 {
1758 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1759 u8 n_dice = nor->params->n_dice;
1760 bool multi_die_erase = false;
1761 u32 addr, len, rem;
1762 size_t die_size;
1763 int ret;
1764
1765 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1766 (long long)instr->len);
1767
1768 if (spi_nor_has_uniform_erase(nor)) {
1769 div_u64_rem(instr->len, mtd->erasesize, &rem);
1770 if (rem)
1771 return -EINVAL;
1772 }
1773
1774 addr = instr->addr;
1775 len = instr->len;
1776
1777 if (n_dice) {
1778 die_size = div_u64(mtd->size, n_dice);
1779 if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1780 multi_die_erase = true;
1781 } else {
1782 die_size = mtd->size;
1783 }
1784
1785 ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1786 if (ret)
1787 return ret;
1788
1789 /* chip (die) erase? */
1790 if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1791 multi_die_erase) {
1792 ret = spi_nor_erase_dice(nor, addr, len, die_size);
1793 if (ret)
1794 goto erase_err;
1795
1796 /* REVISIT in some cases we could speed up erasing large regions
1797 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1798 * to use "small sector erase", but that's not always optimal.
1799 */
1800
1801 /* "sector"-at-a-time erase */
1802 } else if (spi_nor_has_uniform_erase(nor)) {
1803 while (len) {
1804 ret = spi_nor_lock_device(nor);
1805 if (ret)
1806 goto erase_err;
1807
1808 ret = spi_nor_write_enable(nor);
1809 if (ret) {
1810 spi_nor_unlock_device(nor);
1811 goto erase_err;
1812 }
1813
1814 ret = spi_nor_erase_sector(nor, addr);
1815 spi_nor_unlock_device(nor);
1816 if (ret)
1817 goto erase_err;
1818
1819 ret = spi_nor_wait_till_ready(nor);
1820 if (ret)
1821 goto erase_err;
1822
1823 addr += mtd->erasesize;
1824 len -= mtd->erasesize;
1825 }
1826
1827 /* erase multiple sectors */
1828 } else {
1829 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1830 if (ret)
1831 goto erase_err;
1832 }
1833
1834 ret = spi_nor_write_disable(nor);
1835
1836 erase_err:
1837 spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1838
1839 return ret;
1840 }
1841
1842 /**
1843 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1844 * Register 1.
1845 * @nor: pointer to a 'struct spi_nor'
1846 *
1847 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1848 *
1849 * Return: 0 on success, -errno otherwise.
1850 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1851 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1852 {
1853 int ret;
1854
1855 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1856 if (ret)
1857 return ret;
1858
1859 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1860 return 0;
1861
1862 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1863
1864 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1865 }
1866
1867 /**
1868 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1869 * Register 2.
1870 * @nor: pointer to a 'struct spi_nor'.
1871 *
1872 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1873 *
1874 * Return: 0 on success, -errno otherwise.
1875 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1876 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1877 {
1878 int ret;
1879
1880 if (nor->flags & SNOR_F_NO_READ_CR)
1881 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1882
1883 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1884 if (ret)
1885 return ret;
1886
1887 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1888 return 0;
1889
1890 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1891
1892 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1893 }
1894
1895 /**
1896 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1897 * @nor: pointer to a 'struct spi_nor'
1898 *
1899 * Set the Quad Enable (QE) bit in the Status Register 2.
1900 *
1901 * This is one of the procedures to set the QE bit described in the SFDP
1902 * (JESD216 rev B) specification but no manufacturer using this procedure has
1903 * been identified yet, hence the name of the function.
1904 *
1905 * Return: 0 on success, -errno otherwise.
1906 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1907 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1908 {
1909 u8 *sr2 = nor->bouncebuf;
1910 int ret;
1911 u8 sr2_written;
1912
1913 /* Check current Quad Enable bit value. */
1914 ret = spi_nor_read_sr2(nor, sr2);
1915 if (ret)
1916 return ret;
1917 if (*sr2 & SR2_QUAD_EN_BIT7)
1918 return 0;
1919
1920 /* Update the Quad Enable bit. */
1921 *sr2 |= SR2_QUAD_EN_BIT7;
1922
1923 ret = spi_nor_write_sr2(nor, sr2);
1924 if (ret)
1925 return ret;
1926
1927 sr2_written = *sr2;
1928
1929 /* Read back and check it. */
1930 ret = spi_nor_read_sr2(nor, sr2);
1931 if (ret)
1932 return ret;
1933
1934 if (*sr2 != sr2_written) {
1935 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1936 return -EIO;
1937 }
1938
1939 return 0;
1940 }
1941
1942 static const struct spi_nor_manufacturer *manufacturers[] = {
1943 &spi_nor_atmel,
1944 &spi_nor_eon,
1945 &spi_nor_esmt,
1946 &spi_nor_everspin,
1947 &spi_nor_gigadevice,
1948 &spi_nor_intel,
1949 &spi_nor_issi,
1950 &spi_nor_macronix,
1951 &spi_nor_micron,
1952 &spi_nor_st,
1953 &spi_nor_spansion,
1954 &spi_nor_sst,
1955 &spi_nor_winbond,
1956 &spi_nor_xmc,
1957 };
1958
1959 static const struct flash_info spi_nor_generic_flash = {
1960 .name = "spi-nor-generic",
1961 };
1962
spi_nor_match_id(struct spi_nor * nor,const u8 * id)1963 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1964 const u8 *id)
1965 {
1966 const struct flash_info *part;
1967 unsigned int i, j;
1968
1969 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1970 for (j = 0; j < manufacturers[i]->nparts; j++) {
1971 part = &manufacturers[i]->parts[j];
1972 if (part->id &&
1973 !memcmp(part->id->bytes, id, part->id->len)) {
1974 nor->manufacturer = manufacturers[i];
1975 return part;
1976 }
1977 }
1978 }
1979
1980 return NULL;
1981 }
1982
spi_nor_detect(struct spi_nor * nor)1983 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
1984 {
1985 const struct flash_info *info;
1986 u8 *id = nor->bouncebuf;
1987 int ret;
1988
1989 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
1990 if (ret) {
1991 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1992 return ERR_PTR(ret);
1993 }
1994
1995 /* Cache the complete flash ID. */
1996 nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
1997 if (!nor->id)
1998 return ERR_PTR(-ENOMEM);
1999
2000 info = spi_nor_match_id(nor, id);
2001
2002 /* Fallback to a generic flash described only by its SFDP data. */
2003 if (!info) {
2004 ret = spi_nor_check_sfdp_signature(nor);
2005 if (!ret)
2006 info = &spi_nor_generic_flash;
2007 }
2008
2009 if (!info) {
2010 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2011 SPI_NOR_MAX_ID_LEN, id);
2012 return ERR_PTR(-ENODEV);
2013 }
2014 return info;
2015 }
2016
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2017 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2018 size_t *retlen, u_char *buf)
2019 {
2020 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2021 loff_t from_lock = from;
2022 size_t len_lock = len;
2023 ssize_t ret;
2024
2025 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2026
2027 ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2028 if (ret)
2029 return ret;
2030
2031 while (len) {
2032 loff_t addr = from;
2033
2034 ret = spi_nor_read_data(nor, addr, len, buf);
2035 if (ret == 0) {
2036 /* We shouldn't see 0-length reads */
2037 ret = -EIO;
2038 goto read_err;
2039 }
2040 if (ret < 0)
2041 goto read_err;
2042
2043 WARN_ON(ret > len);
2044 *retlen += ret;
2045 buf += ret;
2046 from += ret;
2047 len -= ret;
2048 }
2049 ret = 0;
2050
2051 read_err:
2052 spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2053
2054 return ret;
2055 }
2056
2057 /*
2058 * Write an address range to the nor chip. Data must be written in
2059 * FLASH_PAGESIZE chunks. The address range may be any size provided
2060 * it is within the physical boundaries.
2061 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2062 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2063 size_t *retlen, const u_char *buf)
2064 {
2065 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2066 size_t i;
2067 ssize_t ret;
2068 u32 page_size = nor->params->page_size;
2069
2070 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2071
2072 ret = spi_nor_prep_and_lock_pe(nor, to, len);
2073 if (ret)
2074 return ret;
2075
2076 for (i = 0; i < len; ) {
2077 ssize_t written;
2078 loff_t addr = to + i;
2079 size_t page_offset = addr & (page_size - 1);
2080 /* the size of data remaining on the first page */
2081 size_t page_remain = min_t(size_t, page_size - page_offset, len - i);
2082
2083 ret = spi_nor_lock_device(nor);
2084 if (ret)
2085 goto write_err;
2086
2087 ret = spi_nor_write_enable(nor);
2088 if (ret) {
2089 spi_nor_unlock_device(nor);
2090 goto write_err;
2091 }
2092
2093 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2094 spi_nor_unlock_device(nor);
2095 if (ret < 0)
2096 goto write_err;
2097 written = ret;
2098
2099 ret = spi_nor_wait_till_ready(nor);
2100 if (ret)
2101 goto write_err;
2102 *retlen += written;
2103 i += written;
2104 }
2105
2106 write_err:
2107 spi_nor_unlock_and_unprep_pe(nor, to, len);
2108
2109 return ret;
2110 }
2111
spi_nor_check(struct spi_nor * nor)2112 static int spi_nor_check(struct spi_nor *nor)
2113 {
2114 if (!nor->dev ||
2115 (!nor->spimem && !nor->controller_ops) ||
2116 (!nor->spimem && nor->controller_ops &&
2117 (!nor->controller_ops->read ||
2118 !nor->controller_ops->write ||
2119 !nor->controller_ops->read_reg ||
2120 !nor->controller_ops->write_reg))) {
2121 pr_err("spi-nor: please fill all the necessary fields!\n");
2122 return -EINVAL;
2123 }
2124
2125 if (nor->spimem && nor->controller_ops) {
2126 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2127 return -EINVAL;
2128 }
2129
2130 return 0;
2131 }
2132
2133 void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2134 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2135 u8 num_mode_clocks,
2136 u8 num_wait_states,
2137 u8 opcode,
2138 enum spi_nor_protocol proto)
2139 {
2140 read->num_mode_clocks = num_mode_clocks;
2141 read->num_wait_states = num_wait_states;
2142 read->opcode = opcode;
2143 read->proto = proto;
2144 }
2145
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2146 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2147 enum spi_nor_protocol proto)
2148 {
2149 pp->opcode = opcode;
2150 pp->proto = proto;
2151 }
2152
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2153 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2154 {
2155 size_t i;
2156
2157 for (i = 0; i < size; i++)
2158 if (table[i][0] == (int)hwcaps)
2159 return table[i][1];
2160
2161 return -EINVAL;
2162 }
2163
spi_nor_hwcaps_read2cmd(u32 hwcaps)2164 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2165 {
2166 static const int hwcaps_read2cmd[][2] = {
2167 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2168 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2169 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2170 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2171 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2172 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2173 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2174 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2175 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2176 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2177 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2178 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2179 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2180 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2181 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2182 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2183 };
2184
2185 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2186 ARRAY_SIZE(hwcaps_read2cmd));
2187 }
2188
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2189 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2190 {
2191 static const int hwcaps_pp2cmd[][2] = {
2192 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2193 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2194 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2195 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2196 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2197 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2198 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2199 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2200 };
2201
2202 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2203 ARRAY_SIZE(hwcaps_pp2cmd));
2204 }
2205
2206 /**
2207 * spi_nor_spimem_check_op - check if the operation is supported
2208 * by controller
2209 *@nor: pointer to a 'struct spi_nor'
2210 *@op: pointer to op template to be checked
2211 *
2212 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2213 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2214 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2215 struct spi_mem_op *op)
2216 {
2217 /*
2218 * First test with 4 address bytes. The opcode itself might
2219 * be a 3B addressing opcode but we don't care, because
2220 * SPI controller implementation should not check the opcode,
2221 * but just the sequence.
2222 */
2223 op->addr.nbytes = 4;
2224 if (!spi_mem_supports_op(nor->spimem, op)) {
2225 if (nor->params->size > SZ_16M)
2226 return -EOPNOTSUPP;
2227
2228 /* If flash size <= 16MB, 3 address bytes are sufficient */
2229 op->addr.nbytes = 3;
2230 if (!spi_mem_supports_op(nor->spimem, op))
2231 return -EOPNOTSUPP;
2232 }
2233
2234 return 0;
2235 }
2236
2237 /**
2238 * spi_nor_spimem_check_readop - check if the read op is supported
2239 * by controller
2240 *@nor: pointer to a 'struct spi_nor'
2241 *@read: pointer to op template to be checked
2242 *
2243 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2244 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2245 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2246 const struct spi_nor_read_command *read)
2247 {
2248 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2249
2250 spi_nor_spimem_setup_op(nor, &op, read->proto);
2251
2252 /* convert the dummy cycles to the number of bytes */
2253 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2254 op.dummy.buswidth / 8;
2255 if (spi_nor_protocol_is_dtr(nor->read_proto))
2256 op.dummy.nbytes *= 2;
2257
2258 return spi_nor_spimem_check_op(nor, &op);
2259 }
2260
2261 /**
2262 * spi_nor_spimem_check_pp - check if the page program op is supported
2263 * by controller
2264 *@nor: pointer to a 'struct spi_nor'
2265 *@pp: pointer to op template to be checked
2266 *
2267 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2268 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2269 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2270 const struct spi_nor_pp_command *pp)
2271 {
2272 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2273
2274 spi_nor_spimem_setup_op(nor, &op, pp->proto);
2275
2276 return spi_nor_spimem_check_op(nor, &op);
2277 }
2278
2279 /**
2280 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2281 * based on SPI controller capabilities
2282 * @nor: pointer to a 'struct spi_nor'
2283 * @hwcaps: pointer to resulting capabilities after adjusting
2284 * according to controller and flash's capability
2285 */
2286 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2287 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2288 {
2289 struct spi_nor_flash_parameter *params = nor->params;
2290 unsigned int cap;
2291
2292 /* X-X-X modes are not supported yet, mask them all. */
2293 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2294
2295 /*
2296 * If the reset line is broken, we do not want to enter a stateful
2297 * mode.
2298 */
2299 if (nor->flags & SNOR_F_BROKEN_RESET)
2300 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2301
2302 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2303 int rdidx, ppidx;
2304
2305 if (!(*hwcaps & BIT(cap)))
2306 continue;
2307
2308 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2309 if (rdidx >= 0 &&
2310 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2311 *hwcaps &= ~BIT(cap);
2312
2313 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2314 if (ppidx < 0)
2315 continue;
2316
2317 if (spi_nor_spimem_check_pp(nor,
2318 ¶ms->page_programs[ppidx]))
2319 *hwcaps &= ~BIT(cap);
2320 }
2321 }
2322
2323 /**
2324 * spi_nor_set_erase_type() - set a SPI NOR erase type
2325 * @erase: pointer to a structure that describes a SPI NOR erase type
2326 * @size: the size of the sector/block erased by the erase type
2327 * @opcode: the SPI command op code to erase the sector/block
2328 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2329 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2330 u8 opcode)
2331 {
2332 erase->size = size;
2333 erase->opcode = opcode;
2334 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2335 erase->size_shift = ffs(erase->size) - 1;
2336 erase->size_mask = (1 << erase->size_shift) - 1;
2337 }
2338
2339 /**
2340 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2341 * @erase: pointer to a structure that describes a SPI NOR erase type
2342 */
spi_nor_mask_erase_type(struct spi_nor_erase_type * erase)2343 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2344 {
2345 erase->size = 0;
2346 }
2347
2348 /**
2349 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2350 * @map: the erase map of the SPI NOR
2351 * @erase_mask: bitmask encoding erase types that can erase the entire
2352 * flash memory
2353 * @flash_size: the spi nor flash memory size
2354 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2355 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2356 u8 erase_mask, u64 flash_size)
2357 {
2358 map->uniform_region.offset = 0;
2359 map->uniform_region.size = flash_size;
2360 map->uniform_region.erase_mask = erase_mask;
2361 map->regions = &map->uniform_region;
2362 map->n_regions = 1;
2363 }
2364
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)2365 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2366 const struct sfdp_parameter_header *bfpt_header,
2367 const struct sfdp_bfpt *bfpt)
2368 {
2369 int ret;
2370
2371 if (nor->manufacturer && nor->manufacturer->fixups &&
2372 nor->manufacturer->fixups->post_bfpt) {
2373 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2374 bfpt);
2375 if (ret)
2376 return ret;
2377 }
2378
2379 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2380 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2381
2382 return 0;
2383 }
2384
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2385 static int spi_nor_select_read(struct spi_nor *nor,
2386 u32 shared_hwcaps)
2387 {
2388 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2389 const struct spi_nor_read_command *read;
2390
2391 if (best_match < 0)
2392 return -EINVAL;
2393
2394 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2395 if (cmd < 0)
2396 return -EINVAL;
2397
2398 read = &nor->params->reads[cmd];
2399 nor->read_opcode = read->opcode;
2400 nor->read_proto = read->proto;
2401
2402 /*
2403 * In the SPI NOR framework, we don't need to make the difference
2404 * between mode clock cycles and wait state clock cycles.
2405 * Indeed, the value of the mode clock cycles is used by a QSPI
2406 * flash memory to know whether it should enter or leave its 0-4-4
2407 * (Continuous Read / XIP) mode.
2408 * eXecution In Place is out of the scope of the mtd sub-system.
2409 * Hence we choose to merge both mode and wait state clock cycles
2410 * into the so called dummy clock cycles.
2411 */
2412 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2413 return 0;
2414 }
2415
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2416 static int spi_nor_select_pp(struct spi_nor *nor,
2417 u32 shared_hwcaps)
2418 {
2419 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2420 const struct spi_nor_pp_command *pp;
2421
2422 if (best_match < 0)
2423 return -EINVAL;
2424
2425 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2426 if (cmd < 0)
2427 return -EINVAL;
2428
2429 pp = &nor->params->page_programs[cmd];
2430 nor->program_opcode = pp->opcode;
2431 nor->write_proto = pp->proto;
2432 return 0;
2433 }
2434
2435 /**
2436 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2437 * @map: the erase map of the SPI NOR
2438 *
2439 * Once the optimum uniform sector erase command is found, disable all the
2440 * other.
2441 *
2442 * Return: pointer to erase type on success, NULL otherwise.
2443 */
2444 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map)2445 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2446 {
2447 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2448 int i;
2449 u8 uniform_erase_type = map->uniform_region.erase_mask;
2450
2451 /*
2452 * Search for the biggest erase size, except for when compiled
2453 * to use 4k erases.
2454 */
2455 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2456 if (!(uniform_erase_type & BIT(i)))
2457 continue;
2458
2459 tested_erase = &map->erase_type[i];
2460
2461 /* Skip masked erase types. */
2462 if (!tested_erase->size)
2463 continue;
2464
2465 /*
2466 * If the current erase size is the 4k one, stop here,
2467 * we have found the right uniform Sector Erase command.
2468 */
2469 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2470 tested_erase->size == SZ_4K) {
2471 erase = tested_erase;
2472 break;
2473 }
2474
2475 /*
2476 * Otherwise, the current erase size is still a valid candidate.
2477 * Select the biggest valid candidate.
2478 */
2479 if (!erase && tested_erase->size)
2480 erase = tested_erase;
2481 /* keep iterating to find the wanted_size */
2482 }
2483
2484 if (!erase)
2485 return NULL;
2486
2487 /* Disable all other Sector Erase commands. */
2488 map->uniform_region.erase_mask = BIT(erase - map->erase_type);
2489 return erase;
2490 }
2491
spi_nor_select_erase(struct spi_nor * nor)2492 static int spi_nor_select_erase(struct spi_nor *nor)
2493 {
2494 struct spi_nor_erase_map *map = &nor->params->erase_map;
2495 const struct spi_nor_erase_type *erase = NULL;
2496 struct mtd_info *mtd = &nor->mtd;
2497 int i;
2498
2499 /*
2500 * The previous implementation handling Sector Erase commands assumed
2501 * that the SPI flash memory has an uniform layout then used only one
2502 * of the supported erase sizes for all Sector Erase commands.
2503 * So to be backward compatible, the new implementation also tries to
2504 * manage the SPI flash memory as uniform with a single erase sector
2505 * size, when possible.
2506 */
2507 if (spi_nor_has_uniform_erase(nor)) {
2508 erase = spi_nor_select_uniform_erase(map);
2509 if (!erase)
2510 return -EINVAL;
2511 nor->erase_opcode = erase->opcode;
2512 mtd->erasesize = erase->size;
2513 return 0;
2514 }
2515
2516 /*
2517 * For non-uniform SPI flash memory, set mtd->erasesize to the
2518 * maximum erase sector size. No need to set nor->erase_opcode.
2519 */
2520 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2521 if (map->erase_type[i].size) {
2522 erase = &map->erase_type[i];
2523 break;
2524 }
2525 }
2526
2527 if (!erase)
2528 return -EINVAL;
2529
2530 mtd->erasesize = erase->size;
2531 return 0;
2532 }
2533
spi_nor_set_addr_nbytes(struct spi_nor * nor)2534 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2535 {
2536 if (nor->params->addr_nbytes) {
2537 nor->addr_nbytes = nor->params->addr_nbytes;
2538 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2539 /*
2540 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2541 * in this protocol an odd addr_nbytes cannot be used because
2542 * then the address phase would only span a cycle and a half.
2543 * Half a cycle would be left over. We would then have to start
2544 * the dummy phase in the middle of a cycle and so too the data
2545 * phase, and we will end the transaction with half a cycle left
2546 * over.
2547 *
2548 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2549 * avoid this situation.
2550 */
2551 nor->addr_nbytes = 4;
2552 } else if (nor->info->addr_nbytes) {
2553 nor->addr_nbytes = nor->info->addr_nbytes;
2554 } else {
2555 nor->addr_nbytes = 3;
2556 }
2557
2558 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2559 /* enable 4-byte addressing if the device exceeds 16MiB */
2560 nor->addr_nbytes = 4;
2561 }
2562
2563 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2564 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2565 nor->addr_nbytes);
2566 return -EINVAL;
2567 }
2568
2569 /* Set 4byte opcodes when possible. */
2570 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2571 !(nor->flags & SNOR_F_HAS_4BAIT))
2572 spi_nor_set_4byte_opcodes(nor);
2573
2574 return 0;
2575 }
2576
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2577 static int spi_nor_setup(struct spi_nor *nor,
2578 const struct spi_nor_hwcaps *hwcaps)
2579 {
2580 struct spi_nor_flash_parameter *params = nor->params;
2581 u32 ignored_mask, shared_mask;
2582 int err;
2583
2584 /*
2585 * Keep only the hardware capabilities supported by both the SPI
2586 * controller and the SPI flash memory.
2587 */
2588 shared_mask = hwcaps->mask & params->hwcaps.mask;
2589
2590 if (nor->spimem) {
2591 /*
2592 * When called from spi_nor_probe(), all caps are set and we
2593 * need to discard some of them based on what the SPI
2594 * controller actually supports (using spi_mem_supports_op()).
2595 */
2596 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2597 } else {
2598 /*
2599 * SPI n-n-n protocols are not supported when the SPI
2600 * controller directly implements the spi_nor interface.
2601 * Yet another reason to switch to spi-mem.
2602 */
2603 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2604 if (shared_mask & ignored_mask) {
2605 dev_dbg(nor->dev,
2606 "SPI n-n-n protocols are not supported.\n");
2607 shared_mask &= ~ignored_mask;
2608 }
2609 }
2610
2611 /* Select the (Fast) Read command. */
2612 err = spi_nor_select_read(nor, shared_mask);
2613 if (err) {
2614 dev_dbg(nor->dev,
2615 "can't select read settings supported by both the SPI controller and memory.\n");
2616 return err;
2617 }
2618
2619 /* Select the Page Program command. */
2620 err = spi_nor_select_pp(nor, shared_mask);
2621 if (err) {
2622 dev_dbg(nor->dev,
2623 "can't select write settings supported by both the SPI controller and memory.\n");
2624 return err;
2625 }
2626
2627 /* Select the Sector Erase command. */
2628 err = spi_nor_select_erase(nor);
2629 if (err) {
2630 dev_dbg(nor->dev,
2631 "can't select erase settings supported by both the SPI controller and memory.\n");
2632 return err;
2633 }
2634
2635 return spi_nor_set_addr_nbytes(nor);
2636 }
2637
2638 /**
2639 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2640 * settings based on MFR register and ->default_init() hook.
2641 * @nor: pointer to a 'struct spi_nor'.
2642 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2643 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2644 {
2645 if (nor->manufacturer && nor->manufacturer->fixups &&
2646 nor->manufacturer->fixups->default_init)
2647 nor->manufacturer->fixups->default_init(nor);
2648
2649 if (nor->info->fixups && nor->info->fixups->default_init)
2650 nor->info->fixups->default_init(nor);
2651 }
2652
2653 /**
2654 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2655 * settings based on nor->info->sfdp_flags. This method should be called only by
2656 * flashes that do not define SFDP tables. If the flash supports SFDP but the
2657 * information is wrong and the settings from this function can not be retrieved
2658 * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2659 * bits.
2660 * @nor: pointer to a 'struct spi_nor'.
2661 */
spi_nor_no_sfdp_init_params(struct spi_nor * nor)2662 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2663 {
2664 struct spi_nor_flash_parameter *params = nor->params;
2665 struct spi_nor_erase_map *map = ¶ms->erase_map;
2666 const struct flash_info *info = nor->info;
2667 const u8 no_sfdp_flags = info->no_sfdp_flags;
2668 u8 i, erase_mask;
2669
2670 if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2671 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2672 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2673 0, 8, SPINOR_OP_READ_1_1_2,
2674 SNOR_PROTO_1_1_2);
2675 }
2676
2677 if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2678 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2679 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2680 0, 8, SPINOR_OP_READ_1_1_4,
2681 SNOR_PROTO_1_1_4);
2682 }
2683
2684 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2685 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2686 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2687 0, 8, SPINOR_OP_READ_1_1_8,
2688 SNOR_PROTO_1_1_8);
2689 }
2690
2691 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2692 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2693 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2694 0, 20, SPINOR_OP_READ_FAST,
2695 SNOR_PROTO_8_8_8_DTR);
2696 }
2697
2698 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2699 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2700 /*
2701 * Since xSPI Page Program opcode is backward compatible with
2702 * Legacy SPI, use Legacy SPI opcode there as well.
2703 */
2704 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2705 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2706 }
2707
2708 /*
2709 * Sector Erase settings. Sort Erase Types in ascending order, with the
2710 * smallest erase size starting at BIT(0).
2711 */
2712 erase_mask = 0;
2713 i = 0;
2714 if (no_sfdp_flags & SECT_4K) {
2715 erase_mask |= BIT(i);
2716 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2717 SPINOR_OP_BE_4K);
2718 i++;
2719 }
2720 erase_mask |= BIT(i);
2721 spi_nor_set_erase_type(&map->erase_type[i],
2722 info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2723 SPINOR_OP_SE);
2724 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2725 }
2726
2727 /**
2728 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2729 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2730 * @nor: pointer to a 'struct spi_nor'
2731 */
spi_nor_init_flags(struct spi_nor * nor)2732 static void spi_nor_init_flags(struct spi_nor *nor)
2733 {
2734 struct device_node *np = spi_nor_get_flash_node(nor);
2735 const u16 flags = nor->info->flags;
2736
2737 if (of_property_read_bool(np, "broken-flash-reset"))
2738 nor->flags |= SNOR_F_BROKEN_RESET;
2739
2740 if (of_property_read_bool(np, "no-wp"))
2741 nor->flags |= SNOR_F_NO_WP;
2742
2743 if (flags & SPI_NOR_SWP_IS_VOLATILE)
2744 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2745
2746 if (flags & SPI_NOR_HAS_LOCK)
2747 nor->flags |= SNOR_F_HAS_LOCK;
2748
2749 if (flags & SPI_NOR_HAS_TB) {
2750 nor->flags |= SNOR_F_HAS_SR_TB;
2751 if (flags & SPI_NOR_TB_SR_BIT6)
2752 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2753 }
2754
2755 if (flags & SPI_NOR_4BIT_BP) {
2756 nor->flags |= SNOR_F_HAS_4BIT_BP;
2757 if (flags & SPI_NOR_BP3_SR_BIT6)
2758 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2759 }
2760
2761 if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2762 !nor->controller_ops)
2763 nor->flags |= SNOR_F_RWW;
2764 }
2765
2766 /**
2767 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2768 * be discovered by SFDP for this particular flash because the SFDP table that
2769 * indicates this support is not defined in the flash. In case the table for
2770 * this support is defined but has wrong values, one should instead use a
2771 * post_sfdp() hook to set the SNOR_F equivalent flag.
2772 * @nor: pointer to a 'struct spi_nor'
2773 */
spi_nor_init_fixup_flags(struct spi_nor * nor)2774 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2775 {
2776 const u8 fixup_flags = nor->info->fixup_flags;
2777
2778 if (fixup_flags & SPI_NOR_4B_OPCODES)
2779 nor->flags |= SNOR_F_4B_OPCODES;
2780
2781 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2782 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2783 }
2784
2785 /**
2786 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2787 * @nor: pointer to a 'struct spi_nor'
2788 *
2789 * Used to initialize flash parameters that are not declared in the JESD216
2790 * SFDP standard, or where SFDP tables are not defined at all.
2791 * Will replace the spi_nor_manufacturer_init_params() method.
2792 */
spi_nor_late_init_params(struct spi_nor * nor)2793 static int spi_nor_late_init_params(struct spi_nor *nor)
2794 {
2795 struct spi_nor_flash_parameter *params = nor->params;
2796 int ret;
2797
2798 if (nor->manufacturer && nor->manufacturer->fixups &&
2799 nor->manufacturer->fixups->late_init) {
2800 ret = nor->manufacturer->fixups->late_init(nor);
2801 if (ret)
2802 return ret;
2803 }
2804
2805 /* Needed by some flashes late_init hooks. */
2806 spi_nor_init_flags(nor);
2807
2808 if (nor->info->fixups && nor->info->fixups->late_init) {
2809 ret = nor->info->fixups->late_init(nor);
2810 if (ret)
2811 return ret;
2812 }
2813
2814 if (!nor->params->die_erase_opcode)
2815 nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2816
2817 /* Default method kept for backward compatibility. */
2818 if (!params->set_4byte_addr_mode)
2819 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2820
2821 spi_nor_init_fixup_flags(nor);
2822
2823 /*
2824 * NOR protection support. When locking_ops are not provided, we pick
2825 * the default ones.
2826 */
2827 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2828 spi_nor_init_default_locking_ops(nor);
2829
2830 if (params->n_banks > 1)
2831 params->bank_size = div_u64(params->size, params->n_banks);
2832
2833 return 0;
2834 }
2835
2836 /**
2837 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2838 * parameters and settings based on JESD216 SFDP standard.
2839 * @nor: pointer to a 'struct spi_nor'.
2840 *
2841 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2842 * legacy flash parameters and settings will be restored.
2843 */
spi_nor_sfdp_init_params_deprecated(struct spi_nor * nor)2844 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2845 {
2846 struct spi_nor_flash_parameter sfdp_params;
2847
2848 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2849
2850 if (spi_nor_parse_sfdp(nor)) {
2851 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2852 nor->flags &= ~SNOR_F_4B_OPCODES;
2853 }
2854 }
2855
2856 /**
2857 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2858 * parameters and settings.
2859 * @nor: pointer to a 'struct spi_nor'.
2860 *
2861 * The method assumes that flash doesn't support SFDP so it initializes flash
2862 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2863 * when parsing SFDP, if supported.
2864 */
spi_nor_init_params_deprecated(struct spi_nor * nor)2865 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2866 {
2867 spi_nor_no_sfdp_init_params(nor);
2868
2869 spi_nor_manufacturer_init_params(nor);
2870
2871 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2872 SPI_NOR_QUAD_READ |
2873 SPI_NOR_OCTAL_READ |
2874 SPI_NOR_OCTAL_DTR_READ))
2875 spi_nor_sfdp_init_params_deprecated(nor);
2876 }
2877
2878 /**
2879 * spi_nor_init_default_params() - Default initialization of flash parameters
2880 * and settings. Done for all flashes, regardless is they define SFDP tables
2881 * or not.
2882 * @nor: pointer to a 'struct spi_nor'.
2883 */
spi_nor_init_default_params(struct spi_nor * nor)2884 static void spi_nor_init_default_params(struct spi_nor *nor)
2885 {
2886 struct spi_nor_flash_parameter *params = nor->params;
2887 const struct flash_info *info = nor->info;
2888 struct device_node *np = spi_nor_get_flash_node(nor);
2889
2890 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2891 params->otp.org = info->otp;
2892
2893 /* Default to 16-bit Write Status (01h) Command */
2894 nor->flags |= SNOR_F_HAS_16BIT_SR;
2895
2896 /* Set SPI NOR sizes. */
2897 params->writesize = 1;
2898 params->size = info->size;
2899 params->bank_size = params->size;
2900 params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
2901 params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
2902
2903 /* Default to Fast Read for non-DT and enable it if requested by DT. */
2904 if (!np || of_property_read_bool(np, "m25p,fast-read"))
2905 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2906
2907 /* (Fast) Read settings. */
2908 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2909 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2910 0, 0, SPINOR_OP_READ,
2911 SNOR_PROTO_1_1_1);
2912
2913 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2914 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2915 0, 8, SPINOR_OP_READ_FAST,
2916 SNOR_PROTO_1_1_1);
2917 /* Page Program settings. */
2918 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2919 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2920 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2921
2922 if (info->flags & SPI_NOR_QUAD_PP) {
2923 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2924 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
2925 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2926 }
2927 }
2928
2929 /**
2930 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2931 * @nor: pointer to a 'struct spi_nor'.
2932 *
2933 * The flash parameters and settings are initialized based on a sequence of
2934 * calls that are ordered by priority:
2935 *
2936 * 1/ Default flash parameters initialization. The initializations are done
2937 * based on nor->info data:
2938 * spi_nor_info_init_params()
2939 *
2940 * which can be overwritten by:
2941 * 2/ Manufacturer flash parameters initialization. The initializations are
2942 * done based on MFR register, or when the decisions can not be done solely
2943 * based on MFR, by using specific flash_info tweeks, ->default_init():
2944 * spi_nor_manufacturer_init_params()
2945 *
2946 * which can be overwritten by:
2947 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2948 * should be more accurate that the above.
2949 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2950 *
2951 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2952 * the flash parameters and settings immediately after parsing the Basic
2953 * Flash Parameter Table.
2954 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2955 * It is used to tweak various flash parameters when information provided
2956 * by the SFDP tables are wrong.
2957 *
2958 * which can be overwritten by:
2959 * 4/ Late flash parameters initialization, used to initialize flash
2960 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2961 * tables are not defined at all.
2962 * spi_nor_late_init_params()
2963 *
2964 * Return: 0 on success, -errno otherwise.
2965 */
spi_nor_init_params(struct spi_nor * nor)2966 static int spi_nor_init_params(struct spi_nor *nor)
2967 {
2968 int ret;
2969
2970 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2971 if (!nor->params)
2972 return -ENOMEM;
2973
2974 spi_nor_init_default_params(nor);
2975
2976 if (spi_nor_needs_sfdp(nor)) {
2977 ret = spi_nor_parse_sfdp(nor);
2978 if (ret) {
2979 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
2980 return ret;
2981 }
2982 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
2983 spi_nor_no_sfdp_init_params(nor);
2984 } else {
2985 spi_nor_init_params_deprecated(nor);
2986 }
2987
2988 ret = spi_nor_late_init_params(nor);
2989 if (ret)
2990 return ret;
2991
2992 if (WARN_ON(!is_power_of_2(nor->params->page_size)))
2993 return -EINVAL;
2994
2995 return 0;
2996 }
2997
2998 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
2999 * @nor: pointer to a 'struct spi_nor'
3000 * @enable: whether to enable or disable Octal DTR
3001 *
3002 * Return: 0 on success, -errno otherwise.
3003 */
spi_nor_set_octal_dtr(struct spi_nor * nor,bool enable)3004 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3005 {
3006 int ret;
3007
3008 if (!nor->params->set_octal_dtr)
3009 return 0;
3010
3011 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3012 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3013 return 0;
3014
3015 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3016 return 0;
3017
3018 ret = nor->params->set_octal_dtr(nor, enable);
3019 if (ret)
3020 return ret;
3021
3022 if (enable)
3023 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3024 else
3025 nor->reg_proto = SNOR_PROTO_1_1_1;
3026
3027 return 0;
3028 }
3029
3030 /**
3031 * spi_nor_quad_enable() - enable Quad I/O if needed.
3032 * @nor: pointer to a 'struct spi_nor'
3033 *
3034 * Return: 0 on success, -errno otherwise.
3035 */
spi_nor_quad_enable(struct spi_nor * nor)3036 static int spi_nor_quad_enable(struct spi_nor *nor)
3037 {
3038 if (!nor->params->quad_enable)
3039 return 0;
3040
3041 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3042 spi_nor_get_protocol_width(nor->write_proto) == 4))
3043 return 0;
3044
3045 return nor->params->quad_enable(nor);
3046 }
3047
3048 /**
3049 * spi_nor_set_4byte_addr_mode() - Set address mode.
3050 * @nor: pointer to a 'struct spi_nor'.
3051 * @enable: enable/disable 4 byte address mode.
3052 *
3053 * Return: 0 on success, -errno otherwise.
3054 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)3055 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3056 {
3057 struct spi_nor_flash_parameter *params = nor->params;
3058 int ret;
3059
3060 if (enable) {
3061 /*
3062 * If the RESET# pin isn't hooked up properly, or the system
3063 * otherwise doesn't perform a reset command in the boot
3064 * sequence, it's impossible to 100% protect against unexpected
3065 * reboots (e.g., crashes). Warn the user (or hopefully, system
3066 * designer) that this is bad.
3067 */
3068 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3069 "enabling reset hack; may not recover from unexpected reboots\n");
3070 }
3071
3072 ret = params->set_4byte_addr_mode(nor, enable);
3073 if (ret && ret != -EOPNOTSUPP)
3074 return ret;
3075
3076 if (enable) {
3077 params->addr_nbytes = 4;
3078 params->addr_mode_nbytes = 4;
3079 } else {
3080 params->addr_nbytes = 3;
3081 params->addr_mode_nbytes = 3;
3082 }
3083
3084 return 0;
3085 }
3086
spi_nor_init(struct spi_nor * nor)3087 static int spi_nor_init(struct spi_nor *nor)
3088 {
3089 int err;
3090
3091 err = spi_nor_set_octal_dtr(nor, true);
3092 if (err) {
3093 dev_dbg(nor->dev, "octal mode not supported\n");
3094 return err;
3095 }
3096
3097 err = spi_nor_quad_enable(nor);
3098 if (err) {
3099 dev_dbg(nor->dev, "quad mode not supported\n");
3100 return err;
3101 }
3102
3103 /*
3104 * Some SPI NOR flashes are write protected by default after a power-on
3105 * reset cycle, in order to avoid inadvertent writes during power-up.
3106 * Backward compatibility imposes to unlock the entire flash memory
3107 * array at power-up by default. Depending on the kernel configuration
3108 * (1) do nothing, (2) always unlock the entire flash array or (3)
3109 * unlock the entire flash array only when the software write
3110 * protection bits are volatile. The latter is indicated by
3111 * SNOR_F_SWP_IS_VOLATILE.
3112 */
3113 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3114 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3115 nor->flags & SNOR_F_SWP_IS_VOLATILE))
3116 spi_nor_try_unlock_all(nor);
3117
3118 if (nor->addr_nbytes == 4 &&
3119 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3120 !(nor->flags & SNOR_F_4B_OPCODES))
3121 return spi_nor_set_4byte_addr_mode(nor, true);
3122
3123 return 0;
3124 }
3125
3126 /**
3127 * spi_nor_soft_reset() - Perform a software reset
3128 * @nor: pointer to 'struct spi_nor'
3129 *
3130 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3131 * the device to its power-on-reset state. This is useful when the software has
3132 * made some changes to device (volatile) registers and needs to reset it before
3133 * shutting down, for example.
3134 *
3135 * Not every flash supports this sequence. The same set of opcodes might be used
3136 * for some other operation on a flash that does not support this. Support for
3137 * this sequence can be discovered via SFDP in the BFPT table.
3138 *
3139 * Return: 0 on success, -errno otherwise.
3140 */
spi_nor_soft_reset(struct spi_nor * nor)3141 static void spi_nor_soft_reset(struct spi_nor *nor)
3142 {
3143 struct spi_mem_op op;
3144 int ret;
3145
3146 op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3147
3148 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3149
3150 ret = spi_mem_exec_op(nor->spimem, &op);
3151 if (ret) {
3152 if (ret != -EOPNOTSUPP)
3153 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3154 return;
3155 }
3156
3157 op = (struct spi_mem_op)SPINOR_SRST_OP;
3158
3159 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3160
3161 ret = spi_mem_exec_op(nor->spimem, &op);
3162 if (ret) {
3163 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3164 return;
3165 }
3166
3167 /*
3168 * Software Reset is not instant, and the delay varies from flash to
3169 * flash. Looking at a few flashes, most range somewhere below 100
3170 * microseconds. So, sleep for a range of 200-400 us.
3171 */
3172 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3173 }
3174
3175 /* mtd suspend handler */
spi_nor_suspend(struct mtd_info * mtd)3176 static int spi_nor_suspend(struct mtd_info *mtd)
3177 {
3178 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3179 int ret;
3180
3181 /* Disable octal DTR mode if we enabled it. */
3182 ret = spi_nor_set_octal_dtr(nor, false);
3183 if (ret)
3184 dev_err(nor->dev, "suspend() failed\n");
3185
3186 return ret;
3187 }
3188
3189 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)3190 static void spi_nor_resume(struct mtd_info *mtd)
3191 {
3192 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3193 struct device *dev = nor->dev;
3194 int ret;
3195
3196 /* re-initialize the nor chip */
3197 ret = spi_nor_init(nor);
3198 if (ret)
3199 dev_err(dev, "resume() failed\n");
3200 }
3201
spi_nor_get_device(struct mtd_info * mtd)3202 static int spi_nor_get_device(struct mtd_info *mtd)
3203 {
3204 struct mtd_info *master = mtd_get_master(mtd);
3205 struct spi_nor *nor = mtd_to_spi_nor(master);
3206 struct device *dev;
3207
3208 if (nor->spimem)
3209 dev = nor->spimem->spi->controller->dev.parent;
3210 else
3211 dev = nor->dev;
3212
3213 if (!try_module_get(dev->driver->owner))
3214 return -ENODEV;
3215
3216 return 0;
3217 }
3218
spi_nor_put_device(struct mtd_info * mtd)3219 static void spi_nor_put_device(struct mtd_info *mtd)
3220 {
3221 struct mtd_info *master = mtd_get_master(mtd);
3222 struct spi_nor *nor = mtd_to_spi_nor(master);
3223 struct device *dev;
3224
3225 if (nor->spimem)
3226 dev = nor->spimem->spi->controller->dev.parent;
3227 else
3228 dev = nor->dev;
3229
3230 module_put(dev->driver->owner);
3231 }
3232
spi_nor_restore(struct spi_nor * nor)3233 static void spi_nor_restore(struct spi_nor *nor)
3234 {
3235 int ret;
3236
3237 /* restore the addressing mode */
3238 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3239 nor->flags & SNOR_F_BROKEN_RESET) {
3240 ret = spi_nor_set_4byte_addr_mode(nor, false);
3241 if (ret)
3242 /*
3243 * Do not stop the execution in the hope that the flash
3244 * will default to the 3-byte address mode after the
3245 * software reset.
3246 */
3247 dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3248 }
3249
3250 if (nor->flags & SNOR_F_SOFT_RESET)
3251 spi_nor_soft_reset(nor);
3252 }
3253
spi_nor_match_name(struct spi_nor * nor,const char * name)3254 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3255 const char *name)
3256 {
3257 unsigned int i, j;
3258
3259 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3260 for (j = 0; j < manufacturers[i]->nparts; j++) {
3261 if (manufacturers[i]->parts[j].name &&
3262 !strcmp(name, manufacturers[i]->parts[j].name)) {
3263 nor->manufacturer = manufacturers[i];
3264 return &manufacturers[i]->parts[j];
3265 }
3266 }
3267 }
3268
3269 return NULL;
3270 }
3271
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3272 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3273 const char *name)
3274 {
3275 const struct flash_info *info = NULL;
3276
3277 if (name)
3278 info = spi_nor_match_name(nor, name);
3279 /*
3280 * Auto-detect if chip name wasn't specified or not found, or the chip
3281 * has an ID. If the chip supposedly has an ID, we also do an
3282 * auto-detection to compare it later.
3283 */
3284 if (!info || info->id) {
3285 const struct flash_info *jinfo;
3286
3287 jinfo = spi_nor_detect(nor);
3288 if (IS_ERR(jinfo))
3289 return jinfo;
3290
3291 /*
3292 * If caller has specified name of flash model that can normally
3293 * be detected using JEDEC, let's verify it.
3294 */
3295 if (info && jinfo != info)
3296 dev_warn(nor->dev, "found %s, expected %s\n",
3297 jinfo->name, info->name);
3298
3299 /* If info was set before, JEDEC knows better. */
3300 info = jinfo;
3301 }
3302
3303 return info;
3304 }
3305
3306 static u32
spi_nor_get_region_erasesize(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase_type)3307 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
3308 const struct spi_nor_erase_type *erase_type)
3309 {
3310 int i;
3311
3312 if (region->overlaid)
3313 return region->size;
3314
3315 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3316 if (region->erase_mask & BIT(i))
3317 return erase_type[i].size;
3318 }
3319
3320 return 0;
3321 }
3322
spi_nor_set_mtd_eraseregions(struct spi_nor * nor)3323 static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
3324 {
3325 const struct spi_nor_erase_map *map = &nor->params->erase_map;
3326 const struct spi_nor_erase_region *region = map->regions;
3327 struct mtd_erase_region_info *mtd_region;
3328 struct mtd_info *mtd = &nor->mtd;
3329 u32 erasesize, i;
3330
3331 mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
3332 GFP_KERNEL);
3333 if (!mtd_region)
3334 return -ENOMEM;
3335
3336 for (i = 0; i < map->n_regions; i++) {
3337 erasesize = spi_nor_get_region_erasesize(®ion[i],
3338 map->erase_type);
3339 if (!erasesize)
3340 return -EINVAL;
3341
3342 mtd_region[i].erasesize = erasesize;
3343 mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
3344 mtd_region[i].offset = region[i].offset;
3345 }
3346
3347 mtd->numeraseregions = map->n_regions;
3348 mtd->eraseregions = mtd_region;
3349
3350 return 0;
3351 }
3352
spi_nor_set_mtd_info(struct spi_nor * nor)3353 static int spi_nor_set_mtd_info(struct spi_nor *nor)
3354 {
3355 struct mtd_info *mtd = &nor->mtd;
3356 struct device *dev = nor->dev;
3357
3358 spi_nor_set_mtd_locking_ops(nor);
3359 spi_nor_set_mtd_otp_ops(nor);
3360
3361 mtd->dev.parent = dev;
3362 if (!mtd->name)
3363 mtd->name = dev_name(dev);
3364 mtd->type = MTD_NORFLASH;
3365 mtd->flags = MTD_CAP_NORFLASH;
3366 /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3367 if (nor->flags & SNOR_F_ECC)
3368 mtd->flags &= ~MTD_BIT_WRITEABLE;
3369 if (nor->info->flags & SPI_NOR_NO_ERASE)
3370 mtd->flags |= MTD_NO_ERASE;
3371 else
3372 mtd->_erase = spi_nor_erase;
3373 mtd->writesize = nor->params->writesize;
3374 mtd->writebufsize = nor->params->page_size;
3375 mtd->size = nor->params->size;
3376 mtd->_read = spi_nor_read;
3377 /* Might be already set by some SST flashes. */
3378 if (!mtd->_write)
3379 mtd->_write = spi_nor_write;
3380 mtd->_suspend = spi_nor_suspend;
3381 mtd->_resume = spi_nor_resume;
3382 mtd->_get_device = spi_nor_get_device;
3383 mtd->_put_device = spi_nor_put_device;
3384
3385 if (!spi_nor_has_uniform_erase(nor))
3386 return spi_nor_set_mtd_eraseregions(nor);
3387
3388 return 0;
3389 }
3390
spi_nor_hw_reset(struct spi_nor * nor)3391 static int spi_nor_hw_reset(struct spi_nor *nor)
3392 {
3393 struct gpio_desc *reset;
3394
3395 reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3396 if (IS_ERR_OR_NULL(reset))
3397 return PTR_ERR_OR_ZERO(reset);
3398
3399 /*
3400 * Experimental delay values by looking at different flash device
3401 * vendors datasheets.
3402 */
3403 usleep_range(1, 5);
3404 gpiod_set_value_cansleep(reset, 1);
3405 usleep_range(100, 150);
3406 gpiod_set_value_cansleep(reset, 0);
3407 usleep_range(1000, 1200);
3408
3409 return 0;
3410 }
3411
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3412 int spi_nor_scan(struct spi_nor *nor, const char *name,
3413 const struct spi_nor_hwcaps *hwcaps)
3414 {
3415 const struct flash_info *info;
3416 struct device *dev = nor->dev;
3417 int ret;
3418
3419 ret = spi_nor_check(nor);
3420 if (ret)
3421 return ret;
3422
3423 /* Reset SPI protocol for all commands. */
3424 nor->reg_proto = SNOR_PROTO_1_1_1;
3425 nor->read_proto = SNOR_PROTO_1_1_1;
3426 nor->write_proto = SNOR_PROTO_1_1_1;
3427
3428 /*
3429 * We need the bounce buffer early to read/write registers when going
3430 * through the spi-mem layer (buffers have to be DMA-able).
3431 * For spi-mem drivers, we'll reallocate a new buffer if
3432 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3433 * shouldn't happen before long since NOR pages are usually less
3434 * than 1KB) after spi_nor_scan() returns.
3435 */
3436 nor->bouncebuf_size = PAGE_SIZE;
3437 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3438 GFP_KERNEL);
3439 if (!nor->bouncebuf)
3440 return -ENOMEM;
3441
3442 ret = spi_nor_hw_reset(nor);
3443 if (ret)
3444 return ret;
3445
3446 info = spi_nor_get_flash_info(nor, name);
3447 if (IS_ERR(info))
3448 return PTR_ERR(info);
3449
3450 nor->info = info;
3451
3452 mutex_init(&nor->lock);
3453
3454 /* Init flash parameters based on flash_info struct and SFDP */
3455 ret = spi_nor_init_params(nor);
3456 if (ret)
3457 return ret;
3458
3459 if (spi_nor_use_parallel_locking(nor))
3460 init_waitqueue_head(&nor->rww.wait);
3461
3462 /*
3463 * Configure the SPI memory:
3464 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3465 * - set the number of dummy cycles (mode cycles + wait states).
3466 * - set the SPI protocols for register and memory accesses.
3467 * - set the number of address bytes.
3468 */
3469 ret = spi_nor_setup(nor, hwcaps);
3470 if (ret)
3471 return ret;
3472
3473 /* Send all the required SPI flash commands to initialize device */
3474 ret = spi_nor_init(nor);
3475 if (ret)
3476 return ret;
3477
3478 /* No mtd_info fields should be used up to this point. */
3479 ret = spi_nor_set_mtd_info(nor);
3480 if (ret)
3481 return ret;
3482
3483 dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3484 SPI_NOR_MAX_ID_LEN, nor->id);
3485
3486 return 0;
3487 }
3488 EXPORT_SYMBOL_GPL(spi_nor_scan);
3489
spi_nor_create_read_dirmap(struct spi_nor * nor)3490 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3491 {
3492 struct spi_mem_dirmap_info info = {
3493 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3494 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3495 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3496 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3497 .offset = 0,
3498 .length = nor->params->size,
3499 };
3500 struct spi_mem_op *op = &info.op_tmpl;
3501
3502 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3503
3504 /* convert the dummy cycles to the number of bytes */
3505 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3506 if (spi_nor_protocol_is_dtr(nor->read_proto))
3507 op->dummy.nbytes *= 2;
3508
3509 /*
3510 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3511 * of data bytes is non-zero, the data buswidth won't be set here. So,
3512 * do it explicitly.
3513 */
3514 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3515
3516 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3517 &info);
3518 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3519 }
3520
spi_nor_create_write_dirmap(struct spi_nor * nor)3521 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3522 {
3523 struct spi_mem_dirmap_info info = {
3524 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3525 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3526 SPI_MEM_OP_NO_DUMMY,
3527 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3528 .offset = 0,
3529 .length = nor->params->size,
3530 };
3531 struct spi_mem_op *op = &info.op_tmpl;
3532
3533 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3534 op->addr.nbytes = 0;
3535
3536 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3537
3538 /*
3539 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3540 * of data bytes is non-zero, the data buswidth won't be set here. So,
3541 * do it explicitly.
3542 */
3543 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3544
3545 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3546 &info);
3547 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3548 }
3549
spi_nor_probe(struct spi_mem * spimem)3550 static int spi_nor_probe(struct spi_mem *spimem)
3551 {
3552 struct spi_device *spi = spimem->spi;
3553 struct device *dev = &spi->dev;
3554 struct flash_platform_data *data = dev_get_platdata(dev);
3555 struct spi_nor *nor;
3556 /*
3557 * Enable all caps by default. The core will mask them after
3558 * checking what's really supported using spi_mem_supports_op().
3559 */
3560 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3561 char *flash_name;
3562 int ret;
3563
3564 ret = devm_regulator_get_enable(dev, "vcc");
3565 if (ret)
3566 return ret;
3567
3568 nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL);
3569 if (!nor)
3570 return -ENOMEM;
3571
3572 nor->spimem = spimem;
3573 nor->dev = dev;
3574 spi_nor_set_flash_node(nor, dev->of_node);
3575
3576 spi_mem_set_drvdata(spimem, nor);
3577
3578 if (data && data->name)
3579 nor->mtd.name = data->name;
3580
3581 if (!nor->mtd.name)
3582 nor->mtd.name = spi_mem_get_name(spimem);
3583
3584 /*
3585 * For some (historical?) reason many platforms provide two different
3586 * names in flash_platform_data: "name" and "type". Quite often name is
3587 * set to "m25p80" and then "type" provides a real chip name.
3588 * If that's the case, respect "type" and ignore a "name".
3589 */
3590 if (data && data->type)
3591 flash_name = data->type;
3592 else if (!strcmp(spi->modalias, "spi-nor"))
3593 flash_name = NULL; /* auto-detect */
3594 else
3595 flash_name = spi->modalias;
3596
3597 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3598 if (ret)
3599 return ret;
3600
3601 spi_nor_debugfs_register(nor);
3602
3603 /*
3604 * None of the existing parts have > 512B pages, but let's play safe
3605 * and add this logic so that if anyone ever adds support for such
3606 * a NOR we don't end up with buffer overflows.
3607 */
3608 if (nor->params->page_size > PAGE_SIZE) {
3609 nor->bouncebuf_size = nor->params->page_size;
3610 devm_kfree(dev, nor->bouncebuf);
3611 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3612 GFP_KERNEL);
3613 if (!nor->bouncebuf)
3614 return -ENOMEM;
3615 }
3616
3617 ret = spi_nor_create_read_dirmap(nor);
3618 if (ret)
3619 return ret;
3620
3621 ret = spi_nor_create_write_dirmap(nor);
3622 if (ret)
3623 return ret;
3624
3625 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3626 data ? data->nr_parts : 0);
3627 }
3628
spi_nor_remove(struct spi_mem * spimem)3629 static int spi_nor_remove(struct spi_mem *spimem)
3630 {
3631 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3632
3633 spi_nor_restore(nor);
3634
3635 /* Clean up MTD stuff. */
3636 return mtd_device_unregister(&nor->mtd);
3637 }
3638
spi_nor_shutdown(struct spi_mem * spimem)3639 static void spi_nor_shutdown(struct spi_mem *spimem)
3640 {
3641 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3642
3643 spi_nor_restore(nor);
3644 }
3645
3646 /*
3647 * Do NOT add to this array without reading the following:
3648 *
3649 * Historically, many flash devices are bound to this driver by their name. But
3650 * since most of these flash are compatible to some extent, and their
3651 * differences can often be differentiated by the JEDEC read-ID command, we
3652 * encourage new users to add support to the spi-nor library, and simply bind
3653 * against a generic string here (e.g., "jedec,spi-nor").
3654 *
3655 * Many flash names are kept here in this list to keep them available
3656 * as module aliases for existing platforms.
3657 */
3658 static const struct spi_device_id spi_nor_dev_ids[] = {
3659 /*
3660 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3661 * hack around the fact that the SPI core does not provide uevent
3662 * matching for .of_match_table
3663 */
3664 {"spi-nor"},
3665
3666 /*
3667 * Entries not used in DTs that should be safe to drop after replacing
3668 * them with "spi-nor" in platform data.
3669 */
3670 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3671
3672 /*
3673 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3674 * should be kept for backward compatibility.
3675 */
3676 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3677 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3678 {"mx25l25635e"},{"mx66l51235l"},
3679 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3680 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3681 {"s25fl064k"},
3682 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3683 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3684 {"m25p64"}, {"m25p128"},
3685 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3686 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3687
3688 /* Flashes that can't be detected using JEDEC */
3689 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3690 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3691 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3692
3693 /* Everspin MRAMs (non-JEDEC) */
3694 { "mr25h128" }, /* 128 Kib, 40 MHz */
3695 { "mr25h256" }, /* 256 Kib, 40 MHz */
3696 { "mr25h10" }, /* 1 Mib, 40 MHz */
3697 { "mr25h40" }, /* 4 Mib, 40 MHz */
3698
3699 { },
3700 };
3701 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3702
3703 static const struct of_device_id spi_nor_of_table[] = {
3704 /*
3705 * Generic compatibility for SPI NOR that can be identified by the
3706 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3707 */
3708 { .compatible = "jedec,spi-nor" },
3709 { /* sentinel */ },
3710 };
3711 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3712
3713 /*
3714 * REVISIT: many of these chips have deep power-down modes, which
3715 * should clearly be entered on suspend() to minimize power use.
3716 * And also when they're otherwise idle...
3717 */
3718 static struct spi_mem_driver spi_nor_driver = {
3719 .spidrv = {
3720 .driver = {
3721 .name = "spi-nor",
3722 .of_match_table = spi_nor_of_table,
3723 .dev_groups = spi_nor_sysfs_groups,
3724 },
3725 .id_table = spi_nor_dev_ids,
3726 },
3727 .probe = spi_nor_probe,
3728 .remove = spi_nor_remove,
3729 .shutdown = spi_nor_shutdown,
3730 };
3731
spi_nor_module_init(void)3732 static int __init spi_nor_module_init(void)
3733 {
3734 return spi_mem_driver_register(&spi_nor_driver);
3735 }
3736 module_init(spi_nor_module_init);
3737
spi_nor_module_exit(void)3738 static void __exit spi_nor_module_exit(void)
3739 {
3740 spi_mem_driver_unregister(&spi_nor_driver);
3741 spi_nor_debugfs_shutdown();
3742 }
3743 module_exit(spi_nor_module_exit);
3744
3745 MODULE_LICENSE("GPL v2");
3746 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3747 MODULE_AUTHOR("Mike Lavender");
3748 MODULE_DESCRIPTION("framework for SPI NOR");
3749